2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 #include <linux/sched/mm.h>
34 #include "gem/i915_gem_context.h"
35 #include "gt/intel_breadcrumbs.h"
36 #include "gt/intel_context.h"
37 #include "gt/intel_engine.h"
38 #include "gt/intel_engine_heartbeat.h"
39 #include "gt/intel_engine_regs.h"
40 #include "gt/intel_gpu_commands.h"
41 #include "gt/intel_reset.h"
42 #include "gt/intel_ring.h"
43 #include "gt/intel_rps.h"
45 #include "i915_active.h"
46 #include "i915_config.h"
47 #include "i915_deps.h"
48 #include "i915_driver.h"
50 #include "i915_trace.h"
54 struct i915_sw_fence *fence;
55 struct i915_request *signal;
58 static struct kmem_cache *slab_requests;
59 static struct kmem_cache *slab_execute_cbs;
61 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
63 return dev_name(to_request(fence)->i915->drm.dev);
66 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
68 const struct i915_gem_context *ctx;
71 * The timeline struct (as part of the ppgtt underneath a context)
72 * may be freed when the request is no longer in use by the GPU.
73 * We could extend the life of a context to beyond that of all
74 * fences, possibly keeping the hw resource around indefinitely,
75 * or we just give them a false name. Since
76 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
77 * lie seems justifiable.
79 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
82 ctx = i915_request_gem_context(to_request(fence));
84 return "[" DRIVER_NAME "]";
89 static bool i915_fence_signaled(struct dma_fence *fence)
91 return i915_request_completed(to_request(fence));
94 static bool i915_fence_enable_signaling(struct dma_fence *fence)
96 return i915_request_enable_breadcrumb(to_request(fence));
99 static signed long i915_fence_wait(struct dma_fence *fence,
103 return i915_request_wait_timeout(to_request(fence),
104 interruptible | I915_WAIT_PRIORITY,
108 struct kmem_cache *i915_request_slab_cache(void)
110 return slab_requests;
113 static void i915_fence_release(struct dma_fence *fence)
115 struct i915_request *rq = to_request(fence);
117 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
118 rq->guc_prio != GUC_PRIO_FINI);
120 i915_request_free_capture_list(fetch_and_zero(&rq->capture_list));
122 i915_vma_resource_put(rq->batch_res);
123 rq->batch_res = NULL;
127 * The request is put onto a RCU freelist (i.e. the address
128 * is immediately reused), mark the fences as being freed now.
129 * Otherwise the debugobjects for the fences are only marked as
130 * freed when the slab cache itself is freed, and so we would get
131 * caught trying to reuse dead objects.
133 i915_sw_fence_fini(&rq->submit);
134 i915_sw_fence_fini(&rq->semaphore);
137 * Keep one request on each engine for reserved use under mempressure.
139 * We do not hold a reference to the engine here and so have to be
140 * very careful in what rq->engine we poke. The virtual engine is
141 * referenced via the rq->context and we released that ref during
142 * i915_request_retire(), ergo we must not dereference a virtual
143 * engine here. Not that we would want to, as the only consumer of
144 * the reserved engine->request_pool is the power management parking,
145 * which must-not-fail, and that is only run on the physical engines.
147 * Since the request must have been executed to be have completed,
148 * we know that it will have been processed by the HW and will
149 * not be unsubmitted again, so rq->engine and rq->execution_mask
150 * at this point is stable. rq->execution_mask will be a single
151 * bit if the last and _only_ engine it could execution on was a
152 * physical engine, if it's multiple bits then it started on and
153 * could still be on a virtual engine. Thus if the mask is not a
154 * power-of-two we assume that rq->engine may still be a virtual
155 * engine and so a dangling invalid pointer that we cannot dereference
157 * For example, consider the flow of a bonded request through a virtual
158 * engine. The request is created with a wide engine mask (all engines
159 * that we might execute on). On processing the bond, the request mask
160 * is reduced to one or more engines. If the request is subsequently
161 * bound to a single engine, it will then be constrained to only
162 * execute on that engine and never returned to the virtual engine
163 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
164 * know that if the rq->execution_mask is a single bit, rq->engine
165 * can be a physical engine with the exact corresponding mask.
167 if (is_power_of_2(rq->execution_mask) &&
168 !cmpxchg(&rq->engine->request_pool, NULL, rq))
171 kmem_cache_free(slab_requests, rq);
174 const struct dma_fence_ops i915_fence_ops = {
175 .get_driver_name = i915_fence_get_driver_name,
176 .get_timeline_name = i915_fence_get_timeline_name,
177 .enable_signaling = i915_fence_enable_signaling,
178 .signaled = i915_fence_signaled,
179 .wait = i915_fence_wait,
180 .release = i915_fence_release,
183 static void irq_execute_cb(struct irq_work *wrk)
185 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
187 i915_sw_fence_complete(cb->fence);
188 kmem_cache_free(slab_execute_cbs, cb);
191 static __always_inline void
192 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
194 struct execute_cb *cb, *cn;
196 if (llist_empty(&rq->execute_cb))
199 llist_for_each_entry_safe(cb, cn,
200 llist_del_all(&rq->execute_cb),
205 static void __notify_execute_cb_irq(struct i915_request *rq)
207 __notify_execute_cb(rq, irq_work_queue);
210 static bool irq_work_imm(struct irq_work *wrk)
216 void i915_request_notify_execute_cb_imm(struct i915_request *rq)
218 __notify_execute_cb(rq, irq_work_imm);
221 static void __i915_request_fill(struct i915_request *rq, u8 val)
223 void *vaddr = rq->ring->vaddr;
227 if (rq->postfix < head) {
228 memset(vaddr + head, val, rq->ring->size - head);
231 memset(vaddr + head, val, rq->postfix - head);
235 * i915_request_active_engine
236 * @rq: request to inspect
237 * @active: pointer in which to return the active engine
239 * Fills the currently active engine to the @active pointer if the request
240 * is active and still not completed.
242 * Returns true if request was active or false otherwise.
245 i915_request_active_engine(struct i915_request *rq,
246 struct intel_engine_cs **active)
248 struct intel_engine_cs *engine, *locked;
252 * Serialise with __i915_request_submit() so that it sees
253 * is-banned?, or we know the request is already inflight.
255 * Note that rq->engine is unstable, and so we double
256 * check that we have acquired the lock on the final engine.
