1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * #!-checking implemented by tytso.
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 #include <linux/ksm.h>
72 #include <linux/uaccess.h>
73 #include <asm/mmu_context.h>
76 #include <trace/events/task.h>
79 #include <trace/events/sched.h>
81 static int bprm_creds_from_file(struct linux_binprm *bprm);
83 int suid_dumpable = 0;
85 static LIST_HEAD(formats);
86 static DEFINE_RWLOCK(binfmt_lock);
88 void __register_binfmt(struct linux_binfmt * fmt, int insert)
90 write_lock(&binfmt_lock);
91 insert ? list_add(&fmt->lh, &formats) :
92 list_add_tail(&fmt->lh, &formats);
93 write_unlock(&binfmt_lock);
96 EXPORT_SYMBOL(__register_binfmt);
98 void unregister_binfmt(struct linux_binfmt * fmt)
100 write_lock(&binfmt_lock);
102 write_unlock(&binfmt_lock);
105 EXPORT_SYMBOL(unregister_binfmt);
107 static inline void put_binfmt(struct linux_binfmt * fmt)
109 module_put(fmt->module);
112 bool path_noexec(const struct path *path)
114 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
120 * Note that a shared library must be both readable and executable due to
123 * Also note that we take the address to load from the file itself.
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
127 struct linux_binfmt *fmt;
129 struct filename *tmp = getname(library);
130 int error = PTR_ERR(tmp);
131 static const struct open_flags uselib_flags = {
132 .open_flag = O_LARGEFILE | O_RDONLY,
133 .acc_mode = MAY_READ | MAY_EXEC,
134 .intent = LOOKUP_OPEN,
135 .lookup_flags = LOOKUP_FOLLOW,
141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
143 error = PTR_ERR(file);
148 * may_open() has already checked for this, so it should be
149 * impossible to trip now. But we need to be extra cautious
150 * and check again at the very end too.
153 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154 path_noexec(&file->f_path)))
159 read_lock(&binfmt_lock);
160 list_for_each_entry(fmt, &formats, lh) {
161 if (!fmt->load_shlib)
163 if (!try_module_get(fmt->module))
165 read_unlock(&binfmt_lock);
166 error = fmt->load_shlib(file);
167 read_lock(&binfmt_lock);
169 if (error != -ENOEXEC)
172 read_unlock(&binfmt_lock);
178 #endif /* #ifdef CONFIG_USELIB */
182 * The nascent bprm->mm is not visible until exec_mmap() but it can
183 * use a lot of memory, account these pages in current->mm temporary
184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185 * change the counter back via acct_arg_size(0).
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
189 struct mm_struct *mm = current->mm;
190 long diff = (long)(pages - bprm->vma_pages);
195 bprm->vma_pages = pages;
196 add_mm_counter(mm, MM_ANONPAGES, diff);
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
203 struct vm_area_struct *vma = bprm->vma;
204 struct mm_struct *mm = bprm->mm;
208 * Avoid relying on expanding the stack down in GUP (which
209 * does not work for STACK_GROWSUP anyway), and just do it
210 * by hand ahead of time.
212 if (write && pos < vma->vm_start) {
214 ret = expand_downwards(vma, pos);
215 if (unlikely(ret < 0)) {
216 mmap_write_unlock(mm);
219 mmap_write_downgrade(mm);
224 * We are doing an exec(). 'current' is the process
225 * doing the exec and 'mm' is the new process's mm.
227 ret = get_user_pages_remote(mm, pos, 1,
228 write ? FOLL_WRITE : 0,
230 mmap_read_unlock(mm);
235 acct_arg_size(bprm, vma_pages(vma));
240 static void put_arg_page(struct page *page)
245 static void free_arg_pages(struct linux_binprm *bprm)
249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
252 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
255 static int __bprm_mm_init(struct linux_binprm *bprm)
258 struct vm_area_struct *vma = NULL;
259 struct mm_struct *mm = bprm->mm;
261 bprm->vma = vma = vm_area_alloc(mm);
264 vma_set_anonymous(vma);
266 if (mmap_write_lock_killable(mm)) {
272 * Need to be called with mmap write lock
273 * held, to avoid race with ksmd.
275 err = ksm_execve(mm);
280 * Place the stack at the largest stack address the architecture
281 * supports. Later, we'll move this to an appropriate place. We don't
282 * use STACK_TOP because that can depend on attributes which aren't
285 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286 vma->vm_end = STACK_TOP_MAX;
287 vma->vm_start = vma->vm_end - PAGE_SIZE;
288 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
289 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
291 err = insert_vm_struct(mm, vma);
295 mm->stack_vm = mm->total_vm = 1;
296 mmap_write_unlock(mm);
297 bprm->p = vma->vm_end - sizeof(void *);
302 mmap_write_unlock(mm);
309 static bool valid_arg_len(struct linux_binprm *bprm, long len)
311 return len <= MAX_ARG_STRLEN;
316 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
320 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
325 page = bprm->page[pos / PAGE_SIZE];
326 if (!page && write) {
327 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
330 bprm->page[pos / PAGE_SIZE] = page;
336 static void put_arg_page(struct page *page)
340 static void free_arg_page(struct linux_binprm *bprm, int i)
343 __free_page(bprm->page[i]);
344 bprm->page[i] = NULL;
348 static void free_arg_pages(struct linux_binprm *bprm)
352 for (i = 0; i < MAX_ARG_PAGES; i++)
353 free_arg_page(bprm, i);
356 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
361 static int __bprm_mm_init(struct linux_binprm *bprm)
363 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
367 static bool valid_arg_len(struct linux_binprm *bprm, long len)
369 return len <= bprm->p;
372 #endif /* CONFIG_MMU */
375 * Create a new mm_struct and populate it with a temporary stack
376 * vm_area_struct. We don't have enough context at this point to set the stack
377 * flags, permissions, and offset, so we use temporary values. We'll update
378 * them later in setup_arg_pages().
