1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Access SD/MMC cards through SPI master controllers
5 * (C) Copyright 2005, Intec Automation,
6 * Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
10 * (C) Copyright 2007, ATRON electronic GmbH,
13 #include <linux/sched.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/crc7.h>
20 #include <linux/crc-itu-t.h>
21 #include <linux/scatterlist.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
25 #include <linux/mmc/slot-gpio.h>
27 #include <linux/spi/spi.h>
28 #include <linux/spi/mmc_spi.h>
30 #include <asm/unaligned.h>
35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
36 * controller, although some of them do have hardware support for
37 * SPI protocol. The main reason for such configs would be mmc-ish
38 * cards like DataFlash, which don't support that "native" protocol.
40 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41 * switch between driver stacks, and in any case if "native" mode
42 * is available, it will be faster and hence preferable.
44 * - MMC depends on a different chipselect management policy than the
45 * SPI interface currently supports for shared bus segments: it needs
46 * to issue multiple spi_message requests with the chipselect active,
47 * using the results of one message to decide the next one to issue.
49 * Pending updates to the programming interface, this driver expects
50 * that it not share the bus with other drivers (precluding conflicts).
52 * - We tell the controller to keep the chipselect active from the
53 * beginning of an mmc_host_ops.request until the end. So beware
54 * of SPI controller drivers that mis-handle the cs_change flag!
56 * However, many cards seem OK with chipselect flapping up/down
57 * during that time ... at least on unshared bus segments.
62 * Local protocol constants, internal to data block protocols.
65 /* Response tokens used to ack each block written: */
66 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
67 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
68 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
69 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
71 /* Read and write blocks start with these tokens and end with crc;
72 * on error, read tokens act like a subset of R2_SPI_* values.
74 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
75 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
76 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
78 #define MMC_SPI_BLOCKSIZE 512
80 #define MMC_SPI_R1B_TIMEOUT_MS 3000
81 #define MMC_SPI_INIT_TIMEOUT_MS 3000
83 /* One of the critical speed parameters is the amount of data which may
84 * be transferred in one command. If this value is too low, the SD card
85 * controller has to do multiple partial block writes (argggh!). With
86 * today (2008) SD cards there is little speed gain if we transfer more
87 * than 64 KBytes at a time. So use this value until there is any indication
88 * that we should do more here.
90 #define MMC_SPI_BLOCKSATONCE 128
92 /****************************************************************************/
95 * Local Data Structures
98 /* "scratch" is per-{command,block} data exchanged with the card */
105 struct mmc_spi_host {
106 struct mmc_host *mmc;
107 struct spi_device *spi;
109 unsigned char power_mode;
112 struct mmc_spi_platform_data *pdata;
114 /* for bulk data transfers */
115 struct spi_transfer token, t, crc, early_status;
116 struct spi_message m;
118 /* for status readback */
119 struct spi_transfer status;
120 struct spi_message readback;
122 /* underlying DMA-aware controller, or null */
123 struct device *dma_dev;
125 /* buffer used for commands and for message "overhead" */
126 struct scratch *data;
129 /* Specs say to write ones most of the time, even when the card
130 * has no need to read its input data; and many cards won't care.
131 * This is our source of those ones.
138 /****************************************************************************/
141 * MMC-over-SPI protocol glue, used by the MMC stack interface
144 static inline int mmc_cs_off(struct mmc_spi_host *host)
146 /* chipselect will always be inactive after setup() */
147 return spi_setup(host->spi);
151 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
155 if (len > sizeof(*host->data)) {
160 host->status.len = len;
163 dma_sync_single_for_device(host->dma_dev,
164 host->data_dma, sizeof(*host->data),
167 status = spi_sync_locked(host->spi, &host->readback);
170 dma_sync_single_for_cpu(host->dma_dev,
171 host->data_dma, sizeof(*host->data),
177 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
180 u8 *cp = host->data->status;
181 unsigned long start = jiffies;
187 status = mmc_spi_readbytes(host, n);
191 for (i = 0; i < n; i++) {
196 if (time_is_before_jiffies(start + timeout))
199 /* If we need long timeouts, we may release the CPU.
200 * We use jiffies here because we want to have a relation
201 * between elapsed time and the blocking of the scheduler.
203 if (time_is_before_jiffies(start + 1))
210 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
212 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
215 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
217 return mmc_spi_skip(host, timeout, 1, 0xff);
222 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
223 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
224 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
226 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
227 * newer cards R7 (IF_COND).
