2 * BPF Jit compiler for s390.
4 * Minimum build requirements:
6 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
7 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
8 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
12 * Copyright IBM Corp. 2012,2015
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <asm/cacheflush.h>
28 int bpf_jit_enable __read_mostly;
31 u32 seen; /* Flags to remember seen eBPF instructions */
32 u32 seen_reg[16]; /* Array to remember which registers are used */
33 u32 *addrs; /* Array with relative instruction addresses */
34 u8 *prg_buf; /* Start of program */
35 int size; /* Size of program and literal pool */
36 int size_prg; /* Size of program */
37 int prg; /* Current position in program */
38 int lit_start; /* Start of literal pool */
39 int lit; /* Current position in literal pool */
40 int base_ip; /* Base address for literal pool */
41 int ret0_ip; /* Address of return 0 */
42 int exit_ip; /* Address of exit */
45 #define BPF_SIZE_MAX 4096 /* Max size for program */
47 #define SEEN_SKB 1 /* skb access */
48 #define SEEN_MEM 2 /* use mem[] for temporary storage */
49 #define SEEN_RET0 4 /* ret0_ip points to a valid return 0 */
50 #define SEEN_LITERAL 8 /* code uses literals */
51 #define SEEN_FUNC 16 /* calls C functions */
52 #define SEEN_STACK (SEEN_FUNC | SEEN_MEM | SEEN_SKB)
57 #define REG_W0 (__MAX_BPF_REG+0) /* Work register 1 (even) */
58 #define REG_W1 (__MAX_BPF_REG+1) /* Work register 2 (odd) */
59 #define REG_SKB_DATA (__MAX_BPF_REG+2) /* SKB data register */
60 #define REG_L (__MAX_BPF_REG+3) /* Literal pool register */
61 #define REG_15 (__MAX_BPF_REG+4) /* Register 15 */
62 #define REG_0 REG_W0 /* Register 0 */
63 #define REG_2 BPF_REG_1 /* Register 2 */
64 #define REG_14 BPF_REG_0 /* Register 14 */
67 * Mapping of BPF registers to s390 registers
69 static const int reg2hex[] = {
72 /* Function parameters */
78 /* Call saved registers */
83 /* BPF stack pointer */
85 /* SKB data pointer */
87 /* Work registers for s390x backend */
94 static inline u32 reg(u32 dst_reg, u32 src_reg)
96 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
99 static inline u32 reg_high(u32 reg)
101 return reg2hex[reg] << 4;
104 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
106 u32 r1 = reg2hex[b1];
108 if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
109 jit->seen_reg[r1] = 1;
112 #define REG_SET_SEEN(b1) \
114 reg_set_seen(jit, b1); \
117 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
120 * EMIT macros for code generation
126 *(u16 *) (jit->prg_buf + jit->prg) = op; \
130 #define EMIT2(op, b1, b2) \
132 _EMIT2(op | reg(b1, b2)); \
140 *(u32 *) (jit->prg_buf + jit->prg) = op; \
144 #define EMIT4(op, b1, b2) \
146 _EMIT4(op | reg(b1, b2)); \
151 #define EMIT4_RRF(op, b1, b2, b3) \
153 _EMIT4(op | reg_high(b3) << 8 | reg(b1, b2)); \
159 #define _EMIT4_DISP(op, disp) \
161 unsigned int __disp = (disp) & 0xfff; \
162 _EMIT4(op | __disp); \
165 #define EMIT4_DISP(op, b1, b2, disp) \
167 _EMIT4_DISP(op | reg_high(b1) << 16 | \
168 reg_high(b2) << 8, disp); \
173 #define EMIT4_IMM(op, b1, imm) \
175 unsigned int __imm = (imm) & 0xffff; \
176 _EMIT4(op | reg_high(b1) << 16 | __imm); \
180 #define EMIT4_PCREL(op, pcrel) \
182 long __pcrel = ((pcrel) >> 1) & 0xffff; \
183 _EMIT4(op | __pcrel); \
186 #define _EMIT6(op1, op2) \
188 if (jit->prg_buf) { \
189 *(u32 *) (jit->prg_buf + jit->prg) = op1; \
190 *(u16 *) (jit->prg_buf + jit->prg + 4) = op2; \
195 #define _EMIT6_DISP(op1, op2, disp) \
197 unsigned int __disp = (disp) & 0xfff; \
198 _EMIT6(op1 | __disp, op2); \
201 #define EMIT6_DISP(op1, op2, b1, b2, b3, disp) \
203 _EMIT6_DISP(op1 | reg(b1, b2) << 16 | \
204 reg_high(b3) << 8, op2, disp); \
210 #define _EMIT6_DISP_LH(op1, op2, disp) \
