]> Git Repo - linux.git/blob - net/core/dev.c
net: page_pool: add nlspec for basic access to page pools
[linux.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <[email protected]>
8  *                              Mark Evans, <[email protected]>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <[email protected]>
12  *              Alan Cox <[email protected]>
13  *              David Hinds <[email protected]>
14  *              Alexey Kuznetsov <[email protected]>
15  *              Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156
157 #include "dev.h"
158 #include "net-sysfs.h"
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         kfree(name_node->name);
349         netdev_name_node_free(name_node);
350 }
351
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354         struct netdev_name_node *name_node;
355         struct net *net = dev_net(dev);
356
357         name_node = netdev_name_node_lookup(net, name);
358         if (!name_node)
359                 return -ENOENT;
360         /* lookup might have found our primary name or a name belonging
361          * to another device.
362          */
363         if (name_node == dev->name_node || name_node->dev != dev)
364                 return -EINVAL;
365
366         netdev_name_node_del(name_node);
367         synchronize_rcu();
368         __netdev_name_node_alt_destroy(name_node);
369
370         return 0;
371 }
372
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375         struct netdev_name_node *name_node, *tmp;
376
377         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378                 __netdev_name_node_alt_destroy(name_node);
379 }
380
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384         struct netdev_name_node *name_node;
385         struct net *net = dev_net(dev);
386
387         ASSERT_RTNL();
388
389         write_lock(&dev_base_lock);
390         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391         netdev_name_node_add(net, dev->name_node);
392         hlist_add_head_rcu(&dev->index_hlist,
393                            dev_index_hash(net, dev->ifindex));
394         write_unlock(&dev_base_lock);
395
396         netdev_for_each_altname(dev, name_node)
397                 netdev_name_node_add(net, name_node);
398
399         /* We reserved the ifindex, this can't fail */
400         WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401
402         dev_base_seq_inc(net);
403 }
404
405 /* Device list removal
406  * caller must respect a RCU grace period before freeing/reusing dev
407  */
408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410         struct netdev_name_node *name_node;
411         struct net *net = dev_net(dev);
412
413         ASSERT_RTNL();
414
415         xa_erase(&net->dev_by_index, dev->ifindex);
416
417         netdev_for_each_altname(dev, name_node)
418                 netdev_name_node_del(name_node);
419
420         /* Unlink dev from the device chain */
421         if (lock)
422                 write_lock(&dev_base_lock);
423         list_del_rcu(&dev->dev_list);
424         netdev_name_node_del(dev->name_node);
425         hlist_del_rcu(&dev->index_hlist);
426         if (lock)
427                 write_unlock(&dev_base_lock);
428
429         dev_base_seq_inc(dev_net(dev));
430 }
431
432 /*
433  *      Our notifier list
434  */
435
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437
438 /*
439  *      Device drivers call our routines to queue packets here. We empty the
440  *      queue in the local softnet handler.
441  */
442
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445
446 #ifdef CONFIG_LOCKDEP
447 /*
448  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449  * according to dev->type
450  */
451 static const unsigned short netdev_lock_type[] = {
452          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467
468 static const char *const netdev_lock_name[] = {
469         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487
488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490         int i;
491
492         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493                 if (netdev_lock_type[i] == dev_type)
494                         return i;
495         /* the last key is used by default */
496         return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498
499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500                                                  unsigned short dev_type)
501 {
502         int i;
503
504         i = netdev_lock_pos(dev_type);
505         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506                                    netdev_lock_name[i]);
507 }
508
509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511         int i;
512
513         i = netdev_lock_pos(dev->type);
514         lockdep_set_class_and_name(&dev->addr_list_lock,
515                                    &netdev_addr_lock_key[i],
516                                    netdev_lock_name[i]);
517 }
518 #else
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520                                                  unsigned short dev_type)
521 {
522 }
523
524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528
529 /*******************************************************************************
530  *
531  *              Protocol management and registration routines
532  *
533  *******************************************************************************/
534
535
536 /*
537  *      Add a protocol ID to the list. Now that the input handler is
538  *      smarter we can dispense with all the messy stuff that used to be
539  *      here.
540  *
541  *      BEWARE!!! Protocol handlers, mangling input packets,
542  *      MUST BE last in hash buckets and checking protocol handlers
543  *      MUST start from promiscuous ptype_all chain in net_bh.
544  *      It is true now, do not change it.
545  *      Explanation follows: if protocol handler, mangling packet, will
546  *      be the first on list, it is not able to sense, that packet
547  *      is cloned and should be copied-on-write, so that it will
548  *      change it and subsequent readers will get broken packet.
549  *                                                      --ANK (980803)
550  */
551
552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554         if (pt->type == htons(ETH_P_ALL))
555                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556         else
557                 return pt->dev ? &pt->dev->ptype_specific :
558                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560
561 /**
562  *      dev_add_pack - add packet handler
563  *      @pt: packet type declaration
564  *
565  *      Add a protocol handler to the networking stack. The passed &packet_type
566  *      is linked into kernel lists and may not be freed until it has been
567  *      removed from the kernel lists.
568  *
569  *      This call does not sleep therefore it can not
570  *      guarantee all CPU's that are in middle of receiving packets
571  *      will see the new packet type (until the next received packet).
572  */
573
574 void dev_add_pack(struct packet_type *pt)
575 {
576         struct list_head *head = ptype_head(pt);
577
578         spin_lock(&ptype_lock);
579         list_add_rcu(&pt->list, head);
580         spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583
584 /**
585  *      __dev_remove_pack        - remove packet handler
586  *      @pt: packet type declaration
587  *
588  *      Remove a protocol handler that was previously added to the kernel
589  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
590  *      from the kernel lists and can be freed or reused once this function
591  *      returns.
592  *
593  *      The packet type might still be in use by receivers
594  *      and must not be freed until after all the CPU's have gone
595  *      through a quiescent state.
596  */
597 void __dev_remove_pack(struct packet_type *pt)
598 {
599         struct list_head *head = ptype_head(pt);
600         struct packet_type *pt1;
601
602         spin_lock(&ptype_lock);
603
604         list_for_each_entry(pt1, head, list) {
605                 if (pt == pt1) {
606                         list_del_rcu(&pt->list);
607                         goto out;
608                 }
609         }
610
611         pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613         spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616
617 /**
618  *      dev_remove_pack  - remove packet handler
619  *      @pt: packet type declaration
620  *
621  *      Remove a protocol handler that was previously added to the kernel
622  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
623  *      from the kernel lists and can be freed or reused once this function
624  *      returns.
625  *
626  *      This call sleeps to guarantee that no CPU is looking at the packet
627  *      type after return.
628  */
629 void dev_remove_pack(struct packet_type *pt)
630 {
631         __dev_remove_pack(pt);
632
633         synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636
637
638 /*******************************************************************************
639  *
640  *                          Device Interface Subroutines
641  *
642  *******************************************************************************/
643
644 /**
645  *      dev_get_iflink  - get 'iflink' value of a interface
646  *      @dev: targeted interface
647  *
648  *      Indicates the ifindex the interface is linked to.
649  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
650  */
651
652 int dev_get_iflink(const struct net_device *dev)
653 {
654         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655                 return dev->netdev_ops->ndo_get_iflink(dev);
656
657         return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660
661 /**
662  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
663  *      @dev: targeted interface
664  *      @skb: The packet.
665  *
666  *      For better visibility of tunnel traffic OVS needs to retrieve
667  *      egress tunnel information for a packet. Following API allows
668  *      user to get this info.
669  */
670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672         struct ip_tunnel_info *info;
673
674         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
675                 return -EINVAL;
676
677         info = skb_tunnel_info_unclone(skb);
678         if (!info)
679                 return -ENOMEM;
680         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681                 return -EINVAL;
682
683         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686
687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689         int k = stack->num_paths++;
690
691         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692                 return NULL;
693
694         return &stack->path[k];
695 }
696
697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698                           struct net_device_path_stack *stack)
699 {
700         const struct net_device *last_dev;
701         struct net_device_path_ctx ctx = {
702                 .dev    = dev,
703         };
704         struct net_device_path *path;
705         int ret = 0;
706
707         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708         stack->num_paths = 0;
709         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710                 last_dev = ctx.dev;
711                 path = dev_fwd_path(stack);
712                 if (!path)
713                         return -1;
714
715                 memset(path, 0, sizeof(struct net_device_path));
716                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717                 if (ret < 0)
718                         return -1;
719
720                 if (WARN_ON_ONCE(last_dev == ctx.dev))
721                         return -1;
722         }
723
724         if (!ctx.dev)
725                 return ret;
726
727         path = dev_fwd_path(stack);
728         if (!path)
729                 return -1;
730         path->type = DEV_PATH_ETHERNET;
731         path->dev = ctx.dev;
732
733         return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736
737 /**
738  *      __dev_get_by_name       - find a device by its name
739  *      @net: the applicable net namespace
740  *      @name: name to find
741  *
742  *      Find an interface by name. Must be called under RTNL semaphore
743  *      or @dev_base_lock. If the name is found a pointer to the device
744  *      is returned. If the name is not found then %NULL is returned. The
745  *      reference counters are not incremented so the caller must be
746  *      careful with locks.
747  */
748
749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751         struct netdev_name_node *node_name;
752
753         node_name = netdev_name_node_lookup(net, name);
754         return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757
758 /**
759  * dev_get_by_name_rcu  - find a device by its name
760  * @net: the applicable net namespace
761  * @name: name to find
762  *
763  * Find an interface by name.
764  * If the name is found a pointer to the device is returned.
765  * If the name is not found then %NULL is returned.
766  * The reference counters are not incremented so the caller must be
767  * careful with locks. The caller must hold RCU lock.
768  */
769
770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772         struct netdev_name_node *node_name;
773
774         node_name = netdev_name_node_lookup_rcu(net, name);
775         return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778
779 /* Deprecated for new users, call netdev_get_by_name() instead */
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782         struct net_device *dev;
783
784         rcu_read_lock();
785         dev = dev_get_by_name_rcu(net, name);
786         dev_hold(dev);
787         rcu_read_unlock();
788         return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791
792 /**
793  *      netdev_get_by_name() - find a device by its name
794  *      @net: the applicable net namespace
795  *      @name: name to find
796  *      @tracker: tracking object for the acquired reference
797  *      @gfp: allocation flags for the tracker
798  *
799  *      Find an interface by name. This can be called from any
800  *      context and does its own locking. The returned handle has
801  *      the usage count incremented and the caller must use netdev_put() to
802  *      release it when it is no longer needed. %NULL is returned if no
803  *      matching device is found.
804  */
805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806                                       netdevice_tracker *tracker, gfp_t gfp)
807 {
808         struct net_device *dev;
809
810         dev = dev_get_by_name(net, name);
811         if (dev)
812                 netdev_tracker_alloc(dev, tracker, gfp);
813         return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816
817 /**
818  *      __dev_get_by_index - find a device by its ifindex
819  *      @net: the applicable net namespace
820  *      @ifindex: index of device
821  *
822  *      Search for an interface by index. Returns %NULL if the device
823  *      is not found or a pointer to the device. The device has not
824  *      had its reference counter increased so the caller must be careful
825  *      about locking. The caller must hold either the RTNL semaphore
826  *      or @dev_base_lock.
827  */
828
829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831         struct net_device *dev;
832         struct hlist_head *head = dev_index_hash(net, ifindex);
833
834         hlist_for_each_entry(dev, head, index_hlist)
835                 if (dev->ifindex == ifindex)
836                         return dev;
837
838         return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841
842 /**
843  *      dev_get_by_index_rcu - find a device by its ifindex
844  *      @net: the applicable net namespace
845  *      @ifindex: index of device
846  *
847  *      Search for an interface by index. Returns %NULL if the device
848  *      is not found or a pointer to the device. The device has not
849  *      had its reference counter increased so the caller must be careful
850  *      about locking. The caller must hold RCU lock.
851  */
852
853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855         struct net_device *dev;
856         struct hlist_head *head = dev_index_hash(net, ifindex);
857
858         hlist_for_each_entry_rcu(dev, head, index_hlist)
859                 if (dev->ifindex == ifindex)
860                         return dev;
861
862         return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865
866 /* Deprecated for new users, call netdev_get_by_index() instead */
867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869         struct net_device *dev;
870
871         rcu_read_lock();
872         dev = dev_get_by_index_rcu(net, ifindex);
873         dev_hold(dev);
874         rcu_read_unlock();
875         return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878
879 /**
880  *      netdev_get_by_index() - find a device by its ifindex
881  *      @net: the applicable net namespace
882  *      @ifindex: index of device
883  *      @tracker: tracking object for the acquired reference
884  *      @gfp: allocation flags for the tracker
885  *
886  *      Search for an interface by index. Returns NULL if the device
887  *      is not found or a pointer to the device. The device returned has
888  *      had a reference added and the pointer is safe until the user calls
889  *      netdev_put() to indicate they have finished with it.
890  */
891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892                                        netdevice_tracker *tracker, gfp_t gfp)
893 {
894         struct net_device *dev;
895
896         dev = dev_get_by_index(net, ifindex);
897         if (dev)
898                 netdev_tracker_alloc(dev, tracker, gfp);
899         return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902
903 /**
904  *      dev_get_by_napi_id - find a device by napi_id
905  *      @napi_id: ID of the NAPI struct
906  *
907  *      Search for an interface by NAPI ID. Returns %NULL if the device
908  *      is not found or a pointer to the device. The device has not had
909  *      its reference counter increased so the caller must be careful
910  *      about locking. The caller must hold RCU lock.
911  */
912
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915         struct napi_struct *napi;
916
917         WARN_ON_ONCE(!rcu_read_lock_held());
918
919         if (napi_id < MIN_NAPI_ID)
920                 return NULL;
921
922         napi = napi_by_id(napi_id);
923
924         return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927
928 /**
929  *      netdev_get_name - get a netdevice name, knowing its ifindex.
930  *      @net: network namespace
931  *      @name: a pointer to the buffer where the name will be stored.
932  *      @ifindex: the ifindex of the interface to get the name from.
933  */
934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936         struct net_device *dev;
937         int ret;
938
939         down_read(&devnet_rename_sem);
940         rcu_read_lock();
941
942         dev = dev_get_by_index_rcu(net, ifindex);
943         if (!dev) {
944                 ret = -ENODEV;
945                 goto out;
946         }
947
948         strcpy(name, dev->name);
949
950         ret = 0;
951 out:
952         rcu_read_unlock();
953         up_read(&devnet_rename_sem);
954         return ret;
955 }
956
957 /**
958  *      dev_getbyhwaddr_rcu - find a device by its hardware address
959  *      @net: the applicable net namespace
960  *      @type: media type of device
961  *      @ha: hardware address
962  *
963  *      Search for an interface by MAC address. Returns NULL if the device
964  *      is not found or a pointer to the device.
965  *      The caller must hold RCU or RTNL.
966  *      The returned device has not had its ref count increased
967  *      and the caller must therefore be careful about locking
968  *
969  */
970
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972                                        const char *ha)
973 {
974         struct net_device *dev;
975
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type &&
978                     !memcmp(dev->dev_addr, ha, dev->addr_len))
979                         return dev;
980
981         return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984
985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987         struct net_device *dev, *ret = NULL;
988
989         rcu_read_lock();
990         for_each_netdev_rcu(net, dev)
991                 if (dev->type == type) {
992                         dev_hold(dev);
993                         ret = dev;
994                         break;
995                 }
996         rcu_read_unlock();
997         return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000
1001 /**
1002  *      __dev_get_by_flags - find any device with given flags
1003  *      @net: the applicable net namespace
1004  *      @if_flags: IFF_* values
1005  *      @mask: bitmask of bits in if_flags to check
1006  *
1007  *      Search for any interface with the given flags. Returns NULL if a device
1008  *      is not found or a pointer to the device. Must be called inside
1009  *      rtnl_lock(), and result refcount is unchanged.
1010  */
1011
1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013                                       unsigned short mask)
1014 {
1015         struct net_device *dev, *ret;
1016
1017         ASSERT_RTNL();
1018
1019         ret = NULL;
1020         for_each_netdev(net, dev) {
1021                 if (((dev->flags ^ if_flags) & mask) == 0) {
1022                         ret = dev;
1023                         break;
1024                 }
1025         }
1026         return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029
1030 /**
1031  *      dev_valid_name - check if name is okay for network device
1032  *      @name: name string
1033  *
1034  *      Network device names need to be valid file names to
1035  *      allow sysfs to work.  We also disallow any kind of
1036  *      whitespace.
1037  */
1038 bool dev_valid_name(const char *name)
1039 {
1040         if (*name == '\0')
1041                 return false;
1042         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043                 return false;
1044         if (!strcmp(name, ".") || !strcmp(name, ".."))
1045                 return false;
1046
1047         while (*name) {
1048                 if (*name == '/' || *name == ':' || isspace(*name))
1049                         return false;
1050                 name++;
1051         }
1052         return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055
1056 /**
1057  *      __dev_alloc_name - allocate a name for a device
1058  *      @net: network namespace to allocate the device name in
1059  *      @name: name format string
1060  *      @res: result name string
1061  *
1062  *      Passed a format string - eg "lt%d" it will try and find a suitable
1063  *      id. It scans list of devices to build up a free map, then chooses
1064  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1065  *      while allocating the name and adding the device in order to avoid
1066  *      duplicates.
1067  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068  *      Returns the number of the unit assigned or a negative errno code.
1069  */
1070
1071 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1072 {
1073         int i = 0;
1074         const char *p;
1075         const int max_netdevices = 8*PAGE_SIZE;
1076         unsigned long *inuse;
1077         struct net_device *d;
1078         char buf[IFNAMSIZ];
1079
1080         /* Verify the string as this thing may have come from the user.
1081          * There must be one "%d" and no other "%" characters.
1082          */
1083         p = strchr(name, '%');
1084         if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1085                 return -EINVAL;
1086
1087         /* Use one page as a bit array of possible slots */
1088         inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1089         if (!inuse)
1090                 return -ENOMEM;
1091
1092         for_each_netdev(net, d) {
1093                 struct netdev_name_node *name_node;
1094
1095                 netdev_for_each_altname(d, name_node) {
1096                         if (!sscanf(name_node->name, name, &i))
1097                                 continue;
1098                         if (i < 0 || i >= max_netdevices)
1099                                 continue;
1100
1101                         /* avoid cases where sscanf is not exact inverse of printf */
1102                         snprintf(buf, IFNAMSIZ, name, i);
1103                         if (!strncmp(buf, name_node->name, IFNAMSIZ))
1104                                 __set_bit(i, inuse);
1105                 }
1106                 if (!sscanf(d->name, name, &i))
1107                         continue;
1108                 if (i < 0 || i >= max_netdevices)
1109                         continue;
1110
1111                 /* avoid cases where sscanf is not exact inverse of printf */
1112                 snprintf(buf, IFNAMSIZ, name, i);
1113                 if (!strncmp(buf, d->name, IFNAMSIZ))
1114                         __set_bit(i, inuse);
1115         }
1116
1117         i = find_first_zero_bit(inuse, max_netdevices);
1118         bitmap_free(inuse);
1119         if (i == max_netdevices)
1120                 return -ENFILE;
1121
1122         /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1123         strscpy(buf, name, IFNAMSIZ);
1124         snprintf(res, IFNAMSIZ, buf, i);
1125         return i;
1126 }
1127
1128 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1129 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1130                                const char *want_name, char *out_name,
1131                                int dup_errno)
1132 {
1133         if (!dev_valid_name(want_name))
1134                 return -EINVAL;
1135
1136         if (strchr(want_name, '%'))
1137                 return __dev_alloc_name(net, want_name, out_name);
1138
1139         if (netdev_name_in_use(net, want_name))
1140                 return -dup_errno;
1141         if (out_name != want_name)
1142                 strscpy(out_name, want_name, IFNAMSIZ);
1143         return 0;
1144 }
1145
1146 /**
1147  *      dev_alloc_name - allocate a name for a device
1148  *      @dev: device
1149  *      @name: name format string
1150  *
1151  *      Passed a format string - eg "lt%d" it will try and find a suitable
1152  *      id. It scans list of devices to build up a free map, then chooses
1153  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1154  *      while allocating the name and adding the device in order to avoid
1155  *      duplicates.
1156  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157  *      Returns the number of the unit assigned or a negative errno code.
1158  */
1159
1160 int dev_alloc_name(struct net_device *dev, const char *name)
1161 {
1162         return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1163 }
1164 EXPORT_SYMBOL(dev_alloc_name);
1165
1166 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1167                               const char *name)
1168 {
1169         int ret;
1170
1171         ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1172         return ret < 0 ? ret : 0;
1173 }
1174
1175 /**
1176  *      dev_change_name - change name of a device
1177  *      @dev: device
1178  *      @newname: name (or format string) must be at least IFNAMSIZ
1179  *
1180  *      Change name of a device, can pass format strings "eth%d".
1181  *      for wildcarding.
1182  */
1183 int dev_change_name(struct net_device *dev, const char *newname)
1184 {
1185         unsigned char old_assign_type;
1186         char oldname[IFNAMSIZ];
1187         int err = 0;
1188         int ret;
1189         struct net *net;
1190
1191         ASSERT_RTNL();
1192         BUG_ON(!dev_net(dev));
1193
1194         net = dev_net(dev);
1195
1196         down_write(&devnet_rename_sem);
1197
1198         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1199                 up_write(&devnet_rename_sem);
1200                 return 0;
1201         }
1202
1203         memcpy(oldname, dev->name, IFNAMSIZ);
1204
1205         err = dev_get_valid_name(net, dev, newname);
1206         if (err < 0) {
1207                 up_write(&devnet_rename_sem);
1208                 return err;
1209         }
1210
1211         if (oldname[0] && !strchr(oldname, '%'))
1212                 netdev_info(dev, "renamed from %s%s\n", oldname,
1213                             dev->flags & IFF_UP ? " (while UP)" : "");
1214
1215         old_assign_type = dev->name_assign_type;
1216         dev->name_assign_type = NET_NAME_RENAMED;
1217
1218 rollback:
1219         ret = device_rename(&dev->dev, dev->name);
1220         if (ret) {
1221                 memcpy(dev->name, oldname, IFNAMSIZ);
1222                 dev->name_assign_type = old_assign_type;
1223                 up_write(&devnet_rename_sem);
1224                 return ret;
1225         }
1226
1227         up_write(&devnet_rename_sem);
1228
1229         netdev_adjacent_rename_links(dev, oldname);
1230
1231         write_lock(&dev_base_lock);
1232         netdev_name_node_del(dev->name_node);
1233         write_unlock(&dev_base_lock);
1234
1235         synchronize_rcu();
1236
1237         write_lock(&dev_base_lock);
1238         netdev_name_node_add(net, dev->name_node);
1239         write_unlock(&dev_base_lock);
1240
1241         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1242         ret = notifier_to_errno(ret);
1243
1244         if (ret) {
1245                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1246                 if (err >= 0) {
1247                         err = ret;
1248                         down_write(&devnet_rename_sem);
1249                         memcpy(dev->name, oldname, IFNAMSIZ);
1250                         memcpy(oldname, newname, IFNAMSIZ);
1251                         dev->name_assign_type = old_assign_type;
1252                         old_assign_type = NET_NAME_RENAMED;
1253                         goto rollback;
1254                 } else {
1255                         netdev_err(dev, "name change rollback failed: %d\n",
1256                                    ret);
1257                 }
1258         }
1259
1260         return err;
1261 }
1262
1263 /**
1264  *      dev_set_alias - change ifalias of a device
1265  *      @dev: device
1266  *      @alias: name up to IFALIASZ
1267  *      @len: limit of bytes to copy from info
1268  *
1269  *      Set ifalias for a device,
1270  */
1271 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1272 {
1273         struct dev_ifalias *new_alias = NULL;
1274
1275         if (len >= IFALIASZ)
1276                 return -EINVAL;
1277
1278         if (len) {
1279                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1280                 if (!new_alias)
1281                         return -ENOMEM;
1282
1283                 memcpy(new_alias->ifalias, alias, len);
1284                 new_alias->ifalias[len] = 0;
1285         }
1286
1287         mutex_lock(&ifalias_mutex);
1288         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1289                                         mutex_is_locked(&ifalias_mutex));
1290         mutex_unlock(&ifalias_mutex);
1291
1292         if (new_alias)
1293                 kfree_rcu(new_alias, rcuhead);
1294
1295         return len;
1296 }
1297 EXPORT_SYMBOL(dev_set_alias);
1298
1299 /**
1300  *      dev_get_alias - get ifalias of a device
1301  *      @dev: device
1302  *      @name: buffer to store name of ifalias
1303  *      @len: size of buffer
1304  *
1305  *      get ifalias for a device.  Caller must make sure dev cannot go
1306  *      away,  e.g. rcu read lock or own a reference count to device.
1307  */
1308 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1309 {
1310         const struct dev_ifalias *alias;
1311         int ret = 0;
1312
1313         rcu_read_lock();
1314         alias = rcu_dereference(dev->ifalias);
1315         if (alias)
1316                 ret = snprintf(name, len, "%s", alias->ifalias);
1317         rcu_read_unlock();
1318
1319         return ret;
1320 }
1321
1322 /**
1323  *      netdev_features_change - device changes features
1324  *      @dev: device to cause notification
1325  *
1326  *      Called to indicate a device has changed features.
1327  */
1328 void netdev_features_change(struct net_device *dev)
1329 {
1330         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1331 }
1332 EXPORT_SYMBOL(netdev_features_change);
1333
1334 /**
1335  *      netdev_state_change - device changes state
1336  *      @dev: device to cause notification
1337  *
1338  *      Called to indicate a device has changed state. This function calls
1339  *      the notifier chains for netdev_chain and sends a NEWLINK message
1340  *      to the routing socket.
1341  */
1342 void netdev_state_change(struct net_device *dev)
1343 {
1344         if (dev->flags & IFF_UP) {
1345                 struct netdev_notifier_change_info change_info = {
1346                         .info.dev = dev,
1347                 };
1348
1349                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1350                                               &change_info.info);
1351                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1352         }
1353 }
1354 EXPORT_SYMBOL(netdev_state_change);
1355
1356 /**
1357  * __netdev_notify_peers - notify network peers about existence of @dev,
1358  * to be called when rtnl lock is already held.
1359  * @dev: network device
1360  *
1361  * Generate traffic such that interested network peers are aware of
1362  * @dev, such as by generating a gratuitous ARP. This may be used when
1363  * a device wants to inform the rest of the network about some sort of
1364  * reconfiguration such as a failover event or virtual machine
1365  * migration.
1366  */
1367 void __netdev_notify_peers(struct net_device *dev)
1368 {
1369         ASSERT_RTNL();
1370         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1371         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1372 }
1373 EXPORT_SYMBOL(__netdev_notify_peers);
1374
1375 /**
1376  * netdev_notify_peers - notify network peers about existence of @dev
1377  * @dev: network device
1378  *
1379  * Generate traffic such that interested network peers are aware of
1380  * @dev, such as by generating a gratuitous ARP. This may be used when
1381  * a device wants to inform the rest of the network about some sort of
1382  * reconfiguration such as a failover event or virtual machine
1383  * migration.
1384  */
1385 void netdev_notify_peers(struct net_device *dev)
1386 {
1387         rtnl_lock();
1388         __netdev_notify_peers(dev);
1389         rtnl_unlock();
1390 }
1391 EXPORT_SYMBOL(netdev_notify_peers);
1392
1393 static int napi_threaded_poll(void *data);
1394
1395 static int napi_kthread_create(struct napi_struct *n)
1396 {
1397         int err = 0;
1398
1399         /* Create and wake up the kthread once to put it in
1400          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1401          * warning and work with loadavg.
1402          */
1403         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1404                                 n->dev->name, n->napi_id);
1405         if (IS_ERR(n->thread)) {
1406                 err = PTR_ERR(n->thread);
1407                 pr_err("kthread_run failed with err %d\n", err);
1408                 n->thread = NULL;
1409         }
1410
1411         return err;
1412 }
1413
1414 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1415 {
1416         const struct net_device_ops *ops = dev->netdev_ops;
1417         int ret;
1418
1419         ASSERT_RTNL();
1420         dev_addr_check(dev);
1421
1422         if (!netif_device_present(dev)) {
1423                 /* may be detached because parent is runtime-suspended */
1424                 if (dev->dev.parent)
1425                         pm_runtime_resume(dev->dev.parent);
1426                 if (!netif_device_present(dev))
1427                         return -ENODEV;
1428         }
1429
1430         /* Block netpoll from trying to do any rx path servicing.
1431          * If we don't do this there is a chance ndo_poll_controller
1432          * or ndo_poll may be running while we open the device
1433          */
1434         netpoll_poll_disable(dev);
1435
1436         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1437         ret = notifier_to_errno(ret);
1438         if (ret)
1439                 return ret;
1440
1441         set_bit(__LINK_STATE_START, &dev->state);
1442
1443         if (ops->ndo_validate_addr)
1444                 ret = ops->ndo_validate_addr(dev);
1445
1446         if (!ret && ops->ndo_open)
1447                 ret = ops->ndo_open(dev);
1448
1449         netpoll_poll_enable(dev);
1450
1451         if (ret)
1452                 clear_bit(__LINK_STATE_START, &dev->state);
1453         else {
1454                 dev->flags |= IFF_UP;
1455                 dev_set_rx_mode(dev);
1456                 dev_activate(dev);
1457                 add_device_randomness(dev->dev_addr, dev->addr_len);
1458         }
1459
1460         return ret;
1461 }
1462
1463 /**
1464  *      dev_open        - prepare an interface for use.
1465  *      @dev: device to open
1466  *      @extack: netlink extended ack
1467  *
1468  *      Takes a device from down to up state. The device's private open
1469  *      function is invoked and then the multicast lists are loaded. Finally
1470  *      the device is moved into the up state and a %NETDEV_UP message is
1471  *      sent to the netdev notifier chain.
1472  *
1473  *      Calling this function on an active interface is a nop. On a failure
1474  *      a negative errno code is returned.
1475  */
1476 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1477 {
1478         int ret;
1479
1480         if (dev->flags & IFF_UP)
1481                 return 0;
1482
1483         ret = __dev_open(dev, extack);
1484         if (ret < 0)
1485                 return ret;
1486
1487         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1488         call_netdevice_notifiers(NETDEV_UP, dev);
1489
1490         return ret;
1491 }
1492 EXPORT_SYMBOL(dev_open);
1493
1494 static void __dev_close_many(struct list_head *head)
1495 {
1496         struct net_device *dev;
1497
1498         ASSERT_RTNL();
1499         might_sleep();
1500
1501         list_for_each_entry(dev, head, close_list) {
1502                 /* Temporarily disable netpoll until the interface is down */
1503                 netpoll_poll_disable(dev);
1504
1505                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1506
1507                 clear_bit(__LINK_STATE_START, &dev->state);
1508
1509                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1510                  * can be even on different cpu. So just clear netif_running().
1511                  *
1512                  * dev->stop() will invoke napi_disable() on all of it's
1513                  * napi_struct instances on this device.
1514                  */
1515                 smp_mb__after_atomic(); /* Commit netif_running(). */
1516         }
1517
1518         dev_deactivate_many(head);
1519
1520         list_for_each_entry(dev, head, close_list) {
1521                 const struct net_device_ops *ops = dev->netdev_ops;
1522
1523                 /*
1524                  *      Call the device specific close. This cannot fail.
1525                  *      Only if device is UP
1526                  *
1527                  *      We allow it to be called even after a DETACH hot-plug
1528                  *      event.
1529                  */
1530                 if (ops->ndo_stop)
1531                         ops->ndo_stop(dev);
1532
1533                 dev->flags &= ~IFF_UP;
1534                 netpoll_poll_enable(dev);
1535         }
1536 }
1537
1538 static void __dev_close(struct net_device *dev)
1539 {
1540         LIST_HEAD(single);
1541
1542         list_add(&dev->close_list, &single);
1543         __dev_close_many(&single);
1544         list_del(&single);
1545 }
1546
1547 void dev_close_many(struct list_head *head, bool unlink)
1548 {
1549         struct net_device *dev, *tmp;
1550
1551         /* Remove the devices that don't need to be closed */
1552         list_for_each_entry_safe(dev, tmp, head, close_list)
1553                 if (!(dev->flags & IFF_UP))
1554                         list_del_init(&dev->close_list);
1555
1556         __dev_close_many(head);
1557
1558         list_for_each_entry_safe(dev, tmp, head, close_list) {
1559                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1560                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1561                 if (unlink)
1562                         list_del_init(&dev->close_list);
1563         }
1564 }
1565 EXPORT_SYMBOL(dev_close_many);
1566
1567 /**
1568  *      dev_close - shutdown an interface.
1569  *      @dev: device to shutdown
1570  *
1571  *      This function moves an active device into down state. A
1572  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1573  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1574  *      chain.
1575  */
1576 void dev_close(struct net_device *dev)
1577 {
1578         if (dev->flags & IFF_UP) {
1579                 LIST_HEAD(single);
1580
1581                 list_add(&dev->close_list, &single);
1582                 dev_close_many(&single, true);
1583                 list_del(&single);
1584         }
1585 }
1586 EXPORT_SYMBOL(dev_close);
1587
1588
1589 /**
1590  *      dev_disable_lro - disable Large Receive Offload on a device
1591  *      @dev: device
1592  *
1593  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1594  *      called under RTNL.  This is needed if received packets may be
1595  *      forwarded to another interface.
1596  */
1597 void dev_disable_lro(struct net_device *dev)
1598 {
1599         struct net_device *lower_dev;
1600         struct list_head *iter;
1601
1602         dev->wanted_features &= ~NETIF_F_LRO;
1603         netdev_update_features(dev);
1604
1605         if (unlikely(dev->features & NETIF_F_LRO))
1606                 netdev_WARN(dev, "failed to disable LRO!\n");
1607
1608         netdev_for_each_lower_dev(dev, lower_dev, iter)
1609                 dev_disable_lro(lower_dev);
1610 }
1611 EXPORT_SYMBOL(dev_disable_lro);
1612
1613 /**
1614  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1615  *      @dev: device
1616  *
1617  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1618  *      called under RTNL.  This is needed if Generic XDP is installed on
1619  *      the device.
1620  */
1621 static void dev_disable_gro_hw(struct net_device *dev)
1622 {
1623         dev->wanted_features &= ~NETIF_F_GRO_HW;
1624         netdev_update_features(dev);
1625
1626         if (unlikely(dev->features & NETIF_F_GRO_HW))
1627                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1628 }
1629
1630 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1631 {
1632 #define N(val)                                          \
1633         case NETDEV_##val:                              \
1634                 return "NETDEV_" __stringify(val);
1635         switch (cmd) {
1636         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1637         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1638         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1639         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1640         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1641         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1642         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1643         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1644         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1645         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1646         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1647         N(XDP_FEAT_CHANGE)
1648         }
1649 #undef N
1650         return "UNKNOWN_NETDEV_EVENT";
1651 }
1652 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1653
1654 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1655                                    struct net_device *dev)
1656 {
1657         struct netdev_notifier_info info = {
1658                 .dev = dev,
1659         };
1660
1661         return nb->notifier_call(nb, val, &info);
1662 }
1663
1664 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1665                                              struct net_device *dev)
1666 {
1667         int err;
1668
1669         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1670         err = notifier_to_errno(err);
1671         if (err)
1672                 return err;
1673
1674         if (!(dev->flags & IFF_UP))
1675                 return 0;
1676
1677         call_netdevice_notifier(nb, NETDEV_UP, dev);
1678         return 0;
1679 }
1680
1681 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1682                                                 struct net_device *dev)
1683 {
1684         if (dev->flags & IFF_UP) {
1685                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1686                                         dev);
1687                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1688         }
1689         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1690 }
1691
1692 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1693                                                  struct net *net)
1694 {
1695         struct net_device *dev;
1696         int err;
1697
1698         for_each_netdev(net, dev) {
1699                 err = call_netdevice_register_notifiers(nb, dev);
1700                 if (err)
1701                         goto rollback;
1702         }
1703         return 0;
1704
1705 rollback:
1706         for_each_netdev_continue_reverse(net, dev)
1707                 call_netdevice_unregister_notifiers(nb, dev);
1708         return err;
1709 }
1710
1711 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1712                                                     struct net *net)
1713 {
1714         struct net_device *dev;
1715
1716         for_each_netdev(net, dev)
1717                 call_netdevice_unregister_notifiers(nb, dev);
1718 }
1719
1720 static int dev_boot_phase = 1;
1721
1722 /**
1723  * register_netdevice_notifier - register a network notifier block
1724  * @nb: notifier
1725  *
1726  * Register a notifier to be called when network device events occur.
1727  * The notifier passed is linked into the kernel structures and must
1728  * not be reused until it has been unregistered. A negative errno code
1729  * is returned on a failure.
1730  *
1731  * When registered all registration and up events are replayed
1732  * to the new notifier to allow device to have a race free
1733  * view of the network device list.
1734  */
1735
1736 int register_netdevice_notifier(struct notifier_block *nb)
1737 {
1738         struct net *net;
1739         int err;
1740
1741         /* Close race with setup_net() and cleanup_net() */
1742         down_write(&pernet_ops_rwsem);
1743         rtnl_lock();
1744         err = raw_notifier_chain_register(&netdev_chain, nb);
1745         if (err)
1746                 goto unlock;
1747         if (dev_boot_phase)
1748                 goto unlock;
1749         for_each_net(net) {
1750                 err = call_netdevice_register_net_notifiers(nb, net);
1751                 if (err)
1752                         goto rollback;
1753         }
1754
1755 unlock:
1756         rtnl_unlock();
1757         up_write(&pernet_ops_rwsem);
1758         return err;
1759
1760 rollback:
1761         for_each_net_continue_reverse(net)
1762                 call_netdevice_unregister_net_notifiers(nb, net);
1763
1764         raw_notifier_chain_unregister(&netdev_chain, nb);
1765         goto unlock;
1766 }
1767 EXPORT_SYMBOL(register_netdevice_notifier);
1768
1769 /**
1770  * unregister_netdevice_notifier - unregister a network notifier block
1771  * @nb: notifier
1772  *
1773  * Unregister a notifier previously registered by
1774  * register_netdevice_notifier(). The notifier is unlinked into the
1775  * kernel structures and may then be reused. A negative errno code
1776  * is returned on a failure.
1777  *
1778  * After unregistering unregister and down device events are synthesized
1779  * for all devices on the device list to the removed notifier to remove
1780  * the need for special case cleanup code.
1781  */
1782
1783 int unregister_netdevice_notifier(struct notifier_block *nb)
1784 {
1785         struct net *net;
1786         int err;
1787
1788         /* Close race with setup_net() and cleanup_net() */
1789         down_write(&pernet_ops_rwsem);
1790         rtnl_lock();
1791         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1792         if (err)
1793                 goto unlock;
1794
1795         for_each_net(net)
1796                 call_netdevice_unregister_net_notifiers(nb, net);
1797
1798 unlock:
1799         rtnl_unlock();
1800         up_write(&pernet_ops_rwsem);
1801         return err;
1802 }
1803 EXPORT_SYMBOL(unregister_netdevice_notifier);
1804
1805 static int __register_netdevice_notifier_net(struct net *net,
1806                                              struct notifier_block *nb,
1807                                              bool ignore_call_fail)
1808 {
1809         int err;
1810
1811         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1812         if (err)
1813                 return err;
1814         if (dev_boot_phase)
1815                 return 0;
1816
1817         err = call_netdevice_register_net_notifiers(nb, net);
1818         if (err && !ignore_call_fail)
1819                 goto chain_unregister;
1820
1821         return 0;
1822
1823 chain_unregister:
1824         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1825         return err;
1826 }
1827
1828 static int __unregister_netdevice_notifier_net(struct net *net,
1829                                                struct notifier_block *nb)
1830 {
1831         int err;
1832
1833         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1834         if (err)
1835                 return err;
1836
1837         call_netdevice_unregister_net_notifiers(nb, net);
1838         return 0;
1839 }
1840
1841 /**
1842  * register_netdevice_notifier_net - register a per-netns network notifier block
1843  * @net: network namespace
1844  * @nb: notifier
1845  *
1846  * Register a notifier to be called when network device events occur.
1847  * The notifier passed is linked into the kernel structures and must
1848  * not be reused until it has been unregistered. A negative errno code
1849  * is returned on a failure.
1850  *
1851  * When registered all registration and up events are replayed
1852  * to the new notifier to allow device to have a race free
1853  * view of the network device list.
1854  */
1855
1856 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1857 {
1858         int err;
1859
1860         rtnl_lock();
1861         err = __register_netdevice_notifier_net(net, nb, false);
1862         rtnl_unlock();
1863         return err;
1864 }
1865 EXPORT_SYMBOL(register_netdevice_notifier_net);
1866
1867 /**
1868  * unregister_netdevice_notifier_net - unregister a per-netns
1869  *                                     network notifier block
1870  * @net: network namespace
1871  * @nb: notifier
1872  *
1873  * Unregister a notifier previously registered by
1874  * register_netdevice_notifier_net(). The notifier is unlinked from the
1875  * kernel structures and may then be reused. A negative errno code
1876  * is returned on a failure.
