1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
4 #include <linux/bits.h>
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/debugfs.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/serial_8250.h>
12 #include <linux/clkdev.h>
13 #include <linux/clk-provider.h>
14 #include <linux/platform_device.h>
15 #include <linux/platform_data/i2c-xiic.h>
16 #include <linux/platform_data/i2c-ocores.h>
17 #include <linux/ptp_clock_kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/xilinx_spi.h>
20 #include <linux/spi/altera.h>
21 #include <net/devlink.h>
22 #include <linux/i2c.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/nvmem-consumer.h>
25 #include <linux/crc16.h>
26 #include <linux/dpll.h>
28 #define PCI_VENDOR_ID_FACEBOOK 0x1d9b
29 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400
31 #define PCI_VENDOR_ID_CELESTICA 0x18d4
32 #define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008
34 #define PCI_VENDOR_ID_OROLIA 0x1ad7
35 #define PCI_DEVICE_ID_OROLIA_ARTCARD 0xa000
37 static struct class timecard_class = {
66 #define OCP_CTRL_ENABLE BIT(0)
67 #define OCP_CTRL_ADJUST_TIME BIT(1)
68 #define OCP_CTRL_ADJUST_OFFSET BIT(2)
69 #define OCP_CTRL_ADJUST_DRIFT BIT(3)
70 #define OCP_CTRL_ADJUST_SERVO BIT(8)
71 #define OCP_CTRL_READ_TIME_REQ BIT(30)
72 #define OCP_CTRL_READ_TIME_DONE BIT(31)
74 #define OCP_STATUS_IN_SYNC BIT(0)
75 #define OCP_STATUS_IN_HOLDOVER BIT(1)
77 #define OCP_SELECT_CLK_NONE 0
78 #define OCP_SELECT_CLK_REG 0xfe
93 #define TOD_CTRL_PROTOCOL BIT(28)
94 #define TOD_CTRL_DISABLE_FMT_A BIT(17)
95 #define TOD_CTRL_DISABLE_FMT_B BIT(16)
96 #define TOD_CTRL_ENABLE BIT(0)
97 #define TOD_CTRL_GNSS_MASK GENMASK(3, 0)
98 #define TOD_CTRL_GNSS_SHIFT 24
100 #define TOD_STATUS_UTC_MASK GENMASK(7, 0)
101 #define TOD_STATUS_UTC_VALID BIT(8)
102 #define TOD_STATUS_LEAP_ANNOUNCE BIT(12)
103 #define TOD_STATUS_LEAP_VALID BIT(16)
131 #define PPS_STATUS_FILTER_ERR BIT(0)
132 #define PPS_STATUS_SUPERV_ERR BIT(1)
145 struct irig_master_reg {
154 #define IRIG_M_CTRL_ENABLE BIT(0)
156 struct irig_slave_reg {
165 #define IRIG_S_CTRL_ENABLE BIT(0)
167 struct dcf_master_reg {
175 #define DCF_M_CTRL_ENABLE BIT(0)
177 struct dcf_slave_reg {
185 #define DCF_S_CTRL_ENABLE BIT(0)
207 struct frequency_reg {
212 struct board_config_reg {
213 u32 mro50_serial_activate;
216 #define FREQ_STATUS_VALID BIT(31)
217 #define FREQ_STATUS_ERROR BIT(30)
218 #define FREQ_STATUS_OVERRUN BIT(29)
219 #define FREQ_STATUS_MASK GENMASK(23, 0)
221 struct ptp_ocp_flash_info {
228 struct ptp_ocp_firmware_header {
230 __be16 pci_vendor_id;
231 __be16 pci_device_id;
237 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
239 struct ptp_ocp_i2c_info {
241 unsigned long fixed_rate;
246 struct ptp_ocp_ext_info {
248 irqreturn_t (*irq_fcn)(int irq, void *priv);
249 int (*enable)(void *priv, u32 req, bool enable);
252 struct ptp_ocp_ext_src {
255 struct ptp_ocp_ext_info *info;
259 enum ptp_ocp_sma_mode {
264 static struct dpll_pin_frequency ptp_ocp_sma_freq[] = {
265 DPLL_PIN_FREQUENCY_1PPS,
266 DPLL_PIN_FREQUENCY_10MHZ,
267 DPLL_PIN_FREQUENCY_IRIG_B,
268 DPLL_PIN_FREQUENCY_DCF77,
271 struct ptp_ocp_sma_connector {
272 enum ptp_ocp_sma_mode mode;
277 struct dpll_pin *dpll_pin;
278 struct dpll_pin_properties dpll_prop;
281 struct ocp_attr_group {
283 const struct attribute_group *group;
286 #define OCP_CAP_BASIC BIT(0)
287 #define OCP_CAP_SIGNAL BIT(1)
288 #define OCP_CAP_FREQ BIT(2)
290 struct ptp_ocp_signal {
300 struct ptp_ocp_serial_port {
305 #define OCP_BOARD_ID_LEN 13
306 #define OCP_SERIAL_LEN 6
307 #define OCP_SMA_NUM 4
310 struct pci_dev *pdev;
313 struct ocp_reg __iomem *reg;
314 struct tod_reg __iomem *tod;
315 struct pps_reg __iomem *pps_to_ext;
316 struct pps_reg __iomem *pps_to_clk;
317 struct board_config_reg __iomem *board_config;
318 struct gpio_reg __iomem *pps_select;
319 struct gpio_reg __iomem *sma_map1;
320 struct gpio_reg __iomem *sma_map2;
321 struct irig_master_reg __iomem *irig_out;
322 struct irig_slave_reg __iomem *irig_in;
323 struct dcf_master_reg __iomem *dcf_out;
324 struct dcf_slave_reg __iomem *dcf_in;
325 struct tod_reg __iomem *nmea_out;
326 struct frequency_reg __iomem *freq_in[4];
327 struct ptp_ocp_ext_src *signal_out[4];
328 struct ptp_ocp_ext_src *pps;
329 struct ptp_ocp_ext_src *ts0;
330 struct ptp_ocp_ext_src *ts1;
331 struct ptp_ocp_ext_src *ts2;
332 struct ptp_ocp_ext_src *ts3;
333 struct ptp_ocp_ext_src *ts4;
334 struct ocp_art_gpio_reg __iomem *art_sma;
335 struct img_reg __iomem *image;
336 struct ptp_clock *ptp;
337 struct ptp_clock_info ptp_info;
338 struct platform_device *i2c_ctrl;
339 struct platform_device *spi_flash;
340 struct clk_hw *i2c_clk;
341 struct timer_list watchdog;
342 const struct attribute_group **attr_group;
343 const struct ptp_ocp_eeprom_map *eeprom_map;
344 struct dentry *debug_root;
347 struct delayed_work sync_work;
350 struct ptp_ocp_serial_port gnss_port;
351 struct ptp_ocp_serial_port gnss2_port;
352 struct ptp_ocp_serial_port mac_port; /* miniature atomic clock */
353 struct ptp_ocp_serial_port nmea_port;
357 u8 board_id[OCP_BOARD_ID_LEN];
358 u8 serial[OCP_SERIAL_LEN];
359 bool has_eeprom_data;
363 u32 ts_window_adjust;
365 struct ptp_ocp_signal signal[4];
366 struct ptp_ocp_sma_connector sma[OCP_SMA_NUM];
367 const struct ocp_sma_op *sma_op;
368 struct dpll_device *dpll;
371 #define OCP_REQ_TIMESTAMP BIT(0)
372 #define OCP_REQ_PPS BIT(1)
374 struct ocp_resource {
375 unsigned long offset;
378 int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
380 unsigned long bp_offset;
381 const char * const name;
384 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
385 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
386 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
387 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
388 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
389 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
390 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
391 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
392 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
393 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
394 struct ptp_perout_request *req);
395 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
396 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
398 static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
400 static const struct ocp_attr_group fb_timecard_groups[];
402 static const struct ocp_attr_group art_timecard_groups[];
404 struct ptp_ocp_eeprom_map {
408 const void * const tag;
411 #define EEPROM_ENTRY(addr, member) \
413 .len = sizeof_field(struct ptp_ocp, member), \
414 .bp_offset = offsetof(struct ptp_ocp, member)
416 #define BP_MAP_ENTRY_ADDR(bp, map) ({ \
417 (void *)((uintptr_t)(bp) + (map)->bp_offset); \
420 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
421 { EEPROM_ENTRY(0x43, board_id) },
422 { EEPROM_ENTRY(0x00, serial), .tag = "mac" },
426 static struct ptp_ocp_eeprom_map art_eeprom_map[] = {
427 { EEPROM_ENTRY(0x200 + 0x43, board_id) },
428 { EEPROM_ENTRY(0x200 + 0x63, serial) },
432 #define bp_assign_entry(bp, res, val) ({ \
433 uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \
434 *(typeof(val) *)addr = val; \
437 #define OCP_RES_LOCATION(member) \
438 .name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
440 #define OCP_MEM_RESOURCE(member) \
441 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
443 #define OCP_SERIAL_RESOURCE(member) \
444 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
446 #define OCP_I2C_RESOURCE(member) \
447 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
449 #define OCP_SPI_RESOURCE(member) \
450 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
452 #define OCP_EXT_RESOURCE(member) \
453 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
455 /* This is the MSI vector mapping used.
464 * 8: HWICAP (notused)
467 * 11: Signal Generator 1
468 * 12: Signal Generator 2
469 * 13: Signal Generator 3
470 * 14: Signal Generator 4
476 * 11: Orolia TS0 (GNSS)
482 static struct ocp_resource ocp_fb_resource[] = {
484 OCP_MEM_RESOURCE(reg),
485 .offset = 0x01000000, .size = 0x10000,
488 OCP_EXT_RESOURCE(ts0),
489 .offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
490 .extra = &(struct ptp_ocp_ext_info) {
492 .irq_fcn = ptp_ocp_ts_irq,
493 .enable = ptp_ocp_ts_enable,
497 OCP_EXT_RESOURCE(ts1),
498 .offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
499 .extra = &(struct ptp_ocp_ext_info) {
501 .irq_fcn = ptp_ocp_ts_irq,
502 .enable = ptp_ocp_ts_enable,
506 OCP_EXT_RESOURCE(ts2),
507 .offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
508 .extra = &(struct ptp_ocp_ext_info) {
510 .irq_fcn = ptp_ocp_ts_irq,
511 .enable = ptp_ocp_ts_enable,
515 OCP_EXT_RESOURCE(ts3),
516 .offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
517 .extra = &(struct ptp_ocp_ext_info) {
519 .irq_fcn = ptp_ocp_ts_irq,
520 .enable = ptp_ocp_ts_enable,
524 OCP_EXT_RESOURCE(ts4),
525 .offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
526 .extra = &(struct ptp_ocp_ext_info) {
528 .irq_fcn = ptp_ocp_ts_irq,
529 .enable = ptp_ocp_ts_enable,
532 /* Timestamp for PHC and/or PPS generator */
534 OCP_EXT_RESOURCE(pps),
535 .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
536 .extra = &(struct ptp_ocp_ext_info) {
538 .irq_fcn = ptp_ocp_ts_irq,
539 .enable = ptp_ocp_ts_enable,
543 OCP_EXT_RESOURCE(signal_out[0]),
544 .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
545 .extra = &(struct ptp_ocp_ext_info) {
547 .irq_fcn = ptp_ocp_signal_irq,
548 .enable = ptp_ocp_signal_enable,
552 OCP_EXT_RESOURCE(signal_out[1]),
553 .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
554 .extra = &(struct ptp_ocp_ext_info) {
556 .irq_fcn = ptp_ocp_signal_irq,
557 .enable = ptp_ocp_signal_enable,
561 OCP_EXT_RESOURCE(signal_out[2]),
562 .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
563 .extra = &(struct ptp_ocp_ext_info) {
565 .irq_fcn = ptp_ocp_signal_irq,
566 .enable = ptp_ocp_signal_enable,
570 OCP_EXT_RESOURCE(signal_out[3]),
571 .offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
572 .extra = &(struct ptp_ocp_ext_info) {
574 .irq_fcn = ptp_ocp_signal_irq,
575 .enable = ptp_ocp_signal_enable,
579 OCP_MEM_RESOURCE(pps_to_ext),
580 .offset = 0x01030000, .size = 0x10000,
583 OCP_MEM_RESOURCE(pps_to_clk),
584 .offset = 0x01040000, .size = 0x10000,
587 OCP_MEM_RESOURCE(tod),
588 .offset = 0x01050000, .size = 0x10000,
591 OCP_MEM_RESOURCE(irig_in),
592 .offset = 0x01070000, .size = 0x10000,
595 OCP_MEM_RESOURCE(irig_out),
596 .offset = 0x01080000, .size = 0x10000,
599 OCP_MEM_RESOURCE(dcf_in),
600 .offset = 0x01090000, .size = 0x10000,
603 OCP_MEM_RESOURCE(dcf_out),
604 .offset = 0x010A0000, .size = 0x10000,
607 OCP_MEM_RESOURCE(nmea_out),
608 .offset = 0x010B0000, .size = 0x10000,
611 OCP_MEM_RESOURCE(image),
612 .offset = 0x00020000, .size = 0x1000,
615 OCP_MEM_RESOURCE(pps_select),
616 .offset = 0x00130000, .size = 0x1000,
619 OCP_MEM_RESOURCE(sma_map1),
620 .offset = 0x00140000, .size = 0x1000,
623 OCP_MEM_RESOURCE(sma_map2),
624 .offset = 0x00220000, .size = 0x1000,
627 OCP_I2C_RESOURCE(i2c_ctrl),
628 .offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
629 .extra = &(struct ptp_ocp_i2c_info) {
631 .fixed_rate = 50000000,
632 .data_size = sizeof(struct xiic_i2c_platform_data),
633 .data = &(struct xiic_i2c_platform_data) {
635 .devices = (struct i2c_board_info[]) {
636 { I2C_BOARD_INFO("24c02", 0x50) },
637 { I2C_BOARD_INFO("24mac402", 0x58),
638 .platform_data = "mac" },
644 OCP_SERIAL_RESOURCE(gnss_port),
