2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
70 #include <linux/skbuff.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl);
86 /* Generate a checksum for an outgoing IP datagram. */
87 void ip_send_check(struct iphdr *iph)
90 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
92 EXPORT_SYMBOL(ip_send_check);
94 int __ip_local_out_sk(struct sock *sk, struct sk_buff *skb)
96 struct iphdr *iph = ip_hdr(skb);
98 iph->tot_len = htons(skb->len);
100 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, sk, skb, NULL,
101 skb_dst(skb)->dev, dst_output_sk);
104 int __ip_local_out(struct sk_buff *skb)
106 return __ip_local_out_sk(skb->sk, skb);
109 int ip_local_out_sk(struct sock *sk, struct sk_buff *skb)
113 err = __ip_local_out(skb);
114 if (likely(err == 1))
115 err = dst_output_sk(sk, skb);
119 EXPORT_SYMBOL_GPL(ip_local_out_sk);
121 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
123 int ttl = inet->uc_ttl;
126 ttl = ip4_dst_hoplimit(dst);
131 * Add an ip header to a skbuff and send it out.
134 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
135 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
137 struct inet_sock *inet = inet_sk(sk);
138 struct rtable *rt = skb_rtable(skb);
141 /* Build the IP header. */
142 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
143 skb_reset_network_header(skb);
147 iph->tos = inet->tos;
148 if (ip_dont_fragment(sk, &rt->dst))
149 iph->frag_off = htons(IP_DF);
152 iph->ttl = ip_select_ttl(inet, &rt->dst);
153 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
155 iph->protocol = sk->sk_protocol;
156 ip_select_ident(sock_net(sk), skb, sk);
158 if (opt && opt->opt.optlen) {
159 iph->ihl += opt->opt.optlen>>2;
160 ip_options_build(skb, &opt->opt, daddr, rt, 0);
163 skb->priority = sk->sk_priority;
164 skb->mark = sk->sk_mark;
167 return ip_local_out(skb);
169 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
171 static inline int ip_finish_output2(struct sock *sk, struct sk_buff *skb)
173 struct dst_entry *dst = skb_dst(skb);
174 struct rtable *rt = (struct rtable *)dst;
175 struct net_device *dev = dst->dev;
176 unsigned int hh_len = LL_RESERVED_SPACE(dev);
177 struct neighbour *neigh;
180 if (rt->rt_type == RTN_MULTICAST) {
181 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
182 } else if (rt->rt_type == RTN_BROADCAST)
183 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
185 /* Be paranoid, rather than too clever. */
186 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
187 struct sk_buff *skb2;
189 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
195 skb_set_owner_w(skb2, skb->sk);
201 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
202 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
203 if (unlikely(!neigh))
204 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
205 if (!IS_ERR(neigh)) {
206 int res = dst_neigh_output(dst, neigh, skb);
208 rcu_read_unlock_bh();
211 rcu_read_unlock_bh();
213 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
219 static int ip_finish_output_gso(struct sock *sk, struct sk_buff *skb)
221 netdev_features_t features;
222 struct sk_buff *segs;
225 /* common case: locally created skb or seglen is <= mtu */
226 if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) ||
227 skb_gso_network_seglen(skb) <= ip_skb_dst_mtu(skb))
228 return ip_finish_output2(sk, skb);
230 /* Slowpath - GSO segment length is exceeding the dst MTU.
232 * This can happen in two cases:
233 * 1) TCP GRO packet, DF bit not set
234 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
235 * from host network stack.