212 unsigned int __disp_h = ((u32)disp) & 0xff000; \
213 unsigned int __disp_l = ((u32)disp) & 0x00fff; \
214 _EMIT6(op1 | __disp_l, op2 | __disp_h >> 4); \
217 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
219 _EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 | \
220 reg_high(b3) << 8, op2, disp); \
226 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
228 /* Branch instruction needs 6 bytes */ \
229 int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
230 _EMIT6(op1 | reg(b1, b2) << 16 | rel, op2 | mask); \
235 #define _EMIT6_IMM(op, imm) \
237 unsigned int __imm = (imm); \
238 _EMIT6(op | (__imm >> 16), __imm & 0xffff); \
241 #define EMIT6_IMM(op, b1, imm) \
243 _EMIT6_IMM(op | reg_high(b1) << 16, imm); \
247 #define EMIT_CONST_U32(val) \
250 ret = jit->lit - jit->base_ip; \
251 jit->seen |= SEEN_LITERAL; \
253 *(u32 *) (jit->prg_buf + jit->lit) = (u32) val; \
258 #define EMIT_CONST_U64(val) \
261 ret = jit->lit - jit->base_ip; \
262 jit->seen |= SEEN_LITERAL; \
264 *(u64 *) (jit->prg_buf + jit->lit) = (u64) val; \
269 #define EMIT_ZERO(b1) \
271 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
272 EMIT4(0xb9160000, b1, b1); \
277 * Fill whole space with illegal instructions
279 static void jit_fill_hole(void *area, unsigned int size)
281 memset(area, 0, size);
285 * Save registers from "rs" (register start) to "re" (register end) on stack
287 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
289 u32 off = 72 + (rs - 6) * 8;
292 /* stg %rs,off(%r15) */
293 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
295 /* stmg %rs,%re,off(%r15) */
296 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
300 * Restore registers from "rs" (register start) to "re" (register end) on stack
302 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
304 u32 off = 72 + (rs - 6) * 8;
306 if (jit->seen & SEEN_STACK)
310 /* lg %rs,off(%r15) */
311 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
313 /* lmg %rs,%re,off(%r15) */
314 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
318 * Return first seen register (from start)
320 static int get_start(struct bpf_jit *jit, int start)
324 for (i = start; i <= 15; i++) {
325 if (jit->seen_reg[i])
332 * Return last seen register (from start) (gap >= 2)
334 static int get_end(struct bpf_jit *jit, int start)
338 for (i = start; i < 15; i++) {
339 if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
342 return jit->seen_reg[15] ? 15 : 14;
346 #define REGS_RESTORE 0
348 * Save and restore clobbered registers (6-15) on stack.
349 * We save/restore registers in chunks with gap >= 2 registers.
351 static void save_restore_regs(struct bpf_jit *jit, int op)
357 rs = get_start(jit, re);
360 re = get_end(jit, rs + 1);
362 save_regs(jit, rs, re);
364 restore_regs(jit, rs, re);
370 * Emit function prologue
372 * Save registers and create stack frame if necessary.
373 * See stack frame layout desription in "bpf_jit.h"!
375 static void bpf_jit_prologue(struct bpf_jit *jit)
378 save_restore_regs(jit, REGS_SAVE);
379 /* Setup literal pool */
380 if (jit->seen & SEEN_LITERAL) {
382 EMIT2(0x0d00, REG_L, REG_0);
383 jit->base_ip = jit->prg;
385 /* Setup stack and backchain */
386 if (jit->seen & SEEN_STACK) {
387 if (jit->seen & SEEN_FUNC)
388 /* lgr %w1,%r15 (backchain) */
389 EMIT4(0xb9040000, REG_W1, REG_15);
390 /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
391 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
392 /* aghi %r15,-STK_OFF */
393 EMIT4_IMM(0xa70b0000, REG_15, -STK_OFF);
394 if (jit->seen & SEEN_FUNC)
395 /* stg %w1,152(%r15) (backchain) */
396 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
400 * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
401 * we store the SKB header length on the stack and the SKB data
402 * pointer in REG_SKB_DATA.
