1 // SPDX-License-Identifier: GPL-2.0-only
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
5 * (C) Copyright 2014, 2015 Linaro Ltd.
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
23 * - Platform conveys its decision back to OS
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
34 #define pr_fmt(fmt) "ACPI CPPC: " fmt
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
43 #include <acpi/cppc_acpi.h>
45 struct cppc_pcc_data {
46 struct mbox_chan *pcc_channel;
47 void __iomem *pcc_comm_addr;
48 bool pcc_channel_acquired;
49 unsigned int deadline_us;
50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
53 bool platform_owns_pcc; /* Ownership of PCC subspace */
54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
57 * Lock to provide controlled access to the PCC channel.
59 * For performance critical usecases(currently cppc_set_perf)
60 * We need to take read_lock and check if channel belongs to OSPM
61 * before reading or writing to PCC subspace
62 * We need to take write_lock before transferring the channel
63 * ownership to the platform via a Doorbell
64 * This allows us to batch a number of CPPC requests if they happen
65 * to originate in about the same time
67 * For non-performance critical usecases(init)
68 * Take write_lock for all purposes which gives exclusive access
70 struct rw_semaphore pcc_lock;
72 /* Wait queue for CPUs whose requests were batched */
73 wait_queue_head_t pcc_write_wait_q;
74 ktime_t last_cmd_cmpl_time;
75 ktime_t last_mpar_reset;
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
86 * The cpc_desc structure contains the ACPI register details
87 * as described in the per CPU _CPC tables. The details
88 * include the type of register (e.g. PCC, System IO, FFH etc.)
89 * and destination addresses which lets us READ/WRITE CPU performance
90 * information using the appropriate I/O methods.
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
103 /* Evaluates to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
110 /* Evaluates to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
115 * Arbitrary Retries in case the remote processor is slow to respond
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
119 #define NUM_RETRIES 500ULL
121 #define define_one_cppc_ro(_name) \
122 static struct kobj_attribute _name = \
123 __ATTR(_name, 0444, show_##_name, NULL)
125 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
127 #define show_cppc_data(access_fn, struct_name, member_name) \
128 static ssize_t show_##member_name(struct kobject *kobj, \
129 struct kobj_attribute *attr, char *buf) \
131 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
132 struct struct_name st_name = {0}; \
135 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
139 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
140 (u64)st_name.member_name); \
142 define_one_cppc_ro(member_name)
144 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
145 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
146 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
147 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
148 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
149 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
151 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
152 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
154 static ssize_t show_feedback_ctrs(struct kobject *kobj,
155 struct kobj_attribute *attr, char *buf)
157 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
158 struct cppc_perf_fb_ctrs fb_ctrs = {0};
161 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
165 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
166 fb_ctrs.reference, fb_ctrs.delivered);
168 define_one_cppc_ro(feedback_ctrs);
170 static struct attribute *cppc_attrs[] = {
172 &reference_perf.attr,
173 &wraparound_time.attr,
176 &lowest_nonlinear_perf.attr,
183 static struct kobj_type cppc_ktype = {
184 .sysfs_ops = &kobj_sysfs_ops,
185 .default_attrs = cppc_attrs,
188 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
191 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
192 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
193 pcc_ss_data->pcc_comm_addr;
195 if (!pcc_ss_data->platform_owns_pcc)
199 * Poll PCC status register every 3us(delay_us) for maximum of
200 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
202 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
203 status & PCC_CMD_COMPLETE_MASK, 3,
204 pcc_ss_data->deadline_us);
207 pcc_ss_data->platform_owns_pcc = false;
208 if (chk_err_bit && (status & PCC_ERROR_MASK))
213 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
220 * This function transfers the ownership of the PCC to the platform
221 * So it must be called while holding write_lock(pcc_lock)
223 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
226 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
227 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
228 pcc_ss_data->pcc_comm_addr;
229 unsigned int time_delta;
232 * For CMD_WRITE we know for a fact the caller should have checked
233 * the channel before writing to PCC space
235 if (cmd == CMD_READ) {
237 * If there are pending cpc_writes, then we stole the channel
238 * before write completion, so first send a WRITE command to
241 if (pcc_ss_data->pending_pcc_write_cmd)
242 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
244 ret = check_pcc_chan(pcc_ss_id, false);
247 } else /* CMD_WRITE */
248 pcc_ss_data->pending_pcc_write_cmd = FALSE;
251 * Handle the Minimum Request Turnaround Time(MRTT)
252 * "The minimum amount of time that OSPM must wait after the completion
253 * of a command before issuing the next command, in microseconds"
255 if (pcc_ss_data->pcc_mrtt) {
256 time_delta = ktime_us_delta(ktime_get(),
257 pcc_ss_data->last_cmd_cmpl_time);
258 if (pcc_ss_data->pcc_mrtt > time_delta)
259 udelay(pcc_ss_data->pcc_mrtt - time_delta);
263 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
264 * "The maximum number of periodic requests that the subspace channel can
265 * support, reported in commands per minute. 0 indicates no limitation."
