2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
143 #include "net-sysfs.h"
145 /* Instead of increasing this, you should create a hash table. */
146 #define MAX_GRO_SKBS 8
148 /* This should be increased if a protocol with a bigger head is added. */
149 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151 static DEFINE_SPINLOCK(ptype_lock);
152 static DEFINE_SPINLOCK(offload_lock);
153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154 struct list_head ptype_all __read_mostly; /* Taps */
155 static struct list_head offload_base __read_mostly;
157 static int netif_rx_internal(struct sk_buff *skb);
158 static int call_netdevice_notifiers_info(unsigned long val,
159 struct net_device *dev,
160 struct netdev_notifier_info *info);
163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168 * Writers must hold the rtnl semaphore while they loop through the
169 * dev_base_head list, and hold dev_base_lock for writing when they do the
170 * actual updates. This allows pure readers to access the list even
171 * while a writer is preparing to update it.
173 * To put it another way, dev_base_lock is held for writing only to
174 * protect against pure readers; the rtnl semaphore provides the
175 * protection against other writers.
177 * See, for example usages, register_netdevice() and
178 * unregister_netdevice(), which must be called with the rtnl
181 DEFINE_RWLOCK(dev_base_lock);
182 EXPORT_SYMBOL(dev_base_lock);
184 /* protects napi_hash addition/deletion and napi_gen_id */
185 static DEFINE_SPINLOCK(napi_hash_lock);
187 static unsigned int napi_gen_id = NR_CPUS;
188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190 static seqcount_t devnet_rename_seq;
192 static inline void dev_base_seq_inc(struct net *net)
194 while (++net->dev_base_seq == 0);
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 static inline void rps_lock(struct softnet_data *sd)
212 spin_lock(&sd->input_pkt_queue.lock);
216 static inline void rps_unlock(struct softnet_data *sd)
219 spin_unlock(&sd->input_pkt_queue.lock);
223 /* Device list insertion */
224 static void list_netdevice(struct net_device *dev)
226 struct net *net = dev_net(dev);
230 write_lock_bh(&dev_base_lock);
231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
237 dev_base_seq_inc(net);
240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
243 static void unlist_netdevice(struct net_device *dev)
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock);
254 dev_base_seq_inc(dev_net(dev));
261 static RAW_NOTIFIER_HEAD(netdev_chain);
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
271 #ifdef CONFIG_LOCKDEP
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
353 /*******************************************************************************
355 Protocol management and registration routines
357 *******************************************************************************/
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 if (pt->type == htons(ETH_P_ALL))
378 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380 return pt->dev ? &pt->dev->ptype_specific :
381 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
385 * dev_add_pack - add packet handler
386 * @pt: packet type declaration
388 * Add a protocol handler to the networking stack. The passed &packet_type
389 * is linked into kernel lists and may not be freed until it has been
390 * removed from the kernel lists.
392 * This call does not sleep therefore it can not
393 * guarantee all CPU's that are in middle of receiving packets
394 * will see the new packet type (until the next received packet).
397 void dev_add_pack(struct packet_type *pt)
399 struct list_head *head = ptype_head(pt);
401 spin_lock(&ptype_lock);
402 list_add_rcu(&pt->list, head);
403 spin_unlock(&ptype_lock);
405 EXPORT_SYMBOL(dev_add_pack);
408 * __dev_remove_pack - remove packet handler
409 * @pt: packet type declaration
411 * Remove a protocol handler that was previously added to the kernel
412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
413 * from the kernel lists and can be freed or reused once this function
416 * The packet type might still be in use by receivers
417 * and must not be freed until after all the CPU's have gone
418 * through a quiescent state.
420 void __dev_remove_pack(struct packet_type *pt)
422 struct list_head *head = ptype_head(pt);
423 struct packet_type *pt1;
425 spin_lock(&ptype_lock);
427 list_for_each_entry(pt1, head, list) {
429 list_del_rcu(&pt->list);
434 pr_warn("dev_remove_pack: %p not found\n", pt);
436 spin_unlock(&ptype_lock);
438 EXPORT_SYMBOL(__dev_remove_pack);
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
449 * This call sleeps to guarantee that no CPU is looking at the packet
452 void dev_remove_pack(struct packet_type *pt)
454 __dev_remove_pack(pt);
458 EXPORT_SYMBOL(dev_remove_pack);
462 * dev_add_offload - register offload handlers
463 * @po: protocol offload declaration
465 * Add protocol offload handlers to the networking stack. The passed
466 * &proto_offload is linked into kernel lists and may not be freed until
467 * it has been removed from the kernel lists.
469 * This call does not sleep therefore it can not
470 * guarantee all CPU's that are in middle of receiving packets
471 * will see the new offload handlers (until the next received packet).
473 void dev_add_offload(struct packet_offload *po)
475 struct packet_offload *elem;
477 spin_lock(&offload_lock);
478 list_for_each_entry(elem, &offload_base, list) {
479 if (po->priority < elem->priority)
482 list_add_rcu(&po->list, elem->list.prev);
483 spin_unlock(&offload_lock);
485 EXPORT_SYMBOL(dev_add_offload);
488 * __dev_remove_offload - remove offload handler
489 * @po: packet offload declaration
491 * Remove a protocol offload handler that was previously added to the
492 * kernel offload handlers by dev_add_offload(). The passed &offload_type
493 * is removed from the kernel lists and can be freed or reused once this
496 * The packet type might still be in use by receivers
497 * and must not be freed until after all the CPU's have gone
498 * through a quiescent state.
500 static void __dev_remove_offload(struct packet_offload *po)
502 struct list_head *head = &offload_base;
503 struct packet_offload *po1;
505 spin_lock(&offload_lock);
507 list_for_each_entry(po1, head, list) {
509 list_del_rcu(&po->list);
514 pr_warn("dev_remove_offload: %p not found\n", po);
516 spin_unlock(&offload_lock);
520 * dev_remove_offload - remove packet offload handler
521 * @po: packet offload declaration
523 * Remove a packet offload handler that was previously added to the kernel
524 * offload handlers by dev_add_offload(). The passed &offload_type is
525 * removed from the kernel lists and can be freed or reused once this
528 * This call sleeps to guarantee that no CPU is looking at the packet
531 void dev_remove_offload(struct packet_offload *po)
533 __dev_remove_offload(po);
537 EXPORT_SYMBOL(dev_remove_offload);
539 /******************************************************************************
541 Device Boot-time Settings Routines
543 *******************************************************************************/
545 /* Boot time configuration table */
546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549 * netdev_boot_setup_add - add new setup entry
550 * @name: name of the device
551 * @map: configured settings for the device
553 * Adds new setup entry to the dev_boot_setup list. The function
554 * returns 0 on error and 1 on success. This is a generic routine to
557 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 struct netdev_boot_setup *s;
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 memset(s[i].name, 0, sizeof(s[i].name));
566 strlcpy(s[i].name, name, IFNAMSIZ);
567 memcpy(&s[i].map, map, sizeof(s[i].map));
572 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
576 * netdev_boot_setup_check - check boot time settings
577 * @dev: the netdevice
579 * Check boot time settings for the device.
580 * The found settings are set for the device to be used
581 * later in the device probing.
582 * Returns 0 if no settings found, 1 if they are.
584 int netdev_boot_setup_check(struct net_device *dev)
586 struct netdev_boot_setup *s = dev_boot_setup;
589 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
591 !strcmp(dev->name, s[i].name)) {
592 dev->irq = s[i].map.irq;
593 dev->base_addr = s[i].map.base_addr;
594 dev->mem_start = s[i].map.mem_start;
595 dev->mem_end = s[i].map.mem_end;
601 EXPORT_SYMBOL(netdev_boot_setup_check);
605 * netdev_boot_base - get address from boot time settings
606 * @prefix: prefix for network device
607 * @unit: id for network device
609 * Check boot time settings for the base address of device.
610 * The found settings are set for the device to be used
611 * later in the device probing.
612 * Returns 0 if no settings found.
614 unsigned long netdev_boot_base(const char *prefix, int unit)
616 const struct netdev_boot_setup *s = dev_boot_setup;
620 sprintf(name, "%s%d", prefix, unit);
623 * If device already registered then return base of 1
624 * to indicate not to probe for this interface
626 if (__dev_get_by_name(&init_net, name))
629 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 if (!strcmp(name, s[i].name))
631 return s[i].map.base_addr;
636 * Saves at boot time configured settings for any netdevice.
638 int __init netdev_boot_setup(char *str)
643 str = get_options(str, ARRAY_SIZE(ints), ints);
648 memset(&map, 0, sizeof(map));
652 map.base_addr = ints[2];
654 map.mem_start = ints[3];
656 map.mem_end = ints[4];
658 /* Add new entry to the list */
659 return netdev_boot_setup_add(str, &map);
662 __setup("netdev=", netdev_boot_setup);
664 /*******************************************************************************
666 Device Interface Subroutines
668 *******************************************************************************/
671 * dev_get_iflink - get 'iflink' value of a interface
672 * @dev: targeted interface
674 * Indicates the ifindex the interface is linked to.
675 * Physical interfaces have the same 'ifindex' and 'iflink' values.
678 int dev_get_iflink(const struct net_device *dev)
680 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 return dev->netdev_ops->ndo_get_iflink(dev);
685 EXPORT_SYMBOL(dev_get_iflink);
688 * dev_fill_metadata_dst - Retrieve tunnel egress information.
689 * @dev: targeted interface
692 * For better visibility of tunnel traffic OVS needs to retrieve
693 * egress tunnel information for a packet. Following API allows
694 * user to get this info.
696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 struct ip_tunnel_info *info;
700 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
703 info = skb_tunnel_info_unclone(skb);
706 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714 * __dev_get_by_name - find a device by its name
715 * @net: the applicable net namespace
716 * @name: name to find
718 * Find an interface by name. Must be called under RTNL semaphore
719 * or @dev_base_lock. If the name is found a pointer to the device
720 * is returned. If the name is not found then %NULL is returned. The
721 * reference counters are not incremented so the caller must be
722 * careful with locks.
725 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 struct net_device *dev;
728 struct hlist_head *head = dev_name_hash(net, name);
730 hlist_for_each_entry(dev, head, name_hlist)
731 if (!strncmp(dev->name, name, IFNAMSIZ))
736 EXPORT_SYMBOL(__dev_get_by_name);
739 * dev_get_by_name_rcu - find a device by its name
740 * @net: the applicable net namespace
741 * @name: name to find
743 * Find an interface by name.
744 * If the name is found a pointer to the device is returned.
745 * If the name is not found then %NULL is returned.
746 * The reference counters are not incremented so the caller must be
747 * careful with locks. The caller must hold RCU lock.
750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 struct net_device *dev;
753 struct hlist_head *head = dev_name_hash(net, name);
755 hlist_for_each_entry_rcu(dev, head, name_hlist)
756 if (!strncmp(dev->name, name, IFNAMSIZ))
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 struct net_device *dev;
780 dev = dev_get_by_name_rcu(net, name);
786 EXPORT_SYMBOL(dev_get_by_name);
789 * __dev_get_by_index - find a device by its ifindex
790 * @net: the applicable net namespace
791 * @ifindex: index of device
793 * Search for an interface by index. Returns %NULL if the device
794 * is not found or a pointer to the device. The device has not
795 * had its reference counter increased so the caller must be careful
796 * about locking. The caller must hold either the RTNL semaphore
800 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 struct net_device *dev;
803 struct hlist_head *head = dev_index_hash(net, ifindex);
805 hlist_for_each_entry(dev, head, index_hlist)
806 if (dev->ifindex == ifindex)
811 EXPORT_SYMBOL(__dev_get_by_index);
814 * dev_get_by_index_rcu - find a device by its ifindex
815 * @net: the applicable net namespace
816 * @ifindex: index of device
818 * Search for an interface by index. Returns %NULL if the device
819 * is not found or a pointer to the device. The device has not
820 * had its reference counter increased so the caller must be careful
821 * about locking. The caller must hold RCU lock.
824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 struct net_device *dev;
827 struct hlist_head *head = dev_index_hash(net, ifindex);
829 hlist_for_each_entry_rcu(dev, head, index_hlist)
830 if (dev->ifindex == ifindex)
835 EXPORT_SYMBOL(dev_get_by_index_rcu);
839 * dev_get_by_index - find a device by its ifindex
840 * @net: the applicable net namespace
841 * @ifindex: index of device
843 * Search for an interface by index. Returns NULL if the device
844 * is not found or a pointer to the device. The device returned has
845 * had a reference added and the pointer is safe until the user calls
846 * dev_put to indicate they have finished with it.
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 struct net_device *dev;
854 dev = dev_get_by_index_rcu(net, ifindex);
860 EXPORT_SYMBOL(dev_get_by_index);
863 * netdev_get_name - get a netdevice name, knowing its ifindex.
864 * @net: network namespace
865 * @name: a pointer to the buffer where the name will be stored.
866 * @ifindex: the ifindex of the interface to get the name from.
868 * The use of raw_seqcount_begin() and cond_resched() before
869 * retrying is required as we want to give the writers a chance
870 * to complete when CONFIG_PREEMPT is not set.
872 int netdev_get_name(struct net *net, char *name, int ifindex)
874 struct net_device *dev;
878 seq = raw_seqcount_begin(&devnet_rename_seq);
880 dev = dev_get_by_index_rcu(net, ifindex);
886 strcpy(name, dev->name);
888 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
897 * dev_getbyhwaddr_rcu - find a device by its hardware address
898 * @net: the applicable net namespace
899 * @type: media type of device
900 * @ha: hardware address
902 * Search for an interface by MAC address. Returns NULL if the device
903 * is not found or a pointer to the device.
904 * The caller must hold RCU or RTNL.
905 * The returned device has not had its ref count increased
906 * and the caller must therefore be careful about locking
910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 struct net_device *dev;
915 for_each_netdev_rcu(net, dev)
916 if (dev->type == type &&
917 !memcmp(dev->dev_addr, ha, dev->addr_len))
922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 struct net_device *dev;
929 for_each_netdev(net, dev)
930 if (dev->type == type)
935 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 struct net_device *dev, *ret = NULL;
942 for_each_netdev_rcu(net, dev)
943 if (dev->type == type) {
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954 * __dev_get_by_flags - find any device with given flags
955 * @net: the applicable net namespace
956 * @if_flags: IFF_* values
957 * @mask: bitmask of bits in if_flags to check
959 * Search for any interface with the given flags. Returns NULL if a device
960 * is not found or a pointer to the device. Must be called inside
961 * rtnl_lock(), and result refcount is unchanged.
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 struct net_device *dev, *ret;
972 for_each_netdev(net, dev) {
973 if (((dev->flags ^ if_flags) & mask) == 0) {
980 EXPORT_SYMBOL(__dev_get_by_flags);
983 * dev_valid_name - check if name is okay for network device
986 * Network device names need to be valid file names to
987 * to allow sysfs to work. We also disallow any kind of
990 bool dev_valid_name(const char *name)
994 if (strlen(name) >= IFNAMSIZ)
996 if (!strcmp(name, ".") || !strcmp(name, ".."))
1000 if (*name == '/' || *name == ':' || isspace(*name))
1006 EXPORT_SYMBOL(dev_valid_name);
1009 * __dev_alloc_name - allocate a name for a device
1010 * @net: network namespace to allocate the device name in
1011 * @name: name format string
1012 * @buf: scratch buffer and result name string
1014 * Passed a format string - eg "lt%d" it will try and find a suitable
1015 * id. It scans list of devices to build up a free map, then chooses
1016 * the first empty slot. The caller must hold the dev_base or rtnl lock
1017 * while allocating the name and adding the device in order to avoid
1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020 * Returns the number of the unit assigned or a negative errno code.
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027 const int max_netdevices = 8*PAGE_SIZE;
1028 unsigned long *inuse;
1029 struct net_device *d;
1031 p = strnchr(name, IFNAMSIZ-1, '%');
1034 * Verify the string as this thing may have come from
1035 * the user. There must be either one "%d" and no other "%"
1038 if (p[1] != 'd' || strchr(p + 2, '%'))
1041 /* Use one page as a bit array of possible slots */
1042 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1046 for_each_netdev(net, d) {
1047 if (!sscanf(d->name, name, &i))
1049 if (i < 0 || i >= max_netdevices)
1052 /* avoid cases where sscanf is not exact inverse of printf */
1053 snprintf(buf, IFNAMSIZ, name, i);
1054 if (!strncmp(buf, d->name, IFNAMSIZ))
1058 i = find_first_zero_bit(inuse, max_netdevices);
1059 free_page((unsigned long) inuse);
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!__dev_get_by_name(net, buf))
1067 /* It is possible to run out of possible slots
1068 * when the name is long and there isn't enough space left
1069 * for the digits, or if all bits are used.
1075 * dev_alloc_name - allocate a name for a device
1077 * @name: name format string
1079 * Passed a format string - eg "lt%d" it will try and find a suitable
1080 * id. It scans list of devices to build up a free map, then chooses
1081 * the first empty slot. The caller must hold the dev_base or rtnl lock
1082 * while allocating the name and adding the device in order to avoid
1084 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085 * Returns the number of the unit assigned or a negative errno code.
1088 int dev_alloc_name(struct net_device *dev, const char *name)
1094 BUG_ON(!dev_net(dev));
1096 ret = __dev_alloc_name(net, name, buf);
1098 strlcpy(dev->name, buf, IFNAMSIZ);
1101 EXPORT_SYMBOL(dev_alloc_name);
1103 static int dev_alloc_name_ns(struct net *net,
1104 struct net_device *dev,
1110 ret = __dev_alloc_name(net, name, buf);
1112 strlcpy(dev->name, buf, IFNAMSIZ);
1116 static int dev_get_valid_name(struct net *net,
1117 struct net_device *dev,
1122 if (!dev_valid_name(name))
1125 if (strchr(name, '%'))
1126 return dev_alloc_name_ns(net, dev, name);
1127 else if (__dev_get_by_name(net, name))
1129 else if (dev->name != name)
1130 strlcpy(dev->name, name, IFNAMSIZ);
1136 * dev_change_name - change name of a device
1138 * @newname: name (or format string) must be at least IFNAMSIZ
1140 * Change name of a device, can pass format strings "eth%d".
1143 int dev_change_name(struct net_device *dev, const char *newname)
1145 unsigned char old_assign_type;
1146 char oldname[IFNAMSIZ];
1152 BUG_ON(!dev_net(dev));
1155 if (dev->flags & IFF_UP)
1158 write_seqcount_begin(&devnet_rename_seq);
1160 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161 write_seqcount_end(&devnet_rename_seq);
1165 memcpy(oldname, dev->name, IFNAMSIZ);
1167 err = dev_get_valid_name(net, dev, newname);
1169 write_seqcount_end(&devnet_rename_seq);
1173 if (oldname[0] && !strchr(oldname, '%'))
1174 netdev_info(dev, "renamed from %s\n", oldname);
1176 old_assign_type = dev->name_assign_type;
1177 dev->name_assign_type = NET_NAME_RENAMED;
1180 ret = device_rename(&dev->dev, dev->name);
1182 memcpy(dev->name, oldname, IFNAMSIZ);
1183 dev->name_assign_type = old_assign_type;
1184 write_seqcount_end(&devnet_rename_seq);
1188 write_seqcount_end(&devnet_rename_seq);
1190 netdev_adjacent_rename_links(dev, oldname);
1192 write_lock_bh(&dev_base_lock);
1193 hlist_del_rcu(&dev->name_hlist);
1194 write_unlock_bh(&dev_base_lock);
1198 write_lock_bh(&dev_base_lock);
1199 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200 write_unlock_bh(&dev_base_lock);
1202 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203 ret = notifier_to_errno(ret);
1206 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209 write_seqcount_begin(&devnet_rename_seq);
1210 memcpy(dev->name, oldname, IFNAMSIZ);
1211 memcpy(oldname, newname, IFNAMSIZ);
1212 dev->name_assign_type = old_assign_type;
1213 old_assign_type = NET_NAME_RENAMED;
1216 pr_err("%s: name change rollback failed: %d\n",
1225 * dev_set_alias - change ifalias of a device
1227 * @alias: name up to IFALIASZ
1228 * @len: limit of bytes to copy from info
1230 * Set ifalias for a device,
1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1238 if (len >= IFALIASZ)
1242 kfree(dev->ifalias);
1243 dev->ifalias = NULL;
1247 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 dev->ifalias = new_ifalias;
1252 strlcpy(dev->ifalias, alias, len+1);
1258 * netdev_features_change - device changes features
1259 * @dev: device to cause notification
1261 * Called to indicate a device has changed features.
