1 #include <linux/kernel.h>
2 #include <linux/errno.h>
4 #include <linux/spinlock.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
23 static struct page *no_page_table(struct vm_area_struct *vma,
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 return ERR_PTR(-EFAULT);
39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 pte_t *pte, unsigned int flags)
42 /* No page to get reference */
46 if (flags & FOLL_TOUCH) {
49 if (flags & FOLL_WRITE)
50 entry = pte_mkdirty(entry);
51 entry = pte_mkyoung(entry);
53 if (!pte_same(*pte, entry)) {
54 set_pte_at(vma->vm_mm, address, pte, entry);
55 update_mmu_cache(vma, address, pte);
59 /* Proper page table entry exists, but no corresponding struct page */
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
69 return pte_write(pte) ||
70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
73 static struct page *follow_page_pte(struct vm_area_struct *vma,
74 unsigned long address, pmd_t *pmd, unsigned int flags)
76 struct mm_struct *mm = vma->vm_mm;
77 struct dev_pagemap *pgmap = NULL;
83 if (unlikely(pmd_bad(*pmd)))
84 return no_page_table(vma, flags);
86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
88 if (!pte_present(pte)) {
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
95 if (likely(!(flags & FOLL_MIGRATION)))
99 entry = pte_to_swp_entry(pte);
100 if (!is_migration_entry(entry))
102 pte_unmap_unlock(ptep, ptl);
103 migration_entry_wait(mm, pmd, address);
106 if ((flags & FOLL_NUMA) && pte_protnone(pte))
108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
109 pte_unmap_unlock(ptep, ptl);
113 page = vm_normal_page(vma, address, pte);
114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
121 page = pte_page(pte);
124 } else if (unlikely(!page)) {
125 if (flags & FOLL_DUMP) {
126 /* Avoid special (like zero) pages in core dumps */
127 page = ERR_PTR(-EFAULT);
131 if (is_zero_pfn(pte_pfn(pte))) {
132 page = pte_page(pte);
136 ret = follow_pfn_pte(vma, address, ptep, flags);
142 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
145 pte_unmap_unlock(ptep, ptl);
147 ret = split_huge_page(page);
155 if (flags & FOLL_GET) {
158 /* drop the pgmap reference now that we hold the page */
160 put_dev_pagemap(pgmap);
164 if (flags & FOLL_TOUCH) {
165 if ((flags & FOLL_WRITE) &&
166 !pte_dirty(pte) && !PageDirty(page))
167 set_page_dirty(page);
169 * pte_mkyoung() would be more correct here, but atomic care
170 * is needed to avoid losing the dirty bit: it is easier to use
171 * mark_page_accessed().
173 mark_page_accessed(page);
175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
176 /* Do not mlock pte-mapped THP */
177 if (PageTransCompound(page))
181 * The preliminary mapping check is mainly to avoid the
182 * pointless overhead of lock_page on the ZERO_PAGE
183 * which might bounce very badly if there is contention.
185 * If the page is already locked, we don't need to
186 * handle it now - vmscan will handle it later if and
187 * when it attempts to reclaim the page.
189 if (page->mapping && trylock_page(page)) {
190 lru_add_drain(); /* push cached pages to LRU */
192 * Because we lock page here, and migration is
193 * blocked by the pte's page reference, and we
194 * know the page is still mapped, we don't even
195 * need to check for file-cache page truncation.
197 mlock_vma_page(page);
202 pte_unmap_unlock(ptep, ptl);
205 pte_unmap_unlock(ptep, ptl);
208 return no_page_table(vma, flags);
212 * follow_page_mask - look up a page descriptor from a user-virtual address
213 * @vma: vm_area_struct mapping @address
214 * @address: virtual address to look up
215 * @flags: flags modifying lookup behaviour
216 * @page_mask: on output, *page_mask is set according to the size of the page
218 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
220 * Returns the mapped (struct page *), %NULL if no mapping exists, or
221 * an error pointer if there is a mapping to something not represented
222 * by a page descriptor (see also vm_normal_page()).