267 * This parameter should be ideally zero or large enough so that it can
268 * handle maximum number of requests that all the cores in the system can
269 * collectively generate. If it is not, we will follow the spec and just
270 * not send the request to the platform after hitting the MPAR limit in
273 if (pcc_ss_data->pcc_mpar) {
274 if (pcc_ss_data->mpar_count == 0) {
275 time_delta = ktime_ms_delta(ktime_get(),
276 pcc_ss_data->last_mpar_reset);
277 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
278 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
283 pcc_ss_data->last_mpar_reset = ktime_get();
284 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
286 pcc_ss_data->mpar_count--;
289 /* Write to the shared comm region. */
290 writew_relaxed(cmd, &generic_comm_base->command);
292 /* Flip CMD COMPLETE bit */
293 writew_relaxed(0, &generic_comm_base->status);
295 pcc_ss_data->platform_owns_pcc = true;
298 ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
300 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
301 pcc_ss_id, cmd, ret);
305 /* wait for completion and check for PCC errro bit */
306 ret = check_pcc_chan(pcc_ss_id, true);
308 if (pcc_ss_data->pcc_mrtt)
309 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
311 if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
312 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
314 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
317 if (cmd == CMD_WRITE) {
319 for_each_possible_cpu(i) {
320 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
325 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
326 desc->write_cmd_status = ret;
329 pcc_ss_data->pcc_write_cnt++;
330 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
336 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
339 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
342 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
346 static struct mbox_client cppc_mbox_cl = {
347 .tx_done = cppc_chan_tx_done,
348 .knows_txdone = true,
351 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
353 int result = -EFAULT;
354 acpi_status status = AE_OK;
355 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
356 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
357 struct acpi_buffer state = {0, NULL};
358 union acpi_object *psd = NULL;
359 struct acpi_psd_package *pdomain;
361 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
362 &buffer, ACPI_TYPE_PACKAGE);
363 if (status == AE_NOT_FOUND) /* _PSD is optional */
365 if (ACPI_FAILURE(status))
368 psd = buffer.pointer;
369 if (!psd || psd->package.count != 1) {
370 pr_debug("Invalid _PSD data\n");
374 pdomain = &(cpc_ptr->domain_info);
376 state.length = sizeof(struct acpi_psd_package);
377 state.pointer = pdomain;
379 status = acpi_extract_package(&(psd->package.elements[0]),
381 if (ACPI_FAILURE(status)) {
382 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
386 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
387 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
391 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
392 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
396 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
397 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
398 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
399 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
405 kfree(buffer.pointer);
409 bool acpi_cpc_valid(void)
411 struct cpc_desc *cpc_ptr;
414 for_each_possible_cpu(cpu) {
415 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
422 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
425 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
426 * @cpu: Find all CPUs that share a domain with cpu.
427 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
429 * Return: 0 for success or negative value for err.