230 static char *maptype(struct mmc_command *cmd)
232 switch (mmc_spi_resp_type(cmd)) {
233 case MMC_RSP_SPI_R1: return "R1";
234 case MMC_RSP_SPI_R1B: return "R1B";
235 case MMC_RSP_SPI_R2: return "R2/R5";
236 case MMC_RSP_SPI_R3: return "R3/R4/R7";
241 /* return zero, else negative errno after setting cmd->error */
242 static int mmc_spi_response_get(struct mmc_spi_host *host,
243 struct mmc_command *cmd, int cs_on)
245 unsigned long timeout_ms;
246 u8 *cp = host->data->status;
247 u8 *end = cp + host->t.len;
251 unsigned short rotator;
255 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
256 cmd->opcode, maptype(cmd));
258 /* Except for data block reads, the whole response will already
259 * be stored in the scratch buffer. It's somewhere after the
260 * command and the first byte we read after it. We ignore that
261 * first byte. After STOP_TRANSMISSION command it may include
262 * two data bits, but otherwise it's all ones.
265 while (cp < end && *cp == 0xff)
268 /* Data block reads (R1 response types) may need more data... */
270 cp = host->data->status;
273 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
274 * status byte ... and we already scanned 2 bytes.
276 * REVISIT block read paths use nasty byte-at-a-time I/O
277 * so it can always DMA directly into the target buffer.
278 * It'd probably be better to memcpy() the first chunk and
279 * avoid extra i/o calls...
281 * Note we check for more than 8 bytes, because in practice,
282 * some SD cards are slow...
284 for (i = 2; i < 16; i++) {
285 value = mmc_spi_readbytes(host, 1);
298 /* Houston, we have an ugly card with a bit-shifted response */
299 rotator = *cp++ << 8;
300 /* read the next byte */
302 value = mmc_spi_readbytes(host, 1);
305 cp = host->data->status;
309 while (rotator & 0x8000) {
313 cmd->resp[0] = rotator >> 8;
316 cmd->resp[0] = *cp++;
320 /* Status byte: the entire seven-bit R1 response. */
321 if (cmd->resp[0] != 0) {
322 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
324 value = -EFAULT; /* Bad address */
325 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
326 value = -ENOSYS; /* Function not implemented */
327 else if (R1_SPI_COM_CRC & cmd->resp[0])
328 value = -EILSEQ; /* Illegal byte sequence */
329 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
331 value = -EIO; /* I/O error */
332 /* else R1_SPI_IDLE, "it's resetting" */
335 switch (mmc_spi_resp_type(cmd)) {
337 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
338 * and less-common stuff like various erase operations.
340 case MMC_RSP_SPI_R1B:
341 /* maybe we read all the busy tokens already */
342 while (cp < end && *cp == 0)
345 timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
346 MMC_SPI_R1B_TIMEOUT_MS;
347 mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
351 /* SPI R2 == R1 + second status byte; SEND_STATUS
352 * SPI R5 == R1 + data byte; IO_RW_DIRECT
355 /* read the next byte */
357 value = mmc_spi_readbytes(host, 1);
360 cp = host->data->status;
364 rotator = leftover << 8;
365 rotator |= *cp << bitshift;
366 cmd->resp[0] |= (rotator & 0xFF00);
368 cmd->resp[0] |= *cp << 8;
372 /* SPI R3, R4, or R7 == R1 + 4 bytes */
374 rotator = leftover << 8;
376 for (i = 0; i < 4; i++) {
378 /* read the next byte */
380 value = mmc_spi_readbytes(host, 1);
383 cp = host->data->status;
387 rotator |= *cp++ << bitshift;
388 cmd->resp[1] |= (rotator >> 8);
391 cmd->resp[1] |= *cp++;
396 /* SPI R1 == just one status byte */
401 dev_dbg(&host->spi->dev, "bad response type %04x\n",
402 mmc_spi_resp_type(cmd));
409 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
410 tag, cmd->resp[0], cmd->resp[1]);
412 /* disable chipselect on errors and some success cases */
413 if (value >= 0 && cs_on)
422 /* Issue command and read its response.
423 * Returns zero on success, negative for error.
425 * On error, caller must cope with mmc core retry mechanism. That
426 * means immediate low-level resubmit, which affects the bus lock...
429 mmc_spi_command_send(struct mmc_spi_host *host,
430 struct mmc_request *mrq,
431 struct mmc_command *cmd, int cs_on)
433 struct scratch *data = host->data;
434 u8 *cp = data->status;
436 struct spi_transfer *t;
438 /* We can handle most commands (except block reads) in one full
439 * duplex I/O operation before either starting the next transfer
440 * (data block or command) or else deselecting the card.