380 static int bprm_mm_init(struct linux_binprm *bprm)
383 struct mm_struct *mm = NULL;
385 bprm->mm = mm = mm_alloc();
390 /* Save current stack limit for all calculations made during exec. */
391 task_lock(current->group_leader);
392 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
393 task_unlock(current->group_leader);
395 err = __bprm_mm_init(bprm);
410 struct user_arg_ptr {
415 const char __user *const __user *native;
417 const compat_uptr_t __user *compat;
422 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
424 const char __user *native;
427 if (unlikely(argv.is_compat)) {
428 compat_uptr_t compat;
430 if (get_user(compat, argv.ptr.compat + nr))
431 return ERR_PTR(-EFAULT);
433 return compat_ptr(compat);
437 if (get_user(native, argv.ptr.native + nr))
438 return ERR_PTR(-EFAULT);
444 * count() counts the number of strings in array ARGV.
446 static int count(struct user_arg_ptr argv, int max)
450 if (argv.ptr.native != NULL) {
452 const char __user *p = get_user_arg_ptr(argv, i);
464 if (fatal_signal_pending(current))
465 return -ERESTARTNOHAND;
472 static int count_strings_kernel(const char *const *argv)
479 for (i = 0; argv[i]; ++i) {
480 if (i >= MAX_ARG_STRINGS)
482 if (fatal_signal_pending(current))
483 return -ERESTARTNOHAND;
489 static int bprm_stack_limits(struct linux_binprm *bprm)
491 unsigned long limit, ptr_size;
494 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
495 * (whichever is smaller) for the argv+env strings.
497 * - the remaining binfmt code will not run out of stack space,
498 * - the program will have a reasonable amount of stack left
501 limit = _STK_LIM / 4 * 3;
502 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
504 * We've historically supported up to 32 pages (ARG_MAX)
505 * of argument strings even with small stacks
507 limit = max_t(unsigned long, limit, ARG_MAX);
509 * We must account for the size of all the argv and envp pointers to
510 * the argv and envp strings, since they will also take up space in
511 * the stack. They aren't stored until much later when we can't
512 * signal to the parent that the child has run out of stack space.
513 * Instead, calculate it here so it's possible to fail gracefully.
515 * In the case of argc = 0, make sure there is space for adding a
516 * empty string (which will bump argc to 1), to ensure confused
517 * userspace programs don't start processing from argv[1], thinking
518 * argc can never be 0, to keep them from walking envp by accident.
519 * See do_execveat_common().
521 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
522 if (limit <= ptr_size)
526 bprm->argmin = bprm->p - limit;
531 * 'copy_strings()' copies argument/environment strings from the old
532 * processes's memory to the new process's stack. The call to get_user_pages()
533 * ensures the destination page is created and not swapped out.
535 static int copy_strings(int argc, struct user_arg_ptr argv,
536 struct linux_binprm *bprm)
538 struct page *kmapped_page = NULL;
540 unsigned long kpos = 0;
544 const char __user *str;
549 str = get_user_arg_ptr(argv, argc);
553 len = strnlen_user(str, MAX_ARG_STRLEN);
558 if (!valid_arg_len(bprm, len))
561 /* We're going to work our way backwards. */
566 if (bprm->p < bprm->argmin)
571 int offset, bytes_to_copy;
573 if (fatal_signal_pending(current)) {
574 ret = -ERESTARTNOHAND;
579 offset = pos % PAGE_SIZE;
583 bytes_to_copy = offset;
584 if (bytes_to_copy > len)
587 offset -= bytes_to_copy;
588 pos -= bytes_to_copy;
589 str -= bytes_to_copy;
590 len -= bytes_to_copy;
592 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
595 page = get_arg_page(bprm, pos, 1);
602 flush_dcache_page(kmapped_page);
604 put_arg_page(kmapped_page);
607 kaddr = kmap_local_page(kmapped_page);
608 kpos = pos & PAGE_MASK;
609 flush_arg_page(bprm, kpos, kmapped_page);
611 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
620 flush_dcache_page(kmapped_page);
622 put_arg_page(kmapped_page);
628 * Copy and argument/environment string from the kernel to the processes stack.
630 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
632 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
633 unsigned long pos = bprm->p;
637 if (!valid_arg_len(bprm, len))
640 /* We're going to work our way backwards. */
643 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
647 unsigned int bytes_to_copy = min_t(unsigned int, len,
648 min_not_zero(offset_in_page(pos), PAGE_SIZE));
651 pos -= bytes_to_copy;
652 arg -= bytes_to_copy;
653 len -= bytes_to_copy;
655 page = get_arg_page(bprm, pos, 1);
658 flush_arg_page(bprm, pos & PAGE_MASK, page);
659 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
665 EXPORT_SYMBOL(copy_string_kernel);
667 static int copy_strings_kernel(int argc, const char *const *argv,
668 struct linux_binprm *bprm)
671 int ret = copy_string_kernel(argv[argc], bprm);
674 if (fatal_signal_pending(current))
675 return -ERESTARTNOHAND;
684 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
685 * the binfmt code determines where the new stack should reside, we shift it to
686 * its final location. The process proceeds as follows:
688 * 1) Use shift to calculate the new vma endpoints.
689 * 2) Extend vma to cover both the old and new ranges. This ensures the
690 * arguments passed to subsequent functions are consistent.
691 * 3) Move vma's page tables to the new range.
692 * 4) Free up any cleared pgd range.
693 * 5) Shrink the vma to cover only the new range.