1877  *
1878  * After unregistering unregister and down device events are synthesized
1879  * for all devices on the device list to the removed notifier to remove
1880  * the need for special case cleanup code.
1881  */
1882
1883 int unregister_netdevice_notifier_net(struct net *net,
1884                                       struct notifier_block *nb)
1885 {
1886         int err;
1887
1888         rtnl_lock();
1889         err = __unregister_netdevice_notifier_net(net, nb);
1890         rtnl_unlock();
1891         return err;
1892 }
1893 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1894
1895 static void __move_netdevice_notifier_net(struct net *src_net,
1896                                           struct net *dst_net,
1897                                           struct notifier_block *nb)
1898 {
1899         __unregister_netdevice_notifier_net(src_net, nb);
1900         __register_netdevice_notifier_net(dst_net, nb, true);
1901 }
1902
1903 int register_netdevice_notifier_dev_net(struct net_device *dev,
1904                                         struct notifier_block *nb,
1905                                         struct netdev_net_notifier *nn)
1906 {
1907         int err;
1908
1909         rtnl_lock();
1910         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1911         if (!err) {
1912                 nn->nb = nb;
1913                 list_add(&nn->list, &dev->net_notifier_list);
1914         }
1915         rtnl_unlock();
1916         return err;
1917 }
1918 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1919
1920 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1921                                           struct notifier_block *nb,
1922                                           struct netdev_net_notifier *nn)
1923 {
1924         int err;
1925
1926         rtnl_lock();
1927         list_del(&nn->list);
1928         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1929         rtnl_unlock();
1930         return err;
1931 }
1932 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1933
1934 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1935                                              struct net *net)
1936 {
1937         struct netdev_net_notifier *nn;
1938
1939         list_for_each_entry(nn, &dev->net_notifier_list, list)
1940                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1941 }
1942
1943 /**
1944  *      call_netdevice_notifiers_info - call all network notifier blocks
1945  *      @val: value passed unmodified to notifier function
1946  *      @info: notifier information data
1947  *
1948  *      Call all network notifier blocks.  Parameters and return value
1949  *      are as for raw_notifier_call_chain().
1950  */
1951
1952 int call_netdevice_notifiers_info(unsigned long val,
1953                                   struct netdev_notifier_info *info)
1954 {
1955         struct net *net = dev_net(info->dev);
1956         int ret;
1957
1958         ASSERT_RTNL();
1959
1960         /* Run per-netns notifier block chain first, then run the global one.
1961          * Hopefully, one day, the global one is going to be removed after
1962          * all notifier block registrators get converted to be per-netns.
1963          */
1964         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1965         if (ret & NOTIFY_STOP_MASK)
1966                 return ret;
1967         return raw_notifier_call_chain(&netdev_chain, val, info);
1968 }
1969
1970 /**
1971  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1972  *                                             for and rollback on error
1973  *      @val_up: value passed unmodified to notifier function
1974  *      @val_down: value passed unmodified to the notifier function when
1975  *                 recovering from an error on @val_up
1976  *      @info: notifier information data
1977  *
1978  *      Call all per-netns network notifier blocks, but not notifier blocks on
1979  *      the global notifier chain. Parameters and return value are as for
1980  *      raw_notifier_call_chain_robust().
1981  */
1982
1983 static int
1984 call_netdevice_notifiers_info_robust(unsigned long val_up,
1985                                      unsigned long val_down,
1986                                      struct netdev_notifier_info *info)
1987 {
1988         struct net *net = dev_net(info->dev);
1989
1990         ASSERT_RTNL();
1991
1992         return raw_notifier_call_chain_robust(&net->netdev_chain,
1993                                               val_up, val_down, info);
1994 }
1995
1996 static int call_netdevice_notifiers_extack(unsigned long val,
1997                                            struct net_device *dev,
1998                                            struct netlink_ext_ack *extack)
1999 {
2000         struct netdev_notifier_info info = {
2001                 .dev = dev,
2002                 .extack = extack,
2003         };
2004
2005         return call_netdevice_notifiers_info(val, &info);
2006 }
2007
2008 /**
2009  *      call_netdevice_notifiers - call all network notifier blocks
2010  *      @val: value passed unmodified to notifier function
2011  *      @dev: net_device pointer passed unmodified to notifier function
2012  *
2013  *      Call all network notifier blocks.  Parameters and return value
2014  *      are as for raw_notifier_call_chain().
2015  */
2016
2017 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2018 {
2019         return call_netdevice_notifiers_extack(val, dev, NULL);
2020 }
2021 EXPORT_SYMBOL(call_netdevice_notifiers);
2022
2023 /**
2024  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2025  *      @val: value passed unmodified to notifier function
2026  *      @dev: net_device pointer passed unmodified to notifier function
2027  *      @arg: additional u32 argument passed to the notifier function
2028  *
2029  *      Call all network notifier blocks.  Parameters and return value
2030  *      are as for raw_notifier_call_chain().
2031  */
2032 static int call_netdevice_notifiers_mtu(unsigned long val,
2033                                         struct net_device *dev, u32 arg)
2034 {
2035         struct netdev_notifier_info_ext info = {
2036                 .info.dev = dev,
2037                 .ext.mtu = arg,
2038         };
2039
2040         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2041
2042         return call_netdevice_notifiers_info(val, &info.info);
2043 }
2044
2045 #ifdef CONFIG_NET_INGRESS
2046 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2047
2048 void net_inc_ingress_queue(void)
2049 {
2050         static_branch_inc(&ingress_needed_key);
2051 }
2052 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2053
2054 void net_dec_ingress_queue(void)
2055 {
2056         static_branch_dec(&ingress_needed_key);
2057 }
2058 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2059 #endif
2060
2061 #ifdef CONFIG_NET_EGRESS
2062 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2063
2064 void net_inc_egress_queue(void)
2065 {
2066         static_branch_inc(&egress_needed_key);
2067 }
2068 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2069
2070 void net_dec_egress_queue(void)
2071 {
2072         static_branch_dec(&egress_needed_key);
2073 }
2074 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2075 #endif
2076
2077 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2078 EXPORT_SYMBOL(netstamp_needed_key);
2079 #ifdef CONFIG_JUMP_LABEL
2080 static atomic_t netstamp_needed_deferred;
2081 static atomic_t netstamp_wanted;
2082 static void netstamp_clear(struct work_struct *work)
2083 {
2084         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2085         int wanted;
2086
2087         wanted = atomic_add_return(deferred, &netstamp_wanted);
2088         if (wanted > 0)
2089                 static_branch_enable(&netstamp_needed_key);
2090         else
2091                 static_branch_disable(&netstamp_needed_key);
2092 }
2093 static DECLARE_WORK(netstamp_work, netstamp_clear);
2094 #endif
2095
2096 void net_enable_timestamp(void)
2097 {
2098 #ifdef CONFIG_JUMP_LABEL
2099         int wanted = atomic_read(&netstamp_wanted);
2100
2101         while (wanted > 0) {
2102                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2103                         return;
2104         }
2105         atomic_inc(&netstamp_needed_deferred);
2106         schedule_work(&netstamp_work);
2107 #else
2108         static_branch_inc(&netstamp_needed_key);
2109 #endif
2110 }
2111 EXPORT_SYMBOL(net_enable_timestamp);
2112
2113 void net_disable_timestamp(void)
2114 {
2115 #ifdef CONFIG_JUMP_LABEL
2116         int wanted = atomic_read(&netstamp_wanted);
2117
2118         while (wanted > 1) {
2119                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2120                         return;
2121         }
2122         atomic_dec(&netstamp_needed_deferred);
2123         schedule_work(&netstamp_work);
2124 #else
2125         static_branch_dec(&netstamp_needed_key);
2126 #endif
2127 }
2128 EXPORT_SYMBOL(net_disable_timestamp);
2129
2130 static inline void net_timestamp_set(struct sk_buff *skb)
2131 {
2132         skb->tstamp = 0;
2133         skb->mono_delivery_time = 0;
2134         if (static_branch_unlikely(&netstamp_needed_key))
2135                 skb->tstamp = ktime_get_real();
2136 }
2137
2138 #define net_timestamp_check(COND, SKB)                          \
2139         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2140                 if ((COND) && !(SKB)->tstamp)                   \
2141                         (SKB)->tstamp = ktime_get_real();       \
2142         }                                                       \
2143
2144 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2145 {
2146         return __is_skb_forwardable(dev, skb, true);
2147 }
2148 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2149
2150 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2151                               bool check_mtu)
2152 {
2153         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2154
2155         if (likely(!ret)) {
2156                 skb->protocol = eth_type_trans(skb, dev);
2157                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2158         }
2159
2160         return ret;
2161 }
2162
2163 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2164 {
2165         return __dev_forward_skb2(dev, skb, true);
2166 }
2167 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2168
2169 /**
2170  * dev_forward_skb - loopback an skb to another netif
2171  *
2172  * @dev: destination network device
2173  * @skb: buffer to forward
2174  *
2175  * return values:
2176  *      NET_RX_SUCCESS  (no congestion)
2177  *      NET_RX_DROP     (packet was dropped, but freed)
2178  *
2179  * dev_forward_skb can be used for injecting an skb from the
2180  * start_xmit function of one device into the receive queue
2181  * of another device.
2182  *
2183  * The receiving device may be in another namespace, so
2184  * we have to clear all information in the skb that could
2185  * impact namespace isolation.
2186  */
2187 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2188 {
2189         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2190 }
2191 EXPORT_SYMBOL_GPL(dev_forward_skb);
2192
2193 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2194 {
2195         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2196 }
2197
2198 static inline int deliver_skb(struct sk_buff *skb,
2199                               struct packet_type *pt_prev,
2200                               struct net_device *orig_dev)
2201 {
2202         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2203                 return -ENOMEM;
2204         refcount_inc(&skb->users);
2205         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2206 }
2207
2208 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2209                                           struct packet_type **pt,
2210                                           struct net_device *orig_dev,
2211                                           __be16 type,
2212                                           struct list_head *ptype_list)
2213 {
2214         struct packet_type *ptype, *pt_prev = *pt;
2215
2216         list_for_each_entry_rcu(ptype, ptype_list, list) {
2217                 if (ptype->type != type)
2218                         continue;
2219                 if (pt_prev)
2220                         deliver_skb(skb, pt_prev, orig_dev);
2221                 pt_prev = ptype;
2222         }
2223         *pt = pt_prev;
2224 }
2225
2226 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2227 {
2228         if (!ptype->af_packet_priv || !skb->sk)
2229                 return false;
2230
2231         if (ptype->id_match)
2232                 return ptype->id_match(ptype, skb->sk);
2233         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2234                 return true;
2235
2236         return false;
2237 }
2238
2239 /**
2240  * dev_nit_active - return true if any network interface taps are in use
2241  *
2242  * @dev: network device to check for the presence of taps
2243  */
2244 bool dev_nit_active(struct net_device *dev)
2245 {
2246         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2247 }
2248 EXPORT_SYMBOL_GPL(dev_nit_active);
2249
2250 /*
2251  *      Support routine. Sends outgoing frames to any network
2252  *      taps currently in use.
2253  */
2254
2255 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2256 {
2257         struct packet_type *ptype;
2258         struct sk_buff *skb2 = NULL;
2259         struct packet_type *pt_prev = NULL;
2260         struct list_head *ptype_list = &ptype_all;
2261
2262         rcu_read_lock();
2263 again:
2264         list_for_each_entry_rcu(ptype, ptype_list, list) {
2265                 if (ptype->ignore_outgoing)
2266                         continue;
2267
2268                 /* Never send packets back to the socket
2269                  * they originated from - MvS ([email protected])
2270                  */
2271                 if (skb_loop_sk(ptype, skb))
2272                         continue;
2273
2274                 if (pt_prev) {
2275                         deliver_skb(skb2, pt_prev, skb->dev);
2276                         pt_prev = ptype;
2277                         continue;
2278                 }
2279
2280                 /* need to clone skb, done only once */
2281                 skb2 = skb_clone(skb, GFP_ATOMIC);
2282                 if (!skb2)
2283                         goto out_unlock;
2284
2285                 net_timestamp_set(skb2);
2286
2287                 /* skb->nh should be correctly
2288                  * set by sender, so that the second statement is
2289                  * just protection against buggy protocols.
2290                  */
2291                 skb_reset_mac_header(skb2);
2292
2293                 if (skb_network_header(skb2) < skb2->data ||
2294                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2295                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2296                                              ntohs(skb2->protocol),
2297                                              dev->name);
2298                         skb_reset_network_header(skb2);
2299                 }
2300
2301                 skb2->transport_header = skb2->network_header;
2302                 skb2->pkt_type = PACKET_OUTGOING;
2303                 pt_prev = ptype;
2304         }
2305
2306         if (ptype_list == &ptype_all) {
2307                 ptype_list = &dev->ptype_all;
2308                 goto again;
2309         }
2310 out_unlock:
2311         if (pt_prev) {
2312                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2313                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2314                 else
2315                         kfree_skb(skb2);
2316         }
2317         rcu_read_unlock();
2318 }
2319 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2320
2321 /**
2322  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2323  * @dev: Network device
2324  * @txq: number of queues available
2325  *
2326  * If real_num_tx_queues is changed the tc mappings may no longer be
2327  * valid. To resolve this verify the tc mapping remains valid and if
2328  * not NULL the mapping. With no priorities mapping to this
2329  * offset/count pair it will no longer be used. In the worst case TC0
2330  * is invalid nothing can be done so disable priority mappings. If is
2331  * expected that drivers will fix this mapping if they can before
2332  * calling netif_set_real_num_tx_queues.
2333  */
2334 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2335 {
2336         int i;
2337         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2338
2339         /* If TC0 is invalidated disable TC mapping */
2340         if (tc->offset + tc->count > txq) {
2341                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2342                 dev->num_tc = 0;
2343                 return;
2344         }
2345
2346         /* Invalidated prio to tc mappings set to TC0 */
2347         for (i = 1; i < TC_BITMASK + 1; i++) {
2348                 int q = netdev_get_prio_tc_map(dev, i);
2349
2350                 tc = &dev->tc_to_txq[q];
2351                 if (tc->offset + tc->count > txq) {
2352                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2353                                     i, q);
2354                         netdev_set_prio_tc_map(dev, i, 0);
2355                 }
2356         }
2357 }
2358
2359 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2360 {
2361         if (dev->num_tc) {
2362                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2363                 int i;
2364
2365                 /* walk through the TCs and see if it falls into any of them */
2366                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2367                         if ((txq - tc->offset) < tc->count)
2368                                 return i;
2369                 }
2370
2371                 /* didn't find it, just return -1 to indicate no match */
2372                 return -1;
2373         }
2374
2375         return 0;
2376 }
2377 EXPORT_SYMBOL(netdev_txq_to_tc);
2378
2379 #ifdef CONFIG_XPS
2380 static struct static_key xps_needed __read_mostly;
2381 static struct static_key xps_rxqs_needed __read_mostly;
2382 static DEFINE_MUTEX(xps_map_mutex);
2383 #define xmap_dereference(P)             \
2384         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2385
2386 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2387                              struct xps_dev_maps *old_maps, int tci, u16 index)
2388 {
2389         struct xps_map *map = NULL;
2390         int pos;
2391
2392         map = xmap_dereference(dev_maps->attr_map[tci]);
2393         if (!map)
2394                 return false;
2395
2396         for (pos = map->len; pos--;) {
2397                 if (map->queues[pos] != index)
2398                         continue;
2399
2400                 if (map->len > 1) {
2401                         map->queues[pos] = map->queues[--map->len];
2402                         break;
2403                 }
2404
2405                 if (old_maps)
2406                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2407                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2408                 kfree_rcu(map, rcu);
2409                 return false;
2410         }
2411
2412         return true;
2413 }
2414
2415 static bool remove_xps_queue_cpu(struct net_device *dev,
2416                                  struct xps_dev_maps *dev_maps,
2417                                  int cpu, u16 offset, u16 count)
2418 {
2419         int num_tc = dev_maps->num_tc;
2420         bool active = false;
2421         int tci;
2422
2423         for (tci = cpu * num_tc; num_tc--; tci++) {
2424                 int i, j;
2425
2426                 for (i = count, j = offset; i--; j++) {
2427                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2428                                 break;
2429                 }
2430
2431                 active |= i < 0;
2432         }
2433
2434         return active;
2435 }
2436
2437 static void reset_xps_maps(struct net_device *dev,
2438                            struct xps_dev_maps *dev_maps,
2439                            enum xps_map_type type)
2440 {
2441         static_key_slow_dec_cpuslocked(&xps_needed);
2442         if (type == XPS_RXQS)
2443                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2444
2445         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2446
2447         kfree_rcu(dev_maps, rcu);
2448 }
2449
2450 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2451                            u16 offset, u16 count)
2452 {
2453         struct xps_dev_maps *dev_maps;
2454         bool active = false;
2455         int i, j;
2456
2457         dev_maps = xmap_dereference(dev->xps_maps[type]);
2458         if (!dev_maps)
2459                 return;
2460
2461         for (j = 0; j < dev_maps->nr_ids; j++)
2462                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2463         if (!active)
2464                 reset_xps_maps(dev, dev_maps, type);
2465
2466         if (type == XPS_CPUS) {
2467                 for (i = offset + (count - 1); count--; i--)
2468                         netdev_queue_numa_node_write(
2469                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2470         }
2471 }
2472
2473 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2474                                    u16 count)
2475 {
2476         if (!static_key_false(&xps_needed))
2477                 return;
2478
2479         cpus_read_lock();
2480         mutex_lock(&xps_map_mutex);
2481
2482         if (static_key_false(&xps_rxqs_needed))
2483                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2484
2485         clean_xps_maps(dev, XPS_CPUS, offset, count);
2486
2487         mutex_unlock(&xps_map_mutex);
2488         cpus_read_unlock();
2489 }
2490
2491 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2492 {
2493         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2494 }
2495
2496 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2497                                       u16 index, bool is_rxqs_map)
2498 {
2499         struct xps_map *new_map;
2500         int alloc_len = XPS_MIN_MAP_ALLOC;
2501         int i, pos;
2502
2503         for (pos = 0; map && pos < map->len; pos++) {
2504                 if (map->queues[pos] != index)
2505                         continue;
2506                 return map;
2507         }
2508
2509         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2510         if (map) {
2511                 if (pos < map->alloc_len)
2512                         return map;
2513
2514                 alloc_len = map->alloc_len * 2;
2515         }
2516
2517         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2518          *  map
2519          */
2520         if (is_rxqs_map)
2521                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2522         else
2523                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2524                                        cpu_to_node(attr_index));
2525         if (!new_map)
2526                 return NULL;
2527
2528         for (i = 0; i < pos; i++)
2529                 new_map->queues[i] = map->queues[i];
2530         new_map->alloc_len = alloc_len;
2531         new_map->len = pos;
2532
2533         return new_map;
2534 }
2535
2536 /* Copy xps maps at a given index */
2537 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2538                               struct xps_dev_maps *new_dev_maps, int index,
2539                               int tc, bool skip_tc)
2540 {
2541         int i, tci = index * dev_maps->num_tc;
2542         struct xps_map *map;
2543
2544         /* copy maps belonging to foreign traffic classes */
2545         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2546                 if (i == tc && skip_tc)
2547                         continue;
2548
2549                 /* fill in the new device map from the old device map */
2550                 map = xmap_dereference(dev_maps->attr_map[tci]);
2551                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2552         }
2553 }
2554
2555 /* Must be called under cpus_read_lock */
2556 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2557                           u16 index, enum xps_map_type type)
2558 {
2559         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2560         const unsigned long *online_mask = NULL;
2561         bool active = false, copy = false;
2562         int i, j, tci, numa_node_id = -2;
2563         int maps_sz, num_tc = 1, tc = 0;
2564         struct xps_map *map, *new_map;
2565         unsigned int nr_ids;
2566
2567         WARN_ON_ONCE(index >= dev->num_tx_queues);
2568
2569         if (dev->num_tc) {
2570                 /* Do not allow XPS on subordinate device directly */
2571                 num_tc = dev->num_tc;
2572                 if (num_tc < 0)
2573                         return -EINVAL;
2574
2575                 /* If queue belongs to subordinate dev use its map */
2576                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2577
2578                 tc = netdev_txq_to_tc(dev, index);
2579                 if (tc < 0)
2580                         return -EINVAL;
2581         }
2582
2583         mutex_lock(&xps_map_mutex);
2584
2585         dev_maps = xmap_dereference(dev->xps_maps[type]);
2586         if (type == XPS_RXQS) {
2587                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2588                 nr_ids = dev->num_rx_queues;
2589         } else {
2590                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2591                 if (num_possible_cpus() > 1)
2592                         online_mask = cpumask_bits(cpu_online_mask);
2593                 nr_ids = nr_cpu_ids;
2594         }
2595
2596         if (maps_sz < L1_CACHE_BYTES)
2597                 maps_sz = L1_CACHE_BYTES;
2598
2599         /* The old dev_maps could be larger or smaller than the one we're
2600          * setting up now, as dev->num_tc or nr_ids could have been updated in
2601          * between. We could try to be smart, but let's be safe instead and only
2602          * copy foreign traffic classes if the two map sizes match.
2603          */
2604         if (dev_maps &&
2605             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2606                 copy = true;
2607
2608         /* allocate memory for queue storage */
2609         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2610              j < nr_ids;) {
2611                 if (!new_dev_maps) {
2612                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2613                         if (!new_dev_maps) {
2614                                 mutex_unlock(&xps_map_mutex);
2615                                 return -ENOMEM;
2616                         }
2617
2618                         new_dev_maps->nr_ids = nr_ids;
2619                         new_dev_maps->num_tc = num_tc;
2620                 }
2621
2622                 tci = j * num_tc + tc;
2623                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2624
2625                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2626                 if (!map)
2627                         goto error;
2628
2629                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2630         }
2631
2632         if (!new_dev_maps)
2633                 goto out_no_new_maps;
2634
2635         if (!dev_maps) {
2636                 /* Increment static keys at most once per type */
2637                 static_key_slow_inc_cpuslocked(&xps_needed);
2638                 if (type == XPS_RXQS)
2639                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2640         }
2641
2642         for (j = 0; j < nr_ids; j++) {
2643                 bool skip_tc = false;
2644
2645                 tci = j * num_tc + tc;
2646                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2647                     netif_attr_test_online(j, online_mask, nr_ids)) {
2648                         /* add tx-queue to CPU/rx-queue maps */
2649                         int pos = 0;
2650
2651                         skip_tc = true;
2652
2653                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2654                         while ((pos < map->len) && (map->queues[pos] != index))
2655                                 pos++;
2656
2657                         if (pos == map->len)
2658                                 map->queues[map->len++] = index;
2659 #ifdef CONFIG_NUMA
2660                         if (type == XPS_CPUS) {
2661                                 if (numa_node_id == -2)
2662                                         numa_node_id = cpu_to_node(j);
2663                                 else if (numa_node_id != cpu_to_node(j))
2664                                         numa_node_id = -1;
2665                         }
2666 #endif
2667                 }
2668
2669                 if (copy)
2670                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2671                                           skip_tc);
2672         }
2673
2674         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2675
2676         /* Cleanup old maps */
2677         if (!dev_maps)
2678                 goto out_no_old_maps;
2679
2680         for (j = 0; j < dev_maps->nr_ids; j++) {
2681                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2682                         map = xmap_dereference(dev_maps->attr_map[tci]);
2683                         if (!map)
2684                                 continue;
2685
2686                         if (copy) {
2687                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2688                                 if (map == new_map)
2689                                         continue;
2690                         }
2691
2692                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2693                         kfree_rcu(map, rcu);
2694                 }
2695         }
2696
2697         old_dev_maps = dev_maps;
2698
2699 out_no_old_maps:
2700         dev_maps = new_dev_maps;
2701         active = true;
2702
2703 out_no_new_maps:
2704         if (type == XPS_CPUS)
2705                 /* update Tx queue numa node */
2706                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2707                                              (numa_node_id >= 0) ?
2708                                              numa_node_id : NUMA_NO_NODE);
2709
2710         if (!dev_maps)
2711                 goto out_no_maps;
2712
2713         /* removes tx-queue from unused CPUs/rx-queues */
2714         for (j = 0; j < dev_maps->nr_ids; j++) {
2715                 tci = j * dev_maps->num_tc;
2716
2717                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2718                         if (i == tc &&
2719                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2720                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2721                                 continue;
2722
2723                         active |= remove_xps_queue(dev_maps,
2724                                                    copy ? old_dev_maps : NULL,
2725                                                    tci, index);
2726                 }
2727         }
2728
2729         if (old_dev_maps)
2730                 kfree_rcu(old_dev_maps, rcu);
2731
2732         /* free map if not active */
2733         if (!active)
2734                 reset_xps_maps(dev, dev_maps, type);
2735
2736 out_no_maps:
2737         mutex_unlock(&xps_map_mutex);
2738
2739         return 0;
2740 error:
2741         /* remove any maps that we added */
2742         for (j = 0; j < nr_ids; j++) {
2743                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2744                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2745                         map = copy ?
2746                               xmap_dereference(dev_maps->attr_map[tci]) :
2747                               NULL;
2748                         if (new_map && new_map != map)
2749                                 kfree(new_map);
2750                 }
2751         }
2752
2753         mutex_unlock(&xps_map_mutex);
2754
2755         kfree(new_dev_maps);
2756         return -ENOMEM;
2757 }
2758 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2759
2760 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2761                         u16 index)
2762 {
2763         int ret;
2764
2765         cpus_read_lock();
2766         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2767         cpus_read_unlock();
2768
2769         return ret;
2770 }
2771 EXPORT_SYMBOL(netif_set_xps_queue);
2772
2773 #endif
2774 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2775 {
2776         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2777
2778         /* Unbind any subordinate channels */
2779         while (txq-- != &dev->_tx[0]) {
2780                 if (txq->sb_dev)
2781                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2782         }
2783 }
2784
2785 void netdev_reset_tc(struct net_device *dev)
2786 {
2787 #ifdef CONFIG_XPS
2788         netif_reset_xps_queues_gt(dev, 0);
2789 #endif
2790         netdev_unbind_all_sb_channels(dev);
2791
2792         /* Reset TC configuration of device */
2793         dev->num_tc = 0;
2794         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2795         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2796 }
2797 EXPORT_SYMBOL(netdev_reset_tc);
2798
2799 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2800 {
2801         if (tc >= dev->num_tc)
2802                 return -EINVAL;
2803
2804 #ifdef CONFIG_XPS
2805         netif_reset_xps_queues(dev, offset, count);
2806 #endif
2807         dev->tc_to_txq[tc].count = count;
2808         dev->tc_to_txq[tc].offset = offset;
2809         return 0;
2810 }
2811 EXPORT_SYMBOL(netdev_set_tc_queue);
2812
2813 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2814 {
2815         if (num_tc > TC_MAX_QUEUE)
2816                 return -EINVAL;
2817
2818 #ifdef CONFIG_XPS
2819         netif_reset_xps_queues_gt(dev, 0);
2820 #endif
2821         netdev_unbind_all_sb_channels(dev);
2822
2823         dev->num_tc = num_tc;
2824         return 0;
2825 }
2826 EXPORT_SYMBOL(netdev_set_num_tc);
2827
2828 void netdev_unbind_sb_channel(struct net_device *dev,
2829                               struct net_device *sb_dev)
2830 {
2831         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2832
2833 #ifdef CONFIG_XPS
2834         netif_reset_xps_queues_gt(sb_dev, 0);
2835 #endif
2836         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2837         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2838
2839         while (txq-- != &dev->_tx[0]) {
2840                 if (txq->sb_dev == sb_dev)
2841                         txq->sb_dev = NULL;
2842         }
2843 }
2844 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2845
2846 int netdev_bind_sb_channel_queue(struct net_device *dev,
2847                                  struct net_device *sb_dev,
2848                                  u8 tc, u16 count, u16 offset)
2849 {
2850         /* Make certain the sb_dev and dev are already configured */
2851         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2852                 return -EINVAL;
2853
2854         /* We cannot hand out queues we don't have */
2855         if ((offset + count) > dev->real_num_tx_queues)
2856                 return -EINVAL;
2857
2858         /* Record the mapping */
2859         sb_dev->tc_to_txq[tc].count = count;
2860         sb_dev->tc_to_txq[tc].offset = offset;
2861
2862         /* Provide a way for Tx queue to find the tc_to_txq map or
2863          * XPS map for itself.
2864          */
2865         while (count--)
2866                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2867
2868         return 0;
2869 }
2870 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2871
2872 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2873 {
2874         /* Do not use a multiqueue device to represent a subordinate channel */
2875         if (netif_is_multiqueue(dev))
2876                 return -ENODEV;
2877
2878         /* We allow channels 1 - 32767 to be used for subordinate channels.
2879          * Channel 0 is meant to be "native" mode and used only to represent
2880          * the main root device. We allow writing 0 to reset the device back
2881          * to normal mode after being used as a subordinate channel.
2882          */
2883         if (channel > S16_MAX)
2884                 return -EINVAL;
2885
2886         dev->num_tc = -channel;
2887
2888         return 0;
2889 }
2890 EXPORT_SYMBOL(netdev_set_sb_channel);
2891
2892 /*
2893  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2894  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2895  */
2896 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2897 {
2898         bool disabling;
2899         int rc;
2900
2901         disabling = txq < dev->real_num_tx_queues;
2902
2903         if (txq < 1 || txq > dev->num_tx_queues)
2904                 return -EINVAL;
2905
2906         if (dev->reg_state == NETREG_REGISTERED ||
2907             dev->reg_state == NETREG_UNREGISTERING) {
2908                 ASSERT_RTNL();
2909
2910                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2911                                                   txq);
2912                 if (rc)
2913                         return rc;
2914
2915                 if (dev->num_tc)
2916                         netif_setup_tc(dev, txq);
2917
2918                 dev_qdisc_change_real_num_tx(dev, txq);
2919
2920                 dev->real_num_tx_queues = txq;
2921
2922                 if (disabling) {
2923                         synchronize_net();
2924                         qdisc_reset_all_tx_gt(dev, txq);
2925 #ifdef CONFIG_XPS
2926                         netif_reset_xps_queues_gt(dev, txq);
2927 #endif
2928                 }
2929         } else {
2930                 dev->real_num_tx_queues = txq;
2931         }
2932
2933         return 0;
2934 }
2935 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2936
2937 #ifdef CONFIG_SYSFS
2938 /**
2939  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2940  *      @dev: Network device
2941  *      @rxq: Actual number of RX queues
2942  *
2943  *      This must be called either with the rtnl_lock held or before
2944  *      registration of the net device.  Returns 0 on success, or a
2945  *      negative error code.  If called before registration, it always
2946  *      succeeds.
2947  */
2948 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2949 {
2950         int rc;
2951
2952         if (rxq < 1 || rxq > dev->num_rx_queues)
2953                 return -EINVAL;
2954
2955         if (dev->reg_state == NETREG_REGISTERED) {
2956                 ASSERT_RTNL();
2957
2958                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2959                                                   rxq);
2960                 if (rc)
2961                         return rc;
2962         }
2963
2964         dev->real_num_rx_queues = rxq;
2965         return 0;
2966 }
2967 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2968 #endif
2969
2970 /**
2971  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2972  *      @dev: Network device
2973  *      @txq: Actual number of TX queues
2974  *      @rxq: Actual number of RX queues
2975  *
2976  *      Set the real number of both TX and RX queues.
2977  *      Does nothing if the number of queues is already correct.
2978  */
2979 int netif_set_real_num_queues(struct net_device *dev,
2980                               unsigned int txq, unsigned int rxq)
2981 {
2982         unsigned int old_rxq = dev->real_num_rx_queues;
2983         int err;
2984
2985         if (txq < 1 || txq > dev->num_tx_queues ||
2986             rxq < 1 || rxq > dev->num_rx_queues)
2987                 return -EINVAL;
2988
2989         /* Start from increases, so the error path only does decreases -
2990          * decreases can't fail.
2991          */
2992         if (rxq > dev->real_num_rx_queues) {
2993                 err = netif_set_real_num_rx_queues(dev, rxq);
2994                 if (err)
2995                         return err;
2996         }
2997         if (txq > dev->real_num_tx_queues) {
2998                 err = netif_set_real_num_tx_queues(dev, txq);
2999                 if (err)
3000                         goto undo_rx;
3001         }
3002         if (rxq < dev->real_num_rx_queues)
3003                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3004         if (txq < dev->real_num_tx_queues)
3005                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3006
3007         return 0;
3008 undo_rx:
3009         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3010         return err;
3011 }
3012 EXPORT_SYMBOL(netif_set_real_num_queues);
3013
3014 /**
3015  * netif_set_tso_max_size() - set the max size of TSO frames supported
3016  * @dev:        netdev to update
3017  * @size:       max skb->len of a TSO frame
3018  *
3019  * Set the limit on the size of TSO super-frames the device can handle.
3020  * Unless explicitly set the stack will assume the value of
3021  * %GSO_LEGACY_MAX_SIZE.
3022  */
3023 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3024 {
3025         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3026         if (size < READ_ONCE(dev->gso_max_size))
3027                 netif_set_gso_max_size(dev, size);
3028         if (size < READ_ONCE(dev->gso_ipv4_max_size))
3029                 netif_set_gso_ipv4_max_size(dev, size);
3030 }
3031 EXPORT_SYMBOL(netif_set_tso_max_size);
3032
3033 /**
3034  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3035  * @dev:        netdev to update
3036  * @segs:       max number of TCP segments
3037  *
3038  * Set the limit on the number of TCP segments the device can generate from
3039  * a single TSO super-frame.
3040  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3041  */
3042 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3043 {
3044         dev->tso_max_segs = segs;
3045         if (segs < READ_ONCE(dev->gso_max_segs))
3046                 netif_set_gso_max_segs(dev, segs);
3047 }
3048 EXPORT_SYMBOL(netif_set_tso_max_segs);
3049
3050 /**
3051  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3052  * @to:         netdev to update
3053  * @from:       netdev from which to copy the limits
3054  */
3055 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3056 {
3057         netif_set_tso_max_size(to, from->tso_max_size);
3058         netif_set_tso_max_segs(to, from->tso_max_segs);
3059 }
3060 EXPORT_SYMBOL(netif_inherit_tso_max);
3061
3062 /**
3063  * netif_get_num_default_rss_queues - default number of RSS queues
3064  *
3065  * Default value is the number of physical cores if there are only 1 or 2, or
3066  * divided by 2 if there are more.
3067  */
3068 int netif_get_num_default_rss_queues(void)
3069 {
3070         cpumask_var_t cpus;
3071         int cpu, count = 0;
3072
3073         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3074                 return 1;
3075
3076         cpumask_copy(cpus, cpu_online_mask);
3077         for_each_cpu(cpu, cpus) {
3078                 ++count;
3079                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3080         }
3081         free_cpumask_var(cpus);
3082
3083         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3084 }
3085 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3086
3087 static void __netif_reschedule(struct Qdisc *q)
3088 {
3089         struct softnet_data *sd;
3090         unsigned long flags;
3091
3092         local_irq_save(flags);
3093         sd = this_cpu_ptr(&softnet_data);
3094         q->next_sched = NULL;
3095         *sd->output_queue_tailp = q;
3096         sd->output_queue_tailp = &q->next_sched;
3097         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098         local_irq_restore(flags);
3099 }
3100
3101 void __netif_schedule(struct Qdisc *q)
3102 {
3103         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3104                 __netif_reschedule(q);
3105 }
3106 EXPORT_SYMBOL(__netif_schedule);
3107
3108 struct dev_kfree_skb_cb {
3109         enum skb_drop_reason reason;
3110 };
3111
3112 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3113 {
3114         return (struct dev_kfree_skb_cb *)skb->cb;
3115 }
3116
3117 void netif_schedule_queue(struct netdev_queue *txq)
3118 {
3119         rcu_read_lock();
3120         if (!netif_xmit_stopped(txq)) {
3121                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3122
3123                 __netif_schedule(q);
3124         }
3125         rcu_read_unlock();
3126 }
3127 EXPORT_SYMBOL(netif_schedule_queue);
3128
3129 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3130 {
3131         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3132                 struct Qdisc *q;
3133
3134                 rcu_read_lock();
3135                 q = rcu_dereference(dev_queue->qdisc);
3136                 __netif_schedule(q);
3137                 rcu_read_unlock();
3138         }
3139 }
3140 EXPORT_SYMBOL(netif_tx_wake_queue);
3141
3142 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3143 {
3144         unsigned long flags;
3145
3146         if (unlikely(!skb))
3147                 return;
3148
3149         if (likely(refcount_read(&skb->users) == 1)) {
3150                 smp_rmb();
3151                 refcount_set(&skb->users, 0);
3152         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3153                 return;
3154         }
3155         get_kfree_skb_cb(skb)->reason = reason;
3156         local_irq_save(flags);
3157         skb->next = __this_cpu_read(softnet_data.completion_queue);
3158         __this_cpu_write(softnet_data.completion_queue, skb);
3159         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3160         local_irq_restore(flags);
3161 }
3162 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3163
3164 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3165 {
3166         if (in_hardirq() || irqs_disabled())
3167                 dev_kfree_skb_irq_reason(skb, reason);
3168         else
3169                 kfree_skb_reason(skb, reason);
3170 }
3171 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3172
3173
3174 /**
3175  * netif_device_detach - mark device as removed
3176  * @dev: network device
3177  *
3178  * Mark device as removed from system and therefore no longer available.
3179  */
3180 void netif_device_detach(struct net_device *dev)
3181 {
3182         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3183             netif_running(dev)) {
3184                 netif_tx_stop_all_queues(dev);
3185         }
3186 }
3187 EXPORT_SYMBOL(netif_device_detach);
3188
3189 /**
3190  * netif_device_attach - mark device as attached
3191  * @dev: network device
3192  *
3193  * Mark device as attached from system and restart if needed.
3194  */
3195 void netif_device_attach(struct net_device *dev)
3196 {
3197         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3198             netif_running(dev)) {
3199                 netif_tx_wake_all_queues(dev);
3200                 __netdev_watchdog_up(dev);
3201         }
3202 }
3203 EXPORT_SYMBOL(netif_device_attach);
3204
3205 /*
3206  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3207  * to be used as a distribution range.
3208  */
3209 static u16 skb_tx_hash(const struct net_device *dev,
3210                        const struct net_device *sb_dev,
3211                        struct sk_buff *skb)
3212 {
3213         u32 hash;
3214         u16 qoffset = 0;
3215         u16 qcount = dev->real_num_tx_queues;
3216
3217         if (dev->num_tc) {
3218                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3219
3220                 qoffset = sb_dev->tc_to_txq[tc].offset;
3221                 qcount = sb_dev->tc_to_txq[tc].count;
3222                 if (unlikely(!qcount)) {
3223                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3224                                              sb_dev->name, qoffset, tc);
3225                         qoffset = 0;
3226                         qcount = dev->real_num_tx_queues;
3227                 }
3228         }
3229
3230         if (skb_rx_queue_recorded(skb)) {
3231                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3232                 hash = skb_get_rx_queue(skb);
3233                 if (hash >= qoffset)
3234                         hash -= qoffset;
3235                 while (unlikely(hash >= qcount))
3236                         hash -= qcount;
3237                 return hash + qoffset;
3238         }
3239
3240         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3241 }
3242
3243 void skb_warn_bad_offload(const struct sk_buff *skb)
3244 {
3245         static const netdev_features_t null_features;
3246         struct net_device *dev = skb->dev;
3247         const char *name = "";
3248
3249         if (!net_ratelimit())
3250                 return;
3251
3252         if (dev) {
3253                 if (dev->dev.parent)
3254                         name = dev_driver_string(dev->dev.parent);
3255                 else
3256                         name = netdev_name(dev);
3257         }
3258         skb_dump(KERN_WARNING, skb, false);
3259         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3260              name, dev ? &dev->features : &null_features,
3261              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3262 }
3263
3264 /*
3265  * Invalidate hardware checksum when packet is to be mangled, and
3266  * complete checksum manually on outgoing path.
3267  */
3268 int skb_checksum_help(struct sk_buff *skb)
3269 {
3270         __wsum csum;
3271         int ret = 0, offset;
3272
3273         if (skb->ip_summed == CHECKSUM_COMPLETE)
3274                 goto out_set_summed;
3275
3276         if (unlikely(skb_is_gso(skb))) {
3277                 skb_warn_bad_offload(skb);
3278                 return -EINVAL;
3279         }
3280
3281         /* Before computing a checksum, we should make sure no frag could
3282          * be modified by an external entity : checksum could be wrong.