442 * First, write 7 bytes:
443 * - an all-ones byte to ensure the card is ready
444 * - opcode byte (plus start and transmission bits)
445 * - four bytes of big-endian argument
446 * - crc7 (plus end bit) ... always computed, it's cheap
448 * We init the whole buffer to all-ones, which is what we need
449 * to write while we're reading (later) response data.
451 memset(cp, 0xff, sizeof(data->status));
453 cp[1] = 0x40 | cmd->opcode;
454 put_unaligned_be32(cmd->arg, cp + 2);
455 cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
458 /* Then, read up to 13 bytes (while writing all-ones):
459 * - N(CR) (== 1..8) bytes of all-ones
460 * - status byte (for all response types)
461 * - the rest of the response, either:
462 * + nothing, for R1 or R1B responses
463 * + second status byte, for R2 responses
464 * + four data bytes, for R3 and R7 responses
466 * Finally, read some more bytes ... in the nice cases we know in
467 * advance how many, and reading 1 more is always OK:
468 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
469 * - N(RC) (== 1..N) bytes of all-ones, before next command
470 * - N(WR) (== 1..N) bytes of all-ones, before data write
472 * So in those cases one full duplex I/O of at most 21 bytes will
473 * handle the whole command, leaving the card ready to receive a
474 * data block or new command. We do that whenever we can, shaving
475 * CPU and IRQ costs (especially when using DMA or FIFOs).
477 * There are two other cases, where it's not generally practical
478 * to rely on a single I/O:
480 * - R1B responses need at least N(EC) bytes of all-zeroes.
482 * In this case we can *try* to fit it into one I/O, then
483 * maybe read more data later.
485 * - Data block reads are more troublesome, since a variable
486 * number of padding bytes precede the token and data.
487 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
488 * + N(AC) (== 1..many) bytes of all-ones
490 * In this case we currently only have minimal speedups here:
491 * when N(CR) == 1 we can avoid I/O in response_get().
493 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
494 cp += 2; /* min(N(CR)) + status */
497 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
498 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
500 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
502 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
503 cp = data->status + sizeof(data->status);
504 /* else: R1 (most commands) */
507 dev_dbg(&host->spi->dev, " CMD%d, resp %s\n",
508 cmd->opcode, maptype(cmd));
510 /* send command, leaving chipselect active */
511 spi_message_init(&host->m);
514 memset(t, 0, sizeof(*t));
515 t->tx_buf = t->rx_buf = data->status;
516 t->tx_dma = t->rx_dma = host->data_dma;
517 t->len = cp - data->status;
519 spi_message_add_tail(t, &host->m);
522 host->m.is_dma_mapped = 1;
523 dma_sync_single_for_device(host->dma_dev,
524 host->data_dma, sizeof(*host->data),
527 status = spi_sync_locked(host->spi, &host->m);
530 dma_sync_single_for_cpu(host->dma_dev,
531 host->data_dma, sizeof(*host->data),
534 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
539 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
540 return mmc_spi_response_get(host, cmd, cs_on);
543 /* Build data message with up to four separate transfers. For TX, we
544 * start by writing the data token. And in most cases, we finish with
547 * We always provide TX data for data and CRC. The MMC/SD protocol
548 * requires us to write ones; but Linux defaults to writing zeroes;
549 * so we explicitly initialize it to all ones on RX paths.
551 * We also handle DMA mapping, so the underlying SPI controller does
552 * not need to (re)do it for each message.
555 mmc_spi_setup_data_message(
556 struct mmc_spi_host *host,
558 enum dma_data_direction direction)
560 struct spi_transfer *t;
561 struct scratch *scratch = host->data;
562 dma_addr_t dma = host->data_dma;
564 spi_message_init(&host->m);
566 host->m.is_dma_mapped = 1;
568 /* for reads, readblock() skips 0xff bytes before finding
569 * the token; for writes, this transfer issues that token.
571 if (direction == DMA_TO_DEVICE) {
573 memset(t, 0, sizeof(*t));
576 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
578 scratch->data_token = SPI_TOKEN_SINGLE;
579 t->tx_buf = &scratch->data_token;
581 t->tx_dma = dma + offsetof(struct scratch, data_token);
582 spi_message_add_tail(t, &host->m);
585 /* Body of transfer is buffer, then CRC ...
586 * either TX-only, or RX with TX-ones.