258 locked = READ_ONCE(rq->engine);
259 spin_lock_irq(&locked->sched_engine->lock);
260 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
261 spin_unlock(&locked->sched_engine->lock);
263 spin_lock(&locked->sched_engine->lock);
266 if (i915_request_is_active(rq)) {
267 if (!__i915_request_is_complete(rq))
272 spin_unlock_irq(&locked->sched_engine->lock);
277 static void __rq_init_watchdog(struct i915_request *rq)
279 rq->watchdog.timer.function = NULL;
282 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
284 struct i915_request *rq =
285 container_of(hrtimer, struct i915_request, watchdog.timer);
286 struct intel_gt *gt = rq->engine->gt;
288 if (!i915_request_completed(rq)) {
289 if (llist_add(&rq->watchdog.link, >->watchdog.list))
290 queue_work(gt->i915->unordered_wq, >->watchdog.work);
292 i915_request_put(rq);
295 return HRTIMER_NORESTART;
298 static void __rq_arm_watchdog(struct i915_request *rq)
300 struct i915_request_watchdog *wdg = &rq->watchdog;
301 struct intel_context *ce = rq->context;
303 if (!ce->watchdog.timeout_us)
306 i915_request_get(rq);
308 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
309 wdg->timer.function = __rq_watchdog_expired;
310 hrtimer_start_range_ns(&wdg->timer,
311 ns_to_ktime(ce->watchdog.timeout_us *
317 static void __rq_cancel_watchdog(struct i915_request *rq)
319 struct i915_request_watchdog *wdg = &rq->watchdog;
321 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
322 i915_request_put(rq);
325 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
328 * i915_request_free_capture_list - Free a capture list
329 * @capture: Pointer to the first list item or NULL
332 void i915_request_free_capture_list(struct i915_capture_list *capture)
335 struct i915_capture_list *next = capture->next;
337 i915_vma_resource_put(capture->vma_res);
343 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list)
345 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL)
349 #define i915_request_free_capture_list(_a) do {} while (0)
351 #define assert_capture_list_is_null(_a) do {} while (0)
353 #define clear_capture_list(_rq) do {} while (0)
357 bool i915_request_retire(struct i915_request *rq)
359 if (!__i915_request_is_complete(rq))
364 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
365 trace_i915_request_retire(rq);
366 i915_request_mark_complete(rq);
368 __rq_cancel_watchdog(rq);
371 * We know the GPU must have read the request to have
372 * sent us the seqno + interrupt, so use the position
373 * of tail of the request to update the last known position
376 * Note this requires that we are always called in request
379 GEM_BUG_ON(!list_is_first(&rq->link,
380 &i915_request_timeline(rq)->requests));
381 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
382 /* Poison before we release our space in the ring */
383 __i915_request_fill(rq, POISON_FREE);
384 rq->ring->head = rq->postfix;
386 if (!i915_request_signaled(rq)) {
387 spin_lock_irq(&rq->lock);
388 dma_fence_signal_locked(&rq->fence);
389 spin_unlock_irq(&rq->lock);
392 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
393 intel_rps_dec_waiters(&rq->engine->gt->rps);
396 * We only loosely track inflight requests across preemption,
397 * and so we may find ourselves attempting to retire a _completed_
398 * request that we have removed from the HW and put back on a run
401 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
402 * after removing the breadcrumb and signaling it, so that we do not
403 * inadvertently attach the breadcrumb to a completed request.
405 rq->engine->remove_active_request(rq);
406 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
408 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
410 intel_context_exit(rq->context);
411 intel_context_unpin(rq->context);
413 i915_sched_node_fini(&rq->sched);
414 i915_request_put(rq);
419 void i915_request_retire_upto(struct i915_request *rq)
421 struct intel_timeline * const tl = i915_request_timeline(rq);
422 struct i915_request *tmp;
425 GEM_BUG_ON(!__i915_request_is_complete(rq));
428 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
429 GEM_BUG_ON(!i915_request_completed(tmp));
430 } while (i915_request_retire(tmp) && tmp != rq);
433 static struct i915_request * const *
434 __engine_active(struct intel_engine_cs *engine)
436 return READ_ONCE(engine->execlists.active);
439 static bool __request_in_flight(const struct i915_request *signal)
441 struct i915_request * const *port, *rq;
442 bool inflight = false;
444 if (!i915_request_is_ready(signal))
448 * Even if we have unwound the request, it may still be on
449 * the GPU (preempt-to-busy). If that request is inside an
450 * unpreemptible critical section, it will not be removed. Some
451 * GPU functions may even be stuck waiting for the paired request
452 * (__await_execution) to be submitted and cannot be preempted
453 * until the bond is executing.
455 * As we know that there are always preemption points between
456 * requests, we know that only the currently executing request
457 * may be still active even though we have cleared the flag.
458 * However, we can't rely on our tracking of ELSP[0] to know
459 * which request is currently active and so maybe stuck, as
460 * the tracking maybe an event behind. Instead assume that
461 * if the context is still inflight, then it is still active
462 * even if the active flag has been cleared.
464 * To further complicate matters, if there a pending promotion, the HW
465 * may either perform a context switch to the second inflight execlists,
466 * or it may switch to the pending set of execlists. In the case of the
467 * latter, it may send the ACK and we process the event copying the
468 * pending[] over top of inflight[], _overwriting_ our *active. Since
469 * this implies the HW is arbitrating and not struck in *active, we do
470 * not worry about complete accuracy, but we do require no read/write
471 * tearing of the pointer [the read of the pointer must be valid, even
472 * as the array is being overwritten, for which we require the writes
475 * Note that the read of *execlists->active may race with the promotion
476 * of execlists->pending[] to execlists->inflight[], overwritting
477 * the value at *execlists->active. This is fine. The promotion implies
478 * that we received an ACK from the HW, and so the context is not
479 * stuck -- if we do not see ourselves in *active, the inflight status
480 * is valid. If instead we see ourselves being copied into *active,
481 * we are inflight and may signal the callback.
483 if (!intel_context_inflight(signal->context))
487 for (port = __engine_active(signal->engine);
488 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
490 if (rq->context == signal->context) {
491 inflight = i915_seqno_passed(rq->fence.seqno,
492 signal->fence.seqno);
502 __await_execution(struct i915_request *rq,
503 struct i915_request *signal,
506 struct execute_cb *cb;
508 if (i915_request_is_active(signal))
511 cb = kmem_cache_alloc(slab_execute_cbs, gfp);
515 cb->fence = &rq->submit;
516 i915_sw_fence_await(cb->fence);
517 init_irq_work(&cb->work, irq_execute_cb);
520 * Register the callback first, then see if the signaler is already
521 * active. This ensures that if we race with the
522 * __notify_execute_cb from i915_request_submit() and we are not
523 * included in that list, we get a second bite of the cherry and
524 * execute it ourselves. After this point, a future
525 * i915_request_submit() will notify us.
527 * In i915_request_retire() we set the ACTIVE bit on a completed
528 * request (then flush the execute_cb). So by registering the
529 * callback first, then checking the ACTIVE bit, we serialise with
530 * the completed/retired request.
532 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
533 if (i915_request_is_active(signal) ||
534 __request_in_flight(signal))
535 i915_request_notify_execute_cb_imm(signal);
541 static bool fatal_error(int error)
544 case 0: /* not an error! */
545 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
546 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
553 void __i915_request_skip(struct i915_request *rq)
555 GEM_BUG_ON(!fatal_error(rq->fence.error));
557 if (rq->infix == rq->postfix)
560 RQ_TRACE(rq, "error: %d\n", rq->fence.error);
563 * As this request likely depends on state from the lost
564 * context, clear out all the user operations leaving the
565 * breadcrumb at the end (so we get the fence notifications).