3283          */
3284         if (skb_has_shared_frag(skb)) {
3285                 ret = __skb_linearize(skb);
3286                 if (ret)
3287                         goto out;
3288         }
3289
3290         offset = skb_checksum_start_offset(skb);
3291         ret = -EINVAL;
3292         if (unlikely(offset >= skb_headlen(skb))) {
3293                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3294                 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3295                           offset, skb_headlen(skb));
3296                 goto out;
3297         }
3298         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3299
3300         offset += skb->csum_offset;
3301         if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3302                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3303                 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3304                           offset + sizeof(__sum16), skb_headlen(skb));
3305                 goto out;
3306         }
3307         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3308         if (ret)
3309                 goto out;
3310
3311         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3312 out_set_summed:
3313         skb->ip_summed = CHECKSUM_NONE;
3314 out:
3315         return ret;
3316 }
3317 EXPORT_SYMBOL(skb_checksum_help);
3318
3319 int skb_crc32c_csum_help(struct sk_buff *skb)
3320 {
3321         __le32 crc32c_csum;
3322         int ret = 0, offset, start;
3323
3324         if (skb->ip_summed != CHECKSUM_PARTIAL)
3325                 goto out;
3326
3327         if (unlikely(skb_is_gso(skb)))
3328                 goto out;
3329
3330         /* Before computing a checksum, we should make sure no frag could
3331          * be modified by an external entity : checksum could be wrong.
3332          */
3333         if (unlikely(skb_has_shared_frag(skb))) {
3334                 ret = __skb_linearize(skb);
3335                 if (ret)
3336                         goto out;
3337         }
3338         start = skb_checksum_start_offset(skb);
3339         offset = start + offsetof(struct sctphdr, checksum);
3340         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3341                 ret = -EINVAL;
3342                 goto out;
3343         }
3344
3345         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3346         if (ret)
3347                 goto out;
3348
3349         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3350                                                   skb->len - start, ~(__u32)0,
3351                                                   crc32c_csum_stub));
3352         *(__le32 *)(skb->data + offset) = crc32c_csum;
3353         skb_reset_csum_not_inet(skb);
3354 out:
3355         return ret;
3356 }
3357
3358 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3359 {
3360         __be16 type = skb->protocol;
3361
3362         /* Tunnel gso handlers can set protocol to ethernet. */
3363         if (type == htons(ETH_P_TEB)) {
3364                 struct ethhdr *eth;
3365
3366                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3367                         return 0;
3368
3369                 eth = (struct ethhdr *)skb->data;
3370                 type = eth->h_proto;
3371         }
3372
3373         return vlan_get_protocol_and_depth(skb, type, depth);
3374 }
3375
3376
3377 /* Take action when hardware reception checksum errors are detected. */
3378 #ifdef CONFIG_BUG
3379 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3380 {
3381         netdev_err(dev, "hw csum failure\n");
3382         skb_dump(KERN_ERR, skb, true);
3383         dump_stack();
3384 }
3385
3386 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3387 {
3388         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3389 }
3390 EXPORT_SYMBOL(netdev_rx_csum_fault);
3391 #endif
3392
3393 /* XXX: check that highmem exists at all on the given machine. */
3394 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3395 {
3396 #ifdef CONFIG_HIGHMEM
3397         int i;
3398
3399         if (!(dev->features & NETIF_F_HIGHDMA)) {
3400                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3401                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3402
3403                         if (PageHighMem(skb_frag_page(frag)))
3404                                 return 1;
3405                 }
3406         }
3407 #endif
3408         return 0;
3409 }
3410
3411 /* If MPLS offload request, verify we are testing hardware MPLS features
3412  * instead of standard features for the netdev.
3413  */
3414 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3415 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3416                                            netdev_features_t features,
3417                                            __be16 type)
3418 {
3419         if (eth_p_mpls(type))
3420                 features &= skb->dev->mpls_features;
3421
3422         return features;
3423 }
3424 #else
3425 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3426                                            netdev_features_t features,
3427                                            __be16 type)
3428 {
3429         return features;
3430 }
3431 #endif
3432
3433 static netdev_features_t harmonize_features(struct sk_buff *skb,
3434         netdev_features_t features)
3435 {
3436         __be16 type;
3437
3438         type = skb_network_protocol(skb, NULL);
3439         features = net_mpls_features(skb, features, type);
3440
3441         if (skb->ip_summed != CHECKSUM_NONE &&
3442             !can_checksum_protocol(features, type)) {
3443                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3444         }
3445         if (illegal_highdma(skb->dev, skb))
3446                 features &= ~NETIF_F_SG;
3447
3448         return features;
3449 }
3450
3451 netdev_features_t passthru_features_check(struct sk_buff *skb,
3452                                           struct net_device *dev,
3453                                           netdev_features_t features)
3454 {
3455         return features;
3456 }
3457 EXPORT_SYMBOL(passthru_features_check);
3458
3459 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3460                                              struct net_device *dev,
3461                                              netdev_features_t features)
3462 {
3463         return vlan_features_check(skb, features);
3464 }
3465
3466 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3467                                             struct net_device *dev,
3468                                             netdev_features_t features)
3469 {
3470         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3471
3472         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3473                 return features & ~NETIF_F_GSO_MASK;
3474
3475         if (!skb_shinfo(skb)->gso_type) {
3476                 skb_warn_bad_offload(skb);
3477                 return features & ~NETIF_F_GSO_MASK;
3478         }
3479
3480         /* Support for GSO partial features requires software
3481          * intervention before we can actually process the packets
3482          * so we need to strip support for any partial features now
3483          * and we can pull them back in after we have partially
3484          * segmented the frame.
3485          */
3486         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3487                 features &= ~dev->gso_partial_features;
3488
3489         /* Make sure to clear the IPv4 ID mangling feature if the
3490          * IPv4 header has the potential to be fragmented.
3491          */
3492         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3493                 struct iphdr *iph = skb->encapsulation ?
3494                                     inner_ip_hdr(skb) : ip_hdr(skb);
3495
3496                 if (!(iph->frag_off & htons(IP_DF)))
3497                         features &= ~NETIF_F_TSO_MANGLEID;
3498         }
3499
3500         return features;
3501 }
3502
3503 netdev_features_t netif_skb_features(struct sk_buff *skb)
3504 {
3505         struct net_device *dev = skb->dev;
3506         netdev_features_t features = dev->features;
3507
3508         if (skb_is_gso(skb))
3509                 features = gso_features_check(skb, dev, features);
3510
3511         /* If encapsulation offload request, verify we are testing
3512          * hardware encapsulation features instead of standard
3513          * features for the netdev
3514          */
3515         if (skb->encapsulation)
3516                 features &= dev->hw_enc_features;
3517
3518         if (skb_vlan_tagged(skb))
3519                 features = netdev_intersect_features(features,
3520                                                      dev->vlan_features |
3521                                                      NETIF_F_HW_VLAN_CTAG_TX |
3522                                                      NETIF_F_HW_VLAN_STAG_TX);
3523
3524         if (dev->netdev_ops->ndo_features_check)
3525                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3526                                                                 features);
3527         else
3528                 features &= dflt_features_check(skb, dev, features);
3529
3530         return harmonize_features(skb, features);
3531 }
3532 EXPORT_SYMBOL(netif_skb_features);
3533
3534 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3535                     struct netdev_queue *txq, bool more)
3536 {
3537         unsigned int len;
3538         int rc;
3539
3540         if (dev_nit_active(dev))
3541                 dev_queue_xmit_nit(skb, dev);
3542
3543         len = skb->len;
3544         trace_net_dev_start_xmit(skb, dev);
3545         rc = netdev_start_xmit(skb, dev, txq, more);
3546         trace_net_dev_xmit(skb, rc, dev, len);
3547
3548         return rc;
3549 }
3550
3551 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3552                                     struct netdev_queue *txq, int *ret)
3553 {
3554         struct sk_buff *skb = first;
3555         int rc = NETDEV_TX_OK;
3556
3557         while (skb) {
3558                 struct sk_buff *next = skb->next;
3559
3560                 skb_mark_not_on_list(skb);
3561                 rc = xmit_one(skb, dev, txq, next != NULL);
3562                 if (unlikely(!dev_xmit_complete(rc))) {
3563                         skb->next = next;
3564                         goto out;
3565                 }
3566
3567                 skb = next;
3568                 if (netif_tx_queue_stopped(txq) && skb) {
3569                         rc = NETDEV_TX_BUSY;
3570                         break;
3571                 }
3572         }
3573
3574 out:
3575         *ret = rc;
3576         return skb;
3577 }
3578
3579 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3580                                           netdev_features_t features)
3581 {
3582         if (skb_vlan_tag_present(skb) &&
3583             !vlan_hw_offload_capable(features, skb->vlan_proto))
3584                 skb = __vlan_hwaccel_push_inside(skb);
3585         return skb;
3586 }
3587
3588 int skb_csum_hwoffload_help(struct sk_buff *skb,
3589                             const netdev_features_t features)
3590 {
3591         if (unlikely(skb_csum_is_sctp(skb)))
3592                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3593                         skb_crc32c_csum_help(skb);
3594
3595         if (features & NETIF_F_HW_CSUM)
3596                 return 0;
3597
3598         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3599                 switch (skb->csum_offset) {
3600                 case offsetof(struct tcphdr, check):
3601                 case offsetof(struct udphdr, check):
3602                         return 0;
3603                 }
3604         }
3605
3606         return skb_checksum_help(skb);
3607 }
3608 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3609
3610 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3611 {
3612         netdev_features_t features;
3613
3614         features = netif_skb_features(skb);
3615         skb = validate_xmit_vlan(skb, features);
3616         if (unlikely(!skb))
3617                 goto out_null;
3618
3619         skb = sk_validate_xmit_skb(skb, dev);
3620         if (unlikely(!skb))
3621                 goto out_null;
3622
3623         if (netif_needs_gso(skb, features)) {
3624                 struct sk_buff *segs;
3625
3626                 segs = skb_gso_segment(skb, features);
3627                 if (IS_ERR(segs)) {
3628                         goto out_kfree_skb;
3629                 } else if (segs) {
3630                         consume_skb(skb);
3631                         skb = segs;
3632                 }
3633         } else {
3634                 if (skb_needs_linearize(skb, features) &&
3635                     __skb_linearize(skb))
3636                         goto out_kfree_skb;
3637
3638                 /* If packet is not checksummed and device does not
3639                  * support checksumming for this protocol, complete
3640                  * checksumming here.
3641                  */
3642                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3643                         if (skb->encapsulation)
3644                                 skb_set_inner_transport_header(skb,
3645                                                                skb_checksum_start_offset(skb));
3646                         else
3647                                 skb_set_transport_header(skb,
3648                                                          skb_checksum_start_offset(skb));
3649                         if (skb_csum_hwoffload_help(skb, features))
3650                                 goto out_kfree_skb;
3651                 }
3652         }
3653
3654         skb = validate_xmit_xfrm(skb, features, again);
3655
3656         return skb;
3657
3658 out_kfree_skb:
3659         kfree_skb(skb);
3660 out_null:
3661         dev_core_stats_tx_dropped_inc(dev);
3662         return NULL;
3663 }
3664
3665 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3666 {
3667         struct sk_buff *next, *head = NULL, *tail;
3668
3669         for (; skb != NULL; skb = next) {
3670                 next = skb->next;
3671                 skb_mark_not_on_list(skb);
3672
3673                 /* in case skb wont be segmented, point to itself */
3674                 skb->prev = skb;
3675
3676                 skb = validate_xmit_skb(skb, dev, again);
3677                 if (!skb)
3678                         continue;
3679
3680                 if (!head)
3681                         head = skb;
3682                 else
3683                         tail->next = skb;
3684                 /* If skb was segmented, skb->prev points to
3685                  * the last segment. If not, it still contains skb.
3686                  */
3687                 tail = skb->prev;
3688         }
3689         return head;
3690 }
3691 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3692
3693 static void qdisc_pkt_len_init(struct sk_buff *skb)
3694 {
3695         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3696
3697         qdisc_skb_cb(skb)->pkt_len = skb->len;
3698
3699         /* To get more precise estimation of bytes sent on wire,
3700          * we add to pkt_len the headers size of all segments
3701          */
3702         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3703                 u16 gso_segs = shinfo->gso_segs;
3704                 unsigned int hdr_len;
3705
3706                 /* mac layer + network layer */
3707                 hdr_len = skb_transport_offset(skb);
3708
3709                 /* + transport layer */
3710                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3711                         const struct tcphdr *th;
3712                         struct tcphdr _tcphdr;
3713
3714                         th = skb_header_pointer(skb, hdr_len,
3715                                                 sizeof(_tcphdr), &_tcphdr);
3716                         if (likely(th))
3717                                 hdr_len += __tcp_hdrlen(th);
3718                 } else {
3719                         struct udphdr _udphdr;
3720
3721                         if (skb_header_pointer(skb, hdr_len,
3722                                                sizeof(_udphdr), &_udphdr))
3723                                 hdr_len += sizeof(struct udphdr);
3724                 }
3725
3726                 if (shinfo->gso_type & SKB_GSO_DODGY)
3727                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3728                                                 shinfo->gso_size);
3729
3730                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3731         }
3732 }
3733
3734 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3735                              struct sk_buff **to_free,
3736                              struct netdev_queue *txq)
3737 {
3738         int rc;
3739
3740         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3741         if (rc == NET_XMIT_SUCCESS)
3742                 trace_qdisc_enqueue(q, txq, skb);
3743         return rc;
3744 }
3745
3746 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3747                                  struct net_device *dev,
3748                                  struct netdev_queue *txq)
3749 {
3750         spinlock_t *root_lock = qdisc_lock(q);
3751         struct sk_buff *to_free = NULL;
3752         bool contended;
3753         int rc;
3754
3755         qdisc_calculate_pkt_len(skb, q);
3756
3757         if (q->flags & TCQ_F_NOLOCK) {
3758                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3759                     qdisc_run_begin(q)) {
3760                         /* Retest nolock_qdisc_is_empty() within the protection
3761                          * of q->seqlock to protect from racing with requeuing.
3762                          */
3763                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3764                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3765                                 __qdisc_run(q);
3766                                 qdisc_run_end(q);
3767
3768                                 goto no_lock_out;
3769                         }
3770
3771                         qdisc_bstats_cpu_update(q, skb);
3772                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3773                             !nolock_qdisc_is_empty(q))
3774                                 __qdisc_run(q);
3775
3776                         qdisc_run_end(q);
3777                         return NET_XMIT_SUCCESS;
3778                 }
3779
3780                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3781                 qdisc_run(q);
3782
3783 no_lock_out:
3784                 if (unlikely(to_free))
3785                         kfree_skb_list_reason(to_free,
3786                                               SKB_DROP_REASON_QDISC_DROP);
3787                 return rc;
3788         }
3789
3790         /*
3791          * Heuristic to force contended enqueues to serialize on a
3792          * separate lock before trying to get qdisc main lock.
3793          * This permits qdisc->running owner to get the lock more
3794          * often and dequeue packets faster.
3795          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3796          * and then other tasks will only enqueue packets. The packets will be
3797          * sent after the qdisc owner is scheduled again. To prevent this
3798          * scenario the task always serialize on the lock.
3799          */
3800         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3801         if (unlikely(contended))
3802                 spin_lock(&q->busylock);
3803
3804         spin_lock(root_lock);
3805         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3806                 __qdisc_drop(skb, &to_free);
3807                 rc = NET_XMIT_DROP;
3808         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3809                    qdisc_run_begin(q)) {
3810                 /*
3811                  * This is a work-conserving queue; there are no old skbs
3812                  * waiting to be sent out; and the qdisc is not running -
3813                  * xmit the skb directly.
3814                  */
3815
3816                 qdisc_bstats_update(q, skb);
3817
3818                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3819                         if (unlikely(contended)) {
3820                                 spin_unlock(&q->busylock);
3821                                 contended = false;
3822                         }
3823                         __qdisc_run(q);
3824                 }
3825
3826                 qdisc_run_end(q);
3827                 rc = NET_XMIT_SUCCESS;
3828         } else {
3829                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3830                 if (qdisc_run_begin(q)) {
3831                         if (unlikely(contended)) {
3832                                 spin_unlock(&q->busylock);
3833                                 contended = false;
3834                         }
3835                         __qdisc_run(q);
3836                         qdisc_run_end(q);
3837                 }
3838         }
3839         spin_unlock(root_lock);
3840         if (unlikely(to_free))
3841                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3842         if (unlikely(contended))
3843                 spin_unlock(&q->busylock);
3844         return rc;
3845 }
3846
3847 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3848 static void skb_update_prio(struct sk_buff *skb)
3849 {
3850         const struct netprio_map *map;
3851         const struct sock *sk;
3852         unsigned int prioidx;
3853
3854         if (skb->priority)
3855                 return;
3856         map = rcu_dereference_bh(skb->dev->priomap);
3857         if (!map)
3858                 return;
3859         sk = skb_to_full_sk(skb);
3860         if (!sk)
3861                 return;
3862
3863         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3864
3865         if (prioidx < map->priomap_len)
3866                 skb->priority = map->priomap[prioidx];
3867 }
3868 #else
3869 #define skb_update_prio(skb)
3870 #endif
3871
3872 /**
3873  *      dev_loopback_xmit - loop back @skb
3874  *      @net: network namespace this loopback is happening in
3875  *      @sk:  sk needed to be a netfilter okfn
3876  *      @skb: buffer to transmit
3877  */
3878 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3879 {
3880         skb_reset_mac_header(skb);
3881         __skb_pull(skb, skb_network_offset(skb));
3882         skb->pkt_type = PACKET_LOOPBACK;
3883         if (skb->ip_summed == CHECKSUM_NONE)
3884                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3885         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3886         skb_dst_force(skb);
3887         netif_rx(skb);
3888         return 0;
3889 }
3890 EXPORT_SYMBOL(dev_loopback_xmit);
3891
3892 #ifdef CONFIG_NET_EGRESS
3893 static struct netdev_queue *
3894 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3895 {
3896         int qm = skb_get_queue_mapping(skb);
3897
3898         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3899 }
3900
3901 static bool netdev_xmit_txqueue_skipped(void)
3902 {
3903         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3904 }
3905
3906 void netdev_xmit_skip_txqueue(bool skip)
3907 {
3908         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3909 }
3910 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3911 #endif /* CONFIG_NET_EGRESS */
3912
3913 #ifdef CONFIG_NET_XGRESS
3914 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3915                   enum skb_drop_reason *drop_reason)
3916 {
3917         int ret = TC_ACT_UNSPEC;
3918 #ifdef CONFIG_NET_CLS_ACT
3919         struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3920         struct tcf_result res;
3921
3922         if (!miniq)
3923                 return ret;
3924
3925         tc_skb_cb(skb)->mru = 0;
3926         tc_skb_cb(skb)->post_ct = false;
3927         res.drop_reason = *drop_reason;
3928
3929         mini_qdisc_bstats_cpu_update(miniq, skb);
3930         ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3931         /* Only tcf related quirks below. */
3932         switch (ret) {
3933         case TC_ACT_SHOT:
3934                 *drop_reason = res.drop_reason;
3935                 mini_qdisc_qstats_cpu_drop(miniq);
3936                 break;
3937         case TC_ACT_OK:
3938         case TC_ACT_RECLASSIFY:
3939                 skb->tc_index = TC_H_MIN(res.classid);
3940                 break;
3941         }
3942 #endif /* CONFIG_NET_CLS_ACT */
3943         return ret;
3944 }
3945
3946 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3947
3948 void tcx_inc(void)
3949 {
3950         static_branch_inc(&tcx_needed_key);
3951 }
3952
3953 void tcx_dec(void)
3954 {
3955         static_branch_dec(&tcx_needed_key);
3956 }
3957
3958 static __always_inline enum tcx_action_base
3959 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3960         const bool needs_mac)
3961 {
3962         const struct bpf_mprog_fp *fp;
3963         const struct bpf_prog *prog;
3964         int ret = TCX_NEXT;
3965
3966         if (needs_mac)
3967                 __skb_push(skb, skb->mac_len);
3968         bpf_mprog_foreach_prog(entry, fp, prog) {
3969                 bpf_compute_data_pointers(skb);
3970                 ret = bpf_prog_run(prog, skb);
3971                 if (ret != TCX_NEXT)
3972                         break;
3973         }
3974         if (needs_mac)
3975                 __skb_pull(skb, skb->mac_len);
3976         return tcx_action_code(skb, ret);
3977 }
3978
3979 static __always_inline struct sk_buff *
3980 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3981                    struct net_device *orig_dev, bool *another)
3982 {
3983         struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3984         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3985         int sch_ret;
3986
3987         if (!entry)
3988                 return skb;
3989         if (*pt_prev) {
3990                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3991                 *pt_prev = NULL;
3992         }
3993
3994         qdisc_skb_cb(skb)->pkt_len = skb->len;
3995         tcx_set_ingress(skb, true);
3996
3997         if (static_branch_unlikely(&tcx_needed_key)) {
3998                 sch_ret = tcx_run(entry, skb, true);
3999                 if (sch_ret != TC_ACT_UNSPEC)
4000                         goto ingress_verdict;
4001         }
4002         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4003 ingress_verdict:
4004         switch (sch_ret) {
4005         case TC_ACT_REDIRECT:
4006                 /* skb_mac_header check was done by BPF, so we can safely
4007                  * push the L2 header back before redirecting to another
4008                  * netdev.
4009                  */
4010                 __skb_push(skb, skb->mac_len);
4011                 if (skb_do_redirect(skb) == -EAGAIN) {
4012                         __skb_pull(skb, skb->mac_len);
4013                         *another = true;
4014                         break;
4015                 }
4016                 *ret = NET_RX_SUCCESS;
4017                 return NULL;
4018         case TC_ACT_SHOT:
4019                 kfree_skb_reason(skb, drop_reason);
4020                 *ret = NET_RX_DROP;
4021                 return NULL;
4022         /* used by tc_run */
4023         case TC_ACT_STOLEN:
4024         case TC_ACT_QUEUED:
4025         case TC_ACT_TRAP:
4026                 consume_skb(skb);
4027                 fallthrough;
4028         case TC_ACT_CONSUMED:
4029                 *ret = NET_RX_SUCCESS;
4030                 return NULL;
4031         }
4032
4033         return skb;
4034 }
4035
4036 static __always_inline struct sk_buff *
4037 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4038 {
4039         struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4040         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4041         int sch_ret;
4042
4043         if (!entry)
4044                 return skb;
4045
4046         /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4047          * already set by the caller.
4048          */
4049         if (static_branch_unlikely(&tcx_needed_key)) {
4050                 sch_ret = tcx_run(entry, skb, false);
4051                 if (sch_ret != TC_ACT_UNSPEC)
4052                         goto egress_verdict;
4053         }
4054         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4055 egress_verdict:
4056         switch (sch_ret) {
4057         case TC_ACT_REDIRECT:
4058                 /* No need to push/pop skb's mac_header here on egress! */
4059                 skb_do_redirect(skb);
4060                 *ret = NET_XMIT_SUCCESS;
4061                 return NULL;
4062         case TC_ACT_SHOT:
4063                 kfree_skb_reason(skb, drop_reason);
4064                 *ret = NET_XMIT_DROP;
4065                 return NULL;
4066         /* used by tc_run */
4067         case TC_ACT_STOLEN:
4068         case TC_ACT_QUEUED:
4069         case TC_ACT_TRAP:
4070                 consume_skb(skb);
4071                 fallthrough;
4072         case TC_ACT_CONSUMED:
4073                 *ret = NET_XMIT_SUCCESS;
4074                 return NULL;
4075         }
4076
4077         return skb;
4078 }
4079 #else
4080 static __always_inline struct sk_buff *
4081 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4082                    struct net_device *orig_dev, bool *another)
4083 {
4084         return skb;
4085 }
4086
4087 static __always_inline struct sk_buff *
4088 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4089 {
4090         return skb;
4091 }
4092 #endif /* CONFIG_NET_XGRESS */
4093
4094 #ifdef CONFIG_XPS
4095 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4096                                struct xps_dev_maps *dev_maps, unsigned int tci)
4097 {
4098         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4099         struct xps_map *map;
4100         int queue_index = -1;
4101
4102         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4103                 return queue_index;
4104
4105         tci *= dev_maps->num_tc;
4106         tci += tc;
4107
4108         map = rcu_dereference(dev_maps->attr_map[tci]);
4109         if (map) {
4110                 if (map->len == 1)
4111                         queue_index = map->queues[0];
4112                 else
4113                         queue_index = map->queues[reciprocal_scale(
4114                                                 skb_get_hash(skb), map->len)];
4115                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4116                         queue_index = -1;
4117         }
4118         return queue_index;
4119 }
4120 #endif
4121
4122 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4123                          struct sk_buff *skb)
4124 {
4125 #ifdef CONFIG_XPS
4126         struct xps_dev_maps *dev_maps;
4127         struct sock *sk = skb->sk;
4128         int queue_index = -1;
4129
4130         if (!static_key_false(&xps_needed))
4131                 return -1;
4132
4133         rcu_read_lock();
4134         if (!static_key_false(&xps_rxqs_needed))
4135                 goto get_cpus_map;
4136
4137         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4138         if (dev_maps) {
4139                 int tci = sk_rx_queue_get(sk);
4140
4141                 if (tci >= 0)
4142                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4143                                                           tci);
4144         }
4145
4146 get_cpus_map:
4147         if (queue_index < 0) {
4148                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4149                 if (dev_maps) {
4150                         unsigned int tci = skb->sender_cpu - 1;
4151
4152                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4153                                                           tci);
4154                 }
4155         }
4156         rcu_read_unlock();
4157
4158         return queue_index;
4159 #else
4160         return -1;
4161 #endif
4162 }
4163
4164 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4165                      struct net_device *sb_dev)
4166 {
4167         return 0;
4168 }
4169 EXPORT_SYMBOL(dev_pick_tx_zero);
4170
4171 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4172                        struct net_device *sb_dev)
4173 {
4174         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4175 }
4176 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4177
4178 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4179                      struct net_device *sb_dev)
4180 {
4181         struct sock *sk = skb->sk;
4182         int queue_index = sk_tx_queue_get(sk);
4183
4184         sb_dev = sb_dev ? : dev;
4185
4186         if (queue_index < 0 || skb->ooo_okay ||
4187             queue_index >= dev->real_num_tx_queues) {
4188                 int new_index = get_xps_queue(dev, sb_dev, skb);
4189
4190                 if (new_index < 0)
4191                         new_index = skb_tx_hash(dev, sb_dev, skb);
4192
4193                 if (queue_index != new_index && sk &&
4194                     sk_fullsock(sk) &&
4195                     rcu_access_pointer(sk->sk_dst_cache))
4196                         sk_tx_queue_set(sk, new_index);
4197
4198                 queue_index = new_index;
4199         }
4200
4201         return queue_index;
4202 }
4203 EXPORT_SYMBOL(netdev_pick_tx);
4204
4205 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4206                                          struct sk_buff *skb,
4207                                          struct net_device *sb_dev)
4208 {
4209         int queue_index = 0;
4210
4211 #ifdef CONFIG_XPS
4212         u32 sender_cpu = skb->sender_cpu - 1;
4213
4214         if (sender_cpu >= (u32)NR_CPUS)
4215                 skb->sender_cpu = raw_smp_processor_id() + 1;
4216 #endif
4217
4218         if (dev->real_num_tx_queues != 1) {
4219                 const struct net_device_ops *ops = dev->netdev_ops;
4220
4221                 if (ops->ndo_select_queue)
4222                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4223                 else
4224                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4225
4226                 queue_index = netdev_cap_txqueue(dev, queue_index);
4227         }
4228
4229         skb_set_queue_mapping(skb, queue_index);
4230         return netdev_get_tx_queue(dev, queue_index);
4231 }
4232
4233 /**
4234  * __dev_queue_xmit() - transmit a buffer
4235  * @skb:        buffer to transmit
4236  * @sb_dev:     suboordinate device used for L2 forwarding offload
4237  *
4238  * Queue a buffer for transmission to a network device. The caller must
4239  * have set the device and priority and built the buffer before calling
4240  * this function. The function can be called from an interrupt.
4241  *
4242  * When calling this method, interrupts MUST be enabled. This is because
4243  * the BH enable code must have IRQs enabled so that it will not deadlock.
4244  *
4245  * Regardless of the return value, the skb is consumed, so it is currently
4246  * difficult to retry a send to this method. (You can bump the ref count
4247  * before sending to hold a reference for retry if you are careful.)
4248  *
4249  * Return:
4250  * * 0                          - buffer successfully transmitted
4251  * * positive qdisc return code - NET_XMIT_DROP etc.
4252  * * negative errno             - other errors
4253  */
4254 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4255 {
4256         struct net_device *dev = skb->dev;
4257         struct netdev_queue *txq = NULL;
4258         struct Qdisc *q;
4259         int rc = -ENOMEM;
4260         bool again = false;
4261
4262         skb_reset_mac_header(skb);
4263         skb_assert_len(skb);
4264
4265         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4266                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4267
4268         /* Disable soft irqs for various locks below. Also
4269          * stops preemption for RCU.
4270          */
4271         rcu_read_lock_bh();
4272
4273         skb_update_prio(skb);
4274
4275         qdisc_pkt_len_init(skb);
4276         tcx_set_ingress(skb, false);
4277 #ifdef CONFIG_NET_EGRESS
4278         if (static_branch_unlikely(&egress_needed_key)) {
4279                 if (nf_hook_egress_active()) {
4280                         skb = nf_hook_egress(skb, &rc, dev);
4281                         if (!skb)
4282                                 goto out;
4283                 }
4284
4285                 netdev_xmit_skip_txqueue(false);
4286
4287                 nf_skip_egress(skb, true);
4288                 skb = sch_handle_egress(skb, &rc, dev);
4289                 if (!skb)
4290                         goto out;
4291                 nf_skip_egress(skb, false);
4292
4293                 if (netdev_xmit_txqueue_skipped())
4294                         txq = netdev_tx_queue_mapping(dev, skb);
4295         }
4296 #endif
4297         /* If device/qdisc don't need skb->dst, release it right now while
4298          * its hot in this cpu cache.
4299          */
4300         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4301                 skb_dst_drop(skb);
4302         else
4303                 skb_dst_force(skb);
4304
4305         if (!txq)
4306                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4307
4308         q = rcu_dereference_bh(txq->qdisc);
4309
4310         trace_net_dev_queue(skb);
4311         if (q->enqueue) {
4312                 rc = __dev_xmit_skb(skb, q, dev, txq);
4313                 goto out;
4314         }
4315
4316         /* The device has no queue. Common case for software devices:
4317          * loopback, all the sorts of tunnels...
4318
4319          * Really, it is unlikely that netif_tx_lock protection is necessary
4320          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4321          * counters.)
4322          * However, it is possible, that they rely on protection
4323          * made by us here.
4324
4325          * Check this and shot the lock. It is not prone from deadlocks.
4326          *Either shot noqueue qdisc, it is even simpler 8)
4327          */
4328         if (dev->flags & IFF_UP) {
4329                 int cpu = smp_processor_id(); /* ok because BHs are off */
4330
4331                 /* Other cpus might concurrently change txq->xmit_lock_owner
4332                  * to -1 or to their cpu id, but not to our id.
4333                  */
4334                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4335                         if (dev_xmit_recursion())
4336                                 goto recursion_alert;
4337
4338                         skb = validate_xmit_skb(skb, dev, &again);
4339                         if (!skb)
4340                                 goto out;
4341
4342                         HARD_TX_LOCK(dev, txq, cpu);
4343
4344                         if (!netif_xmit_stopped(txq)) {
4345                                 dev_xmit_recursion_inc();
4346                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4347                                 dev_xmit_recursion_dec();
4348                                 if (dev_xmit_complete(rc)) {
4349                                         HARD_TX_UNLOCK(dev, txq);
4350                                         goto out;
4351                                 }
4352                         }
4353                         HARD_TX_UNLOCK(dev, txq);
4354                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4355                                              dev->name);
4356                 } else {
4357                         /* Recursion is detected! It is possible,
4358                          * unfortunately
4359                          */
4360 recursion_alert:
4361                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4362                                              dev->name);
4363                 }
4364         }
4365
4366         rc = -ENETDOWN;
4367         rcu_read_unlock_bh();
4368
4369         dev_core_stats_tx_dropped_inc(dev);
4370         kfree_skb_list(skb);
4371         return rc;
4372 out:
4373         rcu_read_unlock_bh();
4374         return rc;
4375 }
4376 EXPORT_SYMBOL(__dev_queue_xmit);
4377
4378 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4379 {
4380         struct net_device *dev = skb->dev;
4381         struct sk_buff *orig_skb = skb;
4382         struct netdev_queue *txq;
4383         int ret = NETDEV_TX_BUSY;
4384         bool again = false;
4385
4386         if (unlikely(!netif_running(dev) ||
4387                      !netif_carrier_ok(dev)))
4388                 goto drop;
4389
4390         skb = validate_xmit_skb_list(skb, dev, &again);
4391         if (skb != orig_skb)
4392                 goto drop;
4393
4394         skb_set_queue_mapping(skb, queue_id);
4395         txq = skb_get_tx_queue(dev, skb);
4396
4397         local_bh_disable();
4398
4399         dev_xmit_recursion_inc();
4400         HARD_TX_LOCK(dev, txq, smp_processor_id());
4401         if (!netif_xmit_frozen_or_drv_stopped(txq))
4402                 ret = netdev_start_xmit(skb, dev, txq, false);
4403         HARD_TX_UNLOCK(dev, txq);
4404         dev_xmit_recursion_dec();
4405
4406         local_bh_enable();
4407         return ret;
4408 drop:
4409         dev_core_stats_tx_dropped_inc(dev);
4410         kfree_skb_list(skb);
4411         return NET_XMIT_DROP;
4412 }
4413 EXPORT_SYMBOL(__dev_direct_xmit);
4414
4415 /*************************************************************************
4416  *                      Receiver routines
4417  *************************************************************************/
4418
4419 int netdev_max_backlog __read_mostly = 1000;
4420 EXPORT_SYMBOL(netdev_max_backlog);
4421
4422 int netdev_tstamp_prequeue __read_mostly = 1;
4423 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4424 int netdev_budget __read_mostly = 300;
4425 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4426 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4427 int weight_p __read_mostly = 64;           /* old backlog weight */
4428 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4429 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4430 int dev_rx_weight __read_mostly = 64;
4431 int dev_tx_weight __read_mostly = 64;
4432
4433 /* Called with irq disabled */
4434 static inline void ____napi_schedule(struct softnet_data *sd,
4435                                      struct napi_struct *napi)
4436 {
4437         struct task_struct *thread;
4438
4439         lockdep_assert_irqs_disabled();
4440
4441         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4442                 /* Paired with smp_mb__before_atomic() in
4443                  * napi_enable()/dev_set_threaded().
4444                  * Use READ_ONCE() to guarantee a complete
4445                  * read on napi->thread. Only call
4446                  * wake_up_process() when it's not NULL.
4447                  */
4448                 thread = READ_ONCE(napi->thread);
4449                 if (thread) {
4450                         /* Avoid doing set_bit() if the thread is in
4451                          * INTERRUPTIBLE state, cause napi_thread_wait()
4452                          * makes sure to proceed with napi polling
4453                          * if the thread is explicitly woken from here.
4454                          */
4455                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4456                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4457                         wake_up_process(thread);
4458                         return;
4459                 }
4460         }
4461
4462         list_add_tail(&napi->poll_list, &sd->poll_list);
4463         WRITE_ONCE(napi->list_owner, smp_processor_id());
4464         /* If not called from net_rx_action()
4465          * we have to raise NET_RX_SOFTIRQ.
4466          */
4467         if (!sd->in_net_rx_action)
4468                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4469 }
4470
4471 #ifdef CONFIG_RPS
4472
4473 /* One global table that all flow-based protocols share. */
4474 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4475 EXPORT_SYMBOL(rps_sock_flow_table);
4476 u32 rps_cpu_mask __read_mostly;
4477 EXPORT_SYMBOL(rps_cpu_mask);
4478
4479 struct static_key_false rps_needed __read_mostly;
4480 EXPORT_SYMBOL(rps_needed);
4481 struct static_key_false rfs_needed __read_mostly;
4482 EXPORT_SYMBOL(rfs_needed);
4483
4484 static struct rps_dev_flow *
4485 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4486             struct rps_dev_flow *rflow, u16 next_cpu)
4487 {
4488         if (next_cpu < nr_cpu_ids) {
4489 #ifdef CONFIG_RFS_ACCEL
4490                 struct netdev_rx_queue *rxqueue;
4491                 struct rps_dev_flow_table *flow_table;
4492                 struct rps_dev_flow *old_rflow;
4493                 u32 flow_id;
4494                 u16 rxq_index;
4495                 int rc;
4496
4497                 /* Should we steer this flow to a different hardware queue? */
4498                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4499                     !(dev->features & NETIF_F_NTUPLE))
4500                         goto out;
4501                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4502                 if (rxq_index == skb_get_rx_queue(skb))
4503                         goto out;
4504
4505                 rxqueue = dev->_rx + rxq_index;
4506                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4507                 if (!flow_table)
4508                         goto out;
4509                 flow_id = skb_get_hash(skb) & flow_table->mask;
4510                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4511                                                         rxq_index, flow_id);
4512                 if (rc < 0)
4513                         goto out;
4514                 old_rflow = rflow;
4515                 rflow = &flow_table->flows[flow_id];
4516                 rflow->filter = rc;
4517                 if (old_rflow->filter == rflow->filter)
4518                         old_rflow->filter = RPS_NO_FILTER;
4519         out:
4520 #endif
4521                 rflow->last_qtail =
4522                         per_cpu(softnet_data, next_cpu).input_queue_head;
4523         }
4524
4525         rflow->cpu = next_cpu;
4526         return rflow;
4527 }
4528
4529 /*
4530  * get_rps_cpu is called from netif_receive_skb and returns the target
4531  * CPU from the RPS map of the receiving queue for a given skb.
4532  * rcu_read_lock must be held on entry.
4533  */
4534 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4535                        struct rps_dev_flow **rflowp)
4536 {
4537         const struct rps_sock_flow_table *sock_flow_table;
4538         struct netdev_rx_queue *rxqueue = dev->_rx;
4539         struct rps_dev_flow_table *flow_table;
4540         struct rps_map *map;
4541         int cpu = -1;
4542         u32 tcpu;
4543         u32 hash;
4544
4545         if (skb_rx_queue_recorded(skb)) {
4546                 u16 index = skb_get_rx_queue(skb);
4547
4548                 if (unlikely(index >= dev->real_num_rx_queues)) {
4549                         WARN_ONCE(dev->real_num_rx_queues > 1,
4550                                   "%s received packet on queue %u, but number "
4551                                   "of RX queues is %u\n",
4552                                   dev->name, index, dev->real_num_rx_queues);
4553                         goto done;
4554                 }
4555                 rxqueue += index;
4556         }
4557
4558         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4559
4560         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4561         map = rcu_dereference(rxqueue->rps_map);
4562         if (!flow_table && !map)
4563                 goto done;
4564
4565         skb_reset_network_header(skb);
4566         hash = skb_get_hash(skb);
4567         if (!hash)
4568                 goto done;
4569
4570         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4571         if (flow_table && sock_flow_table) {
4572                 struct rps_dev_flow *rflow;
4573                 u32 next_cpu;
4574                 u32 ident;
4575
4576                 /* First check into global flow table if there is a match.
4577                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4578                  */
4579                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4580                 if ((ident ^ hash) & ~rps_cpu_mask)
4581                         goto try_rps;
4582
4583                 next_cpu = ident & rps_cpu_mask;
4584
4585                 /* OK, now we know there is a match,
4586                  * we can look at the local (per receive queue) flow table
4587                  */
4588                 rflow = &flow_table->flows[hash & flow_table->mask];
4589                 tcpu = rflow->cpu;
4590
4591                 /*
4592                  * If the desired CPU (where last recvmsg was done) is
4593                  * different from current CPU (one in the rx-queue flow
4594                  * table entry), switch if one of the following holds:
4595                  *   - Current CPU is unset (>= nr_cpu_ids).
4596                  *   - Current CPU is offline.
4597                  *   - The current CPU's queue tail has advanced beyond the
4598                  *     last packet that was enqueued using this table entry.
4599                  *     This guarantees that all previous packets for the flow
4600                  *     have been dequeued, thus preserving in order delivery.
4601                  */
4602                 if (unlikely(tcpu != next_cpu) &&
4603                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4604                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4605                       rflow->last_qtail)) >= 0)) {
4606                         tcpu = next_cpu;
4607                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4608                 }
4609
4610                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4611                         *rflowp = rflow;
4612                         cpu = tcpu;
4613                         goto done;
4614                 }
4615         }
4616
4617 try_rps:
4618
4619         if (map) {
4620                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4621                 if (cpu_online(tcpu)) {
4622                         cpu = tcpu;
4623                         goto done;
4624                 }
4625         }
4626
4627 done:
4628         return cpu;
4629 }
4630
4631 #ifdef CONFIG_RFS_ACCEL
4632
4633 /**
4634  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4635  * @dev: Device on which the filter was set
4636  * @rxq_index: RX queue index
4637  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4638  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4639  *
4640  * Drivers that implement ndo_rx_flow_steer() should periodically call
4641  * this function for each installed filter and remove the filters for
4642  * which it returns %true.
