2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
139 #include "net-sysfs.h"
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly; /* Taps */
151 static struct list_head offload_base __read_mostly;
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base_head list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
186 static seqcount_t devnet_rename_seq;
188 static inline void dev_base_seq_inc(struct net *net)
190 while (++net->dev_base_seq == 0);
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 static inline void rps_lock(struct softnet_data *sd)
208 spin_lock(&sd->input_pkt_queue.lock);
212 static inline void rps_unlock(struct softnet_data *sd)
215 spin_unlock(&sd->input_pkt_queue.lock);
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
222 struct net *net = dev_net(dev);
226 write_lock_bh(&dev_base_lock);
227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
231 write_unlock_bh(&dev_base_lock);
233 dev_base_seq_inc(net);
236 /* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
239 static void unlist_netdevice(struct net_device *dev)
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del_rcu(&dev->dev_list);
246 hlist_del_rcu(&dev->name_hlist);
247 hlist_del_rcu(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
250 dev_base_seq_inc(dev_net(dev));
257 static RAW_NOTIFIER_HEAD(netdev_chain);
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
267 #ifdef CONFIG_LOCKDEP
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
272 static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289 static const char *const netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 /*******************************************************************************
351 Protocol management and registration routines
353 *******************************************************************************/
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 if (pt->type == htons(ETH_P_ALL))
374 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376 return pt->dev ? &pt->dev->ptype_specific :
377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
381 * dev_add_pack - add packet handler
382 * @pt: packet type declaration
384 * Add a protocol handler to the networking stack. The passed &packet_type
385 * is linked into kernel lists and may not be freed until it has been
386 * removed from the kernel lists.
388 * This call does not sleep therefore it can not
389 * guarantee all CPU's that are in middle of receiving packets
390 * will see the new packet type (until the next received packet).
393 void dev_add_pack(struct packet_type *pt)
395 struct list_head *head = ptype_head(pt);
397 spin_lock(&ptype_lock);
398 list_add_rcu(&pt->list, head);
399 spin_unlock(&ptype_lock);
401 EXPORT_SYMBOL(dev_add_pack);
404 * __dev_remove_pack - remove packet handler
405 * @pt: packet type declaration
407 * Remove a protocol handler that was previously added to the kernel
408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
409 * from the kernel lists and can be freed or reused once this function
412 * The packet type might still be in use by receivers
413 * and must not be freed until after all the CPU's have gone
414 * through a quiescent state.
416 void __dev_remove_pack(struct packet_type *pt)
418 struct list_head *head = ptype_head(pt);
419 struct packet_type *pt1;
421 spin_lock(&ptype_lock);
423 list_for_each_entry(pt1, head, list) {
425 list_del_rcu(&pt->list);
430 pr_warn("dev_remove_pack: %p not found\n", pt);
432 spin_unlock(&ptype_lock);
434 EXPORT_SYMBOL(__dev_remove_pack);
437 * dev_remove_pack - remove packet handler
438 * @pt: packet type declaration
440 * Remove a protocol handler that was previously added to the kernel
441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
442 * from the kernel lists and can be freed or reused once this function
445 * This call sleeps to guarantee that no CPU is looking at the packet
448 void dev_remove_pack(struct packet_type *pt)
450 __dev_remove_pack(pt);
454 EXPORT_SYMBOL(dev_remove_pack);
458 * dev_add_offload - register offload handlers
459 * @po: protocol offload declaration
461 * Add protocol offload handlers to the networking stack. The passed
462 * &proto_offload is linked into kernel lists and may not be freed until
463 * it has been removed from the kernel lists.
465 * This call does not sleep therefore it can not
466 * guarantee all CPU's that are in middle of receiving packets
467 * will see the new offload handlers (until the next received packet).
469 void dev_add_offload(struct packet_offload *po)
471 struct list_head *head = &offload_base;
473 spin_lock(&offload_lock);
474 list_add_rcu(&po->list, head);
475 spin_unlock(&offload_lock);
477 EXPORT_SYMBOL(dev_add_offload);
480 * __dev_remove_offload - remove offload handler
481 * @po: packet offload declaration
483 * Remove a protocol offload handler that was previously added to the
484 * kernel offload handlers by dev_add_offload(). The passed &offload_type
485 * is removed from the kernel lists and can be freed or reused once this
488 * The packet type might still be in use by receivers
489 * and must not be freed until after all the CPU's have gone
490 * through a quiescent state.
492 static void __dev_remove_offload(struct packet_offload *po)
494 struct list_head *head = &offload_base;
495 struct packet_offload *po1;
497 spin_lock(&offload_lock);
499 list_for_each_entry(po1, head, list) {
501 list_del_rcu(&po->list);
506 pr_warn("dev_remove_offload: %p not found\n", po);
508 spin_unlock(&offload_lock);
512 * dev_remove_offload - remove packet offload handler
513 * @po: packet offload declaration
515 * Remove a packet offload handler that was previously added to the kernel
516 * offload handlers by dev_add_offload(). The passed &offload_type is
517 * removed from the kernel lists and can be freed or reused once this
520 * This call sleeps to guarantee that no CPU is looking at the packet
523 void dev_remove_offload(struct packet_offload *po)
525 __dev_remove_offload(po);
529 EXPORT_SYMBOL(dev_remove_offload);
531 /******************************************************************************
533 Device Boot-time Settings Routines
535 *******************************************************************************/
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
541 * netdev_boot_setup_add - add new setup entry
542 * @name: name of the device
543 * @map: configured settings for the device
545 * Adds new setup entry to the dev_boot_setup list. The function
546 * returns 0 on error and 1 on success. This is a generic routine to
549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
551 struct netdev_boot_setup *s;
555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 memset(s[i].name, 0, sizeof(s[i].name));
558 strlcpy(s[i].name, name, IFNAMSIZ);
559 memcpy(&s[i].map, map, sizeof(s[i].map));
564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
568 * netdev_boot_setup_check - check boot time settings
569 * @dev: the netdevice
571 * Check boot time settings for the device.
572 * The found settings are set for the device to be used
573 * later in the device probing.
574 * Returns 0 if no settings found, 1 if they are.
576 int netdev_boot_setup_check(struct net_device *dev)
578 struct netdev_boot_setup *s = dev_boot_setup;
581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583 !strcmp(dev->name, s[i].name)) {
584 dev->irq = s[i].map.irq;
585 dev->base_addr = s[i].map.base_addr;
586 dev->mem_start = s[i].map.mem_start;
587 dev->mem_end = s[i].map.mem_end;
593 EXPORT_SYMBOL(netdev_boot_setup_check);
597 * netdev_boot_base - get address from boot time settings
598 * @prefix: prefix for network device
599 * @unit: id for network device
601 * Check boot time settings for the base address of device.
602 * The found settings are set for the device to be used
603 * later in the device probing.
604 * Returns 0 if no settings found.
606 unsigned long netdev_boot_base(const char *prefix, int unit)
608 const struct netdev_boot_setup *s = dev_boot_setup;
612 sprintf(name, "%s%d", prefix, unit);
615 * If device already registered then return base of 1
616 * to indicate not to probe for this interface
618 if (__dev_get_by_name(&init_net, name))
621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 if (!strcmp(name, s[i].name))
623 return s[i].map.base_addr;
628 * Saves at boot time configured settings for any netdevice.
630 int __init netdev_boot_setup(char *str)
635 str = get_options(str, ARRAY_SIZE(ints), ints);
640 memset(&map, 0, sizeof(map));
644 map.base_addr = ints[2];
646 map.mem_start = ints[3];
648 map.mem_end = ints[4];
650 /* Add new entry to the list */
651 return netdev_boot_setup_add(str, &map);
654 __setup("netdev=", netdev_boot_setup);
656 /*******************************************************************************
658 Device Interface Subroutines
660 *******************************************************************************/
663 * dev_get_iflink - get 'iflink' value of a interface
664 * @dev: targeted interface
666 * Indicates the ifindex the interface is linked to.
667 * Physical interfaces have the same 'ifindex' and 'iflink' values.
670 int dev_get_iflink(const struct net_device *dev)
672 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
673 return dev->netdev_ops->ndo_get_iflink(dev);
675 /* If dev->rtnl_link_ops is set, it's a virtual interface. */
676 if (dev->rtnl_link_ops)
681 EXPORT_SYMBOL(dev_get_iflink);
684 * __dev_get_by_name - find a device by its name
685 * @net: the applicable net namespace
686 * @name: name to find
688 * Find an interface by name. Must be called under RTNL semaphore
689 * or @dev_base_lock. If the name is found a pointer to the device
690 * is returned. If the name is not found then %NULL is returned. The
691 * reference counters are not incremented so the caller must be
692 * careful with locks.
695 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 struct net_device *dev;
698 struct hlist_head *head = dev_name_hash(net, name);
700 hlist_for_each_entry(dev, head, name_hlist)
701 if (!strncmp(dev->name, name, IFNAMSIZ))
706 EXPORT_SYMBOL(__dev_get_by_name);
709 * dev_get_by_name_rcu - find a device by its name
710 * @net: the applicable net namespace
711 * @name: name to find
713 * Find an interface by name.
714 * If the name is found a pointer to the device is returned.
715 * If the name is not found then %NULL is returned.
716 * The reference counters are not incremented so the caller must be
717 * careful with locks. The caller must hold RCU lock.
720 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 struct net_device *dev;
723 struct hlist_head *head = dev_name_hash(net, name);
725 hlist_for_each_entry_rcu(dev, head, name_hlist)
726 if (!strncmp(dev->name, name, IFNAMSIZ))
731 EXPORT_SYMBOL(dev_get_by_name_rcu);
734 * dev_get_by_name - find a device by its name
735 * @net: the applicable net namespace
736 * @name: name to find
738 * Find an interface by name. This can be called from any
739 * context and does its own locking. The returned handle has
740 * the usage count incremented and the caller must use dev_put() to
741 * release it when it is no longer needed. %NULL is returned if no
742 * matching device is found.
745 struct net_device *dev_get_by_name(struct net *net, const char *name)
747 struct net_device *dev;
750 dev = dev_get_by_name_rcu(net, name);
756 EXPORT_SYMBOL(dev_get_by_name);
759 * __dev_get_by_index - find a device by its ifindex
760 * @net: the applicable net namespace
761 * @ifindex: index of device
763 * Search for an interface by index. Returns %NULL if the device
764 * is not found or a pointer to the device. The device has not
765 * had its reference counter increased so the caller must be careful
766 * about locking. The caller must hold either the RTNL semaphore
770 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
775 hlist_for_each_entry(dev, head, index_hlist)
776 if (dev->ifindex == ifindex)
781 EXPORT_SYMBOL(__dev_get_by_index);
784 * dev_get_by_index_rcu - find a device by its ifindex
785 * @net: the applicable net namespace
786 * @ifindex: index of device
788 * Search for an interface by index. Returns %NULL if the device
789 * is not found or a pointer to the device. The device has not
790 * had its reference counter increased so the caller must be careful
791 * about locking. The caller must hold RCU lock.
794 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796 struct net_device *dev;
797 struct hlist_head *head = dev_index_hash(net, ifindex);
799 hlist_for_each_entry_rcu(dev, head, index_hlist)
800 if (dev->ifindex == ifindex)
805 EXPORT_SYMBOL(dev_get_by_index_rcu);
809 * dev_get_by_index - find a device by its ifindex
810 * @net: the applicable net namespace
811 * @ifindex: index of device
813 * Search for an interface by index. Returns NULL if the device
814 * is not found or a pointer to the device. The device returned has
815 * had a reference added and the pointer is safe until the user calls
816 * dev_put to indicate they have finished with it.
819 struct net_device *dev_get_by_index(struct net *net, int ifindex)
821 struct net_device *dev;
824 dev = dev_get_by_index_rcu(net, ifindex);
830 EXPORT_SYMBOL(dev_get_by_index);
833 * netdev_get_name - get a netdevice name, knowing its ifindex.
834 * @net: network namespace
835 * @name: a pointer to the buffer where the name will be stored.
836 * @ifindex: the ifindex of the interface to get the name from.
838 * The use of raw_seqcount_begin() and cond_resched() before
839 * retrying is required as we want to give the writers a chance
840 * to complete when CONFIG_PREEMPT is not set.
842 int netdev_get_name(struct net *net, char *name, int ifindex)
844 struct net_device *dev;
848 seq = raw_seqcount_begin(&devnet_rename_seq);
850 dev = dev_get_by_index_rcu(net, ifindex);
856 strcpy(name, dev->name);
858 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
867 * dev_getbyhwaddr_rcu - find a device by its hardware address
868 * @net: the applicable net namespace
869 * @type: media type of device
870 * @ha: hardware address
872 * Search for an interface by MAC address. Returns NULL if the device
873 * is not found or a pointer to the device.
874 * The caller must hold RCU or RTNL.
875 * The returned device has not had its ref count increased
876 * and the caller must therefore be careful about locking
880 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
883 struct net_device *dev;
885 for_each_netdev_rcu(net, dev)
886 if (dev->type == type &&
887 !memcmp(dev->dev_addr, ha, dev->addr_len))
892 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
894 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
896 struct net_device *dev;
899 for_each_netdev(net, dev)
900 if (dev->type == type)
905 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
909 struct net_device *dev, *ret = NULL;
912 for_each_netdev_rcu(net, dev)
913 if (dev->type == type) {
921 EXPORT_SYMBOL(dev_getfirstbyhwtype);
924 * __dev_get_by_flags - find any device with given flags
925 * @net: the applicable net namespace
926 * @if_flags: IFF_* values
927 * @mask: bitmask of bits in if_flags to check
929 * Search for any interface with the given flags. Returns NULL if a device
930 * is not found or a pointer to the device. Must be called inside
931 * rtnl_lock(), and result refcount is unchanged.
934 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
937 struct net_device *dev, *ret;
942 for_each_netdev(net, dev) {
943 if (((dev->flags ^ if_flags) & mask) == 0) {
950 EXPORT_SYMBOL(__dev_get_by_flags);
953 * dev_valid_name - check if name is okay for network device
956 * Network device names need to be valid file names to
957 * to allow sysfs to work. We also disallow any kind of
960 bool dev_valid_name(const char *name)
964 if (strlen(name) >= IFNAMSIZ)
966 if (!strcmp(name, ".") || !strcmp(name, ".."))
970 if (*name == '/' || *name == ':' || isspace(*name))
976 EXPORT_SYMBOL(dev_valid_name);
979 * __dev_alloc_name - allocate a name for a device
980 * @net: network namespace to allocate the device name in
981 * @name: name format string
982 * @buf: scratch buffer and result name string
984 * Passed a format string - eg "lt%d" it will try and find a suitable
985 * id. It scans list of devices to build up a free map, then chooses
986 * the first empty slot. The caller must hold the dev_base or rtnl lock
987 * while allocating the name and adding the device in order to avoid
989 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
990 * Returns the number of the unit assigned or a negative errno code.
993 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
997 const int max_netdevices = 8*PAGE_SIZE;
998 unsigned long *inuse;
999 struct net_device *d;
1001 p = strnchr(name, IFNAMSIZ-1, '%');
1004 * Verify the string as this thing may have come from
1005 * the user. There must be either one "%d" and no other "%"
1008 if (p[1] != 'd' || strchr(p + 2, '%'))
1011 /* Use one page as a bit array of possible slots */
1012 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1016 for_each_netdev(net, d) {
1017 if (!sscanf(d->name, name, &i))
1019 if (i < 0 || i >= max_netdevices)
1022 /* avoid cases where sscanf is not exact inverse of printf */
1023 snprintf(buf, IFNAMSIZ, name, i);
1024 if (!strncmp(buf, d->name, IFNAMSIZ))
1028 i = find_first_zero_bit(inuse, max_netdevices);
1029 free_page((unsigned long) inuse);
1033 snprintf(buf, IFNAMSIZ, name, i);
1034 if (!__dev_get_by_name(net, buf))
1037 /* It is possible to run out of possible slots
1038 * when the name is long and there isn't enough space left
1039 * for the digits, or if all bits are used.
1045 * dev_alloc_name - allocate a name for a device
1047 * @name: name format string
1049 * Passed a format string - eg "lt%d" it will try and find a suitable
1050 * id. It scans list of devices to build up a free map, then chooses
1051 * the first empty slot. The caller must hold the dev_base or rtnl lock
1052 * while allocating the name and adding the device in order to avoid
1054 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055 * Returns the number of the unit assigned or a negative errno code.
1058 int dev_alloc_name(struct net_device *dev, const char *name)
1064 BUG_ON(!dev_net(dev));
1066 ret = __dev_alloc_name(net, name, buf);
1068 strlcpy(dev->name, buf, IFNAMSIZ);
1071 EXPORT_SYMBOL(dev_alloc_name);
1073 static int dev_alloc_name_ns(struct net *net,
1074 struct net_device *dev,
1080 ret = __dev_alloc_name(net, name, buf);
1082 strlcpy(dev->name, buf, IFNAMSIZ);
1086 static int dev_get_valid_name(struct net *net,
1087 struct net_device *dev,
1092 if (!dev_valid_name(name))
1095 if (strchr(name, '%'))
1096 return dev_alloc_name_ns(net, dev, name);
1097 else if (__dev_get_by_name(net, name))
1099 else if (dev->name != name)
1100 strlcpy(dev->name, name, IFNAMSIZ);
1106 * dev_change_name - change name of a device
1108 * @newname: name (or format string) must be at least IFNAMSIZ
1110 * Change name of a device, can pass format strings "eth%d".
1113 int dev_change_name(struct net_device *dev, const char *newname)
1115 unsigned char old_assign_type;
1116 char oldname[IFNAMSIZ];
1122 BUG_ON(!dev_net(dev));
1125 if (dev->flags & IFF_UP)
1128 write_seqcount_begin(&devnet_rename_seq);
1130 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1131 write_seqcount_end(&devnet_rename_seq);
1135 memcpy(oldname, dev->name, IFNAMSIZ);
1137 err = dev_get_valid_name(net, dev, newname);
1139 write_seqcount_end(&devnet_rename_seq);
1143 if (oldname[0] && !strchr(oldname, '%'))
1144 netdev_info(dev, "renamed from %s\n", oldname);
1146 old_assign_type = dev->name_assign_type;
1147 dev->name_assign_type = NET_NAME_RENAMED;
1150 ret = device_rename(&dev->dev, dev->name);
1152 memcpy(dev->name, oldname, IFNAMSIZ);
1153 dev->name_assign_type = old_assign_type;
1154 write_seqcount_end(&devnet_rename_seq);
1158 write_seqcount_end(&devnet_rename_seq);
1160 netdev_adjacent_rename_links(dev, oldname);
1162 write_lock_bh(&dev_base_lock);
1163 hlist_del_rcu(&dev->name_hlist);
1164 write_unlock_bh(&dev_base_lock);
1168 write_lock_bh(&dev_base_lock);
1169 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1170 write_unlock_bh(&dev_base_lock);
1172 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1173 ret = notifier_to_errno(ret);
1176 /* err >= 0 after dev_alloc_name() or stores the first errno */
1179 write_seqcount_begin(&devnet_rename_seq);
1180 memcpy(dev->name, oldname, IFNAMSIZ);
1181 memcpy(oldname, newname, IFNAMSIZ);
1182 dev->name_assign_type = old_assign_type;
1183 old_assign_type = NET_NAME_RENAMED;
1186 pr_err("%s: name change rollback failed: %d\n",
1195 * dev_set_alias - change ifalias of a device
1197 * @alias: name up to IFALIASZ
1198 * @len: limit of bytes to copy from info
1200 * Set ifalias for a device,
1202 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1208 if (len >= IFALIASZ)
1212 kfree(dev->ifalias);
1213 dev->ifalias = NULL;
1217 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1220 dev->ifalias = new_ifalias;
1222 strlcpy(dev->ifalias, alias, len+1);
1228 * netdev_features_change - device changes features
1229 * @dev: device to cause notification
1231 * Called to indicate a device has changed features.