224 struct page *follow_page_mask(struct vm_area_struct *vma,
225 unsigned long address, unsigned int flags,
226 unsigned int *page_mask)
234 struct mm_struct *mm = vma->vm_mm;
238 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
240 BUG_ON(flags & FOLL_GET);
244 pgd = pgd_offset(mm, address);
245 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
246 return no_page_table(vma, flags);
247 p4d = p4d_offset(pgd, address);
249 return no_page_table(vma, flags);
250 BUILD_BUG_ON(p4d_huge(*p4d));
251 if (unlikely(p4d_bad(*p4d)))
252 return no_page_table(vma, flags);
253 pud = pud_offset(p4d, address);
255 return no_page_table(vma, flags);
256 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
257 page = follow_huge_pud(mm, address, pud, flags);
260 return no_page_table(vma, flags);
262 if (pud_devmap(*pud)) {
263 ptl = pud_lock(mm, pud);
264 page = follow_devmap_pud(vma, address, pud, flags);
269 if (unlikely(pud_bad(*pud)))
270 return no_page_table(vma, flags);
272 pmd = pmd_offset(pud, address);
274 return no_page_table(vma, flags);
275 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
276 page = follow_huge_pmd(mm, address, pmd, flags);
279 return no_page_table(vma, flags);
281 if (pmd_devmap(*pmd)) {
282 ptl = pmd_lock(mm, pmd);
283 page = follow_devmap_pmd(vma, address, pmd, flags);
288 if (likely(!pmd_trans_huge(*pmd)))
289 return follow_page_pte(vma, address, pmd, flags);
291 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
292 return no_page_table(vma, flags);
294 ptl = pmd_lock(mm, pmd);
295 if (unlikely(!pmd_trans_huge(*pmd))) {
297 return follow_page_pte(vma, address, pmd, flags);
299 if (flags & FOLL_SPLIT) {
301 page = pmd_page(*pmd);
302 if (is_huge_zero_page(page)) {
305 split_huge_pmd(vma, pmd, address);
306 if (pmd_trans_unstable(pmd))
312 ret = split_huge_page(page);
316 return no_page_table(vma, flags);
319 return ret ? ERR_PTR(ret) :
320 follow_page_pte(vma, address, pmd, flags);
323 page = follow_trans_huge_pmd(vma, address, pmd, flags);
325 *page_mask = HPAGE_PMD_NR - 1;
329 static int get_gate_page(struct mm_struct *mm, unsigned long address,
330 unsigned int gup_flags, struct vm_area_struct **vma,
340 /* user gate pages are read-only */
341 if (gup_flags & FOLL_WRITE)
343 if (address > TASK_SIZE)
344 pgd = pgd_offset_k(address);
346 pgd = pgd_offset_gate(mm, address);
347 BUG_ON(pgd_none(*pgd));
348 p4d = p4d_offset(pgd, address);
349 BUG_ON(p4d_none(*p4d));
350 pud = pud_offset(p4d, address);
351 BUG_ON(pud_none(*pud));
352 pmd = pmd_offset(pud, address);
355 VM_BUG_ON(pmd_trans_huge(*pmd));
356 pte = pte_offset_map(pmd, address);
359 *vma = get_gate_vma(mm);
362 *page = vm_normal_page(*vma, address, *pte);
364 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
366 *page = pte_page(*pte);
377 * mmap_sem must be held on entry. If @nonblocking != NULL and
378 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
379 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
381 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
382 unsigned long address, unsigned int *flags, int *nonblocking)
384 unsigned int fault_flags = 0;
387 /* mlock all present pages, but do not fault in new pages */
388 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
390 if (*flags & FOLL_WRITE)
391 fault_flags |= FAULT_FLAG_WRITE;
392 if (*flags & FOLL_REMOTE)
393 fault_flags |= FAULT_FLAG_REMOTE;
395 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
396 if (*flags & FOLL_NOWAIT)
397 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
398 if (*flags & FOLL_TRIED) {
399 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
400 fault_flags |= FAULT_FLAG_TRIED;
403 ret = handle_mm_fault(vma, address, fault_flags);
404 if (ret & VM_FAULT_ERROR) {
405 int err = vm_fault_to_errno(ret, *flags);
413 if (ret & VM_FAULT_MAJOR)
419 if (ret & VM_FAULT_RETRY) {
426 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
427 * necessary, even if maybe_mkwrite decided not to set pte_write. We
428 * can thus safely do subsequent page lookups as if they were reads.
429 * But only do so when looping for pte_write is futile: in some cases
430 * userspace may also be wanting to write to the gotten user page,
431 * which a read fault here might prevent (a readonly page might get
432 * reCOWed by userspace write).
434 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
439 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
441 vm_flags_t vm_flags = vma->vm_flags;
442 int write = (gup_flags & FOLL_WRITE);
443 int foreign = (gup_flags & FOLL_REMOTE);
445 if (vm_flags & (VM_IO | VM_PFNMAP))
449 if (!(vm_flags & VM_WRITE)) {
450 if (!(gup_flags & FOLL_FORCE))
453 * We used to let the write,force case do COW in a
454 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
455 * set a breakpoint in a read-only mapping of an
456 * executable, without corrupting the file (yet only
457 * when that file had been opened for writing!).