645 .offset = 0x00160000 + 0x1000, .irq_vec = 3,
646 .extra = &(struct ptp_ocp_serial_port) {
651 OCP_SERIAL_RESOURCE(gnss2_port),
652 .offset = 0x00170000 + 0x1000, .irq_vec = 4,
653 .extra = &(struct ptp_ocp_serial_port) {
658 OCP_SERIAL_RESOURCE(mac_port),
659 .offset = 0x00180000 + 0x1000, .irq_vec = 5,
660 .extra = &(struct ptp_ocp_serial_port) {
665 OCP_SERIAL_RESOURCE(nmea_port),
666 .offset = 0x00190000 + 0x1000, .irq_vec = 10,
669 OCP_SPI_RESOURCE(spi_flash),
670 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
671 .extra = &(struct ptp_ocp_flash_info) {
672 .name = "xilinx_spi", .pci_offset = 0,
673 .data_size = sizeof(struct xspi_platform_data),
674 .data = &(struct xspi_platform_data) {
679 .devices = &(struct spi_board_info) {
680 .modalias = "spi-nor",
686 OCP_MEM_RESOURCE(freq_in[0]),
687 .offset = 0x01200000, .size = 0x10000,
690 OCP_MEM_RESOURCE(freq_in[1]),
691 .offset = 0x01210000, .size = 0x10000,
694 OCP_MEM_RESOURCE(freq_in[2]),
695 .offset = 0x01220000, .size = 0x10000,
698 OCP_MEM_RESOURCE(freq_in[3]),
699 .offset = 0x01230000, .size = 0x10000,
702 .setup = ptp_ocp_fb_board_init,
707 #define OCP_ART_CONFIG_SIZE 144
708 #define OCP_ART_TEMP_TABLE_SIZE 368
710 struct ocp_art_gpio_reg {
717 static struct ocp_resource ocp_art_resource[] = {
719 OCP_MEM_RESOURCE(reg),
720 .offset = 0x01000000, .size = 0x10000,
723 OCP_SERIAL_RESOURCE(gnss_port),
724 .offset = 0x00160000 + 0x1000, .irq_vec = 3,
725 .extra = &(struct ptp_ocp_serial_port) {
730 OCP_MEM_RESOURCE(art_sma),
731 .offset = 0x003C0000, .size = 0x1000,
733 /* Timestamp associated with GNSS1 receiver PPS */
735 OCP_EXT_RESOURCE(ts0),
736 .offset = 0x360000, .size = 0x20, .irq_vec = 12,
737 .extra = &(struct ptp_ocp_ext_info) {
739 .irq_fcn = ptp_ocp_ts_irq,
740 .enable = ptp_ocp_ts_enable,
744 OCP_EXT_RESOURCE(ts1),
745 .offset = 0x380000, .size = 0x20, .irq_vec = 8,
746 .extra = &(struct ptp_ocp_ext_info) {
748 .irq_fcn = ptp_ocp_ts_irq,
749 .enable = ptp_ocp_ts_enable,
753 OCP_EXT_RESOURCE(ts2),
754 .offset = 0x390000, .size = 0x20, .irq_vec = 10,
755 .extra = &(struct ptp_ocp_ext_info) {
757 .irq_fcn = ptp_ocp_ts_irq,
758 .enable = ptp_ocp_ts_enable,
762 OCP_EXT_RESOURCE(ts3),
763 .offset = 0x3A0000, .size = 0x20, .irq_vec = 14,
764 .extra = &(struct ptp_ocp_ext_info) {
766 .irq_fcn = ptp_ocp_ts_irq,
767 .enable = ptp_ocp_ts_enable,
771 OCP_EXT_RESOURCE(ts4),
772 .offset = 0x3B0000, .size = 0x20, .irq_vec = 15,
773 .extra = &(struct ptp_ocp_ext_info) {
775 .irq_fcn = ptp_ocp_ts_irq,
776 .enable = ptp_ocp_ts_enable,
779 /* Timestamp associated with Internal PPS of the card */
781 OCP_EXT_RESOURCE(pps),
782 .offset = 0x00330000, .size = 0x20, .irq_vec = 11,
783 .extra = &(struct ptp_ocp_ext_info) {
785 .irq_fcn = ptp_ocp_ts_irq,
786 .enable = ptp_ocp_ts_enable,
790 OCP_SPI_RESOURCE(spi_flash),
791 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
792 .extra = &(struct ptp_ocp_flash_info) {
793 .name = "spi_altera", .pci_offset = 0,
794 .data_size = sizeof(struct altera_spi_platform_data),
795 .data = &(struct altera_spi_platform_data) {
798 .devices = &(struct spi_board_info) {
799 .modalias = "spi-nor",
805 OCP_I2C_RESOURCE(i2c_ctrl),
806 .offset = 0x350000, .size = 0x100, .irq_vec = 4,
807 .extra = &(struct ptp_ocp_i2c_info) {
808 .name = "ocores-i2c",
809 .fixed_rate = 400000,
810 .data_size = sizeof(struct ocores_i2c_platform_data),
811 .data = &(struct ocores_i2c_platform_data) {
815 .devices = &(struct i2c_board_info) {
816 I2C_BOARD_INFO("24c08", 0x50),
822 OCP_SERIAL_RESOURCE(mac_port),
823 .offset = 0x00190000, .irq_vec = 7,
824 .extra = &(struct ptp_ocp_serial_port) {
829 OCP_MEM_RESOURCE(board_config),
830 .offset = 0x210000, .size = 0x1000,
833 .setup = ptp_ocp_art_board_init,
838 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
839 { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
840 { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
841 { PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) },
844 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
846 static DEFINE_MUTEX(ptp_ocp_lock);
847 static DEFINE_IDR(ptp_ocp_idr);
849 struct ocp_selector {
855 static const struct ocp_selector ptp_ocp_clock[] = {
856 { .name = "NONE", .value = 0 },
857 { .name = "TOD", .value = 1 },
858 { .name = "IRIG", .value = 2 },
859 { .name = "PPS", .value = 3 },
860 { .name = "PTP", .value = 4 },
861 { .name = "RTC", .value = 5 },
862 { .name = "DCF", .value = 6 },
863 { .name = "REGS", .value = 0xfe },
864 { .name = "EXT", .value = 0xff },
868 #define SMA_DISABLE BIT(16)
869 #define SMA_ENABLE BIT(15)
870 #define SMA_SELECT_MASK GENMASK(14, 0)
872 static const struct ocp_selector ptp_ocp_sma_in[] = {
873 { .name = "10Mhz", .value = 0x0000, .frequency = 10000000 },
874 { .name = "PPS1", .value = 0x0001, .frequency = 1 },
875 { .name = "PPS2", .value = 0x0002, .frequency = 1 },
876 { .name = "TS1", .value = 0x0004, .frequency = 0 },
877 { .name = "TS2", .value = 0x0008, .frequency = 0 },
878 { .name = "IRIG", .value = 0x0010, .frequency = 10000 },
879 { .name = "DCF", .value = 0x0020, .frequency = 77500 },
880 { .name = "TS3", .value = 0x0040, .frequency = 0 },
881 { .name = "TS4", .value = 0x0080, .frequency = 0 },
882 { .name = "FREQ1", .value = 0x0100, .frequency = 0 },
883 { .name = "FREQ2", .value = 0x0200, .frequency = 0 },
884 { .name = "FREQ3", .value = 0x0400, .frequency = 0 },
885 { .name = "FREQ4", .value = 0x0800, .frequency = 0 },
886 { .name = "None", .value = SMA_DISABLE, .frequency = 0 },
890 static const struct ocp_selector ptp_ocp_sma_out[] = {
891 { .name = "10Mhz", .value = 0x0000, .frequency = 10000000 },
892 { .name = "PHC", .value = 0x0001, .frequency = 1 },
893 { .name = "MAC", .value = 0x0002, .frequency = 1 },
894 { .name = "GNSS1", .value = 0x0004, .frequency = 1 },
895 { .name = "GNSS2", .value = 0x0008, .frequency = 1 },
896 { .name = "IRIG", .value = 0x0010, .frequency = 10000 },
897 { .name = "DCF", .value = 0x0020, .frequency = 77000 },
898 { .name = "GEN1", .value = 0x0040 },
899 { .name = "GEN2", .value = 0x0080 },
900 { .name = "GEN3", .value = 0x0100 },
901 { .name = "GEN4", .value = 0x0200 },
902 { .name = "GND", .value = 0x2000 },
903 { .name = "VCC", .value = 0x4000 },
907 static const struct ocp_selector ptp_ocp_art_sma_in[] = {
908 { .name = "PPS1", .value = 0x0001, .frequency = 1 },
909 { .name = "10Mhz", .value = 0x0008, .frequency = 1000000 },
913 static const struct ocp_selector ptp_ocp_art_sma_out[] = {
914 { .name = "PHC", .value = 0x0002, .frequency = 1 },
915 { .name = "GNSS", .value = 0x0004, .frequency = 1 },
916 { .name = "10Mhz", .value = 0x0010, .frequency = 10000000 },
921 const struct ocp_selector *tbl[2];
922 void (*init)(struct ptp_ocp *bp);
923 u32 (*get)(struct ptp_ocp *bp, int sma_nr);
924 int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
925 int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
929 ptp_ocp_sma_init(struct ptp_ocp *bp)
931 return bp->sma_op->init(bp);
935 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
937 return bp->sma_op->get(bp, sma_nr);
941 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
943 return bp->sma_op->set_inputs(bp, sma_nr, val);
947 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
949 return bp->sma_op->set_output(bp, sma_nr, val);
953 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
957 for (i = 0; tbl[i].name; i++)
958 if (tbl[i].value == val)
964 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
969 for (i = 0; tbl[i].name; i++) {
970 select = tbl[i].name;
971 if (!strncasecmp(name, select, strlen(select)))
978 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
984 for (i = 0; tbl[i].name; i++)
985 count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
988 count += sysfs_emit_at(buf, count, "\n");
993 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
994 struct ptp_system_timestamp *sts)
996 u32 ctrl, time_sec, time_ns;
999 ptp_read_system_prets(sts);
1001 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1002 iowrite32(ctrl, &bp->reg->ctrl);
1004 for (i = 0; i < 100; i++) {
1005 ctrl = ioread32(&bp->reg->ctrl);
1006 if (ctrl & OCP_CTRL_READ_TIME_DONE)
1009 ptp_read_system_postts(sts);
1011 if (sts && bp->ts_window_adjust) {
1012 s64 ns = timespec64_to_ns(&sts->post_ts);
1014 sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
1017 time_ns = ioread32(&bp->reg->time_ns);
1018 time_sec = ioread32(&bp->reg->time_sec);
1020 ts->tv_sec = time_sec;
1021 ts->tv_nsec = time_ns;
1023 return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
1027 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
1028 struct ptp_system_timestamp *sts)
1030 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1031 unsigned long flags;
1034 spin_lock_irqsave(&bp->lock, flags);
1035 err = __ptp_ocp_gettime_locked(bp, ts, sts);
1036 spin_unlock_irqrestore(&bp->lock, flags);
1042 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
1044 u32 ctrl, time_sec, time_ns;
1047 time_ns = ts->tv_nsec;
1048 time_sec = ts->tv_sec;
1050 select = ioread32(&bp->reg->select);
1051 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1053 iowrite32(time_ns, &bp->reg->adjust_ns);
1054 iowrite32(time_sec, &bp->reg->adjust_sec);
1056 ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
1057 iowrite32(ctrl, &bp->reg->ctrl);
1059 /* restore clock selection */
1060 iowrite32(select >> 16, &bp->reg->select);
1064 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
1066 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1067 unsigned long flags;
1069 spin_lock_irqsave(&bp->lock, flags);
1070 __ptp_ocp_settime_locked(bp, ts);
1071 spin_unlock_irqrestore(&bp->lock, flags);
1077 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
1081 select = ioread32(&bp->reg->select);
1082 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1084 iowrite32(adj_val, &bp->reg->offset_ns);
1085 iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
1087 ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
1088 iowrite32(ctrl, &bp->reg->ctrl);
1090 /* restore clock selection */
1091 iowrite32(select >> 16, &bp->reg->select);
1095 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
1097 struct timespec64 ts;
1098 unsigned long flags;
1101 spin_lock_irqsave(&bp->lock, flags);
1102 err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
1104 set_normalized_timespec64(&ts, ts.tv_sec,
1105 ts.tv_nsec + delta_ns);
1106 __ptp_ocp_settime_locked(bp, &ts);
1108 spin_unlock_irqrestore(&bp->lock, flags);
1112 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
1114 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1115 unsigned long flags;
1118 if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
1119 ptp_ocp_adjtime_coarse(bp, delta_ns);
1123 sign = delta_ns < 0 ? BIT(31) : 0;
1124 adj_ns = sign ? -delta_ns : delta_ns;
1126 spin_lock_irqsave(&bp->lock, flags);
1127 __ptp_ocp_adjtime_locked(bp, sign | adj_ns);
1128 spin_unlock_irqrestore(&bp->lock, flags);
1134 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
1136 if (scaled_ppm == 0)
1143 ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info)
1149 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
1155 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
1158 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1159 struct ptp_ocp_ext_src *ext = NULL;
1164 case PTP_CLK_REQ_EXTTS:
1165 req = OCP_REQ_TIMESTAMP;
1166 switch (rq->extts.index) {
1187 case PTP_CLK_REQ_PPS:
1191 case PTP_CLK_REQ_PEROUT:
1192 switch (rq->perout.index) {
1194 /* This is a request for 1PPS on an output SMA.
