1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2006, Intel Corporation.
5 * Copyright (C) 2006-2008 Intel Corporation
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
14 * These routines are used by both DMA-remapping and Interrupt-remapping
17 #define pr_fmt(fmt) "DMAR: " fmt
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/intel-iommu.h>
23 #include <linux/timer.h>
24 #include <linux/irq.h>
25 #include <linux/interrupt.h>
26 #include <linux/tboot.h>
27 #include <linux/dmi.h>
28 #include <linux/slab.h>
29 #include <linux/iommu.h>
30 #include <linux/numa.h>
31 #include <linux/limits.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/iommu_table.h>
35 #include "irq_remapping.h"
37 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
38 struct dmar_res_callback {
39 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
40 void *arg[ACPI_DMAR_TYPE_RESERVED];
41 bool ignore_unhandled;
47 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
48 * before IO devices managed by that unit.
49 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
50 * after IO devices managed by that unit.
51 * 3) Hotplug events are rare.
53 * Locking rules for DMA and interrupt remapping related global data structures:
54 * 1) Use dmar_global_lock in process context
55 * 2) Use RCU in interrupt context
57 DECLARE_RWSEM(dmar_global_lock);
58 LIST_HEAD(dmar_drhd_units);
60 struct acpi_table_header * __initdata dmar_tbl;
61 static int dmar_dev_scope_status = 1;
62 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
64 static int alloc_iommu(struct dmar_drhd_unit *drhd);
65 static void free_iommu(struct intel_iommu *iommu);
67 extern const struct iommu_ops intel_iommu_ops;
69 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
72 * add INCLUDE_ALL at the tail, so scan the list will find it at
75 if (drhd->include_all)
76 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
78 list_add_rcu(&drhd->list, &dmar_drhd_units);
81 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
83 struct acpi_dmar_device_scope *scope;
88 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
92 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
93 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94 pr_warn("Unsupported device scope\n");
96 start += scope->length;
101 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
104 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
107 struct device *tmp_dev;
109 if (*devices && *cnt) {
110 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
119 /* Optimize out kzalloc()/kfree() for normal cases */
120 static char dmar_pci_notify_info_buf[64];
122 static struct dmar_pci_notify_info *
123 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
128 struct dmar_pci_notify_info *info;
130 BUG_ON(dev->is_virtfn);
133 * Ignore devices that have a domain number higher than what can
134 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
136 if (pci_domain_nr(dev->bus) > U16_MAX)
139 /* Only generate path[] for device addition event */
140 if (event == BUS_NOTIFY_ADD_DEVICE)
141 for (tmp = dev; tmp; tmp = tmp->bus->self)
144 size = struct_size(info, path, level);
145 if (size <= sizeof(dmar_pci_notify_info_buf)) {
146 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
148 info = kzalloc(size, GFP_KERNEL);
150 pr_warn("Out of memory when allocating notify_info "
151 "for %s.\n", pci_name(dev));
152 if (dmar_dev_scope_status == 0)
153 dmar_dev_scope_status = -ENOMEM;
160 info->seg = pci_domain_nr(dev->bus);
162 if (event == BUS_NOTIFY_ADD_DEVICE) {
163 for (tmp = dev; tmp; tmp = tmp->bus->self) {
165 info->path[level].bus = tmp->bus->number;
166 info->path[level].device = PCI_SLOT(tmp->devfn);
167 info->path[level].function = PCI_FUNC(tmp->devfn);
168 if (pci_is_root_bus(tmp->bus))
169 info->bus = tmp->bus->number;
176 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
178 if ((void *)info != dmar_pci_notify_info_buf)
182 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
183 struct acpi_dmar_pci_path *path, int count)
187 if (info->bus != bus)
189 if (info->level != count)
192 for (i = 0; i < count; i++) {
193 if (path[i].device != info->path[i].device ||
194 path[i].function != info->path[i].function)
206 if (bus == info->path[i].bus &&
207 path[0].device == info->path[i].device &&
208 path[0].function == info->path[i].function) {
209 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
210 bus, path[0].device, path[0].function);
217 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
218 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
219 void *start, void*end, u16 segment,
220 struct dmar_dev_scope *devices,
224 struct device *tmp, *dev = &info->dev->dev;
225 struct acpi_dmar_device_scope *scope;
226 struct acpi_dmar_pci_path *path;
228 if (segment != info->seg)
231 for (; start < end; start += scope->length) {
233 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
234 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
237 path = (struct acpi_dmar_pci_path *)(scope + 1);
238 level = (scope->length - sizeof(*scope)) / sizeof(*path);
239 if (!dmar_match_pci_path(info, scope->bus, path, level))
243 * We expect devices with endpoint scope to have normal PCI
244 * headers, and devices with bridge scope to have bridge PCI
245 * headers. However PCI NTB devices may be listed in the
246 * DMAR table with bridge scope, even though they have a
247 * normal PCI header. NTB devices are identified by class
248 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
249 * for this special case.
251 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
252 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
253 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
254 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
255 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
256 pr_warn("Device scope type does not match for %s\n",
257 pci_name(info->dev));
261 for_each_dev_scope(devices, devices_cnt, i, tmp)
263 devices[i].bus = info->dev->bus->number;
264 devices[i].devfn = info->dev->devfn;
265 rcu_assign_pointer(devices[i].dev,
269 BUG_ON(i >= devices_cnt);
275 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
276 struct dmar_dev_scope *devices, int count)
281 if (info->seg != segment)
284 for_each_active_dev_scope(devices, count, index, tmp)
285 if (tmp == &info->dev->dev) {
286 RCU_INIT_POINTER(devices[index].dev, NULL);
295 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
298 struct dmar_drhd_unit *dmaru;
299 struct acpi_dmar_hardware_unit *drhd;
301 for_each_drhd_unit(dmaru) {
302 if (dmaru->include_all)
305 drhd = container_of(dmaru->hdr,
306 struct acpi_dmar_hardware_unit, header);
307 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
308 ((void *)drhd) + drhd->header.length,
310 dmaru->devices, dmaru->devices_cnt);
315 ret = dmar_iommu_notify_scope_dev(info);
316 if (ret < 0 && dmar_dev_scope_status == 0)
317 dmar_dev_scope_status = ret;
322 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
324 struct dmar_drhd_unit *dmaru;
326 for_each_drhd_unit(dmaru)
327 if (dmar_remove_dev_scope(info, dmaru->segment,
328 dmaru->devices, dmaru->devices_cnt))
330 dmar_iommu_notify_scope_dev(info);
333 static int dmar_pci_bus_notifier(struct notifier_block *nb,
334 unsigned long action, void *data)
336 struct pci_dev *pdev = to_pci_dev(data);
337 struct dmar_pci_notify_info *info;
339 /* Only care about add/remove events for physical functions.