431 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
433 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
434 struct acpi_psd_package *match_pdomain;
435 struct acpi_psd_package *pdomain;
439 * Now that we have _PSD data from all CPUs, let's setup P-state
442 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
446 pdomain = &(cpc_ptr->domain_info);
447 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
448 if (pdomain->num_processors <= 1)
451 /* Validate the Domain info */
452 count_target = pdomain->num_processors;
453 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
454 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
455 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
456 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
457 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
458 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
460 for_each_possible_cpu(i) {
464 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
468 match_pdomain = &(match_cpc_ptr->domain_info);
469 if (match_pdomain->domain != pdomain->domain)
472 /* Here i and cpu are in the same domain */
473 if (match_pdomain->num_processors != count_target)
476 if (pdomain->coord_type != match_pdomain->coord_type)
479 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
485 /* Assume no coordination on any error parsing domain info */
486 cpumask_clear(cpu_data->shared_cpu_map);
487 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
488 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
492 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
494 static int register_pcc_channel(int pcc_ss_idx)
496 struct acpi_pcct_hw_reduced *cppc_ss;
499 if (pcc_ss_idx >= 0) {
500 pcc_data[pcc_ss_idx]->pcc_channel =
501 pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
503 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
504 pr_err("Failed to find PCC channel for subspace %d\n",
510 * The PCC mailbox controller driver should
511 * have parsed the PCCT (global table of all
512 * PCC channels) and stored pointers to the
513 * subspace communication region in con_priv.
515 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
518 pr_err("No PCC subspace found for %d CPPC\n",
524 * cppc_ss->latency is just a Nominal value. In reality
525 * the remote processor could be much slower to reply.
526 * So add an arbitrary amount of wait on top of Nominal.
528 usecs_lat = NUM_RETRIES * cppc_ss->latency;
529 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
530 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
531 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
532 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
534 pcc_data[pcc_ss_idx]->pcc_comm_addr =
535 acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
536 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
537 pr_err("Failed to ioremap PCC comm region mem for %d\n",
542 /* Set flag so that we don't come here for each CPU. */
543 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
550 * cpc_ffh_supported() - check if FFH reading supported
552 * Check if the architecture has support for functional fixed hardware
553 * read/write capability.
555 * Return: true for supported, false for not supported
557 bool __weak cpc_ffh_supported(void)
563 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
565 * Check and allocate the cppc_pcc_data memory.
566 * In some processor configurations it is possible that same subspace
567 * is shared between multiple CPUs. This is seen especially in CPUs
568 * with hardware multi-threading support.
570 * Return: 0 for success, errno for failure
572 static int pcc_data_alloc(int pcc_ss_id)
574 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
577 if (pcc_data[pcc_ss_id]) {
578 pcc_data[pcc_ss_id]->refcount++;
580 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
582 if (!pcc_data[pcc_ss_id])
584 pcc_data[pcc_ss_id]->refcount++;
590 /* Check if CPPC revision + num_ent combination is supported */
591 static bool is_cppc_supported(int revision, int num_ent)
593 int expected_num_ent;
597 expected_num_ent = CPPC_V2_NUM_ENT;
600 expected_num_ent = CPPC_V3_NUM_ENT;
603 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
608 if (expected_num_ent != num_ent) {
609 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
610 num_ent, expected_num_ent, revision);
618 * An example CPC table looks like the following.
620 * Name(_CPC, Package()
626 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
627 * // Highest Performance
628 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
629 * // Nominal Performance
630 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
631 * // Lowest Nonlinear Performance
632 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
633 * // Lowest Performance
634 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
635 * // Guaranteed Performance Register
636 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
637 * // Desired Performance Register
638 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
644 * Each Register() encodes how to access that specific register.
645 * e.g. a sample PCC entry has the following encoding:
649 * AddressSpaceKeyword
653 * //RegisterBitOffset
657 * //AccessSize (subspace ID)
663 #ifndef init_freq_invariance_cppc
664 static inline void init_freq_invariance_cppc(void) { }
668 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
669 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
671 * Return: 0 for success or negative value for err.