404 if (jit->seen & SEEN_SKB) {
405 /* Header length: llgf %w1,<len>(%b1) */
406 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
407 offsetof(struct sk_buff, len));
408 /* s %w1,<data_len>(%b1) */
409 EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
410 offsetof(struct sk_buff, data_len));
411 /* stg %w1,ST_OFF_HLEN(%r0,%r15) */
412 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15,
414 /* lg %skb_data,data_off(%b1) */
415 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
416 BPF_REG_1, offsetof(struct sk_buff, data));
418 /* BPF compatibility: clear A (%b7) and X (%b8) registers */
419 if (REG_SEEN(BPF_REG_7))
421 EMIT4_IMM(0xa7090000, BPF_REG_7, 0);
422 if (REG_SEEN(BPF_REG_8))
424 EMIT4_IMM(0xa7090000, BPF_REG_8, 0);
430 static void bpf_jit_epilogue(struct bpf_jit *jit)
433 if (jit->seen & SEEN_RET0) {
434 jit->ret0_ip = jit->prg;
436 EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
438 jit->exit_ip = jit->prg;
439 /* Load exit code: lgr %r2,%b0 */
440 EMIT4(0xb9040000, REG_2, BPF_REG_0);
441 /* Restore registers */
442 save_restore_regs(jit, REGS_RESTORE);
448 * Compile one eBPF instruction into s390x code
450 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
451 * stack space for the large switch statement.
453 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
455 struct bpf_insn *insn = &fp->insnsi[i];
456 int jmp_off, last, insn_count = 1;
457 unsigned int func_addr, mask;
458 u32 dst_reg = insn->dst_reg;
459 u32 src_reg = insn->src_reg;
460 u32 *addrs = jit->addrs;
464 switch (insn->code) {
468 case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
469 /* llgfr %dst,%src */
470 EMIT4(0xb9160000, dst_reg, src_reg);
472 case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
474 EMIT4(0xb9040000, dst_reg, src_reg);
476 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
478 EMIT6_IMM(0xc00f0000, dst_reg, imm);
480 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
482 EMIT6_IMM(0xc0010000, dst_reg, imm);
487 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
489 /* 16 byte instruction that uses two 'struct bpf_insn' */
492 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
493 /* lg %dst,<d(imm)>(%l) */
494 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
495 EMIT_CONST_U64(imm64));
502 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
504 EMIT2(0x1a00, dst_reg, src_reg);
507 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
509 EMIT4(0xb9080000, dst_reg, src_reg);
511 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
515 EMIT6_IMM(0xc20b0000, dst_reg, imm);
518 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
522 EMIT6_IMM(0xc2080000, dst_reg, imm);
527 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
529 EMIT2(0x1b00, dst_reg, src_reg);
532 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
534 EMIT4(0xb9090000, dst_reg, src_reg);
536 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
540 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
543 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
547 EMIT6_IMM(0xc2080000, dst_reg, -imm);
552 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
554 EMIT4(0xb2520000, dst_reg, src_reg);
557 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
559 EMIT4(0xb90c0000, dst_reg, src_reg);
561 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
565 EMIT6_IMM(0xc2010000, dst_reg, imm);
568 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
572 EMIT6_IMM(0xc2000000, dst_reg, imm);
577 case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
578 case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
580 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
582 jit->seen |= SEEN_RET0;
583 /* ltr %src,%src (if src == 0 goto fail) */
584 EMIT2(0x1200, src_reg, src_reg);
586 EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
588 EMIT4_IMM(0xa7080000, REG_W0, 0);
590 EMIT2(0x1800, REG_W1, dst_reg);
592 EMIT4(0xb9970000, REG_W0, src_reg);
594 EMIT4(0xb9160000, dst_reg, rc_reg);
597 case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
598 case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
600 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
602 jit->seen |= SEEN_RET0;
603 /* ltgr %src,%src (if src == 0 goto fail) */
604 EMIT4(0xb9020000, src_reg, src_reg);
606 EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
608 EMIT4_IMM(0xa7090000, REG_W0, 0);
610 EMIT4(0xb9040000, REG_W1, dst_reg);
612 EMIT4(0xb9870000, REG_W0, src_reg);