1233 void netdev_features_change(struct net_device *dev)
1235 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1237 EXPORT_SYMBOL(netdev_features_change);
1240 * netdev_state_change - device changes state
1241 * @dev: device to cause notification
1243 * Called to indicate a device has changed state. This function calls
1244 * the notifier chains for netdev_chain and sends a NEWLINK message
1245 * to the routing socket.
1247 void netdev_state_change(struct net_device *dev)
1249 if (dev->flags & IFF_UP) {
1250 struct netdev_notifier_change_info change_info;
1252 change_info.flags_changed = 0;
1253 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1258 EXPORT_SYMBOL(netdev_state_change);
1261 * netdev_notify_peers - notify network peers about existence of @dev
1262 * @dev: network device
1264 * Generate traffic such that interested network peers are aware of
1265 * @dev, such as by generating a gratuitous ARP. This may be used when
1266 * a device wants to inform the rest of the network about some sort of
1267 * reconfiguration such as a failover event or virtual machine
1270 void netdev_notify_peers(struct net_device *dev)
1273 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1276 EXPORT_SYMBOL(netdev_notify_peers);
1278 static int __dev_open(struct net_device *dev)
1280 const struct net_device_ops *ops = dev->netdev_ops;
1285 if (!netif_device_present(dev))
1288 /* Block netpoll from trying to do any rx path servicing.
1289 * If we don't do this there is a chance ndo_poll_controller
1290 * or ndo_poll may be running while we open the device
1292 netpoll_poll_disable(dev);
1294 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1295 ret = notifier_to_errno(ret);
1299 set_bit(__LINK_STATE_START, &dev->state);
1301 if (ops->ndo_validate_addr)
1302 ret = ops->ndo_validate_addr(dev);
1304 if (!ret && ops->ndo_open)
1305 ret = ops->ndo_open(dev);
1307 netpoll_poll_enable(dev);
1310 clear_bit(__LINK_STATE_START, &dev->state);
1312 dev->flags |= IFF_UP;
1313 dev_set_rx_mode(dev);
1315 add_device_randomness(dev->dev_addr, dev->addr_len);
1322 * dev_open - prepare an interface for use.
1323 * @dev: device to open
1325 * Takes a device from down to up state. The device's private open
1326 * function is invoked and then the multicast lists are loaded. Finally
1327 * the device is moved into the up state and a %NETDEV_UP message is
1328 * sent to the netdev notifier chain.
1330 * Calling this function on an active interface is a nop. On a failure
1331 * a negative errno code is returned.
1333 int dev_open(struct net_device *dev)
1337 if (dev->flags & IFF_UP)
1340 ret = __dev_open(dev);
1344 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1345 call_netdevice_notifiers(NETDEV_UP, dev);
1349 EXPORT_SYMBOL(dev_open);
1351 static int __dev_close_many(struct list_head *head)
1353 struct net_device *dev;
1358 list_for_each_entry(dev, head, close_list) {
1359 /* Temporarily disable netpoll until the interface is down */
1360 netpoll_poll_disable(dev);
1362 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1364 clear_bit(__LINK_STATE_START, &dev->state);
1366 /* Synchronize to scheduled poll. We cannot touch poll list, it
1367 * can be even on different cpu. So just clear netif_running().
1369 * dev->stop() will invoke napi_disable() on all of it's
1370 * napi_struct instances on this device.
1372 smp_mb__after_atomic(); /* Commit netif_running(). */
1375 dev_deactivate_many(head);
1377 list_for_each_entry(dev, head, close_list) {
1378 const struct net_device_ops *ops = dev->netdev_ops;
1381 * Call the device specific close. This cannot fail.
1382 * Only if device is UP
1384 * We allow it to be called even after a DETACH hot-plug
1390 dev->flags &= ~IFF_UP;
1391 netpoll_poll_enable(dev);
1397 static int __dev_close(struct net_device *dev)
1402 list_add(&dev->close_list, &single);
1403 retval = __dev_close_many(&single);
1409 int dev_close_many(struct list_head *head, bool unlink)
1411 struct net_device *dev, *tmp;
1413 /* Remove the devices that don't need to be closed */
1414 list_for_each_entry_safe(dev, tmp, head, close_list)
1415 if (!(dev->flags & IFF_UP))
1416 list_del_init(&dev->close_list);
1418 __dev_close_many(head);
1420 list_for_each_entry_safe(dev, tmp, head, close_list) {
1421 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1422 call_netdevice_notifiers(NETDEV_DOWN, dev);
1424 list_del_init(&dev->close_list);
1429 EXPORT_SYMBOL(dev_close_many);
1432 * dev_close - shutdown an interface.
1433 * @dev: device to shutdown
1435 * This function moves an active device into down state. A
1436 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1437 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1440 int dev_close(struct net_device *dev)
1442 if (dev->flags & IFF_UP) {
1445 list_add(&dev->close_list, &single);
1446 dev_close_many(&single, true);
1451 EXPORT_SYMBOL(dev_close);
1455 * dev_disable_lro - disable Large Receive Offload on a device
1458 * Disable Large Receive Offload (LRO) on a net device. Must be
1459 * called under RTNL. This is needed if received packets may be
1460 * forwarded to another interface.
1462 void dev_disable_lro(struct net_device *dev)
1464 struct net_device *lower_dev;
1465 struct list_head *iter;
1467 dev->wanted_features &= ~NETIF_F_LRO;
1468 netdev_update_features(dev);
1470 if (unlikely(dev->features & NETIF_F_LRO))
1471 netdev_WARN(dev, "failed to disable LRO!\n");
1473 netdev_for_each_lower_dev(dev, lower_dev, iter)
1474 dev_disable_lro(lower_dev);
1476 EXPORT_SYMBOL(dev_disable_lro);
1478 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1479 struct net_device *dev)
1481 struct netdev_notifier_info info;
1483 netdev_notifier_info_init(&info, dev);
1484 return nb->notifier_call(nb, val, &info);
1487 static int dev_boot_phase = 1;
1490 * register_netdevice_notifier - register a network notifier block
1493 * Register a notifier to be called when network device events occur.
1494 * The notifier passed is linked into the kernel structures and must
1495 * not be reused until it has been unregistered. A negative errno code
1496 * is returned on a failure.
1498 * When registered all registration and up events are replayed
1499 * to the new notifier to allow device to have a race free
1500 * view of the network device list.
1503 int register_netdevice_notifier(struct notifier_block *nb)
1505 struct net_device *dev;
1506 struct net_device *last;
1511 err = raw_notifier_chain_register(&netdev_chain, nb);
1517 for_each_netdev(net, dev) {
1518 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1519 err = notifier_to_errno(err);
1523 if (!(dev->flags & IFF_UP))
1526 call_netdevice_notifier(nb, NETDEV_UP, dev);
1537 for_each_netdev(net, dev) {
1541 if (dev->flags & IFF_UP) {
1542 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1546 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1551 raw_notifier_chain_unregister(&netdev_chain, nb);
1554 EXPORT_SYMBOL(register_netdevice_notifier);
1557 * unregister_netdevice_notifier - unregister a network notifier block
1560 * Unregister a notifier previously registered by
1561 * register_netdevice_notifier(). The notifier is unlinked into the
1562 * kernel structures and may then be reused. A negative errno code
1563 * is returned on a failure.
1565 * After unregistering unregister and down device events are synthesized
1566 * for all devices on the device list to the removed notifier to remove
1567 * the need for special case cleanup code.
1570 int unregister_netdevice_notifier(struct notifier_block *nb)
1572 struct net_device *dev;
1577 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1582 for_each_netdev(net, dev) {
1583 if (dev->flags & IFF_UP) {
1584 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1588 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1595 EXPORT_SYMBOL(unregister_netdevice_notifier);
1598 * call_netdevice_notifiers_info - call all network notifier blocks
1599 * @val: value passed unmodified to notifier function
1600 * @dev: net_device pointer passed unmodified to notifier function
1601 * @info: notifier information data
1603 * Call all network notifier blocks. Parameters and return value
1604 * are as for raw_notifier_call_chain().
1607 static int call_netdevice_notifiers_info(unsigned long val,
1608 struct net_device *dev,
1609 struct netdev_notifier_info *info)
1612 netdev_notifier_info_init(info, dev);
1613 return raw_notifier_call_chain(&netdev_chain, val, info);
1617 * call_netdevice_notifiers - call all network notifier blocks
1618 * @val: value passed unmodified to notifier function
1619 * @dev: net_device pointer passed unmodified to notifier function
1621 * Call all network notifier blocks. Parameters and return value
1622 * are as for raw_notifier_call_chain().
1625 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1627 struct netdev_notifier_info info;
1629 return call_netdevice_notifiers_info(val, dev, &info);
1631 EXPORT_SYMBOL(call_netdevice_notifiers);
1633 #ifdef CONFIG_NET_CLS_ACT
1634 static struct static_key ingress_needed __read_mostly;
1636 void net_inc_ingress_queue(void)
1638 static_key_slow_inc(&ingress_needed);
1640 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1642 void net_dec_ingress_queue(void)
1644 static_key_slow_dec(&ingress_needed);
1646 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1649 static struct static_key netstamp_needed __read_mostly;
1650 #ifdef HAVE_JUMP_LABEL
1651 /* We are not allowed to call static_key_slow_dec() from irq context
1652 * If net_disable_timestamp() is called from irq context, defer the
1653 * static_key_slow_dec() calls.
1655 static atomic_t netstamp_needed_deferred;
1658 void net_enable_timestamp(void)
1660 #ifdef HAVE_JUMP_LABEL
1661 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1665 static_key_slow_dec(&netstamp_needed);
1669 static_key_slow_inc(&netstamp_needed);
1671 EXPORT_SYMBOL(net_enable_timestamp);
1673 void net_disable_timestamp(void)
1675 #ifdef HAVE_JUMP_LABEL
1676 if (in_interrupt()) {
1677 atomic_inc(&netstamp_needed_deferred);
1681 static_key_slow_dec(&netstamp_needed);
1683 EXPORT_SYMBOL(net_disable_timestamp);
1685 static inline void net_timestamp_set(struct sk_buff *skb)
1687 skb->tstamp.tv64 = 0;
1688 if (static_key_false(&netstamp_needed))
1689 __net_timestamp(skb);
1692 #define net_timestamp_check(COND, SKB) \
1693 if (static_key_false(&netstamp_needed)) { \
1694 if ((COND) && !(SKB)->tstamp.tv64) \
1695 __net_timestamp(SKB); \
1698 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1702 if (!(dev->flags & IFF_UP))
1705 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1706 if (skb->len <= len)
1709 /* if TSO is enabled, we don't care about the length as the packet
1710 * could be forwarded without being segmented before
1712 if (skb_is_gso(skb))
1717 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1719 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1722 unlikely(!is_skb_forwardable(dev, skb))) {
1723 atomic_long_inc(&dev->rx_dropped);
1728 skb_scrub_packet(skb, true);
1730 skb->protocol = eth_type_trans(skb, dev);
1731 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1735 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1738 * dev_forward_skb - loopback an skb to another netif
1740 * @dev: destination network device
1741 * @skb: buffer to forward
1744 * NET_RX_SUCCESS (no congestion)
1745 * NET_RX_DROP (packet was dropped, but freed)
1747 * dev_forward_skb can be used for injecting an skb from the
1748 * start_xmit function of one device into the receive queue
1749 * of another device.
1751 * The receiving device may be in another namespace, so
1752 * we have to clear all information in the skb that could
1753 * impact namespace isolation.
1755 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1757 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1759 EXPORT_SYMBOL_GPL(dev_forward_skb);
1761 static inline int deliver_skb(struct sk_buff *skb,
1762 struct packet_type *pt_prev,
1763 struct net_device *orig_dev)
1765 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1767 atomic_inc(&skb->users);
1768 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1771 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1772 struct packet_type **pt,
1773 struct net_device *orig_dev,
1775 struct list_head *ptype_list)
1777 struct packet_type *ptype, *pt_prev = *pt;
1779 list_for_each_entry_rcu(ptype, ptype_list, list) {
1780 if (ptype->type != type)
1783 deliver_skb(skb, pt_prev, orig_dev);
1789 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1791 if (!ptype->af_packet_priv || !skb->sk)
1794 if (ptype->id_match)
1795 return ptype->id_match(ptype, skb->sk);
1796 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1803 * Support routine. Sends outgoing frames to any network
1804 * taps currently in use.
1807 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1809 struct packet_type *ptype;
1810 struct sk_buff *skb2 = NULL;
1811 struct packet_type *pt_prev = NULL;
1812 struct list_head *ptype_list = &ptype_all;
1816 list_for_each_entry_rcu(ptype, ptype_list, list) {
1817 /* Never send packets back to the socket
1820 if (skb_loop_sk(ptype, skb))
1824 deliver_skb(skb2, pt_prev, skb->dev);
1829 /* need to clone skb, done only once */
1830 skb2 = skb_clone(skb, GFP_ATOMIC);
1834 net_timestamp_set(skb2);
1836 /* skb->nh should be correctly
1837 * set by sender, so that the second statement is
1838 * just protection against buggy protocols.
1840 skb_reset_mac_header(skb2);
1842 if (skb_network_header(skb2) < skb2->data ||
1843 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1844 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1845 ntohs(skb2->protocol),
1847 skb_reset_network_header(skb2);
1850 skb2->transport_header = skb2->network_header;
1851 skb2->pkt_type = PACKET_OUTGOING;
1855 if (ptype_list == &ptype_all) {
1856 ptype_list = &dev->ptype_all;
1861 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1866 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1867 * @dev: Network device
1868 * @txq: number of queues available
1870 * If real_num_tx_queues is changed the tc mappings may no longer be
1871 * valid. To resolve this verify the tc mapping remains valid and if
1872 * not NULL the mapping. With no priorities mapping to this
1873 * offset/count pair it will no longer be used. In the worst case TC0
1874 * is invalid nothing can be done so disable priority mappings. If is
1875 * expected that drivers will fix this mapping if they can before
1876 * calling netif_set_real_num_tx_queues.
1878 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1881 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1883 /* If TC0 is invalidated disable TC mapping */
1884 if (tc->offset + tc->count > txq) {
1885 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1890 /* Invalidated prio to tc mappings set to TC0 */
1891 for (i = 1; i < TC_BITMASK + 1; i++) {
1892 int q = netdev_get_prio_tc_map(dev, i);
1894 tc = &dev->tc_to_txq[q];
1895 if (tc->offset + tc->count > txq) {
1896 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1898 netdev_set_prio_tc_map(dev, i, 0);
1904 static DEFINE_MUTEX(xps_map_mutex);
1905 #define xmap_dereference(P) \
1906 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1908 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1911 struct xps_map *map = NULL;
1915 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1917 for (pos = 0; map && pos < map->len; pos++) {
1918 if (map->queues[pos] == index) {
1920 map->queues[pos] = map->queues[--map->len];
1922 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1923 kfree_rcu(map, rcu);
1933 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1935 struct xps_dev_maps *dev_maps;
1937 bool active = false;
1939 mutex_lock(&xps_map_mutex);
1940 dev_maps = xmap_dereference(dev->xps_maps);
1945 for_each_possible_cpu(cpu) {
1946 for (i = index; i < dev->num_tx_queues; i++) {
1947 if (!remove_xps_queue(dev_maps, cpu, i))
1950 if (i == dev->num_tx_queues)
1955 RCU_INIT_POINTER(dev->xps_maps, NULL);
1956 kfree_rcu(dev_maps, rcu);
1959 for (i = index; i < dev->num_tx_queues; i++)
1960 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1964 mutex_unlock(&xps_map_mutex);
1967 static struct xps_map *expand_xps_map(struct xps_map *map,
1970 struct xps_map *new_map;
1971 int alloc_len = XPS_MIN_MAP_ALLOC;
1974 for (pos = 0; map && pos < map->len; pos++) {
1975 if (map->queues[pos] != index)
1980 /* Need to add queue to this CPU's existing map */
1982 if (pos < map->alloc_len)
1985 alloc_len = map->alloc_len * 2;
1988 /* Need to allocate new map to store queue on this CPU's map */
1989 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1994 for (i = 0; i < pos; i++)
1995 new_map->queues[i] = map->queues[i];
1996 new_map->alloc_len = alloc_len;
2002 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2005 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2006 struct xps_map *map, *new_map;
2007 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2008 int cpu, numa_node_id = -2;
2009 bool active = false;
2011 mutex_lock(&xps_map_mutex);
2013 dev_maps = xmap_dereference(dev->xps_maps);
2015 /* allocate memory for queue storage */
2016 for_each_online_cpu(cpu) {
2017 if (!cpumask_test_cpu(cpu, mask))
2021 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2022 if (!new_dev_maps) {
2023 mutex_unlock(&xps_map_mutex);
2027 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2030 map = expand_xps_map(map, cpu, index);
2034 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2038 goto out_no_new_maps;
2040 for_each_possible_cpu(cpu) {
2041 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2042 /* add queue to CPU maps */
2045 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2046 while ((pos < map->len) && (map->queues[pos] != index))
2049 if (pos == map->len)
2050 map->queues[map->len++] = index;
2052 if (numa_node_id == -2)
2053 numa_node_id = cpu_to_node(cpu);
2054 else if (numa_node_id != cpu_to_node(cpu))
2057 } else if (dev_maps) {
2058 /* fill in the new device map from the old device map */
2059 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2060 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2065 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2067 /* Cleanup old maps */
2069 for_each_possible_cpu(cpu) {
2070 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2071 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2072 if (map && map != new_map)
2073 kfree_rcu(map, rcu);
2076 kfree_rcu(dev_maps, rcu);
2079 dev_maps = new_dev_maps;
2083 /* update Tx queue numa node */
2084 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2085 (numa_node_id >= 0) ? numa_node_id :
2091 /* removes queue from unused CPUs */
2092 for_each_possible_cpu(cpu) {
2093 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2096 if (remove_xps_queue(dev_maps, cpu, index))
2100 /* free map if not active */
2102 RCU_INIT_POINTER(dev->xps_maps, NULL);
2103 kfree_rcu(dev_maps, rcu);
2107 mutex_unlock(&xps_map_mutex);
2111 /* remove any maps that we added */
2112 for_each_possible_cpu(cpu) {
2113 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2114 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2116 if (new_map && new_map != map)
2120 mutex_unlock(&xps_map_mutex);
2122 kfree(new_dev_maps);
2125 EXPORT_SYMBOL(netif_set_xps_queue);
2129 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2130 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2132 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2136 if (txq < 1 || txq > dev->num_tx_queues)
2139 if (dev->reg_state == NETREG_REGISTERED ||
2140 dev->reg_state == NETREG_UNREGISTERING) {
2143 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2149 netif_setup_tc(dev, txq);
2151 if (txq < dev->real_num_tx_queues) {
2152 qdisc_reset_all_tx_gt(dev, txq);
2154 netif_reset_xps_queues_gt(dev, txq);
2159 dev->real_num_tx_queues = txq;
2162 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2166 * netif_set_real_num_rx_queues - set actual number of RX queues used
2167 * @dev: Network device
2168 * @rxq: Actual number of RX queues
2170 * This must be called either with the rtnl_lock held or before
2171 * registration of the net device. Returns 0 on success, or a
2172 * negative error code. If called before registration, it always
2175 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2179 if (rxq < 1 || rxq > dev->num_rx_queues)
2182 if (dev->reg_state == NETREG_REGISTERED) {
2185 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2191 dev->real_num_rx_queues = rxq;
2194 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2198 * netif_get_num_default_rss_queues - default number of RSS queues
2200 * This routine should set an upper limit on the number of RSS queues
2201 * used by default by multiqueue devices.