567 __i915_request_fill(rq, 0);
568 rq->infix = rq->postfix;
571 bool i915_request_set_error_once(struct i915_request *rq, int error)
575 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
577 if (i915_request_signaled(rq))
580 old = READ_ONCE(rq->fence.error);
582 if (fatal_error(old))
584 } while (!try_cmpxchg(&rq->fence.error, &old, error));
589 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
591 if (__i915_request_is_complete(rq))
594 GEM_BUG_ON(i915_request_signaled(rq));
596 /* As soon as the request is completed, it may be retired */
597 rq = i915_request_get(rq);
599 i915_request_set_error_once(rq, -EIO);
600 i915_request_mark_complete(rq);
605 bool __i915_request_submit(struct i915_request *request)
607 struct intel_engine_cs *engine = request->engine;
610 RQ_TRACE(request, "\n");
612 GEM_BUG_ON(!irqs_disabled());
613 lockdep_assert_held(&engine->sched_engine->lock);
616 * With the advent of preempt-to-busy, we frequently encounter
617 * requests that we have unsubmitted from HW, but left running
618 * until the next ack and so have completed in the meantime. On
619 * resubmission of that completed request, we can skip
620 * updating the payload, and execlists can even skip submitting
623 * We must remove the request from the caller's priority queue,
624 * and the caller must only call us when the request is in their
625 * priority queue, under the sched_engine->lock. This ensures that the
626 * request has *not* yet been retired and we can safely move
627 * the request into the engine->active.list where it will be
628 * dropped upon retiring. (Otherwise if resubmit a *retired*
629 * request, this would be a horrible use-after-free.)
631 if (__i915_request_is_complete(request)) {
632 list_del_init(&request->sched.link);
636 if (unlikely(!intel_context_is_schedulable(request->context)))
637 i915_request_set_error_once(request, -EIO);
639 if (unlikely(fatal_error(request->fence.error)))
640 __i915_request_skip(request);
643 * Are we using semaphores when the gpu is already saturated?
645 * Using semaphores incurs a cost in having the GPU poll a
646 * memory location, busywaiting for it to change. The continual
647 * memory reads can have a noticeable impact on the rest of the
648 * system with the extra bus traffic, stalling the cpu as it too
649 * tries to access memory across the bus (perf stat -e bus-cycles).
651 * If we installed a semaphore on this request and we only submit
652 * the request after the signaler completed, that indicates the
653 * system is overloaded and using semaphores at this time only
654 * increases the amount of work we are doing. If so, we disable
655 * further use of semaphores until we are idle again, whence we
656 * optimistically try again.
658 if (request->sched.semaphores &&
659 i915_sw_fence_signaled(&request->semaphore))
660 engine->saturated |= request->sched.semaphores;
662 engine->emit_fini_breadcrumb(request,
663 request->ring->vaddr + request->postfix);
665 trace_i915_request_execute(request);
666 if (engine->bump_serial)
667 engine->bump_serial(engine);
673 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
674 engine->add_active_request(request);
676 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
677 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
680 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
682 * In the future, perhaps when we have an active time-slicing scheduler,
683 * it will be interesting to unsubmit parallel execution and remove
684 * busywaits from the GPU until their master is restarted. This is
685 * quite hairy, we have to carefully rollback the fence and do a
686 * preempt-to-idle cycle on the target engine, all the while the
687 * master execute_cb may refire.
689 __notify_execute_cb_irq(request);
691 /* We may be recursing from the signal callback of another i915 fence */
692 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
693 i915_request_enable_breadcrumb(request);
698 void i915_request_submit(struct i915_request *request)
700 struct intel_engine_cs *engine = request->engine;
703 /* Will be called from irq-context when using foreign fences. */
704 spin_lock_irqsave(&engine->sched_engine->lock, flags);
706 __i915_request_submit(request);
708 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
711 void __i915_request_unsubmit(struct i915_request *request)
713 struct intel_engine_cs *engine = request->engine;
716 * Only unwind in reverse order, required so that the per-context list
717 * is kept in seqno/ring order.
719 RQ_TRACE(request, "\n");
721 GEM_BUG_ON(!irqs_disabled());
722 lockdep_assert_held(&engine->sched_engine->lock);
725 * Before we remove this breadcrumb from the signal list, we have
726 * to ensure that a concurrent dma_fence_enable_signaling() does not
727 * attach itself. We first mark the request as no longer active and
728 * make sure that is visible to other cores, and then remove the
729 * breadcrumb if attached.
731 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
732 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
733 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
734 i915_request_cancel_breadcrumb(request);
736 /* We've already spun, don't charge on resubmitting. */
737 if (request->sched.semaphores && __i915_request_has_started(request))
738 request->sched.semaphores = 0;
741 * We don't need to wake_up any waiters on request->execute, they
742 * will get woken by any other event or us re-adding this request
743 * to the engine timeline (__i915_request_submit()). The waiters
744 * should be quite adapt at finding that the request now has a new
745 * global_seqno to the one they went to sleep on.
749 void i915_request_unsubmit(struct i915_request *request)
751 struct intel_engine_cs *engine = request->engine;
754 /* Will be called from irq-context when using foreign fences. */
755 spin_lock_irqsave(&engine->sched_engine->lock, flags);
757 __i915_request_unsubmit(request);
759 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
762 void i915_request_cancel(struct i915_request *rq, int error)
764 if (!i915_request_set_error_once(rq, error))
767 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
769 intel_context_cancel_request(rq->context, rq);
773 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
775 struct i915_request *request =
776 container_of(fence, typeof(*request), submit);
780 trace_i915_request_submit(request);
782 if (unlikely(fence->error))
783 i915_request_set_error_once(request, fence->error);
785 __rq_arm_watchdog(request);
788 * We need to serialize use of the submit_request() callback
789 * with its hotplugging performed during an emergency
790 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
791 * critical section in order to force i915_gem_set_wedged() to
792 * wait until the submit_request() is completed before
796 request->engine->submit_request(request);
801 i915_request_put(request);
809 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
811 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
818 i915_request_put(rq);
825 static void retire_requests(struct intel_timeline *tl)
827 struct i915_request *rq, *rn;
829 list_for_each_entry_safe(rq, rn, &tl->requests, link)
830 if (!i915_request_retire(rq))
834 static noinline struct i915_request *
835 request_alloc_slow(struct intel_timeline *tl,
836 struct i915_request **rsvd,
839 struct i915_request *rq;
841 /* If we cannot wait, dip into our reserves */
842 if (!gfpflags_allow_blocking(gfp)) {
843 rq = xchg(rsvd, NULL);
844 if (!rq) /* Use the normal failure path for one final WARN */
850 if (list_empty(&tl->requests))
853 /* Move our oldest request to the slab-cache (if not in use!) */
854 rq = list_first_entry(&tl->requests, typeof(*rq), link);
855 i915_request_retire(rq);
857 rq = kmem_cache_alloc(slab_requests,
858 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
862 /* Ratelimit ourselves to prevent oom from malicious clients */
863 rq = list_last_entry(&tl->requests, typeof(*rq), link);
864 cond_synchronize_rcu(rq->rcustate);
866 /* Retire our old requests in the hope that we free some */
870 return kmem_cache_alloc(slab_requests, gfp);
873 static void __i915_request_ctor(void *arg)
875 struct i915_request *rq = arg;
877 spin_lock_init(&rq->lock);
878 i915_sched_node_init(&rq->sched);
879 i915_sw_fence_init(&rq->submit, submit_notify);
880 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
882 clear_capture_list(rq);
883 rq->batch_res = NULL;
885 init_llist_head(&rq->execute_cb);
888 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
889 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL)
891 #define clear_batch_ptr(_a) do {} while (0)
894 struct i915_request *
895 __i915_request_create(struct intel_context *ce, gfp_t gfp)
897 struct intel_timeline *tl = ce->timeline;
898 struct i915_request *rq;
904 /* Check that the caller provided an already pinned context */
905 __intel_context_pin(ce);
908 * Beware: Dragons be flying overhead.
