1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
146 #include "net-sysfs.h"
148 #define MAX_GRO_SKBS 8
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly; /* Taps */
157 static struct list_head offload_base __read_mostly;
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163 struct net_device *dev,
164 struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173 * Writers must hold the rtnl semaphore while they loop through the
174 * dev_base_head list, and hold dev_base_lock for writing when they do the
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
189 static DEFINE_MUTEX(ifalias_mutex);
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197 static seqcount_t devnet_rename_seq;
199 static inline void dev_base_seq_inc(struct net *net)
201 while (++net->dev_base_seq == 0)
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 static inline void rps_lock(struct softnet_data *sd)
220 spin_lock(&sd->input_pkt_queue.lock);
224 static inline void rps_unlock(struct softnet_data *sd)
227 spin_unlock(&sd->input_pkt_queue.lock);
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
234 struct net *net = dev_net(dev);
238 write_lock_bh(&dev_base_lock);
239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 hlist_add_head_rcu(&dev->index_hlist,
242 dev_index_hash(net, dev->ifindex));
243 write_unlock_bh(&dev_base_lock);
245 dev_base_seq_inc(net);
248 /* Device list removal
249 * caller must respect a RCU grace period before freeing/reusing dev
251 static void unlist_netdevice(struct net_device *dev)
255 /* Unlink dev from the device chain */
256 write_lock_bh(&dev_base_lock);
257 list_del_rcu(&dev->dev_list);
258 hlist_del_rcu(&dev->name_hlist);
259 hlist_del_rcu(&dev->index_hlist);
260 write_unlock_bh(&dev_base_lock);
262 dev_base_seq_inc(dev_net(dev));
269 static RAW_NOTIFIER_HEAD(netdev_chain);
272 * Device drivers call our routines to queue packets here. We empty the
273 * queue in the local softnet handler.
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
279 #ifdef CONFIG_LOCKDEP
281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282 * according to dev->type
284 static const unsigned short netdev_lock_type[] = {
285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
301 static const char *const netdev_lock_name[] = {
302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 if (netdev_lock_type[i] == dev_type)
328 /* the last key is used by default */
329 return ARRAY_SIZE(netdev_lock_type) - 1;
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
337 i = netdev_lock_pos(dev_type);
338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 netdev_lock_name[i]);
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 i = netdev_lock_pos(dev->type);
347 lockdep_set_class_and_name(&dev->addr_list_lock,
348 &netdev_addr_lock_key[i],
349 netdev_lock_name[i]);
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 unsigned short dev_type)
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
361 /*******************************************************************************
363 * Protocol management and registration routines
365 *******************************************************************************/
369 * Add a protocol ID to the list. Now that the input handler is
370 * smarter we can dispense with all the messy stuff that used to be
373 * BEWARE!!! Protocol handlers, mangling input packets,
374 * MUST BE last in hash buckets and checking protocol handlers
375 * MUST start from promiscuous ptype_all chain in net_bh.
376 * It is true now, do not change it.
377 * Explanation follows: if protocol handler, mangling packet, will
378 * be the first on list, it is not able to sense, that packet
379 * is cloned and should be copied-on-write, so that it will
380 * change it and subsequent readers will get broken packet.
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
386 if (pt->type == htons(ETH_P_ALL))
387 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
389 return pt->dev ? &pt->dev->ptype_specific :
390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
394 * dev_add_pack - add packet handler
395 * @pt: packet type declaration
397 * Add a protocol handler to the networking stack. The passed &packet_type
398 * is linked into kernel lists and may not be freed until it has been
399 * removed from the kernel lists.
401 * This call does not sleep therefore it can not
402 * guarantee all CPU's that are in middle of receiving packets
403 * will see the new packet type (until the next received packet).
406 void dev_add_pack(struct packet_type *pt)
408 struct list_head *head = ptype_head(pt);
410 spin_lock(&ptype_lock);
411 list_add_rcu(&pt->list, head);
412 spin_unlock(&ptype_lock);
414 EXPORT_SYMBOL(dev_add_pack);
417 * __dev_remove_pack - remove packet handler
418 * @pt: packet type declaration
420 * Remove a protocol handler that was previously added to the kernel
421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
422 * from the kernel lists and can be freed or reused once this function
425 * The packet type might still be in use by receivers
426 * and must not be freed until after all the CPU's have gone
427 * through a quiescent state.