340 * For VFs we actually do the lookup based on the corresponding
341 * PF in device_to_iommu() anyway. */
344 if (action != BUS_NOTIFY_ADD_DEVICE &&
345 action != BUS_NOTIFY_REMOVED_DEVICE)
348 info = dmar_alloc_pci_notify_info(pdev, action);
352 down_write(&dmar_global_lock);
353 if (action == BUS_NOTIFY_ADD_DEVICE)
354 dmar_pci_bus_add_dev(info);
355 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
356 dmar_pci_bus_del_dev(info);
357 up_write(&dmar_global_lock);
359 dmar_free_pci_notify_info(info);
364 static struct notifier_block dmar_pci_bus_nb = {
365 .notifier_call = dmar_pci_bus_notifier,
369 static struct dmar_drhd_unit *
370 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
372 struct dmar_drhd_unit *dmaru;
374 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
376 if (dmaru->segment == drhd->segment &&
377 dmaru->reg_base_addr == drhd->address)
384 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
385 * structure which uniquely represent one DMA remapping hardware unit
386 * present in the platform
388 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
390 struct acpi_dmar_hardware_unit *drhd;
391 struct dmar_drhd_unit *dmaru;
394 drhd = (struct acpi_dmar_hardware_unit *)header;
395 dmaru = dmar_find_dmaru(drhd);
399 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
404 * If header is allocated from slab by ACPI _DSM method, we need to
405 * copy the content because the memory buffer will be freed on return.
407 dmaru->hdr = (void *)(dmaru + 1);
408 memcpy(dmaru->hdr, header, header->length);
409 dmaru->reg_base_addr = drhd->address;
410 dmaru->segment = drhd->segment;
411 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
412 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
413 ((void *)drhd) + drhd->header.length,
414 &dmaru->devices_cnt);
415 if (dmaru->devices_cnt && dmaru->devices == NULL) {
420 ret = alloc_iommu(dmaru);
422 dmar_free_dev_scope(&dmaru->devices,
423 &dmaru->devices_cnt);
427 dmar_register_drhd_unit(dmaru);
436 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
438 if (dmaru->devices && dmaru->devices_cnt)
439 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
441 free_iommu(dmaru->iommu);
445 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
448 struct acpi_dmar_andd *andd = (void *)header;
450 /* Check for NUL termination within the designated length */
451 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
453 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
454 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
455 dmi_get_system_info(DMI_BIOS_VENDOR),
456 dmi_get_system_info(DMI_BIOS_VERSION),
457 dmi_get_system_info(DMI_PRODUCT_VERSION));
458 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
461 pr_info("ANDD device: %x name: %s\n", andd->device_number,
467 #ifdef CONFIG_ACPI_NUMA
468 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
470 struct acpi_dmar_rhsa *rhsa;
471 struct dmar_drhd_unit *drhd;
473 rhsa = (struct acpi_dmar_rhsa *)header;
474 for_each_drhd_unit(drhd) {
475 if (drhd->reg_base_addr == rhsa->base_address) {
476 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
478 if (!node_online(node))
480 drhd->iommu->node = node;
485 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
486 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
488 dmi_get_system_info(DMI_BIOS_VENDOR),
489 dmi_get_system_info(DMI_BIOS_VERSION),
490 dmi_get_system_info(DMI_PRODUCT_VERSION));
491 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
496 #define dmar_parse_one_rhsa dmar_res_noop
500 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
502 struct acpi_dmar_hardware_unit *drhd;
503 struct acpi_dmar_reserved_memory *rmrr;
504 struct acpi_dmar_atsr *atsr;
505 struct acpi_dmar_rhsa *rhsa;
507 switch (header->type) {
508 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
509 drhd = container_of(header, struct acpi_dmar_hardware_unit,
511 pr_info("DRHD base: %#016Lx flags: %#x\n",
512 (unsigned long long)drhd->address, drhd->flags);
514 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
515 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
517 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
518 (unsigned long long)rmrr->base_address,
519 (unsigned long long)rmrr->end_address);
521 case ACPI_DMAR_TYPE_ROOT_ATS:
522 atsr = container_of(header, struct acpi_dmar_atsr, header);
523 pr_info("ATSR flags: %#x\n", atsr->flags);
525 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
526 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
527 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
528 (unsigned long long)rhsa->base_address,
529 rhsa->proximity_domain);
531 case ACPI_DMAR_TYPE_NAMESPACE:
532 /* We don't print this here because we need to sanity-check
533 it first. So print it in dmar_parse_one_andd() instead. */
539 * dmar_table_detect - checks to see if the platform supports DMAR devices
541 static int __init dmar_table_detect(void)
543 acpi_status status = AE_OK;
545 /* if we could find DMAR table, then there are DMAR devices */
546 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
548 if (ACPI_SUCCESS(status) && !dmar_tbl) {
549 pr_warn("Unable to map DMAR\n");
550 status = AE_NOT_FOUND;
553 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
556 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
557 size_t len, struct dmar_res_callback *cb)
559 struct acpi_dmar_header *iter, *next;
560 struct acpi_dmar_header *end = ((void *)start) + len;
562 for (iter = start; iter < end; iter = next) {
563 next = (void *)iter + iter->length;
564 if (iter->length == 0) {
565 /* Avoid looping forever on bad ACPI tables */
566 pr_debug(FW_BUG "Invalid 0-length structure\n");
568 } else if (next > end) {
569 /* Avoid passing table end */
570 pr_warn(FW_BUG "Record passes table end\n");
575 dmar_table_print_dmar_entry(iter);
577 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
578 /* continue for forward compatibility */
579 pr_debug("Unknown DMAR structure type %d\n",
581 } else if (cb->cb[iter->type]) {
584 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
587 } else if (!cb->ignore_unhandled) {
588 pr_warn("No handler for DMAR structure type %d\n",
597 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
598 struct dmar_res_callback *cb)
600 return dmar_walk_remapping_entries((void *)(dmar + 1),
601 dmar->header.length - sizeof(*dmar), cb);
605 * parse_dmar_table - parses the DMA reporting table
608 parse_dmar_table(void)
610 struct acpi_table_dmar *dmar;