237 features = netif_skb_features(skb);
238 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
239 if (IS_ERR_OR_NULL(segs)) {
247 struct sk_buff *nskb = segs->next;
251 err = ip_fragment(sk, segs, ip_finish_output2);
261 static int ip_finish_output(struct sock *sk, struct sk_buff *skb)
263 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
264 /* Policy lookup after SNAT yielded a new policy */
265 if (skb_dst(skb)->xfrm) {
266 IPCB(skb)->flags |= IPSKB_REROUTED;
267 return dst_output_sk(sk, skb);
271 return ip_finish_output_gso(sk, skb);
273 if (skb->len > ip_skb_dst_mtu(skb))
274 return ip_fragment(sk, skb, ip_finish_output2);
276 return ip_finish_output2(sk, skb);
279 int ip_mc_output(struct sock *sk, struct sk_buff *skb)
281 struct rtable *rt = skb_rtable(skb);
282 struct net_device *dev = rt->dst.dev;
285 * If the indicated interface is up and running, send the packet.
287 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
290 skb->protocol = htons(ETH_P_IP);
293 * Multicasts are looped back for other local users
296 if (rt->rt_flags&RTCF_MULTICAST) {
298 #ifdef CONFIG_IP_MROUTE
299 /* Small optimization: do not loopback not local frames,
300 which returned after forwarding; they will be dropped
301 by ip_mr_input in any case.
302 Note, that local frames are looped back to be delivered
305 This check is duplicated in ip_mr_input at the moment.
308 ((rt->rt_flags & RTCF_LOCAL) ||
309 !(IPCB(skb)->flags & IPSKB_FORWARDED))
312 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
314 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
315 sk, newskb, NULL, newskb->dev,
319 /* Multicasts with ttl 0 must not go beyond the host */
321 if (ip_hdr(skb)->ttl == 0) {
327 if (rt->rt_flags&RTCF_BROADCAST) {
328 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
330 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, sk, newskb,
331 NULL, newskb->dev, dev_loopback_xmit);
334 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, sk, skb, NULL,
335 skb->dev, ip_finish_output,
336 !(IPCB(skb)->flags & IPSKB_REROUTED));
339 int ip_output(struct sock *sk, struct sk_buff *skb)
341 struct net_device *dev = skb_dst(skb)->dev;
343 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
346 skb->protocol = htons(ETH_P_IP);
348 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, sk, skb,
351 !(IPCB(skb)->flags & IPSKB_REROUTED));
355 * copy saddr and daddr, possibly using 64bit load/stores
357 * iph->saddr = fl4->saddr;
358 * iph->daddr = fl4->daddr;
360 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
362 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
363 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
364 memcpy(&iph->saddr, &fl4->saddr,
365 sizeof(fl4->saddr) + sizeof(fl4->daddr));
368 /* Note: skb->sk can be different from sk, in case of tunnels */
369 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
371 struct inet_sock *inet = inet_sk(sk);
372 struct ip_options_rcu *inet_opt;
378 /* Skip all of this if the packet is already routed,
379 * f.e. by something like SCTP.
382 inet_opt = rcu_dereference(inet->inet_opt);
384 rt = skb_rtable(skb);
388 /* Make sure we can route this packet. */
389 rt = (struct rtable *)__sk_dst_check(sk, 0);
393 /* Use correct destination address if we have options. */
394 daddr = inet->inet_daddr;
395 if (inet_opt && inet_opt->opt.srr)
396 daddr = inet_opt->opt.faddr;
398 /* If this fails, retransmit mechanism of transport layer will
399 * keep trying until route appears or the connection times
402 rt = ip_route_output_ports(sock_net(sk), fl4, sk,
403 daddr, inet->inet_saddr,
408 sk->sk_bound_dev_if);
411 sk_setup_caps(sk, &rt->dst);
413 skb_dst_set_noref(skb, &rt->dst);
416 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
419 /* OK, we know where to send it, allocate and build IP header. */
420 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
421 skb_reset_network_header(skb);
423 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
424 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
425 iph->frag_off = htons(IP_DF);
428 iph->ttl = ip_select_ttl(inet, &rt->dst);
429 iph->protocol = sk->sk_protocol;
430 ip_copy_addrs(iph, fl4);
432 /* Transport layer set skb->h.foo itself. */
434 if (inet_opt && inet_opt->opt.optlen) {
435 iph->ihl += inet_opt->opt.optlen >> 2;