1263 void netdev_features_change(struct net_device *dev)
1265 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 EXPORT_SYMBOL(netdev_features_change);
1270 * netdev_state_change - device changes state
1271 * @dev: device to cause notification
1273 * Called to indicate a device has changed state. This function calls
1274 * the notifier chains for netdev_chain and sends a NEWLINK message
1275 * to the routing socket.
1277 void netdev_state_change(struct net_device *dev)
1279 if (dev->flags & IFF_UP) {
1280 struct netdev_notifier_change_info change_info;
1282 change_info.flags_changed = 0;
1283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288 EXPORT_SYMBOL(netdev_state_change);
1291 * netdev_notify_peers - notify network peers about existence of @dev
1292 * @dev: network device
1294 * Generate traffic such that interested network peers are aware of
1295 * @dev, such as by generating a gratuitous ARP. This may be used when
1296 * a device wants to inform the rest of the network about some sort of
1297 * reconfiguration such as a failover event or virtual machine
1300 void netdev_notify_peers(struct net_device *dev)
1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 EXPORT_SYMBOL(netdev_notify_peers);
1308 static int __dev_open(struct net_device *dev)
1310 const struct net_device_ops *ops = dev->netdev_ops;
1315 if (!netif_device_present(dev))
1318 /* Block netpoll from trying to do any rx path servicing.
1319 * If we don't do this there is a chance ndo_poll_controller
1320 * or ndo_poll may be running while we open the device
1322 netpoll_poll_disable(dev);
1324 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 ret = notifier_to_errno(ret);
1329 set_bit(__LINK_STATE_START, &dev->state);
1331 if (ops->ndo_validate_addr)
1332 ret = ops->ndo_validate_addr(dev);
1334 if (!ret && ops->ndo_open)
1335 ret = ops->ndo_open(dev);
1337 netpoll_poll_enable(dev);
1340 clear_bit(__LINK_STATE_START, &dev->state);
1342 dev->flags |= IFF_UP;
1343 dev_set_rx_mode(dev);
1345 add_device_randomness(dev->dev_addr, dev->addr_len);
1352 * dev_open - prepare an interface for use.
1353 * @dev: device to open
1355 * Takes a device from down to up state. The device's private open
1356 * function is invoked and then the multicast lists are loaded. Finally
1357 * the device is moved into the up state and a %NETDEV_UP message is
1358 * sent to the netdev notifier chain.
1360 * Calling this function on an active interface is a nop. On a failure
1361 * a negative errno code is returned.
1363 int dev_open(struct net_device *dev)
1367 if (dev->flags & IFF_UP)
1370 ret = __dev_open(dev);
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 call_netdevice_notifiers(NETDEV_UP, dev);
1379 EXPORT_SYMBOL(dev_open);
1381 static int __dev_close_many(struct list_head *head)
1383 struct net_device *dev;
1388 list_for_each_entry(dev, head, close_list) {
1389 /* Temporarily disable netpoll until the interface is down */
1390 netpoll_poll_disable(dev);
1392 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394 clear_bit(__LINK_STATE_START, &dev->state);
1396 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397 * can be even on different cpu. So just clear netif_running().
1399 * dev->stop() will invoke napi_disable() on all of it's
1400 * napi_struct instances on this device.
1402 smp_mb__after_atomic(); /* Commit netif_running(). */
1405 dev_deactivate_many(head);
1407 list_for_each_entry(dev, head, close_list) {
1408 const struct net_device_ops *ops = dev->netdev_ops;
1411 * Call the device specific close. This cannot fail.
1412 * Only if device is UP
1414 * We allow it to be called even after a DETACH hot-plug
1420 dev->flags &= ~IFF_UP;
1421 netpoll_poll_enable(dev);
1427 static int __dev_close(struct net_device *dev)
1432 list_add(&dev->close_list, &single);
1433 retval = __dev_close_many(&single);
1439 int dev_close_many(struct list_head *head, bool unlink)
1441 struct net_device *dev, *tmp;
1443 /* Remove the devices that don't need to be closed */
1444 list_for_each_entry_safe(dev, tmp, head, close_list)
1445 if (!(dev->flags & IFF_UP))
1446 list_del_init(&dev->close_list);
1448 __dev_close_many(head);
1450 list_for_each_entry_safe(dev, tmp, head, close_list) {
1451 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452 call_netdevice_notifiers(NETDEV_DOWN, dev);
1454 list_del_init(&dev->close_list);
1459 EXPORT_SYMBOL(dev_close_many);
1462 * dev_close - shutdown an interface.
1463 * @dev: device to shutdown
1465 * This function moves an active device into down state. A
1466 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470 int dev_close(struct net_device *dev)
1472 if (dev->flags & IFF_UP) {
1475 list_add(&dev->close_list, &single);
1476 dev_close_many(&single, true);
1481 EXPORT_SYMBOL(dev_close);
1485 * dev_disable_lro - disable Large Receive Offload on a device
1488 * Disable Large Receive Offload (LRO) on a net device. Must be
1489 * called under RTNL. This is needed if received packets may be
1490 * forwarded to another interface.
1492 void dev_disable_lro(struct net_device *dev)
1494 struct net_device *lower_dev;
1495 struct list_head *iter;
1497 dev->wanted_features &= ~NETIF_F_LRO;
1498 netdev_update_features(dev);
1500 if (unlikely(dev->features & NETIF_F_LRO))
1501 netdev_WARN(dev, "failed to disable LRO!\n");
1503 netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 dev_disable_lro(lower_dev);
1506 EXPORT_SYMBOL(dev_disable_lro);
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 struct net_device *dev)
1511 struct netdev_notifier_info info;
1513 netdev_notifier_info_init(&info, dev);
1514 return nb->notifier_call(nb, val, &info);
1517 static int dev_boot_phase = 1;
1520 * register_netdevice_notifier - register a network notifier block
1523 * Register a notifier to be called when network device events occur.
1524 * The notifier passed is linked into the kernel structures and must
1525 * not be reused until it has been unregistered. A negative errno code
1526 * is returned on a failure.
1528 * When registered all registration and up events are replayed
1529 * to the new notifier to allow device to have a race free
1530 * view of the network device list.
1533 int register_netdevice_notifier(struct notifier_block *nb)
1535 struct net_device *dev;
1536 struct net_device *last;
1541 err = raw_notifier_chain_register(&netdev_chain, nb);
1547 for_each_netdev(net, dev) {
1548 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549 err = notifier_to_errno(err);
1553 if (!(dev->flags & IFF_UP))
1556 call_netdevice_notifier(nb, NETDEV_UP, dev);
1567 for_each_netdev(net, dev) {
1571 if (dev->flags & IFF_UP) {
1572 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1581 raw_notifier_chain_unregister(&netdev_chain, nb);
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1587 * unregister_netdevice_notifier - unregister a network notifier block
1590 * Unregister a notifier previously registered by
1591 * register_netdevice_notifier(). The notifier is unlinked into the
1592 * kernel structures and may then be reused. A negative errno code
1593 * is returned on a failure.
1595 * After unregistering unregister and down device events are synthesized
1596 * for all devices on the device list to the removed notifier to remove
1597 * the need for special case cleanup code.
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 struct net_device *dev;
1607 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1612 for_each_netdev(net, dev) {
1613 if (dev->flags & IFF_UP) {
1614 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628 * call_netdevice_notifiers_info - call all network notifier blocks
1629 * @val: value passed unmodified to notifier function
1630 * @dev: net_device pointer passed unmodified to notifier function
1631 * @info: notifier information data
1633 * Call all network notifier blocks. Parameters and return value
1634 * are as for raw_notifier_call_chain().
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638 struct net_device *dev,
1639 struct netdev_notifier_info *info)
1642 netdev_notifier_info_init(info, dev);
1643 return raw_notifier_call_chain(&netdev_chain, val, info);
1647 * call_netdevice_notifiers - call all network notifier blocks
1648 * @val: value passed unmodified to notifier function
1649 * @dev: net_device pointer passed unmodified to notifier function
1651 * Call all network notifier blocks. Parameters and return value
1652 * are as for raw_notifier_call_chain().
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 struct netdev_notifier_info info;
1659 return call_netdevice_notifiers_info(val, dev, &info);
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1666 void net_inc_ingress_queue(void)
1668 static_key_slow_inc(&ingress_needed);
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672 void net_dec_ingress_queue(void)
1674 static_key_slow_dec(&ingress_needed);
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #ifdef CONFIG_NET_EGRESS
1680 static struct static_key egress_needed __read_mostly;
1682 void net_inc_egress_queue(void)
1684 static_key_slow_inc(&egress_needed);
1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688 void net_dec_egress_queue(void)
1690 static_key_slow_dec(&egress_needed);
1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 static struct static_key netstamp_needed __read_mostly;
1696 #ifdef HAVE_JUMP_LABEL
1697 /* We are not allowed to call static_key_slow_dec() from irq context
1698 * If net_disable_timestamp() is called from irq context, defer the
1699 * static_key_slow_dec() calls.
1701 static atomic_t netstamp_needed_deferred;
1704 void net_enable_timestamp(void)
1706 #ifdef HAVE_JUMP_LABEL
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1711 static_key_slow_dec(&netstamp_needed);
1715 static_key_slow_inc(&netstamp_needed);
1717 EXPORT_SYMBOL(net_enable_timestamp);
1719 void net_disable_timestamp(void)
1721 #ifdef HAVE_JUMP_LABEL
1722 if (in_interrupt()) {
1723 atomic_inc(&netstamp_needed_deferred);
1727 static_key_slow_dec(&netstamp_needed);
1729 EXPORT_SYMBOL(net_disable_timestamp);
1731 static inline void net_timestamp_set(struct sk_buff *skb)
1733 skb->tstamp.tv64 = 0;
1734 if (static_key_false(&netstamp_needed))
1735 __net_timestamp(skb);
1738 #define net_timestamp_check(COND, SKB) \
1739 if (static_key_false(&netstamp_needed)) { \
1740 if ((COND) && !(SKB)->tstamp.tv64) \
1741 __net_timestamp(SKB); \
1744 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1748 if (!(dev->flags & IFF_UP))
1751 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 if (skb->len <= len)
1755 /* if TSO is enabled, we don't care about the length as the packet
1756 * could be forwarded without being segmented before
1758 if (skb_is_gso(skb))
1763 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 unlikely(!is_skb_forwardable(dev, skb))) {
1769 atomic_long_inc(&dev->rx_dropped);
1774 skb_scrub_packet(skb, true);
1776 skb->protocol = eth_type_trans(skb, dev);
1777 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1781 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784 * dev_forward_skb - loopback an skb to another netif
1786 * @dev: destination network device
1787 * @skb: buffer to forward
1790 * NET_RX_SUCCESS (no congestion)
1791 * NET_RX_DROP (packet was dropped, but freed)
1793 * dev_forward_skb can be used for injecting an skb from the
1794 * start_xmit function of one device into the receive queue
1795 * of another device.
1797 * The receiving device may be in another namespace, so
1798 * we have to clear all information in the skb that could
1799 * impact namespace isolation.
1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1803 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1805 EXPORT_SYMBOL_GPL(dev_forward_skb);
1807 static inline int deliver_skb(struct sk_buff *skb,
1808 struct packet_type *pt_prev,
1809 struct net_device *orig_dev)
1811 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1813 atomic_inc(&skb->users);
1814 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 struct packet_type **pt,
1819 struct net_device *orig_dev,
1821 struct list_head *ptype_list)
1823 struct packet_type *ptype, *pt_prev = *pt;
1825 list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 if (ptype->type != type)
1829 deliver_skb(skb, pt_prev, orig_dev);
1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1837 if (!ptype->af_packet_priv || !skb->sk)
1840 if (ptype->id_match)
1841 return ptype->id_match(ptype, skb->sk);
1842 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1849 * Support routine. Sends outgoing frames to any network
1850 * taps currently in use.
1853 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1855 struct packet_type *ptype;
1856 struct sk_buff *skb2 = NULL;
1857 struct packet_type *pt_prev = NULL;
1858 struct list_head *ptype_list = &ptype_all;
1862 list_for_each_entry_rcu(ptype, ptype_list, list) {
1863 /* Never send packets back to the socket
1866 if (skb_loop_sk(ptype, skb))
1870 deliver_skb(skb2, pt_prev, skb->dev);
1875 /* need to clone skb, done only once */
1876 skb2 = skb_clone(skb, GFP_ATOMIC);
1880 net_timestamp_set(skb2);
1882 /* skb->nh should be correctly
1883 * set by sender, so that the second statement is
1884 * just protection against buggy protocols.
1886 skb_reset_mac_header(skb2);
1888 if (skb_network_header(skb2) < skb2->data ||
1889 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 ntohs(skb2->protocol),
1893 skb_reset_network_header(skb2);
1896 skb2->transport_header = skb2->network_header;
1897 skb2->pkt_type = PACKET_OUTGOING;
1901 if (ptype_list == &ptype_all) {
1902 ptype_list = &dev->ptype_all;
1907 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1912 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1913 * @dev: Network device
1914 * @txq: number of queues available
1916 * If real_num_tx_queues is changed the tc mappings may no longer be
1917 * valid. To resolve this verify the tc mapping remains valid and if
1918 * not NULL the mapping. With no priorities mapping to this
1919 * offset/count pair it will no longer be used. In the worst case TC0
1920 * is invalid nothing can be done so disable priority mappings. If is
1921 * expected that drivers will fix this mapping if they can before
1922 * calling netif_set_real_num_tx_queues.
1924 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1927 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1929 /* If TC0 is invalidated disable TC mapping */
1930 if (tc->offset + tc->count > txq) {
1931 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1936 /* Invalidated prio to tc mappings set to TC0 */
1937 for (i = 1; i < TC_BITMASK + 1; i++) {
1938 int q = netdev_get_prio_tc_map(dev, i);
1940 tc = &dev->tc_to_txq[q];
1941 if (tc->offset + tc->count > txq) {
1942 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1944 netdev_set_prio_tc_map(dev, i, 0);
1950 static DEFINE_MUTEX(xps_map_mutex);
1951 #define xmap_dereference(P) \
1952 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1954 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1957 struct xps_map *map = NULL;
1961 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1963 for (pos = 0; map && pos < map->len; pos++) {
1964 if (map->queues[pos] == index) {
1966 map->queues[pos] = map->queues[--map->len];
1968 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1969 kfree_rcu(map, rcu);
1979 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1981 struct xps_dev_maps *dev_maps;
1983 bool active = false;
1985 mutex_lock(&xps_map_mutex);
1986 dev_maps = xmap_dereference(dev->xps_maps);
1991 for_each_possible_cpu(cpu) {
1992 for (i = index; i < dev->num_tx_queues; i++) {
1993 if (!remove_xps_queue(dev_maps, cpu, i))
1996 if (i == dev->num_tx_queues)
2001 RCU_INIT_POINTER(dev->xps_maps, NULL);
2002 kfree_rcu(dev_maps, rcu);
2005 for (i = index; i < dev->num_tx_queues; i++)
2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010 mutex_unlock(&xps_map_mutex);
2013 static struct xps_map *expand_xps_map(struct xps_map *map,
2016 struct xps_map *new_map;
2017 int alloc_len = XPS_MIN_MAP_ALLOC;
2020 for (pos = 0; map && pos < map->len; pos++) {
2021 if (map->queues[pos] != index)
2026 /* Need to add queue to this CPU's existing map */
2028 if (pos < map->alloc_len)
2031 alloc_len = map->alloc_len * 2;
2034 /* Need to allocate new map to store queue on this CPU's map */
2035 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2040 for (i = 0; i < pos; i++)
2041 new_map->queues[i] = map->queues[i];
2042 new_map->alloc_len = alloc_len;
2048 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2051 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2052 struct xps_map *map, *new_map;
2053 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2054 int cpu, numa_node_id = -2;
2055 bool active = false;
2057 mutex_lock(&xps_map_mutex);
2059 dev_maps = xmap_dereference(dev->xps_maps);
2061 /* allocate memory for queue storage */
2062 for_each_online_cpu(cpu) {
2063 if (!cpumask_test_cpu(cpu, mask))
2067 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2068 if (!new_dev_maps) {
2069 mutex_unlock(&xps_map_mutex);
2073 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2076 map = expand_xps_map(map, cpu, index);
2080 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084 goto out_no_new_maps;
2086 for_each_possible_cpu(cpu) {
2087 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088 /* add queue to CPU maps */
2091 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092 while ((pos < map->len) && (map->queues[pos] != index))
2095 if (pos == map->len)
2096 map->queues[map->len++] = index;
2098 if (numa_node_id == -2)
2099 numa_node_id = cpu_to_node(cpu);
2100 else if (numa_node_id != cpu_to_node(cpu))
2103 } else if (dev_maps) {
2104 /* fill in the new device map from the old device map */
2105 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2111 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2113 /* Cleanup old maps */
2115 for_each_possible_cpu(cpu) {
2116 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118 if (map && map != new_map)
2119 kfree_rcu(map, rcu);
2122 kfree_rcu(dev_maps, rcu);
2125 dev_maps = new_dev_maps;
2129 /* update Tx queue numa node */
2130 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131 (numa_node_id >= 0) ? numa_node_id :
2137 /* removes queue from unused CPUs */
2138 for_each_possible_cpu(cpu) {
2139 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2142 if (remove_xps_queue(dev_maps, cpu, index))
2146 /* free map if not active */
2148 RCU_INIT_POINTER(dev->xps_maps, NULL);
2149 kfree_rcu(dev_maps, rcu);
2153 mutex_unlock(&xps_map_mutex);
2157 /* remove any maps that we added */
2158 for_each_possible_cpu(cpu) {
2159 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2162 if (new_map && new_map != map)
2166 mutex_unlock(&xps_map_mutex);
2168 kfree(new_dev_maps);
2171 EXPORT_SYMBOL(netif_set_xps_queue);
2175 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2178 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2182 if (txq < 1 || txq > dev->num_tx_queues)
2185 if (dev->reg_state == NETREG_REGISTERED ||
2186 dev->reg_state == NETREG_UNREGISTERING) {
2189 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2195 netif_setup_tc(dev, txq);
2197 if (txq < dev->real_num_tx_queues) {
2198 qdisc_reset_all_tx_gt(dev, txq);
2200 netif_reset_xps_queues_gt(dev, txq);
2205 dev->real_num_tx_queues = txq;
2208 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2212 * netif_set_real_num_rx_queues - set actual number of RX queues used
2213 * @dev: Network device
2214 * @rxq: Actual number of RX queues
2216 * This must be called either with the rtnl_lock held or before
2217 * registration of the net device. Returns 0 on success, or a
2218 * negative error code. If called before registration, it always
2221 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225 if (rxq < 1 || rxq > dev->num_rx_queues)
2228 if (dev->reg_state == NETREG_REGISTERED) {
2231 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2237 dev->real_num_rx_queues = rxq;
2240 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244 * netif_get_num_default_rss_queues - default number of RSS queues
2246 * This routine should set an upper limit on the number of RSS queues
2247 * used by default by multiqueue devices.
2249 int netif_get_num_default_rss_queues(void)
2251 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2253 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2255 static inline void __netif_reschedule(struct Qdisc *q)
2257 struct softnet_data *sd;
2258 unsigned long flags;
2260 local_irq_save(flags);
2261 sd = this_cpu_ptr(&softnet_data);
2262 q->next_sched = NULL;
2263 *sd->output_queue_tailp = q;
2264 sd->output_queue_tailp = &q->next_sched;
2265 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266 local_irq_restore(flags);
2269 void __netif_schedule(struct Qdisc *q)
2271 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272 __netif_reschedule(q);
2274 EXPORT_SYMBOL(__netif_schedule);
2276 struct dev_kfree_skb_cb {
2277 enum skb_free_reason reason;
2280 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2282 return (struct dev_kfree_skb_cb *)skb->cb;
2285 void netif_schedule_queue(struct netdev_queue *txq)
2288 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289 struct Qdisc *q = rcu_dereference(txq->qdisc);
2291 __netif_schedule(q);
2295 EXPORT_SYMBOL(netif_schedule_queue);
2298 * netif_wake_subqueue - allow sending packets on subqueue
2299 * @dev: network device
2300 * @queue_index: sub queue index
2302 * Resume individual transmit queue of a device with multiple transmit queues.