458 * Anon pages in shared mappings are surprising: now
461 if (!is_cow_mapping(vm_flags))
464 } else if (!(vm_flags & VM_READ)) {
465 if (!(gup_flags & FOLL_FORCE))
468 * Is there actually any vma we can reach here which does not
469 * have VM_MAYREAD set?
471 if (!(vm_flags & VM_MAYREAD))
475 * gups are always data accesses, not instruction
476 * fetches, so execute=false here
478 if (!arch_vma_access_permitted(vma, write, false, foreign))
484 * __get_user_pages() - pin user pages in memory
485 * @tsk: task_struct of target task
486 * @mm: mm_struct of target mm
487 * @start: starting user address
488 * @nr_pages: number of pages from start to pin
489 * @gup_flags: flags modifying pin behaviour
490 * @pages: array that receives pointers to the pages pinned.
491 * Should be at least nr_pages long. Or NULL, if caller
492 * only intends to ensure the pages are faulted in.
493 * @vmas: array of pointers to vmas corresponding to each page.
494 * Or NULL if the caller does not require them.
495 * @nonblocking: whether waiting for disk IO or mmap_sem contention
497 * Returns number of pages pinned. This may be fewer than the number
498 * requested. If nr_pages is 0 or negative, returns 0. If no pages
499 * were pinned, returns -errno. Each page returned must be released
500 * with a put_page() call when it is finished with. vmas will only
501 * remain valid while mmap_sem is held.
503 * Must be called with mmap_sem held. It may be released. See below.
505 * __get_user_pages walks a process's page tables and takes a reference to
506 * each struct page that each user address corresponds to at a given
507 * instant. That is, it takes the page that would be accessed if a user
508 * thread accesses the given user virtual address at that instant.
510 * This does not guarantee that the page exists in the user mappings when
511 * __get_user_pages returns, and there may even be a completely different
512 * page there in some cases (eg. if mmapped pagecache has been invalidated
513 * and subsequently re faulted). However it does guarantee that the page
514 * won't be freed completely. And mostly callers simply care that the page
515 * contains data that was valid *at some point in time*. Typically, an IO
516 * or similar operation cannot guarantee anything stronger anyway because
517 * locks can't be held over the syscall boundary.
519 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
520 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
521 * appropriate) must be called after the page is finished with, and
522 * before put_page is called.
524 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
525 * or mmap_sem contention, and if waiting is needed to pin all pages,
526 * *@nonblocking will be set to 0. Further, if @gup_flags does not
527 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
530 * A caller using such a combination of @nonblocking and @gup_flags
531 * must therefore hold the mmap_sem for reading only, and recognize
532 * when it's been released. Otherwise, it must be held for either
533 * reading or writing and will not be released.
535 * In most cases, get_user_pages or get_user_pages_fast should be used
536 * instead of __get_user_pages. __get_user_pages should be used only if
537 * you need some special @gup_flags.
539 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
540 unsigned long start, unsigned long nr_pages,
541 unsigned int gup_flags, struct page **pages,
542 struct vm_area_struct **vmas, int *nonblocking)
545 unsigned int page_mask;
546 struct vm_area_struct *vma = NULL;
551 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
554 * If FOLL_FORCE is set then do not force a full fault as the hinting
555 * fault information is unrelated to the reference behaviour of a task
556 * using the address space
558 if (!(gup_flags & FOLL_FORCE))
559 gup_flags |= FOLL_NUMA;
563 unsigned int foll_flags = gup_flags;
564 unsigned int page_increm;
566 /* first iteration or cross vma bound */
567 if (!vma || start >= vma->vm_end) {
568 vma = find_extend_vma(mm, start);
569 if (!vma && in_gate_area(mm, start)) {
571 ret = get_gate_page(mm, start & PAGE_MASK,
573 pages ? &pages[i] : NULL);
580 if (!vma || check_vma_flags(vma, gup_flags))
581 return i ? : -EFAULT;
582 if (is_vm_hugetlb_page(vma)) {
583 i = follow_hugetlb_page(mm, vma, pages, vmas,
584 &start, &nr_pages, i,
585 gup_flags, nonblocking);
591 * If we have a pending SIGKILL, don't keep faulting pages and
592 * potentially allocating memory.