436 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
439 ip_select_ident_segs(sock_net(sk), skb, sk,
440 skb_shinfo(skb)->gso_segs ?: 1);
442 /* TODO : should we use skb->sk here instead of sk ? */
443 skb->priority = sk->sk_priority;
444 skb->mark = sk->sk_mark;
446 res = ip_local_out(skb);
452 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
454 return -EHOSTUNREACH;
456 EXPORT_SYMBOL(ip_queue_xmit);
458 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
460 to->pkt_type = from->pkt_type;
461 to->priority = from->priority;
462 to->protocol = from->protocol;
464 skb_dst_copy(to, from);
466 to->mark = from->mark;
468 /* Copy the flags to each fragment. */
469 IPCB(to)->flags = IPCB(from)->flags;
471 #ifdef CONFIG_NET_SCHED
472 to->tc_index = from->tc_index;
475 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
476 to->ipvs_property = from->ipvs_property;
478 skb_copy_secmark(to, from);
482 * This IP datagram is too large to be sent in one piece. Break it up into
483 * smaller pieces (each of size equal to IP header plus
484 * a block of the data of the original IP data part) that will yet fit in a
485 * single device frame, and queue such a frame for sending.
488 int ip_fragment(struct sock *sk, struct sk_buff *skb,
489 int (*output)(struct sock *, struct sk_buff *))
493 struct net_device *dev;
494 struct sk_buff *skb2;
495 unsigned int mtu, hlen, left, len, ll_rs;
497 __be16 not_last_frag;
498 struct rtable *rt = skb_rtable(skb);
504 * Point into the IP datagram header.
509 mtu = ip_skb_dst_mtu(skb);
510 if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) ||
511 (IPCB(skb)->frag_max_size &&
512 IPCB(skb)->frag_max_size > mtu))) {
513 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
514 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
521 * Setup starting values.
525 mtu = mtu - hlen; /* Size of data space */
526 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
528 mtu -= nf_bridge_mtu_reduction(skb);
530 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
532 /* When frag_list is given, use it. First, check its validity:
533 * some transformers could create wrong frag_list or break existing
534 * one, it is not prohibited. In this case fall back to copying.
536 * LATER: this step can be merged to real generation of fragments,
537 * we can switch to copy when see the first bad fragment.
539 if (skb_has_frag_list(skb)) {
540 struct sk_buff *frag, *frag2;
541 int first_len = skb_pagelen(skb);
543 if (first_len - hlen > mtu ||
544 ((first_len - hlen) & 7) ||
545 ip_is_fragment(iph) ||
549 skb_walk_frags(skb, frag) {
550 /* Correct geometry. */
551 if (frag->len > mtu ||
552 ((frag->len & 7) && frag->next) ||
553 skb_headroom(frag) < hlen)
554 goto slow_path_clean;
556 /* Partially cloned skb? */
557 if (skb_shared(frag))
558 goto slow_path_clean;
563 frag->destructor = sock_wfree;
565 skb->truesize -= frag->truesize;
568 /* Everything is OK. Generate! */
572 frag = skb_shinfo(skb)->frag_list;
573 skb_frag_list_init(skb);
574 skb->data_len = first_len - skb_headlen(skb);
575 skb->len = first_len;
576 iph->tot_len = htons(first_len);
577 iph->frag_off = htons(IP_MF);
581 /* Prepare header of the next frame,
582 * before previous one went down. */
584 frag->ip_summed = CHECKSUM_NONE;
585 skb_reset_transport_header(frag);
586 __skb_push(frag, hlen);
587 skb_reset_network_header(frag);
588 memcpy(skb_network_header(frag), iph, hlen);
590 iph->tot_len = htons(frag->len);
591 ip_copy_metadata(frag, skb);
593 ip_options_fragment(frag);
594 offset += skb->len - hlen;
595 iph->frag_off = htons(offset>>3);
597 iph->frag_off |= htons(IP_MF);
598 /* Ready, complete checksum */
602 err = output(sk, skb);
605 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
615 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
624 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
628 skb_walk_frags(skb, frag2) {
632 frag2->destructor = NULL;
633 skb->truesize += frag2->truesize;
638 /* for offloaded checksums cleanup checksum before fragmentation */
639 if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb))
643 left = skb->len - hlen; /* Space per frame */
644 ptr = hlen; /* Where to start from */
646 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
649 * Fragment the datagram.