1195 * Allow, but assume manual configuration.
1197 if (on && (rq->perout.period.sec != 1 ||
1198 rq->perout.period.nsec != 0))
1205 req = rq->perout.index - 1;
1206 ext = bp->signal_out[req];
1207 err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
1219 err = ext->info->enable(ext, req, on);
1225 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1226 enum ptp_pin_function func, unsigned chan)
1228 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1233 snprintf(buf, sizeof(buf), "IN: None");
1236 /* Allow timestamps, but require sysfs configuration. */
1239 /* channel 0 is 1PPS from PHC.
1240 * channels 1..4 are the frequency generators.
1243 snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1245 snprintf(buf, sizeof(buf), "OUT: PHC");
1251 return ptp_ocp_sma_store(bp, buf, pin + 1);
1254 static const struct ptp_clock_info ptp_ocp_clock_info = {
1255 .owner = THIS_MODULE,
1256 .name = KBUILD_MODNAME,
1257 .max_adj = 100000000,
1258 .gettimex64 = ptp_ocp_gettimex,
1259 .settime64 = ptp_ocp_settime,
1260 .adjtime = ptp_ocp_adjtime,
1261 .adjfine = ptp_ocp_null_adjfine,
1262 .adjphase = ptp_ocp_null_adjphase,
1263 .getmaxphase = ptp_ocp_null_getmaxphase,
1264 .enable = ptp_ocp_enable,
1265 .verify = ptp_ocp_verify,
1272 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1276 select = ioread32(&bp->reg->select);
1277 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1279 iowrite32(0, &bp->reg->drift_ns);
1281 ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1282 iowrite32(ctrl, &bp->reg->ctrl);
1284 /* restore clock selection */
1285 iowrite32(select >> 16, &bp->reg->select);
1289 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1291 unsigned long flags;
1293 spin_lock_irqsave(&bp->lock, flags);
1295 bp->utc_tai_offset = val;
1298 iowrite32(val, &bp->irig_out->adj_sec);
1300 iowrite32(val, &bp->dcf_out->adj_sec);
1302 iowrite32(val, &bp->nmea_out->adj_sec);
1304 spin_unlock_irqrestore(&bp->lock, flags);
1308 ptp_ocp_watchdog(struct timer_list *t)
1310 struct ptp_ocp *bp = from_timer(bp, t, watchdog);
1311 unsigned long flags;
1312 u32 status, utc_offset;
1314 status = ioread32(&bp->pps_to_clk->status);
1316 if (status & PPS_STATUS_SUPERV_ERR) {
1317 iowrite32(status, &bp->pps_to_clk->status);
1318 if (!bp->gnss_lost) {
1319 spin_lock_irqsave(&bp->lock, flags);
1320 __ptp_ocp_clear_drift_locked(bp);
1321 spin_unlock_irqrestore(&bp->lock, flags);
1322 bp->gnss_lost = ktime_get_real_seconds();
1325 } else if (bp->gnss_lost) {
1329 /* if GNSS provides correct data we can rely on
1330 * it to get leap second information
1333 status = ioread32(&bp->tod->utc_status);
1334 utc_offset = status & TOD_STATUS_UTC_MASK;
1335 if (status & TOD_STATUS_UTC_VALID &&
1336 utc_offset != bp->utc_tai_offset)
1337 ptp_ocp_utc_distribute(bp, utc_offset);
1340 mod_timer(&bp->watchdog, jiffies + HZ);
1344 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1350 ctrl = ioread32(&bp->reg->ctrl);
1351 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1353 iowrite32(ctrl, &bp->reg->ctrl);
1355 start = ktime_get_ns();
1357 ctrl = ioread32(&bp->reg->ctrl);
1359 end = ktime_get_ns();
1361 delay = end - start;
1362 bp->ts_window_adjust = (delay >> 5) * 3;
1366 ptp_ocp_init_clock(struct ptp_ocp *bp)
1368 struct timespec64 ts;
1371 ctrl = OCP_CTRL_ENABLE;
1372 iowrite32(ctrl, &bp->reg->ctrl);
1374 /* NO DRIFT Correction */
1375 /* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */
1376 iowrite32(0x2000, &bp->reg->servo_offset_p);
1377 iowrite32(0x1000, &bp->reg->servo_offset_i);
1378 iowrite32(0, &bp->reg->servo_drift_p);
1379 iowrite32(0, &bp->reg->servo_drift_i);
1381 /* latch servo values */
1382 ctrl |= OCP_CTRL_ADJUST_SERVO;
1383 iowrite32(ctrl, &bp->reg->ctrl);
1385 if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1386 dev_err(&bp->pdev->dev, "clock not enabled\n");
1390 ptp_ocp_estimate_pci_timing(bp);
1392 bp->sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1394 ktime_get_clocktai_ts64(&ts);
1395 ptp_ocp_settime(&bp->ptp_info, &ts);
1398 /* If there is a clock supervisor, then enable the watchdog */
1399 if (bp->pps_to_clk) {
1400 timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1401 mod_timer(&bp->watchdog, jiffies + HZ);
1408 ptp_ocp_tod_init(struct ptp_ocp *bp)
1412 ctrl = ioread32(&bp->tod->ctrl);
1413 ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1414 ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1415 iowrite32(ctrl, &bp->tod->ctrl);
1417 reg = ioread32(&bp->tod->utc_status);
1418 if (reg & TOD_STATUS_UTC_VALID)
1419 ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1423 ptp_ocp_tod_proto_name(const int idx)
1425 static const char * const proto_name[] = {
1426 "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1427 "UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1429 return proto_name[idx];
1433 ptp_ocp_tod_gnss_name(int idx)
1435 static const char * const gnss_name[] = {
1436 "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1439 if (idx >= ARRAY_SIZE(gnss_name))
1440 idx = ARRAY_SIZE(gnss_name) - 1;
1441 return gnss_name[idx];
1444 struct ptp_ocp_nvmem_match_info {
1446 const void * const tag;
1450 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1452 const struct ptp_ocp_nvmem_match_info *info = data;
1455 if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1458 while ((dev = dev->parent))
1459 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1460 return info->bp == dev_get_drvdata(dev);
1464 static inline struct nvmem_device *
1465 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1467 struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1469 return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1473 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1475 if (!IS_ERR_OR_NULL(*nvmemp))
1476 nvmem_device_put(*nvmemp);
1481 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1483 const struct ptp_ocp_eeprom_map *map;
1484 struct nvmem_device *nvmem;
1494 for (map = bp->eeprom_map; map->len; map++) {
1495 if (map->tag != tag) {
1497 ptp_ocp_nvmem_device_put(&nvmem);
1500 nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1501 if (IS_ERR(nvmem)) {
1502 ret = PTR_ERR(nvmem);
1506 ret = nvmem_device_read(nvmem, map->off, map->len,
1507 BP_MAP_ENTRY_ADDR(bp, map));
1508 if (ret != map->len)
1512 bp->has_eeprom_data = true;
1515 ptp_ocp_nvmem_device_put(&nvmem);
1519 dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1523 static struct device *
1524 ptp_ocp_find_flash(struct ptp_ocp *bp)
1526 struct device *dev, *last;
1529 dev = &bp->spi_flash->dev;
1531 while ((dev = device_find_any_child(dev))) {
1532 if (!strcmp("mtd", dev_bus_name(dev)))
1543 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1544 const u8 **data, size_t *size)
1546 struct ptp_ocp *bp = devlink_priv(devlink);
1547 const struct ptp_ocp_firmware_header *hdr;
1548 size_t offset, length;
1551 hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1552 if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1553 devlink_flash_update_status_notify(devlink,
1554 "No firmware header found, cancel firmware upgrade",
1559 if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1560 be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1561 devlink_flash_update_status_notify(devlink,
1562 "Firmware image compatibility check failed",
1567 offset = sizeof(*hdr);
1568 length = be32_to_cpu(hdr->image_size);
1569 if (length != (fw->size - offset)) {
1570 devlink_flash_update_status_notify(devlink,
1571 "Firmware image size check failed",
1576 crc = crc16(0xffff, &fw->data[offset], length);
1577 if (be16_to_cpu(hdr->crc) != crc) {
1578 devlink_flash_update_status_notify(devlink,
1579 "Firmware image CRC check failed",
1584 *data = &fw->data[offset];
1591 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1592 const struct firmware *fw)
1594 struct mtd_info *mtd = dev_get_drvdata(dev);
1595 struct ptp_ocp *bp = devlink_priv(devlink);
1596 size_t off, len, size, resid, wrote;
1597 struct erase_info erase;
1602 err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1607 base = bp->flash_start;
1612 devlink_flash_update_status_notify(devlink, "Flashing",
1615 len = min_t(size_t, resid, blksz);
1616 erase.addr = base + off;
1619 err = mtd_erase(mtd, &erase);
1623 err = mtd_write(mtd, base + off, len, &wrote, data + off);
1635 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1636 struct devlink_flash_update_params *params,
1637 struct netlink_ext_ack *extack)
1639 struct ptp_ocp *bp = devlink_priv(devlink);
1644 dev = ptp_ocp_find_flash(bp);
1646 dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1650 devlink_flash_update_status_notify(devlink, "Preparing to flash",
1653 err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1655 msg = err ? "Flash error" : "Flash complete";
1656 devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1663 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1664 struct netlink_ext_ack *extack)
1666 struct ptp_ocp *bp = devlink_priv(devlink);
1667 const char *fw_image;
1671 fw_image = bp->fw_loader ? "loader" : "fw";
1672 sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1673 err = devlink_info_version_running_put(req, fw_image, buf);
1677 if (!bp->has_eeprom_data) {
1678 ptp_ocp_read_eeprom(bp);
1679 if (!bp->has_eeprom_data)
1683 sprintf(buf, "%pM", bp->serial);
1684 err = devlink_info_serial_number_put(req, buf);
1688 err = devlink_info_version_fixed_put(req,
1689 DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1697 static const struct devlink_ops ptp_ocp_devlink_ops = {
1698 .flash_update = ptp_ocp_devlink_flash_update,
1699 .info_get = ptp_ocp_devlink_info_get,
1702 static void __iomem *
1703 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1705 struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1707 return devm_ioremap_resource(&bp->pdev->dev, &res);
1710 static void __iomem *
1711 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1713 resource_size_t start;
1715 start = pci_resource_start(bp->pdev, 0) + r->offset;
1716 return __ptp_ocp_get_mem(bp, start, r->size);
1720 ptp_ocp_set_irq_resource(struct resource *res, int irq)
1722 struct resource r = DEFINE_RES_IRQ(irq);
1727 ptp_ocp_set_mem_resource(struct resource *res, resource_size_t start, int size)
1729 struct resource r = DEFINE_RES_MEM(start, size);
1734 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1736 struct ptp_ocp_flash_info *info;
1737 struct pci_dev *pdev = bp->pdev;
1738 struct platform_device *p;
1739 struct resource res[2];
1740 resource_size_t start;
1743 start = pci_resource_start(pdev, 0) + r->offset;
1744 ptp_ocp_set_mem_resource(&res[0], start, r->size);
1745 ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1748 id = pci_dev_id(pdev) << 1;
1749 id += info->pci_offset;
1751 p = platform_device_register_resndata(&pdev->dev, info->name, id,
1757 bp_assign_entry(bp, r, p);
1762 static struct platform_device *
1763 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1765 struct ptp_ocp_i2c_info *info;
1766 struct resource res[2];
1767 resource_size_t start;
1770 start = pci_resource_start(pdev, 0) + r->offset;
1771 ptp_ocp_set_mem_resource(&res[0], start, r->size);