673 int acpi_cppc_processor_probe(struct acpi_processor *pr)
675 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
676 union acpi_object *out_obj, *cpc_obj;
677 struct cpc_desc *cpc_ptr;
678 struct cpc_reg *gas_t;
679 struct device *cpu_dev;
680 acpi_handle handle = pr->handle;
681 unsigned int num_ent, i, cpc_rev;
682 int pcc_subspace_id = -1;
686 /* Parse the ACPI _CPC table for this CPU. */
687 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
689 if (ACPI_FAILURE(status)) {
694 out_obj = (union acpi_object *) output.pointer;
696 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
702 /* First entry is NumEntries. */
703 cpc_obj = &out_obj->package.elements[0];
704 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
705 num_ent = cpc_obj->integer.value;
707 pr_debug("Unexpected entry type(%d) for NumEntries\n",
711 cpc_ptr->num_entries = num_ent;
713 /* Second entry should be revision. */
714 cpc_obj = &out_obj->package.elements[1];
715 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
716 cpc_rev = cpc_obj->integer.value;
718 pr_debug("Unexpected entry type(%d) for Revision\n",
722 cpc_ptr->version = cpc_rev;
724 if (!is_cppc_supported(cpc_rev, num_ent))
727 /* Iterate through remaining entries in _CPC */
728 for (i = 2; i < num_ent; i++) {
729 cpc_obj = &out_obj->package.elements[i];
731 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
732 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
733 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
734 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
735 gas_t = (struct cpc_reg *)
736 cpc_obj->buffer.pointer;
739 * The PCC Subspace index is encoded inside
740 * the CPC table entries. The same PCC index
741 * will be used for all the PCC entries,
742 * so extract it only once.
744 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
745 if (pcc_subspace_id < 0) {
746 pcc_subspace_id = gas_t->access_width;
747 if (pcc_data_alloc(pcc_subspace_id))
749 } else if (pcc_subspace_id != gas_t->access_width) {
750 pr_debug("Mismatched PCC ids.\n");
753 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
754 if (gas_t->address) {
757 addr = ioremap(gas_t->address, gas_t->bit_width/8);
760 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
763 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
764 /* Support only PCC ,SYS MEM and FFH type regs */
765 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
770 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
771 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
773 pr_debug("Err in entry:%d in CPC table of CPU:%d\n", i, pr->id);
777 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
780 * Initialize the remaining cpc_regs as unsupported.
781 * Example: In case FW exposes CPPC v2, the below loop will initialize
782 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
784 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
785 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
786 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
790 /* Store CPU Logical ID */
791 cpc_ptr->cpu_id = pr->id;
793 /* Parse PSD data for this CPU */
794 ret = acpi_get_psd(cpc_ptr, handle);
798 /* Register PCC channel once for all PCC subspace ID. */
799 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
800 ret = register_pcc_channel(pcc_subspace_id);
804 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
805 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
808 /* Everything looks okay */
809 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
811 /* Add per logical CPU nodes for reading its feedback counters. */
812 cpu_dev = get_cpu_device(pr->id);
818 /* Plug PSD data into this CPU's CPC descriptor. */
819 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
821 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
824 per_cpu(cpc_desc_ptr, pr->id) = NULL;
825 kobject_put(&cpc_ptr->kobj);
829 init_freq_invariance_cppc();
831 kfree(output.pointer);
835 /* Free all the mapped sys mem areas for this CPU */
836 for (i = 2; i < cpc_ptr->num_entries; i++) {
837 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
845 kfree(output.pointer);
848 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
851 * acpi_cppc_processor_exit - Cleanup CPC structs.