613 struct dmar_res_callback cb = {
615 .ignore_unhandled = true,
616 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
617 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
618 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
619 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
620 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
621 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
625 * Do it again, earlier dmar_tbl mapping could be mapped with
631 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
632 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
634 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
636 dmar = (struct acpi_table_dmar *)dmar_tbl;
640 if (dmar->width < PAGE_SHIFT - 1) {
641 pr_warn("Invalid DMAR haw\n");
645 pr_info("Host address width %d\n", dmar->width + 1);
646 ret = dmar_walk_dmar_table(dmar, &cb);
647 if (ret == 0 && drhd_count == 0)
648 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
653 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
654 int cnt, struct pci_dev *dev)
660 for_each_active_dev_scope(devices, cnt, index, tmp)
661 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
664 /* Check our parent */
665 dev = dev->bus->self;
671 struct dmar_drhd_unit *
672 dmar_find_matched_drhd_unit(struct pci_dev *dev)
674 struct dmar_drhd_unit *dmaru;
675 struct acpi_dmar_hardware_unit *drhd;
677 dev = pci_physfn(dev);
680 for_each_drhd_unit(dmaru) {
681 drhd = container_of(dmaru->hdr,
682 struct acpi_dmar_hardware_unit,
685 if (dmaru->include_all &&
686 drhd->segment == pci_domain_nr(dev->bus))
689 if (dmar_pci_device_match(dmaru->devices,
690 dmaru->devices_cnt, dev))
700 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
701 struct acpi_device *adev)
703 struct dmar_drhd_unit *dmaru;
704 struct acpi_dmar_hardware_unit *drhd;
705 struct acpi_dmar_device_scope *scope;
708 struct acpi_dmar_pci_path *path;
710 for_each_drhd_unit(dmaru) {
711 drhd = container_of(dmaru->hdr,
712 struct acpi_dmar_hardware_unit,
715 for (scope = (void *)(drhd + 1);
716 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
717 scope = ((void *)scope) + scope->length) {
718 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
720 if (scope->enumeration_id != device_number)
723 path = (void *)(scope + 1);
724 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
725 dev_name(&adev->dev), dmaru->reg_base_addr,
726 scope->bus, path->device, path->function);
727 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
729 dmaru->devices[i].bus = scope->bus;
730 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
732 rcu_assign_pointer(dmaru->devices[i].dev,
733 get_device(&adev->dev));
736 BUG_ON(i >= dmaru->devices_cnt);
739 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
740 device_number, dev_name(&adev->dev));
743 static int __init dmar_acpi_dev_scope_init(void)
745 struct acpi_dmar_andd *andd;
747 if (dmar_tbl == NULL)
750 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
751 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
752 andd = ((void *)andd) + andd->header.length) {
753 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
755 struct acpi_device *adev;
757 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
760 pr_err("Failed to find handle for ACPI object %s\n",
764 if (acpi_bus_get_device(h, &adev)) {
765 pr_err("Failed to get device for ACPI object %s\n",
769 dmar_acpi_insert_dev_scope(andd->device_number, adev);
775 int __init dmar_dev_scope_init(void)
777 struct pci_dev *dev = NULL;
778 struct dmar_pci_notify_info *info;
780 if (dmar_dev_scope_status != 1)
781 return dmar_dev_scope_status;
783 if (list_empty(&dmar_drhd_units)) {
784 dmar_dev_scope_status = -ENODEV;
786 dmar_dev_scope_status = 0;
788 dmar_acpi_dev_scope_init();
790 for_each_pci_dev(dev) {
794 info = dmar_alloc_pci_notify_info(dev,
795 BUS_NOTIFY_ADD_DEVICE);
797 return dmar_dev_scope_status;
799 dmar_pci_bus_add_dev(info);
800 dmar_free_pci_notify_info(info);
805 return dmar_dev_scope_status;
808 void __init dmar_register_bus_notifier(void)
810 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
814 int __init dmar_table_init(void)
816 static int dmar_table_initialized;
819 if (dmar_table_initialized == 0) {
820 ret = parse_dmar_table();
823 pr_info("Parse DMAR table failure.\n");
824 } else if (list_empty(&dmar_drhd_units)) {
825 pr_info("No DMAR devices found\n");
830 dmar_table_initialized = ret;
832 dmar_table_initialized = 1;
835 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
838 static void warn_invalid_dmar(u64 addr, const char *message)
841 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
842 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
844 dmi_get_system_info(DMI_BIOS_VENDOR),
845 dmi_get_system_info(DMI_BIOS_VERSION),
846 dmi_get_system_info(DMI_PRODUCT_VERSION));
847 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
851 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
853 struct acpi_dmar_hardware_unit *drhd;
857 drhd = (void *)entry;
858 if (!drhd->address) {
859 warn_invalid_dmar(0, "");
864 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
866 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
868 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
872 cap = dmar_readq(addr + DMAR_CAP_REG);
873 ecap = dmar_readq(addr + DMAR_ECAP_REG);
878 early_iounmap(addr, VTD_PAGE_SIZE);
880 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
881 warn_invalid_dmar(drhd->address, " returns all ones");
888 int __init detect_intel_iommu(void)
891 struct dmar_res_callback validate_drhd_cb = {
892 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
893 .ignore_unhandled = true,
896 down_write(&dmar_global_lock);
897 ret = dmar_table_detect();
899 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
901 if (!ret && !no_iommu && !iommu_detected && !dmar_disabled) {
903 /* Make sure ACS will be enabled */
909 x86_init.iommu.iommu_init = intel_iommu_init;
910 x86_platform.iommu_shutdown = intel_iommu_shutdown;
916 acpi_put_table(dmar_tbl);
919 up_write(&dmar_global_lock);
921 return ret ? ret : 1;
924 static void unmap_iommu(struct intel_iommu *iommu)
927 release_mem_region(iommu->reg_phys, iommu->reg_size);
931 * map_iommu: map the iommu's registers
932 * @iommu: the iommu to map
933 * @phys_addr: the physical address of the base resgister
935 * Memory map the iommu's registers. Start w/ a single page, and
936 * possibly expand if that turns out to be insufficent.