4643  */
4644 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4645                          u32 flow_id, u16 filter_id)
4646 {
4647         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4648         struct rps_dev_flow_table *flow_table;
4649         struct rps_dev_flow *rflow;
4650         bool expire = true;
4651         unsigned int cpu;
4652
4653         rcu_read_lock();
4654         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4655         if (flow_table && flow_id <= flow_table->mask) {
4656                 rflow = &flow_table->flows[flow_id];
4657                 cpu = READ_ONCE(rflow->cpu);
4658                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4659                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4660                            rflow->last_qtail) <
4661                      (int)(10 * flow_table->mask)))
4662                         expire = false;
4663         }
4664         rcu_read_unlock();
4665         return expire;
4666 }
4667 EXPORT_SYMBOL(rps_may_expire_flow);
4668
4669 #endif /* CONFIG_RFS_ACCEL */
4670
4671 /* Called from hardirq (IPI) context */
4672 static void rps_trigger_softirq(void *data)
4673 {
4674         struct softnet_data *sd = data;
4675
4676         ____napi_schedule(sd, &sd->backlog);
4677         sd->received_rps++;
4678 }
4679
4680 #endif /* CONFIG_RPS */
4681
4682 /* Called from hardirq (IPI) context */
4683 static void trigger_rx_softirq(void *data)
4684 {
4685         struct softnet_data *sd = data;
4686
4687         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4688         smp_store_release(&sd->defer_ipi_scheduled, 0);
4689 }
4690
4691 /*
4692  * After we queued a packet into sd->input_pkt_queue,
4693  * we need to make sure this queue is serviced soon.
4694  *
4695  * - If this is another cpu queue, link it to our rps_ipi_list,
4696  *   and make sure we will process rps_ipi_list from net_rx_action().
4697  *
4698  * - If this is our own queue, NAPI schedule our backlog.
4699  *   Note that this also raises NET_RX_SOFTIRQ.
4700  */
4701 static void napi_schedule_rps(struct softnet_data *sd)
4702 {
4703         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4704
4705 #ifdef CONFIG_RPS
4706         if (sd != mysd) {
4707                 sd->rps_ipi_next = mysd->rps_ipi_list;
4708                 mysd->rps_ipi_list = sd;
4709
4710                 /* If not called from net_rx_action() or napi_threaded_poll()
4711                  * we have to raise NET_RX_SOFTIRQ.
4712                  */
4713                 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4714                         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4715                 return;
4716         }
4717 #endif /* CONFIG_RPS */
4718         __napi_schedule_irqoff(&mysd->backlog);
4719 }
4720
4721 #ifdef CONFIG_NET_FLOW_LIMIT
4722 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4723 #endif
4724
4725 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4726 {
4727 #ifdef CONFIG_NET_FLOW_LIMIT
4728         struct sd_flow_limit *fl;
4729         struct softnet_data *sd;
4730         unsigned int old_flow, new_flow;
4731
4732         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4733                 return false;
4734
4735         sd = this_cpu_ptr(&softnet_data);
4736
4737         rcu_read_lock();
4738         fl = rcu_dereference(sd->flow_limit);
4739         if (fl) {
4740                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4741                 old_flow = fl->history[fl->history_head];
4742                 fl->history[fl->history_head] = new_flow;
4743
4744                 fl->history_head++;
4745                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4746
4747                 if (likely(fl->buckets[old_flow]))
4748                         fl->buckets[old_flow]--;
4749
4750                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4751                         fl->count++;
4752                         rcu_read_unlock();
4753                         return true;
4754                 }
4755         }
4756         rcu_read_unlock();
4757 #endif
4758         return false;
4759 }
4760
4761 /*
4762  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4763  * queue (may be a remote CPU queue).
4764  */
4765 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4766                               unsigned int *qtail)
4767 {
4768         enum skb_drop_reason reason;
4769         struct softnet_data *sd;
4770         unsigned long flags;
4771         unsigned int qlen;
4772
4773         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4774         sd = &per_cpu(softnet_data, cpu);
4775
4776         rps_lock_irqsave(sd, &flags);
4777         if (!netif_running(skb->dev))
4778                 goto drop;
4779         qlen = skb_queue_len(&sd->input_pkt_queue);
4780         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4781                 if (qlen) {
4782 enqueue:
4783                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4784                         input_queue_tail_incr_save(sd, qtail);
4785                         rps_unlock_irq_restore(sd, &flags);
4786                         return NET_RX_SUCCESS;
4787                 }
4788
4789                 /* Schedule NAPI for backlog device
4790                  * We can use non atomic operation since we own the queue lock
4791                  */
4792                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4793                         napi_schedule_rps(sd);
4794                 goto enqueue;
4795         }
4796         reason = SKB_DROP_REASON_CPU_BACKLOG;
4797
4798 drop:
4799         sd->dropped++;
4800         rps_unlock_irq_restore(sd, &flags);
4801
4802         dev_core_stats_rx_dropped_inc(skb->dev);
4803         kfree_skb_reason(skb, reason);
4804         return NET_RX_DROP;
4805 }
4806
4807 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4808 {
4809         struct net_device *dev = skb->dev;
4810         struct netdev_rx_queue *rxqueue;
4811
4812         rxqueue = dev->_rx;
4813
4814         if (skb_rx_queue_recorded(skb)) {
4815                 u16 index = skb_get_rx_queue(skb);
4816
4817                 if (unlikely(index >= dev->real_num_rx_queues)) {
4818                         WARN_ONCE(dev->real_num_rx_queues > 1,
4819                                   "%s received packet on queue %u, but number "
4820                                   "of RX queues is %u\n",
4821                                   dev->name, index, dev->real_num_rx_queues);
4822
4823                         return rxqueue; /* Return first rxqueue */
4824                 }
4825                 rxqueue += index;
4826         }
4827         return rxqueue;
4828 }
4829
4830 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4831                              struct bpf_prog *xdp_prog)
4832 {
4833         void *orig_data, *orig_data_end, *hard_start;
4834         struct netdev_rx_queue *rxqueue;
4835         bool orig_bcast, orig_host;
4836         u32 mac_len, frame_sz;
4837         __be16 orig_eth_type;
4838         struct ethhdr *eth;
4839         u32 metalen, act;
4840         int off;
4841
4842         /* The XDP program wants to see the packet starting at the MAC
4843          * header.
4844          */
4845         mac_len = skb->data - skb_mac_header(skb);
4846         hard_start = skb->data - skb_headroom(skb);
4847
4848         /* SKB "head" area always have tailroom for skb_shared_info */
4849         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4850         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4851
4852         rxqueue = netif_get_rxqueue(skb);
4853         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4854         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4855                          skb_headlen(skb) + mac_len, true);
4856
4857         orig_data_end = xdp->data_end;
4858         orig_data = xdp->data;
4859         eth = (struct ethhdr *)xdp->data;
4860         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4861         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4862         orig_eth_type = eth->h_proto;
4863
4864         act = bpf_prog_run_xdp(xdp_prog, xdp);
4865
4866         /* check if bpf_xdp_adjust_head was used */
4867         off = xdp->data - orig_data;
4868         if (off) {
4869                 if (off > 0)
4870                         __skb_pull(skb, off);
4871                 else if (off < 0)
4872                         __skb_push(skb, -off);
4873
4874                 skb->mac_header += off;
4875                 skb_reset_network_header(skb);
4876         }
4877
4878         /* check if bpf_xdp_adjust_tail was used */
4879         off = xdp->data_end - orig_data_end;
4880         if (off != 0) {
4881                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4882                 skb->len += off; /* positive on grow, negative on shrink */
4883         }
4884
4885         /* check if XDP changed eth hdr such SKB needs update */
4886         eth = (struct ethhdr *)xdp->data;
4887         if ((orig_eth_type != eth->h_proto) ||
4888             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4889                                                   skb->dev->dev_addr)) ||
4890             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4891                 __skb_push(skb, ETH_HLEN);
4892                 skb->pkt_type = PACKET_HOST;
4893                 skb->protocol = eth_type_trans(skb, skb->dev);
4894         }
4895
4896         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4897          * before calling us again on redirect path. We do not call do_redirect
4898          * as we leave that up to the caller.
4899          *
4900          * Caller is responsible for managing lifetime of skb (i.e. calling
4901          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4902          */
4903         switch (act) {
4904         case XDP_REDIRECT:
4905         case XDP_TX:
4906                 __skb_push(skb, mac_len);
4907                 break;
4908         case XDP_PASS:
4909                 metalen = xdp->data - xdp->data_meta;
4910                 if (metalen)
4911                         skb_metadata_set(skb, metalen);
4912                 break;
4913         }
4914
4915         return act;
4916 }
4917
4918 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4919                                      struct xdp_buff *xdp,
4920                                      struct bpf_prog *xdp_prog)
4921 {
4922         u32 act = XDP_DROP;
4923
4924         /* Reinjected packets coming from act_mirred or similar should
4925          * not get XDP generic processing.
4926          */
4927         if (skb_is_redirected(skb))
4928                 return XDP_PASS;
4929
4930         /* XDP packets must be linear and must have sufficient headroom
4931          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4932          * native XDP provides, thus we need to do it here as well.
4933          */
4934         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4935             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4936                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4937                 int troom = skb->tail + skb->data_len - skb->end;
4938
4939                 /* In case we have to go down the path and also linearize,
4940                  * then lets do the pskb_expand_head() work just once here.
4941                  */
4942                 if (pskb_expand_head(skb,
4943                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4944                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4945                         goto do_drop;
4946                 if (skb_linearize(skb))
4947                         goto do_drop;
4948         }
4949
4950         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4951         switch (act) {
4952         case XDP_REDIRECT:
4953         case XDP_TX:
4954         case XDP_PASS:
4955                 break;
4956         default:
4957                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4958                 fallthrough;
4959         case XDP_ABORTED:
4960                 trace_xdp_exception(skb->dev, xdp_prog, act);
4961                 fallthrough;
4962         case XDP_DROP:
4963         do_drop:
4964                 kfree_skb(skb);
4965                 break;
4966         }
4967
4968         return act;
4969 }
4970
4971 /* When doing generic XDP we have to bypass the qdisc layer and the
4972  * network taps in order to match in-driver-XDP behavior. This also means
4973  * that XDP packets are able to starve other packets going through a qdisc,
4974  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4975  * queues, so they do not have this starvation issue.
4976  */
4977 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4978 {
4979         struct net_device *dev = skb->dev;
4980         struct netdev_queue *txq;
4981         bool free_skb = true;
4982         int cpu, rc;
4983
4984         txq = netdev_core_pick_tx(dev, skb, NULL);
4985         cpu = smp_processor_id();
4986         HARD_TX_LOCK(dev, txq, cpu);
4987         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4988                 rc = netdev_start_xmit(skb, dev, txq, 0);
4989                 if (dev_xmit_complete(rc))
4990                         free_skb = false;
4991         }
4992         HARD_TX_UNLOCK(dev, txq);
4993         if (free_skb) {
4994                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4995                 dev_core_stats_tx_dropped_inc(dev);
4996                 kfree_skb(skb);
4997         }
4998 }
4999
5000 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5001
5002 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5003 {
5004         if (xdp_prog) {
5005                 struct xdp_buff xdp;
5006                 u32 act;
5007                 int err;
5008
5009                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5010                 if (act != XDP_PASS) {
5011                         switch (act) {
5012                         case XDP_REDIRECT:
5013                                 err = xdp_do_generic_redirect(skb->dev, skb,
5014                                                               &xdp, xdp_prog);
5015                                 if (err)
5016                                         goto out_redir;
5017                                 break;
5018                         case XDP_TX:
5019                                 generic_xdp_tx(skb, xdp_prog);
5020                                 break;
5021                         }
5022                         return XDP_DROP;
5023                 }
5024         }
5025         return XDP_PASS;
5026 out_redir:
5027         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5028         return XDP_DROP;
5029 }
5030 EXPORT_SYMBOL_GPL(do_xdp_generic);
5031
5032 static int netif_rx_internal(struct sk_buff *skb)
5033 {
5034         int ret;
5035
5036         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5037
5038         trace_netif_rx(skb);
5039
5040 #ifdef CONFIG_RPS
5041         if (static_branch_unlikely(&rps_needed)) {
5042                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5043                 int cpu;
5044
5045                 rcu_read_lock();
5046
5047                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5048                 if (cpu < 0)
5049                         cpu = smp_processor_id();
5050
5051                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5052
5053                 rcu_read_unlock();
5054         } else
5055 #endif
5056         {
5057                 unsigned int qtail;
5058
5059                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5060         }
5061         return ret;
5062 }
5063
5064 /**
5065  *      __netif_rx      -       Slightly optimized version of netif_rx
5066  *      @skb: buffer to post
5067  *
5068  *      This behaves as netif_rx except that it does not disable bottom halves.
5069  *      As a result this function may only be invoked from the interrupt context
5070  *      (either hard or soft interrupt).
5071  */
5072 int __netif_rx(struct sk_buff *skb)
5073 {
5074         int ret;
5075
5076         lockdep_assert_once(hardirq_count() | softirq_count());
5077
5078         trace_netif_rx_entry(skb);
5079         ret = netif_rx_internal(skb);
5080         trace_netif_rx_exit(ret);
5081         return ret;
5082 }
5083 EXPORT_SYMBOL(__netif_rx);
5084
5085 /**
5086  *      netif_rx        -       post buffer to the network code
5087  *      @skb: buffer to post
5088  *
5089  *      This function receives a packet from a device driver and queues it for
5090  *      the upper (protocol) levels to process via the backlog NAPI device. It
5091  *      always succeeds. The buffer may be dropped during processing for
5092  *      congestion control or by the protocol layers.
5093  *      The network buffer is passed via the backlog NAPI device. Modern NIC
5094  *      driver should use NAPI and GRO.
5095  *      This function can used from interrupt and from process context. The
5096  *      caller from process context must not disable interrupts before invoking
5097  *      this function.
5098  *
5099  *      return values:
5100  *      NET_RX_SUCCESS  (no congestion)
5101  *      NET_RX_DROP     (packet was dropped)
5102  *
5103  */
5104 int netif_rx(struct sk_buff *skb)
5105 {
5106         bool need_bh_off = !(hardirq_count() | softirq_count());
5107         int ret;
5108
5109         if (need_bh_off)
5110                 local_bh_disable();
5111         trace_netif_rx_entry(skb);
5112         ret = netif_rx_internal(skb);
5113         trace_netif_rx_exit(ret);
5114         if (need_bh_off)
5115                 local_bh_enable();
5116         return ret;
5117 }
5118 EXPORT_SYMBOL(netif_rx);
5119
5120 static __latent_entropy void net_tx_action(struct softirq_action *h)
5121 {
5122         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5123
5124         if (sd->completion_queue) {
5125                 struct sk_buff *clist;
5126
5127                 local_irq_disable();
5128                 clist = sd->completion_queue;
5129                 sd->completion_queue = NULL;
5130                 local_irq_enable();
5131
5132                 while (clist) {
5133                         struct sk_buff *skb = clist;
5134
5135                         clist = clist->next;
5136
5137                         WARN_ON(refcount_read(&skb->users));
5138                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5139                                 trace_consume_skb(skb, net_tx_action);
5140                         else
5141                                 trace_kfree_skb(skb, net_tx_action,
5142                                                 get_kfree_skb_cb(skb)->reason);
5143
5144                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5145                                 __kfree_skb(skb);
5146                         else
5147                                 __napi_kfree_skb(skb,
5148                                                  get_kfree_skb_cb(skb)->reason);
5149                 }
5150         }
5151
5152         if (sd->output_queue) {
5153                 struct Qdisc *head;
5154
5155                 local_irq_disable();
5156                 head = sd->output_queue;
5157                 sd->output_queue = NULL;
5158                 sd->output_queue_tailp = &sd->output_queue;
5159                 local_irq_enable();
5160
5161                 rcu_read_lock();
5162
5163                 while (head) {
5164                         struct Qdisc *q = head;
5165                         spinlock_t *root_lock = NULL;
5166
5167                         head = head->next_sched;
5168
5169                         /* We need to make sure head->next_sched is read
5170                          * before clearing __QDISC_STATE_SCHED
5171                          */
5172                         smp_mb__before_atomic();
5173
5174                         if (!(q->flags & TCQ_F_NOLOCK)) {
5175                                 root_lock = qdisc_lock(q);
5176                                 spin_lock(root_lock);
5177                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5178                                                      &q->state))) {
5179                                 /* There is a synchronize_net() between
5180                                  * STATE_DEACTIVATED flag being set and
5181                                  * qdisc_reset()/some_qdisc_is_busy() in
5182                                  * dev_deactivate(), so we can safely bail out
5183                                  * early here to avoid data race between
5184                                  * qdisc_deactivate() and some_qdisc_is_busy()
5185                                  * for lockless qdisc.
5186                                  */
5187                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5188                                 continue;
5189                         }
5190
5191                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5192                         qdisc_run(q);
5193                         if (root_lock)
5194                                 spin_unlock(root_lock);
5195                 }
5196
5197                 rcu_read_unlock();
5198         }
5199
5200         xfrm_dev_backlog(sd);
5201 }
5202
5203 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5204 /* This hook is defined here for ATM LANE */
5205 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5206                              unsigned char *addr) __read_mostly;
5207 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5208 #endif
5209
5210 /**
5211  *      netdev_is_rx_handler_busy - check if receive handler is registered
5212  *      @dev: device to check
5213  *
5214  *      Check if a receive handler is already registered for a given device.
5215  *      Return true if there one.
5216  *
5217  *      The caller must hold the rtnl_mutex.
5218  */
5219 bool netdev_is_rx_handler_busy(struct net_device *dev)
5220 {
5221         ASSERT_RTNL();
5222         return dev && rtnl_dereference(dev->rx_handler);
5223 }
5224 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5225
5226 /**
5227  *      netdev_rx_handler_register - register receive handler
5228  *      @dev: device to register a handler for
5229  *      @rx_handler: receive handler to register
5230  *      @rx_handler_data: data pointer that is used by rx handler
5231  *
5232  *      Register a receive handler for a device. This handler will then be
5233  *      called from __netif_receive_skb. A negative errno code is returned
5234  *      on a failure.
5235  *
5236  *      The caller must hold the rtnl_mutex.
5237  *
5238  *      For a general description of rx_handler, see enum rx_handler_result.
5239  */
5240 int netdev_rx_handler_register(struct net_device *dev,
5241                                rx_handler_func_t *rx_handler,
5242                                void *rx_handler_data)
5243 {
5244         if (netdev_is_rx_handler_busy(dev))
5245                 return -EBUSY;
5246
5247         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5248                 return -EINVAL;
5249
5250         /* Note: rx_handler_data must be set before rx_handler */
5251         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5252         rcu_assign_pointer(dev->rx_handler, rx_handler);
5253
5254         return 0;
5255 }
5256 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5257
5258 /**
5259  *      netdev_rx_handler_unregister - unregister receive handler
5260  *      @dev: device to unregister a handler from
5261  *
5262  *      Unregister a receive handler from a device.
5263  *
5264  *      The caller must hold the rtnl_mutex.
5265  */
5266 void netdev_rx_handler_unregister(struct net_device *dev)
5267 {
5268
5269         ASSERT_RTNL();
5270         RCU_INIT_POINTER(dev->rx_handler, NULL);
5271         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5272          * section has a guarantee to see a non NULL rx_handler_data
5273          * as well.
5274          */
5275         synchronize_net();
5276         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5277 }
5278 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5279
5280 /*
5281  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5282  * the special handling of PFMEMALLOC skbs.
5283  */
5284 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5285 {
5286         switch (skb->protocol) {
5287         case htons(ETH_P_ARP):
5288         case htons(ETH_P_IP):
5289         case htons(ETH_P_IPV6):
5290         case htons(ETH_P_8021Q):
5291         case htons(ETH_P_8021AD):
5292                 return true;
5293         default:
5294                 return false;
5295         }
5296 }
5297
5298 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5299                              int *ret, struct net_device *orig_dev)
5300 {
5301         if (nf_hook_ingress_active(skb)) {
5302                 int ingress_retval;
5303
5304                 if (*pt_prev) {
5305                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5306                         *pt_prev = NULL;
5307                 }
5308
5309                 rcu_read_lock();
5310                 ingress_retval = nf_hook_ingress(skb);
5311                 rcu_read_unlock();
5312                 return ingress_retval;
5313         }
5314         return 0;
5315 }
5316
5317 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5318                                     struct packet_type **ppt_prev)
5319 {
5320         struct packet_type *ptype, *pt_prev;
5321         rx_handler_func_t *rx_handler;
5322         struct sk_buff *skb = *pskb;
5323         struct net_device *orig_dev;
5324         bool deliver_exact = false;
5325         int ret = NET_RX_DROP;
5326         __be16 type;
5327
5328         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5329
5330         trace_netif_receive_skb(skb);
5331
5332         orig_dev = skb->dev;
5333
5334         skb_reset_network_header(skb);
5335         if (!skb_transport_header_was_set(skb))
5336                 skb_reset_transport_header(skb);
5337         skb_reset_mac_len(skb);
5338
5339         pt_prev = NULL;
5340
5341 another_round:
5342         skb->skb_iif = skb->dev->ifindex;
5343
5344         __this_cpu_inc(softnet_data.processed);
5345
5346         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5347                 int ret2;
5348
5349                 migrate_disable();
5350                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5351                 migrate_enable();
5352
5353                 if (ret2 != XDP_PASS) {
5354                         ret = NET_RX_DROP;
5355                         goto out;
5356                 }
5357         }
5358
5359         if (eth_type_vlan(skb->protocol)) {
5360                 skb = skb_vlan_untag(skb);
5361                 if (unlikely(!skb))
5362                         goto out;
5363         }
5364
5365         if (skb_skip_tc_classify(skb))
5366                 goto skip_classify;
5367
5368         if (pfmemalloc)
5369                 goto skip_taps;
5370
5371         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5372                 if (pt_prev)
5373                         ret = deliver_skb(skb, pt_prev, orig_dev);
5374                 pt_prev = ptype;
5375         }
5376
5377         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5378                 if (pt_prev)
5379                         ret = deliver_skb(skb, pt_prev, orig_dev);
5380                 pt_prev = ptype;
5381         }
5382
5383 skip_taps:
5384 #ifdef CONFIG_NET_INGRESS
5385         if (static_branch_unlikely(&ingress_needed_key)) {
5386                 bool another = false;
5387
5388                 nf_skip_egress(skb, true);
5389                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5390                                          &another);
5391                 if (another)
5392                         goto another_round;
5393                 if (!skb)
5394                         goto out;
5395
5396                 nf_skip_egress(skb, false);
5397                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5398                         goto out;
5399         }
5400 #endif
5401         skb_reset_redirect(skb);
5402 skip_classify:
5403         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5404                 goto drop;
5405
5406         if (skb_vlan_tag_present(skb)) {
5407                 if (pt_prev) {
5408                         ret = deliver_skb(skb, pt_prev, orig_dev);
5409                         pt_prev = NULL;
5410                 }
5411                 if (vlan_do_receive(&skb))
5412                         goto another_round;
5413                 else if (unlikely(!skb))
5414                         goto out;
5415         }
5416
5417         rx_handler = rcu_dereference(skb->dev->rx_handler);
5418         if (rx_handler) {
5419                 if (pt_prev) {
5420                         ret = deliver_skb(skb, pt_prev, orig_dev);
5421                         pt_prev = NULL;
5422                 }
5423                 switch (rx_handler(&skb)) {
5424                 case RX_HANDLER_CONSUMED:
5425                         ret = NET_RX_SUCCESS;
5426                         goto out;
5427                 case RX_HANDLER_ANOTHER:
5428                         goto another_round;
5429                 case RX_HANDLER_EXACT:
5430                         deliver_exact = true;
5431                         break;
5432                 case RX_HANDLER_PASS:
5433                         break;
5434                 default:
5435                         BUG();
5436                 }
5437         }
5438
5439         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5440 check_vlan_id:
5441                 if (skb_vlan_tag_get_id(skb)) {
5442                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5443                          * find vlan device.
5444                          */
5445                         skb->pkt_type = PACKET_OTHERHOST;
5446                 } else if (eth_type_vlan(skb->protocol)) {
5447                         /* Outer header is 802.1P with vlan 0, inner header is
5448                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5449                          * not find vlan dev for vlan id 0.
5450                          */
5451                         __vlan_hwaccel_clear_tag(skb);
5452                         skb = skb_vlan_untag(skb);
5453                         if (unlikely(!skb))
5454                                 goto out;
5455                         if (vlan_do_receive(&skb))
5456                                 /* After stripping off 802.1P header with vlan 0
5457                                  * vlan dev is found for inner header.
5458                                  */
5459                                 goto another_round;
5460                         else if (unlikely(!skb))
5461                                 goto out;
5462                         else
5463                                 /* We have stripped outer 802.1P vlan 0 header.
5464                                  * But could not find vlan dev.
5465                                  * check again for vlan id to set OTHERHOST.
5466                                  */
5467                                 goto check_vlan_id;
5468                 }
5469                 /* Note: we might in the future use prio bits
5470                  * and set skb->priority like in vlan_do_receive()
5471                  * For the time being, just ignore Priority Code Point
5472                  */
5473                 __vlan_hwaccel_clear_tag(skb);
5474         }
5475
5476         type = skb->protocol;
5477
5478         /* deliver only exact match when indicated */
5479         if (likely(!deliver_exact)) {
5480                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5481                                        &ptype_base[ntohs(type) &
5482                                                    PTYPE_HASH_MASK]);
5483         }
5484
5485         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5486                                &orig_dev->ptype_specific);
5487
5488         if (unlikely(skb->dev != orig_dev)) {
5489                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5490                                        &skb->dev->ptype_specific);
5491         }
5492
5493         if (pt_prev) {
5494                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5495                         goto drop;
5496                 *ppt_prev = pt_prev;
5497         } else {
5498 drop:
5499                 if (!deliver_exact)
5500                         dev_core_stats_rx_dropped_inc(skb->dev);
5501                 else
5502                         dev_core_stats_rx_nohandler_inc(skb->dev);
5503                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5504                 /* Jamal, now you will not able to escape explaining
5505                  * me how you were going to use this. :-)
5506                  */
5507                 ret = NET_RX_DROP;
5508         }
5509
5510 out:
5511         /* The invariant here is that if *ppt_prev is not NULL
5512          * then skb should also be non-NULL.
5513          *
5514          * Apparently *ppt_prev assignment above holds this invariant due to
5515          * skb dereferencing near it.
5516          */
5517         *pskb = skb;
5518         return ret;
5519 }
5520
5521 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5522 {
5523         struct net_device *orig_dev = skb->dev;
5524         struct packet_type *pt_prev = NULL;
5525         int ret;
5526
5527         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5528         if (pt_prev)
5529                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5530                                          skb->dev, pt_prev, orig_dev);
5531         return ret;
5532 }
5533
5534 /**
5535  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5536  *      @skb: buffer to process
5537  *
5538  *      More direct receive version of netif_receive_skb().  It should
5539  *      only be used by callers that have a need to skip RPS and Generic XDP.
5540  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5541  *
5542  *      This function may only be called from softirq context and interrupts
5543  *      should be enabled.
5544  *
5545  *      Return values (usually ignored):
5546  *      NET_RX_SUCCESS: no congestion
5547  *      NET_RX_DROP: packet was dropped
5548  */
5549 int netif_receive_skb_core(struct sk_buff *skb)
5550 {
5551         int ret;
5552
5553         rcu_read_lock();
5554         ret = __netif_receive_skb_one_core(skb, false);
5555         rcu_read_unlock();
5556
5557         return ret;
5558 }
5559 EXPORT_SYMBOL(netif_receive_skb_core);
5560
5561 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5562                                                   struct packet_type *pt_prev,
5563                                                   struct net_device *orig_dev)
5564 {
5565         struct sk_buff *skb, *next;
5566
5567         if (!pt_prev)
5568                 return;
5569         if (list_empty(head))
5570                 return;
5571         if (pt_prev->list_func != NULL)
5572                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5573                                    ip_list_rcv, head, pt_prev, orig_dev);
5574         else
5575                 list_for_each_entry_safe(skb, next, head, list) {
5576                         skb_list_del_init(skb);
5577                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5578                 }
5579 }
5580
5581 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5582 {
5583         /* Fast-path assumptions:
5584          * - There is no RX handler.
5585          * - Only one packet_type matches.
5586          * If either of these fails, we will end up doing some per-packet
5587          * processing in-line, then handling the 'last ptype' for the whole
5588          * sublist.  This can't cause out-of-order delivery to any single ptype,
5589          * because the 'last ptype' must be constant across the sublist, and all
5590          * other ptypes are handled per-packet.
5591          */
5592         /* Current (common) ptype of sublist */
5593         struct packet_type *pt_curr = NULL;
5594         /* Current (common) orig_dev of sublist */
5595         struct net_device *od_curr = NULL;
5596         struct list_head sublist;
5597         struct sk_buff *skb, *next;
5598
5599         INIT_LIST_HEAD(&sublist);
5600         list_for_each_entry_safe(skb, next, head, list) {
5601                 struct net_device *orig_dev = skb->dev;
5602                 struct packet_type *pt_prev = NULL;
5603
5604                 skb_list_del_init(skb);
5605                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5606                 if (!pt_prev)
5607                         continue;
5608                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5609                         /* dispatch old sublist */
5610                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5611                         /* start new sublist */
5612                         INIT_LIST_HEAD(&sublist);
5613                         pt_curr = pt_prev;
5614                         od_curr = orig_dev;
5615                 }
5616                 list_add_tail(&skb->list, &sublist);
5617         }
5618
5619         /* dispatch final sublist */
5620         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5621 }
5622
5623 static int __netif_receive_skb(struct sk_buff *skb)
5624 {
5625         int ret;
5626
5627         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5628                 unsigned int noreclaim_flag;
5629
5630                 /*
5631                  * PFMEMALLOC skbs are special, they should
5632                  * - be delivered to SOCK_MEMALLOC sockets only
5633                  * - stay away from userspace
5634                  * - have bounded memory usage
5635                  *
5636                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5637                  * context down to all allocation sites.
5638                  */
5639                 noreclaim_flag = memalloc_noreclaim_save();
5640                 ret = __netif_receive_skb_one_core(skb, true);
5641                 memalloc_noreclaim_restore(noreclaim_flag);
5642         } else
5643                 ret = __netif_receive_skb_one_core(skb, false);
5644
5645         return ret;
5646 }
5647
5648 static void __netif_receive_skb_list(struct list_head *head)
5649 {
5650         unsigned long noreclaim_flag = 0;
5651         struct sk_buff *skb, *next;
5652         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5653
5654         list_for_each_entry_safe(skb, next, head, list) {
5655                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5656                         struct list_head sublist;
5657
5658                         /* Handle the previous sublist */
5659                         list_cut_before(&sublist, head, &skb->list);
5660                         if (!list_empty(&sublist))
5661                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5662                         pfmemalloc = !pfmemalloc;
5663                         /* See comments in __netif_receive_skb */
5664                         if (pfmemalloc)
5665                                 noreclaim_flag = memalloc_noreclaim_save();
5666                         else
5667                                 memalloc_noreclaim_restore(noreclaim_flag);
5668                 }
5669         }
5670         /* Handle the remaining sublist */
5671         if (!list_empty(head))
5672                 __netif_receive_skb_list_core(head, pfmemalloc);
5673         /* Restore pflags */
5674         if (pfmemalloc)
5675                 memalloc_noreclaim_restore(noreclaim_flag);
5676 }
5677
5678 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5679 {
5680         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5681         struct bpf_prog *new = xdp->prog;
5682         int ret = 0;
5683
5684         switch (xdp->command) {
5685         case XDP_SETUP_PROG:
5686                 rcu_assign_pointer(dev->xdp_prog, new);
5687                 if (old)
5688                         bpf_prog_put(old);
5689
5690                 if (old && !new) {
5691                         static_branch_dec(&generic_xdp_needed_key);
5692                 } else if (new && !old) {
5693                         static_branch_inc(&generic_xdp_needed_key);
5694                         dev_disable_lro(dev);
5695                         dev_disable_gro_hw(dev);
5696                 }
5697                 break;
5698
5699         default:
5700                 ret = -EINVAL;
5701                 break;
5702         }
5703
5704         return ret;
5705 }
5706
5707 static int netif_receive_skb_internal(struct sk_buff *skb)
5708 {
5709         int ret;
5710
5711         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5712
5713         if (skb_defer_rx_timestamp(skb))
5714                 return NET_RX_SUCCESS;
5715
5716         rcu_read_lock();
5717 #ifdef CONFIG_RPS
5718         if (static_branch_unlikely(&rps_needed)) {
5719                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5720                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5721
5722                 if (cpu >= 0) {
5723                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5724                         rcu_read_unlock();
5725                         return ret;
5726                 }
5727         }
5728 #endif
5729         ret = __netif_receive_skb(skb);
5730         rcu_read_unlock();
5731         return ret;
5732 }
5733
5734 void netif_receive_skb_list_internal(struct list_head *head)
5735 {
5736         struct sk_buff *skb, *next;
5737         struct list_head sublist;
5738
5739         INIT_LIST_HEAD(&sublist);
5740         list_for_each_entry_safe(skb, next, head, list) {
5741                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5742                 skb_list_del_init(skb);
5743                 if (!skb_defer_rx_timestamp(skb))
5744                         list_add_tail(&skb->list, &sublist);
5745         }
5746         list_splice_init(&sublist, head);
5747
5748         rcu_read_lock();
5749 #ifdef CONFIG_RPS
5750         if (static_branch_unlikely(&rps_needed)) {
5751                 list_for_each_entry_safe(skb, next, head, list) {
5752                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5753                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5754
5755                         if (cpu >= 0) {
5756                                 /* Will be handled, remove from list */
5757                                 skb_list_del_init(skb);
5758                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5759                         }
5760                 }
5761         }
5762 #endif
5763         __netif_receive_skb_list(head);
5764         rcu_read_unlock();
5765 }
5766
5767 /**
5768  *      netif_receive_skb - process receive buffer from network
5769  *      @skb: buffer to process
5770  *
5771  *      netif_receive_skb() is the main receive data processing function.
5772  *      It always succeeds. The buffer may be dropped during processing
5773  *      for congestion control or by the protocol layers.
5774  *
5775  *      This function may only be called from softirq context and interrupts
5776  *      should be enabled.
5777  *
5778  *      Return values (usually ignored):
5779  *      NET_RX_SUCCESS: no congestion
5780  *      NET_RX_DROP: packet was dropped
5781  */
5782 int netif_receive_skb(struct sk_buff *skb)
5783 {
5784         int ret;
5785
5786         trace_netif_receive_skb_entry(skb);
5787
5788         ret = netif_receive_skb_internal(skb);
5789         trace_netif_receive_skb_exit(ret);
5790
5791         return ret;
5792 }
5793 EXPORT_SYMBOL(netif_receive_skb);
5794
5795 /**
5796  *      netif_receive_skb_list - process many receive buffers from network
5797  *      @head: list of skbs to process.
5798  *
5799  *      Since return value of netif_receive_skb() is normally ignored, and
5800  *      wouldn't be meaningful for a list, this function returns void.
5801  *
5802  *      This function may only be called from softirq context and interrupts
5803  *      should be enabled.
5804  */
5805 void netif_receive_skb_list(struct list_head *head)
5806 {
5807         struct sk_buff *skb;
5808
5809         if (list_empty(head))
5810                 return;
5811         if (trace_netif_receive_skb_list_entry_enabled()) {
5812                 list_for_each_entry(skb, head, list)
5813                         trace_netif_receive_skb_list_entry(skb);
5814         }
5815         netif_receive_skb_list_internal(head);
5816         trace_netif_receive_skb_list_exit(0);
5817 }
5818 EXPORT_SYMBOL(netif_receive_skb_list);
5819
5820 static DEFINE_PER_CPU(struct work_struct, flush_works);
5821
5822 /* Network device is going away, flush any packets still pending */
5823 static void flush_backlog(struct work_struct *work)
5824 {
5825         struct sk_buff *skb, *tmp;
5826         struct softnet_data *sd;
5827
5828         local_bh_disable();
5829         sd = this_cpu_ptr(&softnet_data);
5830
5831         rps_lock_irq_disable(sd);
5832         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5833                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5834                         __skb_unlink(skb, &sd->input_pkt_queue);
5835                         dev_kfree_skb_irq(skb);
5836                         input_queue_head_incr(sd);
5837                 }
5838         }
5839         rps_unlock_irq_enable(sd);
5840
5841         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5842                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5843                         __skb_unlink(skb, &sd->process_queue);
5844                         kfree_skb(skb);
5845                         input_queue_head_incr(sd);
5846                 }
5847         }
5848         local_bh_enable();
5849 }
5850
5851 static bool flush_required(int cpu)
5852 {
5853 #if IS_ENABLED(CONFIG_RPS)
5854         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5855         bool do_flush;
5856
5857         rps_lock_irq_disable(sd);
5858
5859         /* as insertion into process_queue happens with the rps lock held,
5860          * process_queue access may race only with dequeue
5861          */
5862         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5863                    !skb_queue_empty_lockless(&sd->process_queue);
5864         rps_unlock_irq_enable(sd);
5865
5866         return do_flush;
5867 #endif
5868         /* without RPS we can't safely check input_pkt_queue: during a
5869          * concurrent remote skb_queue_splice() we can detect as empty both
5870          * input_pkt_queue and process_queue even if the latter could end-up
5871          * containing a lot of packets.
5872          */
5873         return true;
5874 }
5875
5876 static void flush_all_backlogs(void)
5877 {
5878         static cpumask_t flush_cpus;
5879         unsigned int cpu;
5880
5881         /* since we are under rtnl lock protection we can use static data
5882          * for the cpumask and avoid allocating on stack the possibly
5883          * large mask
5884          */
5885         ASSERT_RTNL();
5886
5887         cpus_read_lock();
5888
5889         cpumask_clear(&flush_cpus);
5890         for_each_online_cpu(cpu) {
5891                 if (flush_required(cpu)) {
5892                         queue_work_on(cpu, system_highpri_wq,
5893                                       per_cpu_ptr(&flush_works, cpu));
5894                         cpumask_set_cpu(cpu, &flush_cpus);
5895                 }
5896         }
5897
5898         /* we can have in flight packet[s] on the cpus we are not flushing,
5899          * synchronize_net() in unregister_netdevice_many() will take care of
5900          * them
5901          */
5902         for_each_cpu(cpu, &flush_cpus)
5903                 flush_work(per_cpu_ptr(&flush_works, cpu));
5904
5905         cpus_read_unlock();
5906 }
5907
5908 static void net_rps_send_ipi(struct softnet_data *remsd)
5909 {
5910 #ifdef CONFIG_RPS
5911         while (remsd) {
5912                 struct softnet_data *next = remsd->rps_ipi_next;
5913
5914                 if (cpu_online(remsd->cpu))
5915                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5916                 remsd = next;
5917         }
5918 #endif
5919 }
5920
5921 /*
5922  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5923  * Note: called with local irq disabled, but exits with local irq enabled.
5924  */
5925 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5926 {
5927 #ifdef CONFIG_RPS
5928         struct softnet_data *remsd = sd->rps_ipi_list;
5929
5930         if (remsd) {
5931                 sd->rps_ipi_list = NULL;
5932
5933                 local_irq_enable();
5934
5935                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5936                 net_rps_send_ipi(remsd);
5937         } else
5938 #endif
5939                 local_irq_enable();
5940 }
5941
5942 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5943 {
5944 #ifdef CONFIG_RPS
5945         return sd->rps_ipi_list != NULL;
5946 #else
5947         return false;
5948 #endif
5949 }
5950
5951 static int process_backlog(struct napi_struct *napi, int quota)
5952 {
5953         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5954         bool again = true;
5955         int work = 0;
5956
5957         /* Check if we have pending ipi, its better to send them now,
5958          * not waiting net_rx_action() end.
5959          */
5960         if (sd_has_rps_ipi_waiting(sd)) {
5961                 local_irq_disable();
5962                 net_rps_action_and_irq_enable(sd);
5963         }
5964
5965         napi->weight = READ_ONCE(dev_rx_weight);
5966         while (again) {
5967                 struct sk_buff *skb;
5968
5969                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5970                         rcu_read_lock();
5971                         __netif_receive_skb(skb);
5972                         rcu_read_unlock();
5973                         input_queue_head_incr(sd);
5974                         if (++work >= quota)
5975                                 return work;
5976
5977                 }
5978
5979                 rps_lock_irq_disable(sd);
5980                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5981                         /*
5982                          * Inline a custom version of __napi_complete().
5983                          * only current cpu owns and manipulates this napi,
5984                          * and NAPI_STATE_SCHED is the only possible flag set
5985                          * on backlog.
5986                          * We can use a plain write instead of clear_bit(),
5987                          * and we dont need an smp_mb() memory barrier.
5988                          */
5989                         napi->state = 0;
5990                         again = false;
5991                 } else {
5992                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5993                                                    &sd->process_queue);
5994                 }
5995                 rps_unlock_irq_enable(sd);
5996         }
5997
5998         return work;
5999 }
6000
6001 /**
6002  * __napi_schedule - schedule for receive
6003  * @n: entry to schedule
6004  *
6005  * The entry's receive function will be scheduled to run.