695 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
697 struct mm_struct *mm = vma->vm_mm;
698 unsigned long old_start = vma->vm_start;
699 unsigned long old_end = vma->vm_end;
700 unsigned long length = old_end - old_start;
701 unsigned long new_start = old_start - shift;
702 unsigned long new_end = old_end - shift;
703 VMA_ITERATOR(vmi, mm, new_start);
704 struct vm_area_struct *next;
705 struct mmu_gather tlb;
707 BUG_ON(new_start > new_end);
710 * ensure there are no vmas between where we want to go
713 if (vma != vma_next(&vmi))
716 vma_iter_prev_range(&vmi);
718 * cover the whole range: [new_start, old_end)
720 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
724 * move the page tables downwards, on failure we rely on
725 * process cleanup to remove whatever mess we made.
727 if (length != move_page_tables(vma, old_start,
728 vma, new_start, length, false, true))
732 tlb_gather_mmu(&tlb, mm);
733 next = vma_next(&vmi);
734 if (new_end > old_start) {
736 * when the old and new regions overlap clear from new_end.
738 free_pgd_range(&tlb, new_end, old_end, new_end,
739 next ? next->vm_start : USER_PGTABLES_CEILING);
742 * otherwise, clean from old_start; this is done to not touch
743 * the address space in [new_end, old_start) some architectures
744 * have constraints on va-space that make this illegal (IA64) -
745 * for the others its just a little faster.
747 free_pgd_range(&tlb, old_start, old_end, new_end,
748 next ? next->vm_start : USER_PGTABLES_CEILING);
750 tlb_finish_mmu(&tlb);
753 /* Shrink the vma to just the new range */
754 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
758 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
759 * the stack is optionally relocated, and some extra space is added.
761 int setup_arg_pages(struct linux_binprm *bprm,
762 unsigned long stack_top,
763 int executable_stack)
766 unsigned long stack_shift;
767 struct mm_struct *mm = current->mm;
768 struct vm_area_struct *vma = bprm->vma;
769 struct vm_area_struct *prev = NULL;
770 unsigned long vm_flags;
771 unsigned long stack_base;
772 unsigned long stack_size;
773 unsigned long stack_expand;
774 unsigned long rlim_stack;
775 struct mmu_gather tlb;
776 struct vma_iterator vmi;
778 #ifdef CONFIG_STACK_GROWSUP
779 /* Limit stack size */
780 stack_base = bprm->rlim_stack.rlim_max;
782 stack_base = calc_max_stack_size(stack_base);
784 /* Add space for stack randomization. */
785 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
787 /* Make sure we didn't let the argument array grow too large. */
788 if (vma->vm_end - vma->vm_start > stack_base)
791 stack_base = PAGE_ALIGN(stack_top - stack_base);
793 stack_shift = vma->vm_start - stack_base;
794 mm->arg_start = bprm->p - stack_shift;
795 bprm->p = vma->vm_end - stack_shift;
797 stack_top = arch_align_stack(stack_top);
798 stack_top = PAGE_ALIGN(stack_top);
800 if (unlikely(stack_top < mmap_min_addr) ||
801 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
804 stack_shift = vma->vm_end - stack_top;
806 bprm->p -= stack_shift;
807 mm->arg_start = bprm->p;
811 bprm->loader -= stack_shift;
812 bprm->exec -= stack_shift;
814 if (mmap_write_lock_killable(mm))
817 vm_flags = VM_STACK_FLAGS;
820 * Adjust stack execute permissions; explicitly enable for
821 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
822 * (arch default) otherwise.
824 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
826 else if (executable_stack == EXSTACK_DISABLE_X)
827 vm_flags &= ~VM_EXEC;
828 vm_flags |= mm->def_flags;
829 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
831 vma_iter_init(&vmi, mm, vma->vm_start);
833 tlb_gather_mmu(&tlb, mm);
834 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
836 tlb_finish_mmu(&tlb);
842 if (unlikely(vm_flags & VM_EXEC)) {
843 pr_warn_once("process '%pD4' started with executable stack\n",
847 /* Move stack pages down in memory. */
849 ret = shift_arg_pages(vma, stack_shift);
854 /* mprotect_fixup is overkill to remove the temporary stack flags */
855 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
857 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
858 stack_size = vma->vm_end - vma->vm_start;
860 * Align this down to a page boundary as expand_stack
863 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
865 stack_expand = min(rlim_stack, stack_size + stack_expand);
867 #ifdef CONFIG_STACK_GROWSUP
868 stack_base = vma->vm_start + stack_expand;
870 stack_base = vma->vm_end - stack_expand;
872 current->mm->start_stack = bprm->p;
873 ret = expand_stack_locked(vma, stack_base);
878 mmap_write_unlock(mm);
881 EXPORT_SYMBOL(setup_arg_pages);
886 * Transfer the program arguments and environment from the holding pages
887 * onto the stack. The provided stack pointer is adjusted accordingly.
889 int transfer_args_to_stack(struct linux_binprm *bprm,
890 unsigned long *sp_location)
892 unsigned long index, stop, sp;
895 stop = bprm->p >> PAGE_SHIFT;
898 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
899 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
900 char *src = kmap_local_page(bprm->page[index]) + offset;
901 sp -= PAGE_SIZE - offset;
902 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
909 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
915 EXPORT_SYMBOL(transfer_args_to_stack);
917 #endif /* CONFIG_MMU */
920 * On success, caller must call do_close_execat() on the returned
921 * struct file to close it.
923 static struct file *do_open_execat(int fd, struct filename *name, int flags)
927 struct open_flags open_exec_flags = {
928 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
929 .acc_mode = MAY_EXEC,
930 .intent = LOOKUP_OPEN,
931 .lookup_flags = LOOKUP_FOLLOW,
934 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
935 return ERR_PTR(-EINVAL);
936 if (flags & AT_SYMLINK_NOFOLLOW)
937 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
938 if (flags & AT_EMPTY_PATH)
939 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
941 file = do_filp_open(fd, name, &open_exec_flags);
946 * may_open() has already checked for this, so it should be
947 * impossible to trip now. But we need to be extra cautious
948 * and check again at the very end too.