910 * We use RCU to look up requests in flight. The lookups may
911 * race with the request being allocated from the slab freelist.
912 * That is the request we are writing to here, may be in the process
913 * of being read by __i915_active_request_get_rcu(). As such,
914 * we have to be very careful when overwriting the contents. During
915 * the RCU lookup, we change chase the request->engine pointer,
916 * read the request->global_seqno and increment the reference count.
918 * The reference count is incremented atomically. If it is zero,
919 * the lookup knows the request is unallocated and complete. Otherwise,
920 * it is either still in use, or has been reallocated and reset
921 * with dma_fence_init(). This increment is safe for release as we
922 * check that the request we have a reference to and matches the active
925 * Before we increment the refcount, we chase the request->engine
926 * pointer. We must not call kmem_cache_zalloc() or else we set
927 * that pointer to NULL and cause a crash during the lookup. If
928 * we see the request is completed (based on the value of the
929 * old engine and seqno), the lookup is complete and reports NULL.
930 * If we decide the request is not completed (new engine or seqno),
931 * then we grab a reference and double check that it is still the
932 * active request - which it won't be and restart the lookup.
934 * Do not use kmem_cache_zalloc() here!
936 rq = kmem_cache_alloc(slab_requests,
937 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
939 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
947 rq->engine = ce->engine;
949 rq->execution_mask = ce->engine->mask;
950 rq->i915 = ce->engine->i915;
952 ret = intel_timeline_get_seqno(tl, rq, &seqno);
956 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
957 tl->fence_context, seqno);
959 RCU_INIT_POINTER(rq->timeline, tl);
960 rq->hwsp_seqno = tl->hwsp_seqno;
961 GEM_BUG_ON(__i915_request_is_complete(rq));
963 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
965 rq->guc_prio = GUC_PRIO_INIT;
967 /* We bump the ref for the fence chain */
968 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
969 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
971 i915_sched_node_reinit(&rq->sched);
973 /* No zalloc, everything must be cleared after use */
975 __rq_init_watchdog(rq);
976 assert_capture_list_is_null(rq);
977 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
978 GEM_BUG_ON(rq->batch_res);
981 * Reserve space in the ring buffer for all the commands required to
982 * eventually emit this request. This is to guarantee that the
983 * i915_request_add() call can't fail. Note that the reserve may need
984 * to be redone if the request is not actually submitted straight
985 * away, e.g. because a GPU scheduler has deferred it.
987 * Note that due to how we add reserved_space to intel_ring_begin()
988 * we need to double our request to ensure that if we need to wrap
989 * around inside i915_request_add() there is sufficient space at
990 * the beginning of the ring as well.
993 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
996 * Record the position of the start of the request so that
997 * should we detect the updated seqno part-way through the
998 * GPU processing the request, we never over-estimate the
999 * position of the head.
1001 rq->head = rq->ring->emit;
1003 ret = rq->engine->request_alloc(rq);
1007 rq->infix = rq->ring->emit; /* end of header; start of user payload */
1009 intel_context_mark_active(ce);
1010 list_add_tail_rcu(&rq->link, &tl->requests);
1015 ce->ring->emit = rq->head;
1017 /* Make sure we didn't add ourselves to external state before freeing */
1018 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
1019 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1022 kmem_cache_free(slab_requests, rq);
1024 intel_context_unpin(ce);
1025 return ERR_PTR(ret);
1028 struct i915_request *
1029 i915_request_create(struct intel_context *ce)
1031 struct i915_request *rq;
1032 struct intel_timeline *tl;
1034 tl = intel_context_timeline_lock(ce);
1036 return ERR_CAST(tl);
1038 /* Move our oldest request to the slab-cache (if not in use!) */
1039 rq = list_first_entry(&tl->requests, typeof(*rq), link);
1040 if (!list_is_last(&rq->link, &tl->requests))
1041 i915_request_retire(rq);
1043 intel_context_enter(ce);
1044 rq = __i915_request_create(ce, GFP_KERNEL);
1045 intel_context_exit(ce); /* active reference transferred to request */
1049 /* Check that we do not interrupt ourselves with a new request */
1050 rq->cookie = lockdep_pin_lock(&tl->mutex);
1055 intel_context_timeline_unlock(tl);
1060 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1062 struct dma_fence *fence;
1065 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1068 if (i915_request_started(signal))
1072 * The caller holds a reference on @signal, but we do not serialise
1073 * against it being retired and removed from the lists.
1075 * We do not hold a reference to the request before @signal, and
1076 * so must be very careful to ensure that it is not _recycled_ as
1077 * we follow the link backwards.
1082 struct list_head *pos = READ_ONCE(signal->link.prev);
1083 struct i915_request *prev;
1085 /* Confirm signal has not been retired, the link is valid */
1086 if (unlikely(__i915_request_has_started(signal)))
1089 /* Is signal the earliest request on its timeline? */
1090 if (pos == &rcu_dereference(signal->timeline)->requests)
1094 * Peek at the request before us in the timeline. That
1095 * request will only be valid before it is retired, so
1096 * after acquiring a reference to it, confirm that it is
1097 * still part of the signaler's timeline.
1099 prev = list_entry(pos, typeof(*prev), link);
1100 if (!i915_request_get_rcu(prev))
1103 /* After the strong barrier, confirm prev is still attached */
1104 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1105 i915_request_put(prev);
1109 fence = &prev->fence;
1116 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1117 err = i915_sw_fence_await_dma_fence(&rq->submit,
1120 dma_fence_put(fence);
1125 static intel_engine_mask_t
1126 already_busywaiting(struct i915_request *rq)
1129 * Polling a semaphore causes bus traffic, delaying other users of
1130 * both the GPU and CPU. We want to limit the impact on others,
1131 * while taking advantage of early submission to reduce GPU
1132 * latency. Therefore we restrict ourselves to not using more
1133 * than one semaphore from each source, and not using a semaphore
1134 * if we have detected the engine is saturated (i.e. would not be
1135 * submitted early and cause bus traffic reading an already passed
1138 * See the are-we-too-late? check in __i915_request_submit().