852 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
856 void acpi_cppc_processor_exit(struct acpi_processor *pr)
858 struct cpc_desc *cpc_ptr;
861 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
863 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
864 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
865 pcc_data[pcc_ss_id]->refcount--;
866 if (!pcc_data[pcc_ss_id]->refcount) {
867 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
868 kfree(pcc_data[pcc_ss_id]);
869 pcc_data[pcc_ss_id] = NULL;
874 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
878 /* Free all the mapped sys mem areas for this CPU */
879 for (i = 2; i < cpc_ptr->num_entries; i++) {
880 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
885 kobject_put(&cpc_ptr->kobj);
888 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
891 * cpc_read_ffh() - Read FFH register
892 * @cpunum: CPU number to read
893 * @reg: cppc register information
894 * @val: place holder for return value
896 * Read bit_width bits from a specified address and bit_offset
898 * Return: 0 for success and error code
900 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
906 * cpc_write_ffh() - Write FFH register
907 * @cpunum: CPU number to write
908 * @reg: cppc register information
909 * @val: value to write
911 * Write value of bit_width bits to a specified address and bit_offset
913 * Return: 0 for success and error code
915 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
921 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
922 * as fast as possible. We have already mapped the PCC subspace during init, so
923 * we can directly write to it.
926 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
929 void __iomem *vaddr = NULL;
930 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
931 struct cpc_reg *reg = ®_res->cpc_entry.reg;
933 if (reg_res->type == ACPI_TYPE_INTEGER) {
934 *val = reg_res->cpc_entry.int_value;
939 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
940 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
941 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
942 vaddr = reg_res->sys_mem_vaddr;
943 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
944 return cpc_read_ffh(cpu, reg, val);
946 return acpi_os_read_memory((acpi_physical_address)reg->address,
947 val, reg->bit_width);
949 switch (reg->bit_width) {
951 *val = readb_relaxed(vaddr);
954 *val = readw_relaxed(vaddr);
957 *val = readl_relaxed(vaddr);
960 *val = readq_relaxed(vaddr);
963 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
964 reg->bit_width, pcc_ss_id);
971 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
974 void __iomem *vaddr = NULL;
975 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
976 struct cpc_reg *reg = ®_res->cpc_entry.reg;
978 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
979 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
980 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
981 vaddr = reg_res->sys_mem_vaddr;
982 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
983 return cpc_write_ffh(cpu, reg, val);
985 return acpi_os_write_memory((acpi_physical_address)reg->address,
986 val, reg->bit_width);
988 switch (reg->bit_width) {
990 writeb_relaxed(val, vaddr);
993 writew_relaxed(val, vaddr);
996 writel_relaxed(val, vaddr);
999 writeq_relaxed(val, vaddr);
1002 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1003 reg->bit_width, pcc_ss_id);
1012 * cppc_get_desired_perf - Get the value of desired performance register.
1013 * @cpunum: CPU from which to get desired performance.
1014 * @desired_perf: address of a variable to store the returned desired performance
1016 * Return: 0 for success, -EIO otherwise.
1018 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1020 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1021 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1022 struct cpc_register_resource *desired_reg;
1023 struct cppc_pcc_data *pcc_ss_data = NULL;
1025 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1027 if (CPC_IN_PCC(desired_reg)) {
1033 pcc_ss_data = pcc_data[pcc_ss_id];
1035 down_write(&pcc_ss_data->pcc_lock);
1037 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1038 cpc_read(cpunum, desired_reg, desired_perf);
1042 up_write(&pcc_ss_data->pcc_lock);
1047 cpc_read(cpunum, desired_reg, desired_perf);
1051 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1054 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1055 * @cpunum: CPU from which to get capabilities info.
1056 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1058 * Return: 0 for success with perf_caps populated else -ERRNO.