429 void __dev_remove_pack(struct packet_type *pt)
431 struct list_head *head = ptype_head(pt);
432 struct packet_type *pt1;
434 spin_lock(&ptype_lock);
436 list_for_each_entry(pt1, head, list) {
438 list_del_rcu(&pt->list);
443 pr_warn("dev_remove_pack: %p not found\n", pt);
445 spin_unlock(&ptype_lock);
447 EXPORT_SYMBOL(__dev_remove_pack);
450 * dev_remove_pack - remove packet handler
451 * @pt: packet type declaration
453 * Remove a protocol handler that was previously added to the kernel
454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
455 * from the kernel lists and can be freed or reused once this function
458 * This call sleeps to guarantee that no CPU is looking at the packet
461 void dev_remove_pack(struct packet_type *pt)
463 __dev_remove_pack(pt);
467 EXPORT_SYMBOL(dev_remove_pack);
471 * dev_add_offload - register offload handlers
472 * @po: protocol offload declaration
474 * Add protocol offload handlers to the networking stack. The passed
475 * &proto_offload is linked into kernel lists and may not be freed until
476 * it has been removed from the kernel lists.
478 * This call does not sleep therefore it can not
479 * guarantee all CPU's that are in middle of receiving packets
480 * will see the new offload handlers (until the next received packet).
482 void dev_add_offload(struct packet_offload *po)
484 struct packet_offload *elem;
486 spin_lock(&offload_lock);
487 list_for_each_entry(elem, &offload_base, list) {
488 if (po->priority < elem->priority)
491 list_add_rcu(&po->list, elem->list.prev);
492 spin_unlock(&offload_lock);
494 EXPORT_SYMBOL(dev_add_offload);
497 * __dev_remove_offload - remove offload handler
498 * @po: packet offload declaration
500 * Remove a protocol offload handler that was previously added to the
501 * kernel offload handlers by dev_add_offload(). The passed &offload_type
502 * is removed from the kernel lists and can be freed or reused once this
505 * The packet type might still be in use by receivers
506 * and must not be freed until after all the CPU's have gone
507 * through a quiescent state.
509 static void __dev_remove_offload(struct packet_offload *po)
511 struct list_head *head = &offload_base;
512 struct packet_offload *po1;
514 spin_lock(&offload_lock);
516 list_for_each_entry(po1, head, list) {
518 list_del_rcu(&po->list);
523 pr_warn("dev_remove_offload: %p not found\n", po);
525 spin_unlock(&offload_lock);
529 * dev_remove_offload - remove packet offload handler
530 * @po: packet offload declaration
532 * Remove a packet offload handler that was previously added to the kernel
533 * offload handlers by dev_add_offload(). The passed &offload_type is
534 * removed from the kernel lists and can be freed or reused once this
537 * This call sleeps to guarantee that no CPU is looking at the packet
540 void dev_remove_offload(struct packet_offload *po)
542 __dev_remove_offload(po);
546 EXPORT_SYMBOL(dev_remove_offload);
548 /******************************************************************************
550 * Device Boot-time Settings Routines
552 ******************************************************************************/
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 * netdev_boot_setup_add - add new setup entry
559 * @name: name of the device
560 * @map: configured settings for the device
562 * Adds new setup entry to the dev_boot_setup list. The function
563 * returns 0 on error and 1 on success. This is a generic routine to
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
568 struct netdev_boot_setup *s;
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 memset(s[i].name, 0, sizeof(s[i].name));
575 strlcpy(s[i].name, name, IFNAMSIZ);
576 memcpy(&s[i].map, map, sizeof(s[i].map));
581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
585 * netdev_boot_setup_check - check boot time settings
586 * @dev: the netdevice
588 * Check boot time settings for the device.
589 * The found settings are set for the device to be used
590 * later in the device probing.
591 * Returns 0 if no settings found, 1 if they are.
593 int netdev_boot_setup_check(struct net_device *dev)
595 struct netdev_boot_setup *s = dev_boot_setup;
598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 !strcmp(dev->name, s[i].name)) {
601 dev->irq = s[i].map.irq;
602 dev->base_addr = s[i].map.base_addr;
603 dev->mem_start = s[i].map.mem_start;
604 dev->mem_end = s[i].map.mem_end;
610 EXPORT_SYMBOL(netdev_boot_setup_check);
614 * netdev_boot_base - get address from boot time settings
615 * @prefix: prefix for network device
616 * @unit: id for network device
618 * Check boot time settings for the base address of device.