2203 int netif_get_num_default_rss_queues(void)
2205 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2207 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2209 static inline void __netif_reschedule(struct Qdisc *q)
2211 struct softnet_data *sd;
2212 unsigned long flags;
2214 local_irq_save(flags);
2215 sd = this_cpu_ptr(&softnet_data);
2216 q->next_sched = NULL;
2217 *sd->output_queue_tailp = q;
2218 sd->output_queue_tailp = &q->next_sched;
2219 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2220 local_irq_restore(flags);
2223 void __netif_schedule(struct Qdisc *q)
2225 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2226 __netif_reschedule(q);
2228 EXPORT_SYMBOL(__netif_schedule);
2230 struct dev_kfree_skb_cb {
2231 enum skb_free_reason reason;
2234 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2236 return (struct dev_kfree_skb_cb *)skb->cb;
2239 void netif_schedule_queue(struct netdev_queue *txq)
2242 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2243 struct Qdisc *q = rcu_dereference(txq->qdisc);
2245 __netif_schedule(q);
2249 EXPORT_SYMBOL(netif_schedule_queue);
2252 * netif_wake_subqueue - allow sending packets on subqueue
2253 * @dev: network device
2254 * @queue_index: sub queue index
2256 * Resume individual transmit queue of a device with multiple transmit queues.
2258 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2260 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2262 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2266 q = rcu_dereference(txq->qdisc);
2267 __netif_schedule(q);
2271 EXPORT_SYMBOL(netif_wake_subqueue);
2273 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2275 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2279 q = rcu_dereference(dev_queue->qdisc);
2280 __netif_schedule(q);
2284 EXPORT_SYMBOL(netif_tx_wake_queue);
2286 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2288 unsigned long flags;
2290 if (likely(atomic_read(&skb->users) == 1)) {
2292 atomic_set(&skb->users, 0);
2293 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2296 get_kfree_skb_cb(skb)->reason = reason;
2297 local_irq_save(flags);
2298 skb->next = __this_cpu_read(softnet_data.completion_queue);
2299 __this_cpu_write(softnet_data.completion_queue, skb);
2300 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2301 local_irq_restore(flags);
2303 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2305 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2307 if (in_irq() || irqs_disabled())
2308 __dev_kfree_skb_irq(skb, reason);
2312 EXPORT_SYMBOL(__dev_kfree_skb_any);
2316 * netif_device_detach - mark device as removed
2317 * @dev: network device
2319 * Mark device as removed from system and therefore no longer available.
2321 void netif_device_detach(struct net_device *dev)
2323 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2324 netif_running(dev)) {
2325 netif_tx_stop_all_queues(dev);
2328 EXPORT_SYMBOL(netif_device_detach);
2331 * netif_device_attach - mark device as attached
2332 * @dev: network device
2334 * Mark device as attached from system and restart if needed.
2336 void netif_device_attach(struct net_device *dev)
2338 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2339 netif_running(dev)) {
2340 netif_tx_wake_all_queues(dev);
2341 __netdev_watchdog_up(dev);
2344 EXPORT_SYMBOL(netif_device_attach);
2346 static void skb_warn_bad_offload(const struct sk_buff *skb)
2348 static const netdev_features_t null_features = 0;
2349 struct net_device *dev = skb->dev;
2350 const char *driver = "";
2352 if (!net_ratelimit())
2355 if (dev && dev->dev.parent)
2356 driver = dev_driver_string(dev->dev.parent);
2358 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2359 "gso_type=%d ip_summed=%d\n",
2360 driver, dev ? &dev->features : &null_features,
2361 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2362 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2363 skb_shinfo(skb)->gso_type, skb->ip_summed);
2367 * Invalidate hardware checksum when packet is to be mangled, and
2368 * complete checksum manually on outgoing path.
2370 int skb_checksum_help(struct sk_buff *skb)
2373 int ret = 0, offset;
2375 if (skb->ip_summed == CHECKSUM_COMPLETE)
2376 goto out_set_summed;
2378 if (unlikely(skb_shinfo(skb)->gso_size)) {
2379 skb_warn_bad_offload(skb);
2383 /* Before computing a checksum, we should make sure no frag could
2384 * be modified by an external entity : checksum could be wrong.
2386 if (skb_has_shared_frag(skb)) {
2387 ret = __skb_linearize(skb);
2392 offset = skb_checksum_start_offset(skb);
2393 BUG_ON(offset >= skb_headlen(skb));
2394 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2396 offset += skb->csum_offset;
2397 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2399 if (skb_cloned(skb) &&
2400 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2401 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2406 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2408 skb->ip_summed = CHECKSUM_NONE;
2412 EXPORT_SYMBOL(skb_checksum_help);
2414 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2416 __be16 type = skb->protocol;
2418 /* Tunnel gso handlers can set protocol to ethernet. */
2419 if (type == htons(ETH_P_TEB)) {
2422 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2425 eth = (struct ethhdr *)skb_mac_header(skb);
2426 type = eth->h_proto;
2429 return __vlan_get_protocol(skb, type, depth);
2433 * skb_mac_gso_segment - mac layer segmentation handler.
2434 * @skb: buffer to segment
2435 * @features: features for the output path (see dev->features)
2437 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2438 netdev_features_t features)
2440 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2441 struct packet_offload *ptype;
2442 int vlan_depth = skb->mac_len;
2443 __be16 type = skb_network_protocol(skb, &vlan_depth);
2445 if (unlikely(!type))
2446 return ERR_PTR(-EINVAL);
2448 __skb_pull(skb, vlan_depth);
2451 list_for_each_entry_rcu(ptype, &offload_base, list) {
2452 if (ptype->type == type && ptype->callbacks.gso_segment) {
2453 segs = ptype->callbacks.gso_segment(skb, features);
2459 __skb_push(skb, skb->data - skb_mac_header(skb));
2463 EXPORT_SYMBOL(skb_mac_gso_segment);
2466 /* openvswitch calls this on rx path, so we need a different check.
2468 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2471 return skb->ip_summed != CHECKSUM_PARTIAL;
2473 return skb->ip_summed == CHECKSUM_NONE;
2477 * __skb_gso_segment - Perform segmentation on skb.
2478 * @skb: buffer to segment
2479 * @features: features for the output path (see dev->features)
2480 * @tx_path: whether it is called in TX path
2482 * This function segments the given skb and returns a list of segments.
2484 * It may return NULL if the skb requires no segmentation. This is
2485 * only possible when GSO is used for verifying header integrity.
2487 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2488 netdev_features_t features, bool tx_path)
2490 if (unlikely(skb_needs_check(skb, tx_path))) {
2493 skb_warn_bad_offload(skb);
2495 err = skb_cow_head(skb, 0);
2497 return ERR_PTR(err);
2500 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2501 SKB_GSO_CB(skb)->encap_level = 0;
2503 skb_reset_mac_header(skb);
2504 skb_reset_mac_len(skb);
2506 return skb_mac_gso_segment(skb, features);
2508 EXPORT_SYMBOL(__skb_gso_segment);
2510 /* Take action when hardware reception checksum errors are detected. */
2512 void netdev_rx_csum_fault(struct net_device *dev)
2514 if (net_ratelimit()) {
2515 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2519 EXPORT_SYMBOL(netdev_rx_csum_fault);
2522 /* Actually, we should eliminate this check as soon as we know, that:
2523 * 1. IOMMU is present and allows to map all the memory.
2524 * 2. No high memory really exists on this machine.
2527 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2529 #ifdef CONFIG_HIGHMEM
2531 if (!(dev->features & NETIF_F_HIGHDMA)) {
2532 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2533 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2534 if (PageHighMem(skb_frag_page(frag)))
2539 if (PCI_DMA_BUS_IS_PHYS) {
2540 struct device *pdev = dev->dev.parent;
2544 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2545 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2546 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2547 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2555 /* If MPLS offload request, verify we are testing hardware MPLS features
2556 * instead of standard features for the netdev.
2558 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2559 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2560 netdev_features_t features,
2563 if (eth_p_mpls(type))
2564 features &= skb->dev->mpls_features;
2569 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2570 netdev_features_t features,
2577 static netdev_features_t harmonize_features(struct sk_buff *skb,
2578 netdev_features_t features)
2583 type = skb_network_protocol(skb, &tmp);
2584 features = net_mpls_features(skb, features, type);
2586 if (skb->ip_summed != CHECKSUM_NONE &&
2587 !can_checksum_protocol(features, type)) {
2588 features &= ~NETIF_F_ALL_CSUM;
2589 } else if (illegal_highdma(skb->dev, skb)) {
2590 features &= ~NETIF_F_SG;
2596 netdev_features_t passthru_features_check(struct sk_buff *skb,
2597 struct net_device *dev,
2598 netdev_features_t features)
2602 EXPORT_SYMBOL(passthru_features_check);
2604 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2605 struct net_device *dev,
2606 netdev_features_t features)
2608 return vlan_features_check(skb, features);
2611 netdev_features_t netif_skb_features(struct sk_buff *skb)
2613 struct net_device *dev = skb->dev;
2614 netdev_features_t features = dev->features;
2615 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2617 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2618 features &= ~NETIF_F_GSO_MASK;
2620 /* If encapsulation offload request, verify we are testing
2621 * hardware encapsulation features instead of standard
2622 * features for the netdev
2624 if (skb->encapsulation)
2625 features &= dev->hw_enc_features;
2627 if (skb_vlan_tagged(skb))
2628 features = netdev_intersect_features(features,
2629 dev->vlan_features |
2630 NETIF_F_HW_VLAN_CTAG_TX |
2631 NETIF_F_HW_VLAN_STAG_TX);
2633 if (dev->netdev_ops->ndo_features_check)
2634 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2637 features &= dflt_features_check(skb, dev, features);
2639 return harmonize_features(skb, features);
2641 EXPORT_SYMBOL(netif_skb_features);
2643 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2644 struct netdev_queue *txq, bool more)
2649 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2650 dev_queue_xmit_nit(skb, dev);
2653 trace_net_dev_start_xmit(skb, dev);
2654 rc = netdev_start_xmit(skb, dev, txq, more);
2655 trace_net_dev_xmit(skb, rc, dev, len);
2660 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2661 struct netdev_queue *txq, int *ret)
2663 struct sk_buff *skb = first;
2664 int rc = NETDEV_TX_OK;
2667 struct sk_buff *next = skb->next;
2670 rc = xmit_one(skb, dev, txq, next != NULL);
2671 if (unlikely(!dev_xmit_complete(rc))) {
2677 if (netif_xmit_stopped(txq) && skb) {
2678 rc = NETDEV_TX_BUSY;
2688 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2689 netdev_features_t features)
2691 if (skb_vlan_tag_present(skb) &&
2692 !vlan_hw_offload_capable(features, skb->vlan_proto))
2693 skb = __vlan_hwaccel_push_inside(skb);
2697 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2699 netdev_features_t features;
2704 features = netif_skb_features(skb);
2705 skb = validate_xmit_vlan(skb, features);
2709 if (netif_needs_gso(skb, features)) {
2710 struct sk_buff *segs;
2712 segs = skb_gso_segment(skb, features);
2720 if (skb_needs_linearize(skb, features) &&
2721 __skb_linearize(skb))
2724 /* If packet is not checksummed and device does not
2725 * support checksumming for this protocol, complete
2726 * checksumming here.
2728 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2729 if (skb->encapsulation)
2730 skb_set_inner_transport_header(skb,
2731 skb_checksum_start_offset(skb));
2733 skb_set_transport_header(skb,
2734 skb_checksum_start_offset(skb));
2735 if (!(features & NETIF_F_ALL_CSUM) &&
2736 skb_checksum_help(skb))
2749 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2751 struct sk_buff *next, *head = NULL, *tail;
2753 for (; skb != NULL; skb = next) {
2757 /* in case skb wont be segmented, point to itself */
2760 skb = validate_xmit_skb(skb, dev);
2768 /* If skb was segmented, skb->prev points to
2769 * the last segment. If not, it still contains skb.
2776 static void qdisc_pkt_len_init(struct sk_buff *skb)
2778 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2780 qdisc_skb_cb(skb)->pkt_len = skb->len;
2782 /* To get more precise estimation of bytes sent on wire,
2783 * we add to pkt_len the headers size of all segments
2785 if (shinfo->gso_size) {
2786 unsigned int hdr_len;
2787 u16 gso_segs = shinfo->gso_segs;
2789 /* mac layer + network layer */
2790 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2792 /* + transport layer */
2793 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2794 hdr_len += tcp_hdrlen(skb);
2796 hdr_len += sizeof(struct udphdr);
2798 if (shinfo->gso_type & SKB_GSO_DODGY)
2799 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2802 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2806 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2807 struct net_device *dev,
2808 struct netdev_queue *txq)
2810 spinlock_t *root_lock = qdisc_lock(q);
2814 qdisc_pkt_len_init(skb);
2815 qdisc_calculate_pkt_len(skb, q);
2817 * Heuristic to force contended enqueues to serialize on a
2818 * separate lock before trying to get qdisc main lock.
2819 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2820 * often and dequeue packets faster.
2822 contended = qdisc_is_running(q);
2823 if (unlikely(contended))
2824 spin_lock(&q->busylock);
2826 spin_lock(root_lock);
2827 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2830 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2831 qdisc_run_begin(q)) {
2833 * This is a work-conserving queue; there are no old skbs
2834 * waiting to be sent out; and the qdisc is not running -
2835 * xmit the skb directly.
2838 qdisc_bstats_update(q, skb);
2840 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2841 if (unlikely(contended)) {
2842 spin_unlock(&q->busylock);
2849 rc = NET_XMIT_SUCCESS;
2851 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2852 if (qdisc_run_begin(q)) {
2853 if (unlikely(contended)) {
2854 spin_unlock(&q->busylock);
2860 spin_unlock(root_lock);
2861 if (unlikely(contended))
2862 spin_unlock(&q->busylock);
2866 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2867 static void skb_update_prio(struct sk_buff *skb)
2869 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2871 if (!skb->priority && skb->sk && map) {
2872 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2874 if (prioidx < map->priomap_len)
2875 skb->priority = map->priomap[prioidx];
2879 #define skb_update_prio(skb)
2882 DEFINE_PER_CPU(int, xmit_recursion);
2883 EXPORT_SYMBOL(xmit_recursion);
2885 #define RECURSION_LIMIT 10
2888 * dev_loopback_xmit - loop back @skb
2889 * @skb: buffer to transmit
2891 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2893 skb_reset_mac_header(skb);
2894 __skb_pull(skb, skb_network_offset(skb));
2895 skb->pkt_type = PACKET_LOOPBACK;
2896 skb->ip_summed = CHECKSUM_UNNECESSARY;
2897 WARN_ON(!skb_dst(skb));
2902 EXPORT_SYMBOL(dev_loopback_xmit);
2905 * __dev_queue_xmit - transmit a buffer
2906 * @skb: buffer to transmit
2907 * @accel_priv: private data used for L2 forwarding offload
2909 * Queue a buffer for transmission to a network device. The caller must
2910 * have set the device and priority and built the buffer before calling
2911 * this function. The function can be called from an interrupt.
2913 * A negative errno code is returned on a failure. A success does not
2914 * guarantee the frame will be transmitted as it may be dropped due
2915 * to congestion or traffic shaping.
2917 * -----------------------------------------------------------------------------------
2918 * I notice this method can also return errors from the queue disciplines,
2919 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2922 * Regardless of the return value, the skb is consumed, so it is currently
2923 * difficult to retry a send to this method. (You can bump the ref count
2924 * before sending to hold a reference for retry if you are careful.)
2926 * When calling this method, interrupts MUST be enabled. This is because
2927 * the BH enable code must have IRQs enabled so that it will not deadlock.
2930 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2932 struct net_device *dev = skb->dev;
2933 struct netdev_queue *txq;
2937 skb_reset_mac_header(skb);
2939 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2940 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2942 /* Disable soft irqs for various locks below. Also
2943 * stops preemption for RCU.
2947 skb_update_prio(skb);
2949 /* If device/qdisc don't need skb->dst, release it right now while
2950 * its hot in this cpu cache.
2952 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2957 txq = netdev_pick_tx(dev, skb, accel_priv);
2958 q = rcu_dereference_bh(txq->qdisc);
2960 #ifdef CONFIG_NET_CLS_ACT
2961 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2963 trace_net_dev_queue(skb);
2965 rc = __dev_xmit_skb(skb, q, dev, txq);
2969 /* The device has no queue. Common case for software devices:
2970 loopback, all the sorts of tunnels...