1140 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1144 __emit_semaphore_wait(struct i915_request *to,
1145 struct i915_request *from,
1148 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1153 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1154 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1156 /* We need to pin the signaler's HWSP until we are finished reading. */
1157 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1165 cs = intel_ring_begin(to, len);
1170 * Using greater-than-or-equal here means we have to worry
1171 * about seqno wraparound. To side step that issue, we swap
1172 * the timeline HWSP upon wrapping, so that everyone listening
1173 * for the old (pre-wrap) values do not see the much smaller
1174 * (post-wrap) values than they were expecting (and so wait
1177 *cs++ = (MI_SEMAPHORE_WAIT |
1178 MI_SEMAPHORE_GLOBAL_GTT |
1180 MI_SEMAPHORE_SAD_GTE_SDD) +
1183 *cs++ = hwsp_offset;
1190 intel_ring_advance(to, cs);
1195 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1197 return to->engine->gt->ggtt == from->engine->gt->ggtt;
1201 emit_semaphore_wait(struct i915_request *to,
1202 struct i915_request *from,
1205 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1206 struct i915_sw_fence *wait = &to->submit;
1208 if (!can_use_semaphore_wait(to, from))
1211 if (!intel_context_use_semaphores(to->context))
1214 if (i915_request_has_initial_breadcrumb(to))
1218 * If this or its dependents are waiting on an external fence
1219 * that may fail catastrophically, then we want to avoid using
1220 * semaphores as they bypass the fence signaling metadata, and we
1221 * lose the fence->error propagation.
1223 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1226 /* Just emit the first semaphore we see as request space is limited. */
1227 if (already_busywaiting(to) & mask)
1230 if (i915_request_await_start(to, from) < 0)
1233 /* Only submit our spinner after the signaler is running! */
1234 if (__await_execution(to, from, gfp))
1237 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1240 to->sched.semaphores |= mask;
1241 wait = &to->semaphore;
1244 return i915_sw_fence_await_dma_fence(wait,
1249 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1250 struct dma_fence *fence)
1252 return __intel_timeline_sync_is_later(tl,
1257 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1258 const struct dma_fence *fence)
1260 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1264 __i915_request_await_execution(struct i915_request *to,
1265 struct i915_request *from)
1269 GEM_BUG_ON(intel_context_is_barrier(from->context));
1271 /* Submit both requests at the same time */
1272 err = __await_execution(to, from, I915_FENCE_GFP);
1276 /* Squash repeated depenendices to the same timelines */
1277 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1282 * Wait until the start of this request.
1284 * The execution cb fires when we submit the request to HW. But in
1285 * many cases this may be long before the request itself is ready to
1286 * run (consider that we submit 2 requests for the same context, where
1287 * the request of interest is behind an indefinite spinner). So we hook
1288 * up to both to reduce our queues and keep the execution lag minimised
1289 * in the worst case, though we hope that the await_start is elided.
1291 err = i915_request_await_start(to, from);
1296 * Ensure both start together [after all semaphores in signal]
1298 * Now that we are queued to the HW at roughly the same time (thanks
1299 * to the execute cb) and are ready to run at roughly the same time
1300 * (thanks to the await start), our signaler may still be indefinitely
1301 * delayed by waiting on a semaphore from a remote engine. If our
1302 * signaler depends on a semaphore, so indirectly do we, and we do not
1303 * want to start our payload until our signaler also starts theirs.
1306 * However, there is also a second condition for which we need to wait
1307 * for the precise start of the signaler. Consider that the signaler
1308 * was submitted in a chain of requests following another context
1309 * (with just an ordinary intra-engine fence dependency between the
1310 * two). In this case the signaler is queued to HW, but not for
1311 * immediate execution, and so we must wait until it reaches the
1314 if (can_use_semaphore_wait(to, from) &&
1315 intel_engine_has_semaphores(to->engine) &&
1316 !i915_request_has_initial_breadcrumb(to)) {
1317 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1322 /* Couple the dependency tree for PI on this exposed to->fence */
1323 if (to->engine->sched_engine->schedule) {
1324 err = i915_sched_node_add_dependency(&to->sched,
1326 I915_DEPENDENCY_WEAK);
1331 return intel_timeline_sync_set_start(i915_request_timeline(to),
1335 static void mark_external(struct i915_request *rq)
1338 * The downside of using semaphores is that we lose metadata passing
1339 * along the signaling chain. This is particularly nasty when we
1340 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1341 * fatal errors we want to scrub the request before it is executed,
1342 * which means that we cannot preload the request onto HW and have
1343 * it wait upon a semaphore.
1345 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1349 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1352 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1353 i915_fence_context_timeout(rq->i915,
1359 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1361 struct dma_fence *iter;
1364 if (!to_dma_fence_chain(fence))
1365 return __i915_request_await_external(rq, fence);
1367 dma_fence_chain_for_each(iter, fence) {
1368 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1370 if (!dma_fence_is_i915(chain->fence)) {
1371 err = __i915_request_await_external(rq, iter);
1375 err = i915_request_await_dma_fence(rq, chain->fence);
1380 dma_fence_put(iter);
1384 static inline bool is_parallel_rq(struct i915_request *rq)
1386 return intel_context_is_parallel(rq->context);
1389 static inline struct intel_context *request_to_parent(struct i915_request *rq)
1391 return intel_context_to_parent(rq->context);
1394 static bool is_same_parallel_context(struct i915_request *to,
1395 struct i915_request *from)
1397 if (is_parallel_rq(to))
1398 return request_to_parent(to) == request_to_parent(from);
1404 i915_request_await_execution(struct i915_request *rq,
1405 struct dma_fence *fence)
1407 struct dma_fence **child = &fence;
1408 unsigned int nchild = 1;
1411 if (dma_fence_is_array(fence)) {
1412 struct dma_fence_array *array = to_dma_fence_array(fence);
1414 /* XXX Error for signal-on-any fence arrays */
1416 child = array->fences;
1417 nchild = array->num_fences;
1418 GEM_BUG_ON(!nchild);
1423 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1426 if (fence->context == rq->fence.context)
1430 * We don't squash repeated fence dependencies here as we
1431 * want to run our callback in all cases.
1434 if (dma_fence_is_i915(fence)) {
1435 if (is_same_parallel_context(rq, to_request(fence)))
1437 ret = __i915_request_await_execution(rq,
1440 ret = i915_request_await_external(rq, fence);
1450 await_request_submit(struct i915_request *to, struct i915_request *from)
1453 * If we are waiting on a virtual engine, then it may be
1454 * constrained to execute on a single engine *prior* to submission.
1455 * When it is submitted, it will be first submitted to the virtual
1456 * engine and then passed to the physical engine. We cannot allow
1457 * the waiter to be submitted immediately to the physical engine
1458 * as it may then bypass the virtual request.