6006  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6007  */
6008 void __napi_schedule(struct napi_struct *n)
6009 {
6010         unsigned long flags;
6011
6012         local_irq_save(flags);
6013         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6014         local_irq_restore(flags);
6015 }
6016 EXPORT_SYMBOL(__napi_schedule);
6017
6018 /**
6019  *      napi_schedule_prep - check if napi can be scheduled
6020  *      @n: napi context
6021  *
6022  * Test if NAPI routine is already running, and if not mark
6023  * it as running.  This is used as a condition variable to
6024  * insure only one NAPI poll instance runs.  We also make
6025  * sure there is no pending NAPI disable.
6026  */
6027 bool napi_schedule_prep(struct napi_struct *n)
6028 {
6029         unsigned long new, val = READ_ONCE(n->state);
6030
6031         do {
6032                 if (unlikely(val & NAPIF_STATE_DISABLE))
6033                         return false;
6034                 new = val | NAPIF_STATE_SCHED;
6035
6036                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6037                  * This was suggested by Alexander Duyck, as compiler
6038                  * emits better code than :
6039                  * if (val & NAPIF_STATE_SCHED)
6040                  *     new |= NAPIF_STATE_MISSED;
6041                  */
6042                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6043                                                    NAPIF_STATE_MISSED;
6044         } while (!try_cmpxchg(&n->state, &val, new));
6045
6046         return !(val & NAPIF_STATE_SCHED);
6047 }
6048 EXPORT_SYMBOL(napi_schedule_prep);
6049
6050 /**
6051  * __napi_schedule_irqoff - schedule for receive
6052  * @n: entry to schedule
6053  *
6054  * Variant of __napi_schedule() assuming hard irqs are masked.
6055  *
6056  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6057  * because the interrupt disabled assumption might not be true
6058  * due to force-threaded interrupts and spinlock substitution.
6059  */
6060 void __napi_schedule_irqoff(struct napi_struct *n)
6061 {
6062         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6063                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6064         else
6065                 __napi_schedule(n);
6066 }
6067 EXPORT_SYMBOL(__napi_schedule_irqoff);
6068
6069 bool napi_complete_done(struct napi_struct *n, int work_done)
6070 {
6071         unsigned long flags, val, new, timeout = 0;
6072         bool ret = true;
6073
6074         /*
6075          * 1) Don't let napi dequeue from the cpu poll list
6076          *    just in case its running on a different cpu.
6077          * 2) If we are busy polling, do nothing here, we have
6078          *    the guarantee we will be called later.
6079          */
6080         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6081                                  NAPIF_STATE_IN_BUSY_POLL)))
6082                 return false;
6083
6084         if (work_done) {
6085                 if (n->gro_bitmask)
6086                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6087                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6088         }
6089         if (n->defer_hard_irqs_count > 0) {
6090                 n->defer_hard_irqs_count--;
6091                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6092                 if (timeout)
6093                         ret = false;
6094         }
6095         if (n->gro_bitmask) {
6096                 /* When the NAPI instance uses a timeout and keeps postponing
6097                  * it, we need to bound somehow the time packets are kept in
6098                  * the GRO layer
6099                  */
6100                 napi_gro_flush(n, !!timeout);
6101         }
6102
6103         gro_normal_list(n);
6104
6105         if (unlikely(!list_empty(&n->poll_list))) {
6106                 /* If n->poll_list is not empty, we need to mask irqs */
6107                 local_irq_save(flags);
6108                 list_del_init(&n->poll_list);
6109                 local_irq_restore(flags);
6110         }
6111         WRITE_ONCE(n->list_owner, -1);
6112
6113         val = READ_ONCE(n->state);
6114         do {
6115                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6116
6117                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6118                               NAPIF_STATE_SCHED_THREADED |
6119                               NAPIF_STATE_PREFER_BUSY_POLL);
6120
6121                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6122                  * because we will call napi->poll() one more time.
6123                  * This C code was suggested by Alexander Duyck to help gcc.
6124                  */
6125                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6126                                                     NAPIF_STATE_SCHED;
6127         } while (!try_cmpxchg(&n->state, &val, new));
6128
6129         if (unlikely(val & NAPIF_STATE_MISSED)) {
6130                 __napi_schedule(n);
6131                 return false;
6132         }
6133
6134         if (timeout)
6135                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6136                               HRTIMER_MODE_REL_PINNED);
6137         return ret;
6138 }
6139 EXPORT_SYMBOL(napi_complete_done);
6140
6141 /* must be called under rcu_read_lock(), as we dont take a reference */
6142 static struct napi_struct *napi_by_id(unsigned int napi_id)
6143 {
6144         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6145         struct napi_struct *napi;
6146
6147         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6148                 if (napi->napi_id == napi_id)
6149                         return napi;
6150
6151         return NULL;
6152 }
6153
6154 #if defined(CONFIG_NET_RX_BUSY_POLL)
6155
6156 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6157 {
6158         if (!skip_schedule) {
6159                 gro_normal_list(napi);
6160                 __napi_schedule(napi);
6161                 return;
6162         }
6163
6164         if (napi->gro_bitmask) {
6165                 /* flush too old packets
6166                  * If HZ < 1000, flush all packets.
6167                  */
6168                 napi_gro_flush(napi, HZ >= 1000);
6169         }
6170
6171         gro_normal_list(napi);
6172         clear_bit(NAPI_STATE_SCHED, &napi->state);
6173 }
6174
6175 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6176                            u16 budget)
6177 {
6178         bool skip_schedule = false;
6179         unsigned long timeout;
6180         int rc;
6181
6182         /* Busy polling means there is a high chance device driver hard irq
6183          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6184          * set in napi_schedule_prep().
6185          * Since we are about to call napi->poll() once more, we can safely
6186          * clear NAPI_STATE_MISSED.
6187          *
6188          * Note: x86 could use a single "lock and ..." instruction
6189          * to perform these two clear_bit()
6190          */
6191         clear_bit(NAPI_STATE_MISSED, &napi->state);
6192         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6193
6194         local_bh_disable();
6195
6196         if (prefer_busy_poll) {
6197                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6198                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6199                 if (napi->defer_hard_irqs_count && timeout) {
6200                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6201                         skip_schedule = true;
6202                 }
6203         }
6204
6205         /* All we really want here is to re-enable device interrupts.
6206          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6207          */
6208         rc = napi->poll(napi, budget);
6209         /* We can't gro_normal_list() here, because napi->poll() might have
6210          * rearmed the napi (napi_complete_done()) in which case it could
6211          * already be running on another CPU.
6212          */
6213         trace_napi_poll(napi, rc, budget);
6214         netpoll_poll_unlock(have_poll_lock);
6215         if (rc == budget)
6216                 __busy_poll_stop(napi, skip_schedule);
6217         local_bh_enable();
6218 }
6219
6220 void napi_busy_loop(unsigned int napi_id,
6221                     bool (*loop_end)(void *, unsigned long),
6222                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6223 {
6224         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6225         int (*napi_poll)(struct napi_struct *napi, int budget);
6226         void *have_poll_lock = NULL;
6227         struct napi_struct *napi;
6228
6229 restart:
6230         napi_poll = NULL;
6231
6232         rcu_read_lock();
6233
6234         napi = napi_by_id(napi_id);
6235         if (!napi)
6236                 goto out;
6237
6238         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6239                 preempt_disable();
6240         for (;;) {
6241                 int work = 0;
6242
6243                 local_bh_disable();
6244                 if (!napi_poll) {
6245                         unsigned long val = READ_ONCE(napi->state);
6246
6247                         /* If multiple threads are competing for this napi,
6248                          * we avoid dirtying napi->state as much as we can.
6249                          */
6250                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6251                                    NAPIF_STATE_IN_BUSY_POLL)) {
6252                                 if (prefer_busy_poll)
6253                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6254                                 goto count;
6255                         }
6256                         if (cmpxchg(&napi->state, val,
6257                                     val | NAPIF_STATE_IN_BUSY_POLL |
6258                                           NAPIF_STATE_SCHED) != val) {
6259                                 if (prefer_busy_poll)
6260                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6261                                 goto count;
6262                         }
6263                         have_poll_lock = netpoll_poll_lock(napi);
6264                         napi_poll = napi->poll;
6265                 }
6266                 work = napi_poll(napi, budget);
6267                 trace_napi_poll(napi, work, budget);
6268                 gro_normal_list(napi);
6269 count:
6270                 if (work > 0)
6271                         __NET_ADD_STATS(dev_net(napi->dev),
6272                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6273                 local_bh_enable();
6274
6275                 if (!loop_end || loop_end(loop_end_arg, start_time))
6276                         break;
6277
6278                 if (unlikely(need_resched())) {
6279                         if (napi_poll)
6280                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6281                         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6282                                 preempt_enable();
6283                         rcu_read_unlock();
6284                         cond_resched();
6285                         if (loop_end(loop_end_arg, start_time))
6286                                 return;
6287                         goto restart;
6288                 }
6289                 cpu_relax();
6290         }
6291         if (napi_poll)
6292                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6293         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6294                 preempt_enable();
6295 out:
6296         rcu_read_unlock();
6297 }
6298 EXPORT_SYMBOL(napi_busy_loop);
6299
6300 #endif /* CONFIG_NET_RX_BUSY_POLL */
6301
6302 static void napi_hash_add(struct napi_struct *napi)
6303 {
6304         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6305                 return;
6306
6307         spin_lock(&napi_hash_lock);
6308
6309         /* 0..NR_CPUS range is reserved for sender_cpu use */
6310         do {
6311                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6312                         napi_gen_id = MIN_NAPI_ID;
6313         } while (napi_by_id(napi_gen_id));
6314         napi->napi_id = napi_gen_id;
6315
6316         hlist_add_head_rcu(&napi->napi_hash_node,
6317                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6318
6319         spin_unlock(&napi_hash_lock);
6320 }
6321
6322 /* Warning : caller is responsible to make sure rcu grace period
6323  * is respected before freeing memory containing @napi
6324  */
6325 static void napi_hash_del(struct napi_struct *napi)
6326 {
6327         spin_lock(&napi_hash_lock);
6328
6329         hlist_del_init_rcu(&napi->napi_hash_node);
6330
6331         spin_unlock(&napi_hash_lock);
6332 }
6333
6334 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6335 {
6336         struct napi_struct *napi;
6337
6338         napi = container_of(timer, struct napi_struct, timer);
6339
6340         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6341          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6342          */
6343         if (!napi_disable_pending(napi) &&
6344             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6345                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6346                 __napi_schedule_irqoff(napi);
6347         }
6348
6349         return HRTIMER_NORESTART;
6350 }
6351
6352 static void init_gro_hash(struct napi_struct *napi)
6353 {
6354         int i;
6355
6356         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6357                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6358                 napi->gro_hash[i].count = 0;
6359         }
6360         napi->gro_bitmask = 0;
6361 }
6362
6363 int dev_set_threaded(struct net_device *dev, bool threaded)
6364 {
6365         struct napi_struct *napi;
6366         int err = 0;
6367
6368         if (dev->threaded == threaded)
6369                 return 0;
6370
6371         if (threaded) {
6372                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6373                         if (!napi->thread) {
6374                                 err = napi_kthread_create(napi);
6375                                 if (err) {
6376                                         threaded = false;
6377                                         break;
6378                                 }
6379                         }
6380                 }
6381         }
6382
6383         dev->threaded = threaded;
6384
6385         /* Make sure kthread is created before THREADED bit
6386          * is set.
6387          */
6388         smp_mb__before_atomic();
6389
6390         /* Setting/unsetting threaded mode on a napi might not immediately
6391          * take effect, if the current napi instance is actively being
6392          * polled. In this case, the switch between threaded mode and
6393          * softirq mode will happen in the next round of napi_schedule().
6394          * This should not cause hiccups/stalls to the live traffic.
6395          */
6396         list_for_each_entry(napi, &dev->napi_list, dev_list)
6397                 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6398
6399         return err;
6400 }
6401 EXPORT_SYMBOL(dev_set_threaded);
6402
6403 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6404                            int (*poll)(struct napi_struct *, int), int weight)
6405 {
6406         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6407                 return;
6408
6409         INIT_LIST_HEAD(&napi->poll_list);
6410         INIT_HLIST_NODE(&napi->napi_hash_node);
6411         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6412         napi->timer.function = napi_watchdog;
6413         init_gro_hash(napi);
6414         napi->skb = NULL;
6415         INIT_LIST_HEAD(&napi->rx_list);
6416         napi->rx_count = 0;
6417         napi->poll = poll;
6418         if (weight > NAPI_POLL_WEIGHT)
6419                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6420                                 weight);
6421         napi->weight = weight;
6422         napi->dev = dev;
6423 #ifdef CONFIG_NETPOLL
6424         napi->poll_owner = -1;
6425 #endif
6426         napi->list_owner = -1;
6427         set_bit(NAPI_STATE_SCHED, &napi->state);
6428         set_bit(NAPI_STATE_NPSVC, &napi->state);
6429         list_add_rcu(&napi->dev_list, &dev->napi_list);
6430         napi_hash_add(napi);
6431         napi_get_frags_check(napi);
6432         /* Create kthread for this napi if dev->threaded is set.
6433          * Clear dev->threaded if kthread creation failed so that
6434          * threaded mode will not be enabled in napi_enable().
6435          */
6436         if (dev->threaded && napi_kthread_create(napi))
6437                 dev->threaded = 0;
6438 }
6439 EXPORT_SYMBOL(netif_napi_add_weight);
6440
6441 void napi_disable(struct napi_struct *n)
6442 {
6443         unsigned long val, new;
6444
6445         might_sleep();
6446         set_bit(NAPI_STATE_DISABLE, &n->state);
6447
6448         val = READ_ONCE(n->state);
6449         do {
6450                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6451                         usleep_range(20, 200);
6452                         val = READ_ONCE(n->state);
6453                 }
6454
6455                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6456                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6457         } while (!try_cmpxchg(&n->state, &val, new));
6458
6459         hrtimer_cancel(&n->timer);
6460
6461         clear_bit(NAPI_STATE_DISABLE, &n->state);
6462 }
6463 EXPORT_SYMBOL(napi_disable);
6464
6465 /**
6466  *      napi_enable - enable NAPI scheduling
6467  *      @n: NAPI context
6468  *
6469  * Resume NAPI from being scheduled on this context.
6470  * Must be paired with napi_disable.
6471  */
6472 void napi_enable(struct napi_struct *n)
6473 {
6474         unsigned long new, val = READ_ONCE(n->state);
6475
6476         do {
6477                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6478
6479                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6480                 if (n->dev->threaded && n->thread)
6481                         new |= NAPIF_STATE_THREADED;
6482         } while (!try_cmpxchg(&n->state, &val, new));
6483 }
6484 EXPORT_SYMBOL(napi_enable);
6485
6486 static void flush_gro_hash(struct napi_struct *napi)
6487 {
6488         int i;
6489
6490         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6491                 struct sk_buff *skb, *n;
6492
6493                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6494                         kfree_skb(skb);
6495                 napi->gro_hash[i].count = 0;
6496         }
6497 }
6498
6499 /* Must be called in process context */
6500 void __netif_napi_del(struct napi_struct *napi)
6501 {
6502         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6503                 return;
6504
6505         napi_hash_del(napi);
6506         list_del_rcu(&napi->dev_list);
6507         napi_free_frags(napi);
6508
6509         flush_gro_hash(napi);
6510         napi->gro_bitmask = 0;
6511
6512         if (napi->thread) {
6513                 kthread_stop(napi->thread);
6514                 napi->thread = NULL;
6515         }
6516 }
6517 EXPORT_SYMBOL(__netif_napi_del);
6518
6519 static int __napi_poll(struct napi_struct *n, bool *repoll)
6520 {
6521         int work, weight;
6522
6523         weight = n->weight;
6524
6525         /* This NAPI_STATE_SCHED test is for avoiding a race
6526          * with netpoll's poll_napi().  Only the entity which
6527          * obtains the lock and sees NAPI_STATE_SCHED set will
6528          * actually make the ->poll() call.  Therefore we avoid
6529          * accidentally calling ->poll() when NAPI is not scheduled.
6530          */
6531         work = 0;
6532         if (napi_is_scheduled(n)) {
6533                 work = n->poll(n, weight);
6534                 trace_napi_poll(n, work, weight);
6535
6536                 xdp_do_check_flushed(n);
6537         }
6538
6539         if (unlikely(work > weight))
6540                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6541                                 n->poll, work, weight);
6542
6543         if (likely(work < weight))
6544                 return work;
6545
6546         /* Drivers must not modify the NAPI state if they
6547          * consume the entire weight.  In such cases this code
6548          * still "owns" the NAPI instance and therefore can
6549          * move the instance around on the list at-will.
6550          */
6551         if (unlikely(napi_disable_pending(n))) {
6552                 napi_complete(n);
6553                 return work;
6554         }
6555
6556         /* The NAPI context has more processing work, but busy-polling
6557          * is preferred. Exit early.
6558          */
6559         if (napi_prefer_busy_poll(n)) {
6560                 if (napi_complete_done(n, work)) {
6561                         /* If timeout is not set, we need to make sure
6562                          * that the NAPI is re-scheduled.
6563                          */
6564                         napi_schedule(n);
6565                 }
6566                 return work;
6567         }
6568
6569         if (n->gro_bitmask) {
6570                 /* flush too old packets
6571                  * If HZ < 1000, flush all packets.
6572                  */
6573                 napi_gro_flush(n, HZ >= 1000);
6574         }
6575
6576         gro_normal_list(n);
6577
6578         /* Some drivers may have called napi_schedule
6579          * prior to exhausting their budget.
6580          */
6581         if (unlikely(!list_empty(&n->poll_list))) {
6582                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6583                              n->dev ? n->dev->name : "backlog");
6584                 return work;
6585         }
6586
6587         *repoll = true;
6588
6589         return work;
6590 }
6591
6592 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6593 {
6594         bool do_repoll = false;
6595         void *have;
6596         int work;
6597
6598         list_del_init(&n->poll_list);
6599
6600         have = netpoll_poll_lock(n);
6601
6602         work = __napi_poll(n, &do_repoll);
6603
6604         if (do_repoll)
6605                 list_add_tail(&n->poll_list, repoll);
6606
6607         netpoll_poll_unlock(have);
6608
6609         return work;
6610 }
6611
6612 static int napi_thread_wait(struct napi_struct *napi)
6613 {
6614         bool woken = false;
6615
6616         set_current_state(TASK_INTERRUPTIBLE);
6617
6618         while (!kthread_should_stop()) {
6619                 /* Testing SCHED_THREADED bit here to make sure the current
6620                  * kthread owns this napi and could poll on this napi.
6621                  * Testing SCHED bit is not enough because SCHED bit might be
6622                  * set by some other busy poll thread or by napi_disable().
6623                  */
6624                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6625                         WARN_ON(!list_empty(&napi->poll_list));
6626                         __set_current_state(TASK_RUNNING);
6627                         return 0;
6628                 }
6629
6630                 schedule();
6631                 /* woken being true indicates this thread owns this napi. */
6632                 woken = true;
6633                 set_current_state(TASK_INTERRUPTIBLE);
6634         }
6635         __set_current_state(TASK_RUNNING);
6636
6637         return -1;
6638 }
6639
6640 static void skb_defer_free_flush(struct softnet_data *sd)
6641 {
6642         struct sk_buff *skb, *next;
6643
6644         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6645         if (!READ_ONCE(sd->defer_list))
6646                 return;
6647
6648         spin_lock(&sd->defer_lock);
6649         skb = sd->defer_list;
6650         sd->defer_list = NULL;
6651         sd->defer_count = 0;
6652         spin_unlock(&sd->defer_lock);
6653
6654         while (skb != NULL) {
6655                 next = skb->next;
6656                 napi_consume_skb(skb, 1);
6657                 skb = next;
6658         }
6659 }
6660
6661 static int napi_threaded_poll(void *data)
6662 {
6663         struct napi_struct *napi = data;
6664         struct softnet_data *sd;
6665         void *have;
6666
6667         while (!napi_thread_wait(napi)) {
6668                 for (;;) {
6669                         bool repoll = false;
6670
6671                         local_bh_disable();
6672                         sd = this_cpu_ptr(&softnet_data);
6673                         sd->in_napi_threaded_poll = true;
6674
6675                         have = netpoll_poll_lock(napi);
6676                         __napi_poll(napi, &repoll);
6677                         netpoll_poll_unlock(have);
6678
6679                         sd->in_napi_threaded_poll = false;
6680                         barrier();
6681
6682                         if (sd_has_rps_ipi_waiting(sd)) {
6683                                 local_irq_disable();
6684                                 net_rps_action_and_irq_enable(sd);
6685                         }
6686                         skb_defer_free_flush(sd);
6687                         local_bh_enable();
6688
6689                         if (!repoll)
6690                                 break;
6691
6692                         cond_resched();
6693                 }
6694         }
6695         return 0;
6696 }
6697
6698 static __latent_entropy void net_rx_action(struct softirq_action *h)
6699 {
6700         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6701         unsigned long time_limit = jiffies +
6702                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6703         int budget = READ_ONCE(netdev_budget);
6704         LIST_HEAD(list);
6705         LIST_HEAD(repoll);
6706
6707 start:
6708         sd->in_net_rx_action = true;
6709         local_irq_disable();
6710         list_splice_init(&sd->poll_list, &list);
6711         local_irq_enable();
6712
6713         for (;;) {
6714                 struct napi_struct *n;
6715
6716                 skb_defer_free_flush(sd);
6717
6718                 if (list_empty(&list)) {
6719                         if (list_empty(&repoll)) {
6720                                 sd->in_net_rx_action = false;
6721                                 barrier();
6722                                 /* We need to check if ____napi_schedule()
6723                                  * had refilled poll_list while
6724                                  * sd->in_net_rx_action was true.
6725                                  */
6726                                 if (!list_empty(&sd->poll_list))
6727                                         goto start;
6728                                 if (!sd_has_rps_ipi_waiting(sd))
6729                                         goto end;
6730                         }
6731                         break;
6732                 }
6733
6734                 n = list_first_entry(&list, struct napi_struct, poll_list);
6735                 budget -= napi_poll(n, &repoll);
6736
6737                 /* If softirq window is exhausted then punt.
6738                  * Allow this to run for 2 jiffies since which will allow
6739                  * an average latency of 1.5/HZ.
6740                  */
6741                 if (unlikely(budget <= 0 ||
6742                              time_after_eq(jiffies, time_limit))) {
6743                         sd->time_squeeze++;
6744                         break;
6745                 }
6746         }
6747
6748         local_irq_disable();
6749
6750         list_splice_tail_init(&sd->poll_list, &list);
6751         list_splice_tail(&repoll, &list);
6752         list_splice(&list, &sd->poll_list);
6753         if (!list_empty(&sd->poll_list))
6754                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6755         else
6756                 sd->in_net_rx_action = false;
6757
6758         net_rps_action_and_irq_enable(sd);
6759 end:;
6760 }
6761
6762 struct netdev_adjacent {
6763         struct net_device *dev;
6764         netdevice_tracker dev_tracker;
6765
6766         /* upper master flag, there can only be one master device per list */
6767         bool master;
6768
6769         /* lookup ignore flag */
6770         bool ignore;
6771
6772         /* counter for the number of times this device was added to us */
6773         u16 ref_nr;
6774
6775         /* private field for the users */
6776         void *private;
6777
6778         struct list_head list;
6779         struct rcu_head rcu;
6780 };
6781
6782 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6783                                                  struct list_head *adj_list)
6784 {
6785         struct netdev_adjacent *adj;
6786
6787         list_for_each_entry(adj, adj_list, list) {
6788                 if (adj->dev == adj_dev)
6789                         return adj;
6790         }
6791         return NULL;
6792 }
6793
6794 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6795                                     struct netdev_nested_priv *priv)
6796 {
6797         struct net_device *dev = (struct net_device *)priv->data;
6798
6799         return upper_dev == dev;
6800 }
6801
6802 /**
6803  * netdev_has_upper_dev - Check if device is linked to an upper device
6804  * @dev: device
6805  * @upper_dev: upper device to check
6806  *
6807  * Find out if a device is linked to specified upper device and return true
6808  * in case it is. Note that this checks only immediate upper device,
6809  * not through a complete stack of devices. The caller must hold the RTNL lock.
6810  */
6811 bool netdev_has_upper_dev(struct net_device *dev,
6812                           struct net_device *upper_dev)
6813 {
6814         struct netdev_nested_priv priv = {
6815                 .data = (void *)upper_dev,
6816         };
6817
6818         ASSERT_RTNL();
6819
6820         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6821                                              &priv);
6822 }
6823 EXPORT_SYMBOL(netdev_has_upper_dev);
6824
6825 /**
6826  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6827  * @dev: device
6828  * @upper_dev: upper device to check
6829  *
6830  * Find out if a device is linked to specified upper device and return true
6831  * in case it is. Note that this checks the entire upper device chain.
6832  * The caller must hold rcu lock.
6833  */
6834
6835 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6836                                   struct net_device *upper_dev)
6837 {
6838         struct netdev_nested_priv priv = {
6839                 .data = (void *)upper_dev,
6840         };
6841
6842         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6843                                                &priv);
6844 }
6845 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6846
6847 /**
6848  * netdev_has_any_upper_dev - Check if device is linked to some device
6849  * @dev: device
6850  *
6851  * Find out if a device is linked to an upper device and return true in case
6852  * it is. The caller must hold the RTNL lock.
6853  */
6854 bool netdev_has_any_upper_dev(struct net_device *dev)
6855 {
6856         ASSERT_RTNL();
6857
6858         return !list_empty(&dev->adj_list.upper);
6859 }
6860 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6861
6862 /**
6863  * netdev_master_upper_dev_get - Get master upper device
6864  * @dev: device
6865  *
6866  * Find a master upper device and return pointer to it or NULL in case
6867  * it's not there. The caller must hold the RTNL lock.
6868  */
6869 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6870 {
6871         struct netdev_adjacent *upper;
6872
6873         ASSERT_RTNL();
6874
6875         if (list_empty(&dev->adj_list.upper))
6876                 return NULL;
6877
6878         upper = list_first_entry(&dev->adj_list.upper,
6879                                  struct netdev_adjacent, list);
6880         if (likely(upper->master))
6881                 return upper->dev;
6882         return NULL;
6883 }
6884 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6885
6886 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6887 {
6888         struct netdev_adjacent *upper;
6889
6890         ASSERT_RTNL();
6891
6892         if (list_empty(&dev->adj_list.upper))
6893                 return NULL;
6894
6895         upper = list_first_entry(&dev->adj_list.upper,
6896                                  struct netdev_adjacent, list);
6897         if (likely(upper->master) && !upper->ignore)
6898                 return upper->dev;
6899         return NULL;
6900 }
6901
6902 /**
6903  * netdev_has_any_lower_dev - Check if device is linked to some device
6904  * @dev: device
6905  *
6906  * Find out if a device is linked to a lower device and return true in case
6907  * it is. The caller must hold the RTNL lock.
6908  */
6909 static bool netdev_has_any_lower_dev(struct net_device *dev)
6910 {
6911         ASSERT_RTNL();
6912
6913         return !list_empty(&dev->adj_list.lower);
6914 }
6915
6916 void *netdev_adjacent_get_private(struct list_head *adj_list)
6917 {
6918         struct netdev_adjacent *adj;
6919
6920         adj = list_entry(adj_list, struct netdev_adjacent, list);
6921
6922         return adj->private;
6923 }
6924 EXPORT_SYMBOL(netdev_adjacent_get_private);
6925
6926 /**
6927  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6928  * @dev: device
6929  * @iter: list_head ** of the current position
6930  *
6931  * Gets the next device from the dev's upper list, starting from iter
6932  * position. The caller must hold RCU read lock.
6933  */
6934 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6935                                                  struct list_head **iter)
6936 {
6937         struct netdev_adjacent *upper;
6938
6939         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6940
6941         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6942
6943         if (&upper->list == &dev->adj_list.upper)
6944                 return NULL;
6945
6946         *iter = &upper->list;
6947
6948         return upper->dev;
6949 }
6950 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6951
6952 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6953                                                   struct list_head **iter,
6954                                                   bool *ignore)
6955 {
6956         struct netdev_adjacent *upper;
6957
6958         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6959
6960         if (&upper->list == &dev->adj_list.upper)
6961                 return NULL;
6962
6963         *iter = &upper->list;
6964         *ignore = upper->ignore;
6965
6966         return upper->dev;
6967 }
6968
6969 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6970                                                     struct list_head **iter)
6971 {
6972         struct netdev_adjacent *upper;
6973
6974         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6975
6976         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6977
6978         if (&upper->list == &dev->adj_list.upper)
6979                 return NULL;
6980
6981         *iter = &upper->list;
6982
6983         return upper->dev;
6984 }
6985
6986 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6987                                        int (*fn)(struct net_device *dev,
6988                                          struct netdev_nested_priv *priv),
6989                                        struct netdev_nested_priv *priv)
6990 {
6991         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6992         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6993         int ret, cur = 0;
6994         bool ignore;
6995
6996         now = dev;
6997         iter = &dev->adj_list.upper;
6998
6999         while (1) {
7000                 if (now != dev) {
7001                         ret = fn(now, priv);
7002                         if (ret)
7003                                 return ret;
7004                 }
7005
7006                 next = NULL;
7007                 while (1) {
7008                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7009                         if (!udev)
7010                                 break;
7011                         if (ignore)
7012                                 continue;
7013
7014                         next = udev;
7015                         niter = &udev->adj_list.upper;
7016                         dev_stack[cur] = now;
7017                         iter_stack[cur++] = iter;
7018                         break;
7019                 }
7020
7021                 if (!next) {
7022                         if (!cur)
7023                                 return 0;
7024                         next = dev_stack[--cur];
7025                         niter = iter_stack[cur];
7026                 }
7027
7028                 now = next;
7029                 iter = niter;
7030         }
7031
7032         return 0;
7033 }
7034
7035 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7036                                   int (*fn)(struct net_device *dev,
7037                                             struct netdev_nested_priv *priv),
7038                                   struct netdev_nested_priv *priv)
7039 {
7040         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7041         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7042         int ret, cur = 0;
7043
7044         now = dev;
7045         iter = &dev->adj_list.upper;
7046
7047         while (1) {
7048                 if (now != dev) {
7049                         ret = fn(now, priv);
7050                         if (ret)
7051                                 return ret;
7052                 }
7053
7054                 next = NULL;
7055                 while (1) {
7056                         udev = netdev_next_upper_dev_rcu(now, &iter);
7057                         if (!udev)
7058                                 break;
7059
7060                         next = udev;
7061                         niter = &udev->adj_list.upper;
7062                         dev_stack[cur] = now;
7063                         iter_stack[cur++] = iter;
7064                         break;
7065                 }
7066
7067                 if (!next) {
7068                         if (!cur)
7069                                 return 0;
7070                         next = dev_stack[--cur];
7071                         niter = iter_stack[cur];
7072                 }
7073
7074                 now = next;
7075                 iter = niter;
7076         }
7077
7078         return 0;
7079 }
7080 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7081
7082 static bool __netdev_has_upper_dev(struct net_device *dev,
7083                                    struct net_device *upper_dev)
7084 {
7085         struct netdev_nested_priv priv = {
7086                 .flags = 0,
7087                 .data = (void *)upper_dev,
7088         };
7089
7090         ASSERT_RTNL();
7091
7092         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7093                                            &priv);
7094 }
7095
7096 /**
7097  * netdev_lower_get_next_private - Get the next ->private from the
7098  *                                 lower neighbour list
7099  * @dev: device
7100  * @iter: list_head ** of the current position
7101  *
7102  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7103  * list, starting from iter position. The caller must hold either hold the
7104  * RTNL lock or its own locking that guarantees that the neighbour lower
7105  * list will remain unchanged.
7106  */
7107 void *netdev_lower_get_next_private(struct net_device *dev,
7108                                     struct list_head **iter)
7109 {
7110         struct netdev_adjacent *lower;
7111
7112         lower = list_entry(*iter, struct netdev_adjacent, list);
7113
7114         if (&lower->list == &dev->adj_list.lower)
7115                 return NULL;
7116
7117         *iter = lower->list.next;
7118
7119         return lower->private;
7120 }
7121 EXPORT_SYMBOL(netdev_lower_get_next_private);
7122
7123 /**
7124  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7125  *                                     lower neighbour list, RCU
7126  *                                     variant
7127  * @dev: device
7128  * @iter: list_head ** of the current position
7129  *
7130  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7131  * list, starting from iter position. The caller must hold RCU read lock.
7132  */
7133 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7134                                         struct list_head **iter)
7135 {
7136         struct netdev_adjacent *lower;
7137
7138         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7139
7140         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7141
7142         if (&lower->list == &dev->adj_list.lower)
7143                 return NULL;
7144
7145         *iter = &lower->list;
7146
7147         return lower->private;
7148 }
7149 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7150
7151 /**
7152  * netdev_lower_get_next - Get the next device from the lower neighbour
7153  *                         list
7154  * @dev: device
7155  * @iter: list_head ** of the current position
7156  *
7157  * Gets the next netdev_adjacent from the dev's lower neighbour
7158  * list, starting from iter position. The caller must hold RTNL lock or
7159  * its own locking that guarantees that the neighbour lower
7160  * list will remain unchanged.
7161  */
7162 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7163 {
7164         struct netdev_adjacent *lower;
7165
7166         lower = list_entry(*iter, struct netdev_adjacent, list);
7167
7168         if (&lower->list == &dev->adj_list.lower)
7169                 return NULL;
7170
7171         *iter = lower->list.next;
7172
7173         return lower->dev;
7174 }
7175 EXPORT_SYMBOL(netdev_lower_get_next);
7176
7177 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7178                                                 struct list_head **iter)
7179 {
7180         struct netdev_adjacent *lower;
7181
7182         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7183
7184         if (&lower->list == &dev->adj_list.lower)
7185                 return NULL;
7186
7187         *iter = &lower->list;
7188
7189         return lower->dev;
7190 }
7191
7192 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7193                                                   struct list_head **iter,
7194                                                   bool *ignore)
7195 {
7196         struct netdev_adjacent *lower;
7197
7198         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7199
7200         if (&lower->list == &dev->adj_list.lower)
7201                 return NULL;
7202
7203         *iter = &lower->list;
7204         *ignore = lower->ignore;
7205
7206         return lower->dev;
7207 }
7208
7209 int netdev_walk_all_lower_dev(struct net_device *dev,
7210                               int (*fn)(struct net_device *dev,
7211                                         struct netdev_nested_priv *priv),
7212                               struct netdev_nested_priv *priv)
7213 {
7214         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7215         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7216         int ret, cur = 0;
7217
7218         now = dev;
7219         iter = &dev->adj_list.lower;
7220
7221         while (1) {
7222                 if (now != dev) {
7223                         ret = fn(now, priv);
7224                         if (ret)
7225                                 return ret;
7226                 }
7227
7228                 next = NULL;
7229                 while (1) {
7230                         ldev = netdev_next_lower_dev(now, &iter);
7231                         if (!ldev)
7232                                 break;
7233
7234                         next = ldev;
7235                         niter = &ldev->adj_list.lower;
7236                         dev_stack[cur] = now;
7237                         iter_stack[cur++] = iter;
7238                         break;
7239                 }
7240
7241                 if (!next) {
7242                         if (!cur)
7243                                 return 0;
7244                         next = dev_stack[--cur];
7245                         niter = iter_stack[cur];
7246                 }
7247
7248                 now = next;
7249                 iter = niter;
7250         }
7251
7252         return 0;
7253 }
7254 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7255
7256 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7257                                        int (*fn)(struct net_device *dev,
7258                                          struct netdev_nested_priv *priv),
7259                                        struct netdev_nested_priv *priv)
7260 {
7261         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7262         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7263         int ret, cur = 0;
7264         bool ignore;
7265
7266         now = dev;
7267         iter = &dev->adj_list.lower;
7268
7269         while (1) {
7270                 if (now != dev) {
7271                         ret = fn(now, priv);
7272                         if (ret)
7273                                 return ret;
7274                 }
7275
7276                 next = NULL;
7277                 while (1) {
7278                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7279                         if (!ldev)
7280                                 break;
7281                         if (ignore)
7282                                 continue;
7283
7284                         next = ldev;
7285                         niter = &ldev->adj_list.lower;
7286                         dev_stack[cur] = now;
7287                         iter_stack[cur++] = iter;
7288                         break;
7289                 }
7290
7291                 if (!next) {
7292                         if (!cur)
7293                                 return 0;
7294                         next = dev_stack[--cur];
7295                         niter = iter_stack[cur];
7296                 }
7297
7298                 now = next;
7299                 iter = niter;
7300         }
7301
7302         return 0;
7303 }
7304
7305 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7306                                              struct list_head **iter)
7307 {
7308         struct netdev_adjacent *lower;
7309
7310         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7311         if (&lower->list == &dev->adj_list.lower)
7312                 return NULL;
7313
7314         *iter = &lower->list;
7315
7316         return lower->dev;
7317 }
7318 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7319
7320 static u8 __netdev_upper_depth(struct net_device *dev)
7321 {
7322         struct net_device *udev;
7323         struct list_head *iter;
7324         u8 max_depth = 0;
7325         bool ignore;
7326
7327         for (iter = &dev->adj_list.upper,
7328              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7329              udev;
7330              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7331                 if (ignore)
7332                         continue;
7333                 if (max_depth < udev->upper_level)
7334                         max_depth = udev->upper_level;
7335         }
7336
7337         return max_depth;
7338 }
7339
7340 static u8 __netdev_lower_depth(struct net_device *dev)
7341 {
7342         struct net_device *ldev;
7343         struct list_head *iter;
7344         u8 max_depth = 0;
7345         bool ignore;
7346
7347         for (iter = &dev->adj_list.lower,
7348              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7349              ldev;
7350              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7351                 if (ignore)
7352                         continue;
7353                 if (max_depth < ldev->lower_level)
7354                         max_depth = ldev->lower_level;
7355         }
7356
7357         return max_depth;
7358 }
7359
7360 static int __netdev_update_upper_level(struct net_device *dev,
7361                                        struct netdev_nested_priv *__unused)
7362 {
7363         dev->upper_level = __netdev_upper_depth(dev) + 1;
7364         return 0;
7365 }
7366
7367 #ifdef CONFIG_LOCKDEP
7368 static LIST_HEAD(net_unlink_list);
7369
7370 static void net_unlink_todo(struct net_device *dev)
7371 {
7372         if (list_empty(&dev->unlink_list))
7373                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7374 }
7375 #endif
7376
7377 static int __netdev_update_lower_level(struct net_device *dev,
7378                                        struct netdev_nested_priv *priv)
7379 {
7380         dev->lower_level = __netdev_lower_depth(dev) + 1;
7381
7382 #ifdef CONFIG_LOCKDEP
7383         if (!priv)
7384                 return 0;
7385
7386         if (priv->flags & NESTED_SYNC_IMM)
7387                 dev->nested_level = dev->lower_level - 1;
7388         if (priv->flags & NESTED_SYNC_TODO)
7389                 net_unlink_todo(dev);
7390 #endif
7391         return 0;
7392 }
7393
7394 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7395                                   int (*fn)(struct net_device *dev,
7396                                             struct netdev_nested_priv *priv),
7397                                   struct netdev_nested_priv *priv)
7398 {
7399         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7400         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7401         int ret, cur = 0;
7402
7403         now = dev;
7404         iter = &dev->adj_list.lower;
7405
7406         while (1) {
7407                 if (now != dev) {
7408                         ret = fn(now, priv);
7409                         if (ret)
7410                                 return ret;
7411                 }
7412
7413                 next = NULL;
7414                 while (1) {
7415                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7416                         if (!ldev)
7417                                 break;
7418
7419                         next = ldev;
7420                         niter = &ldev->adj_list.lower;
7421                         dev_stack[cur] = now;
7422                         iter_stack[cur++] = iter;
7423                         break;
7424                 }
7425
7426                 if (!next) {
7427                         if (!cur)
7428                                 return 0;
7429                         next = dev_stack[--cur];
7430                         niter = iter_stack[cur];
7431                 }
7432
7433                 now = next;
7434                 iter = niter;
7435         }
7436
7437         return 0;
7438 }
7439 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7440
7441 /**
7442  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7443  *                                     lower neighbour list, RCU
7444  *                                     variant
7445  * @dev: device
7446  *
7447  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7448  * list. The caller must hold RCU read lock.
7449  */
7450 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7451 {
7452         struct netdev_adjacent *lower;
7453
7454         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7455                         struct netdev_adjacent, list);
7456         if (lower)
7457                 return lower->private;
7458         return NULL;
7459 }
7460 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7461
7462 /**
7463  * netdev_master_upper_dev_get_rcu - Get master upper device
7464  * @dev: device
7465  *
7466  * Find a master upper device and return pointer to it or NULL in case
7467  * it's not there. The caller must hold the RCU read lock.