614 EMIT4(0xb9040000, dst_reg, rc_reg);
617 case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
618 case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
620 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
623 if (BPF_OP(insn->code) == BPF_MOD)
625 EMIT4_IMM(0xa7090000, dst_reg, 0);
629 EMIT4_IMM(0xa7080000, REG_W0, 0);
631 EMIT2(0x1800, REG_W1, dst_reg);
632 /* dl %w0,<d(imm)>(%l) */
633 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
634 EMIT_CONST_U32(imm));
636 EMIT4(0xb9160000, dst_reg, rc_reg);
639 case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
640 case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
642 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
645 if (BPF_OP(insn->code) == BPF_MOD)
647 EMIT4_IMM(0xa7090000, dst_reg, 0);
651 EMIT4_IMM(0xa7090000, REG_W0, 0);
653 EMIT4(0xb9040000, REG_W1, dst_reg);
654 /* dlg %w0,<d(imm)>(%l) */
655 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
656 EMIT_CONST_U64(imm));
658 EMIT4(0xb9040000, dst_reg, rc_reg);
664 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
666 EMIT2(0x1400, dst_reg, src_reg);
669 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
671 EMIT4(0xb9800000, dst_reg, src_reg);
673 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
675 EMIT6_IMM(0xc00b0000, dst_reg, imm);
678 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
679 /* ng %dst,<d(imm)>(%l) */
680 EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
681 EMIT_CONST_U64(imm));
686 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
688 EMIT2(0x1600, dst_reg, src_reg);
691 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
693 EMIT4(0xb9810000, dst_reg, src_reg);
695 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
697 EMIT6_IMM(0xc00d0000, dst_reg, imm);
700 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
701 /* og %dst,<d(imm)>(%l) */
702 EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
703 EMIT_CONST_U64(imm));
708 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
710 EMIT2(0x1700, dst_reg, src_reg);
713 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
715 EMIT4(0xb9820000, dst_reg, src_reg);
717 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
721 EMIT6_IMM(0xc0070000, dst_reg, imm);
724 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
725 /* xg %dst,<d(imm)>(%l) */
726 EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
727 EMIT_CONST_U64(imm));
732 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
733 /* sll %dst,0(%src) */
734 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
737 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
738 /* sllg %dst,%dst,0(%src) */
739 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
741 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
744 /* sll %dst,imm(%r0) */
745 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
748 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
751 /* sllg %dst,%dst,imm(%r0) */
752 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
757 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
758 /* srl %dst,0(%src) */
759 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
762 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
763 /* srlg %dst,%dst,0(%src) */
764 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
766 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
769 /* srl %dst,imm(%r0) */
770 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
773 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
776 /* srlg %dst,%dst,imm(%r0) */
777 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
782 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
783 /* srag %dst,%dst,0(%src) */
784 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
786 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
789 /* srag %dst,%dst,imm(%r0) */
790 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
795 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
797 EMIT2(0x1300, dst_reg, dst_reg);
800 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
802 EMIT4(0xb9130000, dst_reg, dst_reg);
807 case BPF_ALU | BPF_END | BPF_FROM_BE:
808 /* s390 is big endian, therefore only clear high order bytes */
810 case 16: /* dst = (u16) cpu_to_be16(dst) */
811 /* llghr %dst,%dst */
812 EMIT4(0xb9850000, dst_reg, dst_reg);
814 case 32: /* dst = (u32) cpu_to_be32(dst) */
815 /* llgfr %dst,%dst */
816 EMIT4(0xb9160000, dst_reg, dst_reg);