2304 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2306 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2308 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2312 q = rcu_dereference(txq->qdisc);
2313 __netif_schedule(q);
2317 EXPORT_SYMBOL(netif_wake_subqueue);
2319 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2321 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2325 q = rcu_dereference(dev_queue->qdisc);
2326 __netif_schedule(q);
2330 EXPORT_SYMBOL(netif_tx_wake_queue);
2332 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2334 unsigned long flags;
2336 if (likely(atomic_read(&skb->users) == 1)) {
2338 atomic_set(&skb->users, 0);
2339 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2342 get_kfree_skb_cb(skb)->reason = reason;
2343 local_irq_save(flags);
2344 skb->next = __this_cpu_read(softnet_data.completion_queue);
2345 __this_cpu_write(softnet_data.completion_queue, skb);
2346 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347 local_irq_restore(flags);
2349 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2351 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2353 if (in_irq() || irqs_disabled())
2354 __dev_kfree_skb_irq(skb, reason);
2358 EXPORT_SYMBOL(__dev_kfree_skb_any);
2362 * netif_device_detach - mark device as removed
2363 * @dev: network device
2365 * Mark device as removed from system and therefore no longer available.
2367 void netif_device_detach(struct net_device *dev)
2369 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370 netif_running(dev)) {
2371 netif_tx_stop_all_queues(dev);
2374 EXPORT_SYMBOL(netif_device_detach);
2377 * netif_device_attach - mark device as attached
2378 * @dev: network device
2380 * Mark device as attached from system and restart if needed.
2382 void netif_device_attach(struct net_device *dev)
2384 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385 netif_running(dev)) {
2386 netif_tx_wake_all_queues(dev);
2387 __netdev_watchdog_up(dev);
2390 EXPORT_SYMBOL(netif_device_attach);
2393 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394 * to be used as a distribution range.
2396 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397 unsigned int num_tx_queues)
2401 u16 qcount = num_tx_queues;
2403 if (skb_rx_queue_recorded(skb)) {
2404 hash = skb_get_rx_queue(skb);
2405 while (unlikely(hash >= num_tx_queues))
2406 hash -= num_tx_queues;
2411 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412 qoffset = dev->tc_to_txq[tc].offset;
2413 qcount = dev->tc_to_txq[tc].count;
2416 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2418 EXPORT_SYMBOL(__skb_tx_hash);
2420 static void skb_warn_bad_offload(const struct sk_buff *skb)
2422 static const netdev_features_t null_features = 0;
2423 struct net_device *dev = skb->dev;
2424 const char *name = "";
2426 if (!net_ratelimit())
2430 if (dev->dev.parent)
2431 name = dev_driver_string(dev->dev.parent);
2433 name = netdev_name(dev);
2435 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436 "gso_type=%d ip_summed=%d\n",
2437 name, dev ? &dev->features : &null_features,
2438 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2439 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440 skb_shinfo(skb)->gso_type, skb->ip_summed);
2444 * Invalidate hardware checksum when packet is to be mangled, and
2445 * complete checksum manually on outgoing path.
2447 int skb_checksum_help(struct sk_buff *skb)
2450 int ret = 0, offset;
2452 if (skb->ip_summed == CHECKSUM_COMPLETE)
2453 goto out_set_summed;
2455 if (unlikely(skb_shinfo(skb)->gso_size)) {
2456 skb_warn_bad_offload(skb);
2460 /* Before computing a checksum, we should make sure no frag could
2461 * be modified by an external entity : checksum could be wrong.
2463 if (skb_has_shared_frag(skb)) {
2464 ret = __skb_linearize(skb);
2469 offset = skb_checksum_start_offset(skb);
2470 BUG_ON(offset >= skb_headlen(skb));
2471 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2473 offset += skb->csum_offset;
2474 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2476 if (skb_cloned(skb) &&
2477 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2478 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2485 skb->ip_summed = CHECKSUM_NONE;
2489 EXPORT_SYMBOL(skb_checksum_help);
2491 /* skb_csum_offload_check - Driver helper function to determine if a device
2492 * with limited checksum offload capabilities is able to offload the checksum
2493 * for a given packet.
2496 * skb - sk_buff for the packet in question
2497 * spec - contains the description of what device can offload
2498 * csum_encapped - returns true if the checksum being offloaded is
2499 * encpasulated. That is it is checksum for the transport header
2500 * in the inner headers.
2501 * checksum_help - when set indicates that helper function should
2502 * call skb_checksum_help if offload checks fail
2505 * true: Packet has passed the checksum checks and should be offloadable to
2506 * the device (a driver may still need to check for additional
2507 * restrictions of its device)
2508 * false: Checksum is not offloadable. If checksum_help was set then
2509 * skb_checksum_help was called to resolve checksum for non-GSO
2510 * packets and when IP protocol is not SCTP
2512 bool __skb_csum_offload_chk(struct sk_buff *skb,
2513 const struct skb_csum_offl_spec *spec,
2514 bool *csum_encapped,
2518 struct ipv6hdr *ipv6;
2523 if (skb->protocol == htons(ETH_P_8021Q) ||
2524 skb->protocol == htons(ETH_P_8021AD)) {
2525 if (!spec->vlan_okay)
2529 /* We check whether the checksum refers to a transport layer checksum in
2530 * the outermost header or an encapsulated transport layer checksum that
2531 * corresponds to the inner headers of the skb. If the checksum is for
2532 * something else in the packet we need help.
2534 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535 /* Non-encapsulated checksum */
2536 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537 nhdr = skb_network_header(skb);
2538 *csum_encapped = false;
2539 if (spec->no_not_encapped)
2541 } else if (skb->encapsulation && spec->encap_okay &&
2542 skb_checksum_start_offset(skb) ==
2543 skb_inner_transport_offset(skb)) {
2544 /* Encapsulated checksum */
2545 *csum_encapped = true;
2546 switch (skb->inner_protocol_type) {
2547 case ENCAP_TYPE_ETHER:
2548 protocol = eproto_to_ipproto(skb->inner_protocol);
2550 case ENCAP_TYPE_IPPROTO:
2551 protocol = skb->inner_protocol;
2554 nhdr = skb_inner_network_header(skb);
2561 if (!spec->ipv4_okay)
2564 ip_proto = iph->protocol;
2565 if (iph->ihl != 5 && !spec->ip_options_okay)
2569 if (!spec->ipv6_okay)
2571 if (spec->no_encapped_ipv6 && *csum_encapped)
2574 nhdr += sizeof(*ipv6);
2575 ip_proto = ipv6->nexthdr;
2584 if (!spec->tcp_okay ||
2585 skb->csum_offset != offsetof(struct tcphdr, check))
2589 if (!spec->udp_okay ||
2590 skb->csum_offset != offsetof(struct udphdr, check))
2594 if (!spec->sctp_okay ||
2595 skb->csum_offset != offsetof(struct sctphdr, checksum))
2599 case NEXTHDR_ROUTING:
2600 case NEXTHDR_DEST: {
2603 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2606 ip_proto = opthdr[0];
2607 nhdr += (opthdr[1] + 1) << 3;
2609 goto ip_proto_again;
2615 /* Passed the tests for offloading checksum */
2619 if (csum_help && !skb_shinfo(skb)->gso_size)
2620 skb_checksum_help(skb);
2624 EXPORT_SYMBOL(__skb_csum_offload_chk);
2626 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2628 __be16 type = skb->protocol;
2630 /* Tunnel gso handlers can set protocol to ethernet. */
2631 if (type == htons(ETH_P_TEB)) {
2634 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2637 eth = (struct ethhdr *)skb_mac_header(skb);
2638 type = eth->h_proto;
2641 return __vlan_get_protocol(skb, type, depth);
2645 * skb_mac_gso_segment - mac layer segmentation handler.
2646 * @skb: buffer to segment
2647 * @features: features for the output path (see dev->features)
2649 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650 netdev_features_t features)
2652 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653 struct packet_offload *ptype;
2654 int vlan_depth = skb->mac_len;
2655 __be16 type = skb_network_protocol(skb, &vlan_depth);
2657 if (unlikely(!type))
2658 return ERR_PTR(-EINVAL);
2660 __skb_pull(skb, vlan_depth);
2663 list_for_each_entry_rcu(ptype, &offload_base, list) {
2664 if (ptype->type == type && ptype->callbacks.gso_segment) {
2665 segs = ptype->callbacks.gso_segment(skb, features);
2671 __skb_push(skb, skb->data - skb_mac_header(skb));
2675 EXPORT_SYMBOL(skb_mac_gso_segment);
2678 /* openvswitch calls this on rx path, so we need a different check.
2680 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2683 return skb->ip_summed != CHECKSUM_PARTIAL;
2685 return skb->ip_summed == CHECKSUM_NONE;
2689 * __skb_gso_segment - Perform segmentation on skb.
2690 * @skb: buffer to segment
2691 * @features: features for the output path (see dev->features)
2692 * @tx_path: whether it is called in TX path
2694 * This function segments the given skb and returns a list of segments.
2696 * It may return NULL if the skb requires no segmentation. This is
2697 * only possible when GSO is used for verifying header integrity.
2699 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2701 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702 netdev_features_t features, bool tx_path)
2704 if (unlikely(skb_needs_check(skb, tx_path))) {
2707 skb_warn_bad_offload(skb);
2709 err = skb_cow_head(skb, 0);
2711 return ERR_PTR(err);
2714 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2715 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2717 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2718 SKB_GSO_CB(skb)->encap_level = 0;
2720 skb_reset_mac_header(skb);
2721 skb_reset_mac_len(skb);
2723 return skb_mac_gso_segment(skb, features);
2725 EXPORT_SYMBOL(__skb_gso_segment);
2727 /* Take action when hardware reception checksum errors are detected. */
2729 void netdev_rx_csum_fault(struct net_device *dev)
2731 if (net_ratelimit()) {
2732 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2736 EXPORT_SYMBOL(netdev_rx_csum_fault);
2739 /* Actually, we should eliminate this check as soon as we know, that:
2740 * 1. IOMMU is present and allows to map all the memory.
2741 * 2. No high memory really exists on this machine.
2744 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2746 #ifdef CONFIG_HIGHMEM
2748 if (!(dev->features & NETIF_F_HIGHDMA)) {
2749 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2750 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2751 if (PageHighMem(skb_frag_page(frag)))
2756 if (PCI_DMA_BUS_IS_PHYS) {
2757 struct device *pdev = dev->dev.parent;
2761 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2762 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2763 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2764 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2772 /* If MPLS offload request, verify we are testing hardware MPLS features
2773 * instead of standard features for the netdev.
2775 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2776 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2777 netdev_features_t features,
2780 if (eth_p_mpls(type))
2781 features &= skb->dev->mpls_features;
2786 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2787 netdev_features_t features,
2794 static netdev_features_t harmonize_features(struct sk_buff *skb,
2795 netdev_features_t features)
2800 type = skb_network_protocol(skb, &tmp);
2801 features = net_mpls_features(skb, features, type);
2803 if (skb->ip_summed != CHECKSUM_NONE &&
2804 !can_checksum_protocol(features, type)) {
2805 features &= ~NETIF_F_CSUM_MASK;
2806 } else if (illegal_highdma(skb->dev, skb)) {
2807 features &= ~NETIF_F_SG;
2813 netdev_features_t passthru_features_check(struct sk_buff *skb,
2814 struct net_device *dev,
2815 netdev_features_t features)
2819 EXPORT_SYMBOL(passthru_features_check);
2821 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2822 struct net_device *dev,
2823 netdev_features_t features)
2825 return vlan_features_check(skb, features);
2828 netdev_features_t netif_skb_features(struct sk_buff *skb)
2830 struct net_device *dev = skb->dev;
2831 netdev_features_t features = dev->features;
2832 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2834 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2835 features &= ~NETIF_F_GSO_MASK;
2837 /* If encapsulation offload request, verify we are testing
2838 * hardware encapsulation features instead of standard
2839 * features for the netdev
2841 if (skb->encapsulation)
2842 features &= dev->hw_enc_features;
2844 if (skb_vlan_tagged(skb))
2845 features = netdev_intersect_features(features,
2846 dev->vlan_features |
2847 NETIF_F_HW_VLAN_CTAG_TX |
2848 NETIF_F_HW_VLAN_STAG_TX);
2850 if (dev->netdev_ops->ndo_features_check)
2851 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2854 features &= dflt_features_check(skb, dev, features);
2856 return harmonize_features(skb, features);
2858 EXPORT_SYMBOL(netif_skb_features);
2860 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2861 struct netdev_queue *txq, bool more)
2866 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2867 dev_queue_xmit_nit(skb, dev);
2870 trace_net_dev_start_xmit(skb, dev);
2871 rc = netdev_start_xmit(skb, dev, txq, more);
2872 trace_net_dev_xmit(skb, rc, dev, len);
2877 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2878 struct netdev_queue *txq, int *ret)
2880 struct sk_buff *skb = first;
2881 int rc = NETDEV_TX_OK;
2884 struct sk_buff *next = skb->next;
2887 rc = xmit_one(skb, dev, txq, next != NULL);
2888 if (unlikely(!dev_xmit_complete(rc))) {
2894 if (netif_xmit_stopped(txq) && skb) {
2895 rc = NETDEV_TX_BUSY;
2905 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2906 netdev_features_t features)
2908 if (skb_vlan_tag_present(skb) &&
2909 !vlan_hw_offload_capable(features, skb->vlan_proto))
2910 skb = __vlan_hwaccel_push_inside(skb);
2914 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2916 netdev_features_t features;
2921 features = netif_skb_features(skb);
2922 skb = validate_xmit_vlan(skb, features);
2926 if (netif_needs_gso(skb, features)) {
2927 struct sk_buff *segs;
2929 segs = skb_gso_segment(skb, features);
2937 if (skb_needs_linearize(skb, features) &&
2938 __skb_linearize(skb))
2941 /* If packet is not checksummed and device does not
2942 * support checksumming for this protocol, complete
2943 * checksumming here.
2945 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2946 if (skb->encapsulation)
2947 skb_set_inner_transport_header(skb,
2948 skb_checksum_start_offset(skb));
2950 skb_set_transport_header(skb,
2951 skb_checksum_start_offset(skb));
2952 if (!(features & NETIF_F_CSUM_MASK) &&
2953 skb_checksum_help(skb))
2966 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2968 struct sk_buff *next, *head = NULL, *tail;
2970 for (; skb != NULL; skb = next) {
2974 /* in case skb wont be segmented, point to itself */
2977 skb = validate_xmit_skb(skb, dev);
2985 /* If skb was segmented, skb->prev points to
2986 * the last segment. If not, it still contains skb.
2993 static void qdisc_pkt_len_init(struct sk_buff *skb)
2995 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2997 qdisc_skb_cb(skb)->pkt_len = skb->len;
2999 /* To get more precise estimation of bytes sent on wire,
3000 * we add to pkt_len the headers size of all segments
3002 if (shinfo->gso_size) {
3003 unsigned int hdr_len;
3004 u16 gso_segs = shinfo->gso_segs;
3006 /* mac layer + network layer */
3007 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3009 /* + transport layer */
3010 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3011 hdr_len += tcp_hdrlen(skb);
3013 hdr_len += sizeof(struct udphdr);
3015 if (shinfo->gso_type & SKB_GSO_DODGY)
3016 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3019 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3023 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3024 struct net_device *dev,
3025 struct netdev_queue *txq)
3027 spinlock_t *root_lock = qdisc_lock(q);
3031 qdisc_calculate_pkt_len(skb, q);
3033 * Heuristic to force contended enqueues to serialize on a
3034 * separate lock before trying to get qdisc main lock.
3035 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3036 * often and dequeue packets faster.
3038 contended = qdisc_is_running(q);
3039 if (unlikely(contended))
3040 spin_lock(&q->busylock);
3042 spin_lock(root_lock);
3043 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3046 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3047 qdisc_run_begin(q)) {
3049 * This is a work-conserving queue; there are no old skbs
3050 * waiting to be sent out; and the qdisc is not running -
3051 * xmit the skb directly.
3054 qdisc_bstats_update(q, skb);
3056 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3057 if (unlikely(contended)) {
3058 spin_unlock(&q->busylock);
3065 rc = NET_XMIT_SUCCESS;
3067 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
3068 if (qdisc_run_begin(q)) {
3069 if (unlikely(contended)) {
3070 spin_unlock(&q->busylock);
3076 spin_unlock(root_lock);
3077 if (unlikely(contended))
3078 spin_unlock(&q->busylock);
3082 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3083 static void skb_update_prio(struct sk_buff *skb)
3085 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3087 if (!skb->priority && skb->sk && map) {
3088 unsigned int prioidx =
3089 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3091 if (prioidx < map->priomap_len)
3092 skb->priority = map->priomap[prioidx];
3096 #define skb_update_prio(skb)
3099 DEFINE_PER_CPU(int, xmit_recursion);
3100 EXPORT_SYMBOL(xmit_recursion);
3102 #define RECURSION_LIMIT 10
3105 * dev_loopback_xmit - loop back @skb
3106 * @net: network namespace this loopback is happening in
3107 * @sk: sk needed to be a netfilter okfn
3108 * @skb: buffer to transmit
3110 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3112 skb_reset_mac_header(skb);
3113 __skb_pull(skb, skb_network_offset(skb));
3114 skb->pkt_type = PACKET_LOOPBACK;
3115 skb->ip_summed = CHECKSUM_UNNECESSARY;
3116 WARN_ON(!skb_dst(skb));
3121 EXPORT_SYMBOL(dev_loopback_xmit);
3123 #ifdef CONFIG_NET_EGRESS
3124 static struct sk_buff *
3125 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3127 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3128 struct tcf_result cl_res;
3133 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3134 * earlier by the caller.
3136 qdisc_bstats_cpu_update(cl->q, skb);
3138 switch (tc_classify(skb, cl, &cl_res, false)) {
3140 case TC_ACT_RECLASSIFY:
3141 skb->tc_index = TC_H_MIN(cl_res.classid);
3144 qdisc_qstats_cpu_drop(cl->q);
3145 *ret = NET_XMIT_DROP;
3149 *ret = NET_XMIT_SUCCESS;
3153 case TC_ACT_REDIRECT:
3154 /* No need to push/pop skb's mac_header here on egress! */
3155 skb_do_redirect(skb);
3156 *ret = NET_XMIT_SUCCESS;
3164 #endif /* CONFIG_NET_EGRESS */
3166 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3169 struct xps_dev_maps *dev_maps;
3170 struct xps_map *map;
3171 int queue_index = -1;
3174 dev_maps = rcu_dereference(dev->xps_maps);
3176 map = rcu_dereference(
3177 dev_maps->cpu_map[skb->sender_cpu - 1]);
3180 queue_index = map->queues[0];
3182 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3184 if (unlikely(queue_index >= dev->real_num_tx_queues))
3196 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3198 struct sock *sk = skb->sk;
3199 int queue_index = sk_tx_queue_get(sk);
3201 if (queue_index < 0 || skb->ooo_okay ||
3202 queue_index >= dev->real_num_tx_queues) {
3203 int new_index = get_xps_queue(dev, skb);
3205 new_index = skb_tx_hash(dev, skb);
3207 if (queue_index != new_index && sk &&
3209 rcu_access_pointer(sk->sk_dst_cache))
3210 sk_tx_queue_set(sk, new_index);
3212 queue_index = new_index;
3218 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3219 struct sk_buff *skb,
3222 int queue_index = 0;
3225 u32 sender_cpu = skb->sender_cpu - 1;
3227 if (sender_cpu >= (u32)NR_CPUS)
3228 skb->sender_cpu = raw_smp_processor_id() + 1;
3231 if (dev->real_num_tx_queues != 1) {
3232 const struct net_device_ops *ops = dev->netdev_ops;
3233 if (ops->ndo_select_queue)
3234 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3237 queue_index = __netdev_pick_tx(dev, skb);
3240 queue_index = netdev_cap_txqueue(dev, queue_index);
3243 skb_set_queue_mapping(skb, queue_index);
3244 return netdev_get_tx_queue(dev, queue_index);
3248 * __dev_queue_xmit - transmit a buffer
3249 * @skb: buffer to transmit
3250 * @accel_priv: private data used for L2 forwarding offload
3252 * Queue a buffer for transmission to a network device. The caller must
3253 * have set the device and priority and built the buffer before calling
3254 * this function. The function can be called from an interrupt.
3256 * A negative errno code is returned on a failure. A success does not
3257 * guarantee the frame will be transmitted as it may be dropped due
3258 * to congestion or traffic shaping.
3260 * -----------------------------------------------------------------------------------
3261 * I notice this method can also return errors from the queue disciplines,
3262 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3265 * Regardless of the return value, the skb is consumed, so it is currently
3266 * difficult to retry a send to this method. (You can bump the ref count
3267 * before sending to hold a reference for retry if you are careful.)