1060 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1062 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1063 struct cpc_register_resource *highest_reg, *lowest_reg,
1064 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1065 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1066 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1067 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1068 struct cppc_pcc_data *pcc_ss_data = NULL;
1069 int ret = 0, regs_in_pcc = 0;
1072 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1076 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1077 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1078 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1079 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1080 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1081 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1082 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1084 /* Are any of the regs PCC ?*/
1085 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1086 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1087 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1088 if (pcc_ss_id < 0) {
1089 pr_debug("Invalid pcc_ss_id\n");
1092 pcc_ss_data = pcc_data[pcc_ss_id];
1094 down_write(&pcc_ss_data->pcc_lock);
1095 /* Ring doorbell once to update PCC subspace */
1096 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1102 cpc_read(cpunum, highest_reg, &high);
1103 perf_caps->highest_perf = high;
1105 cpc_read(cpunum, lowest_reg, &low);
1106 perf_caps->lowest_perf = low;
1108 cpc_read(cpunum, nominal_reg, &nom);
1109 perf_caps->nominal_perf = nom;
1111 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1112 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1113 perf_caps->guaranteed_perf = 0;
1115 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1116 perf_caps->guaranteed_perf = guaranteed;
1119 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1120 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1122 if (!high || !low || !nom || !min_nonlinear)
1125 /* Read optional lowest and nominal frequencies if present */
1126 if (CPC_SUPPORTED(low_freq_reg))
1127 cpc_read(cpunum, low_freq_reg, &low_f);
1129 if (CPC_SUPPORTED(nom_freq_reg))
1130 cpc_read(cpunum, nom_freq_reg, &nom_f);
1132 perf_caps->lowest_freq = low_f;
1133 perf_caps->nominal_freq = nom_f;
1138 up_write(&pcc_ss_data->pcc_lock);
1141 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1144 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1145 * @cpunum: CPU from which to read counters.
1146 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1148 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1150 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1152 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1153 struct cpc_register_resource *delivered_reg, *reference_reg,
1154 *ref_perf_reg, *ctr_wrap_reg;
1155 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1156 struct cppc_pcc_data *pcc_ss_data = NULL;
1157 u64 delivered, reference, ref_perf, ctr_wrap_time;
1158 int ret = 0, regs_in_pcc = 0;
1161 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1165 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1166 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1167 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1168 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1171 * If reference perf register is not supported then we should
1172 * use the nominal perf value
1174 if (!CPC_SUPPORTED(ref_perf_reg))
1175 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1177 /* Are any of the regs PCC ?*/
1178 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1179 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1180 if (pcc_ss_id < 0) {
1181 pr_debug("Invalid pcc_ss_id\n");
1184 pcc_ss_data = pcc_data[pcc_ss_id];
1185 down_write(&pcc_ss_data->pcc_lock);
1187 /* Ring doorbell once to update PCC subspace */
1188 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1194 cpc_read(cpunum, delivered_reg, &delivered);
1195 cpc_read(cpunum, reference_reg, &reference);
1196 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1199 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1200 * performance counters are assumed to never wrap during the lifetime of
1203 ctr_wrap_time = (u64)(~((u64)0));
1204 if (CPC_SUPPORTED(ctr_wrap_reg))
1205 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1207 if (!delivered || !reference || !ref_perf) {
1212 perf_fb_ctrs->delivered = delivered;
1213 perf_fb_ctrs->reference = reference;
1214 perf_fb_ctrs->reference_perf = ref_perf;
1215 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1218 up_write(&pcc_ss_data->pcc_lock);
1221 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1224 * cppc_set_perf - Set a CPU's performance controls.
1225 * @cpu: CPU for which to set performance controls.
1226 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1228 * Return: 0 for success, -ERRNO otherwise.
1230 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1232 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1233 struct cpc_register_resource *desired_reg;
1234 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1235 struct cppc_pcc_data *pcc_ss_data = NULL;
1239 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1243 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1246 * This is Phase-I where we want to write to CPC registers
1247 * -> We want all CPUs to be able to execute this phase in parallel
1249 * Since read_lock can be acquired by multiple CPUs simultaneously we
1250 * achieve that goal here
1252 if (CPC_IN_PCC(desired_reg)) {
1253 if (pcc_ss_id < 0) {
1254 pr_debug("Invalid pcc_ss_id\n");
1257 pcc_ss_data = pcc_data[pcc_ss_id];
1258 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1259 if (pcc_ss_data->platform_owns_pcc) {
1260 ret = check_pcc_chan(pcc_ss_id, false);
1262 up_read(&pcc_ss_data->pcc_lock);
1267 * Update the pending_write to make sure a PCC CMD_READ will not
1268 * arrive and steal the channel during the switch to write lock
1270 pcc_ss_data->pending_pcc_write_cmd = true;
1271 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1272 cpc_desc->write_cmd_status = 0;
1276 * Skip writing MIN/MAX until Linux knows how to come up with
1279 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1281 if (CPC_IN_PCC(desired_reg))
1282 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1284 * This is Phase-II where we transfer the ownership of PCC to Platform
1286 * Short Summary: Basically if we think of a group of cppc_set_perf
1287 * requests that happened in short overlapping interval. The last CPU to
1288 * come out of Phase-I will enter Phase-II and ring the doorbell.