1460 if (to->engine == READ_ONCE(from->engine))
1461 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1465 return __i915_request_await_execution(to, from);
1469 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1473 GEM_BUG_ON(to == from);
1474 GEM_BUG_ON(to->timeline == from->timeline);
1476 if (i915_request_completed(from)) {
1477 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1481 if (to->engine->sched_engine->schedule) {
1482 ret = i915_sched_node_add_dependency(&to->sched,
1484 I915_DEPENDENCY_EXTERNAL);
1489 if (!intel_engine_uses_guc(to->engine) &&
1490 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1491 ret = await_request_submit(to, from);
1493 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1501 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1503 struct dma_fence **child = &fence;
1504 unsigned int nchild = 1;
1508 * Note that if the fence-array was created in signal-on-any mode,
1509 * we should *not* decompose it into its individual fences. However,
1510 * we don't currently store which mode the fence-array is operating
1511 * in. Fortunately, the only user of signal-on-any is private to
1512 * amdgpu and we should not see any incoming fence-array from
1513 * sync-file being in signal-on-any mode.
1515 if (dma_fence_is_array(fence)) {
1516 struct dma_fence_array *array = to_dma_fence_array(fence);
1518 child = array->fences;
1519 nchild = array->num_fences;
1520 GEM_BUG_ON(!nchild);
1525 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1529 * Requests on the same timeline are explicitly ordered, along
1530 * with their dependencies, by i915_request_add() which ensures
1531 * that requests are submitted in-order through each ring.
1533 if (fence->context == rq->fence.context)
1536 /* Squash repeated waits to the same timelines */
1537 if (fence->context &&
1538 intel_timeline_sync_is_later(i915_request_timeline(rq),
1542 if (dma_fence_is_i915(fence)) {
1543 if (is_same_parallel_context(rq, to_request(fence)))
1545 ret = i915_request_await_request(rq, to_request(fence));
1547 ret = i915_request_await_external(rq, fence);
1552 /* Record the latest fence used against each timeline */
1554 intel_timeline_sync_set(i915_request_timeline(rq),
1562 * i915_request_await_deps - set this request to (async) wait upon a struct
1563 * i915_deps dma_fence collection
1564 * @rq: request we are wishing to use
1565 * @deps: The struct i915_deps containing the dependencies.
1567 * Returns 0 if successful, negative error code on error.
1569 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps)
1573 for (i = 0; i < deps->num_deps; ++i) {
1574 err = i915_request_await_dma_fence(rq, deps->fences[i]);
1583 * i915_request_await_object - set this request to (async) wait upon a bo
1584 * @to: request we are wishing to use
1585 * @obj: object which may be in use on another ring.
1586 * @write: whether the wait is on behalf of a writer
1588 * This code is meant to abstract object synchronization with the GPU.
1589 * Conceptually we serialise writes between engines inside the GPU.
1590 * We only allow one engine to write into a buffer at any time, but
1591 * multiple readers. To ensure each has a coherent view of memory, we must:
1593 * - If there is an outstanding write request to the object, the new
1594 * request must wait for it to complete (either CPU or in hw, requests
1595 * on the same ring will be naturally ordered).
1597 * - If we are a write request (pending_write_domain is set), the new
1598 * request must wait for outstanding read requests to complete.
1600 * Returns 0 if successful, else propagates up the lower layer error.
1603 i915_request_await_object(struct i915_request *to,
1604 struct drm_i915_gem_object *obj,
1607 struct dma_resv_iter cursor;
1608 struct dma_fence *fence;
1611 dma_resv_for_each_fence(&cursor, obj->base.resv,
1612 dma_resv_usage_rw(write), fence) {
1613 ret = i915_request_await_dma_fence(to, fence);
1621 static void i915_request_await_huc(struct i915_request *rq)
1623 struct intel_huc *huc = &rq->context->engine->gt->uc.huc;
1625 /* don't stall kernel submissions! */
1626 if (!rcu_access_pointer(rq->context->gem_context))
1629 if (intel_huc_wait_required(huc))
1630 i915_sw_fence_await_sw_fence(&rq->submit,
1631 &huc->delayed_load.fence,
1635 static struct i915_request *
1636 __i915_request_ensure_parallel_ordering(struct i915_request *rq,
1637 struct intel_timeline *timeline)
1639 struct i915_request *prev;
1641 GEM_BUG_ON(!is_parallel_rq(rq));
1643 prev = request_to_parent(rq)->parallel.last_rq;
1645 if (!__i915_request_is_complete(prev)) {
1646 i915_sw_fence_await_sw_fence(&rq->submit,
1650 if (rq->engine->sched_engine->schedule)
1651 __i915_sched_node_add_dependency(&rq->sched,
1656 i915_request_put(prev);
1659 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1662 * Users have to put a reference potentially got by
1663 * __i915_active_fence_set() to the returned request
1664 * when no longer needed
1666 return to_request(__i915_active_fence_set(&timeline->last_request,
1670 static struct i915_request *
1671 __i915_request_ensure_ordering(struct i915_request *rq,
1672 struct intel_timeline *timeline)
1674 struct i915_request *prev;
1676 GEM_BUG_ON(is_parallel_rq(rq));
1678 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1681 if (prev && !__i915_request_is_complete(prev)) {
1682 bool uses_guc = intel_engine_uses_guc(rq->engine);
1683 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1685 bool same_context = prev->context == rq->context;
1688 * The requests are supposed to be kept in order. However,
1689 * we need to be wary in case the timeline->last_request
1690 * is used as a barrier for external modification to this
1693 GEM_BUG_ON(same_context &&
1694 i915_seqno_passed(prev->fence.seqno,
1697 if ((same_context && uses_guc) || (!uses_guc && pow2))
1698 i915_sw_fence_await_sw_fence(&rq->submit,
1702 __i915_sw_fence_await_dma_fence(&rq->submit,
1705 if (rq->engine->sched_engine->schedule)
1706 __i915_sched_node_add_dependency(&rq->sched,
1713 * Users have to put the reference to prev potentially got
1714 * by __i915_active_fence_set() when no longer needed
1719 static struct i915_request *
1720 __i915_request_add_to_timeline(struct i915_request *rq)
1722 struct intel_timeline *timeline = i915_request_timeline(rq);
1723 struct i915_request *prev;
1726 * Media workloads may require HuC, so stall them until HuC loading is
1727 * complete. Note that HuC not being loaded when a user submission
1728 * arrives can only happen when HuC is loaded via GSC and in that case
1729 * we still expect the window between us starting to accept submissions
1730 * and HuC loading completion to be small (a few hundred ms).
1732 if (rq->engine->class == VIDEO_DECODE_CLASS)
1733 i915_request_await_huc(rq);
1736 * Dependency tracking and request ordering along the timeline
1737 * is special cased so that we can eliminate redundant ordering
1738 * operations while building the request (we know that the timeline
1739 * itself is ordered, and here we guarantee it).
1741 * As we know we will need to emit tracking along the timeline,
1742 * we embed the hooks into our request struct -- at the cost of
1743 * having to have specialised no-allocation interfaces (which will
1744 * be beneficial elsewhere).
1746 * A second benefit to open-coding i915_request_await_request is
1747 * that we can apply a slight variant of the rules specialised
1748 * for timelines that jump between engines (such as virtual engines).
1749 * If we consider the case of virtual engine, we must emit a dma-fence
1750 * to prevent scheduling of the second request until the first is
1751 * complete (to maximise our greedy late load balancing) and this
1752 * precludes optimising to use semaphores serialisation of a single
1753 * timeline across engines.