2972 Really, it is unlikely that netif_tx_lock protection is necessary
2973 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2975 However, it is possible, that they rely on protection
2978 Check this and shot the lock. It is not prone from deadlocks.
2979 Either shot noqueue qdisc, it is even simpler 8)
2981 if (dev->flags & IFF_UP) {
2982 int cpu = smp_processor_id(); /* ok because BHs are off */
2984 if (txq->xmit_lock_owner != cpu) {
2986 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2987 goto recursion_alert;
2989 skb = validate_xmit_skb(skb, dev);
2993 HARD_TX_LOCK(dev, txq, cpu);
2995 if (!netif_xmit_stopped(txq)) {
2996 __this_cpu_inc(xmit_recursion);
2997 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2998 __this_cpu_dec(xmit_recursion);
2999 if (dev_xmit_complete(rc)) {
3000 HARD_TX_UNLOCK(dev, txq);
3004 HARD_TX_UNLOCK(dev, txq);
3005 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3008 /* Recursion is detected! It is possible,
3012 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3019 rcu_read_unlock_bh();
3021 atomic_long_inc(&dev->tx_dropped);
3022 kfree_skb_list(skb);
3025 rcu_read_unlock_bh();
3029 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3031 return __dev_queue_xmit(skb, NULL);
3033 EXPORT_SYMBOL(dev_queue_xmit_sk);
3035 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3037 return __dev_queue_xmit(skb, accel_priv);
3039 EXPORT_SYMBOL(dev_queue_xmit_accel);
3042 /*=======================================================================
3044 =======================================================================*/
3046 int netdev_max_backlog __read_mostly = 1000;
3047 EXPORT_SYMBOL(netdev_max_backlog);
3049 int netdev_tstamp_prequeue __read_mostly = 1;
3050 int netdev_budget __read_mostly = 300;
3051 int weight_p __read_mostly = 64; /* old backlog weight */
3053 /* Called with irq disabled */
3054 static inline void ____napi_schedule(struct softnet_data *sd,
3055 struct napi_struct *napi)
3057 list_add_tail(&napi->poll_list, &sd->poll_list);
3058 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3063 /* One global table that all flow-based protocols share. */
3064 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3065 EXPORT_SYMBOL(rps_sock_flow_table);
3066 u32 rps_cpu_mask __read_mostly;
3067 EXPORT_SYMBOL(rps_cpu_mask);
3069 struct static_key rps_needed __read_mostly;
3071 static struct rps_dev_flow *
3072 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3073 struct rps_dev_flow *rflow, u16 next_cpu)
3075 if (next_cpu < nr_cpu_ids) {
3076 #ifdef CONFIG_RFS_ACCEL
3077 struct netdev_rx_queue *rxqueue;
3078 struct rps_dev_flow_table *flow_table;
3079 struct rps_dev_flow *old_rflow;
3084 /* Should we steer this flow to a different hardware queue? */
3085 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3086 !(dev->features & NETIF_F_NTUPLE))
3088 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3089 if (rxq_index == skb_get_rx_queue(skb))
3092 rxqueue = dev->_rx + rxq_index;
3093 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3096 flow_id = skb_get_hash(skb) & flow_table->mask;
3097 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3098 rxq_index, flow_id);
3102 rflow = &flow_table->flows[flow_id];
3104 if (old_rflow->filter == rflow->filter)
3105 old_rflow->filter = RPS_NO_FILTER;
3109 per_cpu(softnet_data, next_cpu).input_queue_head;
3112 rflow->cpu = next_cpu;
3117 * get_rps_cpu is called from netif_receive_skb and returns the target
3118 * CPU from the RPS map of the receiving queue for a given skb.
3119 * rcu_read_lock must be held on entry.
3121 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3122 struct rps_dev_flow **rflowp)
3124 const struct rps_sock_flow_table *sock_flow_table;
3125 struct netdev_rx_queue *rxqueue = dev->_rx;
3126 struct rps_dev_flow_table *flow_table;
3127 struct rps_map *map;
3132 if (skb_rx_queue_recorded(skb)) {
3133 u16 index = skb_get_rx_queue(skb);
3135 if (unlikely(index >= dev->real_num_rx_queues)) {
3136 WARN_ONCE(dev->real_num_rx_queues > 1,
3137 "%s received packet on queue %u, but number "
3138 "of RX queues is %u\n",
3139 dev->name, index, dev->real_num_rx_queues);
3145 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3147 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3148 map = rcu_dereference(rxqueue->rps_map);
3149 if (!flow_table && !map)
3152 skb_reset_network_header(skb);
3153 hash = skb_get_hash(skb);
3157 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3158 if (flow_table && sock_flow_table) {
3159 struct rps_dev_flow *rflow;
3163 /* First check into global flow table if there is a match */
3164 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3165 if ((ident ^ hash) & ~rps_cpu_mask)
3168 next_cpu = ident & rps_cpu_mask;
3170 /* OK, now we know there is a match,
3171 * we can look at the local (per receive queue) flow table
3173 rflow = &flow_table->flows[hash & flow_table->mask];
3177 * If the desired CPU (where last recvmsg was done) is
3178 * different from current CPU (one in the rx-queue flow
3179 * table entry), switch if one of the following holds:
3180 * - Current CPU is unset (>= nr_cpu_ids).
3181 * - Current CPU is offline.
3182 * - The current CPU's queue tail has advanced beyond the
3183 * last packet that was enqueued using this table entry.
3184 * This guarantees that all previous packets for the flow
3185 * have been dequeued, thus preserving in order delivery.
3187 if (unlikely(tcpu != next_cpu) &&
3188 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3189 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3190 rflow->last_qtail)) >= 0)) {
3192 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3195 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3205 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3206 if (cpu_online(tcpu)) {
3216 #ifdef CONFIG_RFS_ACCEL
3219 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3220 * @dev: Device on which the filter was set
3221 * @rxq_index: RX queue index
3222 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3223 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3225 * Drivers that implement ndo_rx_flow_steer() should periodically call
3226 * this function for each installed filter and remove the filters for
3227 * which it returns %true.
3229 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3230 u32 flow_id, u16 filter_id)
3232 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3233 struct rps_dev_flow_table *flow_table;
3234 struct rps_dev_flow *rflow;
3239 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3240 if (flow_table && flow_id <= flow_table->mask) {
3241 rflow = &flow_table->flows[flow_id];
3242 cpu = ACCESS_ONCE(rflow->cpu);
3243 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3244 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3245 rflow->last_qtail) <
3246 (int)(10 * flow_table->mask)))
3252 EXPORT_SYMBOL(rps_may_expire_flow);
3254 #endif /* CONFIG_RFS_ACCEL */
3256 /* Called from hardirq (IPI) context */
3257 static void rps_trigger_softirq(void *data)
3259 struct softnet_data *sd = data;
3261 ____napi_schedule(sd, &sd->backlog);
3265 #endif /* CONFIG_RPS */
3268 * Check if this softnet_data structure is another cpu one
3269 * If yes, queue it to our IPI list and return 1
3272 static int rps_ipi_queued(struct softnet_data *sd)
3275 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3278 sd->rps_ipi_next = mysd->rps_ipi_list;
3279 mysd->rps_ipi_list = sd;
3281 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3284 #endif /* CONFIG_RPS */
3288 #ifdef CONFIG_NET_FLOW_LIMIT
3289 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3292 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3294 #ifdef CONFIG_NET_FLOW_LIMIT
3295 struct sd_flow_limit *fl;
3296 struct softnet_data *sd;
3297 unsigned int old_flow, new_flow;
3299 if (qlen < (netdev_max_backlog >> 1))
3302 sd = this_cpu_ptr(&softnet_data);
3305 fl = rcu_dereference(sd->flow_limit);
3307 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3308 old_flow = fl->history[fl->history_head];
3309 fl->history[fl->history_head] = new_flow;
3312 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3314 if (likely(fl->buckets[old_flow]))
3315 fl->buckets[old_flow]--;
3317 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3329 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3330 * queue (may be a remote CPU queue).
3332 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3333 unsigned int *qtail)
3335 struct softnet_data *sd;
3336 unsigned long flags;
3339 sd = &per_cpu(softnet_data, cpu);
3341 local_irq_save(flags);
3344 qlen = skb_queue_len(&sd->input_pkt_queue);
3345 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3348 __skb_queue_tail(&sd->input_pkt_queue, skb);
3349 input_queue_tail_incr_save(sd, qtail);
3351 local_irq_restore(flags);
3352 return NET_RX_SUCCESS;
3355 /* Schedule NAPI for backlog device
3356 * We can use non atomic operation since we own the queue lock
3358 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3359 if (!rps_ipi_queued(sd))
3360 ____napi_schedule(sd, &sd->backlog);
3368 local_irq_restore(flags);
3370 atomic_long_inc(&skb->dev->rx_dropped);
3375 static int netif_rx_internal(struct sk_buff *skb)
3379 net_timestamp_check(netdev_tstamp_prequeue, skb);
3381 trace_netif_rx(skb);
3383 if (static_key_false(&rps_needed)) {
3384 struct rps_dev_flow voidflow, *rflow = &voidflow;
3390 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3392 cpu = smp_processor_id();
3394 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3402 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3409 * netif_rx - post buffer to the network code
3410 * @skb: buffer to post
3412 * This function receives a packet from a device driver and queues it for
3413 * the upper (protocol) levels to process. It always succeeds. The buffer
3414 * may be dropped during processing for congestion control or by the
3418 * NET_RX_SUCCESS (no congestion)
3419 * NET_RX_DROP (packet was dropped)
3423 int netif_rx(struct sk_buff *skb)
3425 trace_netif_rx_entry(skb);
3427 return netif_rx_internal(skb);
3429 EXPORT_SYMBOL(netif_rx);
3431 int netif_rx_ni(struct sk_buff *skb)
3435 trace_netif_rx_ni_entry(skb);
3438 err = netif_rx_internal(skb);
3439 if (local_softirq_pending())
3445 EXPORT_SYMBOL(netif_rx_ni);
3447 static void net_tx_action(struct softirq_action *h)
3449 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3451 if (sd->completion_queue) {
3452 struct sk_buff *clist;
3454 local_irq_disable();
3455 clist = sd->completion_queue;
3456 sd->completion_queue = NULL;
3460 struct sk_buff *skb = clist;
3461 clist = clist->next;
3463 WARN_ON(atomic_read(&skb->users));
3464 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3465 trace_consume_skb(skb);
3467 trace_kfree_skb(skb, net_tx_action);
3472 if (sd->output_queue) {
3475 local_irq_disable();
3476 head = sd->output_queue;
3477 sd->output_queue = NULL;
3478 sd->output_queue_tailp = &sd->output_queue;
3482 struct Qdisc *q = head;
3483 spinlock_t *root_lock;
3485 head = head->next_sched;
3487 root_lock = qdisc_lock(q);
3488 if (spin_trylock(root_lock)) {
3489 smp_mb__before_atomic();
3490 clear_bit(__QDISC_STATE_SCHED,
3493 spin_unlock(root_lock);
3495 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3497 __netif_reschedule(q);
3499 smp_mb__before_atomic();
3500 clear_bit(__QDISC_STATE_SCHED,
3508 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3509 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3510 /* This hook is defined here for ATM LANE */
3511 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3512 unsigned char *addr) __read_mostly;
3513 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3516 #ifdef CONFIG_NET_CLS_ACT
3517 /* TODO: Maybe we should just force sch_ingress to be compiled in
3518 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3519 * a compare and 2 stores extra right now if we dont have it on
3520 * but have CONFIG_NET_CLS_ACT
3521 * NOTE: This doesn't stop any functionality; if you dont have
3522 * the ingress scheduler, you just can't add policies on ingress.
3525 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3527 struct net_device *dev = skb->dev;
3528 u32 ttl = G_TC_RTTL(skb->tc_verd);
3529 int result = TC_ACT_OK;
3532 if (unlikely(MAX_RED_LOOP < ttl++)) {
3533 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3534 skb->skb_iif, dev->ifindex);
3538 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3539 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3541 q = rcu_dereference(rxq->qdisc);
3542 if (q != &noop_qdisc) {
3543 spin_lock(qdisc_lock(q));
3544 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3545 result = qdisc_enqueue_root(skb, q);
3546 spin_unlock(qdisc_lock(q));
3552 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3553 struct packet_type **pt_prev,
3554 int *ret, struct net_device *orig_dev)
3556 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3558 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3562 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3566 switch (ing_filter(skb, rxq)) {
3578 * netdev_rx_handler_register - register receive handler
3579 * @dev: device to register a handler for
3580 * @rx_handler: receive handler to register
3581 * @rx_handler_data: data pointer that is used by rx handler
3583 * Register a receive handler for a device. This handler will then be
3584 * called from __netif_receive_skb. A negative errno code is returned
3587 * The caller must hold the rtnl_mutex.
3589 * For a general description of rx_handler, see enum rx_handler_result.
3591 int netdev_rx_handler_register(struct net_device *dev,
3592 rx_handler_func_t *rx_handler,
3593 void *rx_handler_data)
3597 if (dev->rx_handler)
3600 /* Note: rx_handler_data must be set before rx_handler */
3601 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3602 rcu_assign_pointer(dev->rx_handler, rx_handler);
3606 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3609 * netdev_rx_handler_unregister - unregister receive handler
3610 * @dev: device to unregister a handler from
3612 * Unregister a receive handler from a device.
3614 * The caller must hold the rtnl_mutex.
3616 void netdev_rx_handler_unregister(struct net_device *dev)
3620 RCU_INIT_POINTER(dev->rx_handler, NULL);
3621 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3622 * section has a guarantee to see a non NULL rx_handler_data
3626 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3628 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3631 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3632 * the special handling of PFMEMALLOC skbs.
3634 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3636 switch (skb->protocol) {
3637 case htons(ETH_P_ARP):
3638 case htons(ETH_P_IP):
3639 case htons(ETH_P_IPV6):
3640 case htons(ETH_P_8021Q):
3641 case htons(ETH_P_8021AD):
3648 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3650 struct packet_type *ptype, *pt_prev;
3651 rx_handler_func_t *rx_handler;
3652 struct net_device *orig_dev;
3653 bool deliver_exact = false;
3654 int ret = NET_RX_DROP;
3657 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3659 trace_netif_receive_skb(skb);
3661 orig_dev = skb->dev;
3663 skb_reset_network_header(skb);
3664 if (!skb_transport_header_was_set(skb))
3665 skb_reset_transport_header(skb);
3666 skb_reset_mac_len(skb);
3673 skb->skb_iif = skb->dev->ifindex;
3675 __this_cpu_inc(softnet_data.processed);
3677 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3678 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3679 skb = skb_vlan_untag(skb);
3684 #ifdef CONFIG_NET_CLS_ACT
3685 if (skb->tc_verd & TC_NCLS) {
3686 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3694 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3696 ret = deliver_skb(skb, pt_prev, orig_dev);
3700 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3702 ret = deliver_skb(skb, pt_prev, orig_dev);
3707 #ifdef CONFIG_NET_CLS_ACT
3708 if (static_key_false(&ingress_needed)) {
3709 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3717 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3720 if (skb_vlan_tag_present(skb)) {
3722 ret = deliver_skb(skb, pt_prev, orig_dev);
3725 if (vlan_do_receive(&skb))
3727 else if (unlikely(!skb))
3731 rx_handler = rcu_dereference(skb->dev->rx_handler);
3734 ret = deliver_skb(skb, pt_prev, orig_dev);
3737 switch (rx_handler(&skb)) {
3738 case RX_HANDLER_CONSUMED:
3739 ret = NET_RX_SUCCESS;
3741 case RX_HANDLER_ANOTHER:
3743 case RX_HANDLER_EXACT:
3744 deliver_exact = true;
3745 case RX_HANDLER_PASS:
3752 if (unlikely(skb_vlan_tag_present(skb))) {
3753 if (skb_vlan_tag_get_id(skb))
3754 skb->pkt_type = PACKET_OTHERHOST;
3755 /* Note: we might in the future use prio bits
3756 * and set skb->priority like in vlan_do_receive()
3757 * For the time being, just ignore Priority Code Point
3762 type = skb->protocol;
3764 /* deliver only exact match when indicated */
3765 if (likely(!deliver_exact)) {
3766 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3767 &ptype_base[ntohs(type) &
3771 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3772 &orig_dev->ptype_specific);
3774 if (unlikely(skb->dev != orig_dev)) {
3775 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3776 &skb->dev->ptype_specific);
3780 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3783 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3786 atomic_long_inc(&skb->dev->rx_dropped);
3788 /* Jamal, now you will not able to escape explaining
3789 * me how you were going to use this. :-)
3799 static int __netif_receive_skb(struct sk_buff *skb)
3803 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3804 unsigned long pflags = current->flags;
3807 * PFMEMALLOC skbs are special, they should
3808 * - be delivered to SOCK_MEMALLOC sockets only
3809 * - stay away from userspace
3810 * - have bounded memory usage
3812 * Use PF_MEMALLOC as this saves us from propagating the allocation
3813 * context down to all allocation sites.
3815 current->flags |= PF_MEMALLOC;
3816 ret = __netif_receive_skb_core(skb, true);
3817 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3819 ret = __netif_receive_skb_core(skb, false);
3824 static int netif_receive_skb_internal(struct sk_buff *skb)
3826 net_timestamp_check(netdev_tstamp_prequeue, skb);
3828 if (skb_defer_rx_timestamp(skb))
3829 return NET_RX_SUCCESS;
3832 if (static_key_false(&rps_needed)) {
3833 struct rps_dev_flow voidflow, *rflow = &voidflow;
3838 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3841 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3848 return __netif_receive_skb(skb);
3852 * netif_receive_skb - process receive buffer from network
3853 * @skb: buffer to process
3855 * netif_receive_skb() is the main receive data processing function.
3856 * It always succeeds. The buffer may be dropped during processing
3857 * for congestion control or by the protocol layers.
3859 * This function may only be called from softirq context and interrupts
3860 * should be enabled.
3862 * Return values (usually ignored):
3863 * NET_RX_SUCCESS: no congestion
3864 * NET_RX_DROP: packet was dropped
3866 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
3868 trace_netif_receive_skb_entry(skb);
3870 return netif_receive_skb_internal(skb);
3872 EXPORT_SYMBOL(netif_receive_skb_sk);
3874 /* Network device is going away, flush any packets still pending
3875 * Called with irqs disabled.
3877 static void flush_backlog(void *arg)
3879 struct net_device *dev = arg;
3880 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3881 struct sk_buff *skb, *tmp;
3884 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3885 if (skb->dev == dev) {
3886 __skb_unlink(skb, &sd->input_pkt_queue);
3888 input_queue_head_incr(sd);
3893 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3894 if (skb->dev == dev) {
3895 __skb_unlink(skb, &sd->process_queue);
3897 input_queue_head_incr(sd);
3902 static int napi_gro_complete(struct sk_buff *skb)
3904 struct packet_offload *ptype;
3905 __be16 type = skb->protocol;
3906 struct list_head *head = &offload_base;
3909 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3911 if (NAPI_GRO_CB(skb)->count == 1) {
3912 skb_shinfo(skb)->gso_size = 0;
3917 list_for_each_entry_rcu(ptype, head, list) {
3918 if (ptype->type != type || !ptype->callbacks.gro_complete)
3921 err = ptype->callbacks.gro_complete(skb, 0);
3927 WARN_ON(&ptype->list == head);
3929 return NET_RX_SUCCESS;
3933 return netif_receive_skb_internal(skb);
3936 /* napi->gro_list contains packets ordered by age.
3937 * youngest packets at the head of it.
3938 * Complete skbs in reverse order to reduce latencies.