3269 * When calling this method, interrupts MUST be enabled. This is because
3270 * the BH enable code must have IRQs enabled so that it will not deadlock.
3273 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3275 struct net_device *dev = skb->dev;
3276 struct netdev_queue *txq;
3280 skb_reset_mac_header(skb);
3282 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3283 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3285 /* Disable soft irqs for various locks below. Also
3286 * stops preemption for RCU.
3290 skb_update_prio(skb);
3292 qdisc_pkt_len_init(skb);
3293 #ifdef CONFIG_NET_CLS_ACT
3294 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3295 # ifdef CONFIG_NET_EGRESS
3296 if (static_key_false(&egress_needed)) {
3297 skb = sch_handle_egress(skb, &rc, dev);
3303 /* If device/qdisc don't need skb->dst, release it right now while
3304 * its hot in this cpu cache.
3306 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3311 #ifdef CONFIG_NET_SWITCHDEV
3312 /* Don't forward if offload device already forwarded */
3313 if (skb->offload_fwd_mark &&
3314 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3316 rc = NET_XMIT_SUCCESS;
3321 txq = netdev_pick_tx(dev, skb, accel_priv);
3322 q = rcu_dereference_bh(txq->qdisc);
3324 trace_net_dev_queue(skb);
3326 rc = __dev_xmit_skb(skb, q, dev, txq);
3330 /* The device has no queue. Common case for software devices:
3331 loopback, all the sorts of tunnels...
3333 Really, it is unlikely that netif_tx_lock protection is necessary
3334 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3336 However, it is possible, that they rely on protection
3339 Check this and shot the lock. It is not prone from deadlocks.
3340 Either shot noqueue qdisc, it is even simpler 8)
3342 if (dev->flags & IFF_UP) {
3343 int cpu = smp_processor_id(); /* ok because BHs are off */
3345 if (txq->xmit_lock_owner != cpu) {
3347 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3348 goto recursion_alert;
3350 skb = validate_xmit_skb(skb, dev);
3354 HARD_TX_LOCK(dev, txq, cpu);
3356 if (!netif_xmit_stopped(txq)) {
3357 __this_cpu_inc(xmit_recursion);
3358 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3359 __this_cpu_dec(xmit_recursion);
3360 if (dev_xmit_complete(rc)) {
3361 HARD_TX_UNLOCK(dev, txq);
3365 HARD_TX_UNLOCK(dev, txq);
3366 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3369 /* Recursion is detected! It is possible,
3373 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3380 rcu_read_unlock_bh();
3382 atomic_long_inc(&dev->tx_dropped);
3383 kfree_skb_list(skb);
3386 rcu_read_unlock_bh();
3390 int dev_queue_xmit(struct sk_buff *skb)
3392 return __dev_queue_xmit(skb, NULL);
3394 EXPORT_SYMBOL(dev_queue_xmit);
3396 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3398 return __dev_queue_xmit(skb, accel_priv);
3400 EXPORT_SYMBOL(dev_queue_xmit_accel);
3403 /*=======================================================================
3405 =======================================================================*/
3407 int netdev_max_backlog __read_mostly = 1000;
3408 EXPORT_SYMBOL(netdev_max_backlog);
3410 int netdev_tstamp_prequeue __read_mostly = 1;
3411 int netdev_budget __read_mostly = 300;
3412 int weight_p __read_mostly = 64; /* old backlog weight */
3414 /* Called with irq disabled */
3415 static inline void ____napi_schedule(struct softnet_data *sd,
3416 struct napi_struct *napi)
3418 list_add_tail(&napi->poll_list, &sd->poll_list);
3419 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3424 /* One global table that all flow-based protocols share. */
3425 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3426 EXPORT_SYMBOL(rps_sock_flow_table);
3427 u32 rps_cpu_mask __read_mostly;
3428 EXPORT_SYMBOL(rps_cpu_mask);
3430 struct static_key rps_needed __read_mostly;
3432 static struct rps_dev_flow *
3433 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3434 struct rps_dev_flow *rflow, u16 next_cpu)
3436 if (next_cpu < nr_cpu_ids) {
3437 #ifdef CONFIG_RFS_ACCEL
3438 struct netdev_rx_queue *rxqueue;
3439 struct rps_dev_flow_table *flow_table;
3440 struct rps_dev_flow *old_rflow;
3445 /* Should we steer this flow to a different hardware queue? */
3446 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3447 !(dev->features & NETIF_F_NTUPLE))
3449 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3450 if (rxq_index == skb_get_rx_queue(skb))
3453 rxqueue = dev->_rx + rxq_index;
3454 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3457 flow_id = skb_get_hash(skb) & flow_table->mask;
3458 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3459 rxq_index, flow_id);
3463 rflow = &flow_table->flows[flow_id];
3465 if (old_rflow->filter == rflow->filter)
3466 old_rflow->filter = RPS_NO_FILTER;
3470 per_cpu(softnet_data, next_cpu).input_queue_head;
3473 rflow->cpu = next_cpu;
3478 * get_rps_cpu is called from netif_receive_skb and returns the target
3479 * CPU from the RPS map of the receiving queue for a given skb.
3480 * rcu_read_lock must be held on entry.
3482 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483 struct rps_dev_flow **rflowp)
3485 const struct rps_sock_flow_table *sock_flow_table;
3486 struct netdev_rx_queue *rxqueue = dev->_rx;
3487 struct rps_dev_flow_table *flow_table;
3488 struct rps_map *map;
3493 if (skb_rx_queue_recorded(skb)) {
3494 u16 index = skb_get_rx_queue(skb);
3496 if (unlikely(index >= dev->real_num_rx_queues)) {
3497 WARN_ONCE(dev->real_num_rx_queues > 1,
3498 "%s received packet on queue %u, but number "
3499 "of RX queues is %u\n",
3500 dev->name, index, dev->real_num_rx_queues);
3506 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3508 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3509 map = rcu_dereference(rxqueue->rps_map);
3510 if (!flow_table && !map)
3513 skb_reset_network_header(skb);
3514 hash = skb_get_hash(skb);
3518 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3519 if (flow_table && sock_flow_table) {
3520 struct rps_dev_flow *rflow;
3524 /* First check into global flow table if there is a match */
3525 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3526 if ((ident ^ hash) & ~rps_cpu_mask)
3529 next_cpu = ident & rps_cpu_mask;
3531 /* OK, now we know there is a match,
3532 * we can look at the local (per receive queue) flow table
3534 rflow = &flow_table->flows[hash & flow_table->mask];
3538 * If the desired CPU (where last recvmsg was done) is
3539 * different from current CPU (one in the rx-queue flow
3540 * table entry), switch if one of the following holds:
3541 * - Current CPU is unset (>= nr_cpu_ids).
3542 * - Current CPU is offline.
3543 * - The current CPU's queue tail has advanced beyond the
3544 * last packet that was enqueued using this table entry.
3545 * This guarantees that all previous packets for the flow
3546 * have been dequeued, thus preserving in order delivery.
3548 if (unlikely(tcpu != next_cpu) &&
3549 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3550 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3551 rflow->last_qtail)) >= 0)) {
3553 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3556 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3566 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3567 if (cpu_online(tcpu)) {
3577 #ifdef CONFIG_RFS_ACCEL
3580 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3581 * @dev: Device on which the filter was set
3582 * @rxq_index: RX queue index
3583 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3584 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3586 * Drivers that implement ndo_rx_flow_steer() should periodically call
3587 * this function for each installed filter and remove the filters for
3588 * which it returns %true.
3590 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3591 u32 flow_id, u16 filter_id)
3593 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3594 struct rps_dev_flow_table *flow_table;
3595 struct rps_dev_flow *rflow;
3600 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3601 if (flow_table && flow_id <= flow_table->mask) {
3602 rflow = &flow_table->flows[flow_id];
3603 cpu = ACCESS_ONCE(rflow->cpu);
3604 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3605 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3606 rflow->last_qtail) <
3607 (int)(10 * flow_table->mask)))
3613 EXPORT_SYMBOL(rps_may_expire_flow);
3615 #endif /* CONFIG_RFS_ACCEL */
3617 /* Called from hardirq (IPI) context */
3618 static void rps_trigger_softirq(void *data)
3620 struct softnet_data *sd = data;
3622 ____napi_schedule(sd, &sd->backlog);
3626 #endif /* CONFIG_RPS */
3629 * Check if this softnet_data structure is another cpu one
3630 * If yes, queue it to our IPI list and return 1
3633 static int rps_ipi_queued(struct softnet_data *sd)
3636 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3639 sd->rps_ipi_next = mysd->rps_ipi_list;
3640 mysd->rps_ipi_list = sd;
3642 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3645 #endif /* CONFIG_RPS */
3649 #ifdef CONFIG_NET_FLOW_LIMIT
3650 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3653 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3655 #ifdef CONFIG_NET_FLOW_LIMIT
3656 struct sd_flow_limit *fl;
3657 struct softnet_data *sd;
3658 unsigned int old_flow, new_flow;
3660 if (qlen < (netdev_max_backlog >> 1))
3663 sd = this_cpu_ptr(&softnet_data);
3666 fl = rcu_dereference(sd->flow_limit);
3668 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3669 old_flow = fl->history[fl->history_head];
3670 fl->history[fl->history_head] = new_flow;
3673 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3675 if (likely(fl->buckets[old_flow]))
3676 fl->buckets[old_flow]--;
3678 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3690 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3691 * queue (may be a remote CPU queue).
3693 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3694 unsigned int *qtail)
3696 struct softnet_data *sd;
3697 unsigned long flags;
3700 sd = &per_cpu(softnet_data, cpu);
3702 local_irq_save(flags);
3705 if (!netif_running(skb->dev))
3707 qlen = skb_queue_len(&sd->input_pkt_queue);
3708 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3711 __skb_queue_tail(&sd->input_pkt_queue, skb);
3712 input_queue_tail_incr_save(sd, qtail);
3714 local_irq_restore(flags);
3715 return NET_RX_SUCCESS;
3718 /* Schedule NAPI for backlog device
3719 * We can use non atomic operation since we own the queue lock
3721 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3722 if (!rps_ipi_queued(sd))
3723 ____napi_schedule(sd, &sd->backlog);
3732 local_irq_restore(flags);
3734 atomic_long_inc(&skb->dev->rx_dropped);
3739 static int netif_rx_internal(struct sk_buff *skb)
3743 net_timestamp_check(netdev_tstamp_prequeue, skb);
3745 trace_netif_rx(skb);
3747 if (static_key_false(&rps_needed)) {
3748 struct rps_dev_flow voidflow, *rflow = &voidflow;
3754 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3756 cpu = smp_processor_id();
3758 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3766 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3773 * netif_rx - post buffer to the network code
3774 * @skb: buffer to post
3776 * This function receives a packet from a device driver and queues it for
3777 * the upper (protocol) levels to process. It always succeeds. The buffer
3778 * may be dropped during processing for congestion control or by the
3782 * NET_RX_SUCCESS (no congestion)
3783 * NET_RX_DROP (packet was dropped)
3787 int netif_rx(struct sk_buff *skb)
3789 trace_netif_rx_entry(skb);
3791 return netif_rx_internal(skb);
3793 EXPORT_SYMBOL(netif_rx);
3795 int netif_rx_ni(struct sk_buff *skb)
3799 trace_netif_rx_ni_entry(skb);
3802 err = netif_rx_internal(skb);
3803 if (local_softirq_pending())
3809 EXPORT_SYMBOL(netif_rx_ni);
3811 static void net_tx_action(struct softirq_action *h)
3813 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3815 if (sd->completion_queue) {
3816 struct sk_buff *clist;
3818 local_irq_disable();
3819 clist = sd->completion_queue;
3820 sd->completion_queue = NULL;
3824 struct sk_buff *skb = clist;
3825 clist = clist->next;
3827 WARN_ON(atomic_read(&skb->users));
3828 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3829 trace_consume_skb(skb);
3831 trace_kfree_skb(skb, net_tx_action);
3836 if (sd->output_queue) {
3839 local_irq_disable();
3840 head = sd->output_queue;
3841 sd->output_queue = NULL;
3842 sd->output_queue_tailp = &sd->output_queue;
3846 struct Qdisc *q = head;
3847 spinlock_t *root_lock;
3849 head = head->next_sched;
3851 root_lock = qdisc_lock(q);
3852 if (spin_trylock(root_lock)) {
3853 smp_mb__before_atomic();
3854 clear_bit(__QDISC_STATE_SCHED,
3857 spin_unlock(root_lock);
3859 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3861 __netif_reschedule(q);
3863 smp_mb__before_atomic();
3864 clear_bit(__QDISC_STATE_SCHED,
3872 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3873 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3874 /* This hook is defined here for ATM LANE */
3875 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3876 unsigned char *addr) __read_mostly;
3877 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3880 static inline struct sk_buff *
3881 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3882 struct net_device *orig_dev)
3884 #ifdef CONFIG_NET_CLS_ACT
3885 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3886 struct tcf_result cl_res;
3888 /* If there's at least one ingress present somewhere (so
3889 * we get here via enabled static key), remaining devices
3890 * that are not configured with an ingress qdisc will bail
3896 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3900 qdisc_skb_cb(skb)->pkt_len = skb->len;
3901 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3902 qdisc_bstats_cpu_update(cl->q, skb);
3904 switch (tc_classify(skb, cl, &cl_res, false)) {
3906 case TC_ACT_RECLASSIFY:
3907 skb->tc_index = TC_H_MIN(cl_res.classid);
3910 qdisc_qstats_cpu_drop(cl->q);
3915 case TC_ACT_REDIRECT:
3916 /* skb_mac_header check was done by cls/act_bpf, so
3917 * we can safely push the L2 header back before
3918 * redirecting to another netdev
3920 __skb_push(skb, skb->mac_len);
3921 skb_do_redirect(skb);
3926 #endif /* CONFIG_NET_CLS_ACT */
3931 * netdev_rx_handler_register - register receive handler
3932 * @dev: device to register a handler for
3933 * @rx_handler: receive handler to register
3934 * @rx_handler_data: data pointer that is used by rx handler
3936 * Register a receive handler for a device. This handler will then be
3937 * called from __netif_receive_skb. A negative errno code is returned
3940 * The caller must hold the rtnl_mutex.
3942 * For a general description of rx_handler, see enum rx_handler_result.
3944 int netdev_rx_handler_register(struct net_device *dev,
3945 rx_handler_func_t *rx_handler,
3946 void *rx_handler_data)
3950 if (dev->rx_handler)
3953 /* Note: rx_handler_data must be set before rx_handler */
3954 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3955 rcu_assign_pointer(dev->rx_handler, rx_handler);
3959 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3962 * netdev_rx_handler_unregister - unregister receive handler
3963 * @dev: device to unregister a handler from
3965 * Unregister a receive handler from a device.
3967 * The caller must hold the rtnl_mutex.
3969 void netdev_rx_handler_unregister(struct net_device *dev)
3973 RCU_INIT_POINTER(dev->rx_handler, NULL);
3974 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3975 * section has a guarantee to see a non NULL rx_handler_data
3979 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3981 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3984 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3985 * the special handling of PFMEMALLOC skbs.
3987 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3989 switch (skb->protocol) {
3990 case htons(ETH_P_ARP):
3991 case htons(ETH_P_IP):
3992 case htons(ETH_P_IPV6):
3993 case htons(ETH_P_8021Q):
3994 case htons(ETH_P_8021AD):
4001 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4002 int *ret, struct net_device *orig_dev)
4004 #ifdef CONFIG_NETFILTER_INGRESS
4005 if (nf_hook_ingress_active(skb)) {
4007 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4011 return nf_hook_ingress(skb);
4013 #endif /* CONFIG_NETFILTER_INGRESS */
4017 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4019 struct packet_type *ptype, *pt_prev;
4020 rx_handler_func_t *rx_handler;
4021 struct net_device *orig_dev;
4022 bool deliver_exact = false;
4023 int ret = NET_RX_DROP;
4026 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4028 trace_netif_receive_skb(skb);
4030 orig_dev = skb->dev;
4032 skb_reset_network_header(skb);
4033 if (!skb_transport_header_was_set(skb))
4034 skb_reset_transport_header(skb);
4035 skb_reset_mac_len(skb);
4040 skb->skb_iif = skb->dev->ifindex;
4042 __this_cpu_inc(softnet_data.processed);
4044 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4045 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4046 skb = skb_vlan_untag(skb);
4051 #ifdef CONFIG_NET_CLS_ACT
4052 if (skb->tc_verd & TC_NCLS) {
4053 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4061 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4063 ret = deliver_skb(skb, pt_prev, orig_dev);
4067 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4069 ret = deliver_skb(skb, pt_prev, orig_dev);
4074 #ifdef CONFIG_NET_INGRESS
4075 if (static_key_false(&ingress_needed)) {
4076 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4080 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4084 #ifdef CONFIG_NET_CLS_ACT
4088 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4091 if (skb_vlan_tag_present(skb)) {
4093 ret = deliver_skb(skb, pt_prev, orig_dev);
4096 if (vlan_do_receive(&skb))
4098 else if (unlikely(!skb))
4102 rx_handler = rcu_dereference(skb->dev->rx_handler);
4105 ret = deliver_skb(skb, pt_prev, orig_dev);
4108 switch (rx_handler(&skb)) {
4109 case RX_HANDLER_CONSUMED:
4110 ret = NET_RX_SUCCESS;
4112 case RX_HANDLER_ANOTHER:
4114 case RX_HANDLER_EXACT:
4115 deliver_exact = true;
4116 case RX_HANDLER_PASS:
4123 if (unlikely(skb_vlan_tag_present(skb))) {
4124 if (skb_vlan_tag_get_id(skb))
4125 skb->pkt_type = PACKET_OTHERHOST;
4126 /* Note: we might in the future use prio bits
4127 * and set skb->priority like in vlan_do_receive()
4128 * For the time being, just ignore Priority Code Point
4133 type = skb->protocol;
4135 /* deliver only exact match when indicated */
4136 if (likely(!deliver_exact)) {
4137 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4138 &ptype_base[ntohs(type) &
4142 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4143 &orig_dev->ptype_specific);
4145 if (unlikely(skb->dev != orig_dev)) {
4146 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4147 &skb->dev->ptype_specific);
4151 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4154 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4157 atomic_long_inc(&skb->dev->rx_dropped);
4159 /* Jamal, now you will not able to escape explaining
4160 * me how you were going to use this. :-)
4169 static int __netif_receive_skb(struct sk_buff *skb)
4173 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4174 unsigned long pflags = current->flags;
4177 * PFMEMALLOC skbs are special, they should
4178 * - be delivered to SOCK_MEMALLOC sockets only
4179 * - stay away from userspace
4180 * - have bounded memory usage
4182 * Use PF_MEMALLOC as this saves us from propagating the allocation
4183 * context down to all allocation sites.
4185 current->flags |= PF_MEMALLOC;
4186 ret = __netif_receive_skb_core(skb, true);
4187 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4189 ret = __netif_receive_skb_core(skb, false);
4194 static int netif_receive_skb_internal(struct sk_buff *skb)
4198 net_timestamp_check(netdev_tstamp_prequeue, skb);
4200 if (skb_defer_rx_timestamp(skb))
4201 return NET_RX_SUCCESS;
4206 if (static_key_false(&rps_needed)) {
4207 struct rps_dev_flow voidflow, *rflow = &voidflow;
4208 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4211 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4217 ret = __netif_receive_skb(skb);
4223 * netif_receive_skb - process receive buffer from network
4224 * @skb: buffer to process
4226 * netif_receive_skb() is the main receive data processing function.
4227 * It always succeeds. The buffer may be dropped during processing
4228 * for congestion control or by the protocol layers.
4230 * This function may only be called from softirq context and interrupts
4231 * should be enabled.
4233 * Return values (usually ignored):
4234 * NET_RX_SUCCESS: no congestion
4235 * NET_RX_DROP: packet was dropped
4237 int netif_receive_skb(struct sk_buff *skb)
4239 trace_netif_receive_skb_entry(skb);
4241 return netif_receive_skb_internal(skb);
4243 EXPORT_SYMBOL(netif_receive_skb);
4245 /* Network device is going away, flush any packets still pending
4246 * Called with irqs disabled.