652 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
653 not_last_frag = iph->frag_off & htons(IP_MF);
656 * Keep copying data until we run out.
661 /* IF: it doesn't fit, use 'mtu' - the data space left */
664 /* IF: we are not sending up to and including the packet end
665 then align the next start on an eight byte boundary */
670 /* Allocate buffer */
671 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
678 * Set up data on packet
681 ip_copy_metadata(skb2, skb);
682 skb_reserve(skb2, ll_rs);
683 skb_put(skb2, len + hlen);
684 skb_reset_network_header(skb2);
685 skb2->transport_header = skb2->network_header + hlen;
688 * Charge the memory for the fragment to any owner
693 skb_set_owner_w(skb2, skb->sk);
696 * Copy the packet header into the new buffer.
699 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
702 * Copy a block of the IP datagram.
704 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
709 * Fill in the new header fields.
712 iph->frag_off = htons((offset >> 3));
714 /* ANK: dirty, but effective trick. Upgrade options only if
715 * the segment to be fragmented was THE FIRST (otherwise,
716 * options are already fixed) and make it ONCE
717 * on the initial skb, so that all the following fragments
718 * will inherit fixed options.
721 ip_options_fragment(skb);
724 * Added AC : If we are fragmenting a fragment that's not the
725 * last fragment then keep MF on each bit
727 if (left > 0 || not_last_frag)
728 iph->frag_off |= htons(IP_MF);
733 * Put this fragment into the sending queue.
735 iph->tot_len = htons(len + hlen);
739 err = output(sk, skb2);
743 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
746 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
751 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
754 EXPORT_SYMBOL(ip_fragment);
757 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
759 struct msghdr *msg = from;
761 if (skb->ip_summed == CHECKSUM_PARTIAL) {
762 if (copy_from_iter(to, len, &msg->msg_iter) != len)
766 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
768 skb->csum = csum_block_add(skb->csum, csum, odd);
772 EXPORT_SYMBOL(ip_generic_getfrag);
775 csum_page(struct page *page, int offset, int copy)
780 csum = csum_partial(kaddr + offset, copy, 0);
785 static inline int ip_ufo_append_data(struct sock *sk,
786 struct sk_buff_head *queue,
787 int getfrag(void *from, char *to, int offset, int len,
788 int odd, struct sk_buff *skb),
789 void *from, int length, int hh_len, int fragheaderlen,
790 int transhdrlen, int maxfraglen, unsigned int flags)
795 /* There is support for UDP fragmentation offload by network
796 * device, so create one single skb packet containing complete
799 skb = skb_peek_tail(queue);
801 skb = sock_alloc_send_skb(sk,
802 hh_len + fragheaderlen + transhdrlen + 20,
803 (flags & MSG_DONTWAIT), &err);
808 /* reserve space for Hardware header */
809 skb_reserve(skb, hh_len);
811 /* create space for UDP/IP header */
812 skb_put(skb, fragheaderlen + transhdrlen);
814 /* initialize network header pointer */
815 skb_reset_network_header(skb);
817 /* initialize protocol header pointer */
818 skb->transport_header = skb->network_header + fragheaderlen;
822 __skb_queue_tail(queue, skb);
823 } else if (skb_is_gso(skb)) {
827 skb->ip_summed = CHECKSUM_PARTIAL;
828 /* specify the length of each IP datagram fragment */
829 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
830 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
833 return skb_append_datato_frags(sk, skb, getfrag, from,
834 (length - transhdrlen));
837 static int __ip_append_data(struct sock *sk,
839 struct sk_buff_head *queue,
840 struct inet_cork *cork,
841 struct page_frag *pfrag,
842 int getfrag(void *from, char *to, int offset,
843 int len, int odd, struct sk_buff *skb),
844 void *from, int length, int transhdrlen,
847 struct inet_sock *inet = inet_sk(sk);
850 struct ip_options *opt = cork->opt;
857 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
858 int csummode = CHECKSUM_NONE;
859 struct rtable *rt = (struct rtable *)cork->dst;
862 skb = skb_peek_tail(queue);
864 exthdrlen = !skb ? rt->dst.header_len : 0;
865 mtu = cork->fragsize;
866 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
867 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
868 tskey = sk->sk_tskey++;
870 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
872 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
873 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
874 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
876 if (cork->length + length > maxnonfragsize - fragheaderlen) {
877 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
878 mtu - (opt ? opt->optlen : 0));
883 * transhdrlen > 0 means that this is the first fragment and we wish
884 * it won't be fragmented in the future.
