2 * Copyright © 2015-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
29 * DOC: i915 Perf Overview
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
51 * DOC: i915 Perf History and Comparison with Core Perf
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
106 * - The perf based OA PMU driver broke some significant design assumptions:
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
194 #include <linux/anon_inodes.h>
195 #include <linux/nospec.h>
196 #include <linux/sizes.h>
197 #include <linux/uuid.h>
199 #include "gem/i915_gem_context.h"
200 #include "gem/i915_gem_internal.h"
201 #include "gt/intel_engine_pm.h"
202 #include "gt/intel_engine_regs.h"
203 #include "gt/intel_engine_user.h"
204 #include "gt/intel_execlists_submission.h"
205 #include "gt/intel_gpu_commands.h"
206 #include "gt/intel_gt.h"
207 #include "gt/intel_gt_clock_utils.h"
208 #include "gt/intel_gt_mcr.h"
209 #include "gt/intel_gt_print.h"
210 #include "gt/intel_gt_regs.h"
211 #include "gt/intel_lrc.h"
212 #include "gt/intel_lrc_reg.h"
213 #include "gt/intel_rc6.h"
214 #include "gt/intel_ring.h"
215 #include "gt/uc/intel_guc_slpc.h"
217 #include "i915_drv.h"
218 #include "i915_file_private.h"
219 #include "i915_perf.h"
220 #include "i915_perf_oa_regs.h"
221 #include "i915_reg.h"
223 /* HW requires this to be a power of two, between 128k and 16M, though driver
224 * is currently generally designed assuming the largest 16M size is used such
225 * that the overflow cases are unlikely in normal operation.
227 #define OA_BUFFER_SIZE SZ_16M
229 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
232 * DOC: OA Tail Pointer Race
234 * There's a HW race condition between OA unit tail pointer register updates and
235 * writes to memory whereby the tail pointer can sometimes get ahead of what's
236 * been written out to the OA buffer so far (in terms of what's visible to the
239 * Although this can be observed explicitly while copying reports to userspace
240 * by checking for a zeroed report-id field in tail reports, we want to account
241 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
242 * redundant read() attempts.
244 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
245 * in the OA buffer, starting from the tail reported by the HW until we find a
246 * report with its first 2 dwords not 0 meaning its previous report is
247 * completely in memory and ready to be read. Those dwords are also set to 0
248 * once read and the whole buffer is cleared upon OA buffer initialization. The
249 * first dword is the reason for this report while the second is the timestamp,
250 * making the chances of having those 2 fields at 0 fairly unlikely. A more
251 * detailed explanation is available in oa_buffer_check_unlocked().
253 * Most of the implementation details for this workaround are in
254 * oa_buffer_check_unlocked() and _append_oa_reports()
256 * Note for posterity: previously the driver used to define an effective tail
257 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
258 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
259 * This was flawed considering that the OA unit may also automatically generate
260 * non-periodic reports (such as on context switch) or the OA unit may be
261 * enabled without any periodic sampling.
263 #define OA_TAIL_MARGIN_NSEC 100000ULL
264 #define INVALID_TAIL_PTR 0xffffffff
266 /* The default frequency for checking whether the OA unit has written new
267 * reports to the circular OA buffer...
269 #define DEFAULT_POLL_FREQUENCY_HZ 200
270 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
272 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
273 static u32 i915_perf_stream_paranoid = true;
275 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
276 * of the 64bit timestamp bits to trigger reports from) but there's currently
277 * no known use case for sampling as infrequently as once per 47 thousand years.
279 * Since the timestamps included in OA reports are only 32bits it seems
280 * reasonable to limit the OA exponent where it's still possible to account for
281 * overflow in OA report timestamps.
283 #define OA_EXPONENT_MAX 31
285 #define INVALID_CTX_ID 0xffffffff
287 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
288 #define OAREPORT_REASON_MASK 0x3f
289 #define OAREPORT_REASON_MASK_EXTENDED 0x7f
290 #define OAREPORT_REASON_SHIFT 19
291 #define OAREPORT_REASON_TIMER (1<<0)
292 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
293 #define OAREPORT_REASON_CLK_RATIO (1<<5)
295 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
297 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
299 * The highest sampling frequency we can theoretically program the OA unit
300 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
302 * Initialized just before we register the sysctl parameter.
304 static int oa_sample_rate_hard_limit;
306 /* Theoretically we can program the OA unit to sample every 160ns but don't
307 * allow that by default unless root...
309 * The default threshold of 100000Hz is based on perf's similar
310 * kernel.perf_event_max_sample_rate sysctl parameter.
312 static u32 i915_oa_max_sample_rate = 100000;
314 /* XXX: beware if future OA HW adds new report formats that the current
315 * code assumes all reports have a power-of-two size and ~(size - 1) can
316 * be used as a mask to align the OA tail pointer.
318 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
319 [I915_OA_FORMAT_A13] = { 0, 64 },
320 [I915_OA_FORMAT_A29] = { 1, 128 },
321 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
322 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
323 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
324 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
325 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
326 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
327 [I915_OA_FORMAT_A12] = { 0, 64 },
328 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
329 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
330 [I915_OAR_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
331 [I915_OA_FORMAT_A24u40_A14u32_B8_C8] = { 5, 256 },
332 [I915_OAM_FORMAT_MPEC8u64_B8_C8] = { 1, 192, TYPE_OAM, HDR_64_BIT },
333 [I915_OAM_FORMAT_MPEC8u32_B8_C8] = { 2, 128, TYPE_OAM, HDR_64_BIT },
336 static const u32 mtl_oa_base[] = {
337 [PERF_GROUP_OAM_SAMEDIA_0] = 0x393000,
340 #define SAMPLE_OA_REPORT (1<<0)
343 * struct perf_open_properties - for validated properties given to open a stream
344 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
345 * @single_context: Whether a single or all gpu contexts should be monitored
346 * @hold_preemption: Whether the preemption is disabled for the filtered
348 * @ctx_handle: A gem ctx handle for use with @single_context
349 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
350 * @oa_format: An OA unit HW report format
351 * @oa_periodic: Whether to enable periodic OA unit sampling
352 * @oa_period_exponent: The OA unit sampling period is derived from this
353 * @engine: The engine (typically rcs0) being monitored by the OA unit
354 * @has_sseu: Whether @sseu was specified by userspace
355 * @sseu: internal SSEU configuration computed either from the userspace
356 * specified configuration in the opening parameters or a default value
357 * (see get_default_sseu_config())
358 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
361 * As read_properties_unlocked() enumerates and validates the properties given
362 * to open a stream of metrics the configuration is built up in the structure
363 * which starts out zero initialized.
365 struct perf_open_properties {
368 u64 single_context:1;
369 u64 hold_preemption:1;
372 /* OA sampling state */
376 int oa_period_exponent;
378 struct intel_engine_cs *engine;
381 struct intel_sseu sseu;
386 struct i915_oa_config_bo {
387 struct llist_node node;
389 struct i915_oa_config *oa_config;
390 struct i915_vma *vma;
393 static struct ctl_table_header *sysctl_header;
395 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
397 void i915_oa_config_release(struct kref *ref)
399 struct i915_oa_config *oa_config =
400 container_of(ref, typeof(*oa_config), ref);
402 kfree(oa_config->flex_regs);
403 kfree(oa_config->b_counter_regs);
404 kfree(oa_config->mux_regs);
406 kfree_rcu(oa_config, rcu);
409 struct i915_oa_config *
410 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
412 struct i915_oa_config *oa_config;
415 oa_config = idr_find(&perf->metrics_idr, metrics_set);
417 oa_config = i915_oa_config_get(oa_config);
423 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
425 i915_oa_config_put(oa_bo->oa_config);
426 i915_vma_put(oa_bo->vma);
431 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream)
433 return &stream->engine->oa_group->regs;
436 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
438 struct intel_uncore *uncore = stream->uncore;
440 return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) &
441 GEN12_OAG_OATAILPTR_MASK;
444 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
446 struct intel_uncore *uncore = stream->uncore;
448 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
451 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
453 struct intel_uncore *uncore = stream->uncore;
454 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
456 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
459 #define oa_report_header_64bit(__s) \
460 ((__s)->oa_buffer.format->header == HDR_64_BIT)
462 static u64 oa_report_id(struct i915_perf_stream *stream, void *report)
464 return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report;
467 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report)
469 return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) &
470 (GRAPHICS_VER(stream->perf->i915) == 12 ?
471 OAREPORT_REASON_MASK_EXTENDED :
472 OAREPORT_REASON_MASK);
475 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report)
477 if (oa_report_header_64bit(stream))
483 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report)
485 return !(oa_report_id(stream, report) &
486 stream->perf->gen8_valid_ctx_bit);
489 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report)
491 return oa_report_header_64bit(stream) ?
492 *((u64 *)report + 1) :
493 *((u32 *)report + 1);
496 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report)
498 if (oa_report_header_64bit(stream))
499 *(u64 *)&report[2] = 0;
504 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report)
506 u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2];
508 return ctx_id & stream->specific_ctx_id_mask;
511 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report)
513 if (oa_report_header_64bit(stream))
514 report[4] = INVALID_CTX_ID;
516 report[2] = INVALID_CTX_ID;
520 * oa_buffer_check_unlocked - check for data and update tail ptr state
521 * @stream: i915 stream instance
523 * This is either called via fops (for blocking reads in user ctx) or the poll
524 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
525 * if there is data available for userspace to read.
527 * This function is central to providing a workaround for the OA unit tail
528 * pointer having a race with respect to what data is visible to the CPU.
529 * It is responsible for reading tail pointers from the hardware and giving
530 * the pointers time to 'age' before they are made available for reading.
531 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
533 * Besides returning true when there is data available to read() this function
534 * also updates the tail in the oa_buffer object.
536 * Note: It's safe to read OA config state here unlocked, assuming that this is
537 * only called while the stream is enabled, while the global OA configuration
540 * Returns: %true if the OA buffer contains data, else %false
542 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
544 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
545 int report_size = stream->oa_buffer.format->size;
549 u32 partial_report_size;
551 /* We have to consider the (unlikely) possibility that read() errors
552 * could result in an OA buffer reset which might reset the head and
555 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
557 hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
558 hw_tail -= gtt_offset;
560 /* The tail pointer increases in 64 byte increments, not in report_size
561 * steps. Also the report size may not be a power of 2. Compute
562 * potentially partially landed report in the OA buffer
564 partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail);
565 partial_report_size %= report_size;
567 /* Subtract partial amount off the tail */
568 hw_tail = OA_TAKEN(hw_tail, partial_report_size);
572 /* Walk the stream backward until we find a report with report
573 * id and timestmap not at 0. Since the circular buffer pointers
574 * progress by increments of 64 bytes and that reports can be up
575 * to 256 bytes long, we can't tell whether a report has fully
576 * landed in memory before the report id and timestamp of the
577 * following report have effectively landed.
579 * This is assuming that the writes of the OA unit land in
580 * memory in the order they were written to.
581 * If not : (╯°□°)╯︵ ┻━┻
583 while (OA_TAKEN(tail, stream->oa_buffer.tail) >= report_size) {
584 void *report = stream->oa_buffer.vaddr + tail;
586 if (oa_report_id(stream, report) ||
587 oa_timestamp(stream, report))
590 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
593 if (OA_TAKEN(hw_tail, tail) > report_size &&
594 __ratelimit(&stream->perf->tail_pointer_race))
595 drm_notice(&stream->uncore->i915->drm,
596 "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n",
597 stream->oa_buffer.head, tail, hw_tail);
599 stream->oa_buffer.tail = tail;
601 pollin = OA_TAKEN(stream->oa_buffer.tail,
602 stream->oa_buffer.head) >= report_size;
604 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
610 * append_oa_status - Appends a status record to a userspace read() buffer.
611 * @stream: An i915-perf stream opened for OA metrics
612 * @buf: destination buffer given by userspace
613 * @count: the number of bytes userspace wants to read
614 * @offset: (inout): the current position for writing into @buf
615 * @type: The kind of status to report to userspace
617 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
618 * into the userspace read() buffer.
620 * The @buf @offset will only be updated on success.
622 * Returns: 0 on success, negative error code on failure.
624 static int append_oa_status(struct i915_perf_stream *stream,
628 enum drm_i915_perf_record_type type)
630 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
632 if ((count - *offset) < header.size)
635 if (copy_to_user(buf + *offset, &header, sizeof(header)))
638 (*offset) += header.size;
644 * append_oa_sample - Copies single OA report into userspace read() buffer.
645 * @stream: An i915-perf stream opened for OA metrics
646 * @buf: destination buffer given by userspace
647 * @count: the number of bytes userspace wants to read
648 * @offset: (inout): the current position for writing into @buf
649 * @report: A single OA report to (optionally) include as part of the sample
651 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
652 * properties when opening a stream, tracked as `stream->sample_flags`. This
653 * function copies the requested components of a single sample to the given
656 * The @buf @offset will only be updated on success.
658 * Returns: 0 on success, negative error code on failure.
660 static int append_oa_sample(struct i915_perf_stream *stream,
666 int report_size = stream->oa_buffer.format->size;
667 struct drm_i915_perf_record_header header;
668 int report_size_partial;
671 header.type = DRM_I915_PERF_RECORD_SAMPLE;
673 header.size = stream->sample_size;
675 if ((count - *offset) < header.size)
679 if (copy_to_user(buf, &header, sizeof(header)))
681 buf += sizeof(header);
683 oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE;
684 report_size_partial = oa_buf_end - report;
686 if (report_size_partial < report_size) {
687 if (copy_to_user(buf, report, report_size_partial))
689 buf += report_size_partial;
691 if (copy_to_user(buf, stream->oa_buffer.vaddr,
692 report_size - report_size_partial))
694 } else if (copy_to_user(buf, report, report_size)) {
698 (*offset) += header.size;
704 * gen8_append_oa_reports - Copies all buffered OA reports into
705 * userspace read() buffer.
706 * @stream: An i915-perf stream opened for OA metrics
707 * @buf: destination buffer given by userspace
708 * @count: the number of bytes userspace wants to read
709 * @offset: (inout): the current position for writing into @buf
711 * Notably any error condition resulting in a short read (-%ENOSPC or
712 * -%EFAULT) will be returned even though one or more records may
713 * have been successfully copied. In this case it's up to the caller
714 * to decide if the error should be squashed before returning to
717 * Note: reports are consumed from the head, and appended to the
718 * tail, so the tail chases the head?... If you think that's mad
719 * and back-to-front you're not alone, but this follows the
720 * Gen PRM naming convention.
722 * Returns: 0 on success, negative error code on failure.
724 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
729 struct intel_uncore *uncore = stream->uncore;
730 int report_size = stream->oa_buffer.format->size;
731 u8 *oa_buf_base = stream->oa_buffer.vaddr;
732 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
733 u32 mask = (OA_BUFFER_SIZE - 1);
734 size_t start_offset = *offset;
739 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
742 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
744 head = stream->oa_buffer.head;
745 tail = stream->oa_buffer.tail;
747 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
750 * An out of bounds or misaligned head or tail pointer implies a driver
751 * bug since we validate + align the tail pointers we read from the
752 * hardware and we are in full control of the head pointer which should
753 * only be incremented by multiples of the report size.
755 if (drm_WARN_ONCE(&uncore->i915->drm,
756 head > OA_BUFFER_SIZE ||
757 tail > OA_BUFFER_SIZE,
758 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
764 OA_TAKEN(tail, head);
765 head = (head + report_size) & mask) {
766 u8 *report = oa_buf_base + head;
767 u32 *report32 = (void *)report;
772 * The reason field includes flags identifying what
773 * triggered this specific report (mostly timer
774 * triggered or e.g. due to a context switch).