938 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
942 iommu->reg_phys = phys_addr;
943 iommu->reg_size = VTD_PAGE_SIZE;
945 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
946 pr_err("Can't reserve memory\n");
951 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
953 pr_err("Can't map the region\n");
958 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
959 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
961 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
963 warn_invalid_dmar(phys_addr, " returns all ones");
966 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
968 /* the registers might be more than one page */
969 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
970 cap_max_fault_reg_offset(iommu->cap));
971 map_size = VTD_PAGE_ALIGN(map_size);
972 if (map_size > iommu->reg_size) {
974 release_mem_region(iommu->reg_phys, iommu->reg_size);
975 iommu->reg_size = map_size;
976 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
978 pr_err("Can't reserve memory\n");
982 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
984 pr_err("Can't map the region\n");
995 release_mem_region(iommu->reg_phys, iommu->reg_size);
1000 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
1002 iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1003 DMAR_UNITS_SUPPORTED);
1004 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1007 set_bit(iommu->seq_id, dmar_seq_ids);
1008 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1011 return iommu->seq_id;
1014 static void dmar_free_seq_id(struct intel_iommu *iommu)
1016 if (iommu->seq_id >= 0) {
1017 clear_bit(iommu->seq_id, dmar_seq_ids);
1022 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1024 struct intel_iommu *iommu;
1030 if (!drhd->reg_base_addr) {
1031 warn_invalid_dmar(0, "");
1035 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1039 if (dmar_alloc_seq_id(iommu) < 0) {
1040 pr_err("Failed to allocate seq_id\n");
1045 err = map_iommu(iommu, drhd->reg_base_addr);
1047 pr_err("Failed to map %s\n", iommu->name);
1048 goto error_free_seq_id;
1052 agaw = iommu_calculate_agaw(iommu);
1054 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1058 msagaw = iommu_calculate_max_sagaw(iommu);
1060 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1065 iommu->msagaw = msagaw;
1066 iommu->segment = drhd->segment;
1068 iommu->node = NUMA_NO_NODE;
1070 ver = readl(iommu->reg + DMAR_VER_REG);
1071 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1073 (unsigned long long)drhd->reg_base_addr,
1074 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1075 (unsigned long long)iommu->cap,
1076 (unsigned long long)iommu->ecap);
1078 /* Reflect status in gcmd */
1079 sts = readl(iommu->reg + DMAR_GSTS_REG);
1080 if (sts & DMA_GSTS_IRES)
1081 iommu->gcmd |= DMA_GCMD_IRE;
1082 if (sts & DMA_GSTS_TES)
1083 iommu->gcmd |= DMA_GCMD_TE;
1084 if (sts & DMA_GSTS_QIES)
1085 iommu->gcmd |= DMA_GCMD_QIE;
1087 raw_spin_lock_init(&iommu->register_lock);
1089 if (intel_iommu_enabled) {
1090 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1096 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1098 err = iommu_device_register(&iommu->iommu);
1103 drhd->iommu = iommu;
1110 dmar_free_seq_id(iommu);
1116 static void free_iommu(struct intel_iommu *iommu)
1118 if (intel_iommu_enabled) {
1119 iommu_device_unregister(&iommu->iommu);
1120 iommu_device_sysfs_remove(&iommu->iommu);
1124 if (iommu->pr_irq) {
1125 free_irq(iommu->pr_irq, iommu);
1126 dmar_free_hwirq(iommu->pr_irq);
1129 free_irq(iommu->irq, iommu);
1130 dmar_free_hwirq(iommu->irq);
1135 free_page((unsigned long)iommu->qi->desc);
1136 kfree(iommu->qi->desc_status);
1143 dmar_free_seq_id(iommu);
1148 * Reclaim all the submitted descriptors which have completed its work.
1150 static inline void reclaim_free_desc(struct q_inval *qi)
1152 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1153 qi->desc_status[qi->free_tail] == QI_ABORT) {
1154 qi->desc_status[qi->free_tail] = QI_FREE;
1155 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1160 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1164 struct q_inval *qi = iommu->qi;
1165 int shift = qi_shift(iommu);
1167 if (qi->desc_status[wait_index] == QI_ABORT)
1170 fault = readl(iommu->reg + DMAR_FSTS_REG);
1173 * If IQE happens, the head points to the descriptor associated
1174 * with the error. No new descriptors are fetched until the IQE
1177 if (fault & DMA_FSTS_IQE) {
1178 head = readl(iommu->reg + DMAR_IQH_REG);
1179 if ((head >> shift) == index) {
1180 struct qi_desc *desc = qi->desc + head;
1183 * desc->qw2 and desc->qw3 are either reserved or
1184 * used by software as private data. We won't print
1185 * out these two qw's for security consideration.