887 length + fragheaderlen <= mtu &&
888 rt->dst.dev->features & NETIF_F_V4_CSUM &&
890 csummode = CHECKSUM_PARTIAL;
892 cork->length += length;
893 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
894 (sk->sk_protocol == IPPROTO_UDP) &&
895 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
896 (sk->sk_type == SOCK_DGRAM)) {
897 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
898 hh_len, fragheaderlen, transhdrlen,
905 /* So, what's going on in the loop below?
907 * We use calculated fragment length to generate chained skb,
908 * each of segments is IP fragment ready for sending to network after
909 * adding appropriate IP header.
916 /* Check if the remaining data fits into current packet. */
917 copy = mtu - skb->len;
919 copy = maxfraglen - skb->len;
922 unsigned int datalen;
923 unsigned int fraglen;
924 unsigned int fraggap;
925 unsigned int alloclen;
926 struct sk_buff *skb_prev;
930 fraggap = skb_prev->len - maxfraglen;
935 * If remaining data exceeds the mtu,
936 * we know we need more fragment(s).
938 datalen = length + fraggap;
939 if (datalen > mtu - fragheaderlen)
940 datalen = maxfraglen - fragheaderlen;
941 fraglen = datalen + fragheaderlen;
943 if ((flags & MSG_MORE) &&
944 !(rt->dst.dev->features&NETIF_F_SG))
949 alloclen += exthdrlen;
951 /* The last fragment gets additional space at tail.
952 * Note, with MSG_MORE we overallocate on fragments,
953 * because we have no idea what fragment will be
956 if (datalen == length + fraggap)
957 alloclen += rt->dst.trailer_len;
960 skb = sock_alloc_send_skb(sk,
961 alloclen + hh_len + 15,
962 (flags & MSG_DONTWAIT), &err);
965 if (atomic_read(&sk->sk_wmem_alloc) <=
967 skb = sock_wmalloc(sk,
968 alloclen + hh_len + 15, 1,
977 * Fill in the control structures
979 skb->ip_summed = csummode;
981 skb_reserve(skb, hh_len);
983 /* only the initial fragment is time stamped */
984 skb_shinfo(skb)->tx_flags = cork->tx_flags;
986 skb_shinfo(skb)->tskey = tskey;
990 * Find where to start putting bytes.
992 data = skb_put(skb, fraglen + exthdrlen);
993 skb_set_network_header(skb, exthdrlen);
994 skb->transport_header = (skb->network_header +
996 data += fragheaderlen + exthdrlen;
999 skb->csum = skb_copy_and_csum_bits(
1000 skb_prev, maxfraglen,
1001 data + transhdrlen, fraggap, 0);
1002 skb_prev->csum = csum_sub(skb_prev->csum,
1005 pskb_trim_unique(skb_prev, maxfraglen);
1008 copy = datalen - transhdrlen - fraggap;
1009 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1016 length -= datalen - fraggap;
1019 csummode = CHECKSUM_NONE;
1022 * Put the packet on the pending queue.