589 memset(t, 0, sizeof(*t));
590 t->tx_buf = host->ones;
591 t->tx_dma = host->ones_dma;
592 /* length and actual buffer info are written later */
593 spi_message_add_tail(t, &host->m);
596 memset(t, 0, sizeof(*t));
598 if (direction == DMA_TO_DEVICE) {
599 /* the actual CRC may get written later */
600 t->tx_buf = &scratch->crc_val;
602 t->tx_dma = dma + offsetof(struct scratch, crc_val);
604 t->tx_buf = host->ones;
605 t->tx_dma = host->ones_dma;
606 t->rx_buf = &scratch->crc_val;
608 t->rx_dma = dma + offsetof(struct scratch, crc_val);
610 spi_message_add_tail(t, &host->m);
613 * A single block read is followed by N(EC) [0+] all-ones bytes
614 * before deselect ... don't bother.
616 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
617 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
618 * collect that single byte, so readblock() doesn't need to.
620 * For a write, the one-byte data response follows immediately, then
621 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
622 * Then single block reads may deselect, and multiblock ones issue
623 * the next token (next data block, or STOP_TRAN). We can try to
624 * minimize I/O ops by using a single read to collect end-of-busy.
626 if (multiple || direction == DMA_TO_DEVICE) {
627 t = &host->early_status;
628 memset(t, 0, sizeof(*t));
629 t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
630 t->tx_buf = host->ones;
631 t->tx_dma = host->ones_dma;
632 t->rx_buf = scratch->status;
634 t->rx_dma = dma + offsetof(struct scratch, status);
636 spi_message_add_tail(t, &host->m);
642 * - caller handled preceding N(WR) [1+] all-ones bytes
647 * - an all-ones byte ... card writes a data-response byte
648 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
650 * Return negative errno, else success.
653 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
654 unsigned long timeout)
656 struct spi_device *spi = host->spi;
658 struct scratch *scratch = host->data;
661 if (host->mmc->use_spi_crc)
662 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
664 dma_sync_single_for_device(host->dma_dev,
665 host->data_dma, sizeof(*scratch),
668 status = spi_sync_locked(spi, &host->m);
671 dev_dbg(&spi->dev, "write error (%d)\n", status);
676 dma_sync_single_for_cpu(host->dma_dev,
677 host->data_dma, sizeof(*scratch),
681 * Get the transmission data-response reply. It must follow
682 * immediately after the data block we transferred. This reply
683 * doesn't necessarily tell whether the write operation succeeded;
684 * it just says if the transmission was ok and whether *earlier*
685 * writes succeeded; see the standard.
687 * In practice, there are (even modern SDHC-)cards which are late
688 * in sending the response, and miss the time frame by a few bits,
689 * so we have to cope with this situation and check the response
690 * bit-by-bit. Arggh!!!
692 pattern = get_unaligned_be32(scratch->status);
694 /* First 3 bit of pattern are undefined */
695 pattern |= 0xE0000000;
697 /* left-adjust to leading 0 bit */
698 while (pattern & 0x80000000)
700 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
704 case SPI_RESPONSE_ACCEPTED:
707 case SPI_RESPONSE_CRC_ERR:
708 /* host shall then issue MMC_STOP_TRANSMISSION */
711 case SPI_RESPONSE_WRITE_ERR:
712 /* host shall then issue MMC_STOP_TRANSMISSION,
713 * and should MMC_SEND_STATUS to sort it out
722 dev_dbg(&spi->dev, "write error %02x (%d)\n",
723 scratch->status[0], status);
731 /* Return when not busy. If we didn't collect that status yet,
732 * we'll need some more I/O.
734 for (i = 4; i < sizeof(scratch->status); i++) {
735 /* card is non-busy if the most recent bit is 1 */
736 if (scratch->status[i] & 0x01)
739 return mmc_spi_wait_unbusy(host, timeout);
744 * - skip leading all-ones bytes ... either
745 * + N(AC) [1..f(clock,CSD)] usually, else
746 * + N(CX) [0..8] when reading CSD or CID
748 * + token ... if error token, no data or crc
752 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
753 * before dropping chipselect.
755 * For multiblock reads, caller either reads the next block or issues a
756 * STOP_TRANSMISSION command.
759 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
760 unsigned long timeout)
762 struct spi_device *spi = host->spi;
764 struct scratch *scratch = host->data;
765 unsigned int bitshift;
768 /* At least one SD card sends an all-zeroes byte when N(CX)
769 * applies, before the all-ones bytes ... just cope with that.
771 status = mmc_spi_readbytes(host, 1);
774 status = scratch->status[0];
775 if (status == 0xff || status == 0)
776 status = mmc_spi_readtoken(host, timeout);
779 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
783 /* The token may be bit-shifted...
784 * the first 0-bit precedes the data stream.