3940 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3942 struct sk_buff *skb, *prev = NULL;
3944 /* scan list and build reverse chain */
3945 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3950 for (skb = prev; skb; skb = prev) {
3953 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3957 napi_gro_complete(skb);
3961 napi->gro_list = NULL;
3963 EXPORT_SYMBOL(napi_gro_flush);
3965 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3968 unsigned int maclen = skb->dev->hard_header_len;
3969 u32 hash = skb_get_hash_raw(skb);
3971 for (p = napi->gro_list; p; p = p->next) {
3972 unsigned long diffs;
3974 NAPI_GRO_CB(p)->flush = 0;
3976 if (hash != skb_get_hash_raw(p)) {
3977 NAPI_GRO_CB(p)->same_flow = 0;
3981 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3982 diffs |= p->vlan_tci ^ skb->vlan_tci;
3983 if (maclen == ETH_HLEN)
3984 diffs |= compare_ether_header(skb_mac_header(p),
3985 skb_mac_header(skb));
3987 diffs = memcmp(skb_mac_header(p),
3988 skb_mac_header(skb),
3990 NAPI_GRO_CB(p)->same_flow = !diffs;
3994 static void skb_gro_reset_offset(struct sk_buff *skb)
3996 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3997 const skb_frag_t *frag0 = &pinfo->frags[0];
3999 NAPI_GRO_CB(skb)->data_offset = 0;
4000 NAPI_GRO_CB(skb)->frag0 = NULL;
4001 NAPI_GRO_CB(skb)->frag0_len = 0;
4003 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4005 !PageHighMem(skb_frag_page(frag0))) {
4006 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4007 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4011 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4013 struct skb_shared_info *pinfo = skb_shinfo(skb);
4015 BUG_ON(skb->end - skb->tail < grow);
4017 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4019 skb->data_len -= grow;
4022 pinfo->frags[0].page_offset += grow;
4023 skb_frag_size_sub(&pinfo->frags[0], grow);
4025 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4026 skb_frag_unref(skb, 0);
4027 memmove(pinfo->frags, pinfo->frags + 1,
4028 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4032 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4034 struct sk_buff **pp = NULL;
4035 struct packet_offload *ptype;
4036 __be16 type = skb->protocol;
4037 struct list_head *head = &offload_base;
4039 enum gro_result ret;
4042 if (!(skb->dev->features & NETIF_F_GRO))
4045 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4048 gro_list_prepare(napi, skb);
4051 list_for_each_entry_rcu(ptype, head, list) {
4052 if (ptype->type != type || !ptype->callbacks.gro_receive)
4055 skb_set_network_header(skb, skb_gro_offset(skb));
4056 skb_reset_mac_len(skb);
4057 NAPI_GRO_CB(skb)->same_flow = 0;
4058 NAPI_GRO_CB(skb)->flush = 0;
4059 NAPI_GRO_CB(skb)->free = 0;
4060 NAPI_GRO_CB(skb)->udp_mark = 0;
4061 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4063 /* Setup for GRO checksum validation */
4064 switch (skb->ip_summed) {
4065 case CHECKSUM_COMPLETE:
4066 NAPI_GRO_CB(skb)->csum = skb->csum;
4067 NAPI_GRO_CB(skb)->csum_valid = 1;
4068 NAPI_GRO_CB(skb)->csum_cnt = 0;
4070 case CHECKSUM_UNNECESSARY:
4071 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4072 NAPI_GRO_CB(skb)->csum_valid = 0;
4075 NAPI_GRO_CB(skb)->csum_cnt = 0;
4076 NAPI_GRO_CB(skb)->csum_valid = 0;
4079 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4084 if (&ptype->list == head)
4087 same_flow = NAPI_GRO_CB(skb)->same_flow;
4088 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4091 struct sk_buff *nskb = *pp;
4095 napi_gro_complete(nskb);
4102 if (NAPI_GRO_CB(skb)->flush)
4105 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4106 struct sk_buff *nskb = napi->gro_list;
4108 /* locate the end of the list to select the 'oldest' flow */
4109 while (nskb->next) {
4115 napi_gro_complete(nskb);
4119 NAPI_GRO_CB(skb)->count = 1;
4120 NAPI_GRO_CB(skb)->age = jiffies;
4121 NAPI_GRO_CB(skb)->last = skb;
4122 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4123 skb->next = napi->gro_list;
4124 napi->gro_list = skb;
4128 grow = skb_gro_offset(skb) - skb_headlen(skb);
4130 gro_pull_from_frag0(skb, grow);
4139 struct packet_offload *gro_find_receive_by_type(__be16 type)
4141 struct list_head *offload_head = &offload_base;
4142 struct packet_offload *ptype;
4144 list_for_each_entry_rcu(ptype, offload_head, list) {
4145 if (ptype->type != type || !ptype->callbacks.gro_receive)
4151 EXPORT_SYMBOL(gro_find_receive_by_type);
4153 struct packet_offload *gro_find_complete_by_type(__be16 type)
4155 struct list_head *offload_head = &offload_base;
4156 struct packet_offload *ptype;
4158 list_for_each_entry_rcu(ptype, offload_head, list) {
4159 if (ptype->type != type || !ptype->callbacks.gro_complete)
4165 EXPORT_SYMBOL(gro_find_complete_by_type);
4167 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4171 if (netif_receive_skb_internal(skb))
4179 case GRO_MERGED_FREE:
4180 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4181 kmem_cache_free(skbuff_head_cache, skb);
4194 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4196 trace_napi_gro_receive_entry(skb);
4198 skb_gro_reset_offset(skb);
4200 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4202 EXPORT_SYMBOL(napi_gro_receive);
4204 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4206 if (unlikely(skb->pfmemalloc)) {
4210 __skb_pull(skb, skb_headlen(skb));
4211 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4212 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4214 skb->dev = napi->dev;
4216 skb->encapsulation = 0;
4217 skb_shinfo(skb)->gso_type = 0;
4218 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4223 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4225 struct sk_buff *skb = napi->skb;
4228 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4233 EXPORT_SYMBOL(napi_get_frags);
4235 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4236 struct sk_buff *skb,
4242 __skb_push(skb, ETH_HLEN);
4243 skb->protocol = eth_type_trans(skb, skb->dev);
4244 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4249 case GRO_MERGED_FREE:
4250 napi_reuse_skb(napi, skb);
4260 /* Upper GRO stack assumes network header starts at gro_offset=0
4261 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4262 * We copy ethernet header into skb->data to have a common layout.
4264 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4266 struct sk_buff *skb = napi->skb;
4267 const struct ethhdr *eth;
4268 unsigned int hlen = sizeof(*eth);
4272 skb_reset_mac_header(skb);
4273 skb_gro_reset_offset(skb);
4275 eth = skb_gro_header_fast(skb, 0);
4276 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4277 eth = skb_gro_header_slow(skb, hlen, 0);
4278 if (unlikely(!eth)) {
4279 napi_reuse_skb(napi, skb);
4283 gro_pull_from_frag0(skb, hlen);
4284 NAPI_GRO_CB(skb)->frag0 += hlen;
4285 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4287 __skb_pull(skb, hlen);
4290 * This works because the only protocols we care about don't require
4292 * We'll fix it up properly in napi_frags_finish()
4294 skb->protocol = eth->h_proto;
4299 gro_result_t napi_gro_frags(struct napi_struct *napi)
4301 struct sk_buff *skb = napi_frags_skb(napi);
4306 trace_napi_gro_frags_entry(skb);
4308 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4310 EXPORT_SYMBOL(napi_gro_frags);
4312 /* Compute the checksum from gro_offset and return the folded value
4313 * after adding in any pseudo checksum.
4315 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4320 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4322 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4323 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4325 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4326 !skb->csum_complete_sw)
4327 netdev_rx_csum_fault(skb->dev);
4330 NAPI_GRO_CB(skb)->csum = wsum;
4331 NAPI_GRO_CB(skb)->csum_valid = 1;
4335 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4338 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4339 * Note: called with local irq disabled, but exits with local irq enabled.
4341 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4344 struct softnet_data *remsd = sd->rps_ipi_list;
4347 sd->rps_ipi_list = NULL;
4351 /* Send pending IPI's to kick RPS processing on remote cpus. */
4353 struct softnet_data *next = remsd->rps_ipi_next;
4355 if (cpu_online(remsd->cpu))
4356 smp_call_function_single_async(remsd->cpu,
4365 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4368 return sd->rps_ipi_list != NULL;
4374 static int process_backlog(struct napi_struct *napi, int quota)
4377 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4379 /* Check if we have pending ipi, its better to send them now,
4380 * not waiting net_rx_action() end.
4382 if (sd_has_rps_ipi_waiting(sd)) {
4383 local_irq_disable();
4384 net_rps_action_and_irq_enable(sd);
4387 napi->weight = weight_p;
4388 local_irq_disable();
4390 struct sk_buff *skb;
4392 while ((skb = __skb_dequeue(&sd->process_queue))) {
4394 __netif_receive_skb(skb);
4395 local_irq_disable();
4396 input_queue_head_incr(sd);
4397 if (++work >= quota) {
4404 if (skb_queue_empty(&sd->input_pkt_queue)) {
4406 * Inline a custom version of __napi_complete().
4407 * only current cpu owns and manipulates this napi,
4408 * and NAPI_STATE_SCHED is the only possible flag set
4410 * We can use a plain write instead of clear_bit(),
4411 * and we dont need an smp_mb() memory barrier.
4419 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4420 &sd->process_queue);
4429 * __napi_schedule - schedule for receive
4430 * @n: entry to schedule
4432 * The entry's receive function will be scheduled to run.
4433 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4435 void __napi_schedule(struct napi_struct *n)
4437 unsigned long flags;
4439 local_irq_save(flags);
4440 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4441 local_irq_restore(flags);
4443 EXPORT_SYMBOL(__napi_schedule);
4446 * __napi_schedule_irqoff - schedule for receive
4447 * @n: entry to schedule
4449 * Variant of __napi_schedule() assuming hard irqs are masked
4451 void __napi_schedule_irqoff(struct napi_struct *n)
4453 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4455 EXPORT_SYMBOL(__napi_schedule_irqoff);
4457 void __napi_complete(struct napi_struct *n)
4459 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4461 list_del_init(&n->poll_list);
4462 smp_mb__before_atomic();
4463 clear_bit(NAPI_STATE_SCHED, &n->state);
4465 EXPORT_SYMBOL(__napi_complete);
4467 void napi_complete_done(struct napi_struct *n, int work_done)
4469 unsigned long flags;
4472 * don't let napi dequeue from the cpu poll list
4473 * just in case its running on a different cpu
4475 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4479 unsigned long timeout = 0;
4482 timeout = n->dev->gro_flush_timeout;
4485 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4486 HRTIMER_MODE_REL_PINNED);
4488 napi_gro_flush(n, false);
4490 if (likely(list_empty(&n->poll_list))) {
4491 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4493 /* If n->poll_list is not empty, we need to mask irqs */
4494 local_irq_save(flags);
4496 local_irq_restore(flags);
4499 EXPORT_SYMBOL(napi_complete_done);
4501 /* must be called under rcu_read_lock(), as we dont take a reference */
4502 struct napi_struct *napi_by_id(unsigned int napi_id)
4504 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4505 struct napi_struct *napi;
4507 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4508 if (napi->napi_id == napi_id)
4513 EXPORT_SYMBOL_GPL(napi_by_id);
4515 void napi_hash_add(struct napi_struct *napi)
4517 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4519 spin_lock(&napi_hash_lock);
4521 /* 0 is not a valid id, we also skip an id that is taken
4522 * we expect both events to be extremely rare
4525 while (!napi->napi_id) {
4526 napi->napi_id = ++napi_gen_id;
4527 if (napi_by_id(napi->napi_id))
4531 hlist_add_head_rcu(&napi->napi_hash_node,
4532 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4534 spin_unlock(&napi_hash_lock);
4537 EXPORT_SYMBOL_GPL(napi_hash_add);
4539 /* Warning : caller is responsible to make sure rcu grace period
4540 * is respected before freeing memory containing @napi
4542 void napi_hash_del(struct napi_struct *napi)
4544 spin_lock(&napi_hash_lock);
4546 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4547 hlist_del_rcu(&napi->napi_hash_node);
4549 spin_unlock(&napi_hash_lock);
4551 EXPORT_SYMBOL_GPL(napi_hash_del);
4553 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4555 struct napi_struct *napi;
4557 napi = container_of(timer, struct napi_struct, timer);
4559 napi_schedule(napi);
4561 return HRTIMER_NORESTART;
4564 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4565 int (*poll)(struct napi_struct *, int), int weight)
4567 INIT_LIST_HEAD(&napi->poll_list);
4568 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4569 napi->timer.function = napi_watchdog;
4570 napi->gro_count = 0;
4571 napi->gro_list = NULL;
4574 if (weight > NAPI_POLL_WEIGHT)
4575 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4577 napi->weight = weight;
4578 list_add(&napi->dev_list, &dev->napi_list);
4580 #ifdef CONFIG_NETPOLL
4581 spin_lock_init(&napi->poll_lock);
4582 napi->poll_owner = -1;
4584 set_bit(NAPI_STATE_SCHED, &napi->state);
4586 EXPORT_SYMBOL(netif_napi_add);
4588 void napi_disable(struct napi_struct *n)
4591 set_bit(NAPI_STATE_DISABLE, &n->state);
4593 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4596 hrtimer_cancel(&n->timer);
4598 clear_bit(NAPI_STATE_DISABLE, &n->state);
4600 EXPORT_SYMBOL(napi_disable);
4602 void netif_napi_del(struct napi_struct *napi)
4604 list_del_init(&napi->dev_list);
4605 napi_free_frags(napi);
4607 kfree_skb_list(napi->gro_list);
4608 napi->gro_list = NULL;
4609 napi->gro_count = 0;
4611 EXPORT_SYMBOL(netif_napi_del);
4613 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4618 list_del_init(&n->poll_list);
4620 have = netpoll_poll_lock(n);
4624 /* This NAPI_STATE_SCHED test is for avoiding a race
4625 * with netpoll's poll_napi(). Only the entity which
4626 * obtains the lock and sees NAPI_STATE_SCHED set will
4627 * actually make the ->poll() call. Therefore we avoid
4628 * accidentally calling ->poll() when NAPI is not scheduled.
4631 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4632 work = n->poll(n, weight);
4636 WARN_ON_ONCE(work > weight);
4638 if (likely(work < weight))
4641 /* Drivers must not modify the NAPI state if they
4642 * consume the entire weight. In such cases this code
4643 * still "owns" the NAPI instance and therefore can
4644 * move the instance around on the list at-will.
4646 if (unlikely(napi_disable_pending(n))) {
4652 /* flush too old packets
4653 * If HZ < 1000, flush all packets.
4655 napi_gro_flush(n, HZ >= 1000);
4658 /* Some drivers may have called napi_schedule
4659 * prior to exhausting their budget.
4661 if (unlikely(!list_empty(&n->poll_list))) {
4662 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4663 n->dev ? n->dev->name : "backlog");
4667 list_add_tail(&n->poll_list, repoll);
4670 netpoll_poll_unlock(have);
4675 static void net_rx_action(struct softirq_action *h)
4677 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4678 unsigned long time_limit = jiffies + 2;
4679 int budget = netdev_budget;
4683 local_irq_disable();
4684 list_splice_init(&sd->poll_list, &list);
4688 struct napi_struct *n;
4690 if (list_empty(&list)) {
4691 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4696 n = list_first_entry(&list, struct napi_struct, poll_list);
4697 budget -= napi_poll(n, &repoll);
4699 /* If softirq window is exhausted then punt.
4700 * Allow this to run for 2 jiffies since which will allow
4701 * an average latency of 1.5/HZ.
4703 if (unlikely(budget <= 0 ||
4704 time_after_eq(jiffies, time_limit))) {
4710 local_irq_disable();
4712 list_splice_tail_init(&sd->poll_list, &list);
4713 list_splice_tail(&repoll, &list);
4714 list_splice(&list, &sd->poll_list);
4715 if (!list_empty(&sd->poll_list))
4716 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4718 net_rps_action_and_irq_enable(sd);
4721 struct netdev_adjacent {
4722 struct net_device *dev;
4724 /* upper master flag, there can only be one master device per list */
4727 /* counter for the number of times this device was added to us */
4730 /* private field for the users */
4733 struct list_head list;
4734 struct rcu_head rcu;
4737 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4738 struct net_device *adj_dev,
4739 struct list_head *adj_list)
4741 struct netdev_adjacent *adj;
4743 list_for_each_entry(adj, adj_list, list) {
4744 if (adj->dev == adj_dev)
4751 * netdev_has_upper_dev - Check if device is linked to an upper device
4753 * @upper_dev: upper device to check
4755 * Find out if a device is linked to specified upper device and return true
4756 * in case it is. Note that this checks only immediate upper device,
4757 * not through a complete stack of devices. The caller must hold the RTNL lock.
4759 bool netdev_has_upper_dev(struct net_device *dev,
4760 struct net_device *upper_dev)
4764 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4766 EXPORT_SYMBOL(netdev_has_upper_dev);
4769 * netdev_has_any_upper_dev - Check if device is linked to some device
4772 * Find out if a device is linked to an upper device and return true in case
4773 * it is. The caller must hold the RTNL lock.
4775 static bool netdev_has_any_upper_dev(struct net_device *dev)
4779 return !list_empty(&dev->all_adj_list.upper);
4783 * netdev_master_upper_dev_get - Get master upper device
4786 * Find a master upper device and return pointer to it or NULL in case
4787 * it's not there. The caller must hold the RTNL lock.
4789 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4791 struct netdev_adjacent *upper;
4795 if (list_empty(&dev->adj_list.upper))
4798 upper = list_first_entry(&dev->adj_list.upper,
4799 struct netdev_adjacent, list);
4800 if (likely(upper->master))
4804 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4806 void *netdev_adjacent_get_private(struct list_head *adj_list)
4808 struct netdev_adjacent *adj;
4810 adj = list_entry(adj_list, struct netdev_adjacent, list);
4812 return adj->private;
4814 EXPORT_SYMBOL(netdev_adjacent_get_private);
4817 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4819 * @iter: list_head ** of the current position
4821 * Gets the next device from the dev's upper list, starting from iter
4822 * position. The caller must hold RCU read lock.
4824 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4825 struct list_head **iter)
4827 struct netdev_adjacent *upper;
4829 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4831 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4833 if (&upper->list == &dev->adj_list.upper)
4836 *iter = &upper->list;
4840 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4843 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4845 * @iter: list_head ** of the current position
4847 * Gets the next device from the dev's upper list, starting from iter
4848 * position. The caller must hold RCU read lock.
4850 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4851 struct list_head **iter)
4853 struct netdev_adjacent *upper;
4855 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4857 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4859 if (&upper->list == &dev->all_adj_list.upper)
4862 *iter = &upper->list;
4866 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4869 * netdev_lower_get_next_private - Get the next ->private from the
4870 * lower neighbour list
4872 * @iter: list_head ** of the current position
4874 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4875 * list, starting from iter position. The caller must hold either hold the
4876 * RTNL lock or its own locking that guarantees that the neighbour lower
4877 * list will remain unchainged.