951 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
952 path_noexec(&file->f_path)))
955 err = deny_write_access(file);
968 * open_exec - Open a path name for execution
970 * @name: path name to open with the intent of executing it.
972 * Returns ERR_PTR on failure or allocated struct file on success.
974 * As this is a wrapper for the internal do_open_execat(), callers
975 * must call allow_write_access() before fput() on release. Also see
978 struct file *open_exec(const char *name)
980 struct filename *filename = getname_kernel(name);
981 struct file *f = ERR_CAST(filename);
983 if (!IS_ERR(filename)) {
984 f = do_open_execat(AT_FDCWD, filename, 0);
989 EXPORT_SYMBOL(open_exec);
991 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
992 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
994 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
996 flush_icache_user_range(addr, addr + len);
999 EXPORT_SYMBOL(read_code);
1003 * Maps the mm_struct mm into the current task struct.
1004 * On success, this function returns with exec_update_lock
1007 static int exec_mmap(struct mm_struct *mm)
1009 struct task_struct *tsk;
1010 struct mm_struct *old_mm, *active_mm;
1013 /* Notify parent that we're no longer interested in the old VM */
1015 old_mm = current->mm;
1016 exec_mm_release(tsk, old_mm);
1018 ret = down_write_killable(&tsk->signal->exec_update_lock);
1024 * If there is a pending fatal signal perhaps a signal
1025 * whose default action is to create a coredump get
1026 * out and die instead of going through with the exec.
1028 ret = mmap_read_lock_killable(old_mm);
1030 up_write(&tsk->signal->exec_update_lock);
1036 membarrier_exec_mmap(mm);
1038 local_irq_disable();
1039 active_mm = tsk->active_mm;
1040 tsk->active_mm = mm;
1044 * This prevents preemption while active_mm is being loaded and
1045 * it and mm are being updated, which could cause problems for
1046 * lazy tlb mm refcounting when these are updated by context
1047 * switches. Not all architectures can handle irqs off over
1050 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1052 activate_mm(active_mm, mm);
1053 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1059 mmap_read_unlock(old_mm);
1060 BUG_ON(active_mm != old_mm);
1061 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1062 mm_update_next_owner(old_mm);
1066 mmdrop_lazy_tlb(active_mm);
1070 static int de_thread(struct task_struct *tsk)
1072 struct signal_struct *sig = tsk->signal;
1073 struct sighand_struct *oldsighand = tsk->sighand;
1074 spinlock_t *lock = &oldsighand->siglock;
1076 if (thread_group_empty(tsk))
1077 goto no_thread_group;
1080 * Kill all other threads in the thread group.
1082 spin_lock_irq(lock);
1083 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1085 * Another group action in progress, just
1086 * return so that the signal is processed.
1088 spin_unlock_irq(lock);
1092 sig->group_exec_task = tsk;
1093 sig->notify_count = zap_other_threads(tsk);
1094 if (!thread_group_leader(tsk))
1095 sig->notify_count--;
1097 while (sig->notify_count) {
1098 __set_current_state(TASK_KILLABLE);
1099 spin_unlock_irq(lock);
1101 if (__fatal_signal_pending(tsk))
1103 spin_lock_irq(lock);
1105 spin_unlock_irq(lock);
1108 * At this point all other threads have exited, all we have to
1109 * do is to wait for the thread group leader to become inactive,
1110 * and to assume its PID:
1112 if (!thread_group_leader(tsk)) {
1113 struct task_struct *leader = tsk->group_leader;
1116 cgroup_threadgroup_change_begin(tsk);
1117 write_lock_irq(&tasklist_lock);
1119 * Do this under tasklist_lock to ensure that
1120 * exit_notify() can't miss ->group_exec_task
1122 sig->notify_count = -1;
1123 if (likely(leader->exit_state))
1125 __set_current_state(TASK_KILLABLE);
1126 write_unlock_irq(&tasklist_lock);
1127 cgroup_threadgroup_change_end(tsk);
1129 if (__fatal_signal_pending(tsk))
1134 * The only record we have of the real-time age of a
1135 * process, regardless of execs it's done, is start_time.
1136 * All the past CPU time is accumulated in signal_struct
1137 * from sister threads now dead. But in this non-leader
1138 * exec, nothing survives from the original leader thread,
1139 * whose birth marks the true age of this process now.
1140 * When we take on its identity by switching to its PID, we
1141 * also take its birthdate (always earlier than our own).
1143 tsk->start_time = leader->start_time;
1144 tsk->start_boottime = leader->start_boottime;
1146 BUG_ON(!same_thread_group(leader, tsk));
1148 * An exec() starts a new thread group with the
1149 * TGID of the previous thread group. Rehash the
1150 * two threads with a switched PID, and release
1151 * the former thread group leader:
1154 /* Become a process group leader with the old leader's pid.
1155 * The old leader becomes a thread of the this thread group.
1157 exchange_tids(tsk, leader);
1158 transfer_pid(leader, tsk, PIDTYPE_TGID);
1159 transfer_pid(leader, tsk, PIDTYPE_PGID);
1160 transfer_pid(leader, tsk, PIDTYPE_SID);
1162 list_replace_rcu(&leader->tasks, &tsk->tasks);
1163 list_replace_init(&leader->sibling, &tsk->sibling);
1165 tsk->group_leader = tsk;
1166 leader->group_leader = tsk;
1168 tsk->exit_signal = SIGCHLD;
1169 leader->exit_signal = -1;
1171 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1172 leader->exit_state = EXIT_DEAD;
1174 * We are going to release_task()->ptrace_unlink() silently,
1175 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1176 * the tracer won't block again waiting for this thread.