1024 __skb_queue_tail(queue, skb);
1031 if (!(rt->dst.dev->features&NETIF_F_SG)) {
1035 if (getfrag(from, skb_put(skb, copy),
1036 offset, copy, off, skb) < 0) {
1037 __skb_trim(skb, off);
1042 int i = skb_shinfo(skb)->nr_frags;
1045 if (!sk_page_frag_refill(sk, pfrag))
1048 if (!skb_can_coalesce(skb, i, pfrag->page,
1051 if (i == MAX_SKB_FRAGS)
1054 __skb_fill_page_desc(skb, i, pfrag->page,
1056 skb_shinfo(skb)->nr_frags = ++i;
1057 get_page(pfrag->page);
1059 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1061 page_address(pfrag->page) + pfrag->offset,
1062 offset, copy, skb->len, skb) < 0)
1065 pfrag->offset += copy;
1066 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1068 skb->data_len += copy;
1069 skb->truesize += copy;
1070 atomic_add(copy, &sk->sk_wmem_alloc);
1081 cork->length -= length;
1082 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1086 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1087 struct ipcm_cookie *ipc, struct rtable **rtp)
1089 struct ip_options_rcu *opt;
1093 * setup for corking.
1098 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1100 if (unlikely(!cork->opt))
1103 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1104 cork->flags |= IPCORK_OPT;
1105 cork->addr = ipc->addr;
1111 * We steal reference to this route, caller should not release it
1114 cork->fragsize = ip_sk_use_pmtu(sk) ?
1115 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1116 cork->dst = &rt->dst;
1118 cork->ttl = ipc->ttl;
1119 cork->tos = ipc->tos;
1120 cork->priority = ipc->priority;
1121 cork->tx_flags = ipc->tx_flags;
1127 * ip_append_data() and ip_append_page() can make one large IP datagram
1128 * from many pieces of data. Each pieces will be holded on the socket
1129 * until ip_push_pending_frames() is called. Each piece can be a page
1132 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1133 * this interface potentially.
1135 * LATER: length must be adjusted by pad at tail, when it is required.
1137 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1138 int getfrag(void *from, char *to, int offset, int len,
1139 int odd, struct sk_buff *skb),
1140 void *from, int length, int transhdrlen,
1141 struct ipcm_cookie *ipc, struct rtable **rtp,
1144 struct inet_sock *inet = inet_sk(sk);
1147 if (flags&MSG_PROBE)
1150 if (skb_queue_empty(&sk->sk_write_queue)) {
1151 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1158 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1159 sk_page_frag(sk), getfrag,
1160 from, length, transhdrlen, flags);
1163 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1164 int offset, size_t size, int flags)
1166 struct inet_sock *inet = inet_sk(sk);
1167 struct sk_buff *skb;
1169 struct ip_options *opt = NULL;
1170 struct inet_cork *cork;
1175 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1180 if (flags&MSG_PROBE)
1183 if (skb_queue_empty(&sk->sk_write_queue))
1186 cork = &inet->cork.base;
1187 rt = (struct rtable *)cork->dst;
1188 if (cork->flags & IPCORK_OPT)
1191 if (!(rt->dst.dev->features&NETIF_F_SG))
1194 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1195 mtu = cork->fragsize;
1197 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1198 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1199 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1201 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1202 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1203 mtu - (opt ? opt->optlen : 0));
1207 skb = skb_peek_tail(&sk->sk_write_queue);
1211 cork->length += size;
1212 if ((size + skb->len > mtu) &&
1213 (sk->sk_protocol == IPPROTO_UDP) &&
1214 (rt->dst.dev->features & NETIF_F_UFO)) {
1215 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1216 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1222 if (skb_is_gso(skb))
1226 /* Check if the remaining data fits into current packet. */
1227 len = mtu - skb->len;
1229 len = maxfraglen - skb->len;
1232 struct sk_buff *skb_prev;
1236 fraggap = skb_prev->len - maxfraglen;
1238 alloclen = fragheaderlen + hh_len + fraggap + 15;
1239 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1240 if (unlikely(!skb)) {
1246 * Fill in the control structures
1248 skb->ip_summed = CHECKSUM_NONE;
1250 skb_reserve(skb, hh_len);
1253 * Find where to start putting bytes.