776 * In MMIO triggered reports, some platforms do not set the
777 * reason bit in this field and it is valid to have a reason
780 reason = oa_report_reason(stream, report);
781 ctx_id = oa_context_id(stream, report32);
784 * Squash whatever is in the CTX_ID field if it's marked as
785 * invalid to be sure we avoid false-positive, single-context
788 * Note: that we don't clear the valid_ctx_bit so userspace can
789 * understand that the ID has been squashed by the kernel.
791 if (oa_report_ctx_invalid(stream, report)) {
792 ctx_id = INVALID_CTX_ID;
793 oa_context_id_squash(stream, report32);
797 * NB: For Gen 8 the OA unit no longer supports clock gating
798 * off for a specific context and the kernel can't securely
799 * stop the counters from updating as system-wide / global
802 * Automatic reports now include a context ID so reports can be
803 * filtered on the cpu but it's not worth trying to
804 * automatically subtract/hide counter progress for other
805 * contexts while filtering since we can't stop userspace
806 * issuing MI_REPORT_PERF_COUNT commands which would still
807 * provide a side-band view of the real values.
809 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
810 * to normalize counters for a single filtered context then it
811 * needs be forwarded bookend context-switch reports so that it
812 * can track switches in between MI_REPORT_PERF_COUNT commands
813 * and can itself subtract/ignore the progress of counters
814 * associated with other contexts. Note that the hardware
815 * automatically triggers reports when switching to a new
816 * context which are tagged with the ID of the newly active
817 * context. To avoid the complexity (and likely fragility) of
818 * reading ahead while parsing reports to try and minimize
819 * forwarding redundant context switch reports (i.e. between
820 * other, unrelated contexts) we simply elect to forward them
823 * We don't rely solely on the reason field to identify context
824 * switches since it's not-uncommon for periodic samples to
825 * identify a switch before any 'context switch' report.
828 stream->specific_ctx_id == ctx_id ||
829 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
830 reason & OAREPORT_REASON_CTX_SWITCH) {
833 * While filtering for a single context we avoid
834 * leaking the IDs of other contexts.
837 stream->specific_ctx_id != ctx_id) {
838 oa_context_id_squash(stream, report32);
841 ret = append_oa_sample(stream, buf, count, offset,
846 stream->oa_buffer.last_ctx_id = ctx_id;
849 if (is_power_of_2(report_size)) {
851 * Clear out the report id and timestamp as a means
852 * to detect unlanded reports.
854 oa_report_id_clear(stream, report32);
855 oa_timestamp_clear(stream, report32);
857 u8 *oa_buf_end = stream->oa_buffer.vaddr +
859 u32 part = oa_buf_end - (u8 *)report32;
861 /* Zero out the entire report */
862 if (report_size <= part) {
863 memset(report32, 0, report_size);
865 memset(report32, 0, part);
866 memset(oa_buf_base, 0, report_size - part);
871 if (start_offset != *offset) {
872 i915_reg_t oaheadptr;
874 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
875 __oa_regs(stream)->oa_head_ptr :
878 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
881 * We removed the gtt_offset for the copy loop above, indexing
882 * relative to oa_buf_base so put back here...
884 intel_uncore_write(uncore, oaheadptr,
885 (head + gtt_offset) & GEN12_OAG_OAHEADPTR_MASK);
886 stream->oa_buffer.head = head;
888 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
895 * gen8_oa_read - copy status records then buffered OA reports
896 * @stream: An i915-perf stream opened for OA metrics
897 * @buf: destination buffer given by userspace
898 * @count: the number of bytes userspace wants to read
899 * @offset: (inout): the current position for writing into @buf
901 * Checks OA unit status registers and if necessary appends corresponding
902 * status records for userspace (such as for a buffer full condition) and then
903 * initiate appending any buffered OA reports.
905 * Updates @offset according to the number of bytes successfully copied into
906 * the userspace buffer.
908 * NB: some data may be successfully copied to the userspace buffer
909 * even if an error is returned, and this is reflected in the
912 * Returns: zero on success or a negative error code
914 static int gen8_oa_read(struct i915_perf_stream *stream,
919 struct intel_uncore *uncore = stream->uncore;
921 i915_reg_t oastatus_reg;
924 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
927 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
928 __oa_regs(stream)->oa_status :
931 oastatus = intel_uncore_read(uncore, oastatus_reg);
934 * We treat OABUFFER_OVERFLOW as a significant error:
936 * Although theoretically we could handle this more gracefully
937 * sometimes, some Gens don't correctly suppress certain
938 * automatically triggered reports in this condition and so we
939 * have to assume that old reports are now being trampled
942 * Considering how we don't currently give userspace control
943 * over the OA buffer size and always configure a large 16MB
944 * buffer, then a buffer overflow does anyway likely indicate
945 * that something has gone quite badly wrong.
947 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
948 ret = append_oa_status(stream, buf, count, offset,
949 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
953 drm_dbg(&stream->perf->i915->drm,
954 "OA buffer overflow (exponent = %d): force restart\n",
955 stream->period_exponent);
957 stream->perf->ops.oa_disable(stream);
958 stream->perf->ops.oa_enable(stream);
961 * Note: .oa_enable() is expected to re-init the oabuffer and
962 * reset GEN8_OASTATUS for us
964 oastatus = intel_uncore_read(uncore, oastatus_reg);
967 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
968 ret = append_oa_status(stream, buf, count, offset,
969 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
973 intel_uncore_rmw(uncore, oastatus_reg,
974 GEN8_OASTATUS_COUNTER_OVERFLOW |
975 GEN8_OASTATUS_REPORT_LOST,
976 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
977 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
978 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
981 return gen8_append_oa_reports(stream, buf, count, offset);
985 * gen7_append_oa_reports - Copies all buffered OA reports into
986 * userspace read() buffer.
987 * @stream: An i915-perf stream opened for OA metrics
988 * @buf: destination buffer given by userspace
989 * @count: the number of bytes userspace wants to read
990 * @offset: (inout): the current position for writing into @buf
992 * Notably any error condition resulting in a short read (-%ENOSPC or
993 * -%EFAULT) will be returned even though one or more records may
994 * have been successfully copied. In this case it's up to the caller
995 * to decide if the error should be squashed before returning to
998 * Note: reports are consumed from the head, and appended to the
999 * tail, so the tail chases the head?... If you think that's mad
1000 * and back-to-front you're not alone, but this follows the
1001 * Gen PRM naming convention.
1003 * Returns: 0 on success, negative error code on failure.
1005 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
1010 struct intel_uncore *uncore = stream->uncore;
1011 int report_size = stream->oa_buffer.format->size;
1012 u8 *oa_buf_base = stream->oa_buffer.vaddr;
1013 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1014 u32 mask = (OA_BUFFER_SIZE - 1);
1015 size_t start_offset = *offset;
1016 unsigned long flags;
1020 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
1023 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1025 head = stream->oa_buffer.head;
1026 tail = stream->oa_buffer.tail;
1028 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1030 /* An out of bounds or misaligned head or tail pointer implies a driver
1031 * bug since we validate + align the tail pointers we read from the
1032 * hardware and we are in full control of the head pointer which should
1033 * only be incremented by multiples of the report size (notably also
1034 * all a power of two).
1036 if (drm_WARN_ONCE(&uncore->i915->drm,
1037 head > OA_BUFFER_SIZE || head % report_size ||
1038 tail > OA_BUFFER_SIZE || tail % report_size,
1039 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1045 OA_TAKEN(tail, head);
1046 head = (head + report_size) & mask) {
1047 u8 *report = oa_buf_base + head;
1048 u32 *report32 = (void *)report;
1050 /* All the report sizes factor neatly into the buffer
1051 * size so we never expect to see a report split
1052 * between the beginning and end of the buffer.
1054 * Given the initial alignment check a misalignment
1055 * here would imply a driver bug that would result
1058 if (drm_WARN_ON(&uncore->i915->drm,
1059 (OA_BUFFER_SIZE - head) < report_size)) {
1060 drm_err(&uncore->i915->drm,
1061 "Spurious OA head ptr: non-integral report offset\n");
1065 /* The report-ID field for periodic samples includes
1066 * some undocumented flags related to what triggered
1067 * the report and is never expected to be zero so we
1068 * can check that the report isn't invalid before
1069 * copying it to userspace...
1071 if (report32[0] == 0) {
1072 if (__ratelimit(&stream->perf->spurious_report_rs))
1073 drm_notice(&uncore->i915->drm,
1074 "Skipping spurious, invalid OA report\n");
1078 ret = append_oa_sample(stream, buf, count, offset, report);
1082 /* Clear out the first 2 dwords as a mean to detect unlanded
1089 if (start_offset != *offset) {
1090 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1092 intel_uncore_write(uncore, GEN7_OASTATUS2,
1093 ((head + gtt_offset) & GEN7_OASTATUS2_HEAD_MASK) |
1094 GEN7_OASTATUS2_MEM_SELECT_GGTT);
1095 stream->oa_buffer.head = head;
1097 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1104 * gen7_oa_read - copy status records then buffered OA reports
1105 * @stream: An i915-perf stream opened for OA metrics
1106 * @buf: destination buffer given by userspace
1107 * @count: the number of bytes userspace wants to read
1108 * @offset: (inout): the current position for writing into @buf
1110 * Checks Gen 7 specific OA unit status registers and if necessary appends
1111 * corresponding status records for userspace (such as for a buffer full
1112 * condition) and then initiate appending any buffered OA reports.
1114 * Updates @offset according to the number of bytes successfully copied into
1115 * the userspace buffer.
1117 * Returns: zero on success or a negative error code
1119 static int gen7_oa_read(struct i915_perf_stream *stream,
1124 struct intel_uncore *uncore = stream->uncore;
1128 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1131 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1133 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1134 * bits while the OA unit is enabled (while the tail pointer
1135 * may be updated asynchronously) so we ignore status bits
1136 * that have already been reported to userspace.
1138 oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1140 /* We treat OABUFFER_OVERFLOW as a significant error:
1142 * - The status can be interpreted to mean that the buffer is
1143 * currently full (with a higher precedence than OA_TAKEN()
1144 * which will start to report a near-empty buffer after an
1145 * overflow) but it's awkward that we can't clear the status
1146 * on Haswell, so without a reset we won't be able to catch
1149 * - Since it also implies the HW has started overwriting old
1150 * reports it may also affect our sanity checks for invalid
1151 * reports when copying to userspace that assume new reports
1152 * are being written to cleared memory.
1154 * - In the future we may want to introduce a flight recorder
1155 * mode where the driver will automatically maintain a safe
1156 * guard band between head/tail, avoiding this overflow
1157 * condition, but we avoid the added driver complexity for
1160 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1161 ret = append_oa_status(stream, buf, count, offset,
1162 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1166 drm_dbg(&stream->perf->i915->drm,
1167 "OA buffer overflow (exponent = %d): force restart\n",
1168 stream->period_exponent);
1170 stream->perf->ops.oa_disable(stream);
1171 stream->perf->ops.oa_enable(stream);
1173 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1176 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1177 ret = append_oa_status(stream, buf, count, offset,
1178 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1181 stream->perf->gen7_latched_oastatus1 |=
1182 GEN7_OASTATUS1_REPORT_LOST;
1185 return gen7_append_oa_reports(stream, buf, count, offset);
1189 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1190 * @stream: An i915-perf stream opened for OA metrics
1192 * Called when userspace tries to read() from a blocking stream FD opened
1193 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1194 * OA buffer and wakes us.
1196 * Note: it's acceptable to have this return with some false positives
1197 * since any subsequent read handling will return -EAGAIN if there isn't
1198 * really data ready for userspace yet.
1200 * Returns: zero on success or a negative error code
1202 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1204 /* We would wait indefinitely if periodic sampling is not enabled */
1205 if (!stream->periodic)
1208 return wait_event_interruptible(stream->poll_wq,
1209 oa_buffer_check_unlocked(stream));
1213 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1214 * @stream: An i915-perf stream opened for OA metrics
1215 * @file: An i915 perf stream file
1216 * @wait: poll() state table
1218 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1219 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1220 * when it sees data ready to read in the circular OA buffer.
1222 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1226 poll_wait(file, &stream->poll_wq, wait);
1230 * i915_oa_read - just calls through to &i915_oa_ops->read
1231 * @stream: An i915-perf stream opened for OA metrics
1232 * @buf: destination buffer given by userspace
1233 * @count: the number of bytes userspace wants to read
1234 * @offset: (inout): the current position for writing into @buf
1236 * Updates @offset according to the number of bytes successfully copied into
1237 * the userspace buffer.
1239 * Returns: zero on success or a negative error code
1241 static int i915_oa_read(struct i915_perf_stream *stream,
1246 return stream->perf->ops.read(stream, buf, count, offset);
1249 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1251 struct i915_gem_engines_iter it;
1252 struct i915_gem_context *ctx = stream->ctx;
1253 struct intel_context *ce;
1254 struct i915_gem_ww_ctx ww;
1257 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1258 if (ce->engine != stream->engine) /* first match! */
1264 i915_gem_context_unlock_engines(ctx);
1267 return ERR_PTR(err);
1269 i915_gem_ww_ctx_init(&ww, true);
1272 * As the ID is the gtt offset of the context's vma we
1273 * pin the vma to ensure the ID remains fixed.
1275 err = intel_context_pin_ww(ce, &ww);
1276 if (err == -EDEADLK) {
1277 err = i915_gem_ww_ctx_backoff(&ww);
1281 i915_gem_ww_ctx_fini(&ww);
1284 return ERR_PTR(err);
1286 stream->pinned_ctx = ce;
1287 return stream->pinned_ctx;
1291 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset)
1295 cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1296 if (GRAPHICS_VER(rq->i915) >= 8)
1299 cs = intel_ring_begin(rq, 4);
1304 *cs++ = i915_mmio_reg_offset(reg);
1305 *cs++ = ggtt_offset;
1308 intel_ring_advance(rq, cs);
1314 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset)
1316 struct i915_request *rq;
1319 rq = i915_request_create(ce);
1323 i915_request_get(rq);
1325 err = __store_reg_to_mem(rq, reg, ggtt_offset);
1327 i915_request_add(rq);
1328 if (!err && i915_request_wait(rq, 0, HZ / 2) < 0)
1331 i915_request_put(rq);
1337 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id)
1339 struct i915_vma *scratch;
1343 scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4);
1344 if (IS_ERR(scratch))
1345 return PTR_ERR(scratch);
1347 err = i915_vma_sync(scratch);
1351 err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base),
1352 i915_ggtt_offset(scratch));
1356 val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB);
1363 i915_gem_object_unpin_map(scratch->obj);
1366 i915_vma_unpin_and_release(&scratch, 0);
1371 * For execlist mode of submission, pick an unused context id
1372 * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts
1373 * XXX_MAX_CONTEXT_HW_ID is used by idle context
1375 * For GuC mode of submission read context id from the upper dword of the
1376 * EXECLIST_STATUS register. Note that we read this value only once and expect
1377 * that the value stays fixed for the entire OA use case. There are cases where
1378 * GuC KMD implementation may deregister a context to reuse it's context id, but
1379 * we prevent that from happening to the OA context by pinning it.