594 if (unlikely(fatal_signal_pending(current)))
595 return i ? i : -ERESTARTSYS;
597 page = follow_page_mask(vma, start, foll_flags, &page_mask);
600 ret = faultin_page(tsk, vma, start, &foll_flags,
615 } else if (PTR_ERR(page) == -EEXIST) {
617 * Proper page table entry exists, but no corresponding
621 } else if (IS_ERR(page)) {
622 return i ? i : PTR_ERR(page);
626 flush_anon_page(vma, page, start);
627 flush_dcache_page(page);
635 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
636 if (page_increm > nr_pages)
637 page_increm = nr_pages;
639 start += page_increm * PAGE_SIZE;
640 nr_pages -= page_increm;
645 static bool vma_permits_fault(struct vm_area_struct *vma,
646 unsigned int fault_flags)
648 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
649 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
650 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
652 if (!(vm_flags & vma->vm_flags))
656 * The architecture might have a hardware protection
657 * mechanism other than read/write that can deny access.
659 * gup always represents data access, not instruction
660 * fetches, so execute=false here:
662 if (!arch_vma_access_permitted(vma, write, false, foreign))
669 * fixup_user_fault() - manually resolve a user page fault
670 * @tsk: the task_struct to use for page fault accounting, or
671 * NULL if faults are not to be recorded.
672 * @mm: mm_struct of target mm
673 * @address: user address
674 * @fault_flags:flags to pass down to handle_mm_fault()
675 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
676 * does not allow retry
678 * This is meant to be called in the specific scenario where for locking reasons
679 * we try to access user memory in atomic context (within a pagefault_disable()
680 * section), this returns -EFAULT, and we want to resolve the user fault before
683 * Typically this is meant to be used by the futex code.
685 * The main difference with get_user_pages() is that this function will
686 * unconditionally call handle_mm_fault() which will in turn perform all the
687 * necessary SW fixup of the dirty and young bits in the PTE, while
688 * get_user_pages() only guarantees to update these in the struct page.
690 * This is important for some architectures where those bits also gate the
691 * access permission to the page because they are maintained in software. On
692 * such architectures, gup() will not be enough to make a subsequent access
695 * This function will not return with an unlocked mmap_sem. So it has not the
696 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
698 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
699 unsigned long address, unsigned int fault_flags,
702 struct vm_area_struct *vma;
706 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
709 vma = find_extend_vma(mm, address);
710 if (!vma || address < vma->vm_start)
713 if (!vma_permits_fault(vma, fault_flags))
716 ret = handle_mm_fault(vma, address, fault_flags);
717 major |= ret & VM_FAULT_MAJOR;
718 if (ret & VM_FAULT_ERROR) {
719 int err = vm_fault_to_errno(ret, 0);
726 if (ret & VM_FAULT_RETRY) {
727 down_read(&mm->mmap_sem);
728 if (!(fault_flags & FAULT_FLAG_TRIED)) {
730 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
731 fault_flags |= FAULT_FLAG_TRIED;
744 EXPORT_SYMBOL_GPL(fixup_user_fault);
746 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
747 struct mm_struct *mm,
749 unsigned long nr_pages,
751 struct vm_area_struct **vmas,
752 int *locked, bool notify_drop,
755 long ret, pages_done;
759 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
761 /* check caller initialized locked */
762 BUG_ON(*locked != 1);
769 lock_dropped = false;
771 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
774 /* VM_FAULT_RETRY couldn't trigger, bypass */
777 /* VM_FAULT_RETRY cannot return errors */
780 BUG_ON(ret >= nr_pages);
784 /* If it's a prefault don't insist harder */
794 /* VM_FAULT_RETRY didn't trigger */
799 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
801 start += ret << PAGE_SHIFT;
804 * Repeat on the address that fired VM_FAULT_RETRY
805 * without FAULT_FLAG_ALLOW_RETRY but with
810 down_read(&mm->mmap_sem);
811 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
826 if (notify_drop && lock_dropped && *locked) {
828 * We must let the caller know we temporarily dropped the lock
829 * and so the critical section protected by it was lost.
831 up_read(&mm->mmap_sem);
838 * We can leverage the VM_FAULT_RETRY functionality in the page fault
839 * paths better by using either get_user_pages_locked() or
840 * get_user_pages_unlocked().
842 * get_user_pages_locked() is suitable to replace the form:
844 * down_read(&mm->mmap_sem);
846 * get_user_pages(tsk, mm, ..., pages, NULL);
847 * up_read(&mm->mmap_sem);
852 * down_read(&mm->mmap_sem);
854 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
856 * up_read(&mm->mmap_sem);
858 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
859 unsigned int gup_flags, struct page **pages,
862 return __get_user_pages_locked(current, current->mm, start, nr_pages,
863 pages, NULL, locked, true,
864 gup_flags | FOLL_TOUCH);
866 EXPORT_SYMBOL(get_user_pages_locked);
869 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
870 * tsk, mm to be specified.