1178 if (unlikely(leader->ptrace))
1179 __wake_up_parent(leader, leader->parent);
1180 write_unlock_irq(&tasklist_lock);
1181 cgroup_threadgroup_change_end(tsk);
1183 release_task(leader);
1186 sig->group_exec_task = NULL;
1187 sig->notify_count = 0;
1190 /* we have changed execution domain */
1191 tsk->exit_signal = SIGCHLD;
1193 BUG_ON(!thread_group_leader(tsk));
1197 /* protects against exit_notify() and __exit_signal() */
1198 read_lock(&tasklist_lock);
1199 sig->group_exec_task = NULL;
1200 sig->notify_count = 0;
1201 read_unlock(&tasklist_lock);
1207 * This function makes sure the current process has its own signal table,
1208 * so that flush_signal_handlers can later reset the handlers without
1209 * disturbing other processes. (Other processes might share the signal
1210 * table via the CLONE_SIGHAND option to clone().)
1212 static int unshare_sighand(struct task_struct *me)
1214 struct sighand_struct *oldsighand = me->sighand;
1216 if (refcount_read(&oldsighand->count) != 1) {
1217 struct sighand_struct *newsighand;
1219 * This ->sighand is shared with the CLONE_SIGHAND
1220 * but not CLONE_THREAD task, switch to the new one.
1222 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1226 refcount_set(&newsighand->count, 1);
1228 write_lock_irq(&tasklist_lock);
1229 spin_lock(&oldsighand->siglock);
1230 memcpy(newsighand->action, oldsighand->action,
1231 sizeof(newsighand->action));
1232 rcu_assign_pointer(me->sighand, newsighand);
1233 spin_unlock(&oldsighand->siglock);
1234 write_unlock_irq(&tasklist_lock);
1236 __cleanup_sighand(oldsighand);
1241 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1244 /* Always NUL terminated and zero-padded */
1245 strscpy_pad(buf, tsk->comm, buf_size);
1249 EXPORT_SYMBOL_GPL(__get_task_comm);
1252 * These functions flushes out all traces of the currently running executable
1253 * so that a new one can be started
1256 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1259 trace_task_rename(tsk, buf);
1260 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1262 perf_event_comm(tsk, exec);
1266 * Calling this is the point of no return. None of the failures will be
1267 * seen by userspace since either the process is already taking a fatal
1268 * signal (via de_thread() or coredump), or will have SEGV raised
1269 * (after exec_mmap()) by search_binary_handler (see below).
1271 int begin_new_exec(struct linux_binprm * bprm)
1273 struct task_struct *me = current;
1276 /* Once we are committed compute the creds */
1277 retval = bprm_creds_from_file(bprm);
1282 * Ensure all future errors are fatal.
1284 bprm->point_of_no_return = true;
1287 * Make this the only thread in the thread group.
1289 retval = de_thread(me);
1294 * Cancel any io_uring activity across execve
1296 io_uring_task_cancel();
1298 /* Ensure the files table is not shared. */
1299 retval = unshare_files();
1304 * Must be called _before_ exec_mmap() as bprm->mm is
1305 * not visible until then. Doing it here also ensures
1306 * we don't race against replace_mm_exe_file().
1308 retval = set_mm_exe_file(bprm->mm, bprm->file);
1312 /* If the binary is not readable then enforce mm->dumpable=0 */
1313 would_dump(bprm, bprm->file);
1314 if (bprm->have_execfd)
1315 would_dump(bprm, bprm->executable);
1318 * Release all of the old mmap stuff
1320 acct_arg_size(bprm, 0);
1321 retval = exec_mmap(bprm->mm);
1327 retval = exec_task_namespaces();
1331 #ifdef CONFIG_POSIX_TIMERS
1332 spin_lock_irq(&me->sighand->siglock);
1333 posix_cpu_timers_exit(me);
1334 spin_unlock_irq(&me->sighand->siglock);
1336 flush_itimer_signals();
1340 * Make the signal table private.
1342 retval = unshare_sighand(me);
1346 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1347 PF_NOFREEZE | PF_NO_SETAFFINITY);
1349 me->personality &= ~bprm->per_clear;
1351 clear_syscall_work_syscall_user_dispatch(me);
1354 * We have to apply CLOEXEC before we change whether the process is
1355 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1356 * trying to access the should-be-closed file descriptors of a process
1357 * undergoing exec(2).
1359 do_close_on_exec(me->files);
1361 if (bprm->secureexec) {
1362 /* Make sure parent cannot signal privileged process. */
1363 me->pdeath_signal = 0;
1366 * For secureexec, reset the stack limit to sane default to
1367 * avoid bad behavior from the prior rlimits. This has to
1368 * happen before arch_pick_mmap_layout(), which examines
1369 * RLIMIT_STACK, but after the point of no return to avoid
1370 * needing to clean up the change on failure.
1372 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1373 bprm->rlim_stack.rlim_cur = _STK_LIM;
1376 me->sas_ss_sp = me->sas_ss_size = 0;
1379 * Figure out dumpability. Note that this checking only of current
1380 * is wrong, but userspace depends on it. This should be testing
1381 * bprm->secureexec instead.
1383 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1384 !(uid_eq(current_euid(), current_uid()) &&
1385 gid_eq(current_egid(), current_gid())))
1386 set_dumpable(current->mm, suid_dumpable);
1388 set_dumpable(current->mm, SUID_DUMP_USER);
1391 __set_task_comm(me, kbasename(bprm->filename), true);
1393 /* An exec changes our domain. We are no longer part of the thread
1395 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1396 flush_signal_handlers(me, 0);
1398 retval = set_cred_ucounts(bprm->cred);
1403 * install the new credentials for this executable
1405 security_bprm_committing_creds(bprm);
1407 commit_creds(bprm->cred);
1411 * Disable monitoring for regular users
1412 * when executing setuid binaries. Must
1413 * wait until new credentials are committed
1414 * by commit_creds() above
1416 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1417 perf_event_exit_task(me);
1419 * cred_guard_mutex must be held at least to this point to prevent
1420 * ptrace_attach() from altering our determination of the task's
1421 * credentials; any time after this it may be unlocked.