1381 static int gen12_get_render_context_id(struct i915_perf_stream *stream)
1386 if (intel_engine_uses_guc(stream->engine)) {
1387 ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id);
1391 mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) <<
1392 (GEN12_GUC_SW_CTX_ID_SHIFT - 32);
1393 } else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) {
1394 ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1395 (XEHP_SW_CTX_ID_SHIFT - 32);
1397 mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1398 (XEHP_SW_CTX_ID_SHIFT - 32);
1400 ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) <<
1401 (GEN11_SW_CTX_ID_SHIFT - 32);
1403 mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) <<
1404 (GEN11_SW_CTX_ID_SHIFT - 32);
1406 stream->specific_ctx_id = ctx_id & mask;
1407 stream->specific_ctx_id_mask = mask;
1412 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end)
1415 u32 len = min(MI_LRI_LEN(state[idx]) + idx, end);
1419 for (; idx < len; idx += 2) {
1420 if (state[idx] == reg) {
1430 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg)
1432 u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4;
1433 u32 *state = ce->lrc_reg_state;
1435 if (drm_WARN_ON(&ce->engine->i915->drm, !state))
1438 for (offset = 0; offset < len; ) {
1439 if (IS_MI_LRI_CMD(state[offset])) {
1441 * We expect reg-value pairs in MI_LRI command, so
1442 * MI_LRI_LEN() should be even, if not, issue a warning.
1444 drm_WARN_ON(&ce->engine->i915->drm,
1445 MI_LRI_LEN(state[offset]) & 0x1);
1447 if (oa_find_reg_in_lri(state, reg, &offset, len))
1454 return offset < len ? offset : U32_MAX;
1457 static int set_oa_ctx_ctrl_offset(struct intel_context *ce)
1459 i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base);
1460 struct i915_perf *perf = &ce->engine->i915->perf;
1461 u32 offset = perf->ctx_oactxctrl_offset;
1463 /* Do this only once. Failure is stored as offset of U32_MAX */
1467 offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg));
1468 perf->ctx_oactxctrl_offset = offset;
1470 drm_dbg(&ce->engine->i915->drm,
1471 "%s oa ctx control at 0x%08x dword offset\n",
1472 ce->engine->name, offset);
1475 return offset && offset != U32_MAX ? 0 : -ENODEV;
1478 static bool engine_supports_mi_query(struct intel_engine_cs *engine)
1480 return engine->class == RENDER_CLASS;
1484 * oa_get_render_ctx_id - determine and hold ctx hw id
1485 * @stream: An i915-perf stream opened for OA metrics
1487 * Determine the render context hw id, and ensure it remains fixed for the
1488 * lifetime of the stream. This ensures that we don't have to worry about
1489 * updating the context ID in OACONTROL on the fly.
1491 * Returns: zero on success or a negative error code
1493 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1495 struct intel_context *ce;
1498 ce = oa_pin_context(stream);
1502 if (engine_supports_mi_query(stream->engine) &&
1503 HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) {
1505 * We are enabling perf query here. If we don't find the context
1506 * offset here, just return an error.
1508 ret = set_oa_ctx_ctrl_offset(ce);
1510 intel_context_unpin(ce);
1511 drm_err(&stream->perf->i915->drm,
1512 "Enabling perf query failed for %s\n",
1513 stream->engine->name);
1518 switch (GRAPHICS_VER(ce->engine->i915)) {
1521 * On Haswell we don't do any post processing of the reports
1522 * and don't need to use the mask.
1524 stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1525 stream->specific_ctx_id_mask = 0;
1531 if (intel_engine_uses_guc(ce->engine)) {
1533 * When using GuC, the context descriptor we write in
1534 * i915 is read by GuC and rewritten before it's
1535 * actually written into the hardware. The LRCA is
1536 * what is put into the context id field of the
1537 * context descriptor by GuC. Because it's aligned to
1538 * a page, the lower 12bits are always at 0 and
1539 * dropped by GuC. They won't be part of the context
1540 * ID in the OA reports, so squash those lower bits.
1542 stream->specific_ctx_id = ce->lrc.lrca >> 12;
1545 * GuC uses the top bit to signal proxy submission, so
1548 stream->specific_ctx_id_mask =
1549 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1551 stream->specific_ctx_id_mask =
1552 (1U << GEN8_CTX_ID_WIDTH) - 1;
1553 stream->specific_ctx_id = stream->specific_ctx_id_mask;
1559 ret = gen12_get_render_context_id(stream);
1563 MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1566 ce->tag = stream->specific_ctx_id;
1568 drm_dbg(&stream->perf->i915->drm,
1569 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1570 stream->specific_ctx_id,
1571 stream->specific_ctx_id_mask);
1577 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1578 * @stream: An i915-perf stream opened for OA metrics
1580 * In case anything needed doing to ensure the context HW ID would remain valid
1581 * for the lifetime of the stream, then that can be undone here.
1583 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1585 struct intel_context *ce;
1587 ce = fetch_and_zero(&stream->pinned_ctx);
1589 ce->tag = 0; /* recomputed on next submission after parking */
1590 intel_context_unpin(ce);
1593 stream->specific_ctx_id = INVALID_CTX_ID;
1594 stream->specific_ctx_id_mask = 0;
1598 free_oa_buffer(struct i915_perf_stream *stream)
1600 i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1601 I915_VMA_RELEASE_MAP);
1603 stream->oa_buffer.vaddr = NULL;
1607 free_oa_configs(struct i915_perf_stream *stream)
1609 struct i915_oa_config_bo *oa_bo, *tmp;
1611 i915_oa_config_put(stream->oa_config);
1612 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1613 free_oa_config_bo(oa_bo);
1617 free_noa_wait(struct i915_perf_stream *stream)
1619 i915_vma_unpin_and_release(&stream->noa_wait, 0);
1622 static bool engine_supports_oa(const struct intel_engine_cs *engine)
1624 return engine->oa_group;
1627 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type)
1629 return engine->oa_group && engine->oa_group->type == type;
1632 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1634 struct i915_perf *perf = stream->perf;
1635 struct intel_gt *gt = stream->engine->gt;
1636 struct i915_perf_group *g = stream->engine->oa_group;
1638 if (WARN_ON(stream != g->exclusive_stream))
1642 * Unset exclusive_stream first, it will be checked while disabling
1643 * the metric set on gen8+.
1645 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1647 WRITE_ONCE(g->exclusive_stream, NULL);
1648 perf->ops.disable_metric_set(stream);
1650 free_oa_buffer(stream);
1652 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1653 intel_engine_pm_put(stream->engine);
1656 oa_put_render_ctx_id(stream);
1658 free_oa_configs(stream);
1659 free_noa_wait(stream);
1661 if (perf->spurious_report_rs.missed) {
1662 gt_notice(gt, "%d spurious OA report notices suppressed due to ratelimiting\n",
1663 perf->spurious_report_rs.missed);
1667 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1669 struct intel_uncore *uncore = stream->uncore;
1670 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1671 unsigned long flags;
1673 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1675 /* Pre-DevBDW: OABUFFER must be set with counters off,
1676 * before OASTATUS1, but after OASTATUS2
1678 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1679 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1680 stream->oa_buffer.head = 0;
1682 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1684 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1685 gtt_offset | OABUFFER_SIZE_16M);
1687 /* Mark that we need updated tail pointers to read from... */
1688 stream->oa_buffer.tail = 0;
1690 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1692 /* On Haswell we have to track which OASTATUS1 flags we've
1693 * already seen since they can't be cleared while periodic
1694 * sampling is enabled.
1696 stream->perf->gen7_latched_oastatus1 = 0;
1698 /* NB: although the OA buffer will initially be allocated
1699 * zeroed via shmfs (and so this memset is redundant when
1700 * first allocating), we may re-init the OA buffer, either
1701 * when re-enabling a stream or in error/reset paths.
1703 * The reason we clear the buffer for each re-init is for the
1704 * sanity check in gen7_append_oa_reports() that looks at the
1705 * report-id field to make sure it's non-zero which relies on
1706 * the assumption that new reports are being written to zeroed
1709 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1712 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1714 struct intel_uncore *uncore = stream->uncore;
1715 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1716 unsigned long flags;
1718 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1720 intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1721 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1722 stream->oa_buffer.head = 0;
1724 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1729 * "This MMIO must be set before the OATAILPTR
1730 * register and after the OAHEADPTR register. This is
1731 * to enable proper functionality of the overflow
1734 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1735 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1736 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1738 /* Mark that we need updated tail pointers to read from... */
1739 stream->oa_buffer.tail = 0;
1742 * Reset state used to recognise context switches, affecting which
1743 * reports we will forward to userspace while filtering for a single
1746 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1748 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1751 * NB: although the OA buffer will initially be allocated
1752 * zeroed via shmfs (and so this memset is redundant when
1753 * first allocating), we may re-init the OA buffer, either
1754 * when re-enabling a stream or in error/reset paths.
1756 * The reason we clear the buffer for each re-init is for the
1757 * sanity check in gen8_append_oa_reports() that looks at the
1758 * reason field to make sure it's non-zero which relies on
1759 * the assumption that new reports are being written to zeroed
1762 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1765 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1767 struct intel_uncore *uncore = stream->uncore;
1768 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1769 unsigned long flags;
1771 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1773 intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0);
1774 intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr,
1775 gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1776 stream->oa_buffer.head = 0;
1781 * "This MMIO must be set before the OATAILPTR
1782 * register and after the OAHEADPTR register. This is
1783 * to enable proper functionality of the overflow
1786 intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset |
1787 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1788 intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr,
1789 gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1791 /* Mark that we need updated tail pointers to read from... */
1792 stream->oa_buffer.tail = 0;
1795 * Reset state used to recognise context switches, affecting which
1796 * reports we will forward to userspace while filtering for a single
1799 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1801 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1804 * NB: although the OA buffer will initially be allocated
1805 * zeroed via shmfs (and so this memset is redundant when
1806 * first allocating), we may re-init the OA buffer, either
1807 * when re-enabling a stream or in error/reset paths.
1809 * The reason we clear the buffer for each re-init is for the
1810 * sanity check in gen8_append_oa_reports() that looks at the
1811 * reason field to make sure it's non-zero which relies on
1812 * the assumption that new reports are being written to zeroed
1815 memset(stream->oa_buffer.vaddr, 0,
1816 stream->oa_buffer.vma->size);
1819 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1821 struct drm_i915_private *i915 = stream->perf->i915;
1822 struct intel_gt *gt = stream->engine->gt;
1823 struct drm_i915_gem_object *bo;
1824 struct i915_vma *vma;
1827 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1830 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1831 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1833 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1835 drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1839 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1841 /* PreHSW required 512K alignment, HSW requires 16M */
1842 vma = i915_vma_instance(bo, >->ggtt->vm, NULL);
1849 * PreHSW required 512K alignment.
1850 * HSW and onwards, align to requested size of OA buffer.
1852 ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH);
1854 gt_err(gt, "Failed to pin OA buffer %d\n", ret);
1858 stream->oa_buffer.vma = vma;
1860 stream->oa_buffer.vaddr =
1861 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1862 if (IS_ERR(stream->oa_buffer.vaddr)) {
1863 ret = PTR_ERR(stream->oa_buffer.vaddr);
1870 __i915_vma_unpin(vma);
1873 i915_gem_object_put(bo);
1875 stream->oa_buffer.vaddr = NULL;
1876 stream->oa_buffer.vma = NULL;
1881 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1882 bool save, i915_reg_t reg, u32 offset,
1888 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1889 cmd |= MI_SRM_LRM_GLOBAL_GTT;
1890 if (GRAPHICS_VER(stream->perf->i915) >= 8)
1893 for (d = 0; d < dword_count; d++) {
1895 *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1896 *cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d;
1903 static int alloc_noa_wait(struct i915_perf_stream *stream)
1905 struct drm_i915_private *i915 = stream->perf->i915;
1906 struct intel_gt *gt = stream->engine->gt;
1907 struct drm_i915_gem_object *bo;
1908 struct i915_vma *vma;
1909 const u64 delay_ticks = 0xffffffffffffffff -
1910 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1911 atomic64_read(&stream->perf->noa_programming_delay));
1912 const u32 base = stream->engine->mmio_base;
1913 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1914 u32 *batch, *ts0, *cs, *jump;
1915 struct i915_gem_ww_ctx ww;
1925 i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ?
1926 MI_PREDICATE_RESULT_2_ENGINE(base) :
1927 MI_PREDICATE_RESULT_1(RENDER_RING_BASE);
1930 * gt->scratch was being used to save/restore the GPR registers, but on
1931 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region
1932 * causes an engine hang. Instead allocate an additional page here to
1933 * save/restore GPR registers
1935 bo = i915_gem_object_create_internal(i915, 8192);
1938 "Failed to allocate NOA wait batchbuffer\n");
1942 i915_gem_ww_ctx_init(&ww, true);
1944 ret = i915_gem_object_lock(bo, &ww);
1949 * We pin in GGTT because we jump into this buffer now because
1950 * multiple OA config BOs will have a jump to this address and it
1951 * needs to be fixed during the lifetime of the i915/perf stream.
1953 vma = i915_vma_instance(bo, >->ggtt->vm, NULL);
1959 ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1963 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1964 if (IS_ERR(batch)) {
1965 ret = PTR_ERR(batch);
1969 stream->noa_wait = vma;
1971 #define GPR_SAVE_OFFSET 4096
1972 #define PREDICATE_SAVE_OFFSET 4160
1974 /* Save registers. */
1975 for (i = 0; i < N_CS_GPR; i++)
1976 cs = save_restore_register(
1977 stream, cs, true /* save */, CS_GPR(i),
1978 GPR_SAVE_OFFSET + 8 * i, 2);
1979 cs = save_restore_register(
1980 stream, cs, true /* save */, mi_predicate_result,
1981 PREDICATE_SAVE_OFFSET, 1);
1983 /* First timestamp snapshot location. */
1987 * Initial snapshot of the timestamp register to implement the wait.
1988 * We work with 32b values, so clear out the top 32b bits of the
1989 * register because the ALU works 64bits.
1991 *cs++ = MI_LOAD_REGISTER_IMM(1);
1992 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1994 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1995 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1996 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1999 * This is the location we're going to jump back into until the
2000 * required amount of time has passed.
2005 * Take another snapshot of the timestamp register. Take care to clear
2006 * up the top 32bits of CS_GPR(1) as we're using it for other
2009 *cs++ = MI_LOAD_REGISTER_IMM(1);
2010 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
2012 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2013 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2014 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
2017 * Do a diff between the 2 timestamps and store the result back into
2021 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
2022 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
2023 *cs++ = MI_MATH_SUB;
2024 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
2025 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2028 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
2029 * timestamp have rolled over the 32bits) into the predicate register
2030 * to be used for the predicated jump.
2032 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2033 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2034 *cs++ = i915_mmio_reg_offset(mi_predicate_result);
2036 if (HAS_MI_SET_PREDICATE(i915))
2037 *cs++ = MI_SET_PREDICATE | 1;
2039 /* Restart from the beginning if we had timestamps roll over. */
2040 *cs++ = (GRAPHICS_VER(i915) < 8 ?
2041 MI_BATCH_BUFFER_START :
2042 MI_BATCH_BUFFER_START_GEN8) |
2044 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
2047 if (HAS_MI_SET_PREDICATE(i915))
2048 *cs++ = MI_SET_PREDICATE;
2051 * Now add the diff between to previous timestamps and add it to :
2052 * (((1 * << 64) - 1) - delay_ns)
2054 * When the Carry Flag contains 1 this means the elapsed time is
2055 * longer than the expected delay, and we can exit the wait loop.
2057 *cs++ = MI_LOAD_REGISTER_IMM(2);
2058 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
2059 *cs++ = lower_32_bits(delay_ticks);
2060 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
2061 *cs++ = upper_32_bits(delay_ticks);
2064 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
2065 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
2066 *cs++ = MI_MATH_ADD;
2067 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2069 *cs++ = MI_ARB_CHECK;
2072 * Transfer the result into the predicate register to be used for the
2075 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2076 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2077 *cs++ = i915_mmio_reg_offset(mi_predicate_result);
2079 if (HAS_MI_SET_PREDICATE(i915))
2080 *cs++ = MI_SET_PREDICATE | 1;
2082 /* Predicate the jump. */
2083 *cs++ = (GRAPHICS_VER(i915) < 8 ?