1255 skb_put(skb, fragheaderlen + fraggap);
1256 skb_reset_network_header(skb);
1257 skb->transport_header = (skb->network_header +
1260 skb->csum = skb_copy_and_csum_bits(skb_prev,
1262 skb_transport_header(skb),
1264 skb_prev->csum = csum_sub(skb_prev->csum,
1266 pskb_trim_unique(skb_prev, maxfraglen);
1270 * Put the packet on the pending queue.
1272 __skb_queue_tail(&sk->sk_write_queue, skb);
1276 i = skb_shinfo(skb)->nr_frags;
1279 if (skb_can_coalesce(skb, i, page, offset)) {
1280 skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1281 } else if (i < MAX_SKB_FRAGS) {
1283 skb_fill_page_desc(skb, i, page, offset, len);
1289 if (skb->ip_summed == CHECKSUM_NONE) {
1291 csum = csum_page(page, offset, len);
1292 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1296 skb->data_len += len;
1297 skb->truesize += len;
1298 atomic_add(len, &sk->sk_wmem_alloc);
1305 cork->length -= size;
1306 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1310 static void ip_cork_release(struct inet_cork *cork)
1312 cork->flags &= ~IPCORK_OPT;
1315 dst_release(cork->dst);
1320 * Combined all pending IP fragments on the socket as one IP datagram
1321 * and push them out.
1323 struct sk_buff *__ip_make_skb(struct sock *sk,
1325 struct sk_buff_head *queue,
1326 struct inet_cork *cork)
1328 struct sk_buff *skb, *tmp_skb;
1329 struct sk_buff **tail_skb;
1330 struct inet_sock *inet = inet_sk(sk);
1331 struct net *net = sock_net(sk);
1332 struct ip_options *opt = NULL;
1333 struct rtable *rt = (struct rtable *)cork->dst;
1338 skb = __skb_dequeue(queue);
1341 tail_skb = &(skb_shinfo(skb)->frag_list);
1343 /* move skb->data to ip header from ext header */
1344 if (skb->data < skb_network_header(skb))
1345 __skb_pull(skb, skb_network_offset(skb));
1346 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1347 __skb_pull(tmp_skb, skb_network_header_len(skb));
1348 *tail_skb = tmp_skb;
1349 tail_skb = &(tmp_skb->next);
1350 skb->len += tmp_skb->len;
1351 skb->data_len += tmp_skb->len;
1352 skb->truesize += tmp_skb->truesize;
1353 tmp_skb->destructor = NULL;
1357 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1358 * to fragment the frame generated here. No matter, what transforms
1359 * how transforms change size of the packet, it will come out.
1361 skb->ignore_df = ip_sk_ignore_df(sk);
1363 /* DF bit is set when we want to see DF on outgoing frames.
1364 * If ignore_df is set too, we still allow to fragment this frame
1366 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1367 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1368 (skb->len <= dst_mtu(&rt->dst) &&
1369 ip_dont_fragment(sk, &rt->dst)))
1372 if (cork->flags & IPCORK_OPT)
1377 else if (rt->rt_type == RTN_MULTICAST)
1380 ttl = ip_select_ttl(inet, &rt->dst);
1385 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1388 iph->protocol = sk->sk_protocol;
1389 ip_copy_addrs(iph, fl4);
1390 ip_select_ident(net, skb, sk);
1393 iph->ihl += opt->optlen>>2;
1394 ip_options_build(skb, opt, cork->addr, rt, 0);
1397 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1398 skb->mark = sk->sk_mark;
1400 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1404 skb_dst_set(skb, &rt->dst);
1406 if (iph->protocol == IPPROTO_ICMP)
1407 icmp_out_count(net, ((struct icmphdr *)
1408 skb_transport_header(skb))->type);
1410 ip_cork_release(cork);
1415 int ip_send_skb(struct net *net, struct sk_buff *skb)
1419 err = ip_local_out(skb);
1422 err = net_xmit_errno(err);
1424 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1430 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1432 struct sk_buff *skb;
1434 skb = ip_finish_skb(sk, fl4);
1438 /* Netfilter gets whole the not fragmented skb. */
1439 return ip_send_skb(sock_net(sk), skb);
1443 * Throw away all pending data on the socket.