4879 void *netdev_lower_get_next_private(struct net_device *dev,
4880 struct list_head **iter)
4882 struct netdev_adjacent *lower;
4884 lower = list_entry(*iter, struct netdev_adjacent, list);
4886 if (&lower->list == &dev->adj_list.lower)
4889 *iter = lower->list.next;
4891 return lower->private;
4893 EXPORT_SYMBOL(netdev_lower_get_next_private);
4896 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4897 * lower neighbour list, RCU
4900 * @iter: list_head ** of the current position
4902 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4903 * list, starting from iter position. The caller must hold RCU read lock.
4905 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4906 struct list_head **iter)
4908 struct netdev_adjacent *lower;
4910 WARN_ON_ONCE(!rcu_read_lock_held());
4912 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4914 if (&lower->list == &dev->adj_list.lower)
4917 *iter = &lower->list;
4919 return lower->private;
4921 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4924 * netdev_lower_get_next - Get the next device from the lower neighbour
4927 * @iter: list_head ** of the current position
4929 * Gets the next netdev_adjacent from the dev's lower neighbour
4930 * list, starting from iter position. The caller must hold RTNL lock or
4931 * its own locking that guarantees that the neighbour lower
4932 * list will remain unchainged.
4934 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4936 struct netdev_adjacent *lower;
4938 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4940 if (&lower->list == &dev->adj_list.lower)
4943 *iter = &lower->list;
4947 EXPORT_SYMBOL(netdev_lower_get_next);
4950 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4951 * lower neighbour list, RCU
4955 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4956 * list. The caller must hold RCU read lock.
4958 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4960 struct netdev_adjacent *lower;
4962 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4963 struct netdev_adjacent, list);
4965 return lower->private;
4968 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4971 * netdev_master_upper_dev_get_rcu - Get master upper device
4974 * Find a master upper device and return pointer to it or NULL in case
4975 * it's not there. The caller must hold the RCU read lock.
4977 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4979 struct netdev_adjacent *upper;
4981 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4982 struct netdev_adjacent, list);
4983 if (upper && likely(upper->master))
4987 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4989 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4990 struct net_device *adj_dev,
4991 struct list_head *dev_list)
4993 char linkname[IFNAMSIZ+7];
4994 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4995 "upper_%s" : "lower_%s", adj_dev->name);
4996 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4999 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5001 struct list_head *dev_list)
5003 char linkname[IFNAMSIZ+7];
5004 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5005 "upper_%s" : "lower_%s", name);
5006 sysfs_remove_link(&(dev->dev.kobj), linkname);
5009 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5010 struct net_device *adj_dev,
5011 struct list_head *dev_list)
5013 return (dev_list == &dev->adj_list.upper ||
5014 dev_list == &dev->adj_list.lower) &&
5015 net_eq(dev_net(dev), dev_net(adj_dev));
5018 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5019 struct net_device *adj_dev,
5020 struct list_head *dev_list,
5021 void *private, bool master)
5023 struct netdev_adjacent *adj;
5026 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5033 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5038 adj->master = master;
5040 adj->private = private;
5043 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5044 adj_dev->name, dev->name, adj_dev->name);
5046 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5047 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5052 /* Ensure that master link is always the first item in list. */
5054 ret = sysfs_create_link(&(dev->dev.kobj),
5055 &(adj_dev->dev.kobj), "master");
5057 goto remove_symlinks;
5059 list_add_rcu(&adj->list, dev_list);
5061 list_add_tail_rcu(&adj->list, dev_list);
5067 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5068 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5076 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5077 struct net_device *adj_dev,
5078 struct list_head *dev_list)
5080 struct netdev_adjacent *adj;
5082 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5085 pr_err("tried to remove device %s from %s\n",
5086 dev->name, adj_dev->name);
5090 if (adj->ref_nr > 1) {
5091 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5098 sysfs_remove_link(&(dev->dev.kobj), "master");
5100 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5101 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5103 list_del_rcu(&adj->list);
5104 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5105 adj_dev->name, dev->name, adj_dev->name);
5107 kfree_rcu(adj, rcu);
5110 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5111 struct net_device *upper_dev,
5112 struct list_head *up_list,
5113 struct list_head *down_list,
5114 void *private, bool master)
5118 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5123 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5126 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5133 static int __netdev_adjacent_dev_link(struct net_device *dev,
5134 struct net_device *upper_dev)
5136 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5137 &dev->all_adj_list.upper,
5138 &upper_dev->all_adj_list.lower,
5142 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5143 struct net_device *upper_dev,
5144 struct list_head *up_list,
5145 struct list_head *down_list)
5147 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5148 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5151 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5152 struct net_device *upper_dev)
5154 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5155 &dev->all_adj_list.upper,
5156 &upper_dev->all_adj_list.lower);
5159 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5160 struct net_device *upper_dev,
5161 void *private, bool master)
5163 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5168 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5169 &dev->adj_list.upper,
5170 &upper_dev->adj_list.lower,
5173 __netdev_adjacent_dev_unlink(dev, upper_dev);
5180 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5181 struct net_device *upper_dev)
5183 __netdev_adjacent_dev_unlink(dev, upper_dev);
5184 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5185 &dev->adj_list.upper,
5186 &upper_dev->adj_list.lower);
5189 static int __netdev_upper_dev_link(struct net_device *dev,
5190 struct net_device *upper_dev, bool master,
5193 struct netdev_adjacent *i, *j, *to_i, *to_j;
5198 if (dev == upper_dev)
5201 /* To prevent loops, check if dev is not upper device to upper_dev. */
5202 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5205 if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5208 if (master && netdev_master_upper_dev_get(dev))
5211 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5216 /* Now that we linked these devs, make all the upper_dev's
5217 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5218 * versa, and don't forget the devices itself. All of these
5219 * links are non-neighbours.
5221 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5222 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5223 pr_debug("Interlinking %s with %s, non-neighbour\n",
5224 i->dev->name, j->dev->name);
5225 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5231 /* add dev to every upper_dev's upper device */
5232 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5233 pr_debug("linking %s's upper device %s with %s\n",
5234 upper_dev->name, i->dev->name, dev->name);
5235 ret = __netdev_adjacent_dev_link(dev, i->dev);
5237 goto rollback_upper_mesh;
5240 /* add upper_dev to every dev's lower device */
5241 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5242 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5243 i->dev->name, upper_dev->name);
5244 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5246 goto rollback_lower_mesh;
5249 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5252 rollback_lower_mesh:
5254 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5257 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5262 rollback_upper_mesh:
5264 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5267 __netdev_adjacent_dev_unlink(dev, i->dev);
5275 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5276 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5277 if (i == to_i && j == to_j)
5279 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5285 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5291 * netdev_upper_dev_link - Add a link to the upper device
5293 * @upper_dev: new upper device
5295 * Adds a link to device which is upper to this one. The caller must hold
5296 * the RTNL lock. On a failure a negative errno code is returned.
5297 * On success the reference counts are adjusted and the function
5300 int netdev_upper_dev_link(struct net_device *dev,
5301 struct net_device *upper_dev)
5303 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5305 EXPORT_SYMBOL(netdev_upper_dev_link);
5308 * netdev_master_upper_dev_link - Add a master link to the upper device
5310 * @upper_dev: new upper device
5312 * Adds a link to device which is upper to this one. In this case, only
5313 * one master upper device can be linked, although other non-master devices
5314 * might be linked as well. The caller must hold the RTNL lock.
5315 * On a failure a negative errno code is returned. On success the reference
5316 * counts are adjusted and the function returns zero.
5318 int netdev_master_upper_dev_link(struct net_device *dev,
5319 struct net_device *upper_dev)
5321 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5323 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5325 int netdev_master_upper_dev_link_private(struct net_device *dev,
5326 struct net_device *upper_dev,
5329 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5331 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5334 * netdev_upper_dev_unlink - Removes a link to upper device
5336 * @upper_dev: new upper device
5338 * Removes a link to device which is upper to this one. The caller must hold
5341 void netdev_upper_dev_unlink(struct net_device *dev,
5342 struct net_device *upper_dev)
5344 struct netdev_adjacent *i, *j;
5347 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5349 /* Here is the tricky part. We must remove all dev's lower
5350 * devices from all upper_dev's upper devices and vice
5351 * versa, to maintain the graph relationship.
5353 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5354 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5355 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5357 /* remove also the devices itself from lower/upper device
5360 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5361 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5363 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5364 __netdev_adjacent_dev_unlink(dev, i->dev);
5366 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5368 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5371 * netdev_bonding_info_change - Dispatch event about slave change
5373 * @bonding_info: info to dispatch
5375 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5376 * The caller must hold the RTNL lock.
5378 void netdev_bonding_info_change(struct net_device *dev,
5379 struct netdev_bonding_info *bonding_info)
5381 struct netdev_notifier_bonding_info info;
5383 memcpy(&info.bonding_info, bonding_info,
5384 sizeof(struct netdev_bonding_info));
5385 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5388 EXPORT_SYMBOL(netdev_bonding_info_change);
5390 static void netdev_adjacent_add_links(struct net_device *dev)
5392 struct netdev_adjacent *iter;
5394 struct net *net = dev_net(dev);
5396 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5397 if (!net_eq(net,dev_net(iter->dev)))
5399 netdev_adjacent_sysfs_add(iter->dev, dev,
5400 &iter->dev->adj_list.lower);
5401 netdev_adjacent_sysfs_add(dev, iter->dev,
5402 &dev->adj_list.upper);
5405 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5406 if (!net_eq(net,dev_net(iter->dev)))
5408 netdev_adjacent_sysfs_add(iter->dev, dev,
5409 &iter->dev->adj_list.upper);
5410 netdev_adjacent_sysfs_add(dev, iter->dev,
5411 &dev->adj_list.lower);
5415 static void netdev_adjacent_del_links(struct net_device *dev)
5417 struct netdev_adjacent *iter;
5419 struct net *net = dev_net(dev);
5421 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5422 if (!net_eq(net,dev_net(iter->dev)))
5424 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5425 &iter->dev->adj_list.lower);
5426 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5427 &dev->adj_list.upper);
5430 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5431 if (!net_eq(net,dev_net(iter->dev)))
5433 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5434 &iter->dev->adj_list.upper);
5435 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5436 &dev->adj_list.lower);
5440 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5442 struct netdev_adjacent *iter;
5444 struct net *net = dev_net(dev);
5446 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5447 if (!net_eq(net,dev_net(iter->dev)))
5449 netdev_adjacent_sysfs_del(iter->dev, oldname,
5450 &iter->dev->adj_list.lower);
5451 netdev_adjacent_sysfs_add(iter->dev, dev,
5452 &iter->dev->adj_list.lower);
5455 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5456 if (!net_eq(net,dev_net(iter->dev)))
5458 netdev_adjacent_sysfs_del(iter->dev, oldname,
5459 &iter->dev->adj_list.upper);
5460 netdev_adjacent_sysfs_add(iter->dev, dev,
5461 &iter->dev->adj_list.upper);
5465 void *netdev_lower_dev_get_private(struct net_device *dev,
5466 struct net_device *lower_dev)
5468 struct netdev_adjacent *lower;
5472 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5476 return lower->private;
5478 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5481 int dev_get_nest_level(struct net_device *dev,
5482 bool (*type_check)(struct net_device *dev))
5484 struct net_device *lower = NULL;
5485 struct list_head *iter;
5491 netdev_for_each_lower_dev(dev, lower, iter) {
5492 nest = dev_get_nest_level(lower, type_check);
5493 if (max_nest < nest)
5497 if (type_check(dev))
5502 EXPORT_SYMBOL(dev_get_nest_level);
5504 static void dev_change_rx_flags(struct net_device *dev, int flags)
5506 const struct net_device_ops *ops = dev->netdev_ops;
5508 if (ops->ndo_change_rx_flags)
5509 ops->ndo_change_rx_flags(dev, flags);
5512 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5514 unsigned int old_flags = dev->flags;
5520 dev->flags |= IFF_PROMISC;
5521 dev->promiscuity += inc;
5522 if (dev->promiscuity == 0) {
5525 * If inc causes overflow, untouch promisc and return error.
5528 dev->flags &= ~IFF_PROMISC;
5530 dev->promiscuity -= inc;
5531 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5536 if (dev->flags != old_flags) {
5537 pr_info("device %s %s promiscuous mode\n",
5539 dev->flags & IFF_PROMISC ? "entered" : "left");
5540 if (audit_enabled) {
5541 current_uid_gid(&uid, &gid);
5542 audit_log(current->audit_context, GFP_ATOMIC,
5543 AUDIT_ANOM_PROMISCUOUS,
5544 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5545 dev->name, (dev->flags & IFF_PROMISC),
5546 (old_flags & IFF_PROMISC),
5547 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5548 from_kuid(&init_user_ns, uid),
5549 from_kgid(&init_user_ns, gid),
5550 audit_get_sessionid(current));
5553 dev_change_rx_flags(dev, IFF_PROMISC);
5556 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5561 * dev_set_promiscuity - update promiscuity count on a device
5565 * Add or remove promiscuity from a device. While the count in the device
5566 * remains above zero the interface remains promiscuous. Once it hits zero
5567 * the device reverts back to normal filtering operation. A negative inc
5568 * value is used to drop promiscuity on the device.
5569 * Return 0 if successful or a negative errno code on error.
5571 int dev_set_promiscuity(struct net_device *dev, int inc)
5573 unsigned int old_flags = dev->flags;
5576 err = __dev_set_promiscuity(dev, inc, true);
5579 if (dev->flags != old_flags)
5580 dev_set_rx_mode(dev);
5583 EXPORT_SYMBOL(dev_set_promiscuity);
5585 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5587 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5591 dev->flags |= IFF_ALLMULTI;
5592 dev->allmulti += inc;
5593 if (dev->allmulti == 0) {
5596 * If inc causes overflow, untouch allmulti and return error.
5599 dev->flags &= ~IFF_ALLMULTI;
5601 dev->allmulti -= inc;
5602 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5607 if (dev->flags ^ old_flags) {
5608 dev_change_rx_flags(dev, IFF_ALLMULTI);
5609 dev_set_rx_mode(dev);
5611 __dev_notify_flags(dev, old_flags,
5612 dev->gflags ^ old_gflags);
5618 * dev_set_allmulti - update allmulti count on a device
5622 * Add or remove reception of all multicast frames to a device. While the
5623 * count in the device remains above zero the interface remains listening
5624 * to all interfaces. Once it hits zero the device reverts back to normal
5625 * filtering operation. A negative @inc value is used to drop the counter
5626 * when releasing a resource needing all multicasts.
5627 * Return 0 if successful or a negative errno code on error.
5630 int dev_set_allmulti(struct net_device *dev, int inc)
5632 return __dev_set_allmulti(dev, inc, true);
5634 EXPORT_SYMBOL(dev_set_allmulti);
5637 * Upload unicast and multicast address lists to device and
5638 * configure RX filtering. When the device doesn't support unicast
5639 * filtering it is put in promiscuous mode while unicast addresses
5642 void __dev_set_rx_mode(struct net_device *dev)
5644 const struct net_device_ops *ops = dev->netdev_ops;
5646 /* dev_open will call this function so the list will stay sane. */
5647 if (!(dev->flags&IFF_UP))
5650 if (!netif_device_present(dev))
5653 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5654 /* Unicast addresses changes may only happen under the rtnl,
5655 * therefore calling __dev_set_promiscuity here is safe.
5657 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5658 __dev_set_promiscuity(dev, 1, false);
5659 dev->uc_promisc = true;
5660 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5661 __dev_set_promiscuity(dev, -1, false);
5662 dev->uc_promisc = false;
5666 if (ops->ndo_set_rx_mode)
5667 ops->ndo_set_rx_mode(dev);
5670 void dev_set_rx_mode(struct net_device *dev)
5672 netif_addr_lock_bh(dev);
5673 __dev_set_rx_mode(dev);
5674 netif_addr_unlock_bh(dev);
5678 * dev_get_flags - get flags reported to userspace
5681 * Get the combination of flag bits exported through APIs to userspace.
5683 unsigned int dev_get_flags(const struct net_device *dev)
5687 flags = (dev->flags & ~(IFF_PROMISC |
5692 (dev->gflags & (IFF_PROMISC |
5695 if (netif_running(dev)) {
5696 if (netif_oper_up(dev))
5697 flags |= IFF_RUNNING;
5698 if (netif_carrier_ok(dev))
5699 flags |= IFF_LOWER_UP;
5700 if (netif_dormant(dev))
5701 flags |= IFF_DORMANT;
5706 EXPORT_SYMBOL(dev_get_flags);
5708 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5710 unsigned int old_flags = dev->flags;
5716 * Set the flags on our device.
5719 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5720 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5722 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5726 * Load in the correct multicast list now the flags have changed.
5729 if ((old_flags ^ flags) & IFF_MULTICAST)
5730 dev_change_rx_flags(dev, IFF_MULTICAST);
5732 dev_set_rx_mode(dev);
5735 * Have we downed the interface. We handle IFF_UP ourselves
5736 * according to user attempts to set it, rather than blindly
5741 if ((old_flags ^ flags) & IFF_UP)
5742 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5744 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5745 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5746 unsigned int old_flags = dev->flags;
5748 dev->gflags ^= IFF_PROMISC;
5750 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5751 if (dev->flags != old_flags)
5752 dev_set_rx_mode(dev);
5755 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5756 is important. Some (broken) drivers set IFF_PROMISC, when
5757 IFF_ALLMULTI is requested not asking us and not reporting.
5759 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5760 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5762 dev->gflags ^= IFF_ALLMULTI;
5763 __dev_set_allmulti(dev, inc, false);
5769 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5770 unsigned int gchanges)
5772 unsigned int changes = dev->flags ^ old_flags;
5775 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5777 if (changes & IFF_UP) {
5778 if (dev->flags & IFF_UP)
5779 call_netdevice_notifiers(NETDEV_UP, dev);
5781 call_netdevice_notifiers(NETDEV_DOWN, dev);
5784 if (dev->flags & IFF_UP &&
5785 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5786 struct netdev_notifier_change_info change_info;
5788 change_info.flags_changed = changes;
5789 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5795 * dev_change_flags - change device settings
5797 * @flags: device state flags
5799 * Change settings on device based state flags. The flags are
5800 * in the userspace exported format.
5802 int dev_change_flags(struct net_device *dev, unsigned int flags)
5805 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5807 ret = __dev_change_flags(dev, flags);
5811 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5812 __dev_notify_flags(dev, old_flags, changes);
5815 EXPORT_SYMBOL(dev_change_flags);
5817 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5819 const struct net_device_ops *ops = dev->netdev_ops;
5821 if (ops->ndo_change_mtu)
5822 return ops->ndo_change_mtu(dev, new_mtu);
5829 * dev_set_mtu - Change maximum transfer unit
5831 * @new_mtu: new transfer unit
5833 * Change the maximum transfer size of the network device.