619 * The found settings are set for the device to be used
620 * later in the device probing.
621 * Returns 0 if no settings found.
623 unsigned long netdev_boot_base(const char *prefix, int unit)
625 const struct netdev_boot_setup *s = dev_boot_setup;
629 sprintf(name, "%s%d", prefix, unit);
632 * If device already registered then return base of 1
633 * to indicate not to probe for this interface
635 if (__dev_get_by_name(&init_net, name))
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 if (!strcmp(name, s[i].name))
640 return s[i].map.base_addr;
645 * Saves at boot time configured settings for any netdevice.
647 int __init netdev_boot_setup(char *str)
652 str = get_options(str, ARRAY_SIZE(ints), ints);
657 memset(&map, 0, sizeof(map));
661 map.base_addr = ints[2];
663 map.mem_start = ints[3];
665 map.mem_end = ints[4];
667 /* Add new entry to the list */
668 return netdev_boot_setup_add(str, &map);
671 __setup("netdev=", netdev_boot_setup);
673 /*******************************************************************************
675 * Device Interface Subroutines
677 *******************************************************************************/
680 * dev_get_iflink - get 'iflink' value of a interface
681 * @dev: targeted interface
683 * Indicates the ifindex the interface is linked to.
684 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 int dev_get_iflink(const struct net_device *dev)
689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 return dev->netdev_ops->ndo_get_iflink(dev);
694 EXPORT_SYMBOL(dev_get_iflink);
697 * dev_fill_metadata_dst - Retrieve tunnel egress information.
698 * @dev: targeted interface
701 * For better visibility of tunnel traffic OVS needs to retrieve
702 * egress tunnel information for a packet. Following API allows
703 * user to get this info.
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
707 struct ip_tunnel_info *info;
709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 info = skb_tunnel_info_unclone(skb);
715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 * __dev_get_by_name - find a device by its name
724 * @net: the applicable net namespace
725 * @name: name to find
727 * Find an interface by name. Must be called under RTNL semaphore
728 * or @dev_base_lock. If the name is found a pointer to the device
729 * is returned. If the name is not found then %NULL is returned. The
730 * reference counters are not incremented so the caller must be
731 * careful with locks.
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
736 struct net_device *dev;
737 struct hlist_head *head = dev_name_hash(net, name);
739 hlist_for_each_entry(dev, head, name_hlist)
740 if (!strncmp(dev->name, name, IFNAMSIZ))
745 EXPORT_SYMBOL(__dev_get_by_name);
748 * dev_get_by_name_rcu - find a device by its name
749 * @net: the applicable net namespace
750 * @name: name to find
752 * Find an interface by name.
753 * If the name is found a pointer to the device is returned.
754 * If the name is not found then %NULL is returned.
755 * The reference counters are not incremented so the caller must be
756 * careful with locks. The caller must hold RCU lock.
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 struct net_device *dev;
762 struct hlist_head *head = dev_name_hash(net, name);
764 hlist_for_each_entry_rcu(dev, head, name_hlist)
765 if (!strncmp(dev->name, name, IFNAMSIZ))
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 * dev_get_by_name - find a device by its name
774 * @net: the applicable net namespace
775 * @name: name to find
777 * Find an interface by name. This can be called from any
778 * context and does its own locking. The returned handle has
779 * the usage count incremented and the caller must use dev_put() to
780 * release it when it is no longer needed. %NULL is returned if no
781 * matching device is found.
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
786 struct net_device *dev;
789 dev = dev_get_by_name_rcu(net, name);
795 EXPORT_SYMBOL(dev_get_by_name);
798 * __dev_get_by_index - find a device by its ifindex
799 * @net: the applicable net namespace
800 * @ifindex: index of device
802 * Search for an interface by index. Returns %NULL if the device
803 * is not found or a pointer to the device. The device has not
804 * had its reference counter increased so the caller must be careful
805 * about locking. The caller must hold either the RTNL semaphore
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
811 struct net_device *dev;
812 struct hlist_head *head = dev_index_hash(net, ifindex);
814 hlist_for_each_entry(dev, head, index_hlist)
815 if (dev->ifindex == ifindex)
820 EXPORT_SYMBOL(__dev_get_by_index);
823 * dev_get_by_index_rcu - find a device by its ifindex
824 * @net: the applicable net namespace
825 * @ifindex: index of device
827 * Search for an interface by index. Returns %NULL if the device
828 * is not found or a pointer to the device. The device has not
829 * had its reference counter increased so the caller must be careful
830 * about locking. The caller must hold RCU lock.