1755 * We do not order parallel submission requests on the timeline as each
1756 * parallel submission context has its own timeline and the ordering
1757 * rules for parallel requests are that they must be submitted in the
1758 * order received from the execbuf IOCTL. So rather than using the
1759 * timeline we store a pointer to last request submitted in the
1760 * relationship in the gem context and insert a submission fence
1761 * between that request and request passed into this function or
1762 * alternatively we use completion fence if gem context has a single
1763 * timeline and this is the first submission of an execbuf IOCTL.
1765 if (likely(!is_parallel_rq(rq)))
1766 prev = __i915_request_ensure_ordering(rq, timeline);
1768 prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1770 i915_request_put(prev);
1773 * Make sure that no request gazumped us - if it was allocated after
1774 * our i915_request_alloc() and called __i915_request_add() before
1775 * us, the timeline will hold its seqno which is later than ours.
1777 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1783 * NB: This function is not allowed to fail. Doing so would mean the the
1784 * request is not being tracked for completion but the work itself is
1785 * going to happen on the hardware. This would be a Bad Thing(tm).
1787 struct i915_request *__i915_request_commit(struct i915_request *rq)
1789 struct intel_engine_cs *engine = rq->engine;
1790 struct intel_ring *ring = rq->ring;
1796 * To ensure that this call will not fail, space for its emissions
1797 * should already have been reserved in the ring buffer. Let the ring
1798 * know that it is time to use that space up.
1800 GEM_BUG_ON(rq->reserved_space > ring->space);
1801 rq->reserved_space = 0;
1802 rq->emitted_jiffies = jiffies;
1805 * Record the position of the start of the breadcrumb so that
1806 * should we detect the updated seqno part-way through the
1807 * GPU processing the request, we never over-estimate the
1808 * position of the ring's HEAD.
1810 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1811 GEM_BUG_ON(IS_ERR(cs));
1812 rq->postfix = intel_ring_offset(rq, cs);
1814 return __i915_request_add_to_timeline(rq);
1817 void __i915_request_queue_bh(struct i915_request *rq)
1819 i915_sw_fence_commit(&rq->semaphore);
1820 i915_sw_fence_commit(&rq->submit);
1823 void __i915_request_queue(struct i915_request *rq,
1824 const struct i915_sched_attr *attr)
1827 * Let the backend know a new request has arrived that may need
1828 * to adjust the existing execution schedule due to a high priority
1829 * request - i.e. we may want to preempt the current request in order
1830 * to run a high priority dependency chain *before* we can execute this
1833 * This is called before the request is ready to run so that we can
1834 * decide whether to preempt the entire chain so that it is ready to
1835 * run at the earliest possible convenience.
1837 if (attr && rq->engine->sched_engine->schedule)
1838 rq->engine->sched_engine->schedule(rq, attr);
1841 __i915_request_queue_bh(rq);
1842 local_bh_enable(); /* kick tasklets */
1845 void i915_request_add(struct i915_request *rq)
1847 struct intel_timeline * const tl = i915_request_timeline(rq);
1848 struct i915_sched_attr attr = {};
1849 struct i915_gem_context *ctx;
1851 lockdep_assert_held(&tl->mutex);
1852 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1854 trace_i915_request_add(rq);
1855 __i915_request_commit(rq);
1857 /* XXX placeholder for selftests */
1859 ctx = rcu_dereference(rq->context->gem_context);
1864 __i915_request_queue(rq, &attr);
1866 mutex_unlock(&tl->mutex);
1869 static unsigned long local_clock_ns(unsigned int *cpu)
1874 * Cheaply and approximately convert from nanoseconds to microseconds.
1875 * The result and subsequent calculations are also defined in the same
1876 * approximate microseconds units. The principal source of timing
1877 * error here is from the simple truncation.
1879 * Note that local_clock() is only defined wrt to the current CPU;
1880 * the comparisons are no longer valid if we switch CPUs. Instead of
1881 * blocking preemption for the entire busywait, we can detect the CPU
1882 * switch and use that as indicator of system load and a reason to
1883 * stop busywaiting, see busywait_stop().
1892 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1894 unsigned int this_cpu;
1896 if (time_after(local_clock_ns(&this_cpu), timeout))
1899 return this_cpu != cpu;
1902 static bool __i915_spin_request(struct i915_request * const rq, int state)
1904 unsigned long timeout_ns;
1908 * Only wait for the request if we know it is likely to complete.
1910 * We don't track the timestamps around requests, nor the average
1911 * request length, so we do not have a good indicator that this
1912 * request will complete within the timeout. What we do know is the
1913 * order in which requests are executed by the context and so we can
1914 * tell if the request has been started. If the request is not even
1915 * running yet, it is a fair assumption that it will not complete
1916 * within our relatively short timeout.
1918 if (!i915_request_is_running(rq))
1922 * When waiting for high frequency requests, e.g. during synchronous
1923 * rendering split between the CPU and GPU, the finite amount of time
1924 * required to set up the irq and wait upon it limits the response
1925 * rate. By busywaiting on the request completion for a short while we
1926 * can service the high frequency waits as quick as possible. However,
1927 * if it is a slow request, we want to sleep as quickly as possible.
1928 * The tradeoff between waiting and sleeping is roughly the time it
1929 * takes to sleep on a request, on the order of a microsecond.
1932 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1933 timeout_ns += local_clock_ns(&cpu);
1935 if (dma_fence_is_signaled(&rq->fence))
1938 if (signal_pending_state(state, current))
1941 if (busywait_stop(timeout_ns, cpu))
1945 } while (!need_resched());
1950 struct request_wait {
1951 struct dma_fence_cb cb;
1952 struct task_struct *tsk;
1955 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1957 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1959 wake_up_process(fetch_and_zero(&wait->tsk));
1963 * i915_request_wait_timeout - wait until execution of request has finished
1964 * @rq: the request to wait upon
1965 * @flags: how to wait
1966 * @timeout: how long to wait in jiffies
1968 * i915_request_wait_timeout() waits for the request to be completed, for a
1969 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1972 * Returns the remaining time (in jiffies) if the request completed, which may
1973 * be zero if the request is unfinished after the timeout expires.
1974 * If the timeout is 0, it will return 1 if the fence is signaled.
1976 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1977 * pending before the request completes.
1979 * NOTE: This function has the same wait semantics as dma-fence.
1981 long i915_request_wait_timeout(struct i915_request *rq,
1985 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1986 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1987 struct request_wait wait;
1990 GEM_BUG_ON(timeout < 0);
1992 if (dma_fence_is_signaled(&rq->fence))
1993 return timeout ?: 1;
1998 trace_i915_request_wait_begin(rq, flags);
2001 * We must never wait on the GPU while holding a lock as we
2002 * may need to perform a GPU reset. So while we don't need to
2003 * serialise wait/reset with an explicit lock, we do want
2004 * lockdep to detect potential dependency cycles.
2006 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
2009 * Optimistic spin before touching IRQs.