872 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
873 * caller if required (just like with __get_user_pages). "FOLL_GET"
874 * is set implicitly if "pages" is non-NULL.
876 static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
877 struct mm_struct *mm, unsigned long start,
878 unsigned long nr_pages, struct page **pages,
879 unsigned int gup_flags)
884 down_read(&mm->mmap_sem);
885 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
886 &locked, false, gup_flags);
888 up_read(&mm->mmap_sem);
893 * get_user_pages_unlocked() is suitable to replace the form:
895 * down_read(&mm->mmap_sem);
896 * get_user_pages(tsk, mm, ..., pages, NULL);
897 * up_read(&mm->mmap_sem);
901 * get_user_pages_unlocked(tsk, mm, ..., pages);
903 * It is functionally equivalent to get_user_pages_fast so
904 * get_user_pages_fast should be used instead if specific gup_flags
905 * (e.g. FOLL_FORCE) are not required.
907 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
908 struct page **pages, unsigned int gup_flags)
910 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
911 pages, gup_flags | FOLL_TOUCH);
913 EXPORT_SYMBOL(get_user_pages_unlocked);
916 * get_user_pages_remote() - pin user pages in memory
917 * @tsk: the task_struct to use for page fault accounting, or
918 * NULL if faults are not to be recorded.
919 * @mm: mm_struct of target mm
920 * @start: starting user address
921 * @nr_pages: number of pages from start to pin
922 * @gup_flags: flags modifying lookup behaviour
923 * @pages: array that receives pointers to the pages pinned.
924 * Should be at least nr_pages long. Or NULL, if caller
925 * only intends to ensure the pages are faulted in.
926 * @vmas: array of pointers to vmas corresponding to each page.
927 * Or NULL if the caller does not require them.
928 * @locked: pointer to lock flag indicating whether lock is held and
929 * subsequently whether VM_FAULT_RETRY functionality can be
930 * utilised. Lock must initially be held.
932 * Returns number of pages pinned. This may be fewer than the number
933 * requested. If nr_pages is 0 or negative, returns 0. If no pages
934 * were pinned, returns -errno. Each page returned must be released
935 * with a put_page() call when it is finished with. vmas will only
936 * remain valid while mmap_sem is held.
938 * Must be called with mmap_sem held for read or write.
940 * get_user_pages walks a process's page tables and takes a reference to
941 * each struct page that each user address corresponds to at a given
942 * instant. That is, it takes the page that would be accessed if a user
943 * thread accesses the given user virtual address at that instant.
945 * This does not guarantee that the page exists in the user mappings when
946 * get_user_pages returns, and there may even be a completely different
947 * page there in some cases (eg. if mmapped pagecache has been invalidated
948 * and subsequently re faulted). However it does guarantee that the page
949 * won't be freed completely. And mostly callers simply care that the page
950 * contains data that was valid *at some point in time*. Typically, an IO
951 * or similar operation cannot guarantee anything stronger anyway because
952 * locks can't be held over the syscall boundary.
954 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
955 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
956 * be called after the page is finished with, and before put_page is called.
958 * get_user_pages is typically used for fewer-copy IO operations, to get a
959 * handle on the memory by some means other than accesses via the user virtual
960 * addresses. The pages may be submitted for DMA to devices or accessed via
961 * their kernel linear mapping (via the kmap APIs). Care should be taken to
962 * use the correct cache flushing APIs.
964 * See also get_user_pages_fast, for performance critical applications.
966 * get_user_pages should be phased out in favor of
967 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
968 * should use get_user_pages because it cannot pass
969 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
971 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
972 unsigned long start, unsigned long nr_pages,
973 unsigned int gup_flags, struct page **pages,
974 struct vm_area_struct **vmas, int *locked)
976 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
978 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
980 EXPORT_SYMBOL(get_user_pages_remote);
983 * This is the same as get_user_pages_remote(), just with a
984 * less-flexible calling convention where we assume that the task
985 * and mm being operated on are the current task's and don't allow
986 * passing of a locked parameter. We also obviously don't pass
987 * FOLL_REMOTE in here.
989 long get_user_pages(unsigned long start, unsigned long nr_pages,
990 unsigned int gup_flags, struct page **pages,
991 struct vm_area_struct **vmas)
993 return __get_user_pages_locked(current, current->mm, start, nr_pages,
994 pages, vmas, NULL, false,
995 gup_flags | FOLL_TOUCH);
997 EXPORT_SYMBOL(get_user_pages);
1000 * populate_vma_page_range() - populate a range of pages in the vma.