2084 MI_BATCH_BUFFER_START :
2085 MI_BATCH_BUFFER_START_GEN8) |
2087 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
2090 if (HAS_MI_SET_PREDICATE(i915))
2091 *cs++ = MI_SET_PREDICATE;
2093 /* Restore registers. */
2094 for (i = 0; i < N_CS_GPR; i++)
2095 cs = save_restore_register(
2096 stream, cs, false /* restore */, CS_GPR(i),
2097 GPR_SAVE_OFFSET + 8 * i, 2);
2098 cs = save_restore_register(
2099 stream, cs, false /* restore */, mi_predicate_result,
2100 PREDICATE_SAVE_OFFSET, 1);
2102 /* And return to the ring. */
2103 *cs++ = MI_BATCH_BUFFER_END;
2105 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
2107 i915_gem_object_flush_map(bo);
2108 __i915_gem_object_release_map(bo);
2113 i915_vma_unpin_and_release(&vma, 0);
2115 if (ret == -EDEADLK) {
2116 ret = i915_gem_ww_ctx_backoff(&ww);
2120 i915_gem_ww_ctx_fini(&ww);
2122 i915_gem_object_put(bo);
2126 static u32 *write_cs_mi_lri(u32 *cs,
2127 const struct i915_oa_reg *reg_data,
2132 for (i = 0; i < n_regs; i++) {
2133 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
2134 u32 n_lri = min_t(u32,
2136 MI_LOAD_REGISTER_IMM_MAX_REGS);
2138 *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
2140 *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
2141 *cs++ = reg_data[i].value;
2147 static int num_lri_dwords(int num_regs)
2152 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
2153 count += num_regs * 2;
2159 static struct i915_oa_config_bo *
2160 alloc_oa_config_buffer(struct i915_perf_stream *stream,
2161 struct i915_oa_config *oa_config)
2163 struct drm_i915_gem_object *obj;
2164 struct i915_oa_config_bo *oa_bo;
2165 struct i915_gem_ww_ctx ww;
2166 size_t config_length = 0;
2170 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
2172 return ERR_PTR(-ENOMEM);
2174 config_length += num_lri_dwords(oa_config->mux_regs_len);
2175 config_length += num_lri_dwords(oa_config->b_counter_regs_len);
2176 config_length += num_lri_dwords(oa_config->flex_regs_len);
2177 config_length += 3; /* MI_BATCH_BUFFER_START */
2178 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
2180 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
2186 i915_gem_ww_ctx_init(&ww, true);
2188 err = i915_gem_object_lock(obj, &ww);
2192 cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
2198 cs = write_cs_mi_lri(cs,
2199 oa_config->mux_regs,
2200 oa_config->mux_regs_len);
2201 cs = write_cs_mi_lri(cs,
2202 oa_config->b_counter_regs,
2203 oa_config->b_counter_regs_len);
2204 cs = write_cs_mi_lri(cs,
2205 oa_config->flex_regs,
2206 oa_config->flex_regs_len);
2208 /* Jump into the active wait. */
2209 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
2210 MI_BATCH_BUFFER_START :
2211 MI_BATCH_BUFFER_START_GEN8);
2212 *cs++ = i915_ggtt_offset(stream->noa_wait);
2215 i915_gem_object_flush_map(obj);
2216 __i915_gem_object_release_map(obj);
2218 oa_bo->vma = i915_vma_instance(obj,
2219 &stream->engine->gt->ggtt->vm,
2221 if (IS_ERR(oa_bo->vma)) {
2222 err = PTR_ERR(oa_bo->vma);
2226 oa_bo->oa_config = i915_oa_config_get(oa_config);
2227 llist_add(&oa_bo->node, &stream->oa_config_bos);
2230 if (err == -EDEADLK) {
2231 err = i915_gem_ww_ctx_backoff(&ww);
2235 i915_gem_ww_ctx_fini(&ww);
2238 i915_gem_object_put(obj);
2242 return ERR_PTR(err);
2247 static struct i915_vma *
2248 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2250 struct i915_oa_config_bo *oa_bo;
2253 * Look for the buffer in the already allocated BOs attached
2256 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2257 if (oa_bo->oa_config == oa_config &&
2258 memcmp(oa_bo->oa_config->uuid,
2260 sizeof(oa_config->uuid)) == 0)
2264 oa_bo = alloc_oa_config_buffer(stream, oa_config);
2266 return ERR_CAST(oa_bo);
2269 return i915_vma_get(oa_bo->vma);
2273 emit_oa_config(struct i915_perf_stream *stream,
2274 struct i915_oa_config *oa_config,
2275 struct intel_context *ce,
2276 struct i915_active *active)
2278 struct i915_request *rq;
2279 struct i915_vma *vma;
2280 struct i915_gem_ww_ctx ww;
2283 vma = get_oa_vma(stream, oa_config);
2285 return PTR_ERR(vma);
2287 i915_gem_ww_ctx_init(&ww, true);
2289 err = i915_gem_object_lock(vma->obj, &ww);
2293 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2297 intel_engine_pm_get(ce->engine);
2298 rq = i915_request_create(ce);
2299 intel_engine_pm_put(ce->engine);
2305 if (!IS_ERR_OR_NULL(active)) {
2306 /* After all individual context modifications */
2307 err = i915_request_await_active(rq, active,
2308 I915_ACTIVE_AWAIT_ACTIVE);
2310 goto err_add_request;
2312 err = i915_active_add_request(active, rq);
2314 goto err_add_request;
2317 err = i915_vma_move_to_active(vma, rq, 0);
2319 goto err_add_request;
2321 err = rq->engine->emit_bb_start(rq,
2322 i915_vma_offset(vma), 0,
2323 I915_DISPATCH_SECURE);
2325 goto err_add_request;
2328 i915_request_add(rq);
2330 i915_vma_unpin(vma);
2332 if (err == -EDEADLK) {
2333 err = i915_gem_ww_ctx_backoff(&ww);
2338 i915_gem_ww_ctx_fini(&ww);
2343 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2345 return stream->pinned_ctx ?: stream->engine->kernel_context;
2349 hsw_enable_metric_set(struct i915_perf_stream *stream,
2350 struct i915_active *active)
2352 struct intel_uncore *uncore = stream->uncore;
2357 * OA unit is using “crclk” for its functionality. When trunk
2358 * level clock gating takes place, OA clock would be gated,
2359 * unable to count the events from non-render clock domain.
2360 * Render clock gating must be disabled when OA is enabled to
2361 * count the events from non-render domain. Unit level clock
2362 * gating for RCS should also be disabled.
2364 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2365 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2366 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2367 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2369 return emit_oa_config(stream,
2370 stream->oa_config, oa_context(stream),
2374 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2376 struct intel_uncore *uncore = stream->uncore;
2378 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2379 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2380 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2381 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2383 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2386 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2389 u32 mmio = i915_mmio_reg_offset(reg);
2393 * This arbitrary default will select the 'EU FPU0 Pipeline
2394 * Active' event. In the future it's anticipated that there
2395 * will be an explicit 'No Event' we can select, but not yet...
2400 for (i = 0; i < oa_config->flex_regs_len; i++) {
2401 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2402 return oa_config->flex_regs[i].value;
2408 * NB: It must always remain pointer safe to run this even if the OA unit
2409 * has been disabled.
2411 * It's fine to put out-of-date values into these per-context registers
2412 * in the case that the OA unit has been disabled.
2415 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2416 const struct i915_perf_stream *stream)
2418 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2419 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2420 /* The MMIO offsets for Flex EU registers aren't contiguous */
2421 static const i915_reg_t flex_regs[] = {
2430 u32 *reg_state = ce->lrc_reg_state;
2433 reg_state[ctx_oactxctrl + 1] =
2434 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2435 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2436 GEN8_OA_COUNTER_RESUME;
2438 for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2439 reg_state[ctx_flexeu0 + i * 2 + 1] =
2440 oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2450 gen8_store_flex(struct i915_request *rq,
2451 struct intel_context *ce,
2452 const struct flex *flex, unsigned int count)
2457 cs = intel_ring_begin(rq, 4 * count);
2461 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2463 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2464 *cs++ = offset + flex->offset * sizeof(u32);
2466 *cs++ = flex->value;
2467 } while (flex++, --count);
2469 intel_ring_advance(rq, cs);
2475 gen8_load_flex(struct i915_request *rq,
2476 struct intel_context *ce,
2477 const struct flex *flex, unsigned int count)
2481 GEM_BUG_ON(!count || count > 63);
2483 cs = intel_ring_begin(rq, 2 * count + 2);
2487 *cs++ = MI_LOAD_REGISTER_IMM(count);
2489 *cs++ = i915_mmio_reg_offset(flex->reg);
2490 *cs++ = flex->value;
2491 } while (flex++, --count);
2494 intel_ring_advance(rq, cs);
2499 static int gen8_modify_context(struct intel_context *ce,
2500 const struct flex *flex, unsigned int count)
2502 struct i915_request *rq;
2505 rq = intel_engine_create_kernel_request(ce->engine);
2509 /* Serialise with the remote context */
2510 err = intel_context_prepare_remote_request(ce, rq);
2512 err = gen8_store_flex(rq, ce, flex, count);
2514 i915_request_add(rq);
2519 gen8_modify_self(struct intel_context *ce,
2520 const struct flex *flex, unsigned int count,
2521 struct i915_active *active)
2523 struct i915_request *rq;
2526 intel_engine_pm_get(ce->engine);
2527 rq = i915_request_create(ce);
2528 intel_engine_pm_put(ce->engine);
2532 if (!IS_ERR_OR_NULL(active)) {
2533 err = i915_active_add_request(active, rq);
2535 goto err_add_request;
2538 err = gen8_load_flex(rq, ce, flex, count);
2540 goto err_add_request;
2543 i915_request_add(rq);
2547 static int gen8_configure_context(struct i915_perf_stream *stream,
2548 struct i915_gem_context *ctx,
2549 struct flex *flex, unsigned int count)
2551 struct i915_gem_engines_iter it;
2552 struct intel_context *ce;
2555 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2556 GEM_BUG_ON(ce == ce->engine->kernel_context);
2558 if (ce->engine->class != RENDER_CLASS)
2561 /* Otherwise OA settings will be set upon first use */
2562 if (!intel_context_pin_if_active(ce))
2565 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2566 err = gen8_modify_context(ce, flex, count);
2568 intel_context_unpin(ce);
2572 i915_gem_context_unlock_engines(ctx);
2577 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2578 struct i915_active *active)
2581 struct intel_context *ce = stream->pinned_ctx;
2582 u32 format = stream->oa_buffer.format->format;
2583 u32 offset = stream->perf->ctx_oactxctrl_offset;
2584 struct flex regs_context[] = {
2588 active ? GEN8_OA_COUNTER_RESUME : 0,
2591 /* Offsets in regs_lri are not used since this configuration is only
2592 * applied using LRI. Initialize the correct offsets for posterity.
2594 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2595 struct flex regs_lri[] = {
2597 GEN12_OAR_OACONTROL,
2598 GEN12_OAR_OACONTROL_OFFSET + 1,
2599 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2600 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2603 RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2604 CTX_CONTEXT_CONTROL,
2605 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2607 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2612 /* Modify the context image of pinned context with regs_context */
2613 err = intel_context_lock_pinned(ce);
2617 err = gen8_modify_context(ce, regs_context,
2618 ARRAY_SIZE(regs_context));
2619 intel_context_unlock_pinned(ce);
2623 /* Apply regs_lri using LRI with pinned context */
2624 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2628 * Manages updating the per-context aspects of the OA stream
2629 * configuration across all contexts.
2631 * The awkward consideration here is that OACTXCONTROL controls the
2632 * exponent for periodic sampling which is primarily used for system
2633 * wide profiling where we'd like a consistent sampling period even in
2634 * the face of context switches.
2636 * Our approach of updating the register state context (as opposed to
2637 * say using a workaround batch buffer) ensures that the hardware
2638 * won't automatically reload an out-of-date timer exponent even
2639 * transiently before a WA BB could be parsed.
2641 * This function needs to:
2642 * - Ensure the currently running context's per-context OA state is
2644 * - Ensure that all existing contexts will have the correct per-context
2645 * OA state if they are scheduled for use.
2646 * - Ensure any new contexts will be initialized with the correct
2647 * per-context OA state.
2649 * Note: it's only the RCS/Render context that has any OA state.
2650 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2653 oa_configure_all_contexts(struct i915_perf_stream *stream,
2656 struct i915_active *active)
2658 struct drm_i915_private *i915 = stream->perf->i915;
2659 struct intel_engine_cs *engine;
2660 struct intel_gt *gt = stream->engine->gt;
2661 struct i915_gem_context *ctx, *cn;
2664 lockdep_assert_held(>->perf.lock);
2667 * The OA register config is setup through the context image. This image
2668 * might be written to by the GPU on context switch (in particular on
2669 * lite-restore). This means we can't safely update a context's image,
2670 * if this context is scheduled/submitted to run on the GPU.
2672 * We could emit the OA register config through the batch buffer but
2673 * this might leave small interval of time where the OA unit is
2674 * configured at an invalid sampling period.
2676 * Note that since we emit all requests from a single ring, there
2677 * is still an implicit global barrier here that may cause a high
2678 * priority context to wait for an otherwise independent low priority
2679 * context. Contexts idle at the time of reconfiguration are not
2680 * trapped behind the barrier.
2682 spin_lock(&i915->gem.contexts.lock);
2683 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2684 if (!kref_get_unless_zero(&ctx->ref))
2687 spin_unlock(&i915->gem.contexts.lock);
2689 err = gen8_configure_context(stream, ctx, regs, num_regs);
2691 i915_gem_context_put(ctx);
2695 spin_lock(&i915->gem.contexts.lock);
2696 list_safe_reset_next(ctx, cn, link);
2697 i915_gem_context_put(ctx);
2699 spin_unlock(&i915->gem.contexts.lock);
2702 * After updating all other contexts, we need to modify ourselves.
2703 * If we don't modify the kernel_context, we do not get events while
2706 for_each_uabi_engine(engine, i915) {
2707 struct intel_context *ce = engine->kernel_context;
2709 if (engine->class != RENDER_CLASS)
2712 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2714 err = gen8_modify_self(ce, regs, num_regs, active);
2723 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2724 const struct i915_oa_config *oa_config,
2725 struct i915_active *active)
2727 struct flex regs[] = {
2729 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2730 CTX_R_PWR_CLK_STATE,
2734 if (stream->engine->class != RENDER_CLASS)
2737 return oa_configure_all_contexts(stream,
2738 regs, ARRAY_SIZE(regs),
2743 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2744 const struct i915_oa_config *oa_config,
2745 struct i915_active *active)
2747 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2748 /* The MMIO offsets for Flex EU registers aren't contiguous */
2749 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2750 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2751 struct flex regs[] = {
2753 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2754 CTX_R_PWR_CLK_STATE,
2760 { EU_PERF_CNTL0, ctx_flexeuN(0) },
2761 { EU_PERF_CNTL1, ctx_flexeuN(1) },
2762 { EU_PERF_CNTL2, ctx_flexeuN(2) },
2763 { EU_PERF_CNTL3, ctx_flexeuN(3) },
2764 { EU_PERF_CNTL4, ctx_flexeuN(4) },
2765 { EU_PERF_CNTL5, ctx_flexeuN(5) },
2766 { EU_PERF_CNTL6, ctx_flexeuN(6) },
2772 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2773 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2774 GEN8_OA_COUNTER_RESUME;
2776 for (i = 2; i < ARRAY_SIZE(regs); i++)
2777 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2779 return oa_configure_all_contexts(stream,
2780 regs, ARRAY_SIZE(regs),
2785 gen8_enable_metric_set(struct i915_perf_stream *stream,
2786 struct i915_active *active)
2788 struct intel_uncore *uncore = stream->uncore;
2789 struct i915_oa_config *oa_config = stream->oa_config;
2793 * We disable slice/unslice clock ratio change reports on SKL since
2794 * they are too noisy. The HW generates a lot of redundant reports
2795 * where the ratio hasn't really changed causing a lot of redundant
2796 * work to processes and increasing the chances we'll hit buffer
2799 * Although we don't currently use the 'disable overrun' OABUFFER
2800 * feature it's worth noting that clock ratio reports have to be
2801 * disabled before considering to use that feature since the HW doesn't
2802 * correctly block these reports.