787 while (status & 0x80) {
791 leftover = status << 1;
794 dma_sync_single_for_device(host->dma_dev,
795 host->data_dma, sizeof(*scratch),
797 dma_sync_single_for_device(host->dma_dev,
802 status = spi_sync_locked(spi, &host->m);
804 dev_dbg(&spi->dev, "read error %d\n", status);
809 dma_sync_single_for_cpu(host->dma_dev,
810 host->data_dma, sizeof(*scratch),
812 dma_sync_single_for_cpu(host->dma_dev,
818 /* Walk through the data and the crc and do
819 * all the magic to get byte-aligned data.
823 unsigned int bitright = 8 - bitshift;
825 for (len = t->len; len; len--) {
827 *cp++ = leftover | (temp >> bitshift);
828 leftover = temp << bitright;
830 cp = (u8 *) &scratch->crc_val;
832 *cp++ = leftover | (temp >> bitshift);
833 leftover = temp << bitright;
835 *cp = leftover | (temp >> bitshift);
838 if (host->mmc->use_spi_crc) {
839 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
841 be16_to_cpus(&scratch->crc_val);
842 if (scratch->crc_val != crc) {
844 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
845 scratch->crc_val, crc, t->len);
858 * An MMC/SD data stage includes one or more blocks, optional CRCs,
859 * and inline handshaking. That handhaking makes it unlike most
860 * other SPI protocol stacks.
863 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
864 struct mmc_data *data, u32 blk_size)
866 struct spi_device *spi = host->spi;
867 struct device *dma_dev = host->dma_dev;
868 struct spi_transfer *t;
869 enum dma_data_direction direction;
870 struct scatterlist *sg;
872 int multiple = (data->blocks > 1);
874 unsigned long timeout;
876 direction = mmc_get_dma_dir(data);
877 mmc_spi_setup_data_message(host, multiple, direction);
881 clock_rate = t->speed_hz;
883 clock_rate = spi->max_speed_hz;
885 timeout = data->timeout_ns / 1000 +
886 data->timeout_clks * 1000000 / clock_rate;
887 timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
889 /* Handle scatterlist segments one at a time, with synch for
890 * each 512-byte block
892 for_each_sg(data->sg, sg, data->sg_len, n_sg) {
894 dma_addr_t dma_addr = 0;
896 unsigned length = sg->length;
897 enum dma_data_direction dir = direction;
899 /* set up dma mapping for controller drivers that might
900 * use DMA ... though they may fall back to PIO
903 /* never invalidate whole *shared* pages ... */
904 if ((sg->offset != 0 || length != PAGE_SIZE)
905 && dir == DMA_FROM_DEVICE)
906 dir = DMA_BIDIRECTIONAL;
908 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
910 if (dma_mapping_error(dma_dev, dma_addr)) {
911 data->error = -EFAULT;
914 if (direction == DMA_TO_DEVICE)
915 t->tx_dma = dma_addr + sg->offset;
917 t->rx_dma = dma_addr + sg->offset;
920 /* allow pio too; we don't allow highmem */
921 kmap_addr = kmap(sg_page(sg));
922 if (direction == DMA_TO_DEVICE)
923 t->tx_buf = kmap_addr + sg->offset;
925 t->rx_buf = kmap_addr + sg->offset;
927 /* transfer each block, and update request status */
929 t->len = min(length, blk_size);
931 dev_dbg(&host->spi->dev, " %s block, %d bytes\n",
932 (direction == DMA_TO_DEVICE) ? "write" : "read",
935 if (direction == DMA_TO_DEVICE)
936 status = mmc_spi_writeblock(host, t, timeout);
938 status = mmc_spi_readblock(host, t, timeout);
942 data->bytes_xfered += t->len;
949 /* discard mappings */
950 if (direction == DMA_FROM_DEVICE)
951 flush_kernel_dcache_page(sg_page(sg));
954 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
957 data->error = status;
958 dev_dbg(&spi->dev, "%s status %d\n",
959 (direction == DMA_TO_DEVICE) ? "write" : "read",
965 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
966 * can be issued before multiblock writes. Unlike its more widely
967 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
968 * that can affect the STOP_TRAN logic. Complete (and current)
969 * MMC specs should sort that out before Linux starts using CMD23.
971 if (direction == DMA_TO_DEVICE && multiple) {
972 struct scratch *scratch = host->data;
974 const unsigned statlen = sizeof(scratch->status);
976 dev_dbg(&spi->dev, " STOP_TRAN\n");
978 /* Tweak the per-block message we set up earlier by morphing
979 * it to hold single buffer with the token followed by some
980 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
981 * "not busy any longer" status, and leave chip selected.