1772 ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1774 return platform_device_register_resndata(&pdev->dev, info->name,
1776 info->data, info->data_size);
1780 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1782 struct pci_dev *pdev = bp->pdev;
1783 struct ptp_ocp_i2c_info *info;
1784 struct platform_device *p;
1790 id = pci_dev_id(bp->pdev);
1792 sprintf(buf, "AXI.%d", id);
1793 clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
1796 return PTR_ERR(clk);
1799 sprintf(buf, "%s.%d", info->name, id);
1800 devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
1801 p = ptp_ocp_i2c_bus(bp->pdev, r, id);
1805 bp_assign_entry(bp, r, p);
1810 /* The expectation is that this is triggered only on error. */
1812 ptp_ocp_signal_irq(int irq, void *priv)
1814 struct ptp_ocp_ext_src *ext = priv;
1815 struct signal_reg __iomem *reg = ext->mem;
1816 struct ptp_ocp *bp = ext->bp;
1820 gen = ext->info->index - 1;
1822 enable = ioread32(®->enable);
1823 status = ioread32(®->status);
1825 /* disable generator on error */
1826 if (status || !enable) {
1827 iowrite32(0, ®->intr_mask);
1828 iowrite32(0, ®->enable);
1829 bp->signal[gen].running = false;
1832 iowrite32(0, ®->intr); /* ack interrupt */
1838 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
1840 struct ptp_system_timestamp sts;
1841 struct timespec64 ts;
1849 s->pulse = ktime_divns(s->period * s->duty, 100);
1851 err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
1855 start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
1857 /* roundup() does not work on 32-bit systems */
1858 s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
1859 s->start = ktime_add(s->start, s->phase);
1862 if (s->duty < 1 || s->duty > 99)
1865 if (s->pulse < 1 || s->pulse > s->period)
1868 if (s->start < start_ns)
1871 bp->signal[gen] = *s;
1877 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
1878 struct ptp_perout_request *req)
1880 struct ptp_ocp_signal s = { };
1882 s.polarity = bp->signal[gen].polarity;
1883 s.period = ktime_set(req->period.sec, req->period.nsec);
1887 if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
1888 s.pulse = ktime_set(req->on.sec, req->on.nsec);
1889 s.duty = ktime_divns(s.pulse * 100, s.period);
1892 if (req->flags & PTP_PEROUT_PHASE)
1893 s.phase = ktime_set(req->phase.sec, req->phase.nsec);
1895 s.start = ktime_set(req->start.sec, req->start.nsec);
1897 return ptp_ocp_signal_set(bp, gen, &s);
1901 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
1903 struct ptp_ocp_ext_src *ext = priv;
1904 struct signal_reg __iomem *reg = ext->mem;
1905 struct ptp_ocp *bp = ext->bp;
1906 struct timespec64 ts;
1909 gen = ext->info->index - 1;
1911 iowrite32(0, ®->intr_mask);
1912 iowrite32(0, ®->enable);
1913 bp->signal[gen].running = false;
1917 ts = ktime_to_timespec64(bp->signal[gen].start);
1918 iowrite32(ts.tv_sec, ®->start_sec);
1919 iowrite32(ts.tv_nsec, ®->start_ns);
1921 ts = ktime_to_timespec64(bp->signal[gen].period);
1922 iowrite32(ts.tv_sec, ®->period_sec);
1923 iowrite32(ts.tv_nsec, ®->period_ns);
1925 ts = ktime_to_timespec64(bp->signal[gen].pulse);
1926 iowrite32(ts.tv_sec, ®->pulse_sec);
1927 iowrite32(ts.tv_nsec, ®->pulse_ns);
1929 iowrite32(bp->signal[gen].polarity, ®->polarity);
1930 iowrite32(0, ®->repeat_count);
1932 iowrite32(0, ®->intr); /* clear interrupt state */
1933 iowrite32(1, ®->intr_mask); /* enable interrupt */
1934 iowrite32(3, ®->enable); /* valid & enable */
1936 bp->signal[gen].running = true;
1942 ptp_ocp_ts_irq(int irq, void *priv)
1944 struct ptp_ocp_ext_src *ext = priv;
1945 struct ts_reg __iomem *reg = ext->mem;
1946 struct ptp_clock_event ev;
1949 if (ext == ext->bp->pps) {
1950 if (ext->bp->pps_req_map & OCP_REQ_PPS) {
1951 ev.type = PTP_CLOCK_PPS;
1952 ptp_clock_event(ext->bp->ptp, &ev);
1955 if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
1959 /* XXX should fix API - this converts s/ns -> ts -> s/ns */
1960 sec = ioread32(®->time_sec);
1961 nsec = ioread32(®->time_ns);
1963 ev.type = PTP_CLOCK_EXTTS;
1964 ev.index = ext->info->index;
1965 ev.timestamp = sec * NSEC_PER_SEC + nsec;
1967 ptp_clock_event(ext->bp->ptp, &ev);
1970 iowrite32(1, ®->intr); /* write 1 to ack */
1976 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
1978 struct ptp_ocp_ext_src *ext = priv;
1979 struct ts_reg __iomem *reg = ext->mem;
1980 struct ptp_ocp *bp = ext->bp;
1982 if (ext == bp->pps) {
1983 u32 old_map = bp->pps_req_map;
1986 bp->pps_req_map |= req;
1988 bp->pps_req_map &= ~req;
1990 /* if no state change, just return */
1991 if ((!!old_map ^ !!bp->pps_req_map) == 0)
1996 iowrite32(1, ®->enable);
1997 iowrite32(1, ®->intr_mask);
1998 iowrite32(1, ®->intr);
2000 iowrite32(0, ®->intr_mask);
2001 iowrite32(0, ®->enable);
2008 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
2010 ext->info->enable(ext, ~0, false);
2011 pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
2016 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
2018 struct pci_dev *pdev = bp->pdev;
2019 struct ptp_ocp_ext_src *ext;
2022 ext = kzalloc(sizeof(*ext), GFP_KERNEL);
2026 ext->mem = ptp_ocp_get_mem(bp, r);
2027 if (IS_ERR(ext->mem)) {
2028 err = PTR_ERR(ext->mem);
2033 ext->info = r->extra;
2034 ext->irq_vec = r->irq_vec;
2036 err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
2037 ext, "ocp%d.%s", bp->id, r->name);
2039 dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
2043 bp_assign_entry(bp, r, ext);
2053 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
2055 struct pci_dev *pdev = bp->pdev;
2056 struct uart_8250_port uart;
2058 /* Setting UPF_IOREMAP and leaving port.membase unspecified lets
2059 * the serial port device claim and release the pci resource.
2061 memset(&uart, 0, sizeof(uart));
2062 uart.port.dev = &pdev->dev;
2063 uart.port.iotype = UPIO_MEM;
2064 uart.port.regshift = 2;
2065 uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
2066 uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
2067 uart.port.uartclk = 50000000;
2068 uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
2069 uart.port.type = PORT_16550A;
2071 return serial8250_register_8250_port(&uart);
2075 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
2077 struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra;
2078 struct ptp_ocp_serial_port port = {};
2080 port.line = ptp_ocp_serial_line(bp, r);
2085 port.baud = p->baud;
2087 bp_assign_entry(bp, r, port);
2093 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
2097 mem = ptp_ocp_get_mem(bp, r);
2099 return PTR_ERR(mem);
2101 bp_assign_entry(bp, r, mem);
2107 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
2112 iowrite32(0, &bp->nmea_out->ctrl); /* disable */
2113 iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */
2114 iowrite32(1, &bp->nmea_out->ctrl); /* enable */
2118 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
2122 iowrite32(0, ®->enable); /* disable */
2124 val = ioread32(®->polarity);
2125 s->polarity = val ? true : false;
2130 ptp_ocp_signal_init(struct ptp_ocp *bp)
2134 for (i = 0; i < 4; i++)
2135 if (bp->signal_out[i])
2136 _ptp_ocp_signal_init(&bp->signal[i],
2137 bp->signal_out[i]->mem);
2141 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
2143 sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
2144 kfree(bp->attr_group);
2148 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
2149 const struct ocp_attr_group *attr_tbl)
2155 for (i = 0; attr_tbl[i].cap; i++)
2156 if (attr_tbl[i].cap & bp->fw_cap)
2159 bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
2161 if (!bp->attr_group)
2165 for (i = 0; attr_tbl[i].cap; i++)
2166 if (attr_tbl[i].cap & bp->fw_cap)
2167 bp->attr_group[count++] = attr_tbl[i].group;
2169 err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
2171 bp->attr_group[0] = NULL;
2177 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
2182 ctrl = ioread32(reg);
2186 ctrl |= enable ? bit : 0;
2187 iowrite32(ctrl, reg);
2192 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
2194 return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
2195 IRIG_M_CTRL_ENABLE, enable);
2199 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2201 return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2202 IRIG_S_CTRL_ENABLE, enable);
2206 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2208 return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2209 DCF_M_CTRL_ENABLE, enable);
2213 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2215 return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2216 DCF_S_CTRL_ENABLE, enable);
2220 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2222 ptp_ocp_irig_out(bp, val & 0x00100010);
2223 ptp_ocp_dcf_out(bp, val & 0x00200020);
2227 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2229 ptp_ocp_irig_in(bp, val & 0x00100010);
2230 ptp_ocp_dcf_in(bp, val & 0x00200020);
2234 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2239 if (bp->sma[sma_nr - 1].fixed_fcn)
2240 return (sma_nr - 1) & 1;
2242 if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2243 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2245 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2246 shift = sma_nr & 1 ? 0 : 16;
2248 return (ioread32(gpio) >> shift) & 0xffff;
2252 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2254 u32 reg, mask, shift;
2255 unsigned long flags;
2258 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2259 shift = sma_nr & 1 ? 0 : 16;
2261 mask = 0xffff << (16 - shift);
2263 spin_lock_irqsave(&bp->lock, flags);
2265 reg = ioread32(gpio);
2266 reg = (reg & mask) | (val << shift);
2268 __handle_signal_outputs(bp, reg);
2270 iowrite32(reg, gpio);
2272 spin_unlock_irqrestore(&bp->lock, flags);
2278 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2280 u32 reg, mask, shift;
2281 unsigned long flags;
2284 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2285 shift = sma_nr & 1 ? 0 : 16;
2287 mask = 0xffff << (16 - shift);
2289 spin_lock_irqsave(&bp->lock, flags);
2291 reg = ioread32(gpio);
2292 reg = (reg & mask) | (val << shift);
2294 __handle_signal_inputs(bp, reg);
2296 iowrite32(reg, gpio);
2298 spin_unlock_irqrestore(&bp->lock, flags);
2304 ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2306 struct dpll_pin_properties prop = {
2307 .board_label = NULL,
2308 .type = DPLL_PIN_TYPE_EXT,
2309 .capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE,
2310 .freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2311 .freq_supported = ptp_ocp_sma_freq,
2318 for (i = 0; i < OCP_SMA_NUM; i++) {
2319 bp->sma[i].default_fcn = i & 1;
2320 bp->sma[i].dpll_prop = prop;
2321 bp->sma[i].dpll_prop.board_label =
2322 bp->ptp_info.pin_config[i].name;
2324 bp->sma[0].mode = SMA_MODE_IN;
2325 bp->sma[1].mode = SMA_MODE_IN;
2326 bp->sma[2].mode = SMA_MODE_OUT;
2327 bp->sma[3].mode = SMA_MODE_OUT;
2328 /* If no SMA1 map, the pin functions and directions are fixed. */
2329 if (!bp->sma_map1) {
2330 for (i = 0; i < OCP_SMA_NUM; i++) {
2331 bp->sma[i].fixed_fcn = true;
2332 bp->sma[i].fixed_dir = true;
2333 bp->sma[1].dpll_prop.capabilities &=
2334 ~DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2339 /* If SMA2 GPIO output map is all 1, it is not present.
2340 * This indicates the firmware has fixed direction SMA pins.