7468  */
7469 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7470 {
7471         struct netdev_adjacent *upper;
7472
7473         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7474                                        struct netdev_adjacent, list);
7475         if (upper && likely(upper->master))
7476                 return upper->dev;
7477         return NULL;
7478 }
7479 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7480
7481 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7482                               struct net_device *adj_dev,
7483                               struct list_head *dev_list)
7484 {
7485         char linkname[IFNAMSIZ+7];
7486
7487         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7488                 "upper_%s" : "lower_%s", adj_dev->name);
7489         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7490                                  linkname);
7491 }
7492 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7493                                char *name,
7494                                struct list_head *dev_list)
7495 {
7496         char linkname[IFNAMSIZ+7];
7497
7498         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7499                 "upper_%s" : "lower_%s", name);
7500         sysfs_remove_link(&(dev->dev.kobj), linkname);
7501 }
7502
7503 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7504                                                  struct net_device *adj_dev,
7505                                                  struct list_head *dev_list)
7506 {
7507         return (dev_list == &dev->adj_list.upper ||
7508                 dev_list == &dev->adj_list.lower) &&
7509                 net_eq(dev_net(dev), dev_net(adj_dev));
7510 }
7511
7512 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7513                                         struct net_device *adj_dev,
7514                                         struct list_head *dev_list,
7515                                         void *private, bool master)
7516 {
7517         struct netdev_adjacent *adj;
7518         int ret;
7519
7520         adj = __netdev_find_adj(adj_dev, dev_list);
7521
7522         if (adj) {
7523                 adj->ref_nr += 1;
7524                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7525                          dev->name, adj_dev->name, adj->ref_nr);
7526
7527                 return 0;
7528         }
7529
7530         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7531         if (!adj)
7532                 return -ENOMEM;
7533
7534         adj->dev = adj_dev;
7535         adj->master = master;
7536         adj->ref_nr = 1;
7537         adj->private = private;
7538         adj->ignore = false;
7539         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7540
7541         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7542                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7543
7544         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7545                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7546                 if (ret)
7547                         goto free_adj;
7548         }
7549
7550         /* Ensure that master link is always the first item in list. */
7551         if (master) {
7552                 ret = sysfs_create_link(&(dev->dev.kobj),
7553                                         &(adj_dev->dev.kobj), "master");
7554                 if (ret)
7555                         goto remove_symlinks;
7556
7557                 list_add_rcu(&adj->list, dev_list);
7558         } else {
7559                 list_add_tail_rcu(&adj->list, dev_list);
7560         }
7561
7562         return 0;
7563
7564 remove_symlinks:
7565         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7566                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7567 free_adj:
7568         netdev_put(adj_dev, &adj->dev_tracker);
7569         kfree(adj);
7570
7571         return ret;
7572 }
7573
7574 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7575                                          struct net_device *adj_dev,
7576                                          u16 ref_nr,
7577                                          struct list_head *dev_list)
7578 {
7579         struct netdev_adjacent *adj;
7580
7581         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7582                  dev->name, adj_dev->name, ref_nr);
7583
7584         adj = __netdev_find_adj(adj_dev, dev_list);
7585
7586         if (!adj) {
7587                 pr_err("Adjacency does not exist for device %s from %s\n",
7588                        dev->name, adj_dev->name);
7589                 WARN_ON(1);
7590                 return;
7591         }
7592
7593         if (adj->ref_nr > ref_nr) {
7594                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7595                          dev->name, adj_dev->name, ref_nr,
7596                          adj->ref_nr - ref_nr);
7597                 adj->ref_nr -= ref_nr;
7598                 return;
7599         }
7600
7601         if (adj->master)
7602                 sysfs_remove_link(&(dev->dev.kobj), "master");
7603
7604         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7605                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7606
7607         list_del_rcu(&adj->list);
7608         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7609                  adj_dev->name, dev->name, adj_dev->name);
7610         netdev_put(adj_dev, &adj->dev_tracker);
7611         kfree_rcu(adj, rcu);
7612 }
7613
7614 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7615                                             struct net_device *upper_dev,
7616                                             struct list_head *up_list,
7617                                             struct list_head *down_list,
7618                                             void *private, bool master)
7619 {
7620         int ret;
7621
7622         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7623                                            private, master);
7624         if (ret)
7625                 return ret;
7626
7627         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7628                                            private, false);
7629         if (ret) {
7630                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7631                 return ret;
7632         }
7633
7634         return 0;
7635 }
7636
7637 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7638                                                struct net_device *upper_dev,
7639                                                u16 ref_nr,
7640                                                struct list_head *up_list,
7641                                                struct list_head *down_list)
7642 {
7643         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7644         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7645 }
7646
7647 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7648                                                 struct net_device *upper_dev,
7649                                                 void *private, bool master)
7650 {
7651         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7652                                                 &dev->adj_list.upper,
7653                                                 &upper_dev->adj_list.lower,
7654                                                 private, master);
7655 }
7656
7657 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7658                                                    struct net_device *upper_dev)
7659 {
7660         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7661                                            &dev->adj_list.upper,
7662                                            &upper_dev->adj_list.lower);
7663 }
7664
7665 static int __netdev_upper_dev_link(struct net_device *dev,
7666                                    struct net_device *upper_dev, bool master,
7667                                    void *upper_priv, void *upper_info,
7668                                    struct netdev_nested_priv *priv,
7669                                    struct netlink_ext_ack *extack)
7670 {
7671         struct netdev_notifier_changeupper_info changeupper_info = {
7672                 .info = {
7673                         .dev = dev,
7674                         .extack = extack,
7675                 },
7676                 .upper_dev = upper_dev,
7677                 .master = master,
7678                 .linking = true,
7679                 .upper_info = upper_info,
7680         };
7681         struct net_device *master_dev;
7682         int ret = 0;
7683
7684         ASSERT_RTNL();
7685
7686         if (dev == upper_dev)
7687                 return -EBUSY;
7688
7689         /* To prevent loops, check if dev is not upper device to upper_dev. */
7690         if (__netdev_has_upper_dev(upper_dev, dev))
7691                 return -EBUSY;
7692
7693         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7694                 return -EMLINK;
7695
7696         if (!master) {
7697                 if (__netdev_has_upper_dev(dev, upper_dev))
7698                         return -EEXIST;
7699         } else {
7700                 master_dev = __netdev_master_upper_dev_get(dev);
7701                 if (master_dev)
7702                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7703         }
7704
7705         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7706                                             &changeupper_info.info);
7707         ret = notifier_to_errno(ret);
7708         if (ret)
7709                 return ret;
7710
7711         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7712                                                    master);
7713         if (ret)
7714                 return ret;
7715
7716         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7717                                             &changeupper_info.info);
7718         ret = notifier_to_errno(ret);
7719         if (ret)
7720                 goto rollback;
7721
7722         __netdev_update_upper_level(dev, NULL);
7723         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7724
7725         __netdev_update_lower_level(upper_dev, priv);
7726         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7727                                     priv);
7728
7729         return 0;
7730
7731 rollback:
7732         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7733
7734         return ret;
7735 }
7736
7737 /**
7738  * netdev_upper_dev_link - Add a link to the upper device
7739  * @dev: device
7740  * @upper_dev: new upper device
7741  * @extack: netlink extended ack
7742  *
7743  * Adds a link to device which is upper to this one. The caller must hold
7744  * the RTNL lock. On a failure a negative errno code is returned.
7745  * On success the reference counts are adjusted and the function
7746  * returns zero.
7747  */
7748 int netdev_upper_dev_link(struct net_device *dev,
7749                           struct net_device *upper_dev,
7750                           struct netlink_ext_ack *extack)
7751 {
7752         struct netdev_nested_priv priv = {
7753                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7754                 .data = NULL,
7755         };
7756
7757         return __netdev_upper_dev_link(dev, upper_dev, false,
7758                                        NULL, NULL, &priv, extack);
7759 }
7760 EXPORT_SYMBOL(netdev_upper_dev_link);
7761
7762 /**
7763  * netdev_master_upper_dev_link - Add a master link to the upper device
7764  * @dev: device
7765  * @upper_dev: new upper device
7766  * @upper_priv: upper device private
7767  * @upper_info: upper info to be passed down via notifier
7768  * @extack: netlink extended ack
7769  *
7770  * Adds a link to device which is upper to this one. In this case, only
7771  * one master upper device can be linked, although other non-master devices
7772  * might be linked as well. The caller must hold the RTNL lock.
7773  * On a failure a negative errno code is returned. On success the reference
7774  * counts are adjusted and the function returns zero.
7775  */
7776 int netdev_master_upper_dev_link(struct net_device *dev,
7777                                  struct net_device *upper_dev,
7778                                  void *upper_priv, void *upper_info,
7779                                  struct netlink_ext_ack *extack)
7780 {
7781         struct netdev_nested_priv priv = {
7782                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7783                 .data = NULL,
7784         };
7785
7786         return __netdev_upper_dev_link(dev, upper_dev, true,
7787                                        upper_priv, upper_info, &priv, extack);
7788 }
7789 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7790
7791 static void __netdev_upper_dev_unlink(struct net_device *dev,
7792                                       struct net_device *upper_dev,
7793                                       struct netdev_nested_priv *priv)
7794 {
7795         struct netdev_notifier_changeupper_info changeupper_info = {
7796                 .info = {
7797                         .dev = dev,
7798                 },
7799                 .upper_dev = upper_dev,
7800                 .linking = false,
7801         };
7802
7803         ASSERT_RTNL();
7804
7805         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7806
7807         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7808                                       &changeupper_info.info);
7809
7810         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7811
7812         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7813                                       &changeupper_info.info);
7814
7815         __netdev_update_upper_level(dev, NULL);
7816         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7817
7818         __netdev_update_lower_level(upper_dev, priv);
7819         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7820                                     priv);
7821 }
7822
7823 /**
7824  * netdev_upper_dev_unlink - Removes a link to upper device
7825  * @dev: device
7826  * @upper_dev: new upper device
7827  *
7828  * Removes a link to device which is upper to this one. The caller must hold
7829  * the RTNL lock.
7830  */
7831 void netdev_upper_dev_unlink(struct net_device *dev,
7832                              struct net_device *upper_dev)
7833 {
7834         struct netdev_nested_priv priv = {
7835                 .flags = NESTED_SYNC_TODO,
7836                 .data = NULL,
7837         };
7838
7839         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7840 }
7841 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7842
7843 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7844                                       struct net_device *lower_dev,
7845                                       bool val)
7846 {
7847         struct netdev_adjacent *adj;
7848
7849         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7850         if (adj)
7851                 adj->ignore = val;
7852
7853         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7854         if (adj)
7855                 adj->ignore = val;
7856 }
7857
7858 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7859                                         struct net_device *lower_dev)
7860 {
7861         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7862 }
7863
7864 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7865                                        struct net_device *lower_dev)
7866 {
7867         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7868 }
7869
7870 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7871                                    struct net_device *new_dev,
7872                                    struct net_device *dev,
7873                                    struct netlink_ext_ack *extack)
7874 {
7875         struct netdev_nested_priv priv = {
7876                 .flags = 0,
7877                 .data = NULL,
7878         };
7879         int err;
7880
7881         if (!new_dev)
7882                 return 0;
7883
7884         if (old_dev && new_dev != old_dev)
7885                 netdev_adjacent_dev_disable(dev, old_dev);
7886         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7887                                       extack);
7888         if (err) {
7889                 if (old_dev && new_dev != old_dev)
7890                         netdev_adjacent_dev_enable(dev, old_dev);
7891                 return err;
7892         }
7893
7894         return 0;
7895 }
7896 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7897
7898 void netdev_adjacent_change_commit(struct net_device *old_dev,
7899                                    struct net_device *new_dev,
7900                                    struct net_device *dev)
7901 {
7902         struct netdev_nested_priv priv = {
7903                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7904                 .data = NULL,
7905         };
7906
7907         if (!new_dev || !old_dev)
7908                 return;
7909
7910         if (new_dev == old_dev)
7911                 return;
7912
7913         netdev_adjacent_dev_enable(dev, old_dev);
7914         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7915 }
7916 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7917
7918 void netdev_adjacent_change_abort(struct net_device *old_dev,
7919                                   struct net_device *new_dev,
7920                                   struct net_device *dev)
7921 {
7922         struct netdev_nested_priv priv = {
7923                 .flags = 0,
7924                 .data = NULL,
7925         };
7926
7927         if (!new_dev)
7928                 return;
7929
7930         if (old_dev && new_dev != old_dev)
7931                 netdev_adjacent_dev_enable(dev, old_dev);
7932
7933         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7934 }
7935 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7936
7937 /**
7938  * netdev_bonding_info_change - Dispatch event about slave change
7939  * @dev: device
7940  * @bonding_info: info to dispatch
7941  *
7942  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7943  * The caller must hold the RTNL lock.
7944  */
7945 void netdev_bonding_info_change(struct net_device *dev,
7946                                 struct netdev_bonding_info *bonding_info)
7947 {
7948         struct netdev_notifier_bonding_info info = {
7949                 .info.dev = dev,
7950         };
7951
7952         memcpy(&info.bonding_info, bonding_info,
7953                sizeof(struct netdev_bonding_info));
7954         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7955                                       &info.info);
7956 }
7957 EXPORT_SYMBOL(netdev_bonding_info_change);
7958
7959 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7960                                            struct netlink_ext_ack *extack)
7961 {
7962         struct netdev_notifier_offload_xstats_info info = {
7963                 .info.dev = dev,
7964                 .info.extack = extack,
7965                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7966         };
7967         int err;
7968         int rc;
7969
7970         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7971                                          GFP_KERNEL);
7972         if (!dev->offload_xstats_l3)
7973                 return -ENOMEM;
7974
7975         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7976                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7977                                                   &info.info);
7978         err = notifier_to_errno(rc);
7979         if (err)
7980                 goto free_stats;
7981
7982         return 0;
7983
7984 free_stats:
7985         kfree(dev->offload_xstats_l3);
7986         dev->offload_xstats_l3 = NULL;
7987         return err;
7988 }
7989
7990 int netdev_offload_xstats_enable(struct net_device *dev,
7991                                  enum netdev_offload_xstats_type type,
7992                                  struct netlink_ext_ack *extack)
7993 {
7994         ASSERT_RTNL();
7995
7996         if (netdev_offload_xstats_enabled(dev, type))
7997                 return -EALREADY;
7998
7999         switch (type) {
8000         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8001                 return netdev_offload_xstats_enable_l3(dev, extack);
8002         }
8003
8004         WARN_ON(1);
8005         return -EINVAL;
8006 }
8007 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8008
8009 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8010 {
8011         struct netdev_notifier_offload_xstats_info info = {
8012                 .info.dev = dev,
8013                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8014         };
8015
8016         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8017                                       &info.info);
8018         kfree(dev->offload_xstats_l3);
8019         dev->offload_xstats_l3 = NULL;
8020 }
8021
8022 int netdev_offload_xstats_disable(struct net_device *dev,
8023                                   enum netdev_offload_xstats_type type)
8024 {
8025         ASSERT_RTNL();
8026
8027         if (!netdev_offload_xstats_enabled(dev, type))
8028                 return -EALREADY;
8029
8030         switch (type) {
8031         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8032                 netdev_offload_xstats_disable_l3(dev);
8033                 return 0;
8034         }
8035
8036         WARN_ON(1);
8037         return -EINVAL;
8038 }
8039 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8040
8041 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8042 {
8043         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8044 }
8045
8046 static struct rtnl_hw_stats64 *
8047 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8048                               enum netdev_offload_xstats_type type)
8049 {
8050         switch (type) {
8051         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8052                 return dev->offload_xstats_l3;
8053         }
8054
8055         WARN_ON(1);
8056         return NULL;
8057 }
8058
8059 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8060                                    enum netdev_offload_xstats_type type)
8061 {
8062         ASSERT_RTNL();
8063
8064         return netdev_offload_xstats_get_ptr(dev, type);
8065 }
8066 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8067
8068 struct netdev_notifier_offload_xstats_ru {
8069         bool used;
8070 };
8071
8072 struct netdev_notifier_offload_xstats_rd {
8073         struct rtnl_hw_stats64 stats;
8074         bool used;
8075 };
8076
8077 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8078                                   const struct rtnl_hw_stats64 *src)
8079 {
8080         dest->rx_packets          += src->rx_packets;
8081         dest->tx_packets          += src->tx_packets;
8082         dest->rx_bytes            += src->rx_bytes;
8083         dest->tx_bytes            += src->tx_bytes;
8084         dest->rx_errors           += src->rx_errors;
8085         dest->tx_errors           += src->tx_errors;
8086         dest->rx_dropped          += src->rx_dropped;
8087         dest->tx_dropped          += src->tx_dropped;
8088         dest->multicast           += src->multicast;
8089 }
8090
8091 static int netdev_offload_xstats_get_used(struct net_device *dev,
8092                                           enum netdev_offload_xstats_type type,
8093                                           bool *p_used,
8094                                           struct netlink_ext_ack *extack)
8095 {
8096         struct netdev_notifier_offload_xstats_ru report_used = {};
8097         struct netdev_notifier_offload_xstats_info info = {
8098                 .info.dev = dev,
8099                 .info.extack = extack,
8100                 .type = type,
8101                 .report_used = &report_used,
8102         };
8103         int rc;
8104
8105         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8106         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8107                                            &info.info);
8108         *p_used = report_used.used;
8109         return notifier_to_errno(rc);
8110 }
8111
8112 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8113                                            enum netdev_offload_xstats_type type,
8114                                            struct rtnl_hw_stats64 *p_stats,
8115                                            bool *p_used,
8116                                            struct netlink_ext_ack *extack)
8117 {
8118         struct netdev_notifier_offload_xstats_rd report_delta = {};
8119         struct netdev_notifier_offload_xstats_info info = {
8120                 .info.dev = dev,
8121                 .info.extack = extack,
8122                 .type = type,
8123                 .report_delta = &report_delta,
8124         };
8125         struct rtnl_hw_stats64 *stats;
8126         int rc;
8127
8128         stats = netdev_offload_xstats_get_ptr(dev, type);
8129         if (WARN_ON(!stats))
8130                 return -EINVAL;
8131
8132         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8133                                            &info.info);
8134
8135         /* Cache whatever we got, even if there was an error, otherwise the
8136          * successful stats retrievals would get lost.
8137          */
8138         netdev_hw_stats64_add(stats, &report_delta.stats);
8139
8140         if (p_stats)
8141                 *p_stats = *stats;
8142         *p_used = report_delta.used;
8143
8144         return notifier_to_errno(rc);
8145 }
8146
8147 int netdev_offload_xstats_get(struct net_device *dev,
8148                               enum netdev_offload_xstats_type type,
8149                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8150                               struct netlink_ext_ack *extack)
8151 {
8152         ASSERT_RTNL();
8153
8154         if (p_stats)
8155                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8156                                                        p_used, extack);
8157         else
8158                 return netdev_offload_xstats_get_used(dev, type, p_used,
8159                                                       extack);
8160 }
8161 EXPORT_SYMBOL(netdev_offload_xstats_get);
8162
8163 void
8164 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8165                                    const struct rtnl_hw_stats64 *stats)
8166 {
8167         report_delta->used = true;
8168         netdev_hw_stats64_add(&report_delta->stats, stats);
8169 }
8170 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8171
8172 void
8173 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8174 {
8175         report_used->used = true;
8176 }
8177 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8178
8179 void netdev_offload_xstats_push_delta(struct net_device *dev,
8180                                       enum netdev_offload_xstats_type type,
8181                                       const struct rtnl_hw_stats64 *p_stats)
8182 {
8183         struct rtnl_hw_stats64 *stats;
8184
8185         ASSERT_RTNL();
8186
8187         stats = netdev_offload_xstats_get_ptr(dev, type);
8188         if (WARN_ON(!stats))
8189                 return;
8190
8191         netdev_hw_stats64_add(stats, p_stats);
8192 }
8193 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8194
8195 /**
8196  * netdev_get_xmit_slave - Get the xmit slave of master device
8197  * @dev: device
8198  * @skb: The packet
8199  * @all_slaves: assume all the slaves are active
8200  *
8201  * The reference counters are not incremented so the caller must be
8202  * careful with locks. The caller must hold RCU lock.
8203  * %NULL is returned if no slave is found.
8204  */
8205
8206 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8207                                          struct sk_buff *skb,
8208                                          bool all_slaves)
8209 {
8210         const struct net_device_ops *ops = dev->netdev_ops;
8211
8212         if (!ops->ndo_get_xmit_slave)
8213                 return NULL;
8214         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8215 }
8216 EXPORT_SYMBOL(netdev_get_xmit_slave);
8217
8218 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8219                                                   struct sock *sk)
8220 {
8221         const struct net_device_ops *ops = dev->netdev_ops;
8222
8223         if (!ops->ndo_sk_get_lower_dev)
8224                 return NULL;
8225         return ops->ndo_sk_get_lower_dev(dev, sk);
8226 }
8227
8228 /**
8229  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8230  * @dev: device
8231  * @sk: the socket
8232  *
8233  * %NULL is returned if no lower device is found.
8234  */
8235
8236 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8237                                             struct sock *sk)
8238 {
8239         struct net_device *lower;
8240
8241         lower = netdev_sk_get_lower_dev(dev, sk);
8242         while (lower) {
8243                 dev = lower;
8244                 lower = netdev_sk_get_lower_dev(dev, sk);
8245         }
8246
8247         return dev;
8248 }
8249 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8250
8251 static void netdev_adjacent_add_links(struct net_device *dev)
8252 {
8253         struct netdev_adjacent *iter;
8254
8255         struct net *net = dev_net(dev);
8256
8257         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8258                 if (!net_eq(net, dev_net(iter->dev)))
8259                         continue;
8260                 netdev_adjacent_sysfs_add(iter->dev, dev,
8261                                           &iter->dev->adj_list.lower);
8262                 netdev_adjacent_sysfs_add(dev, iter->dev,
8263                                           &dev->adj_list.upper);
8264         }
8265
8266         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8267                 if (!net_eq(net, dev_net(iter->dev)))
8268                         continue;
8269                 netdev_adjacent_sysfs_add(iter->dev, dev,
8270                                           &iter->dev->adj_list.upper);
8271                 netdev_adjacent_sysfs_add(dev, iter->dev,
8272                                           &dev->adj_list.lower);
8273         }
8274 }
8275
8276 static void netdev_adjacent_del_links(struct net_device *dev)
8277 {
8278         struct netdev_adjacent *iter;
8279
8280         struct net *net = dev_net(dev);
8281
8282         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8283                 if (!net_eq(net, dev_net(iter->dev)))
8284                         continue;
8285                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8286                                           &iter->dev->adj_list.lower);
8287                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8288                                           &dev->adj_list.upper);
8289         }
8290
8291         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8292                 if (!net_eq(net, dev_net(iter->dev)))
8293                         continue;
8294                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8295                                           &iter->dev->adj_list.upper);
8296                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8297                                           &dev->adj_list.lower);
8298         }
8299 }
8300
8301 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8302 {
8303         struct netdev_adjacent *iter;
8304
8305         struct net *net = dev_net(dev);
8306
8307         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8308                 if (!net_eq(net, dev_net(iter->dev)))
8309                         continue;
8310                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8311                                           &iter->dev->adj_list.lower);
8312                 netdev_adjacent_sysfs_add(iter->dev, dev,
8313                                           &iter->dev->adj_list.lower);
8314         }
8315
8316         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8317                 if (!net_eq(net, dev_net(iter->dev)))
8318                         continue;
8319                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8320                                           &iter->dev->adj_list.upper);
8321                 netdev_adjacent_sysfs_add(iter->dev, dev,
8322                                           &iter->dev->adj_list.upper);
8323         }
8324 }
8325
8326 void *netdev_lower_dev_get_private(struct net_device *dev,
8327                                    struct net_device *lower_dev)
8328 {
8329         struct netdev_adjacent *lower;
8330
8331         if (!lower_dev)
8332                 return NULL;
8333         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8334         if (!lower)
8335                 return NULL;
8336
8337         return lower->private;
8338 }
8339 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8340
8341
8342 /**
8343  * netdev_lower_state_changed - Dispatch event about lower device state change
8344  * @lower_dev: device
8345  * @lower_state_info: state to dispatch
8346  *
8347  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8348  * The caller must hold the RTNL lock.
8349  */
8350 void netdev_lower_state_changed(struct net_device *lower_dev,
8351                                 void *lower_state_info)
8352 {
8353         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8354                 .info.dev = lower_dev,
8355         };
8356
8357         ASSERT_RTNL();
8358         changelowerstate_info.lower_state_info = lower_state_info;
8359         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8360                                       &changelowerstate_info.info);
8361 }
8362 EXPORT_SYMBOL(netdev_lower_state_changed);
8363
8364 static void dev_change_rx_flags(struct net_device *dev, int flags)
8365 {
8366         const struct net_device_ops *ops = dev->netdev_ops;
8367
8368         if (ops->ndo_change_rx_flags)
8369                 ops->ndo_change_rx_flags(dev, flags);
8370 }
8371
8372 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8373 {
8374         unsigned int old_flags = dev->flags;
8375         kuid_t uid;
8376         kgid_t gid;
8377
8378         ASSERT_RTNL();
8379
8380         dev->flags |= IFF_PROMISC;
8381         dev->promiscuity += inc;
8382         if (dev->promiscuity == 0) {
8383                 /*
8384                  * Avoid overflow.
8385                  * If inc causes overflow, untouch promisc and return error.
8386                  */
8387                 if (inc < 0)
8388                         dev->flags &= ~IFF_PROMISC;
8389                 else {
8390                         dev->promiscuity -= inc;
8391                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8392                         return -EOVERFLOW;
8393                 }
8394         }
8395         if (dev->flags != old_flags) {
8396                 netdev_info(dev, "%s promiscuous mode\n",
8397                             dev->flags & IFF_PROMISC ? "entered" : "left");
8398                 if (audit_enabled) {
8399                         current_uid_gid(&uid, &gid);
8400                         audit_log(audit_context(), GFP_ATOMIC,
8401                                   AUDIT_ANOM_PROMISCUOUS,
8402                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8403                                   dev->name, (dev->flags & IFF_PROMISC),
8404                                   (old_flags & IFF_PROMISC),
8405                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8406                                   from_kuid(&init_user_ns, uid),
8407                                   from_kgid(&init_user_ns, gid),
8408                                   audit_get_sessionid(current));
8409                 }
8410
8411                 dev_change_rx_flags(dev, IFF_PROMISC);
8412         }
8413         if (notify)
8414                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8415         return 0;
8416 }
8417
8418 /**
8419  *      dev_set_promiscuity     - update promiscuity count on a device
8420  *      @dev: device
8421  *      @inc: modifier
8422  *
8423  *      Add or remove promiscuity from a device. While the count in the device
8424  *      remains above zero the interface remains promiscuous. Once it hits zero
8425  *      the device reverts back to normal filtering operation. A negative inc
8426  *      value is used to drop promiscuity on the device.
8427  *      Return 0 if successful or a negative errno code on error.
8428  */
8429 int dev_set_promiscuity(struct net_device *dev, int inc)
8430 {
8431         unsigned int old_flags = dev->flags;
8432         int err;
8433
8434         err = __dev_set_promiscuity(dev, inc, true);
8435         if (err < 0)
8436                 return err;
8437         if (dev->flags != old_flags)
8438                 dev_set_rx_mode(dev);
8439         return err;
8440 }
8441 EXPORT_SYMBOL(dev_set_promiscuity);
8442
8443 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8444 {
8445         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8446
8447         ASSERT_RTNL();
8448
8449         dev->flags |= IFF_ALLMULTI;
8450         dev->allmulti += inc;
8451         if (dev->allmulti == 0) {
8452                 /*
8453                  * Avoid overflow.
8454                  * If inc causes overflow, untouch allmulti and return error.
8455                  */
8456                 if (inc < 0)
8457                         dev->flags &= ~IFF_ALLMULTI;
8458                 else {
8459                         dev->allmulti -= inc;
8460                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8461                         return -EOVERFLOW;
8462                 }
8463         }
8464         if (dev->flags ^ old_flags) {
8465                 netdev_info(dev, "%s allmulticast mode\n",
8466                             dev->flags & IFF_ALLMULTI ? "entered" : "left");
8467                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8468                 dev_set_rx_mode(dev);
8469                 if (notify)
8470                         __dev_notify_flags(dev, old_flags,
8471                                            dev->gflags ^ old_gflags, 0, NULL);
8472         }
8473         return 0;
8474 }
8475
8476 /**
8477  *      dev_set_allmulti        - update allmulti count on a device
8478  *      @dev: device
8479  *      @inc: modifier
8480  *
8481  *      Add or remove reception of all multicast frames to a device. While the
8482  *      count in the device remains above zero the interface remains listening
8483  *      to all interfaces. Once it hits zero the device reverts back to normal
8484  *      filtering operation. A negative @inc value is used to drop the counter
8485  *      when releasing a resource needing all multicasts.
8486  *      Return 0 if successful or a negative errno code on error.
8487  */
8488
8489 int dev_set_allmulti(struct net_device *dev, int inc)
8490 {
8491         return __dev_set_allmulti(dev, inc, true);
8492 }
8493 EXPORT_SYMBOL(dev_set_allmulti);
8494
8495 /*
8496  *      Upload unicast and multicast address lists to device and
8497  *      configure RX filtering. When the device doesn't support unicast
8498  *      filtering it is put in promiscuous mode while unicast addresses
8499  *      are present.
8500  */
8501 void __dev_set_rx_mode(struct net_device *dev)
8502 {
8503         const struct net_device_ops *ops = dev->netdev_ops;
8504
8505         /* dev_open will call this function so the list will stay sane. */
8506         if (!(dev->flags&IFF_UP))
8507                 return;
8508
8509         if (!netif_device_present(dev))
8510                 return;
8511
8512         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8513                 /* Unicast addresses changes may only happen under the rtnl,
8514                  * therefore calling __dev_set_promiscuity here is safe.
8515                  */
8516                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8517                         __dev_set_promiscuity(dev, 1, false);
8518                         dev->uc_promisc = true;
8519                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8520                         __dev_set_promiscuity(dev, -1, false);
8521                         dev->uc_promisc = false;
8522                 }
8523         }
8524
8525         if (ops->ndo_set_rx_mode)
8526                 ops->ndo_set_rx_mode(dev);
8527 }
8528
8529 void dev_set_rx_mode(struct net_device *dev)
8530 {
8531         netif_addr_lock_bh(dev);
8532         __dev_set_rx_mode(dev);
8533         netif_addr_unlock_bh(dev);
8534 }
8535
8536 /**
8537  *      dev_get_flags - get flags reported to userspace
8538  *      @dev: device
8539  *
8540  *      Get the combination of flag bits exported through APIs to userspace.
8541  */
8542 unsigned int dev_get_flags(const struct net_device *dev)
8543 {
8544         unsigned int flags;
8545
8546         flags = (dev->flags & ~(IFF_PROMISC |
8547                                 IFF_ALLMULTI |
8548                                 IFF_RUNNING |
8549                                 IFF_LOWER_UP |
8550                                 IFF_DORMANT)) |
8551                 (dev->gflags & (IFF_PROMISC |
8552                                 IFF_ALLMULTI));
8553
8554         if (netif_running(dev)) {
8555                 if (netif_oper_up(dev))
8556                         flags |= IFF_RUNNING;
8557                 if (netif_carrier_ok(dev))
8558                         flags |= IFF_LOWER_UP;
8559                 if (netif_dormant(dev))
8560                         flags |= IFF_DORMANT;
8561         }
8562
8563         return flags;
8564 }
8565 EXPORT_SYMBOL(dev_get_flags);
8566
8567 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8568                        struct netlink_ext_ack *extack)
8569 {
8570         unsigned int old_flags = dev->flags;
8571         int ret;
8572
8573         ASSERT_RTNL();
8574
8575         /*
8576          *      Set the flags on our device.
8577          */
8578
8579         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8580                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8581                                IFF_AUTOMEDIA)) |
8582                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8583                                     IFF_ALLMULTI));
8584
8585         /*
8586          *      Load in the correct multicast list now the flags have changed.
8587          */
8588
8589         if ((old_flags ^ flags) & IFF_MULTICAST)
8590                 dev_change_rx_flags(dev, IFF_MULTICAST);
8591
8592         dev_set_rx_mode(dev);
8593
8594         /*
8595          *      Have we downed the interface. We handle IFF_UP ourselves
8596          *      according to user attempts to set it, rather than blindly
8597          *      setting it.
8598          */
8599
8600         ret = 0;
8601         if ((old_flags ^ flags) & IFF_UP) {
8602                 if (old_flags & IFF_UP)
8603                         __dev_close(dev);
8604                 else
8605                         ret = __dev_open(dev, extack);
8606         }
8607
8608         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8609                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8610                 unsigned int old_flags = dev->flags;
8611
8612                 dev->gflags ^= IFF_PROMISC;
8613
8614                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8615                         if (dev->flags != old_flags)
8616                                 dev_set_rx_mode(dev);
8617         }
8618
8619         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8620          * is important. Some (broken) drivers set IFF_PROMISC, when
8621          * IFF_ALLMULTI is requested not asking us and not reporting.
8622          */
8623         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8624                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8625
8626                 dev->gflags ^= IFF_ALLMULTI;
8627                 __dev_set_allmulti(dev, inc, false);
8628         }
8629
8630         return ret;
8631 }
8632
8633 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8634                         unsigned int gchanges, u32 portid,
8635                         const struct nlmsghdr *nlh)
8636 {
8637         unsigned int changes = dev->flags ^ old_flags;
8638
8639         if (gchanges)
8640                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8641
8642         if (changes & IFF_UP) {
8643                 if (dev->flags & IFF_UP)
8644                         call_netdevice_notifiers(NETDEV_UP, dev);
8645                 else
8646                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8647         }
8648
8649         if (dev->flags & IFF_UP &&
8650             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8651                 struct netdev_notifier_change_info change_info = {
8652                         .info = {
8653                                 .dev = dev,
8654                         },
8655                         .flags_changed = changes,
8656                 };
8657
8658                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8659         }
8660 }
8661
8662 /**
8663  *      dev_change_flags - change device settings
8664  *      @dev: device
8665  *      @flags: device state flags
8666  *      @extack: netlink extended ack
8667  *
8668  *      Change settings on device based state flags. The flags are
8669  *      in the userspace exported format.
8670  */
8671 int dev_change_flags(struct net_device *dev, unsigned int flags,
8672                      struct netlink_ext_ack *extack)
8673 {
8674         int ret;
8675         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8676
8677         ret = __dev_change_flags(dev, flags, extack);
8678         if (ret < 0)
8679                 return ret;
8680
8681         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8682         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8683         return ret;
8684 }
8685 EXPORT_SYMBOL(dev_change_flags);
8686
8687 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8688 {
8689         const struct net_device_ops *ops = dev->netdev_ops;
8690
8691         if (ops->ndo_change_mtu)
8692                 return ops->ndo_change_mtu(dev, new_mtu);
8693
8694         /* Pairs with all the lockless reads of dev->mtu in the stack */
8695         WRITE_ONCE(dev->mtu, new_mtu);
8696         return 0;
8697 }
8698 EXPORT_SYMBOL(__dev_set_mtu);
8699
8700 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8701                      struct netlink_ext_ack *extack)
8702 {
8703         /* MTU must be positive, and in range */
8704         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8705                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8706                 return -EINVAL;
8707         }
8708
8709         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8710                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8711                 return -EINVAL;
8712         }
8713         return 0;
8714 }
8715
8716 /**
8717  *      dev_set_mtu_ext - Change maximum transfer unit
8718  *      @dev: device
8719  *      @new_mtu: new transfer unit
8720  *      @extack: netlink extended ack
8721  *
8722  *      Change the maximum transfer size of the network device.
8723  */
8724 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8725                     struct netlink_ext_ack *extack)
8726 {
8727         int err, orig_mtu;
8728
8729         if (new_mtu == dev->mtu)
8730                 return 0;
8731
8732         err = dev_validate_mtu(dev, new_mtu, extack);
8733         if (err)
8734                 return err;
8735
8736         if (!netif_device_present(dev))
8737                 return -ENODEV;
8738
8739         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8740         err = notifier_to_errno(err);
8741         if (err)
8742                 return err;
8743
8744         orig_mtu = dev->mtu;
8745         err = __dev_set_mtu(dev, new_mtu);
8746
8747         if (!err) {
8748                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8749                                                    orig_mtu);
8750                 err = notifier_to_errno(err);
8751                 if (err) {
8752                         /* setting mtu back and notifying everyone again,
8753                          * so that they have a chance to revert changes.