1423 security_bprm_committed_creds(bprm);
1425 /* Pass the opened binary to the interpreter. */
1426 if (bprm->have_execfd) {
1427 retval = get_unused_fd_flags(0);
1430 fd_install(retval, bprm->executable);
1431 bprm->executable = NULL;
1432 bprm->execfd = retval;
1437 up_write(&me->signal->exec_update_lock);
1439 mutex_unlock(&me->signal->cred_guard_mutex);
1444 EXPORT_SYMBOL(begin_new_exec);
1446 void would_dump(struct linux_binprm *bprm, struct file *file)
1448 struct inode *inode = file_inode(file);
1449 struct mnt_idmap *idmap = file_mnt_idmap(file);
1450 if (inode_permission(idmap, inode, MAY_READ) < 0) {
1451 struct user_namespace *old, *user_ns;
1452 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1454 /* Ensure mm->user_ns contains the executable */
1455 user_ns = old = bprm->mm->user_ns;
1456 while ((user_ns != &init_user_ns) &&
1457 !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1458 user_ns = user_ns->parent;
1460 if (old != user_ns) {
1461 bprm->mm->user_ns = get_user_ns(user_ns);
1466 EXPORT_SYMBOL(would_dump);
1468 void setup_new_exec(struct linux_binprm * bprm)
1470 /* Setup things that can depend upon the personality */
1471 struct task_struct *me = current;
1473 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1475 arch_setup_new_exec();
1477 /* Set the new mm task size. We have to do that late because it may
1478 * depend on TIF_32BIT which is only updated in flush_thread() on
1479 * some architectures like powerpc
1481 me->mm->task_size = TASK_SIZE;
1482 up_write(&me->signal->exec_update_lock);
1483 mutex_unlock(&me->signal->cred_guard_mutex);
1485 EXPORT_SYMBOL(setup_new_exec);
1487 /* Runs immediately before start_thread() takes over. */
1488 void finalize_exec(struct linux_binprm *bprm)
1490 /* Store any stack rlimit changes before starting thread. */
1491 task_lock(current->group_leader);
1492 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1493 task_unlock(current->group_leader);
1495 EXPORT_SYMBOL(finalize_exec);
1498 * Prepare credentials and lock ->cred_guard_mutex.
1499 * setup_new_exec() commits the new creds and drops the lock.
1500 * Or, if exec fails before, free_bprm() should release ->cred
1503 static int prepare_bprm_creds(struct linux_binprm *bprm)
1505 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1506 return -ERESTARTNOINTR;
1508 bprm->cred = prepare_exec_creds();
1509 if (likely(bprm->cred))
1512 mutex_unlock(¤t->signal->cred_guard_mutex);
1516 /* Matches do_open_execat() */
1517 static void do_close_execat(struct file *file)
1521 allow_write_access(file);
1525 static void free_bprm(struct linux_binprm *bprm)
1528 acct_arg_size(bprm, 0);
1531 free_arg_pages(bprm);
1533 mutex_unlock(¤t->signal->cred_guard_mutex);
1534 abort_creds(bprm->cred);
1536 do_close_execat(bprm->file);
1537 if (bprm->executable)
1538 fput(bprm->executable);
1539 /* If a binfmt changed the interp, free it. */
1540 if (bprm->interp != bprm->filename)
1541 kfree(bprm->interp);
1542 kfree(bprm->fdpath);
1546 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1548 struct linux_binprm *bprm;
1550 int retval = -ENOMEM;
1552 file = do_open_execat(fd, filename, flags);
1554 return ERR_CAST(file);
1556 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1558 do_close_execat(file);
1559 return ERR_PTR(-ENOMEM);
1564 if (fd == AT_FDCWD || filename->name[0] == '/') {
1565 bprm->filename = filename->name;
1567 if (filename->name[0] == '\0')
1568 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1570 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1571 fd, filename->name);
1576 * Record that a name derived from an O_CLOEXEC fd will be
1577 * inaccessible after exec. This allows the code in exec to
1578 * choose to fail when the executable is not mmaped into the
1579 * interpreter and an open file descriptor is not passed to
1580 * the interpreter. This makes for a better user experience
1581 * than having the interpreter start and then immediately fail
1582 * when it finds the executable is inaccessible.
1584 if (get_close_on_exec(fd))
1585 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1587 bprm->filename = bprm->fdpath;
1589 bprm->interp = bprm->filename;
1591 retval = bprm_mm_init(bprm);
1597 return ERR_PTR(retval);
1600 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1602 /* If a binfmt changed the interp, free it first. */
1603 if (bprm->interp != bprm->filename)
1604 kfree(bprm->interp);
1605 bprm->interp = kstrdup(interp, GFP_KERNEL);
1610 EXPORT_SYMBOL(bprm_change_interp);
1613 * determine how safe it is to execute the proposed program
1614 * - the caller must hold ->cred_guard_mutex to protect against
1615 * PTRACE_ATTACH or seccomp thread-sync
1617 static void check_unsafe_exec(struct linux_binprm *bprm)
1619 struct task_struct *p = current, *t;
1623 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1626 * This isn't strictly necessary, but it makes it harder for LSMs to
1629 if (task_no_new_privs(current))
1630 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1633 * If another task is sharing our fs, we cannot safely
1634 * suid exec because the differently privileged task
1635 * will be able to manipulate the current directory, etc.
1636 * It would be nice to force an unshare instead...