983 INIT_LIST_HEAD(&host->m.transfers);
984 list_add(&host->early_status.transfer_list,
987 memset(scratch->status, 0xff, statlen);
988 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
990 host->early_status.tx_buf = host->early_status.rx_buf;
991 host->early_status.tx_dma = host->early_status.rx_dma;
992 host->early_status.len = statlen;
995 dma_sync_single_for_device(host->dma_dev,
996 host->data_dma, sizeof(*scratch),
999 tmp = spi_sync_locked(spi, &host->m);
1002 dma_sync_single_for_cpu(host->dma_dev,
1003 host->data_dma, sizeof(*scratch),
1012 /* Ideally we collected "not busy" status with one I/O,
1013 * avoiding wasteful byte-at-a-time scanning... but more
1014 * I/O is often needed.
1016 for (tmp = 2; tmp < statlen; tmp++) {
1017 if (scratch->status[tmp] != 0)
1020 tmp = mmc_spi_wait_unbusy(host, timeout);
1021 if (tmp < 0 && !data->error)
1026 /****************************************************************************/
1029 * MMC driver implementation -- the interface to the MMC stack
1032 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1034 struct mmc_spi_host *host = mmc_priv(mmc);
1035 int status = -EINVAL;
1037 struct mmc_command stop;
1040 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1042 struct mmc_command *cmd;
1046 if (!mmc_spi_resp_type(cmd)) {
1047 dev_dbg(&host->spi->dev, "bogus command\n");
1048 cmd->error = -EINVAL;
1053 if (cmd && !mmc_spi_resp_type(cmd)) {
1054 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1055 cmd->error = -EINVAL;
1061 mmc_request_done(host->mmc, mrq);
1067 /* request exclusive bus access */
1068 spi_bus_lock(host->spi->master);
1071 /* issue command; then optionally data and stop */
1072 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1073 if (status == 0 && mrq->data) {
1074 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1077 * The SPI bus is not always reliable for large data transfers.
1078 * If an occasional crc error is reported by the SD device with
1079 * data read/write over SPI, it may be recovered by repeating
1080 * the last SD command again. The retry count is set to 5 to
1081 * ensure the driver passes stress tests.
1083 if (mrq->data->error == -EILSEQ && crc_retry) {
1084 stop.opcode = MMC_STOP_TRANSMISSION;
1086 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1087 status = mmc_spi_command_send(host, mrq, &stop, 0);
1089 mrq->data->error = 0;
1094 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1099 /* release the bus */
1100 spi_bus_unlock(host->spi->master);
1102 mmc_request_done(host->mmc, mrq);
1105 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1107 * NOTE that here we can't know that the card has just been powered up;
1108 * not all MMC/SD sockets support power switching.
1110 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1111 * this doesn't seem to do the right thing at all...
1113 static void mmc_spi_initsequence(struct mmc_spi_host *host)
1115 /* Try to be very sure any previous command has completed;
1116 * wait till not-busy, skip debris from any old commands.
1118 mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
1119 mmc_spi_readbytes(host, 10);
1122 * Do a burst with chipselect active-high. We need to do this to
1123 * meet the requirement of 74 clock cycles with both chipselect
1124 * and CMD (MOSI) high before CMD0 ... after the card has been
1125 * powered up to Vdd(min), and so is ready to take commands.
1127 * Some cards are particularly needy of this (e.g. Viking "SD256")
1128 * while most others don't seem to care.
1130 * Note that this is one of the places MMC/SD plays games with the
1131 * SPI protocol. Another is that when chipselect is released while
1132 * the card returns BUSY status, the clock must issue several cycles
1133 * with chipselect high before the card will stop driving its output.
1135 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1136 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1137 * inverted by gpiolib, so if we want to ascertain to drive it high
1138 * we should toggle the default with an XOR as we do here.
1140 host->spi->mode ^= SPI_CS_HIGH;
1141 if (spi_setup(host->spi) != 0) {
1142 /* Just warn; most cards work without it. */
1143 dev_warn(&host->spi->dev,
1144 "can't change chip-select polarity\n");
1145 host->spi->mode ^= SPI_CS_HIGH;
1147 mmc_spi_readbytes(host, 18);
1149 host->spi->mode ^= SPI_CS_HIGH;
1150 if (spi_setup(host->spi) != 0) {
1151 /* Wot, we can't get the same setup we had before? */
1152 dev_err(&host->spi->dev,
1153 "can't restore chip-select polarity\n");
1158 static char *mmc_powerstring(u8 power_mode)
1160 switch (power_mode) {
1161 case MMC_POWER_OFF: return "off";
1162 case MMC_POWER_UP: return "up";
1163 case MMC_POWER_ON: return "on";
1168 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1170 struct mmc_spi_host *host = mmc_priv(mmc);
1172 if (host->power_mode != ios->power_mode) {
1175 canpower = host->pdata && host->pdata->setpower;
1177 dev_dbg(&host->spi->dev, "power %s (%d)%s\n",
1178 mmc_powerstring(ios->power_mode),
1180 canpower ? ", can switch" : "");
1182 /* switch power on/off if possible, accounting for
1183 * max 250msec powerup time if needed.