2011 * We may use a rather large value here to offset the penalty of
2012 * switching away from the active task. Frequently, the client will
2013 * wait upon an old swapbuffer to throttle itself to remain within a
2014 * frame of the gpu. If the client is running in lockstep with the gpu,
2015 * then it should not be waiting long at all, and a sleep now will incur
2016 * extra scheduler latency in producing the next frame. To try to
2017 * avoid adding the cost of enabling/disabling the interrupt to the
2018 * short wait, we first spin to see if the request would have completed
2019 * in the time taken to setup the interrupt.
2021 * We need upto 5us to enable the irq, and upto 20us to hide the
2022 * scheduler latency of a context switch, ignoring the secondary
2023 * impacts from a context switch such as cache eviction.
2025 * The scheme used for low-latency IO is called "hybrid interrupt
2026 * polling". The suggestion there is to sleep until just before you
2027 * expect to be woken by the device interrupt and then poll for its
2028 * completion. That requires having a good predictor for the request
2029 * duration, which we currently lack.
2031 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
2032 __i915_spin_request(rq, state))
2036 * This client is about to stall waiting for the GPU. In many cases
2037 * this is undesirable and limits the throughput of the system, as
2038 * many clients cannot continue processing user input/output whilst
2039 * blocked. RPS autotuning may take tens of milliseconds to respond
2040 * to the GPU load and thus incurs additional latency for the client.
2041 * We can circumvent that by promoting the GPU frequency to maximum
2042 * before we sleep. This makes the GPU throttle up much more quickly
2043 * (good for benchmarks and user experience, e.g. window animations),
2044 * but at a cost of spending more power processing the workload
2045 * (bad for battery).
2047 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
2048 intel_rps_boost(rq);
2051 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
2055 * Flush the submission tasklet, but only if it may help this request.
2057 * We sometimes experience some latency between the HW interrupts and
2058 * tasklet execution (mostly due to ksoftirqd latency, but it can also
2059 * be due to lazy CS events), so lets run the tasklet manually if there
2060 * is a chance it may submit this request. If the request is not ready
2061 * to run, as it is waiting for other fences to be signaled, flushing
2062 * the tasklet is busy work without any advantage for this client.
2064 * If the HW is being lazy, this is the last chance before we go to
2065 * sleep to catch any pending events. We will check periodically in
2066 * the heartbeat to flush the submission tasklets as a last resort
2069 if (i915_request_is_ready(rq))
2070 __intel_engine_flush_submission(rq->engine, false);
2073 set_current_state(state);
2075 if (dma_fence_is_signaled(&rq->fence))
2078 if (signal_pending_state(state, current)) {
2079 timeout = -ERESTARTSYS;
2088 timeout = io_schedule_timeout(timeout);
2090 __set_current_state(TASK_RUNNING);
2092 if (READ_ONCE(wait.tsk))
2093 dma_fence_remove_callback(&rq->fence, &wait.cb);
2094 GEM_BUG_ON(!list_empty(&wait.cb.node));
2097 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2098 trace_i915_request_wait_end(rq);
2103 * i915_request_wait - wait until execution of request has finished
2104 * @rq: the request to wait upon
2105 * @flags: how to wait
2106 * @timeout: how long to wait in jiffies
2108 * i915_request_wait() waits for the request to be completed, for a
2109 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2112 * Returns the remaining time (in jiffies) if the request completed, which may
2113 * be zero or -ETIME if the request is unfinished after the timeout expires.
2114 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2115 * pending before the request completes.
2117 * NOTE: This function behaves differently from dma-fence wait semantics for
2118 * timeout = 0. It returns 0 on success, and -ETIME if not signaled.
2120 long i915_request_wait(struct i915_request *rq,
2124 long ret = i915_request_wait_timeout(rq, flags, timeout);
2129 if (ret > 0 && !timeout)
2135 static int print_sched_attr(const struct i915_sched_attr *attr,
2136 char *buf, int x, int len)
2138 if (attr->priority == I915_PRIORITY_INVALID)
2141 x += snprintf(buf + x, len - x,
2142 " prio=%d", attr->priority);
2147 static char queue_status(const struct i915_request *rq)
2149 if (i915_request_is_active(rq))
2152 if (i915_request_is_ready(rq))
2153 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2158 static const char *run_status(const struct i915_request *rq)
2160 if (__i915_request_is_complete(rq))
2163 if (__i915_request_has_started(rq))
2166 if (!i915_sw_fence_signaled(&rq->semaphore))
2172 static const char *fence_status(const struct i915_request *rq)
2174 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2177 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2183 void i915_request_show(struct drm_printer *m,
2184 const struct i915_request *rq,
2188 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2193 * The prefix is used to show the queue status, for which we use
2194 * the following flags:
2197 * - initial status upon being submitted by the user
2199 * - the request is not ready for execution as it is waiting
2200 * for external fences
2203 * - all fences the request was waiting on have been signaled,
2204 * and the request is now ready for execution and will be
2205 * in a backend queue
2207 * - a ready request may still need to wait on semaphores
2211 * - same as ready, but queued over multiple backends
2214 * - the request has been transferred from the backend queue and
2215 * submitted for execution on HW
2217 * - a completed request may still be regarded as executing, its
2218 * status may not be updated until it is retired and removed
2222 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2224 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2225 prefix, indent, " ",
2227 rq->fence.context, rq->fence.seqno,
2231 jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2235 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2237 u32 ring = ENGINE_READ(engine, RING_START);
2239 return ring == i915_ggtt_offset(rq->ring->vma);
2242 static bool match_ring(struct i915_request *rq)
2244 struct intel_engine_cs *engine;
2248 if (!intel_engine_is_virtual(rq->engine))
2249 return engine_match_ring(rq->engine, rq);
2253 while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2254 found = engine_match_ring(engine, rq);
2262 enum i915_request_state i915_test_request_state(struct i915_request *rq)
2264 if (i915_request_completed(rq))
2265 return I915_REQUEST_COMPLETE;
2267 if (!i915_request_started(rq))
2268 return I915_REQUEST_PENDING;
2271 return I915_REQUEST_ACTIVE;
2273 return I915_REQUEST_QUEUED;
2276 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2277 #include "selftests/mock_request.c"
2278 #include "selftests/i915_request.c"
2281 void i915_request_module_exit(void)
2283 kmem_cache_destroy(slab_execute_cbs);
2284 kmem_cache_destroy(slab_requests);
2287 int __init i915_request_module_init(void)
2290 kmem_cache_create("i915_request",
2291 sizeof(struct i915_request),
2292 __alignof__(struct i915_request),
2293 SLAB_HWCACHE_ALIGN |
2294 SLAB_RECLAIM_ACCOUNT |
2295 SLAB_TYPESAFE_BY_RCU,
2296 __i915_request_ctor);
2300 slab_execute_cbs = KMEM_CACHE(execute_cb,
2301 SLAB_HWCACHE_ALIGN |
2302 SLAB_RECLAIM_ACCOUNT |
2303 SLAB_TYPESAFE_BY_RCU);
2304 if (!slab_execute_cbs)
2310 kmem_cache_destroy(slab_requests);