2804 * Currently none of the high-level metrics we have depend on knowing
2805 * this ratio to normalize.
2807 * Note: This register is not power context saved and restored, but
2808 * that's OK considering that we disable RC6 while the OA unit is
2811 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2812 * be read back from automatically triggered reports, as part of the
2815 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2816 intel_uncore_write(uncore, GEN8_OA_DEBUG,
2817 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2818 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2822 * Update all contexts prior writing the mux configurations as we need
2823 * to make sure all slices/subslices are ON before writing to NOA
2826 ret = lrc_configure_all_contexts(stream, oa_config, active);
2830 return emit_oa_config(stream,
2831 stream->oa_config, oa_context(stream),
2835 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2837 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2838 (stream->sample_flags & SAMPLE_OA_REPORT) ?
2839 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2843 gen12_enable_metric_set(struct i915_perf_stream *stream,
2844 struct i915_active *active)
2846 struct drm_i915_private *i915 = stream->perf->i915;
2847 struct intel_uncore *uncore = stream->uncore;
2848 struct i915_oa_config *oa_config = stream->oa_config;
2849 bool periodic = stream->periodic;
2850 u32 period_exponent = stream->period_exponent;
2855 * Wa_1508761755:xehpsdv, dg2
2856 * EU NOA signals behave incorrectly if EU clock gating is enabled.
2857 * Disable thread stall DOP gating and EU DOP gating.
2859 if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2860 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2861 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
2862 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2863 _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING));
2866 intel_uncore_write(uncore, __oa_regs(stream)->oa_debug,
2867 /* Disable clk ratio reports, like previous Gens. */
2868 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2869 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2871 * If the user didn't require OA reports, instruct
2872 * the hardware not to emit ctx switch reports.
2874 oag_report_ctx_switches(stream));
2876 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ?
2877 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2878 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2879 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2883 * Initialize Super Queue Internal Cnt Register
2884 * Set PMON Enable in order to collect valid metrics.
2885 * Enable byets per clock reporting in OA for XEHPSDV onward.
2887 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2888 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2890 intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1);
2893 * Update all contexts prior writing the mux configurations as we need
2894 * to make sure all slices/subslices are ON before writing to NOA
2897 ret = gen12_configure_all_contexts(stream, oa_config, active);
2902 * For Gen12, performance counters are context
2903 * saved/restored. Only enable it for the context that
2907 ret = gen12_configure_oar_context(stream, active);
2912 return emit_oa_config(stream,
2913 stream->oa_config, oa_context(stream),
2917 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2919 struct intel_uncore *uncore = stream->uncore;
2921 /* Reset all contexts' slices/subslices configurations. */
2922 lrc_configure_all_contexts(stream, NULL, NULL);
2924 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2927 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2929 struct intel_uncore *uncore = stream->uncore;
2931 /* Reset all contexts' slices/subslices configurations. */
2932 lrc_configure_all_contexts(stream, NULL, NULL);
2934 /* Make sure we disable noa to save power. */
2935 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2938 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2940 struct intel_uncore *uncore = stream->uncore;
2941 struct drm_i915_private *i915 = stream->perf->i915;
2945 * Wa_1508761755:xehpsdv, dg2
2946 * Enable thread stall DOP gating and EU DOP gating.
2948 if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2949 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2950 _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE));
2951 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2952 _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING));
2955 /* Reset all contexts' slices/subslices configurations. */
2956 gen12_configure_all_contexts(stream, NULL, NULL);
2958 /* disable the context save/restore or OAR counters */
2960 gen12_configure_oar_context(stream, NULL);
2962 /* Make sure we disable noa to save power. */
2963 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2965 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2966 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2968 /* Reset PMON Enable to save power. */
2969 intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0);
2972 static void gen7_oa_enable(struct i915_perf_stream *stream)
2974 struct intel_uncore *uncore = stream->uncore;
2975 struct i915_gem_context *ctx = stream->ctx;
2976 u32 ctx_id = stream->specific_ctx_id;
2977 bool periodic = stream->periodic;
2978 u32 period_exponent = stream->period_exponent;
2979 u32 report_format = stream->oa_buffer.format->format;
2982 * Reset buf pointers so we don't forward reports from before now.
2984 * Think carefully if considering trying to avoid this, since it
2985 * also ensures status flags and the buffer itself are cleared
2986 * in error paths, and we have checks for invalid reports based
2987 * on the assumption that certain fields are written to zeroed
2988 * memory which this helps maintains.
2990 gen7_init_oa_buffer(stream);
2992 intel_uncore_write(uncore, GEN7_OACONTROL,
2993 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2995 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2996 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2997 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2998 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2999 GEN7_OACONTROL_ENABLE);
3002 static void gen8_oa_enable(struct i915_perf_stream *stream)
3004 struct intel_uncore *uncore = stream->uncore;
3005 u32 report_format = stream->oa_buffer.format->format;
3008 * Reset buf pointers so we don't forward reports from before now.
3010 * Think carefully if considering trying to avoid this, since it
3011 * also ensures status flags and the buffer itself are cleared
3012 * in error paths, and we have checks for invalid reports based
3013 * on the assumption that certain fields are written to zeroed
3014 * memory which this helps maintains.
3016 gen8_init_oa_buffer(stream);
3019 * Note: we don't rely on the hardware to perform single context
3020 * filtering and instead filter on the cpu based on the context-id
3023 intel_uncore_write(uncore, GEN8_OACONTROL,
3024 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
3025 GEN8_OA_COUNTER_ENABLE);
3028 static void gen12_oa_enable(struct i915_perf_stream *stream)
3030 const struct i915_perf_regs *regs;
3034 * If we don't want OA reports from the OA buffer, then we don't even
3035 * need to program the OAG unit.
3037 if (!(stream->sample_flags & SAMPLE_OA_REPORT))
3040 gen12_init_oa_buffer(stream);
3042 regs = __oa_regs(stream);
3043 val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) |
3044 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE;
3046 intel_uncore_write(stream->uncore, regs->oa_ctrl, val);
3050 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
3051 * @stream: An i915 perf stream opened for OA metrics
3053 * [Re]enables hardware periodic sampling according to the period configured
3054 * when opening the stream. This also starts a hrtimer that will periodically
3055 * check for data in the circular OA buffer for notifying userspace (e.g.
3056 * during a read() or poll()).
3058 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
3060 stream->pollin = false;
3062 stream->perf->ops.oa_enable(stream);
3064 if (stream->sample_flags & SAMPLE_OA_REPORT)
3065 hrtimer_start(&stream->poll_check_timer,
3066 ns_to_ktime(stream->poll_oa_period),
3067 HRTIMER_MODE_REL_PINNED);
3070 static void gen7_oa_disable(struct i915_perf_stream *stream)
3072 struct intel_uncore *uncore = stream->uncore;
3074 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
3075 if (intel_wait_for_register(uncore,
3076 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
3078 drm_err(&stream->perf->i915->drm,
3079 "wait for OA to be disabled timed out\n");
3082 static void gen8_oa_disable(struct i915_perf_stream *stream)
3084 struct intel_uncore *uncore = stream->uncore;
3086 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
3087 if (intel_wait_for_register(uncore,
3088 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
3090 drm_err(&stream->perf->i915->drm,
3091 "wait for OA to be disabled timed out\n");
3094 static void gen12_oa_disable(struct i915_perf_stream *stream)
3096 struct intel_uncore *uncore = stream->uncore;
3098 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0);
3099 if (intel_wait_for_register(uncore,
3100 __oa_regs(stream)->oa_ctrl,
3101 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
3103 drm_err(&stream->perf->i915->drm,
3104 "wait for OA to be disabled timed out\n");
3106 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
3107 if (intel_wait_for_register(uncore,
3108 GEN12_OA_TLB_INV_CR,
3111 drm_err(&stream->perf->i915->drm,
3112 "wait for OA tlb invalidate timed out\n");
3116 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
3117 * @stream: An i915 perf stream opened for OA metrics
3119 * Stops the OA unit from periodically writing counter reports into the
3120 * circular OA buffer. This also stops the hrtimer that periodically checks for
3121 * data in the circular OA buffer, for notifying userspace.
3123 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
3125 stream->perf->ops.oa_disable(stream);
3127 if (stream->sample_flags & SAMPLE_OA_REPORT)
3128 hrtimer_cancel(&stream->poll_check_timer);
3131 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
3132 .destroy = i915_oa_stream_destroy,
3133 .enable = i915_oa_stream_enable,
3134 .disable = i915_oa_stream_disable,
3135 .wait_unlocked = i915_oa_wait_unlocked,
3136 .poll_wait = i915_oa_poll_wait,
3137 .read = i915_oa_read,
3140 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
3142 struct i915_active *active;
3145 active = i915_active_create();
3149 err = stream->perf->ops.enable_metric_set(stream, active);
3151 __i915_active_wait(active, TASK_UNINTERRUPTIBLE);
3153 i915_active_put(active);
3158 get_default_sseu_config(struct intel_sseu *out_sseu,
3159 struct intel_engine_cs *engine)
3161 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
3163 *out_sseu = intel_sseu_from_device_info(devinfo_sseu);
3165 if (GRAPHICS_VER(engine->i915) == 11) {
3167 * We only need subslice count so it doesn't matter which ones
3168 * we select - just turn off low bits in the amount of half of
3169 * all available subslices per slice.
3171 out_sseu->subslice_mask =
3172 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
3173 out_sseu->slice_mask = 0x1;
3178 get_sseu_config(struct intel_sseu *out_sseu,
3179 struct intel_engine_cs *engine,
3180 const struct drm_i915_gem_context_param_sseu *drm_sseu)
3182 if (drm_sseu->engine.engine_class != engine->uabi_class ||
3183 drm_sseu->engine.engine_instance != engine->uabi_instance)
3186 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
3190 * OA timestamp frequency = CS timestamp frequency in most platforms. On some
3191 * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such
3192 * cases, return the adjusted CS timestamp frequency to the user.
3194 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915)
3196 struct intel_gt *gt = to_gt(i915);
3198 /* Wa_18013179988 */
3199 if (IS_DG2(i915) || IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71))) {
3200 intel_wakeref_t wakeref;
3203 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref)
3204 reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0);
3206 shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK,
3209 return to_gt(i915)->clock_frequency << (3 - shift);
3212 return to_gt(i915)->clock_frequency;
3216 * i915_oa_stream_init - validate combined props for OA stream and init
3217 * @stream: An i915 perf stream
3218 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
3219 * @props: The property state that configures stream (individually validated)
3221 * While read_properties_unlocked() validates properties in isolation it
3222 * doesn't ensure that the combination necessarily makes sense.
3224 * At this point it has been determined that userspace wants a stream of
3225 * OA metrics, but still we need to further validate the combined
3226 * properties are OK.
3228 * If the configuration makes sense then we can allocate memory for
3229 * a circular OA buffer and apply the requested metric set configuration.
3231 * Returns: zero on success or a negative error code.
3233 static int i915_oa_stream_init(struct i915_perf_stream *stream,
3234 struct drm_i915_perf_open_param *param,
3235 struct perf_open_properties *props)
3237 struct drm_i915_private *i915 = stream->perf->i915;
3238 struct i915_perf *perf = stream->perf;
3239 struct i915_perf_group *g;
3242 if (!props->engine) {
3243 drm_dbg(&stream->perf->i915->drm,
3244 "OA engine not specified\n");
3247 g = props->engine->oa_group;
3250 * If the sysfs metrics/ directory wasn't registered for some
3251 * reason then don't let userspace try their luck with config
3254 if (!perf->metrics_kobj) {
3255 drm_dbg(&stream->perf->i915->drm,
3256 "OA metrics weren't advertised via sysfs\n");
3260 if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
3261 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
3262 drm_dbg(&stream->perf->i915->drm,
3263 "Only OA report sampling supported\n");
3267 if (!perf->ops.enable_metric_set) {
3268 drm_dbg(&stream->perf->i915->drm,
3269 "OA unit not supported\n");
3274 * To avoid the complexity of having to accurately filter
3275 * counter reports and marshal to the appropriate client
3276 * we currently only allow exclusive access
3278 if (g->exclusive_stream) {
3279 drm_dbg(&stream->perf->i915->drm,
3280 "OA unit already in use\n");
3284 if (!props->oa_format) {
3285 drm_dbg(&stream->perf->i915->drm,
3286 "OA report format not specified\n");
3290 stream->engine = props->engine;
3291 stream->uncore = stream->engine->gt->uncore;
3293 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
3295 stream->oa_buffer.format = &perf->oa_formats[props->oa_format];
3296 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0))
3299 stream->sample_flags = props->sample_flags;
3300 stream->sample_size += stream->oa_buffer.format->size;
3302 stream->hold_preemption = props->hold_preemption;
3304 stream->periodic = props->oa_periodic;
3305 if (stream->periodic)
3306 stream->period_exponent = props->oa_period_exponent;
3309 ret = oa_get_render_ctx_id(stream);
3311 drm_dbg(&stream->perf->i915->drm,
3312 "Invalid context id to filter with\n");
3317 ret = alloc_noa_wait(stream);
3319 drm_dbg(&stream->perf->i915->drm,
3320 "Unable to allocate NOA wait batch buffer\n");
3321 goto err_noa_wait_alloc;
3324 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
3325 if (!stream->oa_config) {
3326 drm_dbg(&stream->perf->i915->drm,
3327 "Invalid OA config id=%i\n", props->metrics_set);
3332 /* PRM - observability performance counters:
3334 * OACONTROL, performance counter enable, note:
3336 * "When this bit is set, in order to have coherent counts,
3337 * RC6 power state and trunk clock gating must be disabled.
3338 * This can be achieved by programming MMIO registers as
3339 * 0xA094=0 and 0xA090[31]=1"
3341 * In our case we are expecting that taking pm + FORCEWAKE
3342 * references will effectively disable RC6.
3344 intel_engine_pm_get(stream->engine);
3345 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
3347 ret = alloc_oa_buffer(stream);
3349 goto err_oa_buf_alloc;
3351 stream->ops = &i915_oa_stream_ops;
3353 stream->engine->gt->perf.sseu = props->sseu;
3354 WRITE_ONCE(g->exclusive_stream, stream);
3356 ret = i915_perf_stream_enable_sync(stream);
3358 drm_dbg(&stream->perf->i915->drm,
3359 "Unable to enable metric set\n");
3363 drm_dbg(&stream->perf->i915->drm,
3364 "opening stream oa config uuid=%s\n",
3365 stream->oa_config->uuid);
3367 hrtimer_init(&stream->poll_check_timer,
3368 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3369 stream->poll_check_timer.function = oa_poll_check_timer_cb;
3370 init_waitqueue_head(&stream->poll_wq);
3371 spin_lock_init(&stream->oa_buffer.ptr_lock);
3372 mutex_init(&stream->lock);
3377 WRITE_ONCE(g->exclusive_stream, NULL);
3378 perf->ops.disable_metric_set(stream);
3380 free_oa_buffer(stream);
3383 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3384 intel_engine_pm_put(stream->engine);
3386 free_oa_configs(stream);
3389 free_noa_wait(stream);
3393 oa_put_render_ctx_id(stream);
3398 void i915_oa_init_reg_state(const struct intel_context *ce,
3399 const struct intel_engine_cs *engine)
3401 struct i915_perf_stream *stream;
3403 if (engine->class != RENDER_CLASS)
3406 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3407 stream = READ_ONCE(engine->oa_group->exclusive_stream);
3408 if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3409 gen8_update_reg_state_unlocked(ce, stream);
3413 * i915_perf_read - handles read() FOP for i915 perf stream FDs
3414 * @file: An i915 perf stream file
3415 * @buf: destination buffer given by userspace
3416 * @count: the number of bytes userspace wants to read
3417 * @ppos: (inout) file seek position (unused)
3419 * The entry point for handling a read() on a stream file descriptor from
3420 * userspace. Most of the work is left to the i915_perf_read_locked() and
3421 * &i915_perf_stream_ops->read but to save having stream implementations (of
3422 * which we might have multiple later) we handle blocking read here.
3424 * We can also consistently treat trying to read from a disabled stream
3425 * as an IO error so implementations can assume the stream is enabled
3428 * Returns: The number of bytes copied or a negative error code on failure.
3430 static ssize_t i915_perf_read(struct file *file,
3435 struct i915_perf_stream *stream = file->private_data;
3439 /* To ensure it's handled consistently we simply treat all reads of a
3440 * disabled stream as an error. In particular it might otherwise lead
3441 * to a deadlock for blocking file descriptors...
3443 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3446 if (!(file->f_flags & O_NONBLOCK)) {
3447 /* There's the small chance of false positives from
3448 * stream->ops->wait_unlocked.
3450 * E.g. with single context filtering since we only wait until
3451 * oabuffer has >= 1 report we don't immediately know whether
3452 * any reports really belong to the current context
3455 ret = stream->ops->wait_unlocked(stream);
3459 mutex_lock(&stream->lock);
3460 ret = stream->ops->read(stream, buf, count, &offset);
3461 mutex_unlock(&stream->lock);
3462 } while (!offset && !ret);
3464 mutex_lock(&stream->lock);
3465 ret = stream->ops->read(stream, buf, count, &offset);
3466 mutex_unlock(&stream->lock);
3469 /* We allow the poll checking to sometimes report false positive EPOLLIN
3470 * events where we might actually report EAGAIN on read() if there's
3471 * not really any data available. In this situation though we don't
3472 * want to enter a busy loop between poll() reporting a EPOLLIN event
3473 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3474 * effectively ensures we back off until the next hrtimer callback
3475 * before reporting another EPOLLIN event.
3476 * The exception to this is if ops->read() returned -ENOSPC which means
3477 * that more OA data is available than could fit in the user provided
3478 * buffer. In this case we want the next poll() call to not block.
3481 stream->pollin = false;
3483 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3484 return offset ?: (ret ?: -EAGAIN);
3487 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3489 struct i915_perf_stream *stream =
3490 container_of(hrtimer, typeof(*stream), poll_check_timer);
3492 if (oa_buffer_check_unlocked(stream)) {
3493 stream->pollin = true;
3494 wake_up(&stream->poll_wq);
3497 hrtimer_forward_now(hrtimer,
3498 ns_to_ktime(stream->poll_oa_period));
3500 return HRTIMER_RESTART;
3504 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3505 * @stream: An i915 perf stream
3506 * @file: An i915 perf stream file
3507 * @wait: poll() state table
3509 * For handling userspace polling on an i915 perf stream, this calls through to
3510 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3511 * will be woken for new stream data.
3513 * Returns: any poll events that are ready without sleeping
3515 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3519 __poll_t events = 0;
3521 stream->ops->poll_wait(stream, file, wait);
3523 /* Note: we don't explicitly check whether there's something to read
3524 * here since this path may be very hot depending on what else
3525 * userspace is polling, or on the timeout in use. We rely solely on
3526 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3536 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3537 * @file: An i915 perf stream file
3538 * @wait: poll() state table
3540 * For handling userspace polling on an i915 perf stream, this ensures
3541 * poll_wait() gets called with a wait queue that will be woken for new stream
3544 * Note: Implementation deferred to i915_perf_poll_locked()
3546 * Returns: any poll events that are ready without sleeping
3548 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3550 struct i915_perf_stream *stream = file->private_data;
3553 mutex_lock(&stream->lock);
3554 ret = i915_perf_poll_locked(stream, file, wait);
3555 mutex_unlock(&stream->lock);
3561 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3562 * @stream: A disabled i915 perf stream
3564 * [Re]enables the associated capture of data for this stream.
3566 * If a stream was previously enabled then there's currently no intention
3567 * to provide userspace any guarantee about the preservation of previously
3570 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3572 if (stream->enabled)
3575 /* Allow stream->ops->enable() to refer to this */
3576 stream->enabled = true;
3578 if (stream->ops->enable)
3579 stream->ops->enable(stream);
3581 if (stream->hold_preemption)
3582 intel_context_set_nopreempt(stream->pinned_ctx);
3586 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3587 * @stream: An enabled i915 perf stream
3589 * Disables the associated capture of data for this stream.
3591 * The intention is that disabling an re-enabling a stream will ideally be
3592 * cheaper than destroying and re-opening a stream with the same configuration,
3593 * though there are no formal guarantees about what state or buffered data
3594 * must be retained between disabling and re-enabling a stream.
3596 * Note: while a stream is disabled it's considered an error for userspace
3597 * to attempt to read from the stream (-EIO).
3599 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3601 if (!stream->enabled)
3604 /* Allow stream->ops->disable() to refer to this */
3605 stream->enabled = false;
3607 if (stream->hold_preemption)
3608 intel_context_clear_nopreempt(stream->pinned_ctx);
3610 if (stream->ops->disable)
3611 stream->ops->disable(stream);
3614 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3615 unsigned long metrics_set)
3617 struct i915_oa_config *config;
3618 long ret = stream->oa_config->id;
3620 config = i915_perf_get_oa_config(stream->perf, metrics_set);
3624 if (config != stream->oa_config) {
3628 * If OA is bound to a specific context, emit the
3629 * reconfiguration inline from that context. The update
3630 * will then be ordered with respect to submission on that
3633 * When set globally, we use a low priority kernel context,
3634 * so it will effectively take effect when idle.
3636 err = emit_oa_config(stream, config, oa_context(stream), NULL);
3638 config = xchg(&stream->oa_config, config);
3643 i915_oa_config_put(config);
3649 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3650 * @stream: An i915 perf stream
3651 * @cmd: the ioctl request
3652 * @arg: the ioctl data
3654 * Returns: zero on success or a negative error code. Returns -EINVAL for
3655 * an unknown ioctl request.
3657 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3662 case I915_PERF_IOCTL_ENABLE:
3663 i915_perf_enable_locked(stream);
3665 case I915_PERF_IOCTL_DISABLE:
3666 i915_perf_disable_locked(stream);
3668 case I915_PERF_IOCTL_CONFIG:
3669 return i915_perf_config_locked(stream, arg);
3676 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3677 * @file: An i915 perf stream file
3678 * @cmd: the ioctl request
3679 * @arg: the ioctl data
3681 * Implementation deferred to i915_perf_ioctl_locked().
3683 * Returns: zero on success or a negative error code. Returns -EINVAL for
3684 * an unknown ioctl request.
3686 static long i915_perf_ioctl(struct file *file,
3690 struct i915_perf_stream *stream = file->private_data;
3693 mutex_lock(&stream->lock);
3694 ret = i915_perf_ioctl_locked(stream, cmd, arg);
3695 mutex_unlock(&stream->lock);
3701 * i915_perf_destroy_locked - destroy an i915 perf stream
3702 * @stream: An i915 perf stream
3704 * Frees all resources associated with the given i915 perf @stream, disabling
3705 * any associated data capture in the process.
3707 * Note: The >->perf.lock mutex has been taken to serialize
3708 * with any non-file-operation driver hooks.
3710 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3712 if (stream->enabled)
3713 i915_perf_disable_locked(stream);
3715 if (stream->ops->destroy)
3716 stream->ops->destroy(stream);
3719 i915_gem_context_put(stream->ctx);
3725 * i915_perf_release - handles userspace close() of a stream file
3726 * @inode: anonymous inode associated with file
3727 * @file: An i915 perf stream file
3729 * Cleans up any resources associated with an open i915 perf stream file.
3731 * NB: close() can't really fail from the userspace point of view.
3733 * Returns: zero on success or a negative error code.
3735 static int i915_perf_release(struct inode *inode, struct file *file)
3737 struct i915_perf_stream *stream = file->private_data;
3738 struct i915_perf *perf = stream->perf;
3739 struct intel_gt *gt = stream->engine->gt;
3742 * Within this call, we know that the fd is being closed and we have no
3743 * other user of stream->lock. Use the perf lock to destroy the stream
3746 mutex_lock(>->perf.lock);
3747 i915_perf_destroy_locked(stream);
3748 mutex_unlock(>->perf.lock);
3750 /* Release the reference the perf stream kept on the driver. */
3751 drm_dev_put(&perf->i915->drm);
3757 static const struct file_operations fops = {
3758 .owner = THIS_MODULE,
3759 .llseek = no_llseek,
3760 .release = i915_perf_release,
3761 .poll = i915_perf_poll,
3762 .read = i915_perf_read,
3763 .unlocked_ioctl = i915_perf_ioctl,
3764 /* Our ioctl have no arguments, so it's safe to use the same function
3765 * to handle 32bits compatibility.
3767 .compat_ioctl = i915_perf_ioctl,
3772 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3773 * @perf: i915 perf instance
3774 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3775 * @props: individually validated u64 property value pairs
3778 * See i915_perf_ioctl_open() for interface details.
3780 * Implements further stream config validation and stream initialization on
3781 * behalf of i915_perf_open_ioctl() with the >->perf.lock mutex
3782 * taken to serialize with any non-file-operation driver hooks.
3784 * Note: at this point the @props have only been validated in isolation and
3785 * it's still necessary to validate that the combination of properties makes
3788 * In the case where userspace is interested in OA unit metrics then further
3789 * config validation and stream initialization details will be handled by
3790 * i915_oa_stream_init(). The code here should only validate config state that
3791 * will be relevant to all stream types / backends.
3793 * Returns: zero on success or a negative error code.
3796 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3797 struct drm_i915_perf_open_param *param,
3798 struct perf_open_properties *props,
3799 struct drm_file *file)
3801 struct i915_gem_context *specific_ctx = NULL;
3802 struct i915_perf_stream *stream = NULL;
3803 unsigned long f_flags = 0;
3804 bool privileged_op = true;
3808 if (props->single_context) {
3809 u32 ctx_handle = props->ctx_handle;
3810 struct drm_i915_file_private *file_priv = file->driver_priv;
3812 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3813 if (IS_ERR(specific_ctx)) {
3814 drm_dbg(&perf->i915->drm,
3815 "Failed to look up context with ID %u for opening perf stream\n",
3817 ret = PTR_ERR(specific_ctx);
3823 * On Haswell the OA unit supports clock gating off for a specific
3824 * context and in this mode there's no visibility of metrics for the
3825 * rest of the system, which we consider acceptable for a
3826 * non-privileged client.
3828 * For Gen8->11 the OA unit no longer supports clock gating off for a
3829 * specific context and the kernel can't securely stop the counters
3830 * from updating as system-wide / global values. Even though we can
3831 * filter reports based on the included context ID we can't block
3832 * clients from seeing the raw / global counter values via
3833 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3834 * enable the OA unit by default.
3836 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3837 * per context basis. So we can relax requirements there if the user
3838 * doesn't request global stream access (i.e. query based sampling
3839 * using MI_RECORD_PERF_COUNT.
3841 if (IS_HASWELL(perf->i915) && specific_ctx)
3842 privileged_op = false;
3843 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3844 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3845 privileged_op = false;
3847 if (props->hold_preemption) {
3848 if (!props->single_context) {
3849 drm_dbg(&perf->i915->drm,
3850 "preemption disable with no context\n");
3854 privileged_op = true;
3858 * Asking for SSEU configuration is a priviliged operation.
3860 if (props->has_sseu)
3861 privileged_op = true;
3863 get_default_sseu_config(&props->sseu, props->engine);
3865 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3866 * we check a dev.i915.perf_stream_paranoid sysctl option
3867 * to determine if it's ok to access system wide OA counters
3868 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3870 if (privileged_op &&
3871 i915_perf_stream_paranoid && !perfmon_capable()) {
3872 drm_dbg(&perf->i915->drm,
3873 "Insufficient privileges to open i915 perf stream\n");
3878 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3884 stream->perf = perf;
3885 stream->ctx = specific_ctx;
3886 stream->poll_oa_period = props->poll_oa_period;
3888 ret = i915_oa_stream_init(stream, param, props);
3892 /* we avoid simply assigning stream->sample_flags = props->sample_flags
3893 * to have _stream_init check the combination of sample flags more
3894 * thoroughly, but still this is the expected result at this point.
3896 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3901 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3902 f_flags |= O_CLOEXEC;
3903 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3904 f_flags |= O_NONBLOCK;
3906 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3907 if (stream_fd < 0) {
3912 if (!(param->flags & I915_PERF_FLAG_DISABLED))
3913 i915_perf_enable_locked(stream);
3915 /* Take a reference on the driver that will be kept with stream_fd
3916 * until its release.
3918 drm_dev_get(&perf->i915->drm);
3923 if (stream->ops->destroy)
3924 stream->ops->destroy(stream);
3929 i915_gem_context_put(specific_ctx);
3934 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3936 u64 nom = (2ULL << exponent) * NSEC_PER_SEC;
3937 u32 den = i915_perf_oa_timestamp_frequency(perf->i915);
3939 return div_u64(nom + den - 1, den);
3942 static __always_inline bool
3943 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3945 return test_bit(format, perf->format_mask);
3948 static __always_inline void
3949 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
3951 __set_bit(format, perf->format_mask);
3955 * read_properties_unlocked - validate + copy userspace stream open properties
3956 * @perf: i915 perf instance
3957 * @uprops: The array of u64 key value pairs given by userspace
3958 * @n_props: The number of key value pairs expected in @uprops
3959 * @props: The stream configuration built up while validating properties
3961 * Note this function only validates properties in isolation it doesn't
3962 * validate that the combination of properties makes sense or that all
3963 * properties necessary for a particular kind of stream have been set.
3965 * Note that there currently aren't any ordering requirements for properties so
3966 * we shouldn't validate or assume anything about ordering here. This doesn't
3967 * rule out defining new properties with ordering requirements in the future.