1186 switch (ios->power_mode) {
1189 host->pdata->setpower(&host->spi->dev,
1191 if (ios->power_mode == MMC_POWER_UP)
1192 msleep(host->powerup_msecs);
1196 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1197 if (ios->power_mode == MMC_POWER_ON)
1198 mmc_spi_initsequence(host);
1200 /* If powering down, ground all card inputs to avoid power
1201 * delivery from data lines! On a shared SPI bus, this
1202 * will probably be temporary; 6.4.2 of the simplified SD
1203 * spec says this must last at least 1msec.
1205 * - Clock low means CPOL 0, e.g. mode 0
1206 * - MOSI low comes from writing zero
1207 * - Chipselect is usually active low...
1209 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1213 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1214 mres = spi_setup(host->spi);
1216 dev_dbg(&host->spi->dev,
1217 "switch to SPI mode 0 failed\n");
1219 if (spi_write(host->spi, &nullbyte, 1) < 0)
1220 dev_dbg(&host->spi->dev,
1221 "put spi signals to low failed\n");
1224 * Now clock should be low due to spi mode 0;
1225 * MOSI should be low because of written 0x00;
1226 * chipselect should be low (it is active low)
1227 * power supply is off, so now MMC is off too!
1229 * FIXME no, chipselect can be high since the
1230 * device is inactive and SPI_CS_HIGH is clear...
1234 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1235 mres = spi_setup(host->spi);
1237 dev_dbg(&host->spi->dev,
1238 "switch back to SPI mode 3 failed\n");
1242 host->power_mode = ios->power_mode;
1245 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1248 host->spi->max_speed_hz = ios->clock;
1249 status = spi_setup(host->spi);
1250 dev_dbg(&host->spi->dev, " clock to %d Hz, %d\n",
1251 host->spi->max_speed_hz, status);
1255 static const struct mmc_host_ops mmc_spi_ops = {
1256 .request = mmc_spi_request,
1257 .set_ios = mmc_spi_set_ios,
1258 .get_ro = mmc_gpio_get_ro,
1259 .get_cd = mmc_gpio_get_cd,
1263 /****************************************************************************/
1266 * SPI driver implementation
1270 mmc_spi_detect_irq(int irq, void *mmc)
1272 struct mmc_spi_host *host = mmc_priv(mmc);
1273 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1275 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1279 #ifdef CONFIG_HAS_DMA
1280 static int mmc_spi_dma_alloc(struct mmc_spi_host *host)
1282 struct spi_device *spi = host->spi;
1285 if (!spi->master->dev.parent->dma_mask)
1288 dev = spi->master->dev.parent;
1290 host->ones_dma = dma_map_single(dev, host->ones, MMC_SPI_BLOCKSIZE,
1292 if (dma_mapping_error(dev, host->ones_dma))
1295 host->data_dma = dma_map_single(dev, host->data, sizeof(*host->data),
1297 if (dma_mapping_error(dev, host->data_dma)) {
1298 dma_unmap_single(dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
1303 dma_sync_single_for_cpu(dev, host->data_dma, sizeof(*host->data),
1306 host->dma_dev = dev;
1310 static void mmc_spi_dma_free(struct mmc_spi_host *host)
1315 dma_unmap_single(host->dma_dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
1317 dma_unmap_single(host->dma_dev, host->data_dma, sizeof(*host->data),
1321 static inline int mmc_spi_dma_alloc(struct mmc_spi_host *host) { return 0; }
1322 static inline void mmc_spi_dma_free(struct mmc_spi_host *host) {}
1325 static int mmc_spi_probe(struct spi_device *spi)
1328 struct mmc_host *mmc;
1329 struct mmc_spi_host *host;
1331 bool has_ro = false;
1333 /* We rely on full duplex transfers, mostly to reduce
1334 * per-transfer overheads (by making fewer transfers).
1336 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1339 /* MMC and SD specs only seem to care that sampling is on the
1340 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1341 * should be legit. We'll use mode 0 since the steady state is 0,
1342 * which is appropriate for hotplugging, unless the platform data
1343 * specify mode 3 (if hardware is not compatible to mode 0).