1187 pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1188 (unsigned long long)desc->qw0,
1189 (unsigned long long)desc->qw1);
1190 memcpy(desc, qi->desc + (wait_index << shift),
1192 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1198 * If ITE happens, all pending wait_desc commands are aborted.
1199 * No new descriptors are fetched until the ITE is cleared.
1201 if (fault & DMA_FSTS_ITE) {
1202 head = readl(iommu->reg + DMAR_IQH_REG);
1203 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1205 tail = readl(iommu->reg + DMAR_IQT_REG);
1206 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1208 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1211 if (qi->desc_status[head] == QI_IN_USE)
1212 qi->desc_status[head] = QI_ABORT;
1213 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1214 } while (head != tail);
1216 if (qi->desc_status[wait_index] == QI_ABORT)
1220 if (fault & DMA_FSTS_ICE)
1221 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1227 * Function to submit invalidation descriptors of all types to the queued
1228 * invalidation interface(QI). Multiple descriptors can be submitted at a
1229 * time, a wait descriptor will be appended to each submission to ensure
1230 * hardware has completed the invalidation before return. Wait descriptors
1231 * can be part of the submission but it will not be polled for completion.
1233 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1234 unsigned int count, unsigned long options)
1236 struct q_inval *qi = iommu->qi;
1237 struct qi_desc wait_desc;
1238 int wait_index, index;
1239 unsigned long flags;
1249 raw_spin_lock_irqsave(&qi->q_lock, flags);
1251 * Check if we have enough empty slots in the queue to submit,
1252 * the calculation is based on:
1253 * # of desc + 1 wait desc + 1 space between head and tail
1255 while (qi->free_cnt < count + 2) {
1256 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1258 raw_spin_lock_irqsave(&qi->q_lock, flags);
1261 index = qi->free_head;
1262 wait_index = (index + count) % QI_LENGTH;
1263 shift = qi_shift(iommu);
1265 for (i = 0; i < count; i++) {
1266 offset = ((index + i) % QI_LENGTH) << shift;
1267 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1268 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1270 qi->desc_status[wait_index] = QI_IN_USE;
1272 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1273 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1274 if (options & QI_OPT_WAIT_DRAIN)
1275 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1276 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1280 offset = wait_index << shift;
1281 memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1283 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1284 qi->free_cnt -= count + 1;
1287 * update the HW tail register indicating the presence of
1290 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1292 while (qi->desc_status[wait_index] != QI_DONE) {
1294 * We will leave the interrupts disabled, to prevent interrupt
1295 * context to queue another cmd while a cmd is already submitted
1296 * and waiting for completion on this cpu. This is to avoid
1297 * a deadlock where the interrupt context can wait indefinitely
1298 * for free slots in the queue.
1300 rc = qi_check_fault(iommu, index, wait_index);
1304 raw_spin_unlock(&qi->q_lock);
1306 raw_spin_lock(&qi->q_lock);
1309 for (i = 0; i < count; i++)
1310 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1312 reclaim_free_desc(qi);
1313 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1322 * Flush the global interrupt entry cache.
1324 void qi_global_iec(struct intel_iommu *iommu)
1326 struct qi_desc desc;
1328 desc.qw0 = QI_IEC_TYPE;
1333 /* should never fail */
1334 qi_submit_sync(iommu, &desc, 1, 0);
1337 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1340 struct qi_desc desc;
1342 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1343 | QI_CC_GRAN(type) | QI_CC_TYPE;
1348 qi_submit_sync(iommu, &desc, 1, 0);
1351 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1352 unsigned int size_order, u64 type)
1356 struct qi_desc desc;
1359 if (cap_write_drain(iommu->cap))
1362 if (cap_read_drain(iommu->cap))
1365 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1366 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1367 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1368 | QI_IOTLB_AM(size_order);
1372 qi_submit_sync(iommu, &desc, 1, 0);
1375 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1376 u16 qdep, u64 addr, unsigned mask)
1378 struct qi_desc desc;
1381 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1382 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1384 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1386 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1389 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1390 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1394 qi_submit_sync(iommu, &desc, 1, 0);
1397 /* PASID-based IOTLB invalidation */
1398 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1399 unsigned long npages, bool ih)
1401 struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1404 * npages == -1 means a PASID-selective invalidation, otherwise,
1405 * a positive value for Page-selective-within-PASID invalidation.
1406 * 0 is not a valid input.
1408 if (WARN_ON(!npages)) {
1409 pr_err("Invalid input npages = %ld\n", npages);
1414 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1415 QI_EIOTLB_DID(did) |
1416 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1420 int mask = ilog2(__roundup_pow_of_two(npages));
1421 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1423 if (WARN_ON_ONCE(!ALIGN(addr, align)))
1424 addr &= ~(align - 1);
1426 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1427 QI_EIOTLB_DID(did) |
1428 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1430 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1435 qi_submit_sync(iommu, &desc, 1, 0);
1438 /* PASID-based device IOTLB Invalidate */
1439 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1440 u32 pasid, u16 qdep, u64 addr,
1441 unsigned int size_order, u64 granu)
1443 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1444 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1446 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1447 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1448 QI_DEV_IOTLB_PFSID(pfsid);
1449 desc.qw1 = QI_DEV_EIOTLB_GLOB(granu);
1452 * If S bit is 0, we only flush a single page. If S bit is set,
1453 * The least significant zero bit indicates the invalidation address
1454 * range. VT-d spec 6.5.2.6.