1290 * We have the following requirements for Phase-II:
1291 * 1. We want to execute Phase-II only when there are no CPUs
1292 * currently executing in Phase-I
1293 * 2. Once we start Phase-II we want to avoid all other CPUs from
1295 * 3. We want only one CPU among all those who went through Phase-I
1298 * If write_trylock fails to get the lock and doesn't transfer the
1299 * PCC ownership to the platform, then one of the following will be TRUE
1300 * 1. There is at-least one CPU in Phase-I which will later execute
1301 * write_trylock, so the CPUs in Phase-I will be responsible for
1302 * executing the Phase-II.
1303 * 2. Some other CPU has beaten this CPU to successfully execute the
1304 * write_trylock and has already acquired the write_lock. We know for a
1305 * fact it (other CPU acquiring the write_lock) couldn't have happened
1306 * before this CPU's Phase-I as we held the read_lock.
1307 * 3. Some other CPU executing pcc CMD_READ has stolen the
1308 * down_write, in which case, send_pcc_cmd will check for pending
1309 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1310 * So this CPU can be certain that its request will be delivered
1311 * So in all cases, this CPU knows that its request will be delivered
1312 * by another CPU and can return
1314 * After getting the down_write we still need to check for
1315 * pending_pcc_write_cmd to take care of the following scenario
1316 * The thread running this code could be scheduled out between
1317 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1318 * could have delivered the request to Platform by triggering the
1319 * doorbell and transferred the ownership of PCC to platform. So this
1320 * avoids triggering an unnecessary doorbell and more importantly before
1321 * triggering the doorbell it makes sure that the PCC channel ownership
1322 * is still with OSPM.
1323 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1324 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1325 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1326 * case during a CMD_READ and if there are pending writes it delivers
1327 * the write command before servicing the read command
1329 if (CPC_IN_PCC(desired_reg)) {
1330 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1331 /* Update only if there are pending write commands */
1332 if (pcc_ss_data->pending_pcc_write_cmd)
1333 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1334 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1336 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1337 wait_event(pcc_ss_data->pcc_write_wait_q,
1338 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1340 /* send_pcc_cmd updates the status in case of failure */
1341 ret = cpc_desc->write_cmd_status;
1345 EXPORT_SYMBOL_GPL(cppc_set_perf);
1348 * cppc_get_transition_latency - returns frequency transition latency in ns
1350 * ACPI CPPC does not explicitly specify how a platform can specify the
1351 * transition latency for performance change requests. The closest we have
1352 * is the timing information from the PCCT tables which provides the info
1353 * on the number and frequency of PCC commands the platform can handle.
1355 unsigned int cppc_get_transition_latency(int cpu_num)
1358 * Expected transition latency is based on the PCCT timing values
1359 * Below are definition from ACPI spec:
1360 * pcc_nominal- Expected latency to process a command, in microseconds
1361 * pcc_mpar - The maximum number of periodic requests that the subspace
1362 * channel can support, reported in commands per minute. 0
1363 * indicates no limitation.
1364 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1365 * completion of a command before issuing the next command,
1368 unsigned int latency_ns = 0;
1369 struct cpc_desc *cpc_desc;
1370 struct cpc_register_resource *desired_reg;
1371 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1372 struct cppc_pcc_data *pcc_ss_data;
1374 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1376 return CPUFREQ_ETERNAL;
1378 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1379 if (!CPC_IN_PCC(desired_reg))
1380 return CPUFREQ_ETERNAL;
1383 return CPUFREQ_ETERNAL;
1385 pcc_ss_data = pcc_data[pcc_ss_id];
1386 if (pcc_ss_data->pcc_mpar)
1387 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1389 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1390 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1394 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);