4248 static void flush_backlog(void *arg)
4250 struct net_device *dev = arg;
4251 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4252 struct sk_buff *skb, *tmp;
4255 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4256 if (skb->dev == dev) {
4257 __skb_unlink(skb, &sd->input_pkt_queue);
4259 input_queue_head_incr(sd);
4264 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4265 if (skb->dev == dev) {
4266 __skb_unlink(skb, &sd->process_queue);
4268 input_queue_head_incr(sd);
4273 static int napi_gro_complete(struct sk_buff *skb)
4275 struct packet_offload *ptype;
4276 __be16 type = skb->protocol;
4277 struct list_head *head = &offload_base;
4280 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4282 if (NAPI_GRO_CB(skb)->count == 1) {
4283 skb_shinfo(skb)->gso_size = 0;
4288 list_for_each_entry_rcu(ptype, head, list) {
4289 if (ptype->type != type || !ptype->callbacks.gro_complete)
4292 err = ptype->callbacks.gro_complete(skb, 0);
4298 WARN_ON(&ptype->list == head);
4300 return NET_RX_SUCCESS;
4304 return netif_receive_skb_internal(skb);
4307 /* napi->gro_list contains packets ordered by age.
4308 * youngest packets at the head of it.
4309 * Complete skbs in reverse order to reduce latencies.
4311 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4313 struct sk_buff *skb, *prev = NULL;
4315 /* scan list and build reverse chain */
4316 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4321 for (skb = prev; skb; skb = prev) {
4324 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4328 napi_gro_complete(skb);
4332 napi->gro_list = NULL;
4334 EXPORT_SYMBOL(napi_gro_flush);
4336 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4339 unsigned int maclen = skb->dev->hard_header_len;
4340 u32 hash = skb_get_hash_raw(skb);
4342 for (p = napi->gro_list; p; p = p->next) {
4343 unsigned long diffs;
4345 NAPI_GRO_CB(p)->flush = 0;
4347 if (hash != skb_get_hash_raw(p)) {
4348 NAPI_GRO_CB(p)->same_flow = 0;
4352 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4353 diffs |= p->vlan_tci ^ skb->vlan_tci;
4354 if (maclen == ETH_HLEN)
4355 diffs |= compare_ether_header(skb_mac_header(p),
4356 skb_mac_header(skb));
4358 diffs = memcmp(skb_mac_header(p),
4359 skb_mac_header(skb),
4361 NAPI_GRO_CB(p)->same_flow = !diffs;
4365 static void skb_gro_reset_offset(struct sk_buff *skb)
4367 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4368 const skb_frag_t *frag0 = &pinfo->frags[0];
4370 NAPI_GRO_CB(skb)->data_offset = 0;
4371 NAPI_GRO_CB(skb)->frag0 = NULL;
4372 NAPI_GRO_CB(skb)->frag0_len = 0;
4374 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4376 !PageHighMem(skb_frag_page(frag0))) {
4377 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4378 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4382 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4384 struct skb_shared_info *pinfo = skb_shinfo(skb);
4386 BUG_ON(skb->end - skb->tail < grow);
4388 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4390 skb->data_len -= grow;
4393 pinfo->frags[0].page_offset += grow;
4394 skb_frag_size_sub(&pinfo->frags[0], grow);
4396 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4397 skb_frag_unref(skb, 0);
4398 memmove(pinfo->frags, pinfo->frags + 1,
4399 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4403 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4405 struct sk_buff **pp = NULL;
4406 struct packet_offload *ptype;
4407 __be16 type = skb->protocol;
4408 struct list_head *head = &offload_base;
4410 enum gro_result ret;
4413 if (!(skb->dev->features & NETIF_F_GRO))
4416 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4419 gro_list_prepare(napi, skb);
4422 list_for_each_entry_rcu(ptype, head, list) {
4423 if (ptype->type != type || !ptype->callbacks.gro_receive)
4426 skb_set_network_header(skb, skb_gro_offset(skb));
4427 skb_reset_mac_len(skb);
4428 NAPI_GRO_CB(skb)->same_flow = 0;
4429 NAPI_GRO_CB(skb)->flush = 0;
4430 NAPI_GRO_CB(skb)->free = 0;
4431 NAPI_GRO_CB(skb)->udp_mark = 0;
4432 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4434 /* Setup for GRO checksum validation */
4435 switch (skb->ip_summed) {
4436 case CHECKSUM_COMPLETE:
4437 NAPI_GRO_CB(skb)->csum = skb->csum;
4438 NAPI_GRO_CB(skb)->csum_valid = 1;
4439 NAPI_GRO_CB(skb)->csum_cnt = 0;
4441 case CHECKSUM_UNNECESSARY:
4442 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4443 NAPI_GRO_CB(skb)->csum_valid = 0;
4446 NAPI_GRO_CB(skb)->csum_cnt = 0;
4447 NAPI_GRO_CB(skb)->csum_valid = 0;
4450 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4455 if (&ptype->list == head)
4458 same_flow = NAPI_GRO_CB(skb)->same_flow;
4459 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4462 struct sk_buff *nskb = *pp;
4466 napi_gro_complete(nskb);
4473 if (NAPI_GRO_CB(skb)->flush)
4476 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4477 struct sk_buff *nskb = napi->gro_list;
4479 /* locate the end of the list to select the 'oldest' flow */
4480 while (nskb->next) {
4486 napi_gro_complete(nskb);
4490 NAPI_GRO_CB(skb)->count = 1;
4491 NAPI_GRO_CB(skb)->age = jiffies;
4492 NAPI_GRO_CB(skb)->last = skb;
4493 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4494 skb->next = napi->gro_list;
4495 napi->gro_list = skb;
4499 grow = skb_gro_offset(skb) - skb_headlen(skb);
4501 gro_pull_from_frag0(skb, grow);
4510 struct packet_offload *gro_find_receive_by_type(__be16 type)
4512 struct list_head *offload_head = &offload_base;
4513 struct packet_offload *ptype;
4515 list_for_each_entry_rcu(ptype, offload_head, list) {
4516 if (ptype->type != type || !ptype->callbacks.gro_receive)
4522 EXPORT_SYMBOL(gro_find_receive_by_type);
4524 struct packet_offload *gro_find_complete_by_type(__be16 type)
4526 struct list_head *offload_head = &offload_base;
4527 struct packet_offload *ptype;
4529 list_for_each_entry_rcu(ptype, offload_head, list) {
4530 if (ptype->type != type || !ptype->callbacks.gro_complete)
4536 EXPORT_SYMBOL(gro_find_complete_by_type);
4538 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4542 if (netif_receive_skb_internal(skb))
4550 case GRO_MERGED_FREE:
4551 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4552 kmem_cache_free(skbuff_head_cache, skb);
4565 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4567 skb_mark_napi_id(skb, napi);
4568 trace_napi_gro_receive_entry(skb);
4570 skb_gro_reset_offset(skb);
4572 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4574 EXPORT_SYMBOL(napi_gro_receive);
4576 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4578 if (unlikely(skb->pfmemalloc)) {
4582 __skb_pull(skb, skb_headlen(skb));
4583 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4584 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4586 skb->dev = napi->dev;
4588 skb->encapsulation = 0;
4589 skb_shinfo(skb)->gso_type = 0;
4590 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4595 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4597 struct sk_buff *skb = napi->skb;
4600 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4603 skb_mark_napi_id(skb, napi);
4608 EXPORT_SYMBOL(napi_get_frags);
4610 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4611 struct sk_buff *skb,
4617 __skb_push(skb, ETH_HLEN);
4618 skb->protocol = eth_type_trans(skb, skb->dev);
4619 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4624 case GRO_MERGED_FREE:
4625 napi_reuse_skb(napi, skb);
4635 /* Upper GRO stack assumes network header starts at gro_offset=0
4636 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4637 * We copy ethernet header into skb->data to have a common layout.
4639 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4641 struct sk_buff *skb = napi->skb;
4642 const struct ethhdr *eth;
4643 unsigned int hlen = sizeof(*eth);
4647 skb_reset_mac_header(skb);
4648 skb_gro_reset_offset(skb);
4650 eth = skb_gro_header_fast(skb, 0);
4651 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4652 eth = skb_gro_header_slow(skb, hlen, 0);
4653 if (unlikely(!eth)) {
4654 napi_reuse_skb(napi, skb);
4658 gro_pull_from_frag0(skb, hlen);
4659 NAPI_GRO_CB(skb)->frag0 += hlen;
4660 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4662 __skb_pull(skb, hlen);
4665 * This works because the only protocols we care about don't require
4667 * We'll fix it up properly in napi_frags_finish()
4669 skb->protocol = eth->h_proto;
4674 gro_result_t napi_gro_frags(struct napi_struct *napi)
4676 struct sk_buff *skb = napi_frags_skb(napi);
4681 trace_napi_gro_frags_entry(skb);
4683 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4685 EXPORT_SYMBOL(napi_gro_frags);
4687 /* Compute the checksum from gro_offset and return the folded value
4688 * after adding in any pseudo checksum.
4690 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4695 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4697 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4698 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4700 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4701 !skb->csum_complete_sw)
4702 netdev_rx_csum_fault(skb->dev);
4705 NAPI_GRO_CB(skb)->csum = wsum;
4706 NAPI_GRO_CB(skb)->csum_valid = 1;
4710 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4713 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4714 * Note: called with local irq disabled, but exits with local irq enabled.
4716 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4719 struct softnet_data *remsd = sd->rps_ipi_list;
4722 sd->rps_ipi_list = NULL;
4726 /* Send pending IPI's to kick RPS processing on remote cpus. */
4728 struct softnet_data *next = remsd->rps_ipi_next;
4730 if (cpu_online(remsd->cpu))
4731 smp_call_function_single_async(remsd->cpu,
4740 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4743 return sd->rps_ipi_list != NULL;
4749 static int process_backlog(struct napi_struct *napi, int quota)
4752 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4754 /* Check if we have pending ipi, its better to send them now,
4755 * not waiting net_rx_action() end.
4757 if (sd_has_rps_ipi_waiting(sd)) {
4758 local_irq_disable();
4759 net_rps_action_and_irq_enable(sd);
4762 napi->weight = weight_p;
4763 local_irq_disable();
4765 struct sk_buff *skb;
4767 while ((skb = __skb_dequeue(&sd->process_queue))) {
4770 __netif_receive_skb(skb);
4772 local_irq_disable();
4773 input_queue_head_incr(sd);
4774 if (++work >= quota) {
4781 if (skb_queue_empty(&sd->input_pkt_queue)) {
4783 * Inline a custom version of __napi_complete().
4784 * only current cpu owns and manipulates this napi,
4785 * and NAPI_STATE_SCHED is the only possible flag set
4787 * We can use a plain write instead of clear_bit(),
4788 * and we dont need an smp_mb() memory barrier.
4796 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4797 &sd->process_queue);
4806 * __napi_schedule - schedule for receive
4807 * @n: entry to schedule
4809 * The entry's receive function will be scheduled to run.
4810 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4812 void __napi_schedule(struct napi_struct *n)
4814 unsigned long flags;
4816 local_irq_save(flags);
4817 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4818 local_irq_restore(flags);
4820 EXPORT_SYMBOL(__napi_schedule);
4823 * __napi_schedule_irqoff - schedule for receive
4824 * @n: entry to schedule
4826 * Variant of __napi_schedule() assuming hard irqs are masked
4828 void __napi_schedule_irqoff(struct napi_struct *n)
4830 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4832 EXPORT_SYMBOL(__napi_schedule_irqoff);
4834 void __napi_complete(struct napi_struct *n)
4836 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4838 list_del_init(&n->poll_list);
4839 smp_mb__before_atomic();
4840 clear_bit(NAPI_STATE_SCHED, &n->state);
4842 EXPORT_SYMBOL(__napi_complete);
4844 void napi_complete_done(struct napi_struct *n, int work_done)
4846 unsigned long flags;
4849 * don't let napi dequeue from the cpu poll list
4850 * just in case its running on a different cpu
4852 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4856 unsigned long timeout = 0;
4859 timeout = n->dev->gro_flush_timeout;
4862 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4863 HRTIMER_MODE_REL_PINNED);
4865 napi_gro_flush(n, false);
4867 if (likely(list_empty(&n->poll_list))) {
4868 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4870 /* If n->poll_list is not empty, we need to mask irqs */
4871 local_irq_save(flags);
4873 local_irq_restore(flags);
4876 EXPORT_SYMBOL(napi_complete_done);
4878 /* must be called under rcu_read_lock(), as we dont take a reference */
4879 static struct napi_struct *napi_by_id(unsigned int napi_id)
4881 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4882 struct napi_struct *napi;
4884 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4885 if (napi->napi_id == napi_id)
4891 #if defined(CONFIG_NET_RX_BUSY_POLL)
4892 #define BUSY_POLL_BUDGET 8
4893 bool sk_busy_loop(struct sock *sk, int nonblock)
4895 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4896 int (*busy_poll)(struct napi_struct *dev);
4897 struct napi_struct *napi;
4902 napi = napi_by_id(sk->sk_napi_id);
4906 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4907 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4913 rc = busy_poll(napi);
4914 } else if (napi_schedule_prep(napi)) {
4915 void *have = netpoll_poll_lock(napi);
4917 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4918 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4919 trace_napi_poll(napi);
4920 if (rc == BUSY_POLL_BUDGET) {
4921 napi_complete_done(napi, rc);
4922 napi_schedule(napi);
4925 netpoll_poll_unlock(have);
4928 NET_ADD_STATS_BH(sock_net(sk),
4929 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4932 if (rc == LL_FLUSH_FAILED)
4933 break; /* permanent failure */
4936 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4937 !need_resched() && !busy_loop_timeout(end_time));
4939 rc = !skb_queue_empty(&sk->sk_receive_queue);
4944 EXPORT_SYMBOL(sk_busy_loop);
4946 #endif /* CONFIG_NET_RX_BUSY_POLL */
4948 void napi_hash_add(struct napi_struct *napi)
4950 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4951 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4954 spin_lock(&napi_hash_lock);
4956 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4958 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4959 napi_gen_id = NR_CPUS + 1;
4960 } while (napi_by_id(napi_gen_id));
4961 napi->napi_id = napi_gen_id;
4963 hlist_add_head_rcu(&napi->napi_hash_node,
4964 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4966 spin_unlock(&napi_hash_lock);
4968 EXPORT_SYMBOL_GPL(napi_hash_add);
4970 /* Warning : caller is responsible to make sure rcu grace period
4971 * is respected before freeing memory containing @napi
4973 bool napi_hash_del(struct napi_struct *napi)
4975 bool rcu_sync_needed = false;
4977 spin_lock(&napi_hash_lock);
4979 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4980 rcu_sync_needed = true;
4981 hlist_del_rcu(&napi->napi_hash_node);
4983 spin_unlock(&napi_hash_lock);
4984 return rcu_sync_needed;
4986 EXPORT_SYMBOL_GPL(napi_hash_del);
4988 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4990 struct napi_struct *napi;
4992 napi = container_of(timer, struct napi_struct, timer);
4994 napi_schedule(napi);
4996 return HRTIMER_NORESTART;
4999 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5000 int (*poll)(struct napi_struct *, int), int weight)
5002 INIT_LIST_HEAD(&napi->poll_list);
5003 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5004 napi->timer.function = napi_watchdog;
5005 napi->gro_count = 0;
5006 napi->gro_list = NULL;
5009 if (weight > NAPI_POLL_WEIGHT)
5010 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5012 napi->weight = weight;
5013 list_add(&napi->dev_list, &dev->napi_list);
5015 #ifdef CONFIG_NETPOLL
5016 spin_lock_init(&napi->poll_lock);
5017 napi->poll_owner = -1;
5019 set_bit(NAPI_STATE_SCHED, &napi->state);
5020 napi_hash_add(napi);
5022 EXPORT_SYMBOL(netif_napi_add);
5024 void napi_disable(struct napi_struct *n)
5027 set_bit(NAPI_STATE_DISABLE, &n->state);
5029 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5031 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5034 hrtimer_cancel(&n->timer);
5036 clear_bit(NAPI_STATE_DISABLE, &n->state);
5038 EXPORT_SYMBOL(napi_disable);
5040 /* Must be called in process context */
5041 void netif_napi_del(struct napi_struct *napi)
5044 if (napi_hash_del(napi))
5046 list_del_init(&napi->dev_list);
5047 napi_free_frags(napi);
5049 kfree_skb_list(napi->gro_list);
5050 napi->gro_list = NULL;
5051 napi->gro_count = 0;
5053 EXPORT_SYMBOL(netif_napi_del);
5055 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5060 list_del_init(&n->poll_list);
5062 have = netpoll_poll_lock(n);
5066 /* This NAPI_STATE_SCHED test is for avoiding a race
5067 * with netpoll's poll_napi(). Only the entity which
5068 * obtains the lock and sees NAPI_STATE_SCHED set will
5069 * actually make the ->poll() call. Therefore we avoid
5070 * accidentally calling ->poll() when NAPI is not scheduled.
5073 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5074 work = n->poll(n, weight);
5078 WARN_ON_ONCE(work > weight);
5080 if (likely(work < weight))
5083 /* Drivers must not modify the NAPI state if they
5084 * consume the entire weight. In such cases this code
5085 * still "owns" the NAPI instance and therefore can
5086 * move the instance around on the list at-will.
5088 if (unlikely(napi_disable_pending(n))) {
5094 /* flush too old packets
5095 * If HZ < 1000, flush all packets.
5097 napi_gro_flush(n, HZ >= 1000);
5100 /* Some drivers may have called napi_schedule
5101 * prior to exhausting their budget.
5103 if (unlikely(!list_empty(&n->poll_list))) {
5104 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5105 n->dev ? n->dev->name : "backlog");
5109 list_add_tail(&n->poll_list, repoll);
5112 netpoll_poll_unlock(have);
5117 static void net_rx_action(struct softirq_action *h)
5119 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5120 unsigned long time_limit = jiffies + 2;
5121 int budget = netdev_budget;
5125 local_irq_disable();
5126 list_splice_init(&sd->poll_list, &list);
5130 struct napi_struct *n;
5132 if (list_empty(&list)) {
5133 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5138 n = list_first_entry(&list, struct napi_struct, poll_list);
5139 budget -= napi_poll(n, &repoll);
5141 /* If softirq window is exhausted then punt.
5142 * Allow this to run for 2 jiffies since which will allow
5143 * an average latency of 1.5/HZ.
5145 if (unlikely(budget <= 0 ||
5146 time_after_eq(jiffies, time_limit))) {
5152 local_irq_disable();
5154 list_splice_tail_init(&sd->poll_list, &list);
5155 list_splice_tail(&repoll, &list);
5156 list_splice(&list, &sd->poll_list);
5157 if (!list_empty(&sd->poll_list))
5158 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5160 net_rps_action_and_irq_enable(sd);
5163 struct netdev_adjacent {
5164 struct net_device *dev;
5166 /* upper master flag, there can only be one master device per list */
5169 /* counter for the number of times this device was added to us */
5172 /* private field for the users */
5175 struct list_head list;
5176 struct rcu_head rcu;
5179 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5180 struct list_head *adj_list)
5182 struct netdev_adjacent *adj;
5184 list_for_each_entry(adj, adj_list, list) {
5185 if (adj->dev == adj_dev)
5192 * netdev_has_upper_dev - Check if device is linked to an upper device
5194 * @upper_dev: upper device to check
5196 * Find out if a device is linked to specified upper device and return true
5197 * in case it is. Note that this checks only immediate upper device,
5198 * not through a complete stack of devices. The caller must hold the RTNL lock.
5200 bool netdev_has_upper_dev(struct net_device *dev,
5201 struct net_device *upper_dev)
5205 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5207 EXPORT_SYMBOL(netdev_has_upper_dev);
5210 * netdev_has_any_upper_dev - Check if device is linked to some device
5213 * Find out if a device is linked to an upper device and return true in case
5214 * it is. The caller must hold the RTNL lock.
5216 static bool netdev_has_any_upper_dev(struct net_device *dev)
5220 return !list_empty(&dev->all_adj_list.upper);
5224 * netdev_master_upper_dev_get - Get master upper device
5227 * Find a master upper device and return pointer to it or NULL in case
5228 * it's not there. The caller must hold the RTNL lock.
5230 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5232 struct netdev_adjacent *upper;
5236 if (list_empty(&dev->adj_list.upper))
5239 upper = list_first_entry(&dev->adj_list.upper,
5240 struct netdev_adjacent, list);
5241 if (likely(upper->master))
5245 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5247 void *netdev_adjacent_get_private(struct list_head *adj_list)
5249 struct netdev_adjacent *adj;
5251 adj = list_entry(adj_list, struct netdev_adjacent, list);
5253 return adj->private;
5255 EXPORT_SYMBOL(netdev_adjacent_get_private);
5258 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5260 * @iter: list_head ** of the current position
5262 * Gets the next device from the dev's upper list, starting from iter
5263 * position. The caller must hold RCU read lock.