2342 reg = ioread32(&bp->sma_map2->gpio2);
2343 if (reg == 0xffffffff) {
2344 for (i = 0; i < OCP_SMA_NUM; i++)
2345 bp->sma[i].fixed_dir = true;
2347 reg = ioread32(&bp->sma_map1->gpio1);
2348 bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2349 bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2351 reg = ioread32(&bp->sma_map1->gpio2);
2352 bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2353 bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2357 static const struct ocp_sma_op ocp_fb_sma_op = {
2358 .tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out },
2359 .init = ptp_ocp_sma_fb_init,
2360 .get = ptp_ocp_sma_fb_get,
2361 .set_inputs = ptp_ocp_sma_fb_set_inputs,
2362 .set_output = ptp_ocp_sma_fb_set_output,
2366 ptp_ocp_set_pins(struct ptp_ocp *bp)
2368 struct ptp_pin_desc *config;
2371 config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2375 for (i = 0; i < 4; i++) {
2376 sprintf(config[i].name, "sma%d", i + 1);
2377 config[i].index = i;
2380 bp->ptp_info.n_pins = 4;
2381 bp->ptp_info.pin_config = config;
2387 ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2389 u64 cap = OCP_CAP_BASIC;
2392 version = ioread32(&bp->image->version);
2394 /* if lower 16 bits are empty, this is the fw loader. */
2395 if ((version & 0xffff) == 0) {
2396 version = version >> 16;
2397 bp->fw_loader = true;
2400 bp->fw_tag = version >> 15;
2401 bp->fw_version = version & 0x7fff;
2406 cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2410 cap |= OCP_CAP_SIGNAL;
2412 cap |= OCP_CAP_FREQ;
2418 /* FB specific board initializers; last "resource" registered. */
2420 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2424 bp->flash_start = 1024 * 4096;
2425 bp->eeprom_map = fb_eeprom_map;
2426 bp->fw_version = ioread32(&bp->image->version);
2427 bp->sma_op = &ocp_fb_sma_op;
2429 ptp_ocp_fb_set_version(bp);
2431 ptp_ocp_tod_init(bp);
2432 ptp_ocp_nmea_out_init(bp);
2433 ptp_ocp_signal_init(bp);
2435 err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2439 err = ptp_ocp_set_pins(bp);
2442 ptp_ocp_sma_init(bp);
2444 return ptp_ocp_init_clock(bp);
2448 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2450 bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2453 dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2454 r->irq_vec, r->name);
2459 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2461 struct ocp_resource *r, *table;
2464 table = (struct ocp_resource *)driver_data;
2465 for (r = table; r->setup; r++) {
2466 if (!ptp_ocp_allow_irq(bp, r))
2468 err = r->setup(bp, r);
2470 dev_err(&bp->pdev->dev,
2471 "Could not register %s: err %d\n",
2480 ptp_ocp_art_sma_init(struct ptp_ocp *bp)
2482 struct dpll_pin_properties prop = {
2483 .board_label = NULL,
2484 .type = DPLL_PIN_TYPE_EXT,
2486 .freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2487 .freq_supported = ptp_ocp_sma_freq,
2494 bp->sma[0].mode = SMA_MODE_IN;
2495 bp->sma[1].mode = SMA_MODE_IN;
2496 bp->sma[2].mode = SMA_MODE_OUT;
2497 bp->sma[3].mode = SMA_MODE_OUT;
2499 bp->sma[0].default_fcn = 0x08; /* IN: 10Mhz */
2500 bp->sma[1].default_fcn = 0x01; /* IN: PPS1 */
2501 bp->sma[2].default_fcn = 0x10; /* OUT: 10Mhz */
2502 bp->sma[3].default_fcn = 0x02; /* OUT: PHC */
2504 for (i = 0; i < OCP_SMA_NUM; i++) {
2505 /* If no SMA map, the pin functions and directions are fixed. */
2506 bp->sma[i].dpll_prop = prop;
2507 bp->sma[i].dpll_prop.board_label =
2508 bp->ptp_info.pin_config[i].name;
2510 bp->sma[i].fixed_fcn = true;
2511 bp->sma[i].fixed_dir = true;
2514 reg = ioread32(&bp->art_sma->map[i].gpio);
2516 switch (reg & 0xff) {
2518 bp->sma[i].fixed_fcn = true;
2519 bp->sma[i].fixed_dir = true;
2523 bp->sma[i].mode = SMA_MODE_IN;
2524 bp->sma[i].dpll_prop.capabilities =
2525 DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2528 bp->sma[i].mode = SMA_MODE_OUT;
2529 bp->sma[i].dpll_prop.capabilities =
2530 DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2537 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr)
2539 if (bp->sma[sma_nr - 1].fixed_fcn)
2540 return bp->sma[sma_nr - 1].default_fcn;
2542 return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff;
2545 /* note: store 0 is considered invalid. */
2547 ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val)
2549 unsigned long flags;
2554 val &= SMA_SELECT_MASK;
2555 if (hweight32(val) > 1)
2558 gpio = &bp->art_sma->map[sma_nr - 1].gpio;
2560 spin_lock_irqsave(&bp->lock, flags);
2561 reg = ioread32(gpio);
2562 if (((reg >> 16) & val) == 0) {
2565 reg = (reg & 0xff00) | (val & 0xff);
2566 iowrite32(reg, gpio);
2568 spin_unlock_irqrestore(&bp->lock, flags);
2573 static const struct ocp_sma_op ocp_art_sma_op = {
2574 .tbl = { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out },
2575 .init = ptp_ocp_art_sma_init,
2576 .get = ptp_ocp_art_sma_get,
2577 .set_inputs = ptp_ocp_art_sma_set,
2578 .set_output = ptp_ocp_art_sma_set,
2581 /* ART specific board initializers; last "resource" registered. */
2583 ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2587 bp->flash_start = 0x1000000;
2588 bp->eeprom_map = art_eeprom_map;
2589 bp->fw_cap = OCP_CAP_BASIC;
2590 bp->fw_version = ioread32(&bp->reg->version);
2592 bp->sma_op = &ocp_art_sma_op;
2594 /* Enable MAC serial port during initialisation */
2595 iowrite32(1, &bp->board_config->mro50_serial_activate);
2597 err = ptp_ocp_set_pins(bp);
2600 ptp_ocp_sma_init(bp);
2602 err = ptp_ocp_attr_group_add(bp, art_timecard_groups);
2606 return ptp_ocp_init_clock(bp);
2610 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2616 count = sysfs_emit(buf, "OUT: ");
2617 name = ptp_ocp_select_name_from_val(tbl, val);
2619 name = ptp_ocp_select_name_from_val(tbl, def_val);
2620 count += sysfs_emit_at(buf, count, "%s\n", name);
2625 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2632 count = sysfs_emit(buf, "IN: ");
2633 for (i = 0; tbl[i].name; i++) {
2634 if (val & tbl[i].value) {
2636 count += sysfs_emit_at(buf, count, "%s ", name);
2639 if (!val && def_val >= 0) {
2640 name = ptp_ocp_select_name_from_val(tbl, def_val);
2641 count += sysfs_emit_at(buf, count, "%s ", name);
2645 count += sysfs_emit_at(buf, count, "\n");
2650 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2651 enum ptp_ocp_sma_mode *mode)
2653 int idx, count, dir;
2657 argv = argv_split(GFP_KERNEL, buf, &count);
2666 dir = *mode == SMA_MODE_IN ? 0 : 1;
2667 if (!strcasecmp("IN:", argv[0])) {
2671 if (!strcasecmp("OUT:", argv[0])) {
2675 *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2678 for (; idx < count; idx++)
2679 ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2689 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
2690 int default_in_val, int default_out_val)
2692 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2693 const struct ocp_selector * const *tbl;
2696 tbl = bp->sma_op->tbl;
2697 val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
2699 if (sma->mode == SMA_MODE_IN) {
2702 return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
2705 return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
2709 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
2711 struct ptp_ocp *bp = dev_get_drvdata(dev);
2713 return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
2717 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
2719 struct ptp_ocp *bp = dev_get_drvdata(dev);
2721 return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
2725 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
2727 struct ptp_ocp *bp = dev_get_drvdata(dev);
2729 return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
2733 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
2735 struct ptp_ocp *bp = dev_get_drvdata(dev);
2737 return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
2741 ptp_ocp_sma_store_val(struct ptp_ocp *bp, int val, enum ptp_ocp_sma_mode mode, int sma_nr)
2743 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2745 if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
2748 if (sma->fixed_fcn) {
2749 if (val != sma->default_fcn)
2754 sma->disabled = !!(val & SMA_DISABLE);
2756 if (mode != sma->mode) {
2757 if (mode == SMA_MODE_IN)
2758 ptp_ocp_sma_set_output(bp, sma_nr, 0);
2760 ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
2764 if (!sma->fixed_dir)
2765 val |= SMA_ENABLE; /* add enable bit */
2770 if (mode == SMA_MODE_IN)
2771 val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
2773 val = ptp_ocp_sma_set_output(bp, sma_nr, val);
2779 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
2781 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2782 enum ptp_ocp_sma_mode mode;
2786 val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
2789 return ptp_ocp_sma_store_val(bp, val, mode, sma_nr);
2793 sma1_store(struct device *dev, struct device_attribute *attr,
2794 const char *buf, size_t count)
2796 struct ptp_ocp *bp = dev_get_drvdata(dev);
2799 err = ptp_ocp_sma_store(bp, buf, 1);
2800 return err ? err : count;
2804 sma2_store(struct device *dev, struct device_attribute *attr,
2805 const char *buf, size_t count)
2807 struct ptp_ocp *bp = dev_get_drvdata(dev);
2810 err = ptp_ocp_sma_store(bp, buf, 2);
2811 return err ? err : count;
2815 sma3_store(struct device *dev, struct device_attribute *attr,
2816 const char *buf, size_t count)
2818 struct ptp_ocp *bp = dev_get_drvdata(dev);
2821 err = ptp_ocp_sma_store(bp, buf, 3);
2822 return err ? err : count;
2826 sma4_store(struct device *dev, struct device_attribute *attr,
2827 const char *buf, size_t count)
2829 struct ptp_ocp *bp = dev_get_drvdata(dev);
2832 err = ptp_ocp_sma_store(bp, buf, 4);
2833 return err ? err : count;
2835 static DEVICE_ATTR_RW(sma1);
2836 static DEVICE_ATTR_RW(sma2);
2837 static DEVICE_ATTR_RW(sma3);
2838 static DEVICE_ATTR_RW(sma4);
2841 available_sma_inputs_show(struct device *dev,
2842 struct device_attribute *attr, char *buf)
2844 struct ptp_ocp *bp = dev_get_drvdata(dev);
2846 return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
2848 static DEVICE_ATTR_RO(available_sma_inputs);
2851 available_sma_outputs_show(struct device *dev,
2852 struct device_attribute *attr, char *buf)
2854 struct ptp_ocp *bp = dev_get_drvdata(dev);
2856 return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
2858 static DEVICE_ATTR_RO(available_sma_outputs);
2860 #define EXT_ATTR_RO(_group, _name, _val) \
2861 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
2862 { __ATTR_RO(_name), (void *)_val }
2863 #define EXT_ATTR_RW(_group, _name, _val) \
2864 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
2865 { __ATTR_RW(_name), (void *)_val }
2866 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2868 /* period [duty [phase [polarity]]] */
2870 signal_store(struct device *dev, struct device_attribute *attr,
2871 const char *buf, size_t count)
2873 struct dev_ext_attribute *ea = to_ext_attr(attr);
2874 struct ptp_ocp *bp = dev_get_drvdata(dev);
2875 struct ptp_ocp_signal s = { };
2876 int gen = (uintptr_t)ea->var;
2880 argv = argv_split(GFP_KERNEL, buf, &argc);
2885 s.duty = bp->signal[gen].duty;
2886 s.phase = bp->signal[gen].phase;
2887 s.period = bp->signal[gen].period;
2888 s.polarity = bp->signal[gen].polarity;
2893 err = kstrtobool(argv[argc], &s.polarity);
2899 err = kstrtou64(argv[argc], 0, &s.phase);
2905 err = kstrtoint(argv[argc], 0, &s.duty);
2911 err = kstrtou64(argv[argc], 0, &s.period);
2919 err = ptp_ocp_signal_set(bp, gen, &s);
2923 err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
2927 return err ? err : count;
2931 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
2933 struct dev_ext_attribute *ea = to_ext_attr(attr);
2934 struct ptp_ocp *bp = dev_get_drvdata(dev);
2935 struct ptp_ocp_signal *signal;
2936 struct timespec64 ts;
2940 i = (uintptr_t)ea->var;
2941 signal = &bp->signal[i];
2943 count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
2944 signal->duty, signal->phase, signal->polarity);
2946 ts = ktime_to_timespec64(signal->start);
2947 count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
2951 static EXT_ATTR_RW(signal, signal, 0);
2952 static EXT_ATTR_RW(signal, signal, 1);
2953 static EXT_ATTR_RW(signal, signal, 2);
2954 static EXT_ATTR_RW(signal, signal, 3);
2957 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
2959 struct dev_ext_attribute *ea = to_ext_attr(attr);
2960 struct ptp_ocp *bp = dev_get_drvdata(dev);
2961 int i = (uintptr_t)ea->var;
2963 return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