818 case 64: /* dst = (u64) cpu_to_be64(dst) */
822 case BPF_ALU | BPF_END | BPF_FROM_LE:
824 case 16: /* dst = (u16) cpu_to_le16(dst) */
826 EMIT4(0xb91f0000, dst_reg, dst_reg);
827 /* srl %dst,16(%r0) */
828 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
829 /* llghr %dst,%dst */
830 EMIT4(0xb9850000, dst_reg, dst_reg);
832 case 32: /* dst = (u32) cpu_to_le32(dst) */
834 EMIT4(0xb91f0000, dst_reg, dst_reg);
835 /* llgfr %dst,%dst */
836 EMIT4(0xb9160000, dst_reg, dst_reg);
838 case 64: /* dst = (u64) cpu_to_le64(dst) */
839 /* lrvgr %dst,%dst */
840 EMIT4(0xb90f0000, dst_reg, dst_reg);
847 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
848 /* stcy %src,off(%dst) */
849 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
850 jit->seen |= SEEN_MEM;
852 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
853 /* sthy %src,off(%dst) */
854 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
855 jit->seen |= SEEN_MEM;
857 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
858 /* sty %src,off(%dst) */
859 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
860 jit->seen |= SEEN_MEM;
862 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
863 /* stg %src,off(%dst) */
864 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
865 jit->seen |= SEEN_MEM;
867 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
869 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
870 /* stcy %w0,off(dst) */
871 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
872 jit->seen |= SEEN_MEM;
874 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
876 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
877 /* sthy %w0,off(dst) */
878 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
879 jit->seen |= SEEN_MEM;
881 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
883 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
884 /* sty %w0,off(%dst) */
885 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
886 jit->seen |= SEEN_MEM;
888 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
890 EMIT6_IMM(0xc0010000, REG_W0, imm);
891 /* stg %w0,off(%dst) */
892 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
893 jit->seen |= SEEN_MEM;
896 * BPF_STX XADD (atomic_add)
898 case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
899 /* laal %w0,%src,off(%dst) */
900 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
902 jit->seen |= SEEN_MEM;
904 case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
905 /* laalg %w0,%src,off(%dst) */
906 EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
908 jit->seen |= SEEN_MEM;
913 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
914 /* llgc %dst,0(off,%src) */
915 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
916 jit->seen |= SEEN_MEM;
918 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
919 /* llgh %dst,0(off,%src) */
920 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
921 jit->seen |= SEEN_MEM;
923 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
924 /* llgf %dst,off(%src) */
925 jit->seen |= SEEN_MEM;
926 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
928 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
929 /* lg %dst,0(off,%src) */
930 jit->seen |= SEEN_MEM;
931 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
936 case BPF_JMP | BPF_CALL:
939 * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
941 const u64 func = (u64)__bpf_call_base + imm;
943 REG_SET_SEEN(BPF_REG_5);
944 jit->seen |= SEEN_FUNC;
945 /* lg %w1,<d(imm)>(%l) */
946 EMIT6_DISP(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
947 EMIT_CONST_U64(func));
949 EMIT2(0x0d00, REG_14, REG_W1);
950 /* lgr %b0,%r2: load return value into %b0 */
951 EMIT4(0xb9040000, BPF_REG_0, REG_2);
954 case BPF_JMP | BPF_EXIT: /* return b0 */
955 last = (i == fp->len - 1) ? 1 : 0;
956 if (last && !(jit->seen & SEEN_RET0))
959 EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
962 * Branch relative (number of skipped instructions) to offset on
965 * Condition code to mask mapping:
967 * CC | Description | Mask
968 * ------------------------------
969 * 0 | Operands equal | 8
970 * 1 | First operand low | 4
971 * 2 | First operand high | 2
974 * For s390x relative branches: ip = ip + off_bytes
975 * For BPF relative branches: insn = insn + off_insns + 1
977 * For example for s390x with offset 0 we jump to the branch
978 * instruction itself (loop) and for BPF with offset 0 we
979 * branch to the instruction behind the branch.