5265 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5266 struct list_head **iter)
5268 struct netdev_adjacent *upper;
5270 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5272 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5274 if (&upper->list == &dev->adj_list.upper)
5277 *iter = &upper->list;
5281 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5284 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5286 * @iter: list_head ** of the current position
5288 * Gets the next device from the dev's upper list, starting from iter
5289 * position. The caller must hold RCU read lock.
5291 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5292 struct list_head **iter)
5294 struct netdev_adjacent *upper;
5296 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5298 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5300 if (&upper->list == &dev->all_adj_list.upper)
5303 *iter = &upper->list;
5307 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5310 * netdev_lower_get_next_private - Get the next ->private from the
5311 * lower neighbour list
5313 * @iter: list_head ** of the current position
5315 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5316 * list, starting from iter position. The caller must hold either hold the
5317 * RTNL lock or its own locking that guarantees that the neighbour lower
5318 * list will remain unchanged.
5320 void *netdev_lower_get_next_private(struct net_device *dev,
5321 struct list_head **iter)
5323 struct netdev_adjacent *lower;
5325 lower = list_entry(*iter, struct netdev_adjacent, list);
5327 if (&lower->list == &dev->adj_list.lower)
5330 *iter = lower->list.next;
5332 return lower->private;
5334 EXPORT_SYMBOL(netdev_lower_get_next_private);
5337 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5338 * lower neighbour list, RCU
5341 * @iter: list_head ** of the current position
5343 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5344 * list, starting from iter position. The caller must hold RCU read lock.
5346 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5347 struct list_head **iter)
5349 struct netdev_adjacent *lower;
5351 WARN_ON_ONCE(!rcu_read_lock_held());
5353 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5355 if (&lower->list == &dev->adj_list.lower)
5358 *iter = &lower->list;
5360 return lower->private;
5362 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5365 * netdev_lower_get_next - Get the next device from the lower neighbour
5368 * @iter: list_head ** of the current position
5370 * Gets the next netdev_adjacent from the dev's lower neighbour
5371 * list, starting from iter position. The caller must hold RTNL lock or
5372 * its own locking that guarantees that the neighbour lower
5373 * list will remain unchanged.
5375 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5377 struct netdev_adjacent *lower;
5379 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5381 if (&lower->list == &dev->adj_list.lower)
5384 *iter = &lower->list;
5388 EXPORT_SYMBOL(netdev_lower_get_next);
5391 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5392 * lower neighbour list, RCU
5396 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5397 * list. The caller must hold RCU read lock.
5399 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5401 struct netdev_adjacent *lower;
5403 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5404 struct netdev_adjacent, list);
5406 return lower->private;
5409 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5412 * netdev_master_upper_dev_get_rcu - Get master upper device
5415 * Find a master upper device and return pointer to it or NULL in case
5416 * it's not there. The caller must hold the RCU read lock.
5418 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5420 struct netdev_adjacent *upper;
5422 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5423 struct netdev_adjacent, list);
5424 if (upper && likely(upper->master))
5428 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5430 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5431 struct net_device *adj_dev,
5432 struct list_head *dev_list)
5434 char linkname[IFNAMSIZ+7];
5435 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5436 "upper_%s" : "lower_%s", adj_dev->name);
5437 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5440 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5442 struct list_head *dev_list)
5444 char linkname[IFNAMSIZ+7];
5445 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5446 "upper_%s" : "lower_%s", name);
5447 sysfs_remove_link(&(dev->dev.kobj), linkname);
5450 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5451 struct net_device *adj_dev,
5452 struct list_head *dev_list)
5454 return (dev_list == &dev->adj_list.upper ||
5455 dev_list == &dev->adj_list.lower) &&
5456 net_eq(dev_net(dev), dev_net(adj_dev));
5459 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5460 struct net_device *adj_dev,
5461 struct list_head *dev_list,
5462 void *private, bool master)
5464 struct netdev_adjacent *adj;
5467 adj = __netdev_find_adj(adj_dev, dev_list);
5474 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5479 adj->master = master;
5481 adj->private = private;
5484 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5485 adj_dev->name, dev->name, adj_dev->name);
5487 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5488 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5493 /* Ensure that master link is always the first item in list. */
5495 ret = sysfs_create_link(&(dev->dev.kobj),
5496 &(adj_dev->dev.kobj), "master");
5498 goto remove_symlinks;
5500 list_add_rcu(&adj->list, dev_list);
5502 list_add_tail_rcu(&adj->list, dev_list);
5508 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5509 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5517 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5518 struct net_device *adj_dev,
5519 struct list_head *dev_list)
5521 struct netdev_adjacent *adj;
5523 adj = __netdev_find_adj(adj_dev, dev_list);
5526 pr_err("tried to remove device %s from %s\n",
5527 dev->name, adj_dev->name);
5531 if (adj->ref_nr > 1) {
5532 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5539 sysfs_remove_link(&(dev->dev.kobj), "master");
5541 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5542 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5544 list_del_rcu(&adj->list);
5545 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5546 adj_dev->name, dev->name, adj_dev->name);
5548 kfree_rcu(adj, rcu);
5551 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5552 struct net_device *upper_dev,
5553 struct list_head *up_list,
5554 struct list_head *down_list,
5555 void *private, bool master)
5559 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5564 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5567 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5574 static int __netdev_adjacent_dev_link(struct net_device *dev,
5575 struct net_device *upper_dev)
5577 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5578 &dev->all_adj_list.upper,
5579 &upper_dev->all_adj_list.lower,
5583 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5584 struct net_device *upper_dev,
5585 struct list_head *up_list,
5586 struct list_head *down_list)
5588 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5589 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5592 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5593 struct net_device *upper_dev)
5595 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5596 &dev->all_adj_list.upper,
5597 &upper_dev->all_adj_list.lower);
5600 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5601 struct net_device *upper_dev,
5602 void *private, bool master)
5604 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5609 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5610 &dev->adj_list.upper,
5611 &upper_dev->adj_list.lower,
5614 __netdev_adjacent_dev_unlink(dev, upper_dev);
5621 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5622 struct net_device *upper_dev)
5624 __netdev_adjacent_dev_unlink(dev, upper_dev);
5625 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5626 &dev->adj_list.upper,
5627 &upper_dev->adj_list.lower);
5630 static int __netdev_upper_dev_link(struct net_device *dev,
5631 struct net_device *upper_dev, bool master,
5632 void *upper_priv, void *upper_info)
5634 struct netdev_notifier_changeupper_info changeupper_info;
5635 struct netdev_adjacent *i, *j, *to_i, *to_j;
5640 if (dev == upper_dev)
5643 /* To prevent loops, check if dev is not upper device to upper_dev. */
5644 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5647 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5650 if (master && netdev_master_upper_dev_get(dev))
5653 changeupper_info.upper_dev = upper_dev;
5654 changeupper_info.master = master;
5655 changeupper_info.linking = true;
5656 changeupper_info.upper_info = upper_info;
5658 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5659 &changeupper_info.info);
5660 ret = notifier_to_errno(ret);
5664 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5669 /* Now that we linked these devs, make all the upper_dev's
5670 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5671 * versa, and don't forget the devices itself. All of these
5672 * links are non-neighbours.
5674 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5675 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5676 pr_debug("Interlinking %s with %s, non-neighbour\n",
5677 i->dev->name, j->dev->name);
5678 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5684 /* add dev to every upper_dev's upper device */
5685 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5686 pr_debug("linking %s's upper device %s with %s\n",
5687 upper_dev->name, i->dev->name, dev->name);
5688 ret = __netdev_adjacent_dev_link(dev, i->dev);
5690 goto rollback_upper_mesh;
5693 /* add upper_dev to every dev's lower device */
5694 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5695 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5696 i->dev->name, upper_dev->name);
5697 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5699 goto rollback_lower_mesh;
5702 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5703 &changeupper_info.info);
5704 ret = notifier_to_errno(ret);
5706 goto rollback_lower_mesh;
5710 rollback_lower_mesh:
5712 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5715 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5720 rollback_upper_mesh:
5722 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5725 __netdev_adjacent_dev_unlink(dev, i->dev);
5733 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5734 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5735 if (i == to_i && j == to_j)
5737 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5743 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5749 * netdev_upper_dev_link - Add a link to the upper device
5751 * @upper_dev: new upper device
5753 * Adds a link to device which is upper to this one. The caller must hold
5754 * the RTNL lock. On a failure a negative errno code is returned.
5755 * On success the reference counts are adjusted and the function
5758 int netdev_upper_dev_link(struct net_device *dev,
5759 struct net_device *upper_dev)
5761 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5763 EXPORT_SYMBOL(netdev_upper_dev_link);
5766 * netdev_master_upper_dev_link - Add a master link to the upper device
5768 * @upper_dev: new upper device
5769 * @upper_priv: upper device private
5770 * @upper_info: upper info to be passed down via notifier
5772 * Adds a link to device which is upper to this one. In this case, only
5773 * one master upper device can be linked, although other non-master devices
5774 * might be linked as well. The caller must hold the RTNL lock.
5775 * On a failure a negative errno code is returned. On success the reference
5776 * counts are adjusted and the function returns zero.
5778 int netdev_master_upper_dev_link(struct net_device *dev,
5779 struct net_device *upper_dev,
5780 void *upper_priv, void *upper_info)
5782 return __netdev_upper_dev_link(dev, upper_dev, true,
5783 upper_priv, upper_info);
5785 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5788 * netdev_upper_dev_unlink - Removes a link to upper device
5790 * @upper_dev: new upper device
5792 * Removes a link to device which is upper to this one. The caller must hold
5795 void netdev_upper_dev_unlink(struct net_device *dev,
5796 struct net_device *upper_dev)
5798 struct netdev_notifier_changeupper_info changeupper_info;
5799 struct netdev_adjacent *i, *j;
5802 changeupper_info.upper_dev = upper_dev;
5803 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5804 changeupper_info.linking = false;
5806 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5807 &changeupper_info.info);
5809 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5811 /* Here is the tricky part. We must remove all dev's lower
5812 * devices from all upper_dev's upper devices and vice
5813 * versa, to maintain the graph relationship.
5815 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5816 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5817 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5819 /* remove also the devices itself from lower/upper device
5822 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5823 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5825 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5826 __netdev_adjacent_dev_unlink(dev, i->dev);
5828 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5829 &changeupper_info.info);
5831 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5834 * netdev_bonding_info_change - Dispatch event about slave change
5836 * @bonding_info: info to dispatch
5838 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5839 * The caller must hold the RTNL lock.
5841 void netdev_bonding_info_change(struct net_device *dev,
5842 struct netdev_bonding_info *bonding_info)
5844 struct netdev_notifier_bonding_info info;
5846 memcpy(&info.bonding_info, bonding_info,
5847 sizeof(struct netdev_bonding_info));
5848 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5851 EXPORT_SYMBOL(netdev_bonding_info_change);
5853 static void netdev_adjacent_add_links(struct net_device *dev)
5855 struct netdev_adjacent *iter;
5857 struct net *net = dev_net(dev);
5859 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5860 if (!net_eq(net,dev_net(iter->dev)))
5862 netdev_adjacent_sysfs_add(iter->dev, dev,
5863 &iter->dev->adj_list.lower);
5864 netdev_adjacent_sysfs_add(dev, iter->dev,
5865 &dev->adj_list.upper);
5868 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5869 if (!net_eq(net,dev_net(iter->dev)))
5871 netdev_adjacent_sysfs_add(iter->dev, dev,
5872 &iter->dev->adj_list.upper);
5873 netdev_adjacent_sysfs_add(dev, iter->dev,
5874 &dev->adj_list.lower);
5878 static void netdev_adjacent_del_links(struct net_device *dev)
5880 struct netdev_adjacent *iter;
5882 struct net *net = dev_net(dev);
5884 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5885 if (!net_eq(net,dev_net(iter->dev)))
5887 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5888 &iter->dev->adj_list.lower);
5889 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5890 &dev->adj_list.upper);
5893 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5894 if (!net_eq(net,dev_net(iter->dev)))
5896 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5897 &iter->dev->adj_list.upper);
5898 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5899 &dev->adj_list.lower);
5903 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5905 struct netdev_adjacent *iter;
5907 struct net *net = dev_net(dev);
5909 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5910 if (!net_eq(net,dev_net(iter->dev)))
5912 netdev_adjacent_sysfs_del(iter->dev, oldname,
5913 &iter->dev->adj_list.lower);
5914 netdev_adjacent_sysfs_add(iter->dev, dev,
5915 &iter->dev->adj_list.lower);
5918 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5919 if (!net_eq(net,dev_net(iter->dev)))
5921 netdev_adjacent_sysfs_del(iter->dev, oldname,
5922 &iter->dev->adj_list.upper);
5923 netdev_adjacent_sysfs_add(iter->dev, dev,
5924 &iter->dev->adj_list.upper);
5928 void *netdev_lower_dev_get_private(struct net_device *dev,
5929 struct net_device *lower_dev)
5931 struct netdev_adjacent *lower;
5935 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5939 return lower->private;
5941 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5944 int dev_get_nest_level(struct net_device *dev,
5945 bool (*type_check)(const struct net_device *dev))
5947 struct net_device *lower = NULL;
5948 struct list_head *iter;
5954 netdev_for_each_lower_dev(dev, lower, iter) {
5955 nest = dev_get_nest_level(lower, type_check);
5956 if (max_nest < nest)
5960 if (type_check(dev))
5965 EXPORT_SYMBOL(dev_get_nest_level);
5968 * netdev_lower_change - Dispatch event about lower device state change
5969 * @lower_dev: device
5970 * @lower_state_info: state to dispatch
5972 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5973 * The caller must hold the RTNL lock.
5975 void netdev_lower_state_changed(struct net_device *lower_dev,
5976 void *lower_state_info)
5978 struct netdev_notifier_changelowerstate_info changelowerstate_info;
5981 changelowerstate_info.lower_state_info = lower_state_info;
5982 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
5983 &changelowerstate_info.info);
5985 EXPORT_SYMBOL(netdev_lower_state_changed);
5987 static void dev_change_rx_flags(struct net_device *dev, int flags)
5989 const struct net_device_ops *ops = dev->netdev_ops;
5991 if (ops->ndo_change_rx_flags)
5992 ops->ndo_change_rx_flags(dev, flags);
5995 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5997 unsigned int old_flags = dev->flags;
6003 dev->flags |= IFF_PROMISC;
6004 dev->promiscuity += inc;
6005 if (dev->promiscuity == 0) {
6008 * If inc causes overflow, untouch promisc and return error.
6011 dev->flags &= ~IFF_PROMISC;
6013 dev->promiscuity -= inc;
6014 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6019 if (dev->flags != old_flags) {
6020 pr_info("device %s %s promiscuous mode\n",
6022 dev->flags & IFF_PROMISC ? "entered" : "left");
6023 if (audit_enabled) {
6024 current_uid_gid(&uid, &gid);
6025 audit_log(current->audit_context, GFP_ATOMIC,
6026 AUDIT_ANOM_PROMISCUOUS,
6027 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6028 dev->name, (dev->flags & IFF_PROMISC),
6029 (old_flags & IFF_PROMISC),
6030 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6031 from_kuid(&init_user_ns, uid),
6032 from_kgid(&init_user_ns, gid),
6033 audit_get_sessionid(current));
6036 dev_change_rx_flags(dev, IFF_PROMISC);
6039 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6044 * dev_set_promiscuity - update promiscuity count on a device
6048 * Add or remove promiscuity from a device. While the count in the device
6049 * remains above zero the interface remains promiscuous. Once it hits zero
6050 * the device reverts back to normal filtering operation. A negative inc
6051 * value is used to drop promiscuity on the device.
6052 * Return 0 if successful or a negative errno code on error.
6054 int dev_set_promiscuity(struct net_device *dev, int inc)
6056 unsigned int old_flags = dev->flags;
6059 err = __dev_set_promiscuity(dev, inc, true);
6062 if (dev->flags != old_flags)
6063 dev_set_rx_mode(dev);
6066 EXPORT_SYMBOL(dev_set_promiscuity);
6068 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6070 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6074 dev->flags |= IFF_ALLMULTI;
6075 dev->allmulti += inc;
6076 if (dev->allmulti == 0) {
6079 * If inc causes overflow, untouch allmulti and return error.
6082 dev->flags &= ~IFF_ALLMULTI;
6084 dev->allmulti -= inc;
6085 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6090 if (dev->flags ^ old_flags) {
6091 dev_change_rx_flags(dev, IFF_ALLMULTI);
6092 dev_set_rx_mode(dev);
6094 __dev_notify_flags(dev, old_flags,
6095 dev->gflags ^ old_gflags);
6101 * dev_set_allmulti - update allmulti count on a device
6105 * Add or remove reception of all multicast frames to a device. While the
6106 * count in the device remains above zero the interface remains listening
6107 * to all interfaces. Once it hits zero the device reverts back to normal
6108 * filtering operation. A negative @inc value is used to drop the counter
6109 * when releasing a resource needing all multicasts.
6110 * Return 0 if successful or a negative errno code on error.
6113 int dev_set_allmulti(struct net_device *dev, int inc)
6115 return __dev_set_allmulti(dev, inc, true);
6117 EXPORT_SYMBOL(dev_set_allmulti);
6120 * Upload unicast and multicast address lists to device and
6121 * configure RX filtering. When the device doesn't support unicast
6122 * filtering it is put in promiscuous mode while unicast addresses
6125 void __dev_set_rx_mode(struct net_device *dev)
6127 const struct net_device_ops *ops = dev->netdev_ops;
6129 /* dev_open will call this function so the list will stay sane. */
6130 if (!(dev->flags&IFF_UP))
6133 if (!netif_device_present(dev))
6136 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6137 /* Unicast addresses changes may only happen under the rtnl,
6138 * therefore calling __dev_set_promiscuity here is safe.
6140 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6141 __dev_set_promiscuity(dev, 1, false);
6142 dev->uc_promisc = true;
6143 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6144 __dev_set_promiscuity(dev, -1, false);
6145 dev->uc_promisc = false;
6149 if (ops->ndo_set_rx_mode)
6150 ops->ndo_set_rx_mode(dev);
6153 void dev_set_rx_mode(struct net_device *dev)
6155 netif_addr_lock_bh(dev);
6156 __dev_set_rx_mode(dev);
6157 netif_addr_unlock_bh(dev);
6161 * dev_get_flags - get flags reported to userspace
6164 * Get the combination of flag bits exported through APIs to userspace.
6166 unsigned int dev_get_flags(const struct net_device *dev)
6170 flags = (dev->flags & ~(IFF_PROMISC |
6175 (dev->gflags & (IFF_PROMISC |
6178 if (netif_running(dev)) {
6179 if (netif_oper_up(dev))
6180 flags |= IFF_RUNNING;
6181 if (netif_carrier_ok(dev))
6182 flags |= IFF_LOWER_UP;
6183 if (netif_dormant(dev))
6184 flags |= IFF_DORMANT;
6189 EXPORT_SYMBOL(dev_get_flags);
6191 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6193 unsigned int old_flags = dev->flags;
6199 * Set the flags on our device.
6202 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6203 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6205 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6209 * Load in the correct multicast list now the flags have changed.
6212 if ((old_flags ^ flags) & IFF_MULTICAST)
6213 dev_change_rx_flags(dev, IFF_MULTICAST);
6215 dev_set_rx_mode(dev);
6218 * Have we downed the interface. We handle IFF_UP ourselves
6219 * according to user attempts to set it, rather than blindly
6224 if ((old_flags ^ flags) & IFF_UP)
6225 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6227 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6228 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6229 unsigned int old_flags = dev->flags;
6231 dev->gflags ^= IFF_PROMISC;
6233 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6234 if (dev->flags != old_flags)
6235 dev_set_rx_mode(dev);
6238 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6239 is important. Some (broken) drivers set IFF_PROMISC, when
6240 IFF_ALLMULTI is requested not asking us and not reporting.
6242 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6243 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6245 dev->gflags ^= IFF_ALLMULTI;
6246 __dev_set_allmulti(dev, inc, false);
6252 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6253 unsigned int gchanges)
6255 unsigned int changes = dev->flags ^ old_flags;
6258 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6260 if (changes & IFF_UP) {
6261 if (dev->flags & IFF_UP)
6262 call_netdevice_notifiers(NETDEV_UP, dev);
6264 call_netdevice_notifiers(NETDEV_DOWN, dev);
6267 if (dev->flags & IFF_UP &&
6268 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6269 struct netdev_notifier_change_info change_info;
6271 change_info.flags_changed = changes;
6272 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6278 * dev_change_flags - change device settings
6280 * @flags: device state flags
6282 * Change settings on device based state flags. The flags are
6283 * in the userspace exported format.