5835 int dev_set_mtu(struct net_device *dev, int new_mtu)
5839 if (new_mtu == dev->mtu)
5842 /* MTU must be positive. */
5846 if (!netif_device_present(dev))
5849 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5850 err = notifier_to_errno(err);
5854 orig_mtu = dev->mtu;
5855 err = __dev_set_mtu(dev, new_mtu);
5858 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5859 err = notifier_to_errno(err);
5861 /* setting mtu back and notifying everyone again,
5862 * so that they have a chance to revert changes.
5864 __dev_set_mtu(dev, orig_mtu);
5865 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5870 EXPORT_SYMBOL(dev_set_mtu);
5873 * dev_set_group - Change group this device belongs to
5875 * @new_group: group this device should belong to
5877 void dev_set_group(struct net_device *dev, int new_group)
5879 dev->group = new_group;
5881 EXPORT_SYMBOL(dev_set_group);
5884 * dev_set_mac_address - Change Media Access Control Address
5888 * Change the hardware (MAC) address of the device
5890 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5892 const struct net_device_ops *ops = dev->netdev_ops;
5895 if (!ops->ndo_set_mac_address)
5897 if (sa->sa_family != dev->type)
5899 if (!netif_device_present(dev))
5901 err = ops->ndo_set_mac_address(dev, sa);
5904 dev->addr_assign_type = NET_ADDR_SET;
5905 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5906 add_device_randomness(dev->dev_addr, dev->addr_len);
5909 EXPORT_SYMBOL(dev_set_mac_address);
5912 * dev_change_carrier - Change device carrier
5914 * @new_carrier: new value
5916 * Change device carrier
5918 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5920 const struct net_device_ops *ops = dev->netdev_ops;
5922 if (!ops->ndo_change_carrier)
5924 if (!netif_device_present(dev))
5926 return ops->ndo_change_carrier(dev, new_carrier);
5928 EXPORT_SYMBOL(dev_change_carrier);
5931 * dev_get_phys_port_id - Get device physical port ID
5935 * Get device physical port ID
5937 int dev_get_phys_port_id(struct net_device *dev,
5938 struct netdev_phys_item_id *ppid)
5940 const struct net_device_ops *ops = dev->netdev_ops;
5942 if (!ops->ndo_get_phys_port_id)
5944 return ops->ndo_get_phys_port_id(dev, ppid);
5946 EXPORT_SYMBOL(dev_get_phys_port_id);
5949 * dev_get_phys_port_name - Get device physical port name
5953 * Get device physical port name
5955 int dev_get_phys_port_name(struct net_device *dev,
5956 char *name, size_t len)
5958 const struct net_device_ops *ops = dev->netdev_ops;
5960 if (!ops->ndo_get_phys_port_name)
5962 return ops->ndo_get_phys_port_name(dev, name, len);
5964 EXPORT_SYMBOL(dev_get_phys_port_name);
5967 * dev_new_index - allocate an ifindex
5968 * @net: the applicable net namespace
5970 * Returns a suitable unique value for a new device interface
5971 * number. The caller must hold the rtnl semaphore or the
5972 * dev_base_lock to be sure it remains unique.
5974 static int dev_new_index(struct net *net)
5976 int ifindex = net->ifindex;
5980 if (!__dev_get_by_index(net, ifindex))
5981 return net->ifindex = ifindex;
5985 /* Delayed registration/unregisteration */
5986 static LIST_HEAD(net_todo_list);
5987 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5989 static void net_set_todo(struct net_device *dev)
5991 list_add_tail(&dev->todo_list, &net_todo_list);
5992 dev_net(dev)->dev_unreg_count++;
5995 static void rollback_registered_many(struct list_head *head)
5997 struct net_device *dev, *tmp;
5998 LIST_HEAD(close_head);
6000 BUG_ON(dev_boot_phase);
6003 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6004 /* Some devices call without registering
6005 * for initialization unwind. Remove those
6006 * devices and proceed with the remaining.
6008 if (dev->reg_state == NETREG_UNINITIALIZED) {
6009 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6013 list_del(&dev->unreg_list);
6016 dev->dismantle = true;
6017 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6020 /* If device is running, close it first. */
6021 list_for_each_entry(dev, head, unreg_list)
6022 list_add_tail(&dev->close_list, &close_head);
6023 dev_close_many(&close_head, true);
6025 list_for_each_entry(dev, head, unreg_list) {
6026 /* And unlink it from device chain. */
6027 unlist_netdevice(dev);
6029 dev->reg_state = NETREG_UNREGISTERING;
6034 list_for_each_entry(dev, head, unreg_list) {
6035 struct sk_buff *skb = NULL;
6037 /* Shutdown queueing discipline. */
6041 /* Notify protocols, that we are about to destroy
6042 this device. They should clean all the things.
6044 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6046 if (!dev->rtnl_link_ops ||
6047 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6048 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6052 * Flush the unicast and multicast chains
6057 if (dev->netdev_ops->ndo_uninit)
6058 dev->netdev_ops->ndo_uninit(dev);
6061 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6063 /* Notifier chain MUST detach us all upper devices. */
6064 WARN_ON(netdev_has_any_upper_dev(dev));
6066 /* Remove entries from kobject tree */
6067 netdev_unregister_kobject(dev);
6069 /* Remove XPS queueing entries */
6070 netif_reset_xps_queues_gt(dev, 0);
6076 list_for_each_entry(dev, head, unreg_list)
6080 static void rollback_registered(struct net_device *dev)
6084 list_add(&dev->unreg_list, &single);
6085 rollback_registered_many(&single);
6089 static netdev_features_t netdev_fix_features(struct net_device *dev,
6090 netdev_features_t features)
6092 /* Fix illegal checksum combinations */
6093 if ((features & NETIF_F_HW_CSUM) &&
6094 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6095 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6096 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6099 /* TSO requires that SG is present as well. */
6100 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6101 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6102 features &= ~NETIF_F_ALL_TSO;
6105 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6106 !(features & NETIF_F_IP_CSUM)) {
6107 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6108 features &= ~NETIF_F_TSO;
6109 features &= ~NETIF_F_TSO_ECN;
6112 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6113 !(features & NETIF_F_IPV6_CSUM)) {
6114 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6115 features &= ~NETIF_F_TSO6;
6118 /* TSO ECN requires that TSO is present as well. */
6119 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6120 features &= ~NETIF_F_TSO_ECN;
6122 /* Software GSO depends on SG. */
6123 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6124 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6125 features &= ~NETIF_F_GSO;
6128 /* UFO needs SG and checksumming */
6129 if (features & NETIF_F_UFO) {
6130 /* maybe split UFO into V4 and V6? */
6131 if (!((features & NETIF_F_GEN_CSUM) ||
6132 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6133 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6135 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6136 features &= ~NETIF_F_UFO;
6139 if (!(features & NETIF_F_SG)) {
6141 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6142 features &= ~NETIF_F_UFO;
6146 #ifdef CONFIG_NET_RX_BUSY_POLL
6147 if (dev->netdev_ops->ndo_busy_poll)
6148 features |= NETIF_F_BUSY_POLL;
6151 features &= ~NETIF_F_BUSY_POLL;
6156 int __netdev_update_features(struct net_device *dev)
6158 netdev_features_t features;
6163 features = netdev_get_wanted_features(dev);
6165 if (dev->netdev_ops->ndo_fix_features)
6166 features = dev->netdev_ops->ndo_fix_features(dev, features);
6168 /* driver might be less strict about feature dependencies */
6169 features = netdev_fix_features(dev, features);
6171 if (dev->features == features)
6174 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6175 &dev->features, &features);
6177 if (dev->netdev_ops->ndo_set_features)
6178 err = dev->netdev_ops->ndo_set_features(dev, features);
6180 if (unlikely(err < 0)) {
6182 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6183 err, &features, &dev->features);
6188 dev->features = features;
6194 * netdev_update_features - recalculate device features
6195 * @dev: the device to check
6197 * Recalculate dev->features set and send notifications if it
6198 * has changed. Should be called after driver or hardware dependent
6199 * conditions might have changed that influence the features.
6201 void netdev_update_features(struct net_device *dev)
6203 if (__netdev_update_features(dev))
6204 netdev_features_change(dev);
6206 EXPORT_SYMBOL(netdev_update_features);
6209 * netdev_change_features - recalculate device features
6210 * @dev: the device to check
6212 * Recalculate dev->features set and send notifications even
6213 * if they have not changed. Should be called instead of
6214 * netdev_update_features() if also dev->vlan_features might
6215 * have changed to allow the changes to be propagated to stacked
6218 void netdev_change_features(struct net_device *dev)
6220 __netdev_update_features(dev);
6221 netdev_features_change(dev);
6223 EXPORT_SYMBOL(netdev_change_features);
6226 * netif_stacked_transfer_operstate - transfer operstate
6227 * @rootdev: the root or lower level device to transfer state from
6228 * @dev: the device to transfer operstate to
6230 * Transfer operational state from root to device. This is normally
6231 * called when a stacking relationship exists between the root
6232 * device and the device(a leaf device).
6234 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6235 struct net_device *dev)
6237 if (rootdev->operstate == IF_OPER_DORMANT)
6238 netif_dormant_on(dev);
6240 netif_dormant_off(dev);
6242 if (netif_carrier_ok(rootdev)) {
6243 if (!netif_carrier_ok(dev))
6244 netif_carrier_on(dev);
6246 if (netif_carrier_ok(dev))
6247 netif_carrier_off(dev);
6250 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6253 static int netif_alloc_rx_queues(struct net_device *dev)
6255 unsigned int i, count = dev->num_rx_queues;
6256 struct netdev_rx_queue *rx;
6257 size_t sz = count * sizeof(*rx);
6261 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6269 for (i = 0; i < count; i++)
6275 static void netdev_init_one_queue(struct net_device *dev,
6276 struct netdev_queue *queue, void *_unused)
6278 /* Initialize queue lock */
6279 spin_lock_init(&queue->_xmit_lock);
6280 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6281 queue->xmit_lock_owner = -1;
6282 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6285 dql_init(&queue->dql, HZ);
6289 static void netif_free_tx_queues(struct net_device *dev)
6294 static int netif_alloc_netdev_queues(struct net_device *dev)
6296 unsigned int count = dev->num_tx_queues;
6297 struct netdev_queue *tx;
6298 size_t sz = count * sizeof(*tx);
6300 BUG_ON(count < 1 || count > 0xffff);
6302 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6310 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6311 spin_lock_init(&dev->tx_global_lock);
6317 * register_netdevice - register a network device
6318 * @dev: device to register
6320 * Take a completed network device structure and add it to the kernel
6321 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6322 * chain. 0 is returned on success. A negative errno code is returned
6323 * on a failure to set up the device, or if the name is a duplicate.
6325 * Callers must hold the rtnl semaphore. You may want
6326 * register_netdev() instead of this.
6329 * The locking appears insufficient to guarantee two parallel registers
6330 * will not get the same name.
6333 int register_netdevice(struct net_device *dev)
6336 struct net *net = dev_net(dev);
6338 BUG_ON(dev_boot_phase);
6343 /* When net_device's are persistent, this will be fatal. */
6344 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6347 spin_lock_init(&dev->addr_list_lock);
6348 netdev_set_addr_lockdep_class(dev);
6350 ret = dev_get_valid_name(net, dev, dev->name);
6354 /* Init, if this function is available */
6355 if (dev->netdev_ops->ndo_init) {
6356 ret = dev->netdev_ops->ndo_init(dev);
6364 if (((dev->hw_features | dev->features) &
6365 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6366 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6367 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6368 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6375 dev->ifindex = dev_new_index(net);
6376 else if (__dev_get_by_index(net, dev->ifindex))
6379 /* Transfer changeable features to wanted_features and enable
6380 * software offloads (GSO and GRO).
6382 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6383 dev->features |= NETIF_F_SOFT_FEATURES;
6384 dev->wanted_features = dev->features & dev->hw_features;
6386 if (!(dev->flags & IFF_LOOPBACK)) {
6387 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6390 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6392 dev->vlan_features |= NETIF_F_HIGHDMA;
6394 /* Make NETIF_F_SG inheritable to tunnel devices.
6396 dev->hw_enc_features |= NETIF_F_SG;
6398 /* Make NETIF_F_SG inheritable to MPLS.
6400 dev->mpls_features |= NETIF_F_SG;
6402 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6403 ret = notifier_to_errno(ret);
6407 ret = netdev_register_kobject(dev);
6410 dev->reg_state = NETREG_REGISTERED;
6412 __netdev_update_features(dev);
6415 * Default initial state at registry is that the
6416 * device is present.
6419 set_bit(__LINK_STATE_PRESENT, &dev->state);
6421 linkwatch_init_dev(dev);
6423 dev_init_scheduler(dev);
6425 list_netdevice(dev);
6426 add_device_randomness(dev->dev_addr, dev->addr_len);
6428 /* If the device has permanent device address, driver should
6429 * set dev_addr and also addr_assign_type should be set to
6430 * NET_ADDR_PERM (default value).
6432 if (dev->addr_assign_type == NET_ADDR_PERM)
6433 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6435 /* Notify protocols, that a new device appeared. */
6436 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6437 ret = notifier_to_errno(ret);
6439 rollback_registered(dev);
6440 dev->reg_state = NETREG_UNREGISTERED;
6443 * Prevent userspace races by waiting until the network
6444 * device is fully setup before sending notifications.
6446 if (!dev->rtnl_link_ops ||
6447 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6448 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6454 if (dev->netdev_ops->ndo_uninit)
6455 dev->netdev_ops->ndo_uninit(dev);
6458 EXPORT_SYMBOL(register_netdevice);
6461 * init_dummy_netdev - init a dummy network device for NAPI
6462 * @dev: device to init
6464 * This takes a network device structure and initialize the minimum
6465 * amount of fields so it can be used to schedule NAPI polls without
6466 * registering a full blown interface. This is to be used by drivers
6467 * that need to tie several hardware interfaces to a single NAPI
6468 * poll scheduler due to HW limitations.
6470 int init_dummy_netdev(struct net_device *dev)
6472 /* Clear everything. Note we don't initialize spinlocks
6473 * are they aren't supposed to be taken by any of the
6474 * NAPI code and this dummy netdev is supposed to be
6475 * only ever used for NAPI polls
6477 memset(dev, 0, sizeof(struct net_device));
6479 /* make sure we BUG if trying to hit standard
6480 * register/unregister code path
6482 dev->reg_state = NETREG_DUMMY;
6484 /* NAPI wants this */
6485 INIT_LIST_HEAD(&dev->napi_list);
6487 /* a dummy interface is started by default */
6488 set_bit(__LINK_STATE_PRESENT, &dev->state);
6489 set_bit(__LINK_STATE_START, &dev->state);
6491 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6492 * because users of this 'device' dont need to change
6498 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6502 * register_netdev - register a network device
6503 * @dev: device to register
6505 * Take a completed network device structure and add it to the kernel
6506 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6507 * chain. 0 is returned on success. A negative errno code is returned
6508 * on a failure to set up the device, or if the name is a duplicate.
6510 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6511 * and expands the device name if you passed a format string to
6514 int register_netdev(struct net_device *dev)
6519 err = register_netdevice(dev);
6523 EXPORT_SYMBOL(register_netdev);
6525 int netdev_refcnt_read(const struct net_device *dev)
6529 for_each_possible_cpu(i)
6530 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6533 EXPORT_SYMBOL(netdev_refcnt_read);
6536 * netdev_wait_allrefs - wait until all references are gone.
6537 * @dev: target net_device
6539 * This is called when unregistering network devices.
6541 * Any protocol or device that holds a reference should register
6542 * for netdevice notification, and cleanup and put back the
6543 * reference if they receive an UNREGISTER event.
6544 * We can get stuck here if buggy protocols don't correctly
6547 static void netdev_wait_allrefs(struct net_device *dev)
6549 unsigned long rebroadcast_time, warning_time;
6552 linkwatch_forget_dev(dev);
6554 rebroadcast_time = warning_time = jiffies;
6555 refcnt = netdev_refcnt_read(dev);
6557 while (refcnt != 0) {
6558 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6561 /* Rebroadcast unregister notification */
6562 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6568 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6569 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6571 /* We must not have linkwatch events
6572 * pending on unregister. If this
6573 * happens, we simply run the queue
6574 * unscheduled, resulting in a noop
6577 linkwatch_run_queue();
6582 rebroadcast_time = jiffies;
6587 refcnt = netdev_refcnt_read(dev);
6589 if (time_after(jiffies, warning_time + 10 * HZ)) {
6590 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6592 warning_time = jiffies;
6601 * register_netdevice(x1);
6602 * register_netdevice(x2);
6604 * unregister_netdevice(y1);
6605 * unregister_netdevice(y2);
6611 * We are invoked by rtnl_unlock().
6612 * This allows us to deal with problems:
6613 * 1) We can delete sysfs objects which invoke hotplug
6614 * without deadlocking with linkwatch via keventd.
6615 * 2) Since we run with the RTNL semaphore not held, we can sleep
6616 * safely in order to wait for the netdev refcnt to drop to zero.
6618 * We must not return until all unregister events added during
6619 * the interval the lock was held have been completed.
6621 void netdev_run_todo(void)
6623 struct list_head list;
6625 /* Snapshot list, allow later requests */
6626 list_replace_init(&net_todo_list, &list);
6631 /* Wait for rcu callbacks to finish before next phase */
6632 if (!list_empty(&list))
6635 while (!list_empty(&list)) {
6636 struct net_device *dev
6637 = list_first_entry(&list, struct net_device, todo_list);
6638 list_del(&dev->todo_list);
6641 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6644 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6645 pr_err("network todo '%s' but state %d\n",
6646 dev->name, dev->reg_state);
6651 dev->reg_state = NETREG_UNREGISTERED;
6653 on_each_cpu(flush_backlog, dev, 1);
6655 netdev_wait_allrefs(dev);
6658 BUG_ON(netdev_refcnt_read(dev));
6659 BUG_ON(!list_empty(&dev->ptype_all));
6660 BUG_ON(!list_empty(&dev->ptype_specific));
6661 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6662 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6663 WARN_ON(dev->dn_ptr);
6665 if (dev->destructor)
6666 dev->destructor(dev);
6668 /* Report a network device has been unregistered */
6670 dev_net(dev)->dev_unreg_count--;
6672 wake_up(&netdev_unregistering_wq);
6674 /* Free network device */
6675 kobject_put(&dev->dev.kobj);
6679 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6680 * fields in the same order, with only the type differing.