2965 static EXT_ATTR_RO(signal, duty, 0);
2966 static EXT_ATTR_RO(signal, duty, 1);
2967 static EXT_ATTR_RO(signal, duty, 2);
2968 static EXT_ATTR_RO(signal, duty, 3);
2971 period_show(struct device *dev, struct device_attribute *attr, char *buf)
2973 struct dev_ext_attribute *ea = to_ext_attr(attr);
2974 struct ptp_ocp *bp = dev_get_drvdata(dev);
2975 int i = (uintptr_t)ea->var;
2977 return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
2979 static EXT_ATTR_RO(signal, period, 0);
2980 static EXT_ATTR_RO(signal, period, 1);
2981 static EXT_ATTR_RO(signal, period, 2);
2982 static EXT_ATTR_RO(signal, period, 3);
2985 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
2987 struct dev_ext_attribute *ea = to_ext_attr(attr);
2988 struct ptp_ocp *bp = dev_get_drvdata(dev);
2989 int i = (uintptr_t)ea->var;
2991 return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
2993 static EXT_ATTR_RO(signal, phase, 0);
2994 static EXT_ATTR_RO(signal, phase, 1);
2995 static EXT_ATTR_RO(signal, phase, 2);
2996 static EXT_ATTR_RO(signal, phase, 3);
2999 polarity_show(struct device *dev, struct device_attribute *attr,
3002 struct dev_ext_attribute *ea = to_ext_attr(attr);
3003 struct ptp_ocp *bp = dev_get_drvdata(dev);
3004 int i = (uintptr_t)ea->var;
3006 return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
3008 static EXT_ATTR_RO(signal, polarity, 0);
3009 static EXT_ATTR_RO(signal, polarity, 1);
3010 static EXT_ATTR_RO(signal, polarity, 2);
3011 static EXT_ATTR_RO(signal, polarity, 3);
3014 running_show(struct device *dev, struct device_attribute *attr, char *buf)
3016 struct dev_ext_attribute *ea = to_ext_attr(attr);
3017 struct ptp_ocp *bp = dev_get_drvdata(dev);
3018 int i = (uintptr_t)ea->var;
3020 return sysfs_emit(buf, "%d\n", bp->signal[i].running);
3022 static EXT_ATTR_RO(signal, running, 0);
3023 static EXT_ATTR_RO(signal, running, 1);
3024 static EXT_ATTR_RO(signal, running, 2);
3025 static EXT_ATTR_RO(signal, running, 3);
3028 start_show(struct device *dev, struct device_attribute *attr, char *buf)
3030 struct dev_ext_attribute *ea = to_ext_attr(attr);
3031 struct ptp_ocp *bp = dev_get_drvdata(dev);
3032 int i = (uintptr_t)ea->var;
3033 struct timespec64 ts;
3035 ts = ktime_to_timespec64(bp->signal[i].start);
3036 return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
3038 static EXT_ATTR_RO(signal, start, 0);
3039 static EXT_ATTR_RO(signal, start, 1);
3040 static EXT_ATTR_RO(signal, start, 2);
3041 static EXT_ATTR_RO(signal, start, 3);
3044 seconds_store(struct device *dev, struct device_attribute *attr,
3045 const char *buf, size_t count)
3047 struct dev_ext_attribute *ea = to_ext_attr(attr);
3048 struct ptp_ocp *bp = dev_get_drvdata(dev);
3049 int idx = (uintptr_t)ea->var;
3053 err = kstrtou32(buf, 0, &val);
3060 val = (val << 8) | 0x1;
3062 iowrite32(val, &bp->freq_in[idx]->ctrl);
3068 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
3070 struct dev_ext_attribute *ea = to_ext_attr(attr);
3071 struct ptp_ocp *bp = dev_get_drvdata(dev);
3072 int idx = (uintptr_t)ea->var;
3075 val = ioread32(&bp->freq_in[idx]->ctrl);
3077 val = (val >> 8) & 0xff;
3081 return sysfs_emit(buf, "%u\n", val);
3083 static EXT_ATTR_RW(freq, seconds, 0);
3084 static EXT_ATTR_RW(freq, seconds, 1);
3085 static EXT_ATTR_RW(freq, seconds, 2);
3086 static EXT_ATTR_RW(freq, seconds, 3);
3089 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
3091 struct dev_ext_attribute *ea = to_ext_attr(attr);
3092 struct ptp_ocp *bp = dev_get_drvdata(dev);
3093 int idx = (uintptr_t)ea->var;
3096 val = ioread32(&bp->freq_in[idx]->status);
3097 if (val & FREQ_STATUS_ERROR)
3098 return sysfs_emit(buf, "error\n");
3099 if (val & FREQ_STATUS_OVERRUN)
3100 return sysfs_emit(buf, "overrun\n");
3101 if (val & FREQ_STATUS_VALID)
3102 return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
3105 static EXT_ATTR_RO(freq, frequency, 0);
3106 static EXT_ATTR_RO(freq, frequency, 1);
3107 static EXT_ATTR_RO(freq, frequency, 2);
3108 static EXT_ATTR_RO(freq, frequency, 3);
3111 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
3113 struct ptp_ocp *bp = dev_get_drvdata(dev);
3115 if (!bp->has_eeprom_data)
3116 ptp_ocp_read_eeprom(bp);
3118 return sysfs_emit(buf, "%pM\n", bp->serial);
3120 static DEVICE_ATTR_RO(serialnum);
3123 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
3125 struct ptp_ocp *bp = dev_get_drvdata(dev);
3129 ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
3131 ret = sysfs_emit(buf, "SYNC\n");
3135 static DEVICE_ATTR_RO(gnss_sync);
3138 utc_tai_offset_show(struct device *dev,
3139 struct device_attribute *attr, char *buf)
3141 struct ptp_ocp *bp = dev_get_drvdata(dev);
3143 return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
3147 utc_tai_offset_store(struct device *dev,
3148 struct device_attribute *attr,
3149 const char *buf, size_t count)
3151 struct ptp_ocp *bp = dev_get_drvdata(dev);
3155 err = kstrtou32(buf, 0, &val);
3159 ptp_ocp_utc_distribute(bp, val);
3163 static DEVICE_ATTR_RW(utc_tai_offset);
3166 ts_window_adjust_show(struct device *dev,
3167 struct device_attribute *attr, char *buf)
3169 struct ptp_ocp *bp = dev_get_drvdata(dev);
3171 return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
3175 ts_window_adjust_store(struct device *dev,
3176 struct device_attribute *attr,
3177 const char *buf, size_t count)
3179 struct ptp_ocp *bp = dev_get_drvdata(dev);
3183 err = kstrtou32(buf, 0, &val);
3187 bp->ts_window_adjust = val;
3191 static DEVICE_ATTR_RW(ts_window_adjust);
3194 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
3196 struct ptp_ocp *bp = dev_get_drvdata(dev);
3199 val = ioread32(&bp->irig_out->ctrl);
3200 val = (val >> 16) & 0x07;
3201 return sysfs_emit(buf, "%d\n", val);
3205 irig_b_mode_store(struct device *dev,
3206 struct device_attribute *attr,
3207 const char *buf, size_t count)
3209 struct ptp_ocp *bp = dev_get_drvdata(dev);
3210 unsigned long flags;
3215 err = kstrtou8(buf, 0, &val);
3221 reg = ((val & 0x7) << 16);
3223 spin_lock_irqsave(&bp->lock, flags);
3224 iowrite32(0, &bp->irig_out->ctrl); /* disable */
3225 iowrite32(reg, &bp->irig_out->ctrl); /* change mode */
3226 iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
3227 spin_unlock_irqrestore(&bp->lock, flags);
3231 static DEVICE_ATTR_RW(irig_b_mode);
3234 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
3236 struct ptp_ocp *bp = dev_get_drvdata(dev);
3240 select = ioread32(&bp->reg->select);
3241 p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
3243 return sysfs_emit(buf, "%s\n", p);
3247 clock_source_store(struct device *dev, struct device_attribute *attr,
3248 const char *buf, size_t count)
3250 struct ptp_ocp *bp = dev_get_drvdata(dev);
3251 unsigned long flags;
3254 val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
3258 spin_lock_irqsave(&bp->lock, flags);
3259 iowrite32(val, &bp->reg->select);
3260 spin_unlock_irqrestore(&bp->lock, flags);
3264 static DEVICE_ATTR_RW(clock_source);
3267 available_clock_sources_show(struct device *dev,
3268 struct device_attribute *attr, char *buf)
3270 return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
3272 static DEVICE_ATTR_RO(available_clock_sources);
3275 clock_status_drift_show(struct device *dev,
3276 struct device_attribute *attr, char *buf)
3278 struct ptp_ocp *bp = dev_get_drvdata(dev);
3282 val = ioread32(&bp->reg->status_drift);
3283 res = (val & ~INT_MAX) ? -1 : 1;
3284 res *= (val & INT_MAX);
3285 return sysfs_emit(buf, "%d\n", res);
3287 static DEVICE_ATTR_RO(clock_status_drift);
3290 clock_status_offset_show(struct device *dev,
3291 struct device_attribute *attr, char *buf)
3293 struct ptp_ocp *bp = dev_get_drvdata(dev);
3297 val = ioread32(&bp->reg->status_offset);
3298 res = (val & ~INT_MAX) ? -1 : 1;
3299 res *= (val & INT_MAX);
3300 return sysfs_emit(buf, "%d\n", res);
3302 static DEVICE_ATTR_RO(clock_status_offset);
3305 tod_correction_show(struct device *dev,
3306 struct device_attribute *attr, char *buf)
3308 struct ptp_ocp *bp = dev_get_drvdata(dev);
3312 val = ioread32(&bp->tod->adj_sec);
3313 res = (val & ~INT_MAX) ? -1 : 1;
3314 res *= (val & INT_MAX);
3315 return sysfs_emit(buf, "%d\n", res);
3319 tod_correction_store(struct device *dev, struct device_attribute *attr,
3320 const char *buf, size_t count)
3322 struct ptp_ocp *bp = dev_get_drvdata(dev);
3323 unsigned long flags;
3327 err = kstrtos32(buf, 0, &res);
3336 spin_lock_irqsave(&bp->lock, flags);
3337 iowrite32(val, &bp->tod->adj_sec);
3338 spin_unlock_irqrestore(&bp->lock, flags);
3342 static DEVICE_ATTR_RW(tod_correction);
3344 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \
3345 static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \
3346 &dev_attr_signal##_nr##_signal.attr.attr, \
3347 &dev_attr_signal##_nr##_duty.attr.attr, \
3348 &dev_attr_signal##_nr##_phase.attr.attr, \
3349 &dev_attr_signal##_nr##_period.attr.attr, \
3350 &dev_attr_signal##_nr##_polarity.attr.attr, \
3351 &dev_attr_signal##_nr##_running.attr.attr, \
3352 &dev_attr_signal##_nr##_start.attr.attr, \
3356 #define DEVICE_SIGNAL_GROUP(_name, _nr) \
3357 _DEVICE_SIGNAL_GROUP_ATTRS(_nr); \
3358 static const struct attribute_group \
3359 fb_timecard_signal##_nr##_group = { \
3361 .attrs = fb_timecard_signal##_nr##_attrs, \
3364 DEVICE_SIGNAL_GROUP(gen1, 0);
3365 DEVICE_SIGNAL_GROUP(gen2, 1);
3366 DEVICE_SIGNAL_GROUP(gen3, 2);
3367 DEVICE_SIGNAL_GROUP(gen4, 3);
3369 #define _DEVICE_FREQ_GROUP_ATTRS(_nr) \
3370 static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \
3371 &dev_attr_freq##_nr##_seconds.attr.attr, \
3372 &dev_attr_freq##_nr##_frequency.attr.attr, \
3376 #define DEVICE_FREQ_GROUP(_name, _nr) \
3377 _DEVICE_FREQ_GROUP_ATTRS(_nr); \
3378 static const struct attribute_group \
3379 fb_timecard_freq##_nr##_group = { \
3381 .attrs = fb_timecard_freq##_nr##_attrs, \
3384 DEVICE_FREQ_GROUP(freq1, 0);
3385 DEVICE_FREQ_GROUP(freq2, 1);
3386 DEVICE_FREQ_GROUP(freq3, 2);
3387 DEVICE_FREQ_GROUP(freq4, 3);
3390 disciplining_config_read(struct file *filp, struct kobject *kobj,
3391 struct bin_attribute *bin_attr, char *buf,
3392 loff_t off, size_t count)
3394 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3395 size_t size = OCP_ART_CONFIG_SIZE;
3396 struct nvmem_device *nvmem;
3399 nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3401 return PTR_ERR(nvmem);
3408 if (off + count > size)
3411 // the configuration is in the very beginning of the EEPROM
3412 err = nvmem_device_read(nvmem, off, count, buf);
3419 ptp_ocp_nvmem_device_put(&nvmem);
3425 disciplining_config_write(struct file *filp, struct kobject *kobj,
3426 struct bin_attribute *bin_attr, char *buf,
3427 loff_t off, size_t count)
3429 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3430 struct nvmem_device *nvmem;
3433 /* Allow write of the whole area only */
3434 if (off || count != OCP_ART_CONFIG_SIZE)
3437 nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3439 return PTR_ERR(nvmem);
3441 err = nvmem_device_write(nvmem, 0x00, count, buf);
3445 ptp_ocp_nvmem_device_put(&nvmem);
3449 static BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE);
3452 temperature_table_read(struct file *filp, struct kobject *kobj,
3453 struct bin_attribute *bin_attr, char *buf,
3454 loff_t off, size_t count)
3456 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3457 size_t size = OCP_ART_TEMP_TABLE_SIZE;
3458 struct nvmem_device *nvmem;
3461 nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3463 return PTR_ERR(nvmem);
3470 if (off + count > size)
3473 // the configuration is in the very beginning of the EEPROM
3474 err = nvmem_device_read(nvmem, 0x90 + off, count, buf);
3481 ptp_ocp_nvmem_device_put(&nvmem);
3487 temperature_table_write(struct file *filp, struct kobject *kobj,
3488 struct bin_attribute *bin_attr, char *buf,
3489 loff_t off, size_t count)
3491 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3492 struct nvmem_device *nvmem;
3495 /* Allow write of the whole area only */
3496 if (off || count != OCP_ART_TEMP_TABLE_SIZE)
3499 nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3501 return PTR_ERR(nvmem);
3503 err = nvmem_device_write(nvmem, 0x90, count, buf);
3507 ptp_ocp_nvmem_device_put(&nvmem);
3511 static BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE);
3513 static struct attribute *fb_timecard_attrs[] = {
3514 &dev_attr_serialnum.attr,
3515 &dev_attr_gnss_sync.attr,
3516 &dev_attr_clock_source.attr,
3517 &dev_attr_available_clock_sources.attr,