1455 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1456 * size order = 0 is PAGE_SIZE 4KB
1457 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1460 desc.qw1 |= addr & ~mask;
1462 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1464 qi_submit_sync(iommu, &desc, 1, 0);
1467 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1468 u64 granu, int pasid)
1470 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1472 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1473 QI_PC_GRAN(granu) | QI_PC_TYPE;
1474 qi_submit_sync(iommu, &desc, 1, 0);
1478 * Disable Queued Invalidation interface.
1480 void dmar_disable_qi(struct intel_iommu *iommu)
1482 unsigned long flags;
1484 cycles_t start_time = get_cycles();
1486 if (!ecap_qis(iommu->ecap))
1489 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1491 sts = readl(iommu->reg + DMAR_GSTS_REG);
1492 if (!(sts & DMA_GSTS_QIES))
1496 * Give a chance to HW to complete the pending invalidation requests.
1498 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1499 readl(iommu->reg + DMAR_IQH_REG)) &&
1500 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1503 iommu->gcmd &= ~DMA_GCMD_QIE;
1504 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1506 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1507 !(sts & DMA_GSTS_QIES), sts);
1509 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1513 * Enable queued invalidation.
1515 static void __dmar_enable_qi(struct intel_iommu *iommu)
1518 unsigned long flags;
1519 struct q_inval *qi = iommu->qi;
1520 u64 val = virt_to_phys(qi->desc);
1522 qi->free_head = qi->free_tail = 0;
1523 qi->free_cnt = QI_LENGTH;
1526 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1529 if (ecap_smts(iommu->ecap))
1530 val |= (1 << 11) | 1;
1532 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1534 /* write zero to the tail reg */
1535 writel(0, iommu->reg + DMAR_IQT_REG);
1537 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1539 iommu->gcmd |= DMA_GCMD_QIE;
1540 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1542 /* Make sure hardware complete it */
1543 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1545 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1549 * Enable Queued Invalidation interface. This is a must to support
1550 * interrupt-remapping. Also used by DMA-remapping, which replaces
1551 * register based IOTLB invalidation.
1553 int dmar_enable_qi(struct intel_iommu *iommu)
1556 struct page *desc_page;
1558 if (!ecap_qis(iommu->ecap))
1562 * queued invalidation is already setup and enabled.
1567 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1574 * Need two pages to accommodate 256 descriptors of 256 bits each
1575 * if the remapping hardware supports scalable mode translation.
1577 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1578 !!ecap_smts(iommu->ecap));
1585 qi->desc = page_address(desc_page);
1587 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1588 if (!qi->desc_status) {
1589 free_page((unsigned long) qi->desc);
1595 raw_spin_lock_init(&qi->q_lock);
1597 __dmar_enable_qi(iommu);
1602 /* iommu interrupt handling. Most stuff are MSI-like. */
1610 static const char *dma_remap_fault_reasons[] =
1613 "Present bit in root entry is clear",
1614 "Present bit in context entry is clear",
1615 "Invalid context entry",
1616 "Access beyond MGAW",
1617 "PTE Write access is not set",
1618 "PTE Read access is not set",
1619 "Next page table ptr is invalid",
1620 "Root table address invalid",
1621 "Context table ptr is invalid",
1622 "non-zero reserved fields in RTP",
1623 "non-zero reserved fields in CTP",
1624 "non-zero reserved fields in PTE",
1625 "PCE for translation request specifies blocking",
1628 static const char * const dma_remap_sm_fault_reasons[] = {
1629 "SM: Invalid Root Table Address",
1630 "SM: TTM 0 for request with PASID",
1631 "SM: TTM 0 for page group request",
1632 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1633 "SM: Error attempting to access Root Entry",
1634 "SM: Present bit in Root Entry is clear",
1635 "SM: Non-zero reserved field set in Root Entry",
1636 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1637 "SM: Error attempting to access Context Entry",
1638 "SM: Present bit in Context Entry is clear",
1639 "SM: Non-zero reserved field set in the Context Entry",
1640 "SM: Invalid Context Entry",
1641 "SM: DTE field in Context Entry is clear",
1642 "SM: PASID Enable field in Context Entry is clear",
1643 "SM: PASID is larger than the max in Context Entry",
1644 "SM: PRE field in Context-Entry is clear",
1645 "SM: RID_PASID field error in Context-Entry",
1646 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1647 "SM: Error attempting to access the PASID Directory Entry",
1648 "SM: Present bit in Directory Entry is clear",
1649 "SM: Non-zero reserved field set in PASID Directory Entry",
1650 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1651 "SM: Error attempting to access PASID Table Entry",
1652 "SM: Present bit in PASID Table Entry is clear",
1653 "SM: Non-zero reserved field set in PASID Table Entry",
1654 "SM: Invalid Scalable-Mode PASID Table Entry",
1655 "SM: ERE field is clear in PASID Table Entry",
1656 "SM: SRE field is clear in PASID Table Entry",
1657 "Unknown", "Unknown",/* 0x5E-0x5F */
1658 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1659 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1660 "SM: Error attempting to access first-level paging entry",
1661 "SM: Present bit in first-level paging entry is clear",
1662 "SM: Non-zero reserved field set in first-level paging entry",
1663 "SM: Error attempting to access FL-PML4 entry",
1664 "SM: First-level entry address beyond MGAW in Nested translation",
1665 "SM: Read permission error in FL-PML4 entry in Nested translation",
1666 "SM: Read permission error in first-level paging entry in Nested translation",
1667 "SM: Write permission error in first-level paging entry in Nested translation",
1668 "SM: Error attempting to access second-level paging entry",
1669 "SM: Read/Write permission error in second-level paging entry",
1670 "SM: Non-zero reserved field set in second-level paging entry",
1671 "SM: Invalid second-level page table pointer",
1672 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1673 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1674 "SM: Address in first-level translation is not canonical",
1675 "SM: U/S set 0 for first-level translation with user privilege",
1676 "SM: No execute permission for request with PASID and ER=1",
1677 "SM: Address beyond the DMA hardware max",