6682 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6683 const struct net_device_stats *netdev_stats)
6685 #if BITS_PER_LONG == 64
6686 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6687 memcpy(stats64, netdev_stats, sizeof(*stats64));
6689 size_t i, n = sizeof(*stats64) / sizeof(u64);
6690 const unsigned long *src = (const unsigned long *)netdev_stats;
6691 u64 *dst = (u64 *)stats64;
6693 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6694 sizeof(*stats64) / sizeof(u64));
6695 for (i = 0; i < n; i++)
6699 EXPORT_SYMBOL(netdev_stats_to_stats64);
6702 * dev_get_stats - get network device statistics
6703 * @dev: device to get statistics from
6704 * @storage: place to store stats
6706 * Get network statistics from device. Return @storage.
6707 * The device driver may provide its own method by setting
6708 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6709 * otherwise the internal statistics structure is used.
6711 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6712 struct rtnl_link_stats64 *storage)
6714 const struct net_device_ops *ops = dev->netdev_ops;
6716 if (ops->ndo_get_stats64) {
6717 memset(storage, 0, sizeof(*storage));
6718 ops->ndo_get_stats64(dev, storage);
6719 } else if (ops->ndo_get_stats) {
6720 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6722 netdev_stats_to_stats64(storage, &dev->stats);
6724 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6725 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6728 EXPORT_SYMBOL(dev_get_stats);
6730 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6732 struct netdev_queue *queue = dev_ingress_queue(dev);
6734 #ifdef CONFIG_NET_CLS_ACT
6737 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6740 netdev_init_one_queue(dev, queue, NULL);
6741 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6742 queue->qdisc_sleeping = &noop_qdisc;
6743 rcu_assign_pointer(dev->ingress_queue, queue);
6748 static const struct ethtool_ops default_ethtool_ops;
6750 void netdev_set_default_ethtool_ops(struct net_device *dev,
6751 const struct ethtool_ops *ops)
6753 if (dev->ethtool_ops == &default_ethtool_ops)
6754 dev->ethtool_ops = ops;
6756 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6758 void netdev_freemem(struct net_device *dev)
6760 char *addr = (char *)dev - dev->padded;
6766 * alloc_netdev_mqs - allocate network device
6767 * @sizeof_priv: size of private data to allocate space for
6768 * @name: device name format string
6769 * @name_assign_type: origin of device name
6770 * @setup: callback to initialize device
6771 * @txqs: the number of TX subqueues to allocate
6772 * @rxqs: the number of RX subqueues to allocate
6774 * Allocates a struct net_device with private data area for driver use
6775 * and performs basic initialization. Also allocates subqueue structs
6776 * for each queue on the device.
6778 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6779 unsigned char name_assign_type,
6780 void (*setup)(struct net_device *),
6781 unsigned int txqs, unsigned int rxqs)
6783 struct net_device *dev;
6785 struct net_device *p;
6787 BUG_ON(strlen(name) >= sizeof(dev->name));
6790 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6796 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6801 alloc_size = sizeof(struct net_device);
6803 /* ensure 32-byte alignment of private area */
6804 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6805 alloc_size += sizeof_priv;
6807 /* ensure 32-byte alignment of whole construct */
6808 alloc_size += NETDEV_ALIGN - 1;
6810 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6812 p = vzalloc(alloc_size);
6816 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6817 dev->padded = (char *)dev - (char *)p;
6819 dev->pcpu_refcnt = alloc_percpu(int);
6820 if (!dev->pcpu_refcnt)
6823 if (dev_addr_init(dev))
6829 dev_net_set(dev, &init_net);
6831 dev->gso_max_size = GSO_MAX_SIZE;
6832 dev->gso_max_segs = GSO_MAX_SEGS;
6833 dev->gso_min_segs = 0;
6835 INIT_LIST_HEAD(&dev->napi_list);
6836 INIT_LIST_HEAD(&dev->unreg_list);
6837 INIT_LIST_HEAD(&dev->close_list);
6838 INIT_LIST_HEAD(&dev->link_watch_list);
6839 INIT_LIST_HEAD(&dev->adj_list.upper);
6840 INIT_LIST_HEAD(&dev->adj_list.lower);
6841 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6842 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6843 INIT_LIST_HEAD(&dev->ptype_all);
6844 INIT_LIST_HEAD(&dev->ptype_specific);
6845 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6848 dev->num_tx_queues = txqs;
6849 dev->real_num_tx_queues = txqs;
6850 if (netif_alloc_netdev_queues(dev))
6854 dev->num_rx_queues = rxqs;
6855 dev->real_num_rx_queues = rxqs;
6856 if (netif_alloc_rx_queues(dev))
6860 strcpy(dev->name, name);
6861 dev->name_assign_type = name_assign_type;
6862 dev->group = INIT_NETDEV_GROUP;
6863 if (!dev->ethtool_ops)
6864 dev->ethtool_ops = &default_ethtool_ops;
6872 free_percpu(dev->pcpu_refcnt);
6874 netdev_freemem(dev);
6877 EXPORT_SYMBOL(alloc_netdev_mqs);
6880 * free_netdev - free network device
6883 * This function does the last stage of destroying an allocated device
6884 * interface. The reference to the device object is released.
6885 * If this is the last reference then it will be freed.
6887 void free_netdev(struct net_device *dev)
6889 struct napi_struct *p, *n;
6891 netif_free_tx_queues(dev);
6896 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6898 /* Flush device addresses */
6899 dev_addr_flush(dev);
6901 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6904 free_percpu(dev->pcpu_refcnt);
6905 dev->pcpu_refcnt = NULL;
6907 /* Compatibility with error handling in drivers */
6908 if (dev->reg_state == NETREG_UNINITIALIZED) {
6909 netdev_freemem(dev);
6913 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6914 dev->reg_state = NETREG_RELEASED;
6916 /* will free via device release */
6917 put_device(&dev->dev);
6919 EXPORT_SYMBOL(free_netdev);
6922 * synchronize_net - Synchronize with packet receive processing
6924 * Wait for packets currently being received to be done.
6925 * Does not block later packets from starting.
6927 void synchronize_net(void)
6930 if (rtnl_is_locked())
6931 synchronize_rcu_expedited();
6935 EXPORT_SYMBOL(synchronize_net);
6938 * unregister_netdevice_queue - remove device from the kernel
6942 * This function shuts down a device interface and removes it
6943 * from the kernel tables.
6944 * If head not NULL, device is queued to be unregistered later.
6946 * Callers must hold the rtnl semaphore. You may want
6947 * unregister_netdev() instead of this.
6950 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6955 list_move_tail(&dev->unreg_list, head);
6957 rollback_registered(dev);
6958 /* Finish processing unregister after unlock */
6962 EXPORT_SYMBOL(unregister_netdevice_queue);
6965 * unregister_netdevice_many - unregister many devices
6966 * @head: list of devices
6968 * Note: As most callers use a stack allocated list_head,
6969 * we force a list_del() to make sure stack wont be corrupted later.
6971 void unregister_netdevice_many(struct list_head *head)
6973 struct net_device *dev;
6975 if (!list_empty(head)) {
6976 rollback_registered_many(head);
6977 list_for_each_entry(dev, head, unreg_list)
6982 EXPORT_SYMBOL(unregister_netdevice_many);
6985 * unregister_netdev - remove device from the kernel
6988 * This function shuts down a device interface and removes it
6989 * from the kernel tables.
6991 * This is just a wrapper for unregister_netdevice that takes
6992 * the rtnl semaphore. In general you want to use this and not
6993 * unregister_netdevice.
6995 void unregister_netdev(struct net_device *dev)
6998 unregister_netdevice(dev);
7001 EXPORT_SYMBOL(unregister_netdev);
7004 * dev_change_net_namespace - move device to different nethost namespace
7006 * @net: network namespace
7007 * @pat: If not NULL name pattern to try if the current device name
7008 * is already taken in the destination network namespace.
7010 * This function shuts down a device interface and moves it
7011 * to a new network namespace. On success 0 is returned, on
7012 * a failure a netagive errno code is returned.
7014 * Callers must hold the rtnl semaphore.
7017 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7023 /* Don't allow namespace local devices to be moved. */
7025 if (dev->features & NETIF_F_NETNS_LOCAL)
7028 /* Ensure the device has been registrered */
7029 if (dev->reg_state != NETREG_REGISTERED)
7032 /* Get out if there is nothing todo */
7034 if (net_eq(dev_net(dev), net))
7037 /* Pick the destination device name, and ensure
7038 * we can use it in the destination network namespace.
7041 if (__dev_get_by_name(net, dev->name)) {
7042 /* We get here if we can't use the current device name */
7045 if (dev_get_valid_name(net, dev, pat) < 0)
7050 * And now a mini version of register_netdevice unregister_netdevice.
7053 /* If device is running close it first. */
7056 /* And unlink it from device chain */
7058 unlist_netdevice(dev);
7062 /* Shutdown queueing discipline. */
7065 /* Notify protocols, that we are about to destroy
7066 this device. They should clean all the things.
7068 Note that dev->reg_state stays at NETREG_REGISTERED.
7069 This is wanted because this way 8021q and macvlan know
7070 the device is just moving and can keep their slaves up.
7072 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7074 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7075 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7078 * Flush the unicast and multicast chains
7083 /* Send a netdev-removed uevent to the old namespace */
7084 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7085 netdev_adjacent_del_links(dev);
7087 /* Actually switch the network namespace */
7088 dev_net_set(dev, net);
7090 /* If there is an ifindex conflict assign a new one */
7091 if (__dev_get_by_index(net, dev->ifindex))
7092 dev->ifindex = dev_new_index(net);
7094 /* Send a netdev-add uevent to the new namespace */
7095 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7096 netdev_adjacent_add_links(dev);
7098 /* Fixup kobjects */
7099 err = device_rename(&dev->dev, dev->name);
7102 /* Add the device back in the hashes */
7103 list_netdevice(dev);
7105 /* Notify protocols, that a new device appeared. */
7106 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7109 * Prevent userspace races by waiting until the network
7110 * device is fully setup before sending notifications.
7112 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7119 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7121 static int dev_cpu_callback(struct notifier_block *nfb,
7122 unsigned long action,
7125 struct sk_buff **list_skb;
7126 struct sk_buff *skb;
7127 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7128 struct softnet_data *sd, *oldsd;
7130 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7133 local_irq_disable();
7134 cpu = smp_processor_id();
7135 sd = &per_cpu(softnet_data, cpu);
7136 oldsd = &per_cpu(softnet_data, oldcpu);
7138 /* Find end of our completion_queue. */
7139 list_skb = &sd->completion_queue;
7141 list_skb = &(*list_skb)->next;
7142 /* Append completion queue from offline CPU. */
7143 *list_skb = oldsd->completion_queue;
7144 oldsd->completion_queue = NULL;
7146 /* Append output queue from offline CPU. */
7147 if (oldsd->output_queue) {
7148 *sd->output_queue_tailp = oldsd->output_queue;
7149 sd->output_queue_tailp = oldsd->output_queue_tailp;
7150 oldsd->output_queue = NULL;
7151 oldsd->output_queue_tailp = &oldsd->output_queue;
7153 /* Append NAPI poll list from offline CPU, with one exception :
7154 * process_backlog() must be called by cpu owning percpu backlog.
7155 * We properly handle process_queue & input_pkt_queue later.
7157 while (!list_empty(&oldsd->poll_list)) {
7158 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7162 list_del_init(&napi->poll_list);
7163 if (napi->poll == process_backlog)
7166 ____napi_schedule(sd, napi);
7169 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7172 /* Process offline CPU's input_pkt_queue */
7173 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7175 input_queue_head_incr(oldsd);
7177 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7179 input_queue_head_incr(oldsd);
7187 * netdev_increment_features - increment feature set by one
7188 * @all: current feature set
7189 * @one: new feature set
7190 * @mask: mask feature set
7192 * Computes a new feature set after adding a device with feature set
7193 * @one to the master device with current feature set @all. Will not
7194 * enable anything that is off in @mask. Returns the new feature set.
7196 netdev_features_t netdev_increment_features(netdev_features_t all,
7197 netdev_features_t one, netdev_features_t mask)
7199 if (mask & NETIF_F_GEN_CSUM)
7200 mask |= NETIF_F_ALL_CSUM;
7201 mask |= NETIF_F_VLAN_CHALLENGED;
7203 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7204 all &= one | ~NETIF_F_ALL_FOR_ALL;
7206 /* If one device supports hw checksumming, set for all. */
7207 if (all & NETIF_F_GEN_CSUM)
7208 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7212 EXPORT_SYMBOL(netdev_increment_features);
7214 static struct hlist_head * __net_init netdev_create_hash(void)
7217 struct hlist_head *hash;
7219 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7221 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7222 INIT_HLIST_HEAD(&hash[i]);
7227 /* Initialize per network namespace state */
7228 static int __net_init netdev_init(struct net *net)
7230 if (net != &init_net)
7231 INIT_LIST_HEAD(&net->dev_base_head);
7233 net->dev_name_head = netdev_create_hash();
7234 if (net->dev_name_head == NULL)
7237 net->dev_index_head = netdev_create_hash();
7238 if (net->dev_index_head == NULL)
7244 kfree(net->dev_name_head);
7250 * netdev_drivername - network driver for the device
7251 * @dev: network device
7253 * Determine network driver for device.
7255 const char *netdev_drivername(const struct net_device *dev)
7257 const struct device_driver *driver;
7258 const struct device *parent;
7259 const char *empty = "";
7261 parent = dev->dev.parent;
7265 driver = parent->driver;
7266 if (driver && driver->name)
7267 return driver->name;
7271 static void __netdev_printk(const char *level, const struct net_device *dev,
7272 struct va_format *vaf)
7274 if (dev && dev->dev.parent) {
7275 dev_printk_emit(level[1] - '0',
7278 dev_driver_string(dev->dev.parent),
7279 dev_name(dev->dev.parent),
7280 netdev_name(dev), netdev_reg_state(dev),
7283 printk("%s%s%s: %pV",
7284 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7286 printk("%s(NULL net_device): %pV", level, vaf);
7290 void netdev_printk(const char *level, const struct net_device *dev,
7291 const char *format, ...)
7293 struct va_format vaf;
7296 va_start(args, format);
7301 __netdev_printk(level, dev, &vaf);
7305 EXPORT_SYMBOL(netdev_printk);
7307 #define define_netdev_printk_level(func, level) \
7308 void func(const struct net_device *dev, const char *fmt, ...) \
7310 struct va_format vaf; \
7313 va_start(args, fmt); \
7318 __netdev_printk(level, dev, &vaf); \
7322 EXPORT_SYMBOL(func);
7324 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7325 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7326 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7327 define_netdev_printk_level(netdev_err, KERN_ERR);
7328 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7329 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7330 define_netdev_printk_level(netdev_info, KERN_INFO);
7332 static void __net_exit netdev_exit(struct net *net)
7334 kfree(net->dev_name_head);
7335 kfree(net->dev_index_head);
7338 static struct pernet_operations __net_initdata netdev_net_ops = {
7339 .init = netdev_init,
7340 .exit = netdev_exit,
7343 static void __net_exit default_device_exit(struct net *net)
7345 struct net_device *dev, *aux;
7347 * Push all migratable network devices back to the
7348 * initial network namespace
7351 for_each_netdev_safe(net, dev, aux) {
7353 char fb_name[IFNAMSIZ];
7355 /* Ignore unmoveable devices (i.e. loopback) */
7356 if (dev->features & NETIF_F_NETNS_LOCAL)
7359 /* Leave virtual devices for the generic cleanup */
7360 if (dev->rtnl_link_ops)
7363 /* Push remaining network devices to init_net */
7364 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7365 err = dev_change_net_namespace(dev, &init_net, fb_name);
7367 pr_emerg("%s: failed to move %s to init_net: %d\n",
7368 __func__, dev->name, err);
7375 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7377 /* Return with the rtnl_lock held when there are no network
7378 * devices unregistering in any network namespace in net_list.
7382 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7384 add_wait_queue(&netdev_unregistering_wq, &wait);
7386 unregistering = false;
7388 list_for_each_entry(net, net_list, exit_list) {
7389 if (net->dev_unreg_count > 0) {
7390 unregistering = true;
7398 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7400 remove_wait_queue(&netdev_unregistering_wq, &wait);
7403 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7405 /* At exit all network devices most be removed from a network
7406 * namespace. Do this in the reverse order of registration.
7407 * Do this across as many network namespaces as possible to
7408 * improve batching efficiency.
7410 struct net_device *dev;
7412 LIST_HEAD(dev_kill_list);
7414 /* To prevent network device cleanup code from dereferencing
7415 * loopback devices or network devices that have been freed
7416 * wait here for all pending unregistrations to complete,
7417 * before unregistring the loopback device and allowing the
7418 * network namespace be freed.
7420 * The netdev todo list containing all network devices
7421 * unregistrations that happen in default_device_exit_batch
7422 * will run in the rtnl_unlock() at the end of
7423 * default_device_exit_batch.
7425 rtnl_lock_unregistering(net_list);
7426 list_for_each_entry(net, net_list, exit_list) {
7427 for_each_netdev_reverse(net, dev) {
7428 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7429 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7431 unregister_netdevice_queue(dev, &dev_kill_list);
7434 unregister_netdevice_many(&dev_kill_list);
7438 static struct pernet_operations __net_initdata default_device_ops = {
7439 .exit = default_device_exit,
7440 .exit_batch = default_device_exit_batch,
7444 * Initialize the DEV module. At boot time this walks the device list and
7445 * unhooks any devices that fail to initialise (normally hardware not
7446 * present) and leaves us with a valid list of present and active devices.
7451 * This is called single threaded during boot, so no need
7452 * to take the rtnl semaphore.
7454 static int __init net_dev_init(void)
7456 int i, rc = -ENOMEM;
7458 BUG_ON(!dev_boot_phase);
7460 if (dev_proc_init())
7463 if (netdev_kobject_init())
7466 INIT_LIST_HEAD(&ptype_all);
7467 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7468 INIT_LIST_HEAD(&ptype_base[i]);
7470 INIT_LIST_HEAD(&offload_base);
7472 if (register_pernet_subsys(&netdev_net_ops))
7476 * Initialise the packet receive queues.
7479 for_each_possible_cpu(i) {
7480 struct softnet_data *sd = &per_cpu(softnet_data, i);
7482 skb_queue_head_init(&sd->input_pkt_queue);
7483 skb_queue_head_init(&sd->process_queue);
7484 INIT_LIST_HEAD(&sd->poll_list);
7485 sd->output_queue_tailp = &sd->output_queue;
7487 sd->csd.func = rps_trigger_softirq;
7492 sd->backlog.poll = process_backlog;
7493 sd->backlog.weight = weight_p;
7498 /* The loopback device is special if any other network devices
7499 * is present in a network namespace the loopback device must
7500 * be present. Since we now dynamically allocate and free the
7501 * loopback device ensure this invariant is maintained by
7502 * keeping the loopback device as the first device on the
7503 * list of network devices. Ensuring the loopback devices
7504 * is the first device that appears and the last network device
7507 if (register_pernet_device(&loopback_net_ops))
7510 if (register_pernet_device(&default_device_ops))
7513 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7514 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7516 hotcpu_notifier(dev_cpu_callback, 0);
7523 subsys_initcall(net_dev_init);