3518 &dev_attr_sma1.attr,
3519 &dev_attr_sma2.attr,
3520 &dev_attr_sma3.attr,
3521 &dev_attr_sma4.attr,
3522 &dev_attr_available_sma_inputs.attr,
3523 &dev_attr_available_sma_outputs.attr,
3524 &dev_attr_clock_status_drift.attr,
3525 &dev_attr_clock_status_offset.attr,
3526 &dev_attr_irig_b_mode.attr,
3527 &dev_attr_utc_tai_offset.attr,
3528 &dev_attr_ts_window_adjust.attr,
3529 &dev_attr_tod_correction.attr,
3533 static const struct attribute_group fb_timecard_group = {
3534 .attrs = fb_timecard_attrs,
3537 static const struct ocp_attr_group fb_timecard_groups[] = {
3538 { .cap = OCP_CAP_BASIC, .group = &fb_timecard_group },
3539 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group },
3540 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group },
3541 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group },
3542 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group },
3543 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group },
3544 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group },
3545 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group },
3546 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group },
3550 static struct attribute *art_timecard_attrs[] = {
3551 &dev_attr_serialnum.attr,
3552 &dev_attr_clock_source.attr,
3553 &dev_attr_available_clock_sources.attr,
3554 &dev_attr_utc_tai_offset.attr,
3555 &dev_attr_ts_window_adjust.attr,
3556 &dev_attr_sma1.attr,
3557 &dev_attr_sma2.attr,
3558 &dev_attr_sma3.attr,
3559 &dev_attr_sma4.attr,
3560 &dev_attr_available_sma_inputs.attr,
3561 &dev_attr_available_sma_outputs.attr,
3565 static struct bin_attribute *bin_art_timecard_attrs[] = {
3566 &bin_attr_disciplining_config,
3567 &bin_attr_temperature_table,
3571 static const struct attribute_group art_timecard_group = {
3572 .attrs = art_timecard_attrs,
3573 .bin_attrs = bin_art_timecard_attrs,
3576 static const struct ocp_attr_group art_timecard_groups[] = {
3577 { .cap = OCP_CAP_BASIC, .group = &art_timecard_group },
3582 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3587 for (i = 0; i < 4; i++) {
3588 if (bp->sma[i].mode != SMA_MODE_IN)
3590 if (map[i][0] & (1 << bit)) {
3591 sprintf(buf, "sma%d", i + 1);
3601 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
3606 strcpy(ans, "----");
3607 for (i = 0; i < 4; i++) {
3608 if (bp->sma[i].mode != SMA_MODE_OUT)
3610 if (map[i][1] & (1 << bit))
3611 ans += sprintf(ans, "sma%d ", i + 1);
3616 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
3618 struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
3619 struct ptp_ocp_signal *signal = &bp->signal[nr];
3627 on = signal->running;
3628 sprintf(label, "GEN%d", nr + 1);
3629 seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
3630 label, on ? " ON" : "OFF",
3631 signal->period, signal->duty, signal->phase,
3634 val = ioread32(®->enable);
3635 seq_printf(s, " [%x", val);
3636 val = ioread32(®->status);
3637 seq_printf(s, " %x]", val);
3639 seq_printf(s, " start:%llu\n", signal->start);
3643 _frequency_summary_show(struct seq_file *s, int nr,
3644 struct frequency_reg __iomem *reg)
3653 sprintf(label, "FREQ%d", nr + 1);
3654 val = ioread32(®->ctrl);
3656 val = (val >> 8) & 0xff;
3657 seq_printf(s, "%7s: %s, sec:%u",
3662 val = ioread32(®->status);
3663 if (val & FREQ_STATUS_ERROR)
3664 seq_printf(s, ", error");
3665 if (val & FREQ_STATUS_OVERRUN)
3666 seq_printf(s, ", overrun");
3667 if (val & FREQ_STATUS_VALID)
3668 seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
3669 seq_printf(s, " reg:%x\n", val);
3673 ptp_ocp_summary_show(struct seq_file *s, void *data)
3675 struct device *dev = s->private;
3676 struct ptp_system_timestamp sts;
3677 struct ts_reg __iomem *ts_reg;
3678 char *buf, *src, *mac_src;
3679 struct timespec64 ts;
3686 buf = (char *)__get_free_page(GFP_KERNEL);
3690 bp = dev_get_drvdata(dev);
3692 seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
3693 if (bp->gnss_port.line != -1)
3694 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1",
3695 bp->gnss_port.line);
3696 if (bp->gnss2_port.line != -1)
3697 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2",
3698 bp->gnss2_port.line);
3699 if (bp->mac_port.line != -1)
3700 seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port.line);
3701 if (bp->nmea_port.line != -1)
3702 seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port.line);
3704 memset(sma_val, 0xff, sizeof(sma_val));
3708 reg = ioread32(&bp->sma_map1->gpio1);
3709 sma_val[0][0] = reg & 0xffff;
3710 sma_val[1][0] = reg >> 16;
3712 reg = ioread32(&bp->sma_map1->gpio2);
3713 sma_val[2][1] = reg & 0xffff;
3714 sma_val[3][1] = reg >> 16;
3716 reg = ioread32(&bp->sma_map2->gpio1);
3717 sma_val[2][0] = reg & 0xffff;
3718 sma_val[3][0] = reg >> 16;
3720 reg = ioread32(&bp->sma_map2->gpio2);
3721 sma_val[0][1] = reg & 0xffff;
3722 sma_val[1][1] = reg >> 16;
3725 sma1_show(dev, NULL, buf);
3726 seq_printf(s, " sma1: %04x,%04x %s",
3727 sma_val[0][0], sma_val[0][1], buf);
3729 sma2_show(dev, NULL, buf);
3730 seq_printf(s, " sma2: %04x,%04x %s",
3731 sma_val[1][0], sma_val[1][1], buf);
3733 sma3_show(dev, NULL, buf);
3734 seq_printf(s, " sma3: %04x,%04x %s",
3735 sma_val[2][0], sma_val[2][1], buf);
3737 sma4_show(dev, NULL, buf);
3738 seq_printf(s, " sma4: %04x,%04x %s",
3739 sma_val[3][0], sma_val[3][1], buf);
3742 ts_reg = bp->ts0->mem;
3743 on = ioread32(&ts_reg->enable);
3745 seq_printf(s, "%7s: %s, src: %s\n", "TS0",
3746 on ? " ON" : "OFF", src);
3750 ts_reg = bp->ts1->mem;
3751 on = ioread32(&ts_reg->enable);
3752 gpio_input_map(buf, bp, sma_val, 2, NULL);
3753 seq_printf(s, "%7s: %s, src: %s\n", "TS1",
3754 on ? " ON" : "OFF", buf);
3758 ts_reg = bp->ts2->mem;
3759 on = ioread32(&ts_reg->enable);
3760 gpio_input_map(buf, bp, sma_val, 3, NULL);
3761 seq_printf(s, "%7s: %s, src: %s\n", "TS2",
3762 on ? " ON" : "OFF", buf);
3766 ts_reg = bp->ts3->mem;
3767 on = ioread32(&ts_reg->enable);
3768 gpio_input_map(buf, bp, sma_val, 6, NULL);
3769 seq_printf(s, "%7s: %s, src: %s\n", "TS3",
3770 on ? " ON" : "OFF", buf);
3774 ts_reg = bp->ts4->mem;
3775 on = ioread32(&ts_reg->enable);
3776 gpio_input_map(buf, bp, sma_val, 7, NULL);
3777 seq_printf(s, "%7s: %s, src: %s\n", "TS4",
3778 on ? " ON" : "OFF", buf);
3782 ts_reg = bp->pps->mem;
3784 on = ioread32(&ts_reg->enable);
3785 map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
3786 seq_printf(s, "%7s: %s, src: %s\n", "TS5",
3787 on && map ? " ON" : "OFF", src);
3789 map = !!(bp->pps_req_map & OCP_REQ_PPS);
3790 seq_printf(s, "%7s: %s, src: %s\n", "PPS",
3791 on && map ? " ON" : "OFF", src);
3794 if (bp->fw_cap & OCP_CAP_SIGNAL)
3795 for (i = 0; i < 4; i++)
3796 _signal_summary_show(s, bp, i);
3798 if (bp->fw_cap & OCP_CAP_FREQ)
3799 for (i = 0; i < 4; i++)
3800 _frequency_summary_show(s, i, bp->freq_in[i]);
3803 ctrl = ioread32(&bp->irig_out->ctrl);
3804 on = ctrl & IRIG_M_CTRL_ENABLE;
3805 val = ioread32(&bp->irig_out->status);
3806 gpio_output_map(buf, bp, sma_val, 4);
3807 seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
3808 on ? " ON" : "OFF", val, (ctrl >> 16), buf);
3812 on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
3813 val = ioread32(&bp->irig_in->status);
3814 gpio_input_map(buf, bp, sma_val, 4, NULL);
3815 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
3816 on ? " ON" : "OFF", val, buf);
3820 on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
3821 val = ioread32(&bp->dcf_out->status);
3822 gpio_output_map(buf, bp, sma_val, 5);
3823 seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
3824 on ? " ON" : "OFF", val, buf);
3828 on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
3829 val = ioread32(&bp->dcf_in->status);
3830 gpio_input_map(buf, bp, sma_val, 5, NULL);
3831 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
3832 on ? " ON" : "OFF", val, buf);
3836 on = ioread32(&bp->nmea_out->ctrl) & 1;
3837 val = ioread32(&bp->nmea_out->status);
3838 seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
3839 on ? " ON" : "OFF", val);
3842 /* compute src for PPS1, used below. */
3843 if (bp->pps_select) {
3844 val = ioread32(&bp->pps_select->gpio1);
3848 gpio_input_map(src, bp, sma_val, 0, NULL);
3850 } else if (val & 0x02) {
3852 } else if (val & 0x04) {
3862 seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
3864 gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
3865 seq_printf(s, "MAC PPS2 src: %s\n", buf);
3867 /* assumes automatic switchover/selection */
3868 val = ioread32(&bp->reg->select);
3869 switch (val >> 16) {
3871 sprintf(buf, "----");
3874 sprintf(buf, "IRIG");
3877 sprintf(buf, "%s via PPS1", src);
3880 sprintf(buf, "DCF");
3883 strcpy(buf, "unknown");
3886 seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
3887 bp->sync ? "sync" : "unsynced");
3889 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
3890 struct timespec64 sys_ts;
3891 s64 pre_ns, post_ns, ns;
3893 pre_ns = timespec64_to_ns(&sts.pre_ts);
3894 post_ns = timespec64_to_ns(&sts.post_ts);
3895 ns = (pre_ns + post_ns) / 2;
3896 ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
3897 sys_ts = ns_to_timespec64(ns);
3899 seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
3900 ts.tv_sec, ts.tv_nsec, &ts);
3901 seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
3902 sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
3903 bp->utc_tai_offset);
3904 seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "",
3905 timespec64_to_ns(&ts) - ns,
3909 free_page((unsigned long)buf);
3912 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
3915 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
3917 struct device *dev = s->private;
3922 bp = dev_get_drvdata(dev);
3924 val = ioread32(&bp->tod->ctrl);
3925 if (!(val & TOD_CTRL_ENABLE)) {
3926 seq_printf(s, "TOD Slave disabled\n");
3929 seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
3931 idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
3932 idx += (val >> 16) & 3;
3933 seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
3935 idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
3936 seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
3938 val = ioread32(&bp->tod->version);
3939 seq_printf(s, "TOD Version %d.%d.%d\n",
3940 val >> 24, (val >> 16) & 0xff, val & 0xffff);
3942 val = ioread32(&bp->tod->status);
3943 seq_printf(s, "Status register: 0x%08X\n", val);
3945 val = ioread32(&bp->tod->adj_sec);
3946 idx = (val & ~INT_MAX) ? -1 : 1;
3947 idx *= (val & INT_MAX);
3948 seq_printf(s, "Correction seconds: %d\n", idx);
3950 val = ioread32(&bp->tod->utc_status);
3951 seq_printf(s, "UTC status register: 0x%08X\n", val);
3952 seq_printf(s, "UTC offset: %ld valid:%d\n",
3953 val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
3954 seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
3955 val & TOD_STATUS_LEAP_VALID ? 1 : 0,
3956 val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
3958 val = ioread32(&bp->tod->leap);
3959 seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
3963 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
3965 static struct dentry *ptp_ocp_debugfs_root;
3968 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
3972 d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
3974 debugfs_create_file("summary", 0444, bp->debug_root,
3975 &bp->dev, &ptp_ocp_summary_fops);
3977 debugfs_create_file("tod_status", 0444, bp->debug_root,
3978 &bp->dev, &ptp_ocp_tod_status_fops);
3982 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
3984 debugfs_remove_recursive(bp->debug_root);
3988 ptp_ocp_debugfs_init(void)
3990 ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
3994 ptp_ocp_debugfs_fini(void)
3996 debugfs_remove_recursive(ptp_ocp_debugfs_root);
4000 ptp_ocp_dev_release(struct device *dev)
4002 struct ptp_ocp *bp = dev_get_drvdata(dev);
4004 mutex_lock(&ptp_ocp_lock);
4005 idr_remove(&ptp_ocp_idr, bp->id);
4006 mutex_unlock(&ptp_ocp_lock);
4010 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
4014 mutex_lock(&ptp_ocp_lock);
4015 err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
4016 mutex_unlock(&ptp_ocp_lock);
4018 dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
4023 bp->ptp_info = ptp_ocp_clock_info;
4024 spin_lock_init(&bp->lock);
4025 bp->gnss_port.line = -1;
4026 bp->gnss2_port.line = -1;
4027 bp->mac_port.line = -1;
4028 bp->nmea_port.line = -1;
4031 device_initialize(&bp->dev);
4032 dev_set_name(&bp->dev, "ocp%d", bp->id);