1345 if (spi->mode != SPI_MODE_3)
1346 spi->mode = SPI_MODE_0;
1347 spi->bits_per_word = 8;
1349 status = spi_setup(spi);
1351 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1352 spi->mode, spi->max_speed_hz / 1000,
1357 /* We need a supply of ones to transmit. This is the only time
1358 * the CPU touches these, so cache coherency isn't a concern.
1360 * NOTE if many systems use more than one MMC-over-SPI connector
1361 * it'd save some memory to share this. That's evidently rare.
1364 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1367 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1369 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1373 mmc->ops = &mmc_spi_ops;
1374 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1375 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1376 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1377 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1379 mmc->caps = MMC_CAP_SPI;
1381 /* SPI doesn't need the lowspeed device identification thing for
1382 * MMC or SD cards, since it never comes up in open drain mode.
1383 * That's good; some SPI masters can't handle very low speeds!
1385 * However, low speed SDIO cards need not handle over 400 KHz;
1386 * that's the only reason not to use a few MHz for f_min (until
1387 * the upper layer reads the target frequency from the CSD).
1389 mmc->f_min = 400000;
1390 mmc->f_max = spi->max_speed_hz;
1392 host = mmc_priv(mmc);
1398 dev_set_drvdata(&spi->dev, mmc);
1400 /* Platform data is used to hook up things like card sensing
1401 * and power switching gpios.
1403 host->pdata = mmc_spi_get_pdata(spi);
1405 mmc->ocr_avail = host->pdata->ocr_mask;
1406 if (!mmc->ocr_avail) {
1407 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1408 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1410 if (host->pdata && host->pdata->setpower) {
1411 host->powerup_msecs = host->pdata->powerup_msecs;
1412 if (!host->powerup_msecs || host->powerup_msecs > 250)
1413 host->powerup_msecs = 250;
1416 /* preallocate dma buffers */
1417 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1421 status = mmc_spi_dma_alloc(host);
1425 /* setup message for status/busy readback */
1426 spi_message_init(&host->readback);
1427 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1429 spi_message_add_tail(&host->status, &host->readback);
1430 host->status.tx_buf = host->ones;
1431 host->status.tx_dma = host->ones_dma;
1432 host->status.rx_buf = &host->data->status;
1433 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1434 host->status.cs_change = 1;
1436 /* register card detect irq */
1437 if (host->pdata && host->pdata->init) {
1438 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1440 goto fail_glue_init;
1443 /* pass platform capabilities, if any */
1445 mmc->caps |= host->pdata->caps;
1446 mmc->caps2 |= host->pdata->caps2;
1449 status = mmc_add_host(mmc);
1454 * Index 0 is card detect
1455 * Old boardfiles were specifying 1 ms as debounce
1457 status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1458 if (status == -EPROBE_DEFER)
1462 * The platform has a CD GPIO signal that may support
1463 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1464 * if polling is needed or not.
1466 mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1467 mmc_gpiod_request_cd_irq(mmc);
1469 mmc_detect_change(mmc, 0);
1471 /* Index 1 is write protect/read only */
1472 status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1473 if (status == -EPROBE_DEFER)
1478 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1479 dev_name(&mmc->class_dev),
1480 host->dma_dev ? "" : ", no DMA",
1481 has_ro ? "" : ", no WP",
1482 (host->pdata && host->pdata->setpower)
1483 ? "" : ", no poweroff",
1484 (mmc->caps & MMC_CAP_NEEDS_POLL)
1485 ? ", cd polling" : "");
1489 mmc_remove_host(mmc);
1491 mmc_spi_dma_free(host);
1495 mmc_spi_put_pdata(spi);
1503 static int mmc_spi_remove(struct spi_device *spi)
1505 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1506 struct mmc_spi_host *host = mmc_priv(mmc);
1508 /* prevent new mmc_detect_change() calls */
1509 if (host->pdata && host->pdata->exit)
1510 host->pdata->exit(&spi->dev, mmc);
1512 mmc_remove_host(mmc);
1514 mmc_spi_dma_free(host);
1518 spi->max_speed_hz = mmc->f_max;
1519 mmc_spi_put_pdata(spi);
1524 static const struct of_device_id mmc_spi_of_match_table[] = {
1525 { .compatible = "mmc-spi-slot", },
1528 MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1530 static struct spi_driver mmc_spi_driver = {
1533 .of_match_table = mmc_spi_of_match_table,
1535 .probe = mmc_spi_probe,
1536 .remove = mmc_spi_remove,
1539 module_spi_driver(mmc_spi_driver);
1541 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1542 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1543 MODULE_LICENSE("GPL");
1544 MODULE_ALIAS("spi:mmc_spi");