1002 * @start: start address
1006 * This takes care of mlocking the pages too if VM_LOCKED is set.
1008 * return 0 on success, negative error code on error.
1010 * vma->vm_mm->mmap_sem must be held.
1012 * If @nonblocking is NULL, it may be held for read or write and will
1015 * If @nonblocking is non-NULL, it must held for read only and may be
1016 * released. If it's released, *@nonblocking will be set to 0.
1018 long populate_vma_page_range(struct vm_area_struct *vma,
1019 unsigned long start, unsigned long end, int *nonblocking)
1021 struct mm_struct *mm = vma->vm_mm;
1022 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1025 VM_BUG_ON(start & ~PAGE_MASK);
1026 VM_BUG_ON(end & ~PAGE_MASK);
1027 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1028 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1029 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1031 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1032 if (vma->vm_flags & VM_LOCKONFAULT)
1033 gup_flags &= ~FOLL_POPULATE;
1035 * We want to touch writable mappings with a write fault in order
1036 * to break COW, except for shared mappings because these don't COW
1037 * and we would not want to dirty them for nothing.
1039 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1040 gup_flags |= FOLL_WRITE;
1043 * We want mlock to succeed for regions that have any permissions
1044 * other than PROT_NONE.
1046 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1047 gup_flags |= FOLL_FORCE;
1050 * We made sure addr is within a VMA, so the following will
1051 * not result in a stack expansion that recurses back here.
1053 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1054 NULL, NULL, nonblocking);
1058 * __mm_populate - populate and/or mlock pages within a range of address space.
1060 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1061 * flags. VMAs must be already marked with the desired vm_flags, and
1062 * mmap_sem must not be held.
1064 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1066 struct mm_struct *mm = current->mm;
1067 unsigned long end, nstart, nend;
1068 struct vm_area_struct *vma = NULL;
1072 VM_BUG_ON(start & ~PAGE_MASK);
1073 VM_BUG_ON(len != PAGE_ALIGN(len));
1076 for (nstart = start; nstart < end; nstart = nend) {
1078 * We want to fault in pages for [nstart; end) address range.
1079 * Find first corresponding VMA.
1083 down_read(&mm->mmap_sem);
1084 vma = find_vma(mm, nstart);
1085 } else if (nstart >= vma->vm_end)
1087 if (!vma || vma->vm_start >= end)
1090 * Set [nstart; nend) to intersection of desired address
1091 * range with the first VMA. Also, skip undesirable VMA types.
1093 nend = min(end, vma->vm_end);
1094 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1096 if (nstart < vma->vm_start)
1097 nstart = vma->vm_start;
1099 * Now fault in a range of pages. populate_vma_page_range()
1100 * double checks the vma flags, so that it won't mlock pages
1101 * if the vma was already munlocked.
1103 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1105 if (ignore_errors) {
1107 continue; /* continue at next VMA */
1111 nend = nstart + ret * PAGE_SIZE;
1115 up_read(&mm->mmap_sem);
1116 return ret; /* 0 or negative error code */
1120 * get_dump_page() - pin user page in memory while writing it to core dump
1121 * @addr: user address
1123 * Returns struct page pointer of user page pinned for dump,
1124 * to be freed afterwards by put_page().
1126 * Returns NULL on any kind of failure - a hole must then be inserted into
1127 * the corefile, to preserve alignment with its headers; and also returns
1128 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1129 * allowing a hole to be left in the corefile to save diskspace.
1131 * Called without mmap_sem, but after all other threads have been killed.
1133 #ifdef CONFIG_ELF_CORE
1134 struct page *get_dump_page(unsigned long addr)
1136 struct vm_area_struct *vma;
1139 if (__get_user_pages(current, current->mm, addr, 1,
1140 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1143 flush_cache_page(vma, addr, page_to_pfn(page));
1146 #endif /* CONFIG_ELF_CORE */
1149 * Generic RCU Fast GUP
1151 * get_user_pages_fast attempts to pin user pages by walking the page
1152 * tables directly and avoids taking locks. Thus the walker needs to be
1153 * protected from page table pages being freed from under it, and should
1154 * block any THP splits.
1156 * One way to achieve this is to have the walker disable interrupts, and
1157 * rely on IPIs from the TLB flushing code blocking before the page table
1158 * pages are freed. This is unsuitable for architectures that do not need
1159 * to broadcast an IPI when invalidating TLBs.