8754                          */
8755                         __dev_set_mtu(dev, orig_mtu);
8756                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8757                                                      new_mtu);
8758                 }
8759         }
8760         return err;
8761 }
8762
8763 int dev_set_mtu(struct net_device *dev, int new_mtu)
8764 {
8765         struct netlink_ext_ack extack;
8766         int err;
8767
8768         memset(&extack, 0, sizeof(extack));
8769         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8770         if (err && extack._msg)
8771                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8772         return err;
8773 }
8774 EXPORT_SYMBOL(dev_set_mtu);
8775
8776 /**
8777  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8778  *      @dev: device
8779  *      @new_len: new tx queue length
8780  */
8781 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8782 {
8783         unsigned int orig_len = dev->tx_queue_len;
8784         int res;
8785
8786         if (new_len != (unsigned int)new_len)
8787                 return -ERANGE;
8788
8789         if (new_len != orig_len) {
8790                 dev->tx_queue_len = new_len;
8791                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8792                 res = notifier_to_errno(res);
8793                 if (res)
8794                         goto err_rollback;
8795                 res = dev_qdisc_change_tx_queue_len(dev);
8796                 if (res)
8797                         goto err_rollback;
8798         }
8799
8800         return 0;
8801
8802 err_rollback:
8803         netdev_err(dev, "refused to change device tx_queue_len\n");
8804         dev->tx_queue_len = orig_len;
8805         return res;
8806 }
8807
8808 /**
8809  *      dev_set_group - Change group this device belongs to
8810  *      @dev: device
8811  *      @new_group: group this device should belong to
8812  */
8813 void dev_set_group(struct net_device *dev, int new_group)
8814 {
8815         dev->group = new_group;
8816 }
8817
8818 /**
8819  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8820  *      @dev: device
8821  *      @addr: new address
8822  *      @extack: netlink extended ack
8823  */
8824 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8825                               struct netlink_ext_ack *extack)
8826 {
8827         struct netdev_notifier_pre_changeaddr_info info = {
8828                 .info.dev = dev,
8829                 .info.extack = extack,
8830                 .dev_addr = addr,
8831         };
8832         int rc;
8833
8834         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8835         return notifier_to_errno(rc);
8836 }
8837 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8838
8839 /**
8840  *      dev_set_mac_address - Change Media Access Control Address
8841  *      @dev: device
8842  *      @sa: new address
8843  *      @extack: netlink extended ack
8844  *
8845  *      Change the hardware (MAC) address of the device
8846  */
8847 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8848                         struct netlink_ext_ack *extack)
8849 {
8850         const struct net_device_ops *ops = dev->netdev_ops;
8851         int err;
8852
8853         if (!ops->ndo_set_mac_address)
8854                 return -EOPNOTSUPP;
8855         if (sa->sa_family != dev->type)
8856                 return -EINVAL;
8857         if (!netif_device_present(dev))
8858                 return -ENODEV;
8859         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8860         if (err)
8861                 return err;
8862         if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8863                 err = ops->ndo_set_mac_address(dev, sa);
8864                 if (err)
8865                         return err;
8866         }
8867         dev->addr_assign_type = NET_ADDR_SET;
8868         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8869         add_device_randomness(dev->dev_addr, dev->addr_len);
8870         return 0;
8871 }
8872 EXPORT_SYMBOL(dev_set_mac_address);
8873
8874 static DECLARE_RWSEM(dev_addr_sem);
8875
8876 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8877                              struct netlink_ext_ack *extack)
8878 {
8879         int ret;
8880
8881         down_write(&dev_addr_sem);
8882         ret = dev_set_mac_address(dev, sa, extack);
8883         up_write(&dev_addr_sem);
8884         return ret;
8885 }
8886 EXPORT_SYMBOL(dev_set_mac_address_user);
8887
8888 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8889 {
8890         size_t size = sizeof(sa->sa_data_min);
8891         struct net_device *dev;
8892         int ret = 0;
8893
8894         down_read(&dev_addr_sem);
8895         rcu_read_lock();
8896
8897         dev = dev_get_by_name_rcu(net, dev_name);
8898         if (!dev) {
8899                 ret = -ENODEV;
8900                 goto unlock;
8901         }
8902         if (!dev->addr_len)
8903                 memset(sa->sa_data, 0, size);
8904         else
8905                 memcpy(sa->sa_data, dev->dev_addr,
8906                        min_t(size_t, size, dev->addr_len));
8907         sa->sa_family = dev->type;
8908
8909 unlock:
8910         rcu_read_unlock();
8911         up_read(&dev_addr_sem);
8912         return ret;
8913 }
8914 EXPORT_SYMBOL(dev_get_mac_address);
8915
8916 /**
8917  *      dev_change_carrier - Change device carrier
8918  *      @dev: device
8919  *      @new_carrier: new value
8920  *
8921  *      Change device carrier
8922  */
8923 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8924 {
8925         const struct net_device_ops *ops = dev->netdev_ops;
8926
8927         if (!ops->ndo_change_carrier)
8928                 return -EOPNOTSUPP;
8929         if (!netif_device_present(dev))
8930                 return -ENODEV;
8931         return ops->ndo_change_carrier(dev, new_carrier);
8932 }
8933
8934 /**
8935  *      dev_get_phys_port_id - Get device physical port ID
8936  *      @dev: device
8937  *      @ppid: port ID
8938  *
8939  *      Get device physical port ID
8940  */
8941 int dev_get_phys_port_id(struct net_device *dev,
8942                          struct netdev_phys_item_id *ppid)
8943 {
8944         const struct net_device_ops *ops = dev->netdev_ops;
8945
8946         if (!ops->ndo_get_phys_port_id)
8947                 return -EOPNOTSUPP;
8948         return ops->ndo_get_phys_port_id(dev, ppid);
8949 }
8950
8951 /**
8952  *      dev_get_phys_port_name - Get device physical port name
8953  *      @dev: device
8954  *      @name: port name
8955  *      @len: limit of bytes to copy to name
8956  *
8957  *      Get device physical port name
8958  */
8959 int dev_get_phys_port_name(struct net_device *dev,
8960                            char *name, size_t len)
8961 {
8962         const struct net_device_ops *ops = dev->netdev_ops;
8963         int err;
8964
8965         if (ops->ndo_get_phys_port_name) {
8966                 err = ops->ndo_get_phys_port_name(dev, name, len);
8967                 if (err != -EOPNOTSUPP)
8968                         return err;
8969         }
8970         return devlink_compat_phys_port_name_get(dev, name, len);
8971 }
8972
8973 /**
8974  *      dev_get_port_parent_id - Get the device's port parent identifier
8975  *      @dev: network device
8976  *      @ppid: pointer to a storage for the port's parent identifier
8977  *      @recurse: allow/disallow recursion to lower devices
8978  *
8979  *      Get the devices's port parent identifier
8980  */
8981 int dev_get_port_parent_id(struct net_device *dev,
8982                            struct netdev_phys_item_id *ppid,
8983                            bool recurse)
8984 {
8985         const struct net_device_ops *ops = dev->netdev_ops;
8986         struct netdev_phys_item_id first = { };
8987         struct net_device *lower_dev;
8988         struct list_head *iter;
8989         int err;
8990
8991         if (ops->ndo_get_port_parent_id) {
8992                 err = ops->ndo_get_port_parent_id(dev, ppid);
8993                 if (err != -EOPNOTSUPP)
8994                         return err;
8995         }
8996
8997         err = devlink_compat_switch_id_get(dev, ppid);
8998         if (!recurse || err != -EOPNOTSUPP)
8999                 return err;
9000
9001         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9002                 err = dev_get_port_parent_id(lower_dev, ppid, true);
9003                 if (err)
9004                         break;
9005                 if (!first.id_len)
9006                         first = *ppid;
9007                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9008                         return -EOPNOTSUPP;
9009         }
9010
9011         return err;
9012 }
9013 EXPORT_SYMBOL(dev_get_port_parent_id);
9014
9015 /**
9016  *      netdev_port_same_parent_id - Indicate if two network devices have
9017  *      the same port parent identifier
9018  *      @a: first network device
9019  *      @b: second network device
9020  */
9021 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9022 {
9023         struct netdev_phys_item_id a_id = { };
9024         struct netdev_phys_item_id b_id = { };
9025
9026         if (dev_get_port_parent_id(a, &a_id, true) ||
9027             dev_get_port_parent_id(b, &b_id, true))
9028                 return false;
9029
9030         return netdev_phys_item_id_same(&a_id, &b_id);
9031 }
9032 EXPORT_SYMBOL(netdev_port_same_parent_id);
9033
9034 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin)
9035 {
9036 #if IS_ENABLED(CONFIG_DPLL)
9037         rtnl_lock();
9038         dev->dpll_pin = dpll_pin;
9039         rtnl_unlock();
9040 #endif
9041 }
9042
9043 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin)
9044 {
9045         WARN_ON(!dpll_pin);
9046         netdev_dpll_pin_assign(dev, dpll_pin);
9047 }
9048 EXPORT_SYMBOL(netdev_dpll_pin_set);
9049
9050 void netdev_dpll_pin_clear(struct net_device *dev)
9051 {
9052         netdev_dpll_pin_assign(dev, NULL);
9053 }
9054 EXPORT_SYMBOL(netdev_dpll_pin_clear);
9055
9056 /**
9057  *      dev_change_proto_down - set carrier according to proto_down.
9058  *
9059  *      @dev: device
9060  *      @proto_down: new value
9061  */
9062 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9063 {
9064         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9065                 return -EOPNOTSUPP;
9066         if (!netif_device_present(dev))
9067                 return -ENODEV;
9068         if (proto_down)
9069                 netif_carrier_off(dev);
9070         else
9071                 netif_carrier_on(dev);
9072         dev->proto_down = proto_down;
9073         return 0;
9074 }
9075
9076 /**
9077  *      dev_change_proto_down_reason - proto down reason
9078  *
9079  *      @dev: device
9080  *      @mask: proto down mask
9081  *      @value: proto down value
9082  */
9083 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9084                                   u32 value)
9085 {
9086         int b;
9087
9088         if (!mask) {
9089                 dev->proto_down_reason = value;
9090         } else {
9091                 for_each_set_bit(b, &mask, 32) {
9092                         if (value & (1 << b))
9093                                 dev->proto_down_reason |= BIT(b);
9094                         else
9095                                 dev->proto_down_reason &= ~BIT(b);
9096                 }
9097         }
9098 }
9099
9100 struct bpf_xdp_link {
9101         struct bpf_link link;
9102         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9103         int flags;
9104 };
9105
9106 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9107 {
9108         if (flags & XDP_FLAGS_HW_MODE)
9109                 return XDP_MODE_HW;
9110         if (flags & XDP_FLAGS_DRV_MODE)
9111                 return XDP_MODE_DRV;
9112         if (flags & XDP_FLAGS_SKB_MODE)
9113                 return XDP_MODE_SKB;
9114         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9115 }
9116
9117 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9118 {
9119         switch (mode) {
9120         case XDP_MODE_SKB:
9121                 return generic_xdp_install;
9122         case XDP_MODE_DRV:
9123         case XDP_MODE_HW:
9124                 return dev->netdev_ops->ndo_bpf;
9125         default:
9126                 return NULL;
9127         }
9128 }
9129
9130 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9131                                          enum bpf_xdp_mode mode)
9132 {
9133         return dev->xdp_state[mode].link;
9134 }
9135
9136 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9137                                      enum bpf_xdp_mode mode)
9138 {
9139         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9140
9141         if (link)
9142                 return link->link.prog;
9143         return dev->xdp_state[mode].prog;
9144 }
9145
9146 u8 dev_xdp_prog_count(struct net_device *dev)
9147 {
9148         u8 count = 0;
9149         int i;
9150
9151         for (i = 0; i < __MAX_XDP_MODE; i++)
9152                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9153                         count++;
9154         return count;
9155 }
9156 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9157
9158 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9159 {
9160         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9161
9162         return prog ? prog->aux->id : 0;
9163 }
9164
9165 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9166                              struct bpf_xdp_link *link)
9167 {
9168         dev->xdp_state[mode].link = link;
9169         dev->xdp_state[mode].prog = NULL;
9170 }
9171
9172 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9173                              struct bpf_prog *prog)
9174 {
9175         dev->xdp_state[mode].link = NULL;
9176         dev->xdp_state[mode].prog = prog;
9177 }
9178
9179 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9180                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9181                            u32 flags, struct bpf_prog *prog)
9182 {
9183         struct netdev_bpf xdp;
9184         int err;
9185
9186         memset(&xdp, 0, sizeof(xdp));
9187         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9188         xdp.extack = extack;
9189         xdp.flags = flags;
9190         xdp.prog = prog;
9191
9192         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9193          * "moved" into driver), so they don't increment it on their own, but
9194          * they do decrement refcnt when program is detached or replaced.
9195          * Given net_device also owns link/prog, we need to bump refcnt here
9196          * to prevent drivers from underflowing it.
9197          */
9198         if (prog)
9199                 bpf_prog_inc(prog);
9200         err = bpf_op(dev, &xdp);
9201         if (err) {
9202                 if (prog)
9203                         bpf_prog_put(prog);
9204                 return err;
9205         }
9206
9207         if (mode != XDP_MODE_HW)
9208                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9209
9210         return 0;
9211 }
9212
9213 static void dev_xdp_uninstall(struct net_device *dev)
9214 {
9215         struct bpf_xdp_link *link;
9216         struct bpf_prog *prog;
9217         enum bpf_xdp_mode mode;
9218         bpf_op_t bpf_op;
9219
9220         ASSERT_RTNL();
9221
9222         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9223                 prog = dev_xdp_prog(dev, mode);
9224                 if (!prog)
9225                         continue;
9226
9227                 bpf_op = dev_xdp_bpf_op(dev, mode);
9228                 if (!bpf_op)
9229                         continue;
9230
9231                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9232
9233                 /* auto-detach link from net device */
9234                 link = dev_xdp_link(dev, mode);
9235                 if (link)
9236                         link->dev = NULL;
9237                 else
9238                         bpf_prog_put(prog);
9239
9240                 dev_xdp_set_link(dev, mode, NULL);
9241         }
9242 }
9243
9244 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9245                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9246                           struct bpf_prog *old_prog, u32 flags)
9247 {
9248         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9249         struct bpf_prog *cur_prog;
9250         struct net_device *upper;
9251         struct list_head *iter;
9252         enum bpf_xdp_mode mode;
9253         bpf_op_t bpf_op;
9254         int err;
9255
9256         ASSERT_RTNL();
9257
9258         /* either link or prog attachment, never both */
9259         if (link && (new_prog || old_prog))
9260                 return -EINVAL;
9261         /* link supports only XDP mode flags */
9262         if (link && (flags & ~XDP_FLAGS_MODES)) {
9263                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9264                 return -EINVAL;
9265         }
9266         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9267         if (num_modes > 1) {
9268                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9269                 return -EINVAL;
9270         }
9271         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9272         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9273                 NL_SET_ERR_MSG(extack,
9274                                "More than one program loaded, unset mode is ambiguous");
9275                 return -EINVAL;
9276         }
9277         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9278         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9279                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9280                 return -EINVAL;
9281         }
9282
9283         mode = dev_xdp_mode(dev, flags);
9284         /* can't replace attached link */
9285         if (dev_xdp_link(dev, mode)) {
9286                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9287                 return -EBUSY;
9288         }
9289
9290         /* don't allow if an upper device already has a program */
9291         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9292                 if (dev_xdp_prog_count(upper) > 0) {
9293                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9294                         return -EEXIST;
9295                 }
9296         }
9297
9298         cur_prog = dev_xdp_prog(dev, mode);
9299         /* can't replace attached prog with link */
9300         if (link && cur_prog) {
9301                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9302                 return -EBUSY;
9303         }
9304         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9305                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9306                 return -EEXIST;
9307         }
9308
9309         /* put effective new program into new_prog */
9310         if (link)
9311                 new_prog = link->link.prog;
9312
9313         if (new_prog) {
9314                 bool offload = mode == XDP_MODE_HW;
9315                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9316                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9317
9318                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9319                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9320                         return -EBUSY;
9321                 }
9322                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9323                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9324                         return -EEXIST;
9325                 }
9326                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9327                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9328                         return -EINVAL;
9329                 }
9330                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9331                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9332                         return -EINVAL;
9333                 }
9334                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9335                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9336                         return -EINVAL;
9337                 }
9338                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9339                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9340                         return -EINVAL;
9341                 }
9342         }
9343
9344         /* don't call drivers if the effective program didn't change */
9345         if (new_prog != cur_prog) {
9346                 bpf_op = dev_xdp_bpf_op(dev, mode);
9347                 if (!bpf_op) {
9348                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9349                         return -EOPNOTSUPP;
9350                 }
9351
9352                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9353                 if (err)
9354                         return err;
9355         }
9356
9357         if (link)
9358                 dev_xdp_set_link(dev, mode, link);
9359         else
9360                 dev_xdp_set_prog(dev, mode, new_prog);
9361         if (cur_prog)
9362                 bpf_prog_put(cur_prog);
9363
9364         return 0;
9365 }
9366
9367 static int dev_xdp_attach_link(struct net_device *dev,
9368                                struct netlink_ext_ack *extack,
9369                                struct bpf_xdp_link *link)
9370 {
9371         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9372 }
9373
9374 static int dev_xdp_detach_link(struct net_device *dev,
9375                                struct netlink_ext_ack *extack,
9376                                struct bpf_xdp_link *link)
9377 {
9378         enum bpf_xdp_mode mode;
9379         bpf_op_t bpf_op;
9380
9381         ASSERT_RTNL();
9382
9383         mode = dev_xdp_mode(dev, link->flags);
9384         if (dev_xdp_link(dev, mode) != link)
9385                 return -EINVAL;
9386
9387         bpf_op = dev_xdp_bpf_op(dev, mode);
9388         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9389         dev_xdp_set_link(dev, mode, NULL);
9390         return 0;
9391 }
9392
9393 static void bpf_xdp_link_release(struct bpf_link *link)
9394 {
9395         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9396
9397         rtnl_lock();
9398
9399         /* if racing with net_device's tear down, xdp_link->dev might be
9400          * already NULL, in which case link was already auto-detached
9401          */
9402         if (xdp_link->dev) {
9403                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9404                 xdp_link->dev = NULL;
9405         }
9406
9407         rtnl_unlock();
9408 }
9409
9410 static int bpf_xdp_link_detach(struct bpf_link *link)
9411 {
9412         bpf_xdp_link_release(link);
9413         return 0;
9414 }
9415
9416 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9417 {
9418         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9419
9420         kfree(xdp_link);
9421 }
9422
9423 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9424                                      struct seq_file *seq)
9425 {
9426         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9427         u32 ifindex = 0;
9428
9429         rtnl_lock();
9430         if (xdp_link->dev)
9431                 ifindex = xdp_link->dev->ifindex;
9432         rtnl_unlock();
9433
9434         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9435 }
9436
9437 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9438                                        struct bpf_link_info *info)
9439 {
9440         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9441         u32 ifindex = 0;
9442
9443         rtnl_lock();
9444         if (xdp_link->dev)
9445                 ifindex = xdp_link->dev->ifindex;
9446         rtnl_unlock();
9447
9448         info->xdp.ifindex = ifindex;
9449         return 0;
9450 }
9451
9452 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9453                                struct bpf_prog *old_prog)
9454 {
9455         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9456         enum bpf_xdp_mode mode;
9457         bpf_op_t bpf_op;
9458         int err = 0;
9459
9460         rtnl_lock();
9461
9462         /* link might have been auto-released already, so fail */
9463         if (!xdp_link->dev) {
9464                 err = -ENOLINK;
9465                 goto out_unlock;
9466         }
9467
9468         if (old_prog && link->prog != old_prog) {
9469                 err = -EPERM;
9470                 goto out_unlock;
9471         }
9472         old_prog = link->prog;
9473         if (old_prog->type != new_prog->type ||
9474             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9475                 err = -EINVAL;
9476                 goto out_unlock;
9477         }
9478
9479         if (old_prog == new_prog) {
9480                 /* no-op, don't disturb drivers */
9481                 bpf_prog_put(new_prog);
9482                 goto out_unlock;
9483         }
9484
9485         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9486         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9487         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9488                               xdp_link->flags, new_prog);
9489         if (err)
9490                 goto out_unlock;
9491
9492         old_prog = xchg(&link->prog, new_prog);
9493         bpf_prog_put(old_prog);
9494
9495 out_unlock:
9496         rtnl_unlock();
9497         return err;
9498 }
9499
9500 static const struct bpf_link_ops bpf_xdp_link_lops = {
9501         .release = bpf_xdp_link_release,
9502         .dealloc = bpf_xdp_link_dealloc,
9503         .detach = bpf_xdp_link_detach,
9504         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9505         .fill_link_info = bpf_xdp_link_fill_link_info,
9506         .update_prog = bpf_xdp_link_update,
9507 };
9508
9509 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9510 {
9511         struct net *net = current->nsproxy->net_ns;
9512         struct bpf_link_primer link_primer;
9513         struct netlink_ext_ack extack = {};
9514         struct bpf_xdp_link *link;
9515         struct net_device *dev;
9516         int err, fd;
9517
9518         rtnl_lock();
9519         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9520         if (!dev) {
9521                 rtnl_unlock();
9522                 return -EINVAL;
9523         }
9524
9525         link = kzalloc(sizeof(*link), GFP_USER);
9526         if (!link) {
9527                 err = -ENOMEM;
9528                 goto unlock;
9529         }
9530
9531         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9532         link->dev = dev;
9533         link->flags = attr->link_create.flags;
9534
9535         err = bpf_link_prime(&link->link, &link_primer);
9536         if (err) {
9537                 kfree(link);
9538                 goto unlock;
9539         }
9540
9541         err = dev_xdp_attach_link(dev, &extack, link);
9542         rtnl_unlock();
9543
9544         if (err) {
9545                 link->dev = NULL;
9546                 bpf_link_cleanup(&link_primer);
9547                 trace_bpf_xdp_link_attach_failed(extack._msg);
9548                 goto out_put_dev;
9549         }
9550
9551         fd = bpf_link_settle(&link_primer);
9552         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9553         dev_put(dev);
9554         return fd;
9555
9556 unlock:
9557         rtnl_unlock();
9558
9559 out_put_dev:
9560         dev_put(dev);
9561         return err;
9562 }
9563
9564 /**
9565  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9566  *      @dev: device
9567  *      @extack: netlink extended ack
9568  *      @fd: new program fd or negative value to clear
9569  *      @expected_fd: old program fd that userspace expects to replace or clear
9570  *      @flags: xdp-related flags
9571  *
9572  *      Set or clear a bpf program for a device
9573  */
9574 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9575                       int fd, int expected_fd, u32 flags)
9576 {
9577         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9578         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9579         int err;
9580
9581         ASSERT_RTNL();
9582
9583         if (fd >= 0) {
9584                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9585                                                  mode != XDP_MODE_SKB);
9586                 if (IS_ERR(new_prog))
9587                         return PTR_ERR(new_prog);
9588         }
9589
9590         if (expected_fd >= 0) {
9591                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9592                                                  mode != XDP_MODE_SKB);
9593                 if (IS_ERR(old_prog)) {
9594                         err = PTR_ERR(old_prog);
9595                         old_prog = NULL;
9596                         goto err_out;
9597                 }
9598         }
9599
9600         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9601
9602 err_out:
9603         if (err && new_prog)
9604                 bpf_prog_put(new_prog);
9605         if (old_prog)
9606                 bpf_prog_put(old_prog);
9607         return err;
9608 }
9609
9610 /**
9611  * dev_index_reserve() - allocate an ifindex in a namespace
9612  * @net: the applicable net namespace
9613  * @ifindex: requested ifindex, pass %0 to get one allocated
9614  *
9615  * Allocate a ifindex for a new device. Caller must either use the ifindex
9616  * to store the device (via list_netdevice()) or call dev_index_release()
9617  * to give the index up.
9618  *
9619  * Return: a suitable unique value for a new device interface number or -errno.
9620  */
9621 static int dev_index_reserve(struct net *net, u32 ifindex)
9622 {
9623         int err;
9624
9625         if (ifindex > INT_MAX) {
9626                 DEBUG_NET_WARN_ON_ONCE(1);
9627                 return -EINVAL;
9628         }
9629
9630         if (!ifindex)
9631                 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9632                                       xa_limit_31b, &net->ifindex, GFP_KERNEL);
9633         else
9634                 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9635         if (err < 0)
9636                 return err;
9637
9638         return ifindex;
9639 }
9640
9641 static void dev_index_release(struct net *net, int ifindex)
9642 {
9643         /* Expect only unused indexes, unlist_netdevice() removes the used */
9644         WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9645 }
9646
9647 /* Delayed registration/unregisteration */
9648 LIST_HEAD(net_todo_list);
9649 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9650
9651 static void net_set_todo(struct net_device *dev)
9652 {
9653         list_add_tail(&dev->todo_list, &net_todo_list);
9654         atomic_inc(&dev_net(dev)->dev_unreg_count);
9655 }
9656
9657 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9658         struct net_device *upper, netdev_features_t features)
9659 {
9660         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9661         netdev_features_t feature;
9662         int feature_bit;
9663
9664         for_each_netdev_feature(upper_disables, feature_bit) {
9665                 feature = __NETIF_F_BIT(feature_bit);
9666                 if (!(upper->wanted_features & feature)
9667                     && (features & feature)) {
9668                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9669                                    &feature, upper->name);
9670                         features &= ~feature;
9671                 }
9672         }
9673
9674         return features;
9675 }
9676
9677 static void netdev_sync_lower_features(struct net_device *upper,
9678         struct net_device *lower, netdev_features_t features)
9679 {
9680         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9681         netdev_features_t feature;
9682         int feature_bit;
9683
9684         for_each_netdev_feature(upper_disables, feature_bit) {
9685                 feature = __NETIF_F_BIT(feature_bit);
9686                 if (!(features & feature) && (lower->features & feature)) {
9687                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9688                                    &feature, lower->name);
9689                         lower->wanted_features &= ~feature;
9690                         __netdev_update_features(lower);
9691
9692                         if (unlikely(lower->features & feature))
9693                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9694                                             &feature, lower->name);
9695                         else
9696                                 netdev_features_change(lower);
9697                 }
9698         }
9699 }
9700
9701 static netdev_features_t netdev_fix_features(struct net_device *dev,
9702         netdev_features_t features)
9703 {
9704         /* Fix illegal checksum combinations */
9705         if ((features & NETIF_F_HW_CSUM) &&
9706             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9707                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9708                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9709         }
9710
9711         /* TSO requires that SG is present as well. */
9712         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9713                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9714                 features &= ~NETIF_F_ALL_TSO;
9715         }
9716
9717         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9718                                         !(features & NETIF_F_IP_CSUM)) {
9719                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9720                 features &= ~NETIF_F_TSO;
9721                 features &= ~NETIF_F_TSO_ECN;
9722         }
9723
9724         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9725                                          !(features & NETIF_F_IPV6_CSUM)) {
9726                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9727                 features &= ~NETIF_F_TSO6;
9728         }
9729
9730         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9731         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9732                 features &= ~NETIF_F_TSO_MANGLEID;
9733
9734         /* TSO ECN requires that TSO is present as well. */
9735         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9736                 features &= ~NETIF_F_TSO_ECN;
9737
9738         /* Software GSO depends on SG. */
9739         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9740                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9741                 features &= ~NETIF_F_GSO;
9742         }
9743
9744         /* GSO partial features require GSO partial be set */
9745         if ((features & dev->gso_partial_features) &&
9746             !(features & NETIF_F_GSO_PARTIAL)) {
9747                 netdev_dbg(dev,
9748                            "Dropping partially supported GSO features since no GSO partial.\n");
9749                 features &= ~dev->gso_partial_features;
9750         }
9751
9752         if (!(features & NETIF_F_RXCSUM)) {
9753                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9754                  * successfully merged by hardware must also have the
9755                  * checksum verified by hardware.  If the user does not
9756                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9757                  */
9758                 if (features & NETIF_F_GRO_HW) {
9759                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9760                         features &= ~NETIF_F_GRO_HW;
9761                 }
9762         }
9763
9764         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9765         if (features & NETIF_F_RXFCS) {
9766                 if (features & NETIF_F_LRO) {
9767                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9768                         features &= ~NETIF_F_LRO;
9769                 }
9770
9771                 if (features & NETIF_F_GRO_HW) {
9772                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9773                         features &= ~NETIF_F_GRO_HW;
9774                 }
9775         }
9776
9777         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9778                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9779                 features &= ~NETIF_F_LRO;
9780         }
9781
9782         if (features & NETIF_F_HW_TLS_TX) {
9783                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9784                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9785                 bool hw_csum = features & NETIF_F_HW_CSUM;
9786
9787                 if (!ip_csum && !hw_csum) {
9788                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9789                         features &= ~NETIF_F_HW_TLS_TX;
9790                 }
9791         }
9792
9793         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9794                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9795                 features &= ~NETIF_F_HW_TLS_RX;
9796         }
9797
9798         return features;
9799 }
9800
9801 int __netdev_update_features(struct net_device *dev)
9802 {
9803         struct net_device *upper, *lower;
9804         netdev_features_t features;
9805         struct list_head *iter;
9806         int err = -1;
9807
9808         ASSERT_RTNL();
9809
9810         features = netdev_get_wanted_features(dev);
9811
9812         if (dev->netdev_ops->ndo_fix_features)
9813                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9814
9815         /* driver might be less strict about feature dependencies */
9816         features = netdev_fix_features(dev, features);
9817
9818         /* some features can't be enabled if they're off on an upper device */
9819         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9820                 features = netdev_sync_upper_features(dev, upper, features);
9821
9822         if (dev->features == features)
9823                 goto sync_lower;
9824
9825         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9826                 &dev->features, &features);
9827
9828         if (dev->netdev_ops->ndo_set_features)
9829                 err = dev->netdev_ops->ndo_set_features(dev, features);
9830         else
9831                 err = 0;
9832
9833         if (unlikely(err < 0)) {
9834                 netdev_err(dev,
9835                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9836                         err, &features, &dev->features);
9837                 /* return non-0 since some features might have changed and
9838                  * it's better to fire a spurious notification than miss it
9839                  */
9840                 return -1;
9841         }
9842
9843 sync_lower:
9844         /* some features must be disabled on lower devices when disabled
9845          * on an upper device (think: bonding master or bridge)
9846          */
9847         netdev_for_each_lower_dev(dev, lower, iter)
9848                 netdev_sync_lower_features(dev, lower, features);
9849
9850         if (!err) {
9851                 netdev_features_t diff = features ^ dev->features;
9852
9853                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9854                         /* udp_tunnel_{get,drop}_rx_info both need
9855                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9856                          * device, or they won't do anything.
9857                          * Thus we need to update dev->features
9858                          * *before* calling udp_tunnel_get_rx_info,
9859                          * but *after* calling udp_tunnel_drop_rx_info.
9860                          */
9861                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9862                                 dev->features = features;
9863                                 udp_tunnel_get_rx_info(dev);
9864                         } else {
9865                                 udp_tunnel_drop_rx_info(dev);
9866                         }
9867                 }
9868
9869                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9870                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9871                                 dev->features = features;
9872                                 err |= vlan_get_rx_ctag_filter_info(dev);
9873                         } else {
9874                                 vlan_drop_rx_ctag_filter_info(dev);
9875                         }
9876                 }
9877
9878                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9879                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9880                                 dev->features = features;
9881                                 err |= vlan_get_rx_stag_filter_info(dev);
9882                         } else {
9883                                 vlan_drop_rx_stag_filter_info(dev);
9884                         }
9885                 }
9886
9887                 dev->features = features;
9888         }
9889
9890         return err < 0 ? 0 : 1;
9891 }
9892
9893 /**
9894  *      netdev_update_features - recalculate device features
9895  *      @dev: the device to check
9896  *
9897  *      Recalculate dev->features set and send notifications if it
9898  *      has changed. Should be called after driver or hardware dependent
9899  *      conditions might have changed that influence the features.
9900  */
9901 void netdev_update_features(struct net_device *dev)
9902 {
9903         if (__netdev_update_features(dev))
9904                 netdev_features_change(dev);
9905 }
9906 EXPORT_SYMBOL(netdev_update_features);
9907
9908 /**
9909  *      netdev_change_features - recalculate device features
9910  *      @dev: the device to check
9911  *
9912  *      Recalculate dev->features set and send notifications even
9913  *      if they have not changed. Should be called instead of
9914  *      netdev_update_features() if also dev->vlan_features might
9915  *      have changed to allow the changes to be propagated to stacked
9916  *      VLAN devices.
9917  */
9918 void netdev_change_features(struct net_device *dev)
9919 {
9920         __netdev_update_features(dev);
9921         netdev_features_change(dev);
9922 }
9923 EXPORT_SYMBOL(netdev_change_features);
9924
9925 /**
9926  *      netif_stacked_transfer_operstate -      transfer operstate
9927  *      @rootdev: the root or lower level device to transfer state from
9928  *      @dev: the device to transfer operstate to
9929  *
9930  *      Transfer operational state from root to device. This is normally
9931  *      called when a stacking relationship exists between the root
9932  *      device and the device(a leaf device).
9933  */
9934 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9935                                         struct net_device *dev)
9936 {
9937         if (rootdev->operstate == IF_OPER_DORMANT)
9938                 netif_dormant_on(dev);
9939         else
9940                 netif_dormant_off(dev);
9941
9942         if (rootdev->operstate == IF_OPER_TESTING)
9943                 netif_testing_on(dev);
9944         else
9945                 netif_testing_off(dev);
9946
9947         if (netif_carrier_ok(rootdev))
9948                 netif_carrier_on(dev);
9949         else
9950                 netif_carrier_off(dev);
9951 }
9952 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9953
9954 static int netif_alloc_rx_queues(struct net_device *dev)
9955 {
9956         unsigned int i, count = dev->num_rx_queues;
9957         struct netdev_rx_queue *rx;
9958         size_t sz = count * sizeof(*rx);
9959         int err = 0;
9960
9961         BUG_ON(count < 1);
9962
9963         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9964         if (!rx)
9965                 return -ENOMEM;
9966
9967         dev->_rx = rx;
9968
9969         for (i = 0; i < count; i++) {
9970                 rx[i].dev = dev;
9971
9972                 /* XDP RX-queue setup */
9973                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9974                 if (err < 0)
9975                         goto err_rxq_info;
9976         }
9977         return 0;
9978
9979 err_rxq_info:
9980         /* Rollback successful reg's and free other resources */
9981         while (i--)
9982                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9983         kvfree(dev->_rx);
9984         dev->_rx = NULL;
9985         return err;
9986 }
9987
9988 static void netif_free_rx_queues(struct net_device *dev)
9989 {
9990         unsigned int i, count = dev->num_rx_queues;
9991
9992         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9993         if (!dev->_rx)
9994                 return;
9995
9996         for (i = 0; i < count; i++)
9997                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9998
9999         kvfree(dev->_rx);
10000 }
10001
10002 static void netdev_init_one_queue(struct net_device *dev,
10003                                   struct netdev_queue *queue, void *_unused)
10004 {
10005         /* Initialize queue lock */
10006         spin_lock_init(&queue->_xmit_lock);
10007         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10008         queue->xmit_lock_owner = -1;
10009         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10010         queue->dev = dev;
10011 #ifdef CONFIG_BQL
10012         dql_init(&queue->dql, HZ);
10013 #endif
10014 }
10015
10016 static void netif_free_tx_queues(struct net_device *dev)
10017 {
10018         kvfree(dev->_tx);
10019 }
10020
10021 static int netif_alloc_netdev_queues(struct net_device *dev)
10022 {
10023         unsigned int count = dev->num_tx_queues;
10024         struct netdev_queue *tx;
10025         size_t sz = count * sizeof(*tx);
10026
10027         if (count < 1 || count > 0xffff)
10028                 return -EINVAL;
10029
10030         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10031         if (!tx)
10032                 return -ENOMEM;
10033
10034         dev->_tx = tx;
10035
10036         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10037         spin_lock_init(&dev->tx_global_lock);
10038
10039         return 0;
10040 }
10041
10042 void netif_tx_stop_all_queues(struct net_device *dev)
10043 {
10044         unsigned int i;
10045
10046         for (i = 0; i < dev->num_tx_queues; i++) {
10047                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10048
10049                 netif_tx_stop_queue(txq);
10050         }
10051 }
10052 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10053
10054 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10055 {
10056         void __percpu *v;
10057
10058         /* Drivers implementing ndo_get_peer_dev must support tstat
10059          * accounting, so that skb_do_redirect() can bump the dev's
10060          * RX stats upon network namespace switch.
10061          */
10062         if (dev->netdev_ops->ndo_get_peer_dev &&
10063             dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10064                 return -EOPNOTSUPP;
10065
10066         switch (dev->pcpu_stat_type) {
10067         case NETDEV_PCPU_STAT_NONE:
10068                 return 0;
10069         case NETDEV_PCPU_STAT_LSTATS:
10070                 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10071                 break;
10072         case NETDEV_PCPU_STAT_TSTATS:
10073                 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10074                 break;
10075         case NETDEV_PCPU_STAT_DSTATS:
10076                 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10077                 break;
10078         default:
10079                 return -EINVAL;
10080         }
10081
10082         return v ? 0 : -ENOMEM;
10083 }
10084
10085 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10086 {
10087         switch (dev->pcpu_stat_type) {
10088         case NETDEV_PCPU_STAT_NONE:
10089                 return;
10090         case NETDEV_PCPU_STAT_LSTATS:
10091                 free_percpu(dev->lstats);
10092                 break;
10093         case NETDEV_PCPU_STAT_TSTATS:
10094                 free_percpu(dev->tstats);
10095                 break;
10096         case NETDEV_PCPU_STAT_DSTATS:
10097                 free_percpu(dev->dstats);
10098                 break;
10099         }
10100 }
10101
10102 /**
10103  * register_netdevice() - register a network device
10104  * @dev: device to register
10105  *
10106  * Take a prepared network device structure and make it externally accessible.
10107  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10108  * Callers must hold the rtnl lock - you may want register_netdev()
10109  * instead of this.
10110  */
10111 int register_netdevice(struct net_device *dev)
10112 {
10113         int ret;
10114         struct net *net = dev_net(dev);
10115
10116         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10117                      NETDEV_FEATURE_COUNT);
10118         BUG_ON(dev_boot_phase);
10119         ASSERT_RTNL();
10120
10121         might_sleep();
10122
10123         /* When net_device's are persistent, this will be fatal. */
10124         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10125         BUG_ON(!net);
10126
10127         ret = ethtool_check_ops(dev->ethtool_ops);
10128         if (ret)
10129                 return ret;
10130
10131         spin_lock_init(&dev->addr_list_lock);
10132         netdev_set_addr_lockdep_class(dev);
10133
10134         ret = dev_get_valid_name(net, dev, dev->name);
10135         if (ret < 0)
10136                 goto out;
10137
10138         ret = -ENOMEM;
10139         dev->name_node = netdev_name_node_head_alloc(dev);
10140         if (!dev->name_node)
10141                 goto out;
10142
10143         /* Init, if this function is available */
10144         if (dev->netdev_ops->ndo_init) {
10145                 ret = dev->netdev_ops->ndo_init(dev);
10146                 if (ret) {
10147                         if (ret > 0)
10148                                 ret = -EIO;
10149                         goto err_free_name;
10150                 }
10151         }
10152
10153         if (((dev->hw_features | dev->features) &
10154              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10155             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10156              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10157                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10158                 ret = -EINVAL;
10159                 goto err_uninit;
10160         }
10161
10162         ret = netdev_do_alloc_pcpu_stats(dev);
10163         if (ret)
10164                 goto err_uninit;
10165
10166         ret = dev_index_reserve(net, dev->ifindex);
10167         if (ret < 0)
10168                 goto err_free_pcpu;
10169         dev->ifindex = ret;
10170
10171         /* Transfer changeable features to wanted_features and enable
10172          * software offloads (GSO and GRO).
10173          */
10174         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10175         dev->features |= NETIF_F_SOFT_FEATURES;
10176
10177         if (dev->udp_tunnel_nic_info) {
10178                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10179                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10180         }
10181
10182         dev->wanted_features = dev->features & dev->hw_features;
10183
10184         if (!(dev->flags & IFF_LOOPBACK))
10185                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10186
10187         /* If IPv4 TCP segmentation offload is supported we should also
10188          * allow the device to enable segmenting the frame with the option
10189          * of ignoring a static IP ID value.  This doesn't enable the
10190          * feature itself but allows the user to enable it later.
10191          */
10192         if (dev->hw_features & NETIF_F_TSO)
10193                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10194         if (dev->vlan_features & NETIF_F_TSO)
10195                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10196         if (dev->mpls_features & NETIF_F_TSO)
10197                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10198         if (dev->hw_enc_features & NETIF_F_TSO)
10199                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10200
10201         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10202          */
10203         dev->vlan_features |= NETIF_F_HIGHDMA;
10204
10205         /* Make NETIF_F_SG inheritable to tunnel devices.
10206          */
10207         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10208
10209         /* Make NETIF_F_SG inheritable to MPLS.
10210          */
10211         dev->mpls_features |= NETIF_F_SG;
10212
10213         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10214         ret = notifier_to_errno(ret);
10215         if (ret)
10216                 goto err_ifindex_release;
10217
10218         ret = netdev_register_kobject(dev);
10219         write_lock(&dev_base_lock);
10220         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10221         write_unlock(&dev_base_lock);
10222         if (ret)
10223                 goto err_uninit_notify;
10224
10225         __netdev_update_features(dev);
10226
10227         /*
10228          *      Default initial state at registry is that the
10229          *      device is present.
10230          */
10231
10232         set_bit(__LINK_STATE_PRESENT, &dev->state);
10233
10234         linkwatch_init_dev(dev);
10235
10236         dev_init_scheduler(dev);
10237
10238         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10239         list_netdevice(dev);
10240
10241         add_device_randomness(dev->dev_addr, dev->addr_len);
10242
10243         /* If the device has permanent device address, driver should
10244          * set dev_addr and also addr_assign_type should be set to
10245          * NET_ADDR_PERM (default value).
10246          */
10247         if (dev->addr_assign_type == NET_ADDR_PERM)
10248                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10249
10250         /* Notify protocols, that a new device appeared. */
10251         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10252         ret = notifier_to_errno(ret);
10253         if (ret) {
10254                 /* Expect explicit free_netdev() on failure */
10255                 dev->needs_free_netdev = false;
10256                 unregister_netdevice_queue(dev, NULL);
10257                 goto out;
10258         }
10259         /*
10260          *      Prevent userspace races by waiting until the network
10261          *      device is fully setup before sending notifications.
10262          */
10263         if (!dev->rtnl_link_ops ||
10264             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10265                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10266
10267 out:
10268         return ret;
10269
10270 err_uninit_notify:
10271         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10272 err_ifindex_release:
10273         dev_index_release(net, dev->ifindex);
10274 err_free_pcpu:
10275         netdev_do_free_pcpu_stats(dev);
10276 err_uninit:
10277         if (dev->netdev_ops->ndo_uninit)
10278                 dev->netdev_ops->ndo_uninit(dev);
10279         if (dev->priv_destructor)
10280                 dev->priv_destructor(dev);
10281 err_free_name:
10282         netdev_name_node_free(dev->name_node);
10283         goto out;
10284 }
10285 EXPORT_SYMBOL(register_netdevice);
10286
10287 /**
10288  *      init_dummy_netdev       - init a dummy network device for NAPI
10289  *      @dev: device to init
10290  *
10291  *      This takes a network device structure and initialize the minimum
10292  *      amount of fields so it can be used to schedule NAPI polls without
10293  *      registering a full blown interface. This is to be used by drivers
10294  *      that need to tie several hardware interfaces to a single NAPI
10295  *      poll scheduler due to HW limitations.
10296  */
10297 int init_dummy_netdev(struct net_device *dev)
10298 {
10299         /* Clear everything. Note we don't initialize spinlocks
10300          * are they aren't supposed to be taken by any of the
10301          * NAPI code and this dummy netdev is supposed to be
10302          * only ever used for NAPI polls
10303          */
10304         memset(dev, 0, sizeof(struct net_device));
10305
10306         /* make sure we BUG if trying to hit standard
10307          * register/unregister code path
10308          */
10309         dev->reg_state = NETREG_DUMMY;
10310
10311         /* NAPI wants this */
10312         INIT_LIST_HEAD(&dev->napi_list);
10313
10314         /* a dummy interface is started by default */
10315         set_bit(__LINK_STATE_PRESENT, &dev->state);
10316         set_bit(__LINK_STATE_START, &dev->state);
10317
10318         /* napi_busy_loop stats accounting wants this */
10319         dev_net_set(dev, &init_net);
10320
10321         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10322          * because users of this 'device' dont need to change
10323          * its refcount.
10324          */
10325
10326         return 0;
10327 }
10328 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10329
10330
10331 /**
10332  *      register_netdev - register a network device
10333  *      @dev: device to register
10334  *
10335  *      Take a completed network device structure and add it to the kernel
10336  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10337  *      chain. 0 is returned on success. A negative errno code is returned
10338  *      on a failure to set up the device, or if the name is a duplicate.
10339  *
10340  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10341  *      and expands the device name if you passed a format string to
10342  *      alloc_netdev.