4033 bp->dev.class = &timecard_class;
4034 bp->dev.parent = &pdev->dev;
4035 bp->dev.release = ptp_ocp_dev_release;
4036 dev_set_drvdata(&bp->dev, bp);
4038 err = device_add(&bp->dev);
4040 dev_err(&bp->dev, "device add failed: %d\n", err);
4044 pci_set_drvdata(pdev, bp);
4049 put_device(&bp->dev);
4054 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
4056 struct device *dev = &bp->dev;
4058 if (sysfs_create_link(&dev->kobj, &child->kobj, link))
4059 dev_err(dev, "%s symlink failed\n", link);
4063 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
4065 struct device *dev, *child;
4067 dev = &bp->pdev->dev;
4069 child = device_find_child_by_name(dev, name);
4071 dev_err(dev, "Could not find device %s\n", name);
4075 ptp_ocp_symlink(bp, child, link);
4080 ptp_ocp_complete(struct ptp_ocp *bp)
4082 struct pps_device *pps;
4085 if (bp->gnss_port.line != -1) {
4086 sprintf(buf, "ttyS%d", bp->gnss_port.line);
4087 ptp_ocp_link_child(bp, buf, "ttyGNSS");
4089 if (bp->gnss2_port.line != -1) {
4090 sprintf(buf, "ttyS%d", bp->gnss2_port.line);
4091 ptp_ocp_link_child(bp, buf, "ttyGNSS2");
4093 if (bp->mac_port.line != -1) {
4094 sprintf(buf, "ttyS%d", bp->mac_port.line);
4095 ptp_ocp_link_child(bp, buf, "ttyMAC");
4097 if (bp->nmea_port.line != -1) {
4098 sprintf(buf, "ttyS%d", bp->nmea_port.line);
4099 ptp_ocp_link_child(bp, buf, "ttyNMEA");
4101 sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
4102 ptp_ocp_link_child(bp, buf, "ptp");
4104 pps = pps_lookup_dev(bp->ptp);
4106 ptp_ocp_symlink(bp, pps->dev, "pps");
4108 ptp_ocp_debugfs_add_device(bp);
4114 ptp_ocp_phc_info(struct ptp_ocp *bp)
4116 struct timespec64 ts;
4117 u32 version, select;
4119 version = ioread32(&bp->reg->version);
4120 select = ioread32(&bp->reg->select);
4121 dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
4122 version >> 24, (version >> 16) & 0xff, version & 0xffff,
4123 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
4124 ptp_clock_index(bp->ptp));
4126 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
4127 dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
4128 ts.tv_sec, ts.tv_nsec,
4129 bp->sync ? "in-sync" : "UNSYNCED");
4133 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
4136 dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
4140 ptp_ocp_info(struct ptp_ocp *bp)
4142 static int nmea_baud[] = {
4143 1200, 2400, 4800, 9600, 19200, 38400,
4144 57600, 115200, 230400, 460800, 921600,
4147 struct device *dev = &bp->pdev->dev;
4150 ptp_ocp_phc_info(bp);
4152 ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port.line,
4153 bp->gnss_port.baud);
4154 ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port.line,
4155 bp->gnss2_port.baud);
4156 ptp_ocp_serial_info(dev, "MAC", bp->mac_port.line, bp->mac_port.baud);
4157 if (bp->nmea_out && bp->nmea_port.line != -1) {
4158 bp->nmea_port.baud = -1;
4160 reg = ioread32(&bp->nmea_out->uart_baud);
4161 if (reg < ARRAY_SIZE(nmea_baud))
4162 bp->nmea_port.baud = nmea_baud[reg];
4164 ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port.line,
4165 bp->nmea_port.baud);
4170 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
4172 struct device *dev = &bp->dev;
4174 sysfs_remove_link(&dev->kobj, "ttyGNSS");
4175 sysfs_remove_link(&dev->kobj, "ttyGNSS2");
4176 sysfs_remove_link(&dev->kobj, "ttyMAC");
4177 sysfs_remove_link(&dev->kobj, "ptp");
4178 sysfs_remove_link(&dev->kobj, "pps");
4182 ptp_ocp_detach(struct ptp_ocp *bp)
4186 ptp_ocp_debugfs_remove_device(bp);
4187 ptp_ocp_detach_sysfs(bp);
4188 ptp_ocp_attr_group_del(bp);
4189 if (timer_pending(&bp->watchdog))
4190 del_timer_sync(&bp->watchdog);
4192 ptp_ocp_unregister_ext(bp->ts0);
4194 ptp_ocp_unregister_ext(bp->ts1);
4196 ptp_ocp_unregister_ext(bp->ts2);
4198 ptp_ocp_unregister_ext(bp->ts3);
4200 ptp_ocp_unregister_ext(bp->ts4);
4202 ptp_ocp_unregister_ext(bp->pps);
4203 for (i = 0; i < 4; i++)
4204 if (bp->signal_out[i])
4205 ptp_ocp_unregister_ext(bp->signal_out[i]);
4206 if (bp->gnss_port.line != -1)
4207 serial8250_unregister_port(bp->gnss_port.line);
4208 if (bp->gnss2_port.line != -1)
4209 serial8250_unregister_port(bp->gnss2_port.line);
4210 if (bp->mac_port.line != -1)
4211 serial8250_unregister_port(bp->mac_port.line);
4212 if (bp->nmea_port.line != -1)
4213 serial8250_unregister_port(bp->nmea_port.line);
4214 platform_device_unregister(bp->spi_flash);
4215 platform_device_unregister(bp->i2c_ctrl);
4217 clk_hw_unregister_fixed_rate(bp->i2c_clk);
4219 pci_free_irq_vectors(bp->pdev);
4221 ptp_clock_unregister(bp->ptp);
4222 kfree(bp->ptp_info.pin_config);
4223 device_unregister(&bp->dev);
4226 static int ptp_ocp_dpll_lock_status_get(const struct dpll_device *dpll,
4228 enum dpll_lock_status *status,
4229 struct netlink_ext_ack *extack)
4231 struct ptp_ocp *bp = priv;
4233 *status = bp->sync ? DPLL_LOCK_STATUS_LOCKED : DPLL_LOCK_STATUS_UNLOCKED;
4238 static int ptp_ocp_dpll_state_get(const struct dpll_pin *pin, void *pin_priv,
4239 const struct dpll_device *dpll, void *priv,
4240 enum dpll_pin_state *state,
4241 struct netlink_ext_ack *extack)
4243 struct ptp_ocp *bp = priv;
4246 if (bp->pps_select) {
4247 idx = ioread32(&bp->pps_select->gpio1);
4248 *state = (&bp->sma[idx] == pin_priv) ? DPLL_PIN_STATE_CONNECTED :
4249 DPLL_PIN_STATE_SELECTABLE;
4252 NL_SET_ERR_MSG(extack, "pin selection is not supported on current HW");
4256 static int ptp_ocp_dpll_mode_get(const struct dpll_device *dpll, void *priv,
4257 enum dpll_mode *mode, struct netlink_ext_ack *extack)
4259 *mode = DPLL_MODE_AUTOMATIC;
4263 static bool ptp_ocp_dpll_mode_supported(const struct dpll_device *dpll,
4264 void *priv, const enum dpll_mode mode,
4265 struct netlink_ext_ack *extack)
4267 return mode == DPLL_MODE_AUTOMATIC;
4270 static int ptp_ocp_dpll_direction_get(const struct dpll_pin *pin,
4272 const struct dpll_device *dpll,
4274 enum dpll_pin_direction *direction,
4275 struct netlink_ext_ack *extack)
4277 struct ptp_ocp_sma_connector *sma = pin_priv;
4279 *direction = sma->mode == SMA_MODE_IN ?
4280 DPLL_PIN_DIRECTION_INPUT :
4281 DPLL_PIN_DIRECTION_OUTPUT;
4285 static int ptp_ocp_dpll_direction_set(const struct dpll_pin *pin,
4287 const struct dpll_device *dpll,
4289 enum dpll_pin_direction direction,
4290 struct netlink_ext_ack *extack)
4292 struct ptp_ocp_sma_connector *sma = pin_priv;
4293 struct ptp_ocp *bp = dpll_priv;
4294 enum ptp_ocp_sma_mode mode;
4295 int sma_nr = (sma - bp->sma);
4299 mode = direction == DPLL_PIN_DIRECTION_INPUT ?
4300 SMA_MODE_IN : SMA_MODE_OUT;
4301 return ptp_ocp_sma_store_val(bp, 0, mode, sma_nr);
4304 static int ptp_ocp_dpll_frequency_set(const struct dpll_pin *pin,
4306 const struct dpll_device *dpll,
4307 void *dpll_priv, u64 frequency,
4308 struct netlink_ext_ack *extack)
4310 struct ptp_ocp_sma_connector *sma = pin_priv;
4311 struct ptp_ocp *bp = dpll_priv;
4312 const struct ocp_selector *tbl;
4313 int sma_nr = (sma - bp->sma);
4319 tbl = bp->sma_op->tbl[sma->mode];
4320 for (i = 0; tbl[i].name; i++)
4321 if (tbl[i].frequency == frequency)
4322 return ptp_ocp_sma_store_val(bp, i, sma->mode, sma_nr);
4326 static int ptp_ocp_dpll_frequency_get(const struct dpll_pin *pin,
4328 const struct dpll_device *dpll,
4329 void *dpll_priv, u64 *frequency,
4330 struct netlink_ext_ack *extack)
4332 struct ptp_ocp_sma_connector *sma = pin_priv;
4333 struct ptp_ocp *bp = dpll_priv;
4334 const struct ocp_selector *tbl;
4335 int sma_nr = (sma - bp->sma);
4339 val = bp->sma_op->get(bp, sma_nr);
4340 tbl = bp->sma_op->tbl[sma->mode];
4341 for (i = 0; tbl[i].name; i++)
4342 if (val == tbl[i].value) {
4343 *frequency = tbl[i].frequency;
4350 static const struct dpll_device_ops dpll_ops = {
4351 .lock_status_get = ptp_ocp_dpll_lock_status_get,
4352 .mode_get = ptp_ocp_dpll_mode_get,
4353 .mode_supported = ptp_ocp_dpll_mode_supported,
4356 static const struct dpll_pin_ops dpll_pins_ops = {
4357 .frequency_get = ptp_ocp_dpll_frequency_get,
4358 .frequency_set = ptp_ocp_dpll_frequency_set,
4359 .direction_get = ptp_ocp_dpll_direction_get,
4360 .direction_set = ptp_ocp_dpll_direction_set,
4361 .state_on_dpll_get = ptp_ocp_dpll_state_get,
4365 ptp_ocp_sync_work(struct work_struct *work)
4370 bp = container_of(work, struct ptp_ocp, sync_work.work);
4371 sync = !!(ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC);
4373 if (bp->sync != sync)
4374 dpll_device_change_ntf(bp->dpll);
4378 queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4382 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
4384 struct devlink *devlink;
4389 devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
4391 dev_err(&pdev->dev, "devlink_alloc failed\n");
4395 err = pci_enable_device(pdev);
4397 dev_err(&pdev->dev, "pci_enable_device\n");
4401 bp = devlink_priv(devlink);
4402 err = ptp_ocp_device_init(bp, pdev);
4406 INIT_DELAYED_WORK(&bp->sync_work, ptp_ocp_sync_work);
4409 * Older FPGA firmware only returns 2 irq's.
4410 * allow this - if not all of the IRQ's are returned, skip the
4411 * extra devices and just register the clock.
4413 err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
4415 dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
4419 pci_set_master(pdev);
4421 err = ptp_ocp_register_resources(bp, id->driver_data);
4425 bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
4426 if (IS_ERR(bp->ptp)) {
4427 err = PTR_ERR(bp->ptp);
4428 dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
4433 err = ptp_ocp_complete(bp);
4438 devlink_register(devlink);
4440 clkid = pci_get_dsn(pdev);
4441 bp->dpll = dpll_device_get(clkid, 0, THIS_MODULE);
4442 if (IS_ERR(bp->dpll)) {
4443 err = PTR_ERR(bp->dpll);
4444 dev_err(&pdev->dev, "dpll_device_alloc failed\n");
4448 err = dpll_device_register(bp->dpll, DPLL_TYPE_PPS, &dpll_ops, bp);
4452 for (i = 0; i < OCP_SMA_NUM; i++) {
4453 bp->sma[i].dpll_pin = dpll_pin_get(clkid, i, THIS_MODULE, &bp->sma[i].dpll_prop);
4454 if (IS_ERR(bp->sma[i].dpll_pin)) {
4455 err = PTR_ERR(bp->sma[i].dpll_pin);
4459 err = dpll_pin_register(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops,
4462 dpll_pin_put(bp->sma[i].dpll_pin);
4466 queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4472 dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4473 dpll_pin_put(bp->sma[i].dpll_pin);
4475 dpll_device_put(bp->dpll);
4479 pci_disable_device(pdev);
4481 devlink_free(devlink);
4486 ptp_ocp_remove(struct pci_dev *pdev)
4488 struct ptp_ocp *bp = pci_get_drvdata(pdev);
4489 struct devlink *devlink = priv_to_devlink(bp);
4492 cancel_delayed_work_sync(&bp->sync_work);
4493 for (i = 0; i < OCP_SMA_NUM; i++) {
4494 if (bp->sma[i].dpll_pin) {
4495 dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, bp);
4496 dpll_pin_put(bp->sma[i].dpll_pin);
4499 dpll_device_unregister(bp->dpll, &dpll_ops, bp);
4500 dpll_device_put(bp->dpll);
4501 devlink_unregister(devlink);
4503 pci_disable_device(pdev);
4505 devlink_free(devlink);
4508 static struct pci_driver ptp_ocp_driver = {
4509 .name = KBUILD_MODNAME,
4510 .id_table = ptp_ocp_pcidev_id,
4511 .probe = ptp_ocp_probe,
4512 .remove = ptp_ocp_remove,
4516 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
4517 unsigned long action, void *data)
4519 struct device *dev, *child = data;
4524 case BUS_NOTIFY_ADD_DEVICE:
4525 case BUS_NOTIFY_DEL_DEVICE:
4526 add = action == BUS_NOTIFY_ADD_DEVICE;
4532 if (!i2c_verify_adapter(child))
4536 while ((dev = dev->parent))
4537 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
4542 bp = dev_get_drvdata(dev);
4544 ptp_ocp_symlink(bp, child, "i2c");
4546 sysfs_remove_link(&bp->dev.kobj, "i2c");
4551 static struct notifier_block ptp_ocp_i2c_notifier = {
4552 .notifier_call = ptp_ocp_i2c_notifier_call,
4561 ptp_ocp_debugfs_init();
4563 what = "timecard class";
4564 err = class_register(&timecard_class);
4568 what = "i2c notifier";
4569 err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4573 what = "ptp_ocp driver";
4574 err = pci_register_driver(&ptp_ocp_driver);
4581 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4583 class_unregister(&timecard_class);
4585 ptp_ocp_debugfs_fini();
4586 pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
4593 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4594 pci_unregister_driver(&ptp_ocp_driver);
4595 class_unregister(&timecard_class);
4596 ptp_ocp_debugfs_fini();
4599 module_init(ptp_ocp_init);
4600 module_exit(ptp_ocp_fini);
4602 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
4603 MODULE_LICENSE("GPL v2");