1161 * Another way to achieve this is to batch up page table containing pages
1162 * belonging to more than one mm_user, then rcu_sched a callback to free those
1163 * pages. Disabling interrupts will allow the fast_gup walker to both block
1164 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1165 * (which is a relatively rare event). The code below adopts this strategy.
1167 * Before activating this code, please be aware that the following assumptions
1168 * are currently made:
1170 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1171 * pages containing page tables.
1173 * *) ptes can be read atomically by the architecture.
1175 * *) access_ok is sufficient to validate userspace address ranges.
1177 * The last two assumptions can be relaxed by the addition of helper functions.
1179 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1181 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1185 * We assume that the PTE can be read atomically. If this is not the case for
1186 * your architecture, please provide the helper.
1188 static inline pte_t gup_get_pte(pte_t *ptep)
1190 return READ_ONCE(*ptep);
1194 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1196 while ((*nr) - nr_start) {
1197 struct page *page = pages[--(*nr)];
1199 ClearPageReferenced(page);
1204 #ifdef __HAVE_ARCH_PTE_SPECIAL
1205 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1206 int write, struct page **pages, int *nr)
1208 struct dev_pagemap *pgmap = NULL;
1209 int nr_start = *nr, ret = 0;
1212 ptem = ptep = pte_offset_map(&pmd, addr);
1214 pte_t pte = gup_get_pte(ptep);
1215 struct page *head, *page;
1218 * Similar to the PMD case below, NUMA hinting must take slow
1219 * path using the pte_protnone check.
1221 if (pte_protnone(pte))
1224 if (!pte_access_permitted(pte, write))
1227 if (pte_devmap(pte)) {
1228 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1229 if (unlikely(!pgmap)) {
1230 undo_dev_pagemap(nr, nr_start, pages);
1233 } else if (pte_special(pte))
1236 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1237 page = pte_page(pte);
1238 head = compound_head(page);
1240 if (!page_cache_get_speculative(head))
1243 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1248 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1250 put_dev_pagemap(pgmap);
1251 SetPageReferenced(page);
1255 } while (ptep++, addr += PAGE_SIZE, addr != end);
1266 * If we can't determine whether or not a pte is special, then fail immediately
1267 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1270 * For a futex to be placed on a THP tail page, get_futex_key requires a
1271 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1272 * useful to have gup_huge_pmd even if we can't operate on ptes.
1274 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1275 int write, struct page **pages, int *nr)
1279 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1281 #ifdef __HAVE_ARCH_PTE_DEVMAP
1282 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1283 unsigned long end, struct page **pages, int *nr)
1286 struct dev_pagemap *pgmap = NULL;
1289 struct page *page = pfn_to_page(pfn);
1291 pgmap = get_dev_pagemap(pfn, pgmap);
1292 if (unlikely(!pgmap)) {
1293 undo_dev_pagemap(nr, nr_start, pages);
1296 SetPageReferenced(page);
1299 put_dev_pagemap(pgmap);
1302 } while (addr += PAGE_SIZE, addr != end);
1306 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
1307 unsigned long end, struct page **pages, int *nr)
1309 unsigned long fault_pfn;
1311 fault_pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1312 return __gup_device_huge(fault_pfn, addr, end, pages, nr);
1315 static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
1316 unsigned long end, struct page **pages, int *nr)
1318 unsigned long fault_pfn;
1320 fault_pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1321 return __gup_device_huge(fault_pfn, addr, end, pages, nr);
1324 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
1325 unsigned long end, struct page **pages, int *nr)
1331 static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
1332 unsigned long end, struct page **pages, int *nr)
1339 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1340 unsigned long end, int write, struct page **pages, int *nr)
1342 struct page *head, *page;
1345 if (!pmd_access_permitted(orig, write))
1348 if (pmd_devmap(orig))
1349 return __gup_device_huge_pmd(orig, addr, end, pages, nr);
1352 head = pmd_page(orig);
1353 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1355 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1360 } while (addr += PAGE_SIZE, addr != end);
1362 if (!page_cache_add_speculative(head, refs)) {
1367 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1374 SetPageReferenced(head);
1378 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1379 unsigned long end, int write, struct page **pages, int *nr)
1381 struct page *head, *page;
1384 if (!pud_access_permitted(orig, write))
1387 if (pud_devmap(orig))
1388 return __gup_device_huge_pud(orig, addr, end, pages, nr);
1391 head = pud_page(orig);
1392 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1394 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1399 } while (addr += PAGE_SIZE, addr != end);
1401 if (!page_cache_add_speculative(head, refs)) {
1406 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1413 SetPageReferenced(head);
1417 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1418 unsigned long end, int write,
1419 struct page **pages, int *nr)
1422 struct page *head, *page;
1424 if (!pgd_access_permitted(orig, write))
1427 BUILD_BUG_ON(pgd_devmap(orig));
1429 head = pgd_page(orig);
1430 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1432 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1437 } while (addr += PAGE_SIZE, addr != end);
1439 if (!page_cache_add_speculative(head, refs)) {
1444 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1451 SetPageReferenced(head);
1455 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1456 int write, struct page **pages, int *nr)
1461 pmdp = pmd_offset(&pud, addr);
1463 pmd_t pmd = READ_ONCE(*pmdp);
1465 next = pmd_addr_end(addr, end);
1469 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1471 * NUMA hinting faults need to be handled in the GUP
1472 * slowpath for accounting purposes and so that they
1473 * can be serialised against THP migration.