1678 "SM: Second-level entry address beyond the max",
1679 "SM: No write permission for Write/AtomicOp request",
1680 "SM: No read permission for Read/AtomicOp request",
1681 "SM: Invalid address-interrupt address",
1682 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1683 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1686 static const char *irq_remap_fault_reasons[] =
1688 "Detected reserved fields in the decoded interrupt-remapped request",
1689 "Interrupt index exceeded the interrupt-remapping table size",
1690 "Present field in the IRTE entry is clear",
1691 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1692 "Detected reserved fields in the IRTE entry",
1693 "Blocked a compatibility format interrupt request",
1694 "Blocked an interrupt request due to source-id verification failure",
1697 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1699 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1700 ARRAY_SIZE(irq_remap_fault_reasons))) {
1701 *fault_type = INTR_REMAP;
1702 return irq_remap_fault_reasons[fault_reason - 0x20];
1703 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1704 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1705 *fault_type = DMA_REMAP;
1706 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1707 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1708 *fault_type = DMA_REMAP;
1709 return dma_remap_fault_reasons[fault_reason];
1711 *fault_type = UNKNOWN;
1717 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1719 if (iommu->irq == irq)
1720 return DMAR_FECTL_REG;
1721 else if (iommu->pr_irq == irq)
1722 return DMAR_PECTL_REG;
1727 void dmar_msi_unmask(struct irq_data *data)
1729 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1730 int reg = dmar_msi_reg(iommu, data->irq);
1734 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1735 writel(0, iommu->reg + reg);
1736 /* Read a reg to force flush the post write */
1737 readl(iommu->reg + reg);
1738 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1741 void dmar_msi_mask(struct irq_data *data)
1743 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1744 int reg = dmar_msi_reg(iommu, data->irq);
1748 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1749 writel(DMA_FECTL_IM, iommu->reg + reg);
1750 /* Read a reg to force flush the post write */
1751 readl(iommu->reg + reg);
1752 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1755 void dmar_msi_write(int irq, struct msi_msg *msg)
1757 struct intel_iommu *iommu = irq_get_handler_data(irq);
1758 int reg = dmar_msi_reg(iommu, irq);
1761 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1762 writel(msg->data, iommu->reg + reg + 4);
1763 writel(msg->address_lo, iommu->reg + reg + 8);
1764 writel(msg->address_hi, iommu->reg + reg + 12);
1765 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1768 void dmar_msi_read(int irq, struct msi_msg *msg)
1770 struct intel_iommu *iommu = irq_get_handler_data(irq);
1771 int reg = dmar_msi_reg(iommu, irq);
1774 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1775 msg->data = readl(iommu->reg + reg + 4);
1776 msg->address_lo = readl(iommu->reg + reg + 8);
1777 msg->address_hi = readl(iommu->reg + reg + 12);
1778 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1781 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1782 u8 fault_reason, int pasid, u16 source_id,
1783 unsigned long long addr)
1788 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1790 if (fault_type == INTR_REMAP)
1791 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1792 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1793 PCI_FUNC(source_id & 0xFF), addr >> 48,
1794 fault_reason, reason);
1796 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1797 type ? "DMA Read" : "DMA Write",
1798 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1799 PCI_FUNC(source_id & 0xFF), pasid, addr,
1800 fault_reason, reason);
1804 #define PRIMARY_FAULT_REG_LEN (16)
1805 irqreturn_t dmar_fault(int irq, void *dev_id)
1807 struct intel_iommu *iommu = dev_id;
1808 int reg, fault_index;
1811 static DEFINE_RATELIMIT_STATE(rs,
1812 DEFAULT_RATELIMIT_INTERVAL,
1813 DEFAULT_RATELIMIT_BURST);
1815 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1816 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1817 if (fault_status && __ratelimit(&rs))
1818 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1820 /* TBD: ignore advanced fault log currently */
1821 if (!(fault_status & DMA_FSTS_PPF))
1824 fault_index = dma_fsts_fault_record_index(fault_status);
1825 reg = cap_fault_reg_offset(iommu->cap);
1827 /* Disable printing, simply clear the fault when ratelimited */
1828 bool ratelimited = !__ratelimit(&rs);
1836 /* highest 32 bits */
1837 data = readl(iommu->reg + reg +
1838 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1839 if (!(data & DMA_FRCD_F))
1843 fault_reason = dma_frcd_fault_reason(data);
1844 type = dma_frcd_type(data);
1846 pasid = dma_frcd_pasid_value(data);
1847 data = readl(iommu->reg + reg +
1848 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1849 source_id = dma_frcd_source_id(data);
1851 pasid_present = dma_frcd_pasid_present(data);
1852 guest_addr = dmar_readq(iommu->reg + reg +
1853 fault_index * PRIMARY_FAULT_REG_LEN);
1854 guest_addr = dma_frcd_page_addr(guest_addr);
1857 /* clear the fault */
1858 writel(DMA_FRCD_F, iommu->reg + reg +
1859 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1861 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1864 /* Using pasid -1 if pasid is not present */
1865 dmar_fault_do_one(iommu, type, fault_reason,
1866 pasid_present ? pasid : -1,
1867 source_id, guest_addr);
1870 if (fault_index >= cap_num_fault_regs(iommu->cap))
1872 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1875 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1876 iommu->reg + DMAR_FSTS_REG);
1879 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1883 int dmar_set_interrupt(struct intel_iommu *iommu)
1888 * Check if the fault interrupt is already initialized.
1893 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1897 pr_err("No free IRQ vectors\n");
1901 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1903 pr_err("Can't request irq\n");
1907 int __init enable_drhd_fault_handling(void)
1909 struct dmar_drhd_unit *drhd;
1910 struct intel_iommu *iommu;
1913 * Enable fault control interrupt.
1915 for_each_iommu(iommu, drhd) {
1917 int ret = dmar_set_interrupt(iommu);
1920 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1921 (unsigned long long)drhd->reg_base_addr, ret);
1926 * Clear any previous faults.