6285 int dev_change_flags(struct net_device *dev, unsigned int flags)
6288 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6290 ret = __dev_change_flags(dev, flags);
6294 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6295 __dev_notify_flags(dev, old_flags, changes);
6298 EXPORT_SYMBOL(dev_change_flags);
6300 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6302 const struct net_device_ops *ops = dev->netdev_ops;
6304 if (ops->ndo_change_mtu)
6305 return ops->ndo_change_mtu(dev, new_mtu);
6312 * dev_set_mtu - Change maximum transfer unit
6314 * @new_mtu: new transfer unit
6316 * Change the maximum transfer size of the network device.
6318 int dev_set_mtu(struct net_device *dev, int new_mtu)
6322 if (new_mtu == dev->mtu)
6325 /* MTU must be positive. */
6329 if (!netif_device_present(dev))
6332 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6333 err = notifier_to_errno(err);
6337 orig_mtu = dev->mtu;
6338 err = __dev_set_mtu(dev, new_mtu);
6341 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6342 err = notifier_to_errno(err);
6344 /* setting mtu back and notifying everyone again,
6345 * so that they have a chance to revert changes.
6347 __dev_set_mtu(dev, orig_mtu);
6348 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6353 EXPORT_SYMBOL(dev_set_mtu);
6356 * dev_set_group - Change group this device belongs to
6358 * @new_group: group this device should belong to
6360 void dev_set_group(struct net_device *dev, int new_group)
6362 dev->group = new_group;
6364 EXPORT_SYMBOL(dev_set_group);
6367 * dev_set_mac_address - Change Media Access Control Address
6371 * Change the hardware (MAC) address of the device
6373 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6375 const struct net_device_ops *ops = dev->netdev_ops;
6378 if (!ops->ndo_set_mac_address)
6380 if (sa->sa_family != dev->type)
6382 if (!netif_device_present(dev))
6384 err = ops->ndo_set_mac_address(dev, sa);
6387 dev->addr_assign_type = NET_ADDR_SET;
6388 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6389 add_device_randomness(dev->dev_addr, dev->addr_len);
6392 EXPORT_SYMBOL(dev_set_mac_address);
6395 * dev_change_carrier - Change device carrier
6397 * @new_carrier: new value
6399 * Change device carrier
6401 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6403 const struct net_device_ops *ops = dev->netdev_ops;
6405 if (!ops->ndo_change_carrier)
6407 if (!netif_device_present(dev))
6409 return ops->ndo_change_carrier(dev, new_carrier);
6411 EXPORT_SYMBOL(dev_change_carrier);
6414 * dev_get_phys_port_id - Get device physical port ID
6418 * Get device physical port ID
6420 int dev_get_phys_port_id(struct net_device *dev,
6421 struct netdev_phys_item_id *ppid)
6423 const struct net_device_ops *ops = dev->netdev_ops;
6425 if (!ops->ndo_get_phys_port_id)
6427 return ops->ndo_get_phys_port_id(dev, ppid);
6429 EXPORT_SYMBOL(dev_get_phys_port_id);
6432 * dev_get_phys_port_name - Get device physical port name
6436 * Get device physical port name
6438 int dev_get_phys_port_name(struct net_device *dev,
6439 char *name, size_t len)
6441 const struct net_device_ops *ops = dev->netdev_ops;
6443 if (!ops->ndo_get_phys_port_name)
6445 return ops->ndo_get_phys_port_name(dev, name, len);
6447 EXPORT_SYMBOL(dev_get_phys_port_name);
6450 * dev_change_proto_down - update protocol port state information
6452 * @proto_down: new value
6454 * This info can be used by switch drivers to set the phys state of the
6457 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6459 const struct net_device_ops *ops = dev->netdev_ops;
6461 if (!ops->ndo_change_proto_down)
6463 if (!netif_device_present(dev))
6465 return ops->ndo_change_proto_down(dev, proto_down);
6467 EXPORT_SYMBOL(dev_change_proto_down);
6470 * dev_new_index - allocate an ifindex
6471 * @net: the applicable net namespace
6473 * Returns a suitable unique value for a new device interface
6474 * number. The caller must hold the rtnl semaphore or the
6475 * dev_base_lock to be sure it remains unique.
6477 static int dev_new_index(struct net *net)
6479 int ifindex = net->ifindex;
6483 if (!__dev_get_by_index(net, ifindex))
6484 return net->ifindex = ifindex;
6488 /* Delayed registration/unregisteration */
6489 static LIST_HEAD(net_todo_list);
6490 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6492 static void net_set_todo(struct net_device *dev)
6494 list_add_tail(&dev->todo_list, &net_todo_list);
6495 dev_net(dev)->dev_unreg_count++;
6498 static void rollback_registered_many(struct list_head *head)
6500 struct net_device *dev, *tmp;
6501 LIST_HEAD(close_head);
6503 BUG_ON(dev_boot_phase);
6506 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6507 /* Some devices call without registering
6508 * for initialization unwind. Remove those
6509 * devices and proceed with the remaining.
6511 if (dev->reg_state == NETREG_UNINITIALIZED) {
6512 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6516 list_del(&dev->unreg_list);
6519 dev->dismantle = true;
6520 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6523 /* If device is running, close it first. */
6524 list_for_each_entry(dev, head, unreg_list)
6525 list_add_tail(&dev->close_list, &close_head);
6526 dev_close_many(&close_head, true);
6528 list_for_each_entry(dev, head, unreg_list) {
6529 /* And unlink it from device chain. */
6530 unlist_netdevice(dev);
6532 dev->reg_state = NETREG_UNREGISTERING;
6533 on_each_cpu(flush_backlog, dev, 1);
6538 list_for_each_entry(dev, head, unreg_list) {
6539 struct sk_buff *skb = NULL;
6541 /* Shutdown queueing discipline. */
6545 /* Notify protocols, that we are about to destroy
6546 this device. They should clean all the things.
6548 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6550 if (!dev->rtnl_link_ops ||
6551 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6552 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6556 * Flush the unicast and multicast chains
6561 if (dev->netdev_ops->ndo_uninit)
6562 dev->netdev_ops->ndo_uninit(dev);
6565 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6567 /* Notifier chain MUST detach us all upper devices. */
6568 WARN_ON(netdev_has_any_upper_dev(dev));
6570 /* Remove entries from kobject tree */
6571 netdev_unregister_kobject(dev);
6573 /* Remove XPS queueing entries */
6574 netif_reset_xps_queues_gt(dev, 0);
6580 list_for_each_entry(dev, head, unreg_list)
6584 static void rollback_registered(struct net_device *dev)
6588 list_add(&dev->unreg_list, &single);
6589 rollback_registered_many(&single);
6593 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6594 struct net_device *upper, netdev_features_t features)
6596 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6597 netdev_features_t feature;
6600 for_each_netdev_feature(&upper_disables, feature_bit) {
6601 feature = __NETIF_F_BIT(feature_bit);
6602 if (!(upper->wanted_features & feature)
6603 && (features & feature)) {
6604 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6605 &feature, upper->name);
6606 features &= ~feature;
6613 static void netdev_sync_lower_features(struct net_device *upper,
6614 struct net_device *lower, netdev_features_t features)
6616 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6617 netdev_features_t feature;
6620 for_each_netdev_feature(&upper_disables, feature_bit) {
6621 feature = __NETIF_F_BIT(feature_bit);
6622 if (!(features & feature) && (lower->features & feature)) {
6623 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6624 &feature, lower->name);
6625 lower->wanted_features &= ~feature;
6626 netdev_update_features(lower);
6628 if (unlikely(lower->features & feature))
6629 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6630 &feature, lower->name);
6635 static netdev_features_t netdev_fix_features(struct net_device *dev,
6636 netdev_features_t features)
6638 /* Fix illegal checksum combinations */
6639 if ((features & NETIF_F_HW_CSUM) &&
6640 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6641 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6642 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6645 /* TSO requires that SG is present as well. */
6646 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6647 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6648 features &= ~NETIF_F_ALL_TSO;
6651 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6652 !(features & NETIF_F_IP_CSUM)) {
6653 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6654 features &= ~NETIF_F_TSO;
6655 features &= ~NETIF_F_TSO_ECN;
6658 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6659 !(features & NETIF_F_IPV6_CSUM)) {
6660 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6661 features &= ~NETIF_F_TSO6;
6664 /* TSO ECN requires that TSO is present as well. */
6665 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6666 features &= ~NETIF_F_TSO_ECN;
6668 /* Software GSO depends on SG. */
6669 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6670 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6671 features &= ~NETIF_F_GSO;
6674 /* UFO needs SG and checksumming */
6675 if (features & NETIF_F_UFO) {
6676 /* maybe split UFO into V4 and V6? */
6677 if (!(features & NETIF_F_HW_CSUM) &&
6678 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6679 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6681 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6682 features &= ~NETIF_F_UFO;
6685 if (!(features & NETIF_F_SG)) {
6687 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6688 features &= ~NETIF_F_UFO;
6692 #ifdef CONFIG_NET_RX_BUSY_POLL
6693 if (dev->netdev_ops->ndo_busy_poll)
6694 features |= NETIF_F_BUSY_POLL;
6697 features &= ~NETIF_F_BUSY_POLL;
6702 int __netdev_update_features(struct net_device *dev)
6704 struct net_device *upper, *lower;
6705 netdev_features_t features;
6706 struct list_head *iter;
6711 features = netdev_get_wanted_features(dev);
6713 if (dev->netdev_ops->ndo_fix_features)
6714 features = dev->netdev_ops->ndo_fix_features(dev, features);
6716 /* driver might be less strict about feature dependencies */
6717 features = netdev_fix_features(dev, features);
6719 /* some features can't be enabled if they're off an an upper device */
6720 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6721 features = netdev_sync_upper_features(dev, upper, features);
6723 if (dev->features == features)
6726 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6727 &dev->features, &features);
6729 if (dev->netdev_ops->ndo_set_features)
6730 err = dev->netdev_ops->ndo_set_features(dev, features);
6734 if (unlikely(err < 0)) {
6736 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6737 err, &features, &dev->features);
6738 /* return non-0 since some features might have changed and
6739 * it's better to fire a spurious notification than miss it
6745 /* some features must be disabled on lower devices when disabled
6746 * on an upper device (think: bonding master or bridge)
6748 netdev_for_each_lower_dev(dev, lower, iter)
6749 netdev_sync_lower_features(dev, lower, features);
6752 dev->features = features;
6754 return err < 0 ? 0 : 1;
6758 * netdev_update_features - recalculate device features
6759 * @dev: the device to check
6761 * Recalculate dev->features set and send notifications if it
6762 * has changed. Should be called after driver or hardware dependent
6763 * conditions might have changed that influence the features.
6765 void netdev_update_features(struct net_device *dev)
6767 if (__netdev_update_features(dev))
6768 netdev_features_change(dev);
6770 EXPORT_SYMBOL(netdev_update_features);
6773 * netdev_change_features - recalculate device features
6774 * @dev: the device to check
6776 * Recalculate dev->features set and send notifications even
6777 * if they have not changed. Should be called instead of
6778 * netdev_update_features() if also dev->vlan_features might
6779 * have changed to allow the changes to be propagated to stacked
6782 void netdev_change_features(struct net_device *dev)
6784 __netdev_update_features(dev);
6785 netdev_features_change(dev);
6787 EXPORT_SYMBOL(netdev_change_features);
6790 * netif_stacked_transfer_operstate - transfer operstate
6791 * @rootdev: the root or lower level device to transfer state from
6792 * @dev: the device to transfer operstate to
6794 * Transfer operational state from root to device. This is normally
6795 * called when a stacking relationship exists between the root
6796 * device and the device(a leaf device).
6798 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6799 struct net_device *dev)
6801 if (rootdev->operstate == IF_OPER_DORMANT)
6802 netif_dormant_on(dev);
6804 netif_dormant_off(dev);
6806 if (netif_carrier_ok(rootdev)) {
6807 if (!netif_carrier_ok(dev))
6808 netif_carrier_on(dev);
6810 if (netif_carrier_ok(dev))
6811 netif_carrier_off(dev);
6814 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6817 static int netif_alloc_rx_queues(struct net_device *dev)
6819 unsigned int i, count = dev->num_rx_queues;
6820 struct netdev_rx_queue *rx;
6821 size_t sz = count * sizeof(*rx);
6825 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6833 for (i = 0; i < count; i++)
6839 static void netdev_init_one_queue(struct net_device *dev,
6840 struct netdev_queue *queue, void *_unused)
6842 /* Initialize queue lock */
6843 spin_lock_init(&queue->_xmit_lock);
6844 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6845 queue->xmit_lock_owner = -1;
6846 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6849 dql_init(&queue->dql, HZ);
6853 static void netif_free_tx_queues(struct net_device *dev)
6858 static int netif_alloc_netdev_queues(struct net_device *dev)
6860 unsigned int count = dev->num_tx_queues;
6861 struct netdev_queue *tx;
6862 size_t sz = count * sizeof(*tx);
6864 if (count < 1 || count > 0xffff)
6867 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6875 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6876 spin_lock_init(&dev->tx_global_lock);
6881 void netif_tx_stop_all_queues(struct net_device *dev)
6885 for (i = 0; i < dev->num_tx_queues; i++) {
6886 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6887 netif_tx_stop_queue(txq);
6890 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6893 * register_netdevice - register a network device
6894 * @dev: device to register
6896 * Take a completed network device structure and add it to the kernel
6897 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6898 * chain. 0 is returned on success. A negative errno code is returned
6899 * on a failure to set up the device, or if the name is a duplicate.
6901 * Callers must hold the rtnl semaphore. You may want
6902 * register_netdev() instead of this.
6905 * The locking appears insufficient to guarantee two parallel registers
6906 * will not get the same name.
6909 int register_netdevice(struct net_device *dev)
6912 struct net *net = dev_net(dev);
6914 BUG_ON(dev_boot_phase);
6919 /* When net_device's are persistent, this will be fatal. */
6920 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6923 spin_lock_init(&dev->addr_list_lock);
6924 netdev_set_addr_lockdep_class(dev);
6926 ret = dev_get_valid_name(net, dev, dev->name);
6930 /* Init, if this function is available */
6931 if (dev->netdev_ops->ndo_init) {
6932 ret = dev->netdev_ops->ndo_init(dev);
6940 if (((dev->hw_features | dev->features) &
6941 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6942 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6943 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6944 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6951 dev->ifindex = dev_new_index(net);
6952 else if (__dev_get_by_index(net, dev->ifindex))
6955 /* Transfer changeable features to wanted_features and enable
6956 * software offloads (GSO and GRO).
6958 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6959 dev->features |= NETIF_F_SOFT_FEATURES;
6960 dev->wanted_features = dev->features & dev->hw_features;
6962 if (!(dev->flags & IFF_LOOPBACK)) {
6963 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6966 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6968 dev->vlan_features |= NETIF_F_HIGHDMA;
6970 /* Make NETIF_F_SG inheritable to tunnel devices.
6972 dev->hw_enc_features |= NETIF_F_SG;
6974 /* Make NETIF_F_SG inheritable to MPLS.
6976 dev->mpls_features |= NETIF_F_SG;
6978 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6979 ret = notifier_to_errno(ret);
6983 ret = netdev_register_kobject(dev);
6986 dev->reg_state = NETREG_REGISTERED;
6988 __netdev_update_features(dev);
6991 * Default initial state at registry is that the
6992 * device is present.
6995 set_bit(__LINK_STATE_PRESENT, &dev->state);
6997 linkwatch_init_dev(dev);
6999 dev_init_scheduler(dev);
7001 list_netdevice(dev);
7002 add_device_randomness(dev->dev_addr, dev->addr_len);
7004 /* If the device has permanent device address, driver should
7005 * set dev_addr and also addr_assign_type should be set to
7006 * NET_ADDR_PERM (default value).
7008 if (dev->addr_assign_type == NET_ADDR_PERM)
7009 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7011 /* Notify protocols, that a new device appeared. */
7012 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7013 ret = notifier_to_errno(ret);
7015 rollback_registered(dev);
7016 dev->reg_state = NETREG_UNREGISTERED;
7019 * Prevent userspace races by waiting until the network
7020 * device is fully setup before sending notifications.
7022 if (!dev->rtnl_link_ops ||
7023 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7024 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7030 if (dev->netdev_ops->ndo_uninit)
7031 dev->netdev_ops->ndo_uninit(dev);
7034 EXPORT_SYMBOL(register_netdevice);
7037 * init_dummy_netdev - init a dummy network device for NAPI
7038 * @dev: device to init
7040 * This takes a network device structure and initialize the minimum
7041 * amount of fields so it can be used to schedule NAPI polls without
7042 * registering a full blown interface. This is to be used by drivers
7043 * that need to tie several hardware interfaces to a single NAPI
7044 * poll scheduler due to HW limitations.
7046 int init_dummy_netdev(struct net_device *dev)
7048 /* Clear everything. Note we don't initialize spinlocks
7049 * are they aren't supposed to be taken by any of the
7050 * NAPI code and this dummy netdev is supposed to be
7051 * only ever used for NAPI polls
7053 memset(dev, 0, sizeof(struct net_device));
7055 /* make sure we BUG if trying to hit standard
7056 * register/unregister code path
7058 dev->reg_state = NETREG_DUMMY;
7060 /* NAPI wants this */
7061 INIT_LIST_HEAD(&dev->napi_list);
7063 /* a dummy interface is started by default */
7064 set_bit(__LINK_STATE_PRESENT, &dev->state);
7065 set_bit(__LINK_STATE_START, &dev->state);
7067 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7068 * because users of this 'device' dont need to change
7074 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7078 * register_netdev - register a network device
7079 * @dev: device to register
7081 * Take a completed network device structure and add it to the kernel
7082 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7083 * chain. 0 is returned on success. A negative errno code is returned
7084 * on a failure to set up the device, or if the name is a duplicate.
7086 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7087 * and expands the device name if you passed a format string to
7090 int register_netdev(struct net_device *dev)
7095 err = register_netdevice(dev);
7099 EXPORT_SYMBOL(register_netdev);
7101 int netdev_refcnt_read(const struct net_device *dev)
7105 for_each_possible_cpu(i)
7106 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7109 EXPORT_SYMBOL(netdev_refcnt_read);
7112 * netdev_wait_allrefs - wait until all references are gone.
7113 * @dev: target net_device
7115 * This is called when unregistering network devices.
7117 * Any protocol or device that holds a reference should register
7118 * for netdevice notification, and cleanup and put back the
7119 * reference if they receive an UNREGISTER event.
7120 * We can get stuck here if buggy protocols don't correctly
7123 static void netdev_wait_allrefs(struct net_device *dev)
7125 unsigned long rebroadcast_time, warning_time;
7128 linkwatch_forget_dev(dev);
7130 rebroadcast_time = warning_time = jiffies;
7131 refcnt = netdev_refcnt_read(dev);
7133 while (refcnt != 0) {
7134 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7137 /* Rebroadcast unregister notification */
7138 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7144 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7145 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7147 /* We must not have linkwatch events
7148 * pending on unregister. If this
7149 * happens, we simply run the queue
7150 * unscheduled, resulting in a noop
7153 linkwatch_run_queue();
7158 rebroadcast_time = jiffies;
7163 refcnt = netdev_refcnt_read(dev);
7165 if (time_after(jiffies, warning_time + 10 * HZ)) {
7166 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7168 warning_time = jiffies;
7177 * register_netdevice(x1);
7178 * register_netdevice(x2);
7180 * unregister_netdevice(y1);
7181 * unregister_netdevice(y2);
7187 * We are invoked by rtnl_unlock().
7188 * This allows us to deal with problems:
7189 * 1) We can delete sysfs objects which invoke hotplug
7190 * without deadlocking with linkwatch via keventd.
7191 * 2) Since we run with the RTNL semaphore not held, we can sleep
7192 * safely in order to wait for the netdev refcnt to drop to zero.
7194 * We must not return until all unregister events added during
7195 * the interval the lock was held have been completed.