1475 if (pmd_protnone(pmd))
1478 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1482 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1484 * architecture have different format for hugetlbfs
1485 * pmd format and THP pmd format
1487 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1488 PMD_SHIFT, next, write, pages, nr))
1490 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1492 } while (pmdp++, addr = next, addr != end);
1497 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1498 int write, struct page **pages, int *nr)
1503 pudp = pud_offset(&p4d, addr);
1505 pud_t pud = READ_ONCE(*pudp);
1507 next = pud_addr_end(addr, end);
1510 if (unlikely(pud_huge(pud))) {
1511 if (!gup_huge_pud(pud, pudp, addr, next, write,
1514 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1515 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1516 PUD_SHIFT, next, write, pages, nr))
1518 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1520 } while (pudp++, addr = next, addr != end);
1525 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1526 int write, struct page **pages, int *nr)
1531 p4dp = p4d_offset(&pgd, addr);
1533 p4d_t p4d = READ_ONCE(*p4dp);
1535 next = p4d_addr_end(addr, end);
1538 BUILD_BUG_ON(p4d_huge(p4d));
1539 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1540 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1541 P4D_SHIFT, next, write, pages, nr))
1543 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1545 } while (p4dp++, addr = next, addr != end);
1551 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1552 * the regular GUP. It will only return non-negative values.
1554 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1555 struct page **pages)
1557 struct mm_struct *mm = current->mm;
1558 unsigned long addr, len, end;
1559 unsigned long next, flags;
1565 len = (unsigned long) nr_pages << PAGE_SHIFT;
1568 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1569 (void __user *)start, len)))
1573 * Disable interrupts. We use the nested form as we can already have
1574 * interrupts disabled by get_futex_key.
1576 * With interrupts disabled, we block page table pages from being
1577 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1580 * We do not adopt an rcu_read_lock(.) here as we also want to
1581 * block IPIs that come from THPs splitting.
1584 local_irq_save(flags);
1585 pgdp = pgd_offset(mm, addr);
1587 pgd_t pgd = READ_ONCE(*pgdp);
1589 next = pgd_addr_end(addr, end);
1592 if (unlikely(pgd_huge(pgd))) {
1593 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1596 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1597 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1598 PGDIR_SHIFT, next, write, pages, &nr))
1600 } else if (!gup_p4d_range(pgd, addr, next, write, pages, &nr))
1602 } while (pgdp++, addr = next, addr != end);
1603 local_irq_restore(flags);
1608 #ifndef gup_fast_permitted
1610 * Check if it's allowed to use __get_user_pages_fast() for the range, or
1611 * we need to fall back to the slow version:
1613 bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1615 unsigned long len, end;
1617 len = (unsigned long) nr_pages << PAGE_SHIFT;
1619 return end >= start;
1624 * get_user_pages_fast() - pin user pages in memory
1625 * @start: starting user address
1626 * @nr_pages: number of pages from start to pin
1627 * @write: whether pages will be written to
1628 * @pages: array that receives pointers to the pages pinned.
1629 * Should be at least nr_pages long.
1631 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1632 * If not successful, it will fall back to taking the lock and
1633 * calling get_user_pages().
1635 * Returns number of pages pinned. This may be fewer than the number
1636 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1637 * were pinned, returns -errno.
1639 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1640 struct page **pages)
1642 int nr = 0, ret = 0;
1646 if (gup_fast_permitted(start, nr_pages, write)) {
1647 nr = __get_user_pages_fast(start, nr_pages, write, pages);
1651 if (nr < nr_pages) {
1652 /* Try to get the remaining pages with get_user_pages */
1653 start += nr << PAGE_SHIFT;
1656 ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1657 write ? FOLL_WRITE : 0);
1659 /* Have to be a bit careful with return values */
1671 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */