1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * drivers/acpi/power.c - ACPI Power Resources management.
5 * Copyright (C) 2001 - 2015 Intel Corp.
12 * ACPI power-managed devices may be controlled in two ways:
13 * 1. via "Device Specific (D-State) Control"
14 * 2. via "Power Resource Control".
15 * The code below deals with ACPI Power Resources control.
17 * An ACPI "power resource object" represents a software controllable power
18 * plane, clock plane, or other resource depended on by a device.
20 * A device may rely on multiple power resources, and a power resource
21 * may be shared by multiple devices.
24 #define pr_fmt(fmt) "ACPI: PM: " fmt
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sysfs.h>
33 #include <linux/acpi.h>
37 #define ACPI_POWER_CLASS "power_resource"
38 #define ACPI_POWER_DEVICE_NAME "Power Resource"
39 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00
40 #define ACPI_POWER_RESOURCE_STATE_ON 0x01
41 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
43 struct acpi_power_dependent_device {
45 struct list_head node;
48 struct acpi_power_resource {
49 struct acpi_device device;
50 struct list_head list_node;
54 unsigned int ref_count;
57 struct mutex resource_lock;
58 struct list_head dependents;
61 struct acpi_power_resource_entry {
62 struct list_head node;
63 struct acpi_power_resource *resource;
66 static LIST_HEAD(acpi_power_resource_list);
67 static DEFINE_MUTEX(power_resource_list_lock);
69 /* --------------------------------------------------------------------------
70 Power Resource Management
71 -------------------------------------------------------------------------- */
74 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
76 return container_of(device, struct acpi_power_resource, device);
79 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
81 struct acpi_device *device;
83 if (acpi_bus_get_device(handle, &device))
86 return to_power_resource(device);
89 static int acpi_power_resources_list_add(acpi_handle handle,
90 struct list_head *list)
92 struct acpi_power_resource *resource = acpi_power_get_context(handle);
93 struct acpi_power_resource_entry *entry;
95 if (!resource || !list)
98 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
102 entry->resource = resource;
103 if (!list_empty(list)) {
104 struct acpi_power_resource_entry *e;
106 list_for_each_entry(e, list, node)
107 if (e->resource->order > resource->order) {
108 list_add_tail(&entry->node, &e->node);
112 list_add_tail(&entry->node, list);
116 void acpi_power_resources_list_free(struct list_head *list)
118 struct acpi_power_resource_entry *entry, *e;
120 list_for_each_entry_safe(entry, e, list, node) {
121 list_del(&entry->node);
126 static bool acpi_power_resource_is_dup(union acpi_object *package,
127 unsigned int start, unsigned int i)
129 acpi_handle rhandle, dup;
132 /* The caller is expected to check the package element types */
133 rhandle = package->package.elements[i].reference.handle;
134 for (j = start; j < i; j++) {
135 dup = package->package.elements[j].reference.handle;
143 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
144 struct list_head *list)
149 for (i = start; i < package->package.count; i++) {
150 union acpi_object *element = &package->package.elements[i];
151 struct acpi_device *rdev;
154 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
158 rhandle = element->reference.handle;
164 /* Some ACPI tables contain duplicate power resource references */
165 if (acpi_power_resource_is_dup(package, start, i))
168 rdev = acpi_add_power_resource(rhandle);
173 err = acpi_power_resources_list_add(rhandle, list);
178 acpi_power_resources_list_free(list);
183 static int __get_state(acpi_handle handle, u8 *state)
185 acpi_status status = AE_OK;
186 unsigned long long sta = 0;
189 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
190 if (ACPI_FAILURE(status))
193 cur_state = sta & ACPI_POWER_RESOURCE_STATE_ON;
195 acpi_handle_debug(handle, "Power resource is %s\n",
196 cur_state ? "on" : "off");
202 static int acpi_power_get_state(struct acpi_power_resource *resource, u8 *state)
204 if (resource->state == ACPI_POWER_RESOURCE_STATE_UNKNOWN) {
207 ret = __get_state(resource->device.handle, &resource->state);
212 *state = resource->state;
216 static int acpi_power_get_list_state(struct list_head *list, u8 *state)
218 struct acpi_power_resource_entry *entry;
219 u8 cur_state = ACPI_POWER_RESOURCE_STATE_OFF;
224 /* The state of the list is 'on' IFF all resources are 'on'. */
225 list_for_each_entry(entry, list, node) {
226 struct acpi_power_resource *resource = entry->resource;
229 mutex_lock(&resource->resource_lock);
230 result = acpi_power_get_state(resource, &cur_state);
231 mutex_unlock(&resource->resource_lock);
235 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
239 pr_debug("Power resource list is %s\n", cur_state ? "on" : "off");
246 acpi_power_resource_add_dependent(struct acpi_power_resource *resource,
249 struct acpi_power_dependent_device *dep;
252 mutex_lock(&resource->resource_lock);
253 list_for_each_entry(dep, &resource->dependents, node) {
254 /* Only add it once */
259 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
266 list_add_tail(&dep->node, &resource->dependents);
267 dev_dbg(dev, "added power dependency to [%s]\n", resource->name);
270 mutex_unlock(&resource->resource_lock);
275 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource,
278 struct acpi_power_dependent_device *dep;
280 mutex_lock(&resource->resource_lock);
281 list_for_each_entry(dep, &resource->dependents, node) {
282 if (dep->dev == dev) {
283 list_del(&dep->node);
285 dev_dbg(dev, "removed power dependency to [%s]\n",
290 mutex_unlock(&resource->resource_lock);
294 * acpi_device_power_add_dependent - Add dependent device of this ACPI device
295 * @adev: ACPI device pointer
296 * @dev: Dependent device
298 * If @adev has non-empty _PR0 the @dev is added as dependent device to all
299 * power resources returned by it. This means that whenever these power
300 * resources are turned _ON the dependent devices get runtime resumed. This
301 * is needed for devices such as PCI to allow its driver to re-initialize
302 * it after it went to D0uninitialized.
304 * If @adev does not have _PR0 this does nothing.
306 * Returns %0 in case of success and negative errno otherwise.
308 int acpi_device_power_add_dependent(struct acpi_device *adev,
311 struct acpi_power_resource_entry *entry;
312 struct list_head *resources;
315 if (!adev->flags.power_manageable)
318 resources = &adev->power.states[ACPI_STATE_D0].resources;
319 list_for_each_entry(entry, resources, node) {
320 ret = acpi_power_resource_add_dependent(entry->resource, dev);
328 list_for_each_entry(entry, resources, node)
329 acpi_power_resource_remove_dependent(entry->resource, dev);
335 * acpi_device_power_remove_dependent - Remove dependent device
336 * @adev: ACPI device pointer
337 * @dev: Dependent device
339 * Does the opposite of acpi_device_power_add_dependent() and removes the
340 * dependent device if it is found. Can be called to @adev that does not
343 void acpi_device_power_remove_dependent(struct acpi_device *adev,
346 struct acpi_power_resource_entry *entry;
347 struct list_head *resources;
349 if (!adev->flags.power_manageable)
352 resources = &adev->power.states[ACPI_STATE_D0].resources;
353 list_for_each_entry_reverse(entry, resources, node)
354 acpi_power_resource_remove_dependent(entry->resource, dev);
357 static int __acpi_power_on(struct acpi_power_resource *resource)
359 struct acpi_power_dependent_device *dep;
360 acpi_status status = AE_OK;
362 status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
363 if (ACPI_FAILURE(status)) {
364 resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
368 resource->state = ACPI_POWER_RESOURCE_STATE_ON;
370 pr_debug("Power resource [%s] turned on\n", resource->name);
373 * If there are other dependents on this power resource we need to
374 * resume them now so that their drivers can re-initialize the
375 * hardware properly after it went back to D0.
377 if (list_empty(&resource->dependents) ||
378 list_is_singular(&resource->dependents))
381 list_for_each_entry(dep, &resource->dependents, node) {
382 dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n",
384 pm_request_resume(dep->dev);
390 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
394 if (resource->ref_count++) {
395 pr_debug("Power resource [%s] already on\n", resource->name);
397 result = __acpi_power_on(resource);
399 resource->ref_count--;
404 static int acpi_power_on(struct acpi_power_resource *resource)
408 mutex_lock(&resource->resource_lock);
409 result = acpi_power_on_unlocked(resource);
410 mutex_unlock(&resource->resource_lock);
414 static int __acpi_power_off(struct acpi_power_resource *resource)
418 status = acpi_evaluate_object(resource->device.handle, "_OFF",
420 if (ACPI_FAILURE(status)) {
421 resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
425 resource->state = ACPI_POWER_RESOURCE_STATE_OFF;
427 pr_debug("Power resource [%s] turned off\n", resource->name);
432 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
436 if (!resource->ref_count) {
437 pr_debug("Power resource [%s] already off\n", resource->name);
441 if (--resource->ref_count) {
442 pr_debug("Power resource [%s] still in use\n", resource->name);
444 result = __acpi_power_off(resource);
446 resource->ref_count++;
451 static int acpi_power_off(struct acpi_power_resource *resource)
455 mutex_lock(&resource->resource_lock);
456 result = acpi_power_off_unlocked(resource);
457 mutex_unlock(&resource->resource_lock);
461 static int acpi_power_off_list(struct list_head *list)
463 struct acpi_power_resource_entry *entry;
466 list_for_each_entry_reverse(entry, list, node) {
467 result = acpi_power_off(entry->resource);
474 list_for_each_entry_continue(entry, list, node)
475 acpi_power_on(entry->resource);
480 static int acpi_power_on_list(struct list_head *list)
482 struct acpi_power_resource_entry *entry;
485 list_for_each_entry(entry, list, node) {
486 result = acpi_power_on(entry->resource);
493 list_for_each_entry_continue_reverse(entry, list, node)
494 acpi_power_off(entry->resource);
499 static struct attribute *attrs[] = {
503 static const struct attribute_group attr_groups[] = {
505 .name = "power_resources_D0",
509 .name = "power_resources_D1",
513 .name = "power_resources_D2",
516 [ACPI_STATE_D3_HOT] = {
517 .name = "power_resources_D3hot",
522 static const struct attribute_group wakeup_attr_group = {
523 .name = "power_resources_wakeup",
527 static void acpi_power_hide_list(struct acpi_device *adev,
528 struct list_head *resources,
529 const struct attribute_group *attr_group)
531 struct acpi_power_resource_entry *entry;
533 if (list_empty(resources))
536 list_for_each_entry_reverse(entry, resources, node) {
537 struct acpi_device *res_dev = &entry->resource->device;
539 sysfs_remove_link_from_group(&adev->dev.kobj,
541 dev_name(&res_dev->dev));
543 sysfs_remove_group(&adev->dev.kobj, attr_group);
546 static void acpi_power_expose_list(struct acpi_device *adev,
547 struct list_head *resources,
548 const struct attribute_group *attr_group)
550 struct acpi_power_resource_entry *entry;
553 if (list_empty(resources))
556 ret = sysfs_create_group(&adev->dev.kobj, attr_group);
560 list_for_each_entry(entry, resources, node) {
561 struct acpi_device *res_dev = &entry->resource->device;
563 ret = sysfs_add_link_to_group(&adev->dev.kobj,
566 dev_name(&res_dev->dev));
568 acpi_power_hide_list(adev, resources, attr_group);
574 static void acpi_power_expose_hide(struct acpi_device *adev,
575 struct list_head *resources,
576 const struct attribute_group *attr_group,
580 acpi_power_expose_list(adev, resources, attr_group);
582 acpi_power_hide_list(adev, resources, attr_group);
585 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
589 if (adev->wakeup.flags.valid)
590 acpi_power_expose_hide(adev, &adev->wakeup.resources,
591 &wakeup_attr_group, add);
593 if (!adev->power.flags.power_resources)
596 for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
597 acpi_power_expose_hide(adev,
598 &adev->power.states[state].resources,
599 &attr_groups[state], add);
602 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
604 struct acpi_power_resource_entry *entry;
605 int system_level = 5;
607 list_for_each_entry(entry, list, node) {
608 struct acpi_power_resource *resource = entry->resource;
612 mutex_lock(&resource->resource_lock);
614 result = acpi_power_get_state(resource, &state);
616 mutex_unlock(&resource->resource_lock);
619 if (state == ACPI_POWER_RESOURCE_STATE_ON) {
620 resource->ref_count++;
621 resource->wakeup_enabled = true;
623 if (system_level > resource->system_level)
624 system_level = resource->system_level;
626 mutex_unlock(&resource->resource_lock);
628 *system_level_p = system_level;
632 /* --------------------------------------------------------------------------
633 Device Power Management
634 -------------------------------------------------------------------------- */
637 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
638 * ACPI 3.0) _PSW (Power State Wake)
639 * @dev: Device to handle.
640 * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
641 * @sleep_state: Target sleep state of the system.
642 * @dev_state: Target power state of the device.
644 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
645 * State Wake) for the device, if present. On failure reset the device's
646 * wakeup.flags.valid flag.
649 * 0 if either _DSW or _PSW has been successfully executed
650 * 0 if neither _DSW nor _PSW has been found
651 * -ENODEV if the execution of either _DSW or _PSW has failed
653 int acpi_device_sleep_wake(struct acpi_device *dev,
654 int enable, int sleep_state, int dev_state)
656 union acpi_object in_arg[3];
657 struct acpi_object_list arg_list = { 3, in_arg };
658 acpi_status status = AE_OK;
661 * Try to execute _DSW first.
663 * Three arguments are needed for the _DSW object:
664 * Argument 0: enable/disable the wake capabilities
665 * Argument 1: target system state
666 * Argument 2: target device state
667 * When _DSW object is called to disable the wake capabilities, maybe
668 * the first argument is filled. The values of the other two arguments
671 in_arg[0].type = ACPI_TYPE_INTEGER;
672 in_arg[0].integer.value = enable;
673 in_arg[1].type = ACPI_TYPE_INTEGER;
674 in_arg[1].integer.value = sleep_state;
675 in_arg[2].type = ACPI_TYPE_INTEGER;
676 in_arg[2].integer.value = dev_state;
677 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
678 if (ACPI_SUCCESS(status)) {
680 } else if (status != AE_NOT_FOUND) {
681 acpi_handle_info(dev->handle, "_DSW execution failed\n");
682 dev->wakeup.flags.valid = 0;
687 status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
688 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
689 acpi_handle_info(dev->handle, "_PSW execution failed\n");
690 dev->wakeup.flags.valid = 0;
698 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
699 * 1. Power on the power resources required for the wakeup device
700 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
701 * State Wake) for the device, if present
703 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
705 struct acpi_power_resource_entry *entry;
708 if (!dev || !dev->wakeup.flags.valid)
711 mutex_lock(&acpi_device_lock);
713 if (dev->wakeup.prepare_count++)
716 list_for_each_entry(entry, &dev->wakeup.resources, node) {
717 struct acpi_power_resource *resource = entry->resource;
719 mutex_lock(&resource->resource_lock);
721 if (!resource->wakeup_enabled) {
722 err = acpi_power_on_unlocked(resource);
724 resource->wakeup_enabled = true;
727 mutex_unlock(&resource->resource_lock);
731 "Cannot turn wakeup power resources on\n");
732 dev->wakeup.flags.valid = 0;
737 * Passing 3 as the third argument below means the device may be
738 * put into arbitrary power state afterward.
740 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
742 dev->wakeup.prepare_count = 0;
745 mutex_unlock(&acpi_device_lock);
750 * Shutdown a wakeup device, counterpart of above method
751 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
752 * State Wake) for the device, if present
753 * 2. Shutdown down the power resources
755 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
757 struct acpi_power_resource_entry *entry;
760 if (!dev || !dev->wakeup.flags.valid)
763 mutex_lock(&acpi_device_lock);
765 if (--dev->wakeup.prepare_count > 0)
769 * Executing the code below even if prepare_count is already zero when
770 * the function is called may be useful, for example for initialisation.
772 if (dev->wakeup.prepare_count < 0)
773 dev->wakeup.prepare_count = 0;
775 err = acpi_device_sleep_wake(dev, 0, 0, 0);
779 list_for_each_entry(entry, &dev->wakeup.resources, node) {
780 struct acpi_power_resource *resource = entry->resource;
782 mutex_lock(&resource->resource_lock);
784 if (resource->wakeup_enabled) {
785 err = acpi_power_off_unlocked(resource);
787 resource->wakeup_enabled = false;
790 mutex_unlock(&resource->resource_lock);
794 "Cannot turn wakeup power resources off\n");
795 dev->wakeup.flags.valid = 0;
801 mutex_unlock(&acpi_device_lock);
805 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
807 u8 list_state = ACPI_POWER_RESOURCE_STATE_OFF;
811 if (!device || !state)
815 * We know a device's inferred power state when all the resources
816 * required for a given D-state are 'on'.
818 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
819 struct list_head *list = &device->power.states[i].resources;
821 if (list_empty(list))
824 result = acpi_power_get_list_state(list, &list_state);
828 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
834 *state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
835 ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
839 int acpi_power_on_resources(struct acpi_device *device, int state)
841 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
844 return acpi_power_on_list(&device->power.states[state].resources);
847 int acpi_power_transition(struct acpi_device *device, int state)
851 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
854 if (device->power.state == state || !device->flags.power_manageable)
857 if ((device->power.state < ACPI_STATE_D0)
858 || (device->power.state > ACPI_STATE_D3_COLD))
862 * First we reference all power resources required in the target list
863 * (e.g. so the device doesn't lose power while transitioning). Then,
864 * we dereference all power resources used in the current list.
866 if (state < ACPI_STATE_D3_COLD)
867 result = acpi_power_on_list(
868 &device->power.states[state].resources);
870 if (!result && device->power.state < ACPI_STATE_D3_COLD)
872 &device->power.states[device->power.state].resources);
874 /* We shouldn't change the state unless the above operations succeed. */
875 device->power.state = result ? ACPI_STATE_UNKNOWN : state;
880 static void acpi_release_power_resource(struct device *dev)
882 struct acpi_device *device = to_acpi_device(dev);
883 struct acpi_power_resource *resource;
885 resource = container_of(device, struct acpi_power_resource, device);
887 mutex_lock(&power_resource_list_lock);
888 list_del(&resource->list_node);
889 mutex_unlock(&power_resource_list_lock);
891 acpi_free_pnp_ids(&device->pnp);
895 static ssize_t resource_in_use_show(struct device *dev,
896 struct device_attribute *attr,
899 struct acpi_power_resource *resource;
901 resource = to_power_resource(to_acpi_device(dev));
902 return sprintf(buf, "%u\n", !!resource->ref_count);
904 static DEVICE_ATTR_RO(resource_in_use);
906 static void acpi_power_sysfs_remove(struct acpi_device *device)
908 device_remove_file(&device->dev, &dev_attr_resource_in_use);
911 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
913 mutex_lock(&power_resource_list_lock);
915 if (!list_empty(&acpi_power_resource_list)) {
916 struct acpi_power_resource *r;
918 list_for_each_entry(r, &acpi_power_resource_list, list_node)
919 if (r->order > resource->order) {
920 list_add_tail(&resource->list_node, &r->list_node);
924 list_add_tail(&resource->list_node, &acpi_power_resource_list);
927 mutex_unlock(&power_resource_list_lock);
930 struct acpi_device *acpi_add_power_resource(acpi_handle handle)
932 struct acpi_power_resource *resource;
933 struct acpi_device *device = NULL;
934 union acpi_object acpi_object;
935 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
939 acpi_bus_get_device(handle, &device);
943 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
947 device = &resource->device;
948 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER);
949 mutex_init(&resource->resource_lock);
950 INIT_LIST_HEAD(&resource->list_node);
951 INIT_LIST_HEAD(&resource->dependents);
952 resource->name = device->pnp.bus_id;
953 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
954 strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
955 device->power.state = ACPI_STATE_UNKNOWN;
957 /* Evaluate the object to get the system level and resource order. */
958 status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
959 if (ACPI_FAILURE(status))
962 resource->system_level = acpi_object.power_resource.system_level;
963 resource->order = acpi_object.power_resource.resource_order;
964 resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
966 pr_info("%s [%s]\n", acpi_device_name(device), acpi_device_bid(device));
968 device->flags.match_driver = true;
969 result = acpi_device_add(device, acpi_release_power_resource);
973 if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
974 device->remove = acpi_power_sysfs_remove;
976 acpi_power_add_resource_to_list(resource);
977 acpi_device_add_finalize(device);
981 acpi_release_power_resource(&device->dev);
985 #ifdef CONFIG_ACPI_SLEEP
986 void acpi_resume_power_resources(void)
988 struct acpi_power_resource *resource;
990 mutex_lock(&power_resource_list_lock);
992 list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
996 mutex_lock(&resource->resource_lock);
998 resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
999 result = acpi_power_get_state(resource, &state);
1001 mutex_unlock(&resource->resource_lock);
1005 if (state == ACPI_POWER_RESOURCE_STATE_OFF
1006 && resource->ref_count) {
1007 dev_dbg(&resource->device.dev, "Turning ON\n");
1008 __acpi_power_on(resource);
1011 mutex_unlock(&resource->resource_lock);
1014 mutex_unlock(&power_resource_list_lock);
1019 * acpi_turn_off_unused_power_resources - Turn off power resources not in use.
1021 void acpi_turn_off_unused_power_resources(void)
1023 struct acpi_power_resource *resource;
1025 mutex_lock(&power_resource_list_lock);
1027 list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
1028 mutex_lock(&resource->resource_lock);
1031 * Turn off power resources in an unknown state too, because the
1032 * platform firmware on some system expects the OS to turn off
1033 * power resources without any users unconditionally.
1035 if (!resource->ref_count &&
1036 resource->state != ACPI_POWER_RESOURCE_STATE_OFF) {
1037 dev_dbg(&resource->device.dev, "Turning OFF\n");
1038 __acpi_power_off(resource);
1041 mutex_unlock(&resource->resource_lock);
1044 mutex_unlock(&power_resource_list_lock);