1928 dmar_fault(iommu->irq, iommu);
1929 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1930 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1937 * Re-enable Queued Invalidation interface.
1939 int dmar_reenable_qi(struct intel_iommu *iommu)
1941 if (!ecap_qis(iommu->ecap))
1948 * First disable queued invalidation.
1950 dmar_disable_qi(iommu);
1952 * Then enable queued invalidation again. Since there is no pending
1953 * invalidation requests now, it's safe to re-enable queued
1956 __dmar_enable_qi(iommu);
1962 * Check interrupt remapping support in DMAR table description.
1964 int __init dmar_ir_support(void)
1966 struct acpi_table_dmar *dmar;
1967 dmar = (struct acpi_table_dmar *)dmar_tbl;
1970 return dmar->flags & 0x1;
1973 /* Check whether DMAR units are in use */
1974 static inline bool dmar_in_use(void)
1976 return irq_remapping_enabled || intel_iommu_enabled;
1979 static int __init dmar_free_unused_resources(void)
1981 struct dmar_drhd_unit *dmaru, *dmaru_n;
1986 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1987 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1989 down_write(&dmar_global_lock);
1990 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1991 list_del(&dmaru->list);
1992 dmar_free_drhd(dmaru);
1994 up_write(&dmar_global_lock);
1999 late_initcall(dmar_free_unused_resources);
2000 IOMMU_INIT_POST(detect_intel_iommu);
2003 * DMAR Hotplug Support
2004 * For more details, please refer to Intel(R) Virtualization Technology
2005 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2006 * "Remapping Hardware Unit Hot Plug".
2008 static guid_t dmar_hp_guid =
2009 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2010 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2013 * Currently there's only one revision and BIOS will not check the revision id,
2014 * so use 0 for safety.
2016 #define DMAR_DSM_REV_ID 0
2017 #define DMAR_DSM_FUNC_DRHD 1
2018 #define DMAR_DSM_FUNC_ATSR 2
2019 #define DMAR_DSM_FUNC_RHSA 3
2021 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2023 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2026 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2027 dmar_res_handler_t handler, void *arg)
2030 union acpi_object *obj;
2031 struct acpi_dmar_header *start;
2032 struct dmar_res_callback callback;
2033 static int res_type[] = {
2034 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2035 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2036 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2039 if (!dmar_detect_dsm(handle, func))
2042 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2043 func, NULL, ACPI_TYPE_BUFFER);
2047 memset(&callback, 0, sizeof(callback));
2048 callback.cb[res_type[func]] = handler;
2049 callback.arg[res_type[func]] = arg;
2050 start = (struct acpi_dmar_header *)obj->buffer.pointer;
2051 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2058 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2061 struct dmar_drhd_unit *dmaru;
2063 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2067 ret = dmar_ir_hotplug(dmaru, true);
2069 ret = dmar_iommu_hotplug(dmaru, true);
2074 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2078 struct dmar_drhd_unit *dmaru;
2080 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2085 * All PCI devices managed by this unit should have been destroyed.
2087 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2088 for_each_active_dev_scope(dmaru->devices,
2089 dmaru->devices_cnt, i, dev)
2093 ret = dmar_ir_hotplug(dmaru, false);
2095 ret = dmar_iommu_hotplug(dmaru, false);
2100 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2102 struct dmar_drhd_unit *dmaru;
2104 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2106 list_del_rcu(&dmaru->list);
2108 dmar_free_drhd(dmaru);
2114 static int dmar_hotplug_insert(acpi_handle handle)
2119 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2120 &dmar_validate_one_drhd, (void *)1);
2124 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2125 &dmar_parse_one_drhd, (void *)&drhd_count);
2126 if (ret == 0 && drhd_count == 0) {
2127 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2133 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2134 &dmar_parse_one_rhsa, NULL);
2138 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2139 &dmar_parse_one_atsr, NULL);
2143 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2144 &dmar_hp_add_drhd, NULL);
2148 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2149 &dmar_hp_remove_drhd, NULL);
2151 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2152 &dmar_release_one_atsr, NULL);
2154 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2155 &dmar_hp_release_drhd, NULL);
2160 static int dmar_hotplug_remove(acpi_handle handle)
2164 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2165 &dmar_check_one_atsr, NULL);
2169 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2170 &dmar_hp_remove_drhd, NULL);
2172 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2173 &dmar_release_one_atsr, NULL));
2174 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2175 &dmar_hp_release_drhd, NULL));
2177 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2178 &dmar_hp_add_drhd, NULL);
2184 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2185 void *context, void **retval)
2187 acpi_handle *phdl = retval;
2189 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2191 return AE_CTRL_TERMINATE;
2197 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2200 acpi_handle tmp = NULL;
2206 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2209 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2211 dmar_get_dsm_handle,
2213 if (ACPI_FAILURE(status)) {
2214 pr_warn("Failed to locate _DSM method.\n");
2221 down_write(&dmar_global_lock);
2223 ret = dmar_hotplug_insert(tmp);
2225 ret = dmar_hotplug_remove(tmp);
2226 up_write(&dmar_global_lock);
2231 int dmar_device_add(acpi_handle handle)
2233 return dmar_device_hotplug(handle, true);
2236 int dmar_device_remove(acpi_handle handle)
2238 return dmar_device_hotplug(handle, false);
2242 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2244 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2245 * the ACPI DMAR table. This means that the platform boot firmware has made
2246 * sure no device can issue DMA outside of RMRR regions.
2248 bool dmar_platform_optin(void)
2250 struct acpi_table_dmar *dmar;
2254 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2255 (struct acpi_table_header **)&dmar);
2256 if (ACPI_FAILURE(status))
2259 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2260 acpi_put_table((struct acpi_table_header *)dmar);
2264 EXPORT_SYMBOL_GPL(dmar_platform_optin);