1639 spin_lock(&p->fs->lock);
1641 for_other_threads(p, t) {
1647 /* "users" and "in_exec" locked for copy_fs() */
1648 if (p->fs->users > n_fs)
1649 bprm->unsafe |= LSM_UNSAFE_SHARE;
1652 spin_unlock(&p->fs->lock);
1655 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1657 /* Handle suid and sgid on files */
1658 struct mnt_idmap *idmap;
1659 struct inode *inode = file_inode(file);
1664 if (!mnt_may_suid(file->f_path.mnt))
1667 if (task_no_new_privs(current))
1670 mode = READ_ONCE(inode->i_mode);
1671 if (!(mode & (S_ISUID|S_ISGID)))
1674 idmap = file_mnt_idmap(file);
1676 /* Be careful if suid/sgid is set */
1679 /* reload atomically mode/uid/gid now that lock held */
1680 mode = inode->i_mode;
1681 vfsuid = i_uid_into_vfsuid(idmap, inode);
1682 vfsgid = i_gid_into_vfsgid(idmap, inode);
1683 inode_unlock(inode);
1685 /* We ignore suid/sgid if there are no mappings for them in the ns */
1686 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1687 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1690 if (mode & S_ISUID) {
1691 bprm->per_clear |= PER_CLEAR_ON_SETID;
1692 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1695 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1696 bprm->per_clear |= PER_CLEAR_ON_SETID;
1697 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1702 * Compute brpm->cred based upon the final binary.
1704 static int bprm_creds_from_file(struct linux_binprm *bprm)
1706 /* Compute creds based on which file? */
1707 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1709 bprm_fill_uid(bprm, file);
1710 return security_bprm_creds_from_file(bprm, file);
1714 * Fill the binprm structure from the inode.
1715 * Read the first BINPRM_BUF_SIZE bytes
1717 * This may be called multiple times for binary chains (scripts for example).
1719 static int prepare_binprm(struct linux_binprm *bprm)
1723 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1724 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1728 * Arguments are '\0' separated strings found at the location bprm->p
1729 * points to; chop off the first by relocating brpm->p to right after
1730 * the first '\0' encountered.
1732 int remove_arg_zero(struct linux_binprm *bprm)
1734 unsigned long offset;
1742 offset = bprm->p & ~PAGE_MASK;
1743 page = get_arg_page(bprm, bprm->p, 0);
1746 kaddr = kmap_local_page(page);
1748 for (; offset < PAGE_SIZE && kaddr[offset];
1749 offset++, bprm->p++)
1752 kunmap_local(kaddr);
1754 } while (offset == PAGE_SIZE);
1761 EXPORT_SYMBOL(remove_arg_zero);
1763 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1765 * cycle the list of binary formats handler, until one recognizes the image
1767 static int search_binary_handler(struct linux_binprm *bprm)
1769 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1770 struct linux_binfmt *fmt;
1773 retval = prepare_binprm(bprm);
1777 retval = security_bprm_check(bprm);
1783 read_lock(&binfmt_lock);
1784 list_for_each_entry(fmt, &formats, lh) {
1785 if (!try_module_get(fmt->module))
1787 read_unlock(&binfmt_lock);
1789 retval = fmt->load_binary(bprm);
1791 read_lock(&binfmt_lock);
1793 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1794 read_unlock(&binfmt_lock);
1798 read_unlock(&binfmt_lock);
1801 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1802 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1804 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1813 /* binfmt handlers will call back into begin_new_exec() on success. */
1814 static int exec_binprm(struct linux_binprm *bprm)
1816 pid_t old_pid, old_vpid;
1819 /* Need to fetch pid before load_binary changes it */
1820 old_pid = current->pid;
1822 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1825 /* This allows 4 levels of binfmt rewrites before failing hard. */
1826 for (depth = 0;; depth++) {
1831 ret = search_binary_handler(bprm);
1834 if (!bprm->interpreter)
1838 bprm->file = bprm->interpreter;
1839 bprm->interpreter = NULL;
1841 allow_write_access(exec);
1842 if (unlikely(bprm->have_execfd)) {
1843 if (bprm->executable) {
1847 bprm->executable = exec;
1853 trace_sched_process_exec(current, old_pid, bprm);
1854 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1855 proc_exec_connector(current);
1859 static int bprm_execve(struct linux_binprm *bprm)
1863 retval = prepare_bprm_creds(bprm);
1868 * Check for unsafe execution states before exec_binprm(), which
1869 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1870 * where setuid-ness is evaluated.
1872 check_unsafe_exec(bprm);
1873 current->in_execve = 1;
1874 sched_mm_cid_before_execve(current);
1878 /* Set the unchanging part of bprm->cred */
1879 retval = security_bprm_creds_for_exec(bprm);
1883 retval = exec_binprm(bprm);
1887 sched_mm_cid_after_execve(current);
1888 /* execve succeeded */
1889 current->fs->in_exec = 0;
1890 current->in_execve = 0;
1891 rseq_execve(current);
1892 user_events_execve(current);
1893 acct_update_integrals(current);
1894 task_numa_free(current, false);
1899 * If past the point of no return ensure the code never
1900 * returns to the userspace process. Use an existing fatal
1901 * signal if present otherwise terminate the process with
1904 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1905 force_fatal_sig(SIGSEGV);
1907 sched_mm_cid_after_execve(current);
1908 current->fs->in_exec = 0;
1909 current->in_execve = 0;
1914 static int do_execveat_common(int fd, struct filename *filename,
1915 struct user_arg_ptr argv,
1916 struct user_arg_ptr envp,
1919 struct linux_binprm *bprm;
1922 if (IS_ERR(filename))
1923 return PTR_ERR(filename);
1926 * We move the actual failure in case of RLIMIT_NPROC excess from
1927 * set*uid() to execve() because too many poorly written programs
1928 * don't check setuid() return code. Here we additionally recheck
1929 * whether NPROC limit is still exceeded.