3969 static int read_properties_unlocked(struct i915_perf *perf,
3972 struct perf_open_properties *props)
3974 struct drm_i915_gem_context_param_sseu user_sseu;
3975 const struct i915_oa_format *f;
3976 u64 __user *uprop = uprops;
3977 bool config_instance = false;
3978 bool config_class = false;
3979 bool config_sseu = false;
3984 memset(props, 0, sizeof(struct perf_open_properties));
3985 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3987 /* Considering that ID = 0 is reserved and assuming that we don't
3988 * (currently) expect any configurations to ever specify duplicate
3989 * values for a particular property ID then the last _PROP_MAX value is
3990 * one greater than the maximum number of properties we expect to get
3993 if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) {
3994 drm_dbg(&perf->i915->drm,
3995 "Invalid number of i915 perf properties given\n");
3999 /* Defaults when class:instance is not passed */
4000 class = I915_ENGINE_CLASS_RENDER;
4003 for (i = 0; i < n_props; i++) {
4004 u64 oa_period, oa_freq_hz;
4007 ret = get_user(id, uprop);
4011 ret = get_user(value, uprop + 1);
4015 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
4016 drm_dbg(&perf->i915->drm,
4017 "Unknown i915 perf property ID\n");
4021 switch ((enum drm_i915_perf_property_id)id) {
4022 case DRM_I915_PERF_PROP_CTX_HANDLE:
4023 props->single_context = 1;
4024 props->ctx_handle = value;
4026 case DRM_I915_PERF_PROP_SAMPLE_OA:
4028 props->sample_flags |= SAMPLE_OA_REPORT;
4030 case DRM_I915_PERF_PROP_OA_METRICS_SET:
4032 drm_dbg(&perf->i915->drm,
4033 "Unknown OA metric set ID\n");
4036 props->metrics_set = value;
4038 case DRM_I915_PERF_PROP_OA_FORMAT:
4039 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
4040 drm_dbg(&perf->i915->drm,
4041 "Out-of-range OA report format %llu\n",
4045 if (!oa_format_valid(perf, value)) {
4046 drm_dbg(&perf->i915->drm,
4047 "Unsupported OA report format %llu\n",
4051 props->oa_format = value;
4053 case DRM_I915_PERF_PROP_OA_EXPONENT:
4054 if (value > OA_EXPONENT_MAX) {
4055 drm_dbg(&perf->i915->drm,
4056 "OA timer exponent too high (> %u)\n",
4061 /* Theoretically we can program the OA unit to sample
4062 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
4063 * for BXT. We don't allow such high sampling
4064 * frequencies by default unless root.
4067 BUILD_BUG_ON(sizeof(oa_period) != 8);
4068 oa_period = oa_exponent_to_ns(perf, value);
4070 /* This check is primarily to ensure that oa_period <=
4071 * UINT32_MAX (before passing to do_div which only
4072 * accepts a u32 denominator), but we can also skip
4073 * checking anything < 1Hz which implicitly can't be
4074 * limited via an integer oa_max_sample_rate.
4076 if (oa_period <= NSEC_PER_SEC) {
4077 u64 tmp = NSEC_PER_SEC;
4078 do_div(tmp, oa_period);
4083 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
4084 drm_dbg(&perf->i915->drm,
4085 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
4086 i915_oa_max_sample_rate);
4090 props->oa_periodic = true;
4091 props->oa_period_exponent = value;
4093 case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
4094 props->hold_preemption = !!value;
4096 case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
4097 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) {
4098 drm_dbg(&perf->i915->drm,
4099 "SSEU config not supported on gfx %x\n",
4100 GRAPHICS_VER_FULL(perf->i915));
4104 if (copy_from_user(&user_sseu,
4105 u64_to_user_ptr(value),
4106 sizeof(user_sseu))) {
4107 drm_dbg(&perf->i915->drm,
4108 "Unable to copy global sseu parameter\n");
4114 case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
4115 if (value < 100000 /* 100us */) {
4116 drm_dbg(&perf->i915->drm,
4117 "OA availability timer too small (%lluns < 100us)\n",
4121 props->poll_oa_period = value;
4123 case DRM_I915_PERF_PROP_OA_ENGINE_CLASS:
4125 config_class = true;
4127 case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE:
4128 instance = (u8)value;
4129 config_instance = true;
4139 if ((config_class && !config_instance) ||
4140 (config_instance && !config_class)) {
4141 drm_dbg(&perf->i915->drm,
4142 "OA engine-class and engine-instance parameters must be passed together\n");
4146 props->engine = intel_engine_lookup_user(perf->i915, class, instance);
4147 if (!props->engine) {
4148 drm_dbg(&perf->i915->drm,
4149 "OA engine class and instance invalid %d:%d\n",
4154 if (!engine_supports_oa(props->engine)) {
4155 drm_dbg(&perf->i915->drm,
4156 "Engine not supported by OA %d:%d\n",
4162 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
4163 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM
4164 * does not work as expected.
4166 if (IS_MEDIA_GT_IP_STEP(props->engine->gt, IP_VER(13, 0), STEP_A0, STEP_C0) &&
4167 props->engine->oa_group->type == TYPE_OAM &&
4168 intel_check_bios_c6_setup(&props->engine->gt->rc6)) {
4169 drm_dbg(&perf->i915->drm,
4170 "OAM requires media C6 to be disabled in BIOS\n");
4174 i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX);
4175 f = &perf->oa_formats[i];
4176 if (!engine_supports_oa_format(props->engine, f->type)) {
4177 drm_dbg(&perf->i915->drm,
4178 "Invalid OA format %d for class %d\n",
4179 f->type, props->engine->class);
4184 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
4186 drm_dbg(&perf->i915->drm,
4187 "Invalid SSEU configuration\n");
4190 props->has_sseu = true;
4197 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
4199 * @data: ioctl data copied from userspace (unvalidated)
4202 * Validates the stream open parameters given by userspace including flags
4203 * and an array of u64 key, value pair properties.
4205 * Very little is assumed up front about the nature of the stream being
4206 * opened (for instance we don't assume it's for periodic OA unit metrics). An
4207 * i915-perf stream is expected to be a suitable interface for other forms of
4208 * buffered data written by the GPU besides periodic OA metrics.
4210 * Note we copy the properties from userspace outside of the i915 perf
4211 * mutex to avoid an awkward lockdep with mmap_lock.
4213 * Most of the implementation details are handled by
4214 * i915_perf_open_ioctl_locked() after taking the >->perf.lock
4215 * mutex for serializing with any non-file-operation driver hooks.
4217 * Return: A newly opened i915 Perf stream file descriptor or negative
4218 * error code on failure.
4220 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
4221 struct drm_file *file)
4223 struct i915_perf *perf = &to_i915(dev)->perf;
4224 struct drm_i915_perf_open_param *param = data;
4225 struct intel_gt *gt;
4226 struct perf_open_properties props;
4227 u32 known_open_flags;
4233 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
4234 I915_PERF_FLAG_FD_NONBLOCK |
4235 I915_PERF_FLAG_DISABLED;
4236 if (param->flags & ~known_open_flags) {
4237 drm_dbg(&perf->i915->drm,
4238 "Unknown drm_i915_perf_open_param flag\n");
4242 ret = read_properties_unlocked(perf,
4243 u64_to_user_ptr(param->properties_ptr),
4244 param->num_properties,
4249 gt = props.engine->gt;
4251 mutex_lock(>->perf.lock);
4252 ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
4253 mutex_unlock(>->perf.lock);
4259 * i915_perf_register - exposes i915-perf to userspace
4260 * @i915: i915 device instance
4262 * In particular OA metric sets are advertised under a sysfs metrics/
4263 * directory allowing userspace to enumerate valid IDs that can be
4264 * used to open an i915-perf stream.
4266 void i915_perf_register(struct drm_i915_private *i915)
4268 struct i915_perf *perf = &i915->perf;
4269 struct intel_gt *gt = to_gt(i915);
4274 /* To be sure we're synchronized with an attempted
4275 * i915_perf_open_ioctl(); considering that we register after
4276 * being exposed to userspace.
4278 mutex_lock(>->perf.lock);
4280 perf->metrics_kobj =
4281 kobject_create_and_add("metrics",
4282 &i915->drm.primary->kdev->kobj);
4284 mutex_unlock(>->perf.lock);
4288 * i915_perf_unregister - hide i915-perf from userspace
4289 * @i915: i915 device instance
4291 * i915-perf state cleanup is split up into an 'unregister' and
4292 * 'deinit' phase where the interface is first hidden from
4293 * userspace by i915_perf_unregister() before cleaning up
4294 * remaining state in i915_perf_fini().
4296 void i915_perf_unregister(struct drm_i915_private *i915)
4298 struct i915_perf *perf = &i915->perf;
4300 if (!perf->metrics_kobj)
4303 kobject_put(perf->metrics_kobj);
4304 perf->metrics_kobj = NULL;
4307 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4309 static const i915_reg_t flex_eu_regs[] = {
4320 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4321 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4327 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
4329 while (table->start || table->end) {
4330 if (addr >= table->start && addr <= table->end)
4339 #define REG_EQUAL(addr, mmio) \
4340 ((addr) == i915_mmio_reg_offset(mmio))
4342 static const struct i915_range gen7_oa_b_counters[] = {
4343 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */
4344 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */
4345 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */
4349 static const struct i915_range gen12_oa_b_counters[] = {
4350 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */
4351 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */
4352 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */
4353 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */
4354 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */
4355 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */
4356 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */
4360 static const struct i915_range mtl_oam_b_counters[] = {
4361 { .start = 0x393000, .end = 0x39301c }, /* GEN12_OAM_STARTTRIG1[1-8] */
4362 { .start = 0x393020, .end = 0x39303c }, /* GEN12_OAM_REPORTTRIG1[1-8] */
4363 { .start = 0x393040, .end = 0x39307c }, /* GEN12_OAM_CEC[0-7][0-1] */
4364 { .start = 0x393200, .end = 0x39323C }, /* MPES[0-7] */
4368 static const struct i915_range xehp_oa_b_counters[] = {
4369 { .start = 0xdc48, .end = 0xdc48 }, /* OAA_ENABLE_REG */
4370 { .start = 0xdd00, .end = 0xdd48 }, /* OAG_LCE0_0 - OAA_LENABLE_REG */
4374 static const struct i915_range gen7_oa_mux_regs[] = {
4375 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */
4376 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */
4377 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */
4381 static const struct i915_range hsw_oa_mux_regs[] = {
4382 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
4383 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
4384 { .start = 0x25100, .end = 0x2ff90 },
4388 static const struct i915_range chv_oa_mux_regs[] = {
4389 { .start = 0x182300, .end = 0x1823a4 },
4393 static const struct i915_range gen8_oa_mux_regs[] = {
4394 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
4395 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */
4399 static const struct i915_range gen11_oa_mux_regs[] = {
4400 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */
4404 static const struct i915_range gen12_oa_mux_regs[] = {
4405 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */
4406 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */
4407 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */
4408 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */
4409 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */
4415 * 0x20cc is repurposed on MTL, so use a separate array for MTL.
4417 static const struct i915_range mtl_oa_mux_regs[] = {
4418 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */
4419 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */
4420 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */
4421 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */
4422 { .start = 0x38d100, .end = 0x38d114}, /* VISACTL */
4426 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4428 return reg_in_range_table(addr, gen7_oa_b_counters);
4431 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4433 return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4434 reg_in_range_table(addr, gen8_oa_mux_regs);
4437 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4439 return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4440 reg_in_range_table(addr, gen8_oa_mux_regs) ||
4441 reg_in_range_table(addr, gen11_oa_mux_regs);
4444 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4446 return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4447 reg_in_range_table(addr, hsw_oa_mux_regs);
4450 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4452 return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4453 reg_in_range_table(addr, chv_oa_mux_regs);
4456 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4458 return reg_in_range_table(addr, gen12_oa_b_counters);
4461 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr)
4463 if (HAS_OAM(perf->i915) &&
4464 GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4465 return reg_in_range_table(addr, mtl_oam_b_counters);
4470 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4472 return reg_in_range_table(addr, xehp_oa_b_counters) ||
4473 reg_in_range_table(addr, gen12_oa_b_counters) ||
4474 mtl_is_valid_oam_b_counter_addr(perf, addr);
4477 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4479 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4480 return reg_in_range_table(addr, mtl_oa_mux_regs);
4482 return reg_in_range_table(addr, gen12_oa_mux_regs);
4485 static u32 mask_reg_value(u32 reg, u32 val)
4487 /* HALF_SLICE_CHICKEN2 is programmed with a the
4488 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4489 * programmed by userspace doesn't change this.
4491 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4492 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4494 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4495 * indicated by its name and a bunch of selection fields used by OA
4498 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4499 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4504 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4505 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4509 struct i915_oa_reg *oa_regs;
4516 /* No is_valid function means we're not allowing any register to be programmed. */
4517 GEM_BUG_ON(!is_valid);
4519 return ERR_PTR(-EINVAL);
4521 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4523 return ERR_PTR(-ENOMEM);
4525 for (i = 0; i < n_regs; i++) {
4528 err = get_user(addr, regs);
4532 if (!is_valid(perf, addr)) {
4533 drm_dbg(&perf->i915->drm,
4534 "Invalid oa_reg address: %X\n", addr);
4539 err = get_user(value, regs + 1);
4543 oa_regs[i].addr = _MMIO(addr);
4544 oa_regs[i].value = mask_reg_value(addr, value);
4553 return ERR_PTR(err);
4556 static ssize_t show_dynamic_id(struct kobject *kobj,
4557 struct kobj_attribute *attr,
4560 struct i915_oa_config *oa_config =
4561 container_of(attr, typeof(*oa_config), sysfs_metric_id);
4563 return sprintf(buf, "%d\n", oa_config->id);
4566 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4567 struct i915_oa_config *oa_config)
4569 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4570 oa_config->sysfs_metric_id.attr.name = "id";
4571 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4572 oa_config->sysfs_metric_id.show = show_dynamic_id;
4573 oa_config->sysfs_metric_id.store = NULL;
4575 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4576 oa_config->attrs[1] = NULL;
4578 oa_config->sysfs_metric.name = oa_config->uuid;
4579 oa_config->sysfs_metric.attrs = oa_config->attrs;
4581 return sysfs_create_group(perf->metrics_kobj,
4582 &oa_config->sysfs_metric);
4586 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4588 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4589 * userspace (unvalidated)
4592 * Validates the submitted OA register to be saved into a new OA config that
4593 * can then be used for programming the OA unit and its NOA network.
4595 * Returns: A new allocated config number to be used with the perf open ioctl
4596 * or a negative error code on failure.
4598 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4599 struct drm_file *file)
4601 struct i915_perf *perf = &to_i915(dev)->perf;
4602 struct drm_i915_perf_oa_config *args = data;
4603 struct i915_oa_config *oa_config, *tmp;
4604 struct i915_oa_reg *regs;
4610 if (!perf->metrics_kobj) {
4611 drm_dbg(&perf->i915->drm,
4612 "OA metrics weren't advertised via sysfs\n");
4616 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4617 drm_dbg(&perf->i915->drm,
4618 "Insufficient privileges to add i915 OA config\n");
4622 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4623 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4624 (!args->flex_regs_ptr || !args->n_flex_regs)) {
4625 drm_dbg(&perf->i915->drm,
4626 "No OA registers given\n");
4630 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4632 drm_dbg(&perf->i915->drm,
4633 "Failed to allocate memory for the OA config\n");
4637 oa_config->perf = perf;
4638 kref_init(&oa_config->ref);
4640 if (!uuid_is_valid(args->uuid)) {
4641 drm_dbg(&perf->i915->drm,
4642 "Invalid uuid format for OA config\n");
4647 /* Last character in oa_config->uuid will be 0 because oa_config is
4650 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4652 oa_config->mux_regs_len = args->n_mux_regs;
4653 regs = alloc_oa_regs(perf,
4654 perf->ops.is_valid_mux_reg,
4655 u64_to_user_ptr(args->mux_regs_ptr),
4659 drm_dbg(&perf->i915->drm,
4660 "Failed to create OA config for mux_regs\n");
4661 err = PTR_ERR(regs);
4664 oa_config->mux_regs = regs;
4666 oa_config->b_counter_regs_len = args->n_boolean_regs;
4667 regs = alloc_oa_regs(perf,
4668 perf->ops.is_valid_b_counter_reg,
4669 u64_to_user_ptr(args->boolean_regs_ptr),
4670 args->n_boolean_regs);
4673 drm_dbg(&perf->i915->drm,
4674 "Failed to create OA config for b_counter_regs\n");
4675 err = PTR_ERR(regs);
4678 oa_config->b_counter_regs = regs;
4680 if (GRAPHICS_VER(perf->i915) < 8) {
4681 if (args->n_flex_regs != 0) {
4686 oa_config->flex_regs_len = args->n_flex_regs;
4687 regs = alloc_oa_regs(perf,
4688 perf->ops.is_valid_flex_reg,
4689 u64_to_user_ptr(args->flex_regs_ptr),
4693 drm_dbg(&perf->i915->drm,
4694 "Failed to create OA config for flex_regs\n");
4695 err = PTR_ERR(regs);
4698 oa_config->flex_regs = regs;
4701 err = mutex_lock_interruptible(&perf->metrics_lock);
4705 /* We shouldn't have too many configs, so this iteration shouldn't be
4708 idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4709 if (!strcmp(tmp->uuid, oa_config->uuid)) {
4710 drm_dbg(&perf->i915->drm,
4711 "OA config already exists with this uuid\n");
4717 err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4719 drm_dbg(&perf->i915->drm,
4720 "Failed to create sysfs entry for OA config\n");
4724 /* Config id 0 is invalid, id 1 for kernel stored test config. */
4725 oa_config->id = idr_alloc(&perf->metrics_idr,
4728 if (oa_config->id < 0) {
4729 drm_dbg(&perf->i915->drm,
4730 "Failed to create sysfs entry for OA config\n");
4731 err = oa_config->id;
4736 drm_dbg(&perf->i915->drm,
4737 "Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4738 mutex_unlock(&perf->metrics_lock);
4743 mutex_unlock(&perf->metrics_lock);
4745 i915_oa_config_put(oa_config);
4746 drm_dbg(&perf->i915->drm,
4747 "Failed to add new OA config\n");
4752 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4754 * @data: ioctl data (pointer to u64 integer) copied from userspace
4757 * Configs can be removed while being used, the will stop appearing in sysfs
4758 * and their content will be freed when the stream using the config is closed.