981 case BPF_JMP | BPF_JA: /* if (true) */
982 mask = 0xf000; /* j */
984 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
985 mask = 0x2000; /* jh */
987 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
988 mask = 0xa000; /* jhe */
990 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
991 mask = 0x2000; /* jh */
993 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
994 mask = 0xa000; /* jhe */
996 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
997 mask = 0x7000; /* jne */
999 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1000 mask = 0x8000; /* je */
1002 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1003 mask = 0x7000; /* jnz */
1004 /* lgfi %w1,imm (load sign extend imm) */
1005 EMIT6_IMM(0xc0010000, REG_W1, imm);
1007 EMIT4(0xb9800000, REG_W1, dst_reg);
1010 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1011 mask = 0x2000; /* jh */
1013 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1014 mask = 0xa000; /* jhe */
1016 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1017 mask = 0x2000; /* jh */
1019 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1020 mask = 0xa000; /* jhe */
1022 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1023 mask = 0x7000; /* jne */
1025 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1026 mask = 0x8000; /* je */
1028 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1029 mask = 0x7000; /* jnz */
1030 /* ngrk %w1,%dst,%src */
1031 EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
1034 /* lgfi %w1,imm (load sign extend imm) */
1035 EMIT6_IMM(0xc0010000, REG_W1, imm);
1036 /* cgrj %dst,%w1,mask,off */
1037 EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
1040 /* lgfi %w1,imm (load sign extend imm) */
1041 EMIT6_IMM(0xc0010000, REG_W1, imm);
1042 /* clgrj %dst,%w1,mask,off */
1043 EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
1046 /* cgrj %dst,%src,mask,off */
1047 EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
1050 /* clgrj %dst,%src,mask,off */
1051 EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
1054 /* brc mask,jmp_off (branch instruction needs 4 bytes) */
1055 jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1056 EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
1061 case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
1062 case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
1063 if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1064 func_addr = __pa(sk_load_byte_pos);
1066 func_addr = __pa(sk_load_byte);
1068 case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
1069 case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
1070 if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1071 func_addr = __pa(sk_load_half_pos);
1073 func_addr = __pa(sk_load_half);
1075 case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
1076 case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
1077 if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1078 func_addr = __pa(sk_load_word_pos);
1080 func_addr = __pa(sk_load_word);
1083 jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
1084 REG_SET_SEEN(REG_14); /* Return address of possible func call */
1088 * BPF_REG_6 (R7) : skb pointer
1089 * REG_SKB_DATA (R12): skb data pointer
1092 * BPF_REG_2 (R3) : offset of byte(s) to fetch in skb
1093 * BPF_REG_5 (R6) : return address
1096 * BPF_REG_0 (R14): data read from skb
1098 * Scratch registers (BPF_REG_1-5)
1101 /* Call function: llilf %w1,func_addr */
1102 EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
1104 /* Offset: lgfi %b2,imm */
1105 EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
1106 if (BPF_MODE(insn->code) == BPF_IND)
1107 /* agfr %b2,%src (%src is s32 here) */
1108 EMIT4(0xb9180000, BPF_REG_2, src_reg);
1110 /* basr %b5,%w1 (%b5 is call saved) */
1111 EMIT2(0x0d00, BPF_REG_5, REG_W1);
1114 * Note: For fast access we jump directly after the
1115 * jnz instruction from bpf_jit.S
1118 EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
1120 default: /* too complex, give up */
1121 pr_err("Unknown opcode %02x\n", insn->code);
1128 * Compile eBPF program into s390x code
1130 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
1134 jit->lit = jit->lit_start;
1137 bpf_jit_prologue(jit);
1138 for (i = 0; i < fp->len; i += insn_count) {
1139 insn_count = bpf_jit_insn(jit, fp, i);
1142 jit->addrs[i + 1] = jit->prg; /* Next instruction address */
1144 bpf_jit_epilogue(jit);
1146 jit->lit_start = jit->prg;
1147 jit->size = jit->lit;
1148 jit->size_prg = jit->prg;
1153 * Classic BPF function stub. BPF programs will be converted into
1154 * eBPF and then bpf_int_jit_compile() will be called.
1156 void bpf_jit_compile(struct bpf_prog *fp)
1161 * Compile eBPF program "fp"
1163 void bpf_int_jit_compile(struct bpf_prog *fp)
1165 struct bpf_binary_header *header;
1169 if (!bpf_jit_enable)
1171 memset(&jit, 0, sizeof(jit));
1172 jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1173 if (jit.addrs == NULL)
1176 * Three initial passes:
1177 * - 1/2: Determine clobbered registers
1178 * - 3: Calculate program size and addrs arrray
1180 for (pass = 1; pass <= 3; pass++) {
1181 if (bpf_jit_prog(&jit, fp))
1185 * Final pass: Allocate and generate program
1187 if (jit.size >= BPF_SIZE_MAX)
1189 header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1192 if (bpf_jit_prog(&jit, fp))
1194 if (bpf_jit_enable > 1) {
1195 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1197 print_fn_code(jit.prg_buf, jit.size_prg);
1200 set_memory_ro((unsigned long)header, header->pages);
1201 fp->bpf_func = (void *) jit.prg_buf;
1211 void bpf_jit_free(struct bpf_prog *fp)
1213 unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1214 struct bpf_binary_header *header = (void *)addr;
1219 set_memory_rw(addr, header->pages);
1220 bpf_jit_binary_free(header);
1223 bpf_prog_unlock_free(fp);