10343  */
10344 int register_netdev(struct net_device *dev)
10345 {
10346         int err;
10347
10348         if (rtnl_lock_killable())
10349                 return -EINTR;
10350         err = register_netdevice(dev);
10351         rtnl_unlock();
10352         return err;
10353 }
10354 EXPORT_SYMBOL(register_netdev);
10355
10356 int netdev_refcnt_read(const struct net_device *dev)
10357 {
10358 #ifdef CONFIG_PCPU_DEV_REFCNT
10359         int i, refcnt = 0;
10360
10361         for_each_possible_cpu(i)
10362                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10363         return refcnt;
10364 #else
10365         return refcount_read(&dev->dev_refcnt);
10366 #endif
10367 }
10368 EXPORT_SYMBOL(netdev_refcnt_read);
10369
10370 int netdev_unregister_timeout_secs __read_mostly = 10;
10371
10372 #define WAIT_REFS_MIN_MSECS 1
10373 #define WAIT_REFS_MAX_MSECS 250
10374 /**
10375  * netdev_wait_allrefs_any - wait until all references are gone.
10376  * @list: list of net_devices to wait on
10377  *
10378  * This is called when unregistering network devices.
10379  *
10380  * Any protocol or device that holds a reference should register
10381  * for netdevice notification, and cleanup and put back the
10382  * reference if they receive an UNREGISTER event.
10383  * We can get stuck here if buggy protocols don't correctly
10384  * call dev_put.
10385  */
10386 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10387 {
10388         unsigned long rebroadcast_time, warning_time;
10389         struct net_device *dev;
10390         int wait = 0;
10391
10392         rebroadcast_time = warning_time = jiffies;
10393
10394         list_for_each_entry(dev, list, todo_list)
10395                 if (netdev_refcnt_read(dev) == 1)
10396                         return dev;
10397
10398         while (true) {
10399                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10400                         rtnl_lock();
10401
10402                         /* Rebroadcast unregister notification */
10403                         list_for_each_entry(dev, list, todo_list)
10404                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10405
10406                         __rtnl_unlock();
10407                         rcu_barrier();
10408                         rtnl_lock();
10409
10410                         list_for_each_entry(dev, list, todo_list)
10411                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10412                                              &dev->state)) {
10413                                         /* We must not have linkwatch events
10414                                          * pending on unregister. If this
10415                                          * happens, we simply run the queue
10416                                          * unscheduled, resulting in a noop
10417                                          * for this device.
10418                                          */
10419                                         linkwatch_run_queue();
10420                                         break;
10421                                 }
10422
10423                         __rtnl_unlock();
10424
10425                         rebroadcast_time = jiffies;
10426                 }
10427
10428                 if (!wait) {
10429                         rcu_barrier();
10430                         wait = WAIT_REFS_MIN_MSECS;
10431                 } else {
10432                         msleep(wait);
10433                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10434                 }
10435
10436                 list_for_each_entry(dev, list, todo_list)
10437                         if (netdev_refcnt_read(dev) == 1)
10438                                 return dev;
10439
10440                 if (time_after(jiffies, warning_time +
10441                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10442                         list_for_each_entry(dev, list, todo_list) {
10443                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10444                                          dev->name, netdev_refcnt_read(dev));
10445                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10446                         }
10447
10448                         warning_time = jiffies;
10449                 }
10450         }
10451 }
10452
10453 /* The sequence is:
10454  *
10455  *      rtnl_lock();
10456  *      ...
10457  *      register_netdevice(x1);
10458  *      register_netdevice(x2);
10459  *      ...
10460  *      unregister_netdevice(y1);
10461  *      unregister_netdevice(y2);
10462  *      ...
10463  *      rtnl_unlock();
10464  *      free_netdev(y1);
10465  *      free_netdev(y2);
10466  *
10467  * We are invoked by rtnl_unlock().
10468  * This allows us to deal with problems:
10469  * 1) We can delete sysfs objects which invoke hotplug
10470  *    without deadlocking with linkwatch via keventd.
10471  * 2) Since we run with the RTNL semaphore not held, we can sleep
10472  *    safely in order to wait for the netdev refcnt to drop to zero.
10473  *
10474  * We must not return until all unregister events added during
10475  * the interval the lock was held have been completed.
10476  */
10477 void netdev_run_todo(void)
10478 {
10479         struct net_device *dev, *tmp;
10480         struct list_head list;
10481 #ifdef CONFIG_LOCKDEP
10482         struct list_head unlink_list;
10483
10484         list_replace_init(&net_unlink_list, &unlink_list);
10485
10486         while (!list_empty(&unlink_list)) {
10487                 struct net_device *dev = list_first_entry(&unlink_list,
10488                                                           struct net_device,
10489                                                           unlink_list);
10490                 list_del_init(&dev->unlink_list);
10491                 dev->nested_level = dev->lower_level - 1;
10492         }
10493 #endif
10494
10495         /* Snapshot list, allow later requests */
10496         list_replace_init(&net_todo_list, &list);
10497
10498         __rtnl_unlock();
10499
10500         /* Wait for rcu callbacks to finish before next phase */
10501         if (!list_empty(&list))
10502                 rcu_barrier();
10503
10504         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10505                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10506                         netdev_WARN(dev, "run_todo but not unregistering\n");
10507                         list_del(&dev->todo_list);
10508                         continue;
10509                 }
10510
10511                 write_lock(&dev_base_lock);
10512                 dev->reg_state = NETREG_UNREGISTERED;
10513                 write_unlock(&dev_base_lock);
10514                 linkwatch_forget_dev(dev);
10515         }
10516
10517         while (!list_empty(&list)) {
10518                 dev = netdev_wait_allrefs_any(&list);
10519                 list_del(&dev->todo_list);
10520
10521                 /* paranoia */
10522                 BUG_ON(netdev_refcnt_read(dev) != 1);
10523                 BUG_ON(!list_empty(&dev->ptype_all));
10524                 BUG_ON(!list_empty(&dev->ptype_specific));
10525                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10526                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10527
10528                 netdev_do_free_pcpu_stats(dev);
10529                 if (dev->priv_destructor)
10530                         dev->priv_destructor(dev);
10531                 if (dev->needs_free_netdev)
10532                         free_netdev(dev);
10533
10534                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10535                         wake_up(&netdev_unregistering_wq);
10536
10537                 /* Free network device */
10538                 kobject_put(&dev->dev.kobj);
10539         }
10540 }
10541
10542 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10543  * all the same fields in the same order as net_device_stats, with only
10544  * the type differing, but rtnl_link_stats64 may have additional fields
10545  * at the end for newer counters.
10546  */
10547 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10548                              const struct net_device_stats *netdev_stats)
10549 {
10550         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10551         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10552         u64 *dst = (u64 *)stats64;
10553
10554         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10555         for (i = 0; i < n; i++)
10556                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10557         /* zero out counters that only exist in rtnl_link_stats64 */
10558         memset((char *)stats64 + n * sizeof(u64), 0,
10559                sizeof(*stats64) - n * sizeof(u64));
10560 }
10561 EXPORT_SYMBOL(netdev_stats_to_stats64);
10562
10563 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10564                 struct net_device *dev)
10565 {
10566         struct net_device_core_stats __percpu *p;
10567
10568         p = alloc_percpu_gfp(struct net_device_core_stats,
10569                              GFP_ATOMIC | __GFP_NOWARN);
10570
10571         if (p && cmpxchg(&dev->core_stats, NULL, p))
10572                 free_percpu(p);
10573
10574         /* This READ_ONCE() pairs with the cmpxchg() above */
10575         return READ_ONCE(dev->core_stats);
10576 }
10577
10578 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10579 {
10580         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10581         struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10582         unsigned long __percpu *field;
10583
10584         if (unlikely(!p)) {
10585                 p = netdev_core_stats_alloc(dev);
10586                 if (!p)
10587                         return;
10588         }
10589
10590         field = (__force unsigned long __percpu *)((__force void *)p + offset);
10591         this_cpu_inc(*field);
10592 }
10593 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10594
10595 /**
10596  *      dev_get_stats   - get network device statistics
10597  *      @dev: device to get statistics from
10598  *      @storage: place to store stats
10599  *
10600  *      Get network statistics from device. Return @storage.
10601  *      The device driver may provide its own method by setting
10602  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10603  *      otherwise the internal statistics structure is used.
10604  */
10605 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10606                                         struct rtnl_link_stats64 *storage)
10607 {
10608         const struct net_device_ops *ops = dev->netdev_ops;
10609         const struct net_device_core_stats __percpu *p;
10610
10611         if (ops->ndo_get_stats64) {
10612                 memset(storage, 0, sizeof(*storage));
10613                 ops->ndo_get_stats64(dev, storage);
10614         } else if (ops->ndo_get_stats) {
10615                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10616         } else {
10617                 netdev_stats_to_stats64(storage, &dev->stats);
10618         }
10619
10620         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10621         p = READ_ONCE(dev->core_stats);
10622         if (p) {
10623                 const struct net_device_core_stats *core_stats;
10624                 int i;
10625
10626                 for_each_possible_cpu(i) {
10627                         core_stats = per_cpu_ptr(p, i);
10628                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10629                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10630                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10631                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10632                 }
10633         }
10634         return storage;
10635 }
10636 EXPORT_SYMBOL(dev_get_stats);
10637
10638 /**
10639  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10640  *      @s: place to store stats
10641  *      @netstats: per-cpu network stats to read from
10642  *
10643  *      Read per-cpu network statistics and populate the related fields in @s.
10644  */
10645 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10646                            const struct pcpu_sw_netstats __percpu *netstats)
10647 {
10648         int cpu;
10649
10650         for_each_possible_cpu(cpu) {
10651                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10652                 const struct pcpu_sw_netstats *stats;
10653                 unsigned int start;
10654
10655                 stats = per_cpu_ptr(netstats, cpu);
10656                 do {
10657                         start = u64_stats_fetch_begin(&stats->syncp);
10658                         rx_packets = u64_stats_read(&stats->rx_packets);
10659                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10660                         tx_packets = u64_stats_read(&stats->tx_packets);
10661                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10662                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10663
10664                 s->rx_packets += rx_packets;
10665                 s->rx_bytes   += rx_bytes;
10666                 s->tx_packets += tx_packets;
10667                 s->tx_bytes   += tx_bytes;
10668         }
10669 }
10670 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10671
10672 /**
10673  *      dev_get_tstats64 - ndo_get_stats64 implementation
10674  *      @dev: device to get statistics from
10675  *      @s: place to store stats
10676  *
10677  *      Populate @s from dev->stats and dev->tstats. Can be used as
10678  *      ndo_get_stats64() callback.
10679  */
10680 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10681 {
10682         netdev_stats_to_stats64(s, &dev->stats);
10683         dev_fetch_sw_netstats(s, dev->tstats);
10684 }
10685 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10686
10687 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10688 {
10689         struct netdev_queue *queue = dev_ingress_queue(dev);
10690
10691 #ifdef CONFIG_NET_CLS_ACT
10692         if (queue)
10693                 return queue;
10694         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10695         if (!queue)
10696                 return NULL;
10697         netdev_init_one_queue(dev, queue, NULL);
10698         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10699         RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10700         rcu_assign_pointer(dev->ingress_queue, queue);
10701 #endif
10702         return queue;
10703 }
10704
10705 static const struct ethtool_ops default_ethtool_ops;
10706
10707 void netdev_set_default_ethtool_ops(struct net_device *dev,
10708                                     const struct ethtool_ops *ops)
10709 {
10710         if (dev->ethtool_ops == &default_ethtool_ops)
10711                 dev->ethtool_ops = ops;
10712 }
10713 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10714
10715 /**
10716  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10717  * @dev: netdev to enable the IRQ coalescing on
10718  *
10719  * Sets a conservative default for SW IRQ coalescing. Users can use
10720  * sysfs attributes to override the default values.
10721  */
10722 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10723 {
10724         WARN_ON(dev->reg_state == NETREG_REGISTERED);
10725
10726         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10727                 dev->gro_flush_timeout = 20000;
10728                 dev->napi_defer_hard_irqs = 1;
10729         }
10730 }
10731 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10732
10733 void netdev_freemem(struct net_device *dev)
10734 {
10735         char *addr = (char *)dev - dev->padded;
10736
10737         kvfree(addr);
10738 }
10739
10740 /**
10741  * alloc_netdev_mqs - allocate network device
10742  * @sizeof_priv: size of private data to allocate space for
10743  * @name: device name format string
10744  * @name_assign_type: origin of device name
10745  * @setup: callback to initialize device
10746  * @txqs: the number of TX subqueues to allocate
10747  * @rxqs: the number of RX subqueues to allocate
10748  *
10749  * Allocates a struct net_device with private data area for driver use
10750  * and performs basic initialization.  Also allocates subqueue structs
10751  * for each queue on the device.
10752  */
10753 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10754                 unsigned char name_assign_type,
10755                 void (*setup)(struct net_device *),
10756                 unsigned int txqs, unsigned int rxqs)
10757 {
10758         struct net_device *dev;
10759         unsigned int alloc_size;
10760         struct net_device *p;
10761
10762         BUG_ON(strlen(name) >= sizeof(dev->name));
10763
10764         if (txqs < 1) {
10765                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10766                 return NULL;
10767         }
10768
10769         if (rxqs < 1) {
10770                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10771                 return NULL;
10772         }
10773
10774         alloc_size = sizeof(struct net_device);
10775         if (sizeof_priv) {
10776                 /* ensure 32-byte alignment of private area */
10777                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10778                 alloc_size += sizeof_priv;
10779         }
10780         /* ensure 32-byte alignment of whole construct */
10781         alloc_size += NETDEV_ALIGN - 1;
10782
10783         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10784         if (!p)
10785                 return NULL;
10786
10787         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10788         dev->padded = (char *)dev - (char *)p;
10789
10790         ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10791 #ifdef CONFIG_PCPU_DEV_REFCNT
10792         dev->pcpu_refcnt = alloc_percpu(int);
10793         if (!dev->pcpu_refcnt)
10794                 goto free_dev;
10795         __dev_hold(dev);
10796 #else
10797         refcount_set(&dev->dev_refcnt, 1);
10798 #endif
10799
10800         if (dev_addr_init(dev))
10801                 goto free_pcpu;
10802
10803         dev_mc_init(dev);
10804         dev_uc_init(dev);
10805
10806         dev_net_set(dev, &init_net);
10807
10808         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10809         dev->xdp_zc_max_segs = 1;
10810         dev->gso_max_segs = GSO_MAX_SEGS;
10811         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10812         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10813         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10814         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10815         dev->tso_max_segs = TSO_MAX_SEGS;
10816         dev->upper_level = 1;
10817         dev->lower_level = 1;
10818 #ifdef CONFIG_LOCKDEP
10819         dev->nested_level = 0;
10820         INIT_LIST_HEAD(&dev->unlink_list);
10821 #endif
10822
10823         INIT_LIST_HEAD(&dev->napi_list);
10824         INIT_LIST_HEAD(&dev->unreg_list);
10825         INIT_LIST_HEAD(&dev->close_list);
10826         INIT_LIST_HEAD(&dev->link_watch_list);
10827         INIT_LIST_HEAD(&dev->adj_list.upper);
10828         INIT_LIST_HEAD(&dev->adj_list.lower);
10829         INIT_LIST_HEAD(&dev->ptype_all);
10830         INIT_LIST_HEAD(&dev->ptype_specific);
10831         INIT_LIST_HEAD(&dev->net_notifier_list);
10832 #ifdef CONFIG_NET_SCHED
10833         hash_init(dev->qdisc_hash);
10834 #endif
10835         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10836         setup(dev);
10837
10838         if (!dev->tx_queue_len) {
10839                 dev->priv_flags |= IFF_NO_QUEUE;
10840                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10841         }
10842
10843         dev->num_tx_queues = txqs;
10844         dev->real_num_tx_queues = txqs;
10845         if (netif_alloc_netdev_queues(dev))
10846                 goto free_all;
10847
10848         dev->num_rx_queues = rxqs;
10849         dev->real_num_rx_queues = rxqs;
10850         if (netif_alloc_rx_queues(dev))
10851                 goto free_all;
10852
10853         strcpy(dev->name, name);
10854         dev->name_assign_type = name_assign_type;
10855         dev->group = INIT_NETDEV_GROUP;
10856         if (!dev->ethtool_ops)
10857                 dev->ethtool_ops = &default_ethtool_ops;
10858
10859         nf_hook_netdev_init(dev);
10860
10861         return dev;
10862
10863 free_all:
10864         free_netdev(dev);
10865         return NULL;
10866
10867 free_pcpu:
10868 #ifdef CONFIG_PCPU_DEV_REFCNT
10869         free_percpu(dev->pcpu_refcnt);
10870 free_dev:
10871 #endif
10872         netdev_freemem(dev);
10873         return NULL;
10874 }
10875 EXPORT_SYMBOL(alloc_netdev_mqs);
10876
10877 /**
10878  * free_netdev - free network device
10879  * @dev: device
10880  *
10881  * This function does the last stage of destroying an allocated device
10882  * interface. The reference to the device object is released. If this
10883  * is the last reference then it will be freed.Must be called in process
10884  * context.
10885  */
10886 void free_netdev(struct net_device *dev)
10887 {
10888         struct napi_struct *p, *n;
10889
10890         might_sleep();
10891
10892         /* When called immediately after register_netdevice() failed the unwind
10893          * handling may still be dismantling the device. Handle that case by
10894          * deferring the free.
10895          */
10896         if (dev->reg_state == NETREG_UNREGISTERING) {
10897                 ASSERT_RTNL();
10898                 dev->needs_free_netdev = true;
10899                 return;
10900         }
10901
10902         netif_free_tx_queues(dev);
10903         netif_free_rx_queues(dev);
10904
10905         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10906
10907         /* Flush device addresses */
10908         dev_addr_flush(dev);
10909
10910         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10911                 netif_napi_del(p);
10912
10913         ref_tracker_dir_exit(&dev->refcnt_tracker);
10914 #ifdef CONFIG_PCPU_DEV_REFCNT
10915         free_percpu(dev->pcpu_refcnt);
10916         dev->pcpu_refcnt = NULL;
10917 #endif
10918         free_percpu(dev->core_stats);
10919         dev->core_stats = NULL;
10920         free_percpu(dev->xdp_bulkq);
10921         dev->xdp_bulkq = NULL;
10922
10923         /*  Compatibility with error handling in drivers */
10924         if (dev->reg_state == NETREG_UNINITIALIZED) {
10925                 netdev_freemem(dev);
10926                 return;
10927         }
10928
10929         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10930         dev->reg_state = NETREG_RELEASED;
10931
10932         /* will free via device release */
10933         put_device(&dev->dev);
10934 }
10935 EXPORT_SYMBOL(free_netdev);
10936
10937 /**
10938  *      synchronize_net -  Synchronize with packet receive processing
10939  *
10940  *      Wait for packets currently being received to be done.
10941  *      Does not block later packets from starting.
10942  */
10943 void synchronize_net(void)
10944 {
10945         might_sleep();
10946         if (rtnl_is_locked())
10947                 synchronize_rcu_expedited();
10948         else
10949                 synchronize_rcu();
10950 }
10951 EXPORT_SYMBOL(synchronize_net);
10952
10953 /**
10954  *      unregister_netdevice_queue - remove device from the kernel
10955  *      @dev: device
10956  *      @head: list
10957  *
10958  *      This function shuts down a device interface and removes it
10959  *      from the kernel tables.
10960  *      If head not NULL, device is queued to be unregistered later.
10961  *
10962  *      Callers must hold the rtnl semaphore.  You may want
10963  *      unregister_netdev() instead of this.
10964  */
10965
10966 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10967 {
10968         ASSERT_RTNL();
10969
10970         if (head) {
10971                 list_move_tail(&dev->unreg_list, head);
10972         } else {
10973                 LIST_HEAD(single);
10974
10975                 list_add(&dev->unreg_list, &single);
10976                 unregister_netdevice_many(&single);
10977         }
10978 }
10979 EXPORT_SYMBOL(unregister_netdevice_queue);
10980
10981 void unregister_netdevice_many_notify(struct list_head *head,
10982                                       u32 portid, const struct nlmsghdr *nlh)
10983 {
10984         struct net_device *dev, *tmp;
10985         LIST_HEAD(close_head);
10986
10987         BUG_ON(dev_boot_phase);
10988         ASSERT_RTNL();
10989
10990         if (list_empty(head))
10991                 return;
10992
10993         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10994                 /* Some devices call without registering
10995                  * for initialization unwind. Remove those
10996                  * devices and proceed with the remaining.
10997                  */
10998                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10999                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11000                                  dev->name, dev);
11001
11002                         WARN_ON(1);
11003                         list_del(&dev->unreg_list);
11004                         continue;
11005                 }
11006                 dev->dismantle = true;
11007                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11008         }
11009
11010         /* If device is running, close it first. */
11011         list_for_each_entry(dev, head, unreg_list)
11012                 list_add_tail(&dev->close_list, &close_head);
11013         dev_close_many(&close_head, true);
11014
11015         list_for_each_entry(dev, head, unreg_list) {
11016                 /* And unlink it from device chain. */
11017                 write_lock(&dev_base_lock);
11018                 unlist_netdevice(dev, false);
11019                 dev->reg_state = NETREG_UNREGISTERING;
11020                 write_unlock(&dev_base_lock);
11021         }
11022         flush_all_backlogs();
11023
11024         synchronize_net();
11025
11026         list_for_each_entry(dev, head, unreg_list) {
11027                 struct sk_buff *skb = NULL;
11028
11029                 /* Shutdown queueing discipline. */
11030                 dev_shutdown(dev);
11031                 dev_tcx_uninstall(dev);
11032                 dev_xdp_uninstall(dev);
11033                 bpf_dev_bound_netdev_unregister(dev);
11034
11035                 netdev_offload_xstats_disable_all(dev);
11036
11037                 /* Notify protocols, that we are about to destroy
11038                  * this device. They should clean all the things.
11039                  */
11040                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11041
11042                 if (!dev->rtnl_link_ops ||
11043                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11044                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11045                                                      GFP_KERNEL, NULL, 0,
11046                                                      portid, nlh);
11047
11048                 /*
11049                  *      Flush the unicast and multicast chains
11050                  */
11051                 dev_uc_flush(dev);
11052                 dev_mc_flush(dev);
11053
11054                 netdev_name_node_alt_flush(dev);
11055                 netdev_name_node_free(dev->name_node);
11056
11057                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11058
11059                 if (dev->netdev_ops->ndo_uninit)
11060                         dev->netdev_ops->ndo_uninit(dev);
11061
11062                 if (skb)
11063                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11064
11065                 /* Notifier chain MUST detach us all upper devices. */
11066                 WARN_ON(netdev_has_any_upper_dev(dev));
11067                 WARN_ON(netdev_has_any_lower_dev(dev));
11068
11069                 /* Remove entries from kobject tree */
11070                 netdev_unregister_kobject(dev);
11071 #ifdef CONFIG_XPS
11072                 /* Remove XPS queueing entries */
11073                 netif_reset_xps_queues_gt(dev, 0);
11074 #endif
11075         }
11076
11077         synchronize_net();
11078
11079         list_for_each_entry(dev, head, unreg_list) {
11080                 netdev_put(dev, &dev->dev_registered_tracker);
11081                 net_set_todo(dev);
11082         }
11083
11084         list_del(head);
11085 }
11086
11087 /**
11088  *      unregister_netdevice_many - unregister many devices
11089  *      @head: list of devices
11090  *
11091  *  Note: As most callers use a stack allocated list_head,
11092  *  we force a list_del() to make sure stack wont be corrupted later.
11093  */
11094 void unregister_netdevice_many(struct list_head *head)
11095 {
11096         unregister_netdevice_many_notify(head, 0, NULL);
11097 }
11098 EXPORT_SYMBOL(unregister_netdevice_many);
11099
11100 /**
11101  *      unregister_netdev - remove device from the kernel
11102  *      @dev: device
11103  *
11104  *      This function shuts down a device interface and removes it
11105  *      from the kernel tables.
11106  *
11107  *      This is just a wrapper for unregister_netdevice that takes
11108  *      the rtnl semaphore.  In general you want to use this and not
11109  *      unregister_netdevice.
11110  */
11111 void unregister_netdev(struct net_device *dev)
11112 {
11113         rtnl_lock();
11114         unregister_netdevice(dev);
11115         rtnl_unlock();
11116 }
11117 EXPORT_SYMBOL(unregister_netdev);
11118
11119 /**
11120  *      __dev_change_net_namespace - move device to different nethost namespace
11121  *      @dev: device
11122  *      @net: network namespace
11123  *      @pat: If not NULL name pattern to try if the current device name
11124  *            is already taken in the destination network namespace.
11125  *      @new_ifindex: If not zero, specifies device index in the target
11126  *                    namespace.
11127  *
11128  *      This function shuts down a device interface and moves it
11129  *      to a new network namespace. On success 0 is returned, on
11130  *      a failure a netagive errno code is returned.
11131  *
11132  *      Callers must hold the rtnl semaphore.
11133  */
11134
11135 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11136                                const char *pat, int new_ifindex)
11137 {
11138         struct netdev_name_node *name_node;
11139         struct net *net_old = dev_net(dev);
11140         char new_name[IFNAMSIZ] = {};
11141         int err, new_nsid;
11142
11143         ASSERT_RTNL();
11144
11145         /* Don't allow namespace local devices to be moved. */
11146         err = -EINVAL;
11147         if (dev->features & NETIF_F_NETNS_LOCAL)
11148                 goto out;
11149
11150         /* Ensure the device has been registrered */
11151         if (dev->reg_state != NETREG_REGISTERED)
11152                 goto out;
11153
11154         /* Get out if there is nothing todo */
11155         err = 0;
11156         if (net_eq(net_old, net))
11157                 goto out;
11158
11159         /* Pick the destination device name, and ensure
11160          * we can use it in the destination network namespace.
11161          */
11162         err = -EEXIST;
11163         if (netdev_name_in_use(net, dev->name)) {
11164                 /* We get here if we can't use the current device name */
11165                 if (!pat)
11166                         goto out;
11167                 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11168                 if (err < 0)
11169                         goto out;
11170         }
11171         /* Check that none of the altnames conflicts. */
11172         err = -EEXIST;
11173         netdev_for_each_altname(dev, name_node)
11174                 if (netdev_name_in_use(net, name_node->name))
11175                         goto out;
11176
11177         /* Check that new_ifindex isn't used yet. */
11178         if (new_ifindex) {
11179                 err = dev_index_reserve(net, new_ifindex);
11180                 if (err < 0)
11181                         goto out;
11182         } else {
11183                 /* If there is an ifindex conflict assign a new one */
11184                 err = dev_index_reserve(net, dev->ifindex);
11185                 if (err == -EBUSY)
11186                         err = dev_index_reserve(net, 0);
11187                 if (err < 0)
11188                         goto out;
11189                 new_ifindex = err;
11190         }
11191
11192         /*
11193          * And now a mini version of register_netdevice unregister_netdevice.
11194          */
11195
11196         /* If device is running close it first. */
11197         dev_close(dev);
11198
11199         /* And unlink it from device chain */
11200         unlist_netdevice(dev, true);
11201
11202         synchronize_net();
11203
11204         /* Shutdown queueing discipline. */
11205         dev_shutdown(dev);
11206
11207         /* Notify protocols, that we are about to destroy
11208          * this device. They should clean all the things.
11209          *
11210          * Note that dev->reg_state stays at NETREG_REGISTERED.
11211          * This is wanted because this way 8021q and macvlan know
11212          * the device is just moving and can keep their slaves up.
11213          */
11214         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11215         rcu_barrier();
11216
11217         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11218
11219         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11220                             new_ifindex);
11221
11222         /*
11223          *      Flush the unicast and multicast chains
11224          */
11225         dev_uc_flush(dev);
11226         dev_mc_flush(dev);
11227
11228         /* Send a netdev-removed uevent to the old namespace */
11229         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11230         netdev_adjacent_del_links(dev);
11231
11232         /* Move per-net netdevice notifiers that are following the netdevice */
11233         move_netdevice_notifiers_dev_net(dev, net);
11234
11235         /* Actually switch the network namespace */
11236         dev_net_set(dev, net);
11237         dev->ifindex = new_ifindex;
11238
11239         if (new_name[0]) /* Rename the netdev to prepared name */
11240                 strscpy(dev->name, new_name, IFNAMSIZ);
11241
11242         /* Fixup kobjects */
11243         dev_set_uevent_suppress(&dev->dev, 1);
11244         err = device_rename(&dev->dev, dev->name);
11245         dev_set_uevent_suppress(&dev->dev, 0);
11246         WARN_ON(err);
11247
11248         /* Send a netdev-add uevent to the new namespace */
11249         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11250         netdev_adjacent_add_links(dev);
11251
11252         /* Adapt owner in case owning user namespace of target network
11253          * namespace is different from the original one.
11254          */
11255         err = netdev_change_owner(dev, net_old, net);
11256         WARN_ON(err);
11257
11258         /* Add the device back in the hashes */
11259         list_netdevice(dev);
11260
11261         /* Notify protocols, that a new device appeared. */
11262         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11263
11264         /*
11265          *      Prevent userspace races by waiting until the network
11266          *      device is fully setup before sending notifications.
11267          */
11268         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11269
11270         synchronize_net();
11271         err = 0;
11272 out:
11273         return err;
11274 }
11275 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11276
11277 static int dev_cpu_dead(unsigned int oldcpu)
11278 {
11279         struct sk_buff **list_skb;
11280         struct sk_buff *skb;
11281         unsigned int cpu;
11282         struct softnet_data *sd, *oldsd, *remsd = NULL;
11283
11284         local_irq_disable();
11285         cpu = smp_processor_id();
11286         sd = &per_cpu(softnet_data, cpu);
11287         oldsd = &per_cpu(softnet_data, oldcpu);
11288
11289         /* Find end of our completion_queue. */
11290         list_skb = &sd->completion_queue;
11291         while (*list_skb)
11292                 list_skb = &(*list_skb)->next;
11293         /* Append completion queue from offline CPU. */
11294         *list_skb = oldsd->completion_queue;
11295         oldsd->completion_queue = NULL;
11296
11297         /* Append output queue from offline CPU. */
11298         if (oldsd->output_queue) {
11299                 *sd->output_queue_tailp = oldsd->output_queue;
11300                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11301                 oldsd->output_queue = NULL;
11302                 oldsd->output_queue_tailp = &oldsd->output_queue;
11303         }
11304         /* Append NAPI poll list from offline CPU, with one exception :
11305          * process_backlog() must be called by cpu owning percpu backlog.
11306          * We properly handle process_queue & input_pkt_queue later.
11307          */
11308         while (!list_empty(&oldsd->poll_list)) {
11309                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11310                                                             struct napi_struct,
11311                                                             poll_list);
11312
11313                 list_del_init(&napi->poll_list);
11314                 if (napi->poll == process_backlog)
11315                         napi->state = 0;
11316                 else
11317                         ____napi_schedule(sd, napi);
11318         }
11319
11320         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11321         local_irq_enable();
11322
11323 #ifdef CONFIG_RPS
11324         remsd = oldsd->rps_ipi_list;
11325         oldsd->rps_ipi_list = NULL;
11326 #endif
11327         /* send out pending IPI's on offline CPU */
11328         net_rps_send_ipi(remsd);
11329
11330         /* Process offline CPU's input_pkt_queue */
11331         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11332                 netif_rx(skb);
11333                 input_queue_head_incr(oldsd);
11334         }
11335         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11336                 netif_rx(skb);
11337                 input_queue_head_incr(oldsd);
11338         }
11339
11340         return 0;
11341 }
11342
11343 /**
11344  *      netdev_increment_features - increment feature set by one
11345  *      @all: current feature set
11346  *      @one: new feature set
11347  *      @mask: mask feature set
11348  *
11349  *      Computes a new feature set after adding a device with feature set
11350  *      @one to the master device with current feature set @all.  Will not
11351  *      enable anything that is off in @mask. Returns the new feature set.
11352  */
11353 netdev_features_t netdev_increment_features(netdev_features_t all,
11354         netdev_features_t one, netdev_features_t mask)
11355 {
11356         if (mask & NETIF_F_HW_CSUM)
11357                 mask |= NETIF_F_CSUM_MASK;
11358         mask |= NETIF_F_VLAN_CHALLENGED;
11359
11360         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11361         all &= one | ~NETIF_F_ALL_FOR_ALL;
11362
11363         /* If one device supports hw checksumming, set for all. */
11364         if (all & NETIF_F_HW_CSUM)
11365                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11366
11367         return all;
11368 }
11369 EXPORT_SYMBOL(netdev_increment_features);
11370
11371 static struct hlist_head * __net_init netdev_create_hash(void)
11372 {
11373         int i;
11374         struct hlist_head *hash;
11375
11376         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11377         if (hash != NULL)
11378                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11379                         INIT_HLIST_HEAD(&hash[i]);
11380
11381         return hash;
11382 }
11383
11384 /* Initialize per network namespace state */
11385 static int __net_init netdev_init(struct net *net)
11386 {
11387         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11388                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11389
11390         INIT_LIST_HEAD(&net->dev_base_head);
11391
11392         net->dev_name_head = netdev_create_hash();
11393         if (net->dev_name_head == NULL)
11394                 goto err_name;
11395
11396         net->dev_index_head = netdev_create_hash();
11397         if (net->dev_index_head == NULL)
11398                 goto err_idx;
11399
11400         xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11401
11402         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11403
11404         return 0;
11405
11406 err_idx:
11407         kfree(net->dev_name_head);
11408 err_name:
11409         return -ENOMEM;
11410 }
11411
11412 /**
11413  *      netdev_drivername - network driver for the device
11414  *      @dev: network device
11415  *
11416  *      Determine network driver for device.
11417  */
11418 const char *netdev_drivername(const struct net_device *dev)
11419 {
11420         const struct device_driver *driver;
11421         const struct device *parent;
11422         const char *empty = "";
11423
11424         parent = dev->dev.parent;
11425         if (!parent)
11426                 return empty;
11427
11428         driver = parent->driver;
11429         if (driver && driver->name)
11430                 return driver->name;
11431         return empty;
11432 }
11433
11434 static void __netdev_printk(const char *level, const struct net_device *dev,
11435                             struct va_format *vaf)
11436 {
11437         if (dev && dev->dev.parent) {
11438                 dev_printk_emit(level[1] - '0',
11439                                 dev->dev.parent,
11440                                 "%s %s %s%s: %pV",
11441                                 dev_driver_string(dev->dev.parent),
11442                                 dev_name(dev->dev.parent),
11443                                 netdev_name(dev), netdev_reg_state(dev),
11444                                 vaf);
11445         } else if (dev) {
11446                 printk("%s%s%s: %pV",
11447                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11448         } else {
11449                 printk("%s(NULL net_device): %pV", level, vaf);
11450         }
11451 }
11452
11453 void netdev_printk(const char *level, const struct net_device *dev,
11454                    const char *format, ...)
11455 {
11456         struct va_format vaf;
11457         va_list args;
11458
11459         va_start(args, format);
11460
11461         vaf.fmt = format;
11462         vaf.va = &args;
11463
11464         __netdev_printk(level, dev, &vaf);
11465
11466         va_end(args);
11467 }
11468 EXPORT_SYMBOL(netdev_printk);
11469
11470 #define define_netdev_printk_level(func, level)                 \
11471 void func(const struct net_device *dev, const char *fmt, ...)   \
11472 {                                                               \
11473         struct va_format vaf;                                   \
11474         va_list args;                                           \
11475                                                                 \
11476         va_start(args, fmt);                                    \
11477                                                                 \
11478         vaf.fmt = fmt;                                          \
11479         vaf.va = &args;                                         \
11480                                                                 \
11481         __netdev_printk(level, dev, &vaf);                      \
11482                                                                 \
11483         va_end(args);                                           \
11484 }                                                               \
11485 EXPORT_SYMBOL(func);
11486
11487 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11488 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11489 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11490 define_netdev_printk_level(netdev_err, KERN_ERR);
11491 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11492 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11493 define_netdev_printk_level(netdev_info, KERN_INFO);
11494
11495 static void __net_exit netdev_exit(struct net *net)
11496 {
11497         kfree(net->dev_name_head);
11498         kfree(net->dev_index_head);
11499         xa_destroy(&net->dev_by_index);
11500         if (net != &init_net)
11501                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11502 }
11503
11504 static struct pernet_operations __net_initdata netdev_net_ops = {
11505         .init = netdev_init,
11506         .exit = netdev_exit,
11507 };
11508
11509 static void __net_exit default_device_exit_net(struct net *net)
11510 {
11511         struct net_device *dev, *aux;
11512         /*
11513          * Push all migratable network devices back to the
11514          * initial network namespace
11515          */
11516         ASSERT_RTNL();
11517         for_each_netdev_safe(net, dev, aux) {
11518                 int err;
11519                 char fb_name[IFNAMSIZ];
11520
11521                 /* Ignore unmoveable devices (i.e. loopback) */
11522                 if (dev->features & NETIF_F_NETNS_LOCAL)
11523                         continue;
11524
11525                 /* Leave virtual devices for the generic cleanup */
11526                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11527                         continue;
11528
11529                 /* Push remaining network devices to init_net */
11530                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11531                 if (netdev_name_in_use(&init_net, fb_name))
11532                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11533                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11534                 if (err) {
11535                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11536                                  __func__, dev->name, err);
11537                         BUG();
11538                 }
11539         }
11540 }
11541
11542 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11543 {
11544         /* At exit all network devices most be removed from a network
11545          * namespace.  Do this in the reverse order of registration.
11546          * Do this across as many network namespaces as possible to
11547          * improve batching efficiency.
11548          */
11549         struct net_device *dev;
11550         struct net *net;
11551         LIST_HEAD(dev_kill_list);
11552
11553         rtnl_lock();
11554         list_for_each_entry(net, net_list, exit_list) {
11555                 default_device_exit_net(net);
11556                 cond_resched();
11557         }
11558
11559         list_for_each_entry(net, net_list, exit_list) {
11560                 for_each_netdev_reverse(net, dev) {
11561                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11562                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11563                         else
11564                                 unregister_netdevice_queue(dev, &dev_kill_list);
11565                 }
11566         }
11567         unregister_netdevice_many(&dev_kill_list);
11568         rtnl_unlock();
11569 }
11570
11571 static struct pernet_operations __net_initdata default_device_ops = {
11572         .exit_batch = default_device_exit_batch,
11573 };
11574
11575 /*
11576  *      Initialize the DEV module. At boot time this walks the device list and
11577  *      unhooks any devices that fail to initialise (normally hardware not
11578  *      present) and leaves us with a valid list of present and active devices.
11579  *
11580  */
11581
11582 /*
11583  *       This is called single threaded during boot, so no need
11584  *       to take the rtnl semaphore.
11585  */
11586 static int __init net_dev_init(void)
11587 {
11588         int i, rc = -ENOMEM;
11589
11590         BUG_ON(!dev_boot_phase);
11591
11592         if (dev_proc_init())
11593                 goto out;
11594
11595         if (netdev_kobject_init())
11596                 goto out;
11597
11598         INIT_LIST_HEAD(&ptype_all);
11599         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11600                 INIT_LIST_HEAD(&ptype_base[i]);
11601
11602         if (register_pernet_subsys(&netdev_net_ops))
11603                 goto out;
11604
11605         /*
11606          *      Initialise the packet receive queues.
11607          */
11608
11609         for_each_possible_cpu(i) {
11610                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11611                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11612
11613                 INIT_WORK(flush, flush_backlog);
11614
11615                 skb_queue_head_init(&sd->input_pkt_queue);
11616                 skb_queue_head_init(&sd->process_queue);
11617 #ifdef CONFIG_XFRM_OFFLOAD
11618                 skb_queue_head_init(&sd->xfrm_backlog);
11619 #endif
11620                 INIT_LIST_HEAD(&sd->poll_list);
11621                 sd->output_queue_tailp = &sd->output_queue;
11622 #ifdef CONFIG_RPS
11623                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11624                 sd->cpu = i;
11625 #endif
11626                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11627                 spin_lock_init(&sd->defer_lock);
11628
11629                 init_gro_hash(&sd->backlog);
11630                 sd->backlog.poll = process_backlog;
11631                 sd->backlog.weight = weight_p;
11632         }
11633
11634         dev_boot_phase = 0;
11635
11636         /* The loopback device is special if any other network devices
11637          * is present in a network namespace the loopback device must
11638          * be present. Since we now dynamically allocate and free the
11639          * loopback device ensure this invariant is maintained by
11640          * keeping the loopback device as the first device on the
11641          * list of network devices.  Ensuring the loopback devices
11642          * is the first device that appears and the last network device
11643          * that disappears.
11644          */
11645         if (register_pernet_device(&loopback_net_ops))
11646                 goto out;
11647
11648         if (register_pernet_device(&default_device_ops))
11649                 goto out;
11650
11651         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11652         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11653
11654         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11655                                        NULL, dev_cpu_dead);
11656         WARN_ON(rc < 0);
11657         rc = 0;
11658 out:
11659         return rc;
11660 }
11661
11662 subsys_initcall(net_dev_init);
This page took 0.696355 seconds and 4 git commands to generate.