1931 if ((current->flags & PF_NPROC_EXCEEDED) &&
1932 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1937 /* We're below the limit (still or again), so we don't want to make
1938 * further execve() calls fail. */
1939 current->flags &= ~PF_NPROC_EXCEEDED;
1941 bprm = alloc_bprm(fd, filename, flags);
1943 retval = PTR_ERR(bprm);
1947 retval = count(argv, MAX_ARG_STRINGS);
1949 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1950 current->comm, bprm->filename);
1953 bprm->argc = retval;
1955 retval = count(envp, MAX_ARG_STRINGS);
1958 bprm->envc = retval;
1960 retval = bprm_stack_limits(bprm);
1964 retval = copy_string_kernel(bprm->filename, bprm);
1967 bprm->exec = bprm->p;
1969 retval = copy_strings(bprm->envc, envp, bprm);
1973 retval = copy_strings(bprm->argc, argv, bprm);
1978 * When argv is empty, add an empty string ("") as argv[0] to
1979 * ensure confused userspace programs that start processing
1980 * from argv[1] won't end up walking envp. See also
1981 * bprm_stack_limits().
1983 if (bprm->argc == 0) {
1984 retval = copy_string_kernel("", bprm);
1990 retval = bprm_execve(bprm);
1999 int kernel_execve(const char *kernel_filename,
2000 const char *const *argv, const char *const *envp)
2002 struct filename *filename;
2003 struct linux_binprm *bprm;
2007 /* It is non-sense for kernel threads to call execve */
2008 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
2011 filename = getname_kernel(kernel_filename);
2012 if (IS_ERR(filename))
2013 return PTR_ERR(filename);
2015 bprm = alloc_bprm(fd, filename, 0);
2017 retval = PTR_ERR(bprm);
2021 retval = count_strings_kernel(argv);
2022 if (WARN_ON_ONCE(retval == 0))
2026 bprm->argc = retval;
2028 retval = count_strings_kernel(envp);
2031 bprm->envc = retval;
2033 retval = bprm_stack_limits(bprm);
2037 retval = copy_string_kernel(bprm->filename, bprm);
2040 bprm->exec = bprm->p;
2042 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2046 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2050 retval = bprm_execve(bprm);
2058 static int do_execve(struct filename *filename,
2059 const char __user *const __user *__argv,
2060 const char __user *const __user *__envp)
2062 struct user_arg_ptr argv = { .ptr.native = __argv };
2063 struct user_arg_ptr envp = { .ptr.native = __envp };
2064 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2067 static int do_execveat(int fd, struct filename *filename,
2068 const char __user *const __user *__argv,
2069 const char __user *const __user *__envp,
2072 struct user_arg_ptr argv = { .ptr.native = __argv };
2073 struct user_arg_ptr envp = { .ptr.native = __envp };
2075 return do_execveat_common(fd, filename, argv, envp, flags);
2078 #ifdef CONFIG_COMPAT
2079 static int compat_do_execve(struct filename *filename,
2080 const compat_uptr_t __user *__argv,
2081 const compat_uptr_t __user *__envp)
2083 struct user_arg_ptr argv = {
2085 .ptr.compat = __argv,
2087 struct user_arg_ptr envp = {
2089 .ptr.compat = __envp,
2091 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2094 static int compat_do_execveat(int fd, struct filename *filename,
2095 const compat_uptr_t __user *__argv,
2096 const compat_uptr_t __user *__envp,
2099 struct user_arg_ptr argv = {
2101 .ptr.compat = __argv,
2103 struct user_arg_ptr envp = {
2105 .ptr.compat = __envp,
2107 return do_execveat_common(fd, filename, argv, envp, flags);
2111 void set_binfmt(struct linux_binfmt *new)
2113 struct mm_struct *mm = current->mm;
2116 module_put(mm->binfmt->module);
2120 __module_get(new->module);
2122 EXPORT_SYMBOL(set_binfmt);
2125 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2127 void set_dumpable(struct mm_struct *mm, int value)
2129 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2132 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2135 SYSCALL_DEFINE3(execve,
2136 const char __user *, filename,
2137 const char __user *const __user *, argv,
2138 const char __user *const __user *, envp)
2140 return do_execve(getname(filename), argv, envp);
2143 SYSCALL_DEFINE5(execveat,
2144 int, fd, const char __user *, filename,
2145 const char __user *const __user *, argv,
2146 const char __user *const __user *, envp,
2149 return do_execveat(fd,
2150 getname_uflags(filename, flags),
2154 #ifdef CONFIG_COMPAT
2155 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2156 const compat_uptr_t __user *, argv,
2157 const compat_uptr_t __user *, envp)
2159 return compat_do_execve(getname(filename), argv, envp);
2162 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2163 const char __user *, filename,
2164 const compat_uptr_t __user *, argv,
2165 const compat_uptr_t __user *, envp,
2168 return compat_do_execveat(fd,
2169 getname_uflags(filename, flags),
2174 #ifdef CONFIG_SYSCTL
2176 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2177 void *buffer, size_t *lenp, loff_t *ppos)
2179 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2182 validate_coredump_safety();
2186 static struct ctl_table fs_exec_sysctls[] = {
2188 .procname = "suid_dumpable",
2189 .data = &suid_dumpable,
2190 .maxlen = sizeof(int),
2192 .proc_handler = proc_dointvec_minmax_coredump,
2193 .extra1 = SYSCTL_ZERO,
2194 .extra2 = SYSCTL_TWO,
2198 static int __init init_fs_exec_sysctls(void)
2200 register_sysctl_init("fs", fs_exec_sysctls);
2204 fs_initcall(init_fs_exec_sysctls);
2205 #endif /* CONFIG_SYSCTL */