1445 static void __ip_flush_pending_frames(struct sock *sk,
1446 struct sk_buff_head *queue,
1447 struct inet_cork *cork)
1449 struct sk_buff *skb;
1451 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1454 ip_cork_release(cork);
1457 void ip_flush_pending_frames(struct sock *sk)
1459 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1462 struct sk_buff *ip_make_skb(struct sock *sk,
1464 int getfrag(void *from, char *to, int offset,
1465 int len, int odd, struct sk_buff *skb),
1466 void *from, int length, int transhdrlen,
1467 struct ipcm_cookie *ipc, struct rtable **rtp,
1470 struct inet_cork cork;
1471 struct sk_buff_head queue;
1474 if (flags & MSG_PROBE)
1477 __skb_queue_head_init(&queue);
1482 err = ip_setup_cork(sk, &cork, ipc, rtp);
1484 return ERR_PTR(err);
1486 err = __ip_append_data(sk, fl4, &queue, &cork,
1487 ¤t->task_frag, getfrag,
1488 from, length, transhdrlen, flags);
1490 __ip_flush_pending_frames(sk, &queue, &cork);
1491 return ERR_PTR(err);
1494 return __ip_make_skb(sk, fl4, &queue, &cork);
1498 * Fetch data from kernel space and fill in checksum if needed.
1500 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1501 int len, int odd, struct sk_buff *skb)
1505 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1506 skb->csum = csum_block_add(skb->csum, csum, odd);
1511 * Generic function to send a packet as reply to another packet.
1512 * Used to send some TCP resets/acks so far.
1514 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1515 const struct ip_options *sopt,
1516 __be32 daddr, __be32 saddr,
1517 const struct ip_reply_arg *arg,
1520 struct ip_options_data replyopts;
1521 struct ipcm_cookie ipc;
1523 struct rtable *rt = skb_rtable(skb);
1524 struct net *net = sock_net(sk);
1525 struct sk_buff *nskb;
1528 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1537 if (replyopts.opt.opt.optlen) {
1538 ipc.opt = &replyopts.opt;
1540 if (replyopts.opt.opt.srr)
1541 daddr = replyopts.opt.opt.faddr;
1544 flowi4_init_output(&fl4, arg->bound_dev_if,
1545 IP4_REPLY_MARK(net, skb->mark),
1547 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1548 ip_reply_arg_flowi_flags(arg),
1550 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1551 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1552 rt = ip_route_output_key(net, &fl4);
1556 inet_sk(sk)->tos = arg->tos;
1558 sk->sk_priority = skb->priority;
1559 sk->sk_protocol = ip_hdr(skb)->protocol;
1560 sk->sk_bound_dev_if = arg->bound_dev_if;
1561 sk->sk_sndbuf = sysctl_wmem_default;
1562 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1563 len, 0, &ipc, &rt, MSG_DONTWAIT);
1564 if (unlikely(err)) {
1565 ip_flush_pending_frames(sk);
1569 nskb = skb_peek(&sk->sk_write_queue);
1571 if (arg->csumoffset >= 0)
1572 *((__sum16 *)skb_transport_header(nskb) +
1573 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1575 nskb->ip_summed = CHECKSUM_NONE;
1576 skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
1577 ip_push_pending_frames(sk, &fl4);
1583 void __init ip_init(void)
1588 #if defined(CONFIG_IP_MULTICAST)