7197 void netdev_run_todo(void)
7199 struct list_head list;
7201 /* Snapshot list, allow later requests */
7202 list_replace_init(&net_todo_list, &list);
7207 /* Wait for rcu callbacks to finish before next phase */
7208 if (!list_empty(&list))
7211 while (!list_empty(&list)) {
7212 struct net_device *dev
7213 = list_first_entry(&list, struct net_device, todo_list);
7214 list_del(&dev->todo_list);
7217 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7220 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7221 pr_err("network todo '%s' but state %d\n",
7222 dev->name, dev->reg_state);
7227 dev->reg_state = NETREG_UNREGISTERED;
7229 netdev_wait_allrefs(dev);
7232 BUG_ON(netdev_refcnt_read(dev));
7233 BUG_ON(!list_empty(&dev->ptype_all));
7234 BUG_ON(!list_empty(&dev->ptype_specific));
7235 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7236 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7237 WARN_ON(dev->dn_ptr);
7239 if (dev->destructor)
7240 dev->destructor(dev);
7242 /* Report a network device has been unregistered */
7244 dev_net(dev)->dev_unreg_count--;
7246 wake_up(&netdev_unregistering_wq);
7248 /* Free network device */
7249 kobject_put(&dev->dev.kobj);
7253 /* Convert net_device_stats to rtnl_link_stats64. They have the same
7254 * fields in the same order, with only the type differing.
7256 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7257 const struct net_device_stats *netdev_stats)
7259 #if BITS_PER_LONG == 64
7260 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
7261 memcpy(stats64, netdev_stats, sizeof(*stats64));
7263 size_t i, n = sizeof(*stats64) / sizeof(u64);
7264 const unsigned long *src = (const unsigned long *)netdev_stats;
7265 u64 *dst = (u64 *)stats64;
7267 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
7268 sizeof(*stats64) / sizeof(u64));
7269 for (i = 0; i < n; i++)
7273 EXPORT_SYMBOL(netdev_stats_to_stats64);
7276 * dev_get_stats - get network device statistics
7277 * @dev: device to get statistics from
7278 * @storage: place to store stats
7280 * Get network statistics from device. Return @storage.
7281 * The device driver may provide its own method by setting
7282 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7283 * otherwise the internal statistics structure is used.
7285 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7286 struct rtnl_link_stats64 *storage)
7288 const struct net_device_ops *ops = dev->netdev_ops;
7290 if (ops->ndo_get_stats64) {
7291 memset(storage, 0, sizeof(*storage));
7292 ops->ndo_get_stats64(dev, storage);
7293 } else if (ops->ndo_get_stats) {
7294 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7296 netdev_stats_to_stats64(storage, &dev->stats);
7298 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7299 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7302 EXPORT_SYMBOL(dev_get_stats);
7304 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7306 struct netdev_queue *queue = dev_ingress_queue(dev);
7308 #ifdef CONFIG_NET_CLS_ACT
7311 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7314 netdev_init_one_queue(dev, queue, NULL);
7315 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7316 queue->qdisc_sleeping = &noop_qdisc;
7317 rcu_assign_pointer(dev->ingress_queue, queue);
7322 static const struct ethtool_ops default_ethtool_ops;
7324 void netdev_set_default_ethtool_ops(struct net_device *dev,
7325 const struct ethtool_ops *ops)
7327 if (dev->ethtool_ops == &default_ethtool_ops)
7328 dev->ethtool_ops = ops;
7330 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7332 void netdev_freemem(struct net_device *dev)
7334 char *addr = (char *)dev - dev->padded;
7340 * alloc_netdev_mqs - allocate network device
7341 * @sizeof_priv: size of private data to allocate space for
7342 * @name: device name format string
7343 * @name_assign_type: origin of device name
7344 * @setup: callback to initialize device
7345 * @txqs: the number of TX subqueues to allocate
7346 * @rxqs: the number of RX subqueues to allocate
7348 * Allocates a struct net_device with private data area for driver use
7349 * and performs basic initialization. Also allocates subqueue structs
7350 * for each queue on the device.
7352 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7353 unsigned char name_assign_type,
7354 void (*setup)(struct net_device *),
7355 unsigned int txqs, unsigned int rxqs)
7357 struct net_device *dev;
7359 struct net_device *p;
7361 BUG_ON(strlen(name) >= sizeof(dev->name));
7364 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7370 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7375 alloc_size = sizeof(struct net_device);
7377 /* ensure 32-byte alignment of private area */
7378 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7379 alloc_size += sizeof_priv;
7381 /* ensure 32-byte alignment of whole construct */
7382 alloc_size += NETDEV_ALIGN - 1;
7384 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7386 p = vzalloc(alloc_size);
7390 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7391 dev->padded = (char *)dev - (char *)p;
7393 dev->pcpu_refcnt = alloc_percpu(int);
7394 if (!dev->pcpu_refcnt)
7397 if (dev_addr_init(dev))
7403 dev_net_set(dev, &init_net);
7405 dev->gso_max_size = GSO_MAX_SIZE;
7406 dev->gso_max_segs = GSO_MAX_SEGS;
7407 dev->gso_min_segs = 0;
7409 INIT_LIST_HEAD(&dev->napi_list);
7410 INIT_LIST_HEAD(&dev->unreg_list);
7411 INIT_LIST_HEAD(&dev->close_list);
7412 INIT_LIST_HEAD(&dev->link_watch_list);
7413 INIT_LIST_HEAD(&dev->adj_list.upper);
7414 INIT_LIST_HEAD(&dev->adj_list.lower);
7415 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7416 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7417 INIT_LIST_HEAD(&dev->ptype_all);
7418 INIT_LIST_HEAD(&dev->ptype_specific);
7419 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7422 if (!dev->tx_queue_len)
7423 dev->priv_flags |= IFF_NO_QUEUE;
7425 dev->num_tx_queues = txqs;
7426 dev->real_num_tx_queues = txqs;
7427 if (netif_alloc_netdev_queues(dev))
7431 dev->num_rx_queues = rxqs;
7432 dev->real_num_rx_queues = rxqs;
7433 if (netif_alloc_rx_queues(dev))
7437 strcpy(dev->name, name);
7438 dev->name_assign_type = name_assign_type;
7439 dev->group = INIT_NETDEV_GROUP;
7440 if (!dev->ethtool_ops)
7441 dev->ethtool_ops = &default_ethtool_ops;
7443 nf_hook_ingress_init(dev);
7452 free_percpu(dev->pcpu_refcnt);
7454 netdev_freemem(dev);
7457 EXPORT_SYMBOL(alloc_netdev_mqs);
7460 * free_netdev - free network device
7463 * This function does the last stage of destroying an allocated device
7464 * interface. The reference to the device object is released.
7465 * If this is the last reference then it will be freed.
7466 * Must be called in process context.
7468 void free_netdev(struct net_device *dev)
7470 struct napi_struct *p, *n;
7473 netif_free_tx_queues(dev);
7478 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7480 /* Flush device addresses */
7481 dev_addr_flush(dev);
7483 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7486 free_percpu(dev->pcpu_refcnt);
7487 dev->pcpu_refcnt = NULL;
7489 /* Compatibility with error handling in drivers */
7490 if (dev->reg_state == NETREG_UNINITIALIZED) {
7491 netdev_freemem(dev);
7495 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7496 dev->reg_state = NETREG_RELEASED;
7498 /* will free via device release */
7499 put_device(&dev->dev);
7501 EXPORT_SYMBOL(free_netdev);
7504 * synchronize_net - Synchronize with packet receive processing
7506 * Wait for packets currently being received to be done.
7507 * Does not block later packets from starting.
7509 void synchronize_net(void)
7512 if (rtnl_is_locked())
7513 synchronize_rcu_expedited();
7517 EXPORT_SYMBOL(synchronize_net);
7520 * unregister_netdevice_queue - remove device from the kernel
7524 * This function shuts down a device interface and removes it
7525 * from the kernel tables.
7526 * If head not NULL, device is queued to be unregistered later.
7528 * Callers must hold the rtnl semaphore. You may want
7529 * unregister_netdev() instead of this.
7532 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7537 list_move_tail(&dev->unreg_list, head);
7539 rollback_registered(dev);
7540 /* Finish processing unregister after unlock */
7544 EXPORT_SYMBOL(unregister_netdevice_queue);
7547 * unregister_netdevice_many - unregister many devices
7548 * @head: list of devices
7550 * Note: As most callers use a stack allocated list_head,
7551 * we force a list_del() to make sure stack wont be corrupted later.
7553 void unregister_netdevice_many(struct list_head *head)
7555 struct net_device *dev;
7557 if (!list_empty(head)) {
7558 rollback_registered_many(head);
7559 list_for_each_entry(dev, head, unreg_list)
7564 EXPORT_SYMBOL(unregister_netdevice_many);
7567 * unregister_netdev - remove device from the kernel
7570 * This function shuts down a device interface and removes it
7571 * from the kernel tables.
7573 * This is just a wrapper for unregister_netdevice that takes
7574 * the rtnl semaphore. In general you want to use this and not
7575 * unregister_netdevice.
7577 void unregister_netdev(struct net_device *dev)
7580 unregister_netdevice(dev);
7583 EXPORT_SYMBOL(unregister_netdev);
7586 * dev_change_net_namespace - move device to different nethost namespace
7588 * @net: network namespace
7589 * @pat: If not NULL name pattern to try if the current device name
7590 * is already taken in the destination network namespace.
7592 * This function shuts down a device interface and moves it
7593 * to a new network namespace. On success 0 is returned, on
7594 * a failure a netagive errno code is returned.
7596 * Callers must hold the rtnl semaphore.
7599 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7605 /* Don't allow namespace local devices to be moved. */
7607 if (dev->features & NETIF_F_NETNS_LOCAL)
7610 /* Ensure the device has been registrered */
7611 if (dev->reg_state != NETREG_REGISTERED)
7614 /* Get out if there is nothing todo */
7616 if (net_eq(dev_net(dev), net))
7619 /* Pick the destination device name, and ensure
7620 * we can use it in the destination network namespace.
7623 if (__dev_get_by_name(net, dev->name)) {
7624 /* We get here if we can't use the current device name */
7627 if (dev_get_valid_name(net, dev, pat) < 0)
7632 * And now a mini version of register_netdevice unregister_netdevice.
7635 /* If device is running close it first. */
7638 /* And unlink it from device chain */
7640 unlist_netdevice(dev);
7644 /* Shutdown queueing discipline. */
7647 /* Notify protocols, that we are about to destroy
7648 this device. They should clean all the things.
7650 Note that dev->reg_state stays at NETREG_REGISTERED.
7651 This is wanted because this way 8021q and macvlan know
7652 the device is just moving and can keep their slaves up.
7654 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7656 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7657 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7660 * Flush the unicast and multicast chains
7665 /* Send a netdev-removed uevent to the old namespace */
7666 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7667 netdev_adjacent_del_links(dev);
7669 /* Actually switch the network namespace */
7670 dev_net_set(dev, net);
7672 /* If there is an ifindex conflict assign a new one */
7673 if (__dev_get_by_index(net, dev->ifindex))
7674 dev->ifindex = dev_new_index(net);
7676 /* Send a netdev-add uevent to the new namespace */
7677 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7678 netdev_adjacent_add_links(dev);
7680 /* Fixup kobjects */
7681 err = device_rename(&dev->dev, dev->name);
7684 /* Add the device back in the hashes */
7685 list_netdevice(dev);
7687 /* Notify protocols, that a new device appeared. */
7688 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7691 * Prevent userspace races by waiting until the network
7692 * device is fully setup before sending notifications.
7694 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7701 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7703 static int dev_cpu_callback(struct notifier_block *nfb,
7704 unsigned long action,
7707 struct sk_buff **list_skb;
7708 struct sk_buff *skb;
7709 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7710 struct softnet_data *sd, *oldsd;
7712 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7715 local_irq_disable();
7716 cpu = smp_processor_id();
7717 sd = &per_cpu(softnet_data, cpu);
7718 oldsd = &per_cpu(softnet_data, oldcpu);
7720 /* Find end of our completion_queue. */
7721 list_skb = &sd->completion_queue;
7723 list_skb = &(*list_skb)->next;
7724 /* Append completion queue from offline CPU. */
7725 *list_skb = oldsd->completion_queue;
7726 oldsd->completion_queue = NULL;
7728 /* Append output queue from offline CPU. */
7729 if (oldsd->output_queue) {
7730 *sd->output_queue_tailp = oldsd->output_queue;
7731 sd->output_queue_tailp = oldsd->output_queue_tailp;
7732 oldsd->output_queue = NULL;
7733 oldsd->output_queue_tailp = &oldsd->output_queue;
7735 /* Append NAPI poll list from offline CPU, with one exception :
7736 * process_backlog() must be called by cpu owning percpu backlog.
7737 * We properly handle process_queue & input_pkt_queue later.
7739 while (!list_empty(&oldsd->poll_list)) {
7740 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7744 list_del_init(&napi->poll_list);
7745 if (napi->poll == process_backlog)
7748 ____napi_schedule(sd, napi);
7751 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7754 /* Process offline CPU's input_pkt_queue */
7755 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7757 input_queue_head_incr(oldsd);
7759 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7761 input_queue_head_incr(oldsd);
7769 * netdev_increment_features - increment feature set by one
7770 * @all: current feature set
7771 * @one: new feature set
7772 * @mask: mask feature set
7774 * Computes a new feature set after adding a device with feature set
7775 * @one to the master device with current feature set @all. Will not
7776 * enable anything that is off in @mask. Returns the new feature set.
7778 netdev_features_t netdev_increment_features(netdev_features_t all,
7779 netdev_features_t one, netdev_features_t mask)
7781 if (mask & NETIF_F_HW_CSUM)
7782 mask |= NETIF_F_CSUM_MASK;
7783 mask |= NETIF_F_VLAN_CHALLENGED;
7785 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7786 all &= one | ~NETIF_F_ALL_FOR_ALL;
7788 /* If one device supports hw checksumming, set for all. */
7789 if (all & NETIF_F_HW_CSUM)
7790 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7794 EXPORT_SYMBOL(netdev_increment_features);
7796 static struct hlist_head * __net_init netdev_create_hash(void)
7799 struct hlist_head *hash;
7801 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7803 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7804 INIT_HLIST_HEAD(&hash[i]);
7809 /* Initialize per network namespace state */
7810 static int __net_init netdev_init(struct net *net)
7812 if (net != &init_net)
7813 INIT_LIST_HEAD(&net->dev_base_head);
7815 net->dev_name_head = netdev_create_hash();
7816 if (net->dev_name_head == NULL)
7819 net->dev_index_head = netdev_create_hash();
7820 if (net->dev_index_head == NULL)
7826 kfree(net->dev_name_head);
7832 * netdev_drivername - network driver for the device
7833 * @dev: network device
7835 * Determine network driver for device.
7837 const char *netdev_drivername(const struct net_device *dev)
7839 const struct device_driver *driver;
7840 const struct device *parent;
7841 const char *empty = "";
7843 parent = dev->dev.parent;
7847 driver = parent->driver;
7848 if (driver && driver->name)
7849 return driver->name;
7853 static void __netdev_printk(const char *level, const struct net_device *dev,
7854 struct va_format *vaf)
7856 if (dev && dev->dev.parent) {
7857 dev_printk_emit(level[1] - '0',
7860 dev_driver_string(dev->dev.parent),
7861 dev_name(dev->dev.parent),
7862 netdev_name(dev), netdev_reg_state(dev),
7865 printk("%s%s%s: %pV",
7866 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7868 printk("%s(NULL net_device): %pV", level, vaf);
7872 void netdev_printk(const char *level, const struct net_device *dev,
7873 const char *format, ...)
7875 struct va_format vaf;
7878 va_start(args, format);
7883 __netdev_printk(level, dev, &vaf);
7887 EXPORT_SYMBOL(netdev_printk);
7889 #define define_netdev_printk_level(func, level) \
7890 void func(const struct net_device *dev, const char *fmt, ...) \
7892 struct va_format vaf; \
7895 va_start(args, fmt); \
7900 __netdev_printk(level, dev, &vaf); \
7904 EXPORT_SYMBOL(func);
7906 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7907 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7908 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7909 define_netdev_printk_level(netdev_err, KERN_ERR);
7910 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7911 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7912 define_netdev_printk_level(netdev_info, KERN_INFO);
7914 static void __net_exit netdev_exit(struct net *net)
7916 kfree(net->dev_name_head);
7917 kfree(net->dev_index_head);
7920 static struct pernet_operations __net_initdata netdev_net_ops = {
7921 .init = netdev_init,
7922 .exit = netdev_exit,
7925 static void __net_exit default_device_exit(struct net *net)
7927 struct net_device *dev, *aux;
7929 * Push all migratable network devices back to the
7930 * initial network namespace
7933 for_each_netdev_safe(net, dev, aux) {
7935 char fb_name[IFNAMSIZ];
7937 /* Ignore unmoveable devices (i.e. loopback) */
7938 if (dev->features & NETIF_F_NETNS_LOCAL)
7941 /* Leave virtual devices for the generic cleanup */
7942 if (dev->rtnl_link_ops)
7945 /* Push remaining network devices to init_net */
7946 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7947 err = dev_change_net_namespace(dev, &init_net, fb_name);
7949 pr_emerg("%s: failed to move %s to init_net: %d\n",
7950 __func__, dev->name, err);
7957 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7959 /* Return with the rtnl_lock held when there are no network
7960 * devices unregistering in any network namespace in net_list.
7964 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7966 add_wait_queue(&netdev_unregistering_wq, &wait);
7968 unregistering = false;
7970 list_for_each_entry(net, net_list, exit_list) {
7971 if (net->dev_unreg_count > 0) {
7972 unregistering = true;
7980 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7982 remove_wait_queue(&netdev_unregistering_wq, &wait);
7985 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7987 /* At exit all network devices most be removed from a network
7988 * namespace. Do this in the reverse order of registration.
7989 * Do this across as many network namespaces as possible to
7990 * improve batching efficiency.
7992 struct net_device *dev;
7994 LIST_HEAD(dev_kill_list);
7996 /* To prevent network device cleanup code from dereferencing
7997 * loopback devices or network devices that have been freed
7998 * wait here for all pending unregistrations to complete,
7999 * before unregistring the loopback device and allowing the
8000 * network namespace be freed.
8002 * The netdev todo list containing all network devices
8003 * unregistrations that happen in default_device_exit_batch
8004 * will run in the rtnl_unlock() at the end of
8005 * default_device_exit_batch.
8007 rtnl_lock_unregistering(net_list);
8008 list_for_each_entry(net, net_list, exit_list) {
8009 for_each_netdev_reverse(net, dev) {
8010 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8011 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8013 unregister_netdevice_queue(dev, &dev_kill_list);
8016 unregister_netdevice_many(&dev_kill_list);
8020 static struct pernet_operations __net_initdata default_device_ops = {
8021 .exit = default_device_exit,
8022 .exit_batch = default_device_exit_batch,
8026 * Initialize the DEV module. At boot time this walks the device list and
8027 * unhooks any devices that fail to initialise (normally hardware not
8028 * present) and leaves us with a valid list of present and active devices.
8033 * This is called single threaded during boot, so no need
8034 * to take the rtnl semaphore.
8036 static int __init net_dev_init(void)
8038 int i, rc = -ENOMEM;
8040 BUG_ON(!dev_boot_phase);
8042 if (dev_proc_init())
8045 if (netdev_kobject_init())
8048 INIT_LIST_HEAD(&ptype_all);
8049 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8050 INIT_LIST_HEAD(&ptype_base[i]);
8052 INIT_LIST_HEAD(&offload_base);
8054 if (register_pernet_subsys(&netdev_net_ops))
8058 * Initialise the packet receive queues.
8061 for_each_possible_cpu(i) {
8062 struct softnet_data *sd = &per_cpu(softnet_data, i);
8064 skb_queue_head_init(&sd->input_pkt_queue);
8065 skb_queue_head_init(&sd->process_queue);
8066 INIT_LIST_HEAD(&sd->poll_list);
8067 sd->output_queue_tailp = &sd->output_queue;
8069 sd->csd.func = rps_trigger_softirq;
8074 sd->backlog.poll = process_backlog;
8075 sd->backlog.weight = weight_p;
8080 /* The loopback device is special if any other network devices
8081 * is present in a network namespace the loopback device must
8082 * be present. Since we now dynamically allocate and free the
8083 * loopback device ensure this invariant is maintained by
8084 * keeping the loopback device as the first device on the
8085 * list of network devices. Ensuring the loopback devices
8086 * is the first device that appears and the last network device
8089 if (register_pernet_device(&loopback_net_ops))
8092 if (register_pernet_device(&default_device_ops))
8095 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8096 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8098 hotcpu_notifier(dev_cpu_callback, 0);
8105 subsys_initcall(net_dev_init);