4760 * Returns: 0 on success or a negative error code on failure.
4762 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4763 struct drm_file *file)
4765 struct i915_perf *perf = &to_i915(dev)->perf;
4767 struct i915_oa_config *oa_config;
4773 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4774 drm_dbg(&perf->i915->drm,
4775 "Insufficient privileges to remove i915 OA config\n");
4779 ret = mutex_lock_interruptible(&perf->metrics_lock);
4783 oa_config = idr_find(&perf->metrics_idr, *arg);
4785 drm_dbg(&perf->i915->drm,
4786 "Failed to remove unknown OA config\n");
4791 GEM_BUG_ON(*arg != oa_config->id);
4793 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4795 idr_remove(&perf->metrics_idr, *arg);
4797 mutex_unlock(&perf->metrics_lock);
4799 drm_dbg(&perf->i915->drm,
4800 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4802 i915_oa_config_put(oa_config);
4807 mutex_unlock(&perf->metrics_lock);
4811 static struct ctl_table oa_table[] = {
4813 .procname = "perf_stream_paranoid",
4814 .data = &i915_perf_stream_paranoid,
4815 .maxlen = sizeof(i915_perf_stream_paranoid),
4817 .proc_handler = proc_dointvec_minmax,
4818 .extra1 = SYSCTL_ZERO,
4819 .extra2 = SYSCTL_ONE,
4822 .procname = "oa_max_sample_rate",
4823 .data = &i915_oa_max_sample_rate,
4824 .maxlen = sizeof(i915_oa_max_sample_rate),
4826 .proc_handler = proc_dointvec_minmax,
4827 .extra1 = SYSCTL_ZERO,
4828 .extra2 = &oa_sample_rate_hard_limit,
4832 static u32 num_perf_groups_per_gt(struct intel_gt *gt)
4837 static u32 __oam_engine_group(struct intel_engine_cs *engine)
4839 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) {
4841 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices
4842 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA.
4844 drm_WARN_ON(&engine->i915->drm,
4845 engine->gt->type != GT_MEDIA);
4847 return PERF_GROUP_OAM_SAMEDIA_0;
4850 return PERF_GROUP_INVALID;
4853 static u32 __oa_engine_group(struct intel_engine_cs *engine)
4855 switch (engine->class) {
4857 return PERF_GROUP_OAG;
4859 case VIDEO_DECODE_CLASS:
4860 case VIDEO_ENHANCEMENT_CLASS:
4861 return __oam_engine_group(engine);
4864 return PERF_GROUP_INVALID;
4868 static struct i915_perf_regs __oam_regs(u32 base)
4870 return (struct i915_perf_regs) {
4872 GEN12_OAM_HEAD_POINTER(base),
4873 GEN12_OAM_TAIL_POINTER(base),
4874 GEN12_OAM_BUFFER(base),
4875 GEN12_OAM_CONTEXT_CONTROL(base),
4876 GEN12_OAM_CONTROL(base),
4877 GEN12_OAM_DEBUG(base),
4878 GEN12_OAM_STATUS(base),
4879 GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT,
4883 static struct i915_perf_regs __oag_regs(void)
4885 return (struct i915_perf_regs) {
4887 GEN12_OAG_OAHEADPTR,
4888 GEN12_OAG_OATAILPTR,
4890 GEN12_OAG_OAGLBCTXCTRL,
4891 GEN12_OAG_OACONTROL,
4894 GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT,
4898 static void oa_init_groups(struct intel_gt *gt)
4900 int i, num_groups = gt->perf.num_perf_groups;
4902 for (i = 0; i < num_groups; i++) {
4903 struct i915_perf_group *g = >->perf.group[i];
4905 /* Fused off engines can result in a group with num_engines == 0 */
4906 if (g->num_engines == 0)
4909 if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) {
4910 g->regs = __oag_regs();
4912 } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
4913 g->regs = __oam_regs(mtl_oa_base[i]);
4919 static int oa_init_gt(struct intel_gt *gt)
4921 u32 num_groups = num_perf_groups_per_gt(gt);
4922 struct intel_engine_cs *engine;
4923 struct i915_perf_group *g;
4924 intel_engine_mask_t tmp;
4926 g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL);
4930 for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) {
4931 u32 index = __oa_engine_group(engine);
4933 engine->oa_group = NULL;
4934 if (index < num_groups) {
4935 g[index].num_engines++;
4936 engine->oa_group = &g[index];
4940 gt->perf.num_perf_groups = num_groups;
4948 static int oa_init_engine_groups(struct i915_perf *perf)
4950 struct intel_gt *gt;
4953 for_each_gt(gt, perf->i915, i) {
4954 ret = oa_init_gt(gt);
4962 static void oa_init_supported_formats(struct i915_perf *perf)
4964 struct drm_i915_private *i915 = perf->i915;
4965 enum intel_platform platform = INTEL_INFO(i915)->platform;
4969 oa_format_add(perf, I915_OA_FORMAT_A13);
4970 oa_format_add(perf, I915_OA_FORMAT_A13);
4971 oa_format_add(perf, I915_OA_FORMAT_A29);
4972 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
4973 oa_format_add(perf, I915_OA_FORMAT_B4_C8);
4974 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
4975 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
4976 oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4979 case INTEL_BROADWELL:
4980 case INTEL_CHERRYVIEW:
4983 case INTEL_KABYLAKE:
4984 case INTEL_GEMINILAKE:
4985 case INTEL_COFFEELAKE:
4986 case INTEL_COMETLAKE:
4988 case INTEL_ELKHARTLAKE:
4989 case INTEL_JASPERLAKE:
4990 case INTEL_TIGERLAKE:
4991 case INTEL_ROCKETLAKE:
4993 case INTEL_ALDERLAKE_S:
4994 case INTEL_ALDERLAKE_P:
4995 oa_format_add(perf, I915_OA_FORMAT_A12);
4996 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
4997 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
4998 oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5002 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5003 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5006 case INTEL_METEORLAKE:
5007 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5008 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5009 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8);
5010 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8);
5014 MISSING_CASE(platform);
5018 static void i915_perf_init_info(struct drm_i915_private *i915)
5020 struct i915_perf *perf = &i915->perf;
5022 switch (GRAPHICS_VER(i915)) {
5024 perf->ctx_oactxctrl_offset = 0x120;
5025 perf->ctx_flexeu0_offset = 0x2ce;
5026 perf->gen8_valid_ctx_bit = BIT(25);
5029 perf->ctx_oactxctrl_offset = 0x128;
5030 perf->ctx_flexeu0_offset = 0x3de;
5031 perf->gen8_valid_ctx_bit = BIT(16);
5034 perf->ctx_oactxctrl_offset = 0x124;
5035 perf->ctx_flexeu0_offset = 0x78e;
5036 perf->gen8_valid_ctx_bit = BIT(16);
5039 perf->gen8_valid_ctx_bit = BIT(16);
5041 * Calculate offset at runtime in oa_pin_context for gen12 and
5042 * cache the value in perf->ctx_oactxctrl_offset.
5046 MISSING_CASE(GRAPHICS_VER(i915));
5051 * i915_perf_init - initialize i915-perf state on module bind
5052 * @i915: i915 device instance
5054 * Initializes i915-perf state without exposing anything to userspace.
5056 * Note: i915-perf initialization is split into an 'init' and 'register'
5057 * phase with the i915_perf_register() exposing state to userspace.
5059 int i915_perf_init(struct drm_i915_private *i915)
5061 struct i915_perf *perf = &i915->perf;
5063 perf->oa_formats = oa_formats;
5064 if (IS_HASWELL(i915)) {
5065 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
5066 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
5067 perf->ops.is_valid_flex_reg = NULL;
5068 perf->ops.enable_metric_set = hsw_enable_metric_set;
5069 perf->ops.disable_metric_set = hsw_disable_metric_set;
5070 perf->ops.oa_enable = gen7_oa_enable;
5071 perf->ops.oa_disable = gen7_oa_disable;
5072 perf->ops.read = gen7_oa_read;
5073 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
5074 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
5075 /* Note: that although we could theoretically also support the
5076 * legacy ringbuffer mode on BDW (and earlier iterations of
5077 * this driver, before upstreaming did this) it didn't seem
5078 * worth the complexity to maintain now that BDW+ enable
5079 * execlist mode by default.
5081 perf->ops.read = gen8_oa_read;
5082 i915_perf_init_info(i915);
5084 if (IS_GRAPHICS_VER(i915, 8, 9)) {
5085 perf->ops.is_valid_b_counter_reg =
5086 gen7_is_valid_b_counter_addr;
5087 perf->ops.is_valid_mux_reg =
5088 gen8_is_valid_mux_addr;
5089 perf->ops.is_valid_flex_reg =
5090 gen8_is_valid_flex_addr;
5092 if (IS_CHERRYVIEW(i915)) {
5093 perf->ops.is_valid_mux_reg =
5094 chv_is_valid_mux_addr;
5097 perf->ops.oa_enable = gen8_oa_enable;
5098 perf->ops.oa_disable = gen8_oa_disable;
5099 perf->ops.enable_metric_set = gen8_enable_metric_set;
5100 perf->ops.disable_metric_set = gen8_disable_metric_set;
5101 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5102 } else if (GRAPHICS_VER(i915) == 11) {
5103 perf->ops.is_valid_b_counter_reg =
5104 gen7_is_valid_b_counter_addr;
5105 perf->ops.is_valid_mux_reg =
5106 gen11_is_valid_mux_addr;
5107 perf->ops.is_valid_flex_reg =
5108 gen8_is_valid_flex_addr;
5110 perf->ops.oa_enable = gen8_oa_enable;
5111 perf->ops.oa_disable = gen8_oa_disable;
5112 perf->ops.enable_metric_set = gen8_enable_metric_set;
5113 perf->ops.disable_metric_set = gen11_disable_metric_set;
5114 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5115 } else if (GRAPHICS_VER(i915) == 12) {
5116 perf->ops.is_valid_b_counter_reg =
5117 HAS_OA_SLICE_CONTRIB_LIMITS(i915) ?
5118 xehp_is_valid_b_counter_addr :
5119 gen12_is_valid_b_counter_addr;
5120 perf->ops.is_valid_mux_reg =
5121 gen12_is_valid_mux_addr;
5122 perf->ops.is_valid_flex_reg =
5123 gen8_is_valid_flex_addr;
5125 perf->ops.oa_enable = gen12_oa_enable;
5126 perf->ops.oa_disable = gen12_oa_disable;
5127 perf->ops.enable_metric_set = gen12_enable_metric_set;
5128 perf->ops.disable_metric_set = gen12_disable_metric_set;
5129 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
5133 if (perf->ops.enable_metric_set) {
5134 struct intel_gt *gt;
5137 for_each_gt(gt, i915, i)
5138 mutex_init(>->perf.lock);
5140 /* Choose a representative limit */
5141 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
5143 mutex_init(&perf->metrics_lock);
5144 idr_init_base(&perf->metrics_idr, 1);
5146 /* We set up some ratelimit state to potentially throttle any
5147 * _NOTES about spurious, invalid OA reports which we don't
5148 * forward to userspace.
5150 * We print a _NOTE about any throttling when closing the
5151 * stream instead of waiting until driver _fini which no one
5154 * Using the same limiting factors as printk_ratelimit()
5156 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
5157 /* Since we use a DRM_NOTE for spurious reports it would be
5158 * inconsistent to let __ratelimit() automatically print a
5159 * warning for throttling.
5161 ratelimit_set_flags(&perf->spurious_report_rs,
5162 RATELIMIT_MSG_ON_RELEASE);
5164 ratelimit_state_init(&perf->tail_pointer_race,
5166 ratelimit_set_flags(&perf->tail_pointer_race,
5167 RATELIMIT_MSG_ON_RELEASE);
5169 atomic64_set(&perf->noa_programming_delay,
5170 500 * 1000 /* 500us */);
5174 ret = oa_init_engine_groups(perf);
5177 "OA initialization failed %d\n", ret);
5181 oa_init_supported_formats(perf);
5187 static int destroy_config(int id, void *p, void *data)
5189 i915_oa_config_put(p);
5193 int i915_perf_sysctl_register(void)
5195 sysctl_header = register_sysctl("dev/i915", oa_table);
5199 void i915_perf_sysctl_unregister(void)
5201 unregister_sysctl_table(sysctl_header);
5205 * i915_perf_fini - Counter part to i915_perf_init()
5206 * @i915: i915 device instance
5208 void i915_perf_fini(struct drm_i915_private *i915)
5210 struct i915_perf *perf = &i915->perf;
5211 struct intel_gt *gt;
5217 for_each_gt(gt, perf->i915, i)
5218 kfree(gt->perf.group);
5220 idr_for_each(&perf->metrics_idr, destroy_config, perf);
5221 idr_destroy(&perf->metrics_idr);
5223 memset(&perf->ops, 0, sizeof(perf->ops));
5228 * i915_perf_ioctl_version - Version of the i915-perf subsystem
5229 * @i915: The i915 device
5231 * This version number is used by userspace to detect available features.
5233 int i915_perf_ioctl_version(struct drm_i915_private *i915)
5236 * 1: Initial version
5237 * I915_PERF_IOCTL_ENABLE
5238 * I915_PERF_IOCTL_DISABLE
5240 * 2: Added runtime modification of OA config.
5241 * I915_PERF_IOCTL_CONFIG
5243 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
5244 * preemption on a particular context so that performance data is
5245 * accessible from a delta of MI_RPC reports without looking at the
5248 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
5249 * be run for the duration of the performance recording based on
5250 * their SSEU configuration.
5252 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
5253 * interval for the hrtimer used to check for OA data.
5255 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and
5256 * DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE
5258 * 7: Add support for video decode and enhancement classes.
5262 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
5263 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6
5264 * to indicate that OA media is not supported.
5266 if (IS_MEDIA_GT_IP_STEP(i915->media_gt, IP_VER(13, 0), STEP_A0, STEP_C0) &&
5267 intel_check_bios_c6_setup(&i915->media_gt->rc6))
5273 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5274 #include "selftests/i915_perf.c"