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
835 struct net_device *dev;
836 struct hlist_head *head = dev_index_hash(net, ifindex);
838 hlist_for_each_entry_rcu(dev, head, index_hlist)
839 if (dev->ifindex == ifindex)
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
848 * dev_get_by_index - find a device by its ifindex
849 * @net: the applicable net namespace
850 * @ifindex: index of device
852 * Search for an interface by index. Returns NULL if the device
853 * is not found or a pointer to the device. The device returned has
854 * had a reference added and the pointer is safe until the user calls
855 * dev_put to indicate they have finished with it.
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
860 struct net_device *dev;
863 dev = dev_get_by_index_rcu(net, ifindex);
869 EXPORT_SYMBOL(dev_get_by_index);
872 * dev_get_by_napi_id - find a device by napi_id
873 * @napi_id: ID of the NAPI struct
875 * Search for an interface by NAPI ID. Returns %NULL if the device
876 * is not found or a pointer to the device. The device has not had
877 * its reference counter increased so the caller must be careful
878 * about locking. The caller must hold RCU lock.
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
883 struct napi_struct *napi;
885 WARN_ON_ONCE(!rcu_read_lock_held());
887 if (napi_id < MIN_NAPI_ID)
890 napi = napi_by_id(napi_id);
892 return napi ? napi->dev : NULL;
894 EXPORT_SYMBOL(dev_get_by_napi_id);
897 * netdev_get_name - get a netdevice name, knowing its ifindex.
898 * @net: network namespace
899 * @name: a pointer to the buffer where the name will be stored.
900 * @ifindex: the ifindex of the interface to get the name from.
902 * The use of raw_seqcount_begin() and cond_resched() before
903 * retrying is required as we want to give the writers a chance
904 * to complete when CONFIG_PREEMPT is not set.
906 int netdev_get_name(struct net *net, char *name, int ifindex)
908 struct net_device *dev;
912 seq = raw_seqcount_begin(&devnet_rename_seq);
914 dev = dev_get_by_index_rcu(net, ifindex);
920 strcpy(name, dev->name);
922 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
931 * dev_getbyhwaddr_rcu - find a device by its hardware address
932 * @net: the applicable net namespace
933 * @type: media type of device
934 * @ha: hardware address
936 * Search for an interface by MAC address. Returns NULL if the device
937 * is not found or a pointer to the device.
938 * The caller must hold RCU or RTNL.
939 * The returned device has not had its ref count increased
940 * and the caller must therefore be careful about locking
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 struct net_device *dev;
949 for_each_netdev_rcu(net, dev)
950 if (dev->type == type &&
951 !memcmp(dev->dev_addr, ha, dev->addr_len))
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
960 struct net_device *dev;
963 for_each_netdev(net, dev)
964 if (dev->type == type)
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973 struct net_device *dev, *ret = NULL;
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type) {
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 * __dev_get_by_flags - find any device with given flags
989 * @net: the applicable net namespace
990 * @if_flags: IFF_* values
991 * @mask: bitmask of bits in if_flags to check
993 * Search for any interface with the given flags. Returns NULL if a device
994 * is not found or a pointer to the device. Must be called inside
995 * rtnl_lock(), and result refcount is unchanged.
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 struct net_device *dev, *ret;
1006 for_each_netdev(net, dev) {
1007 if (((dev->flags ^ if_flags) & mask) == 0) {
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1017 * dev_valid_name - check if name is okay for network device
1018 * @name: name string
1020 * Network device names need to be valid file names to
1021 * to allow sysfs to work. We also disallow any kind of
1024 bool dev_valid_name(const char *name)
1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1030 if (!strcmp(name, ".") || !strcmp(name, ".."))
1034 if (*name == '/' || *name == ':' || isspace(*name))
1040 EXPORT_SYMBOL(dev_valid_name);
1043 * __dev_alloc_name - allocate a name for a device
1044 * @net: network namespace to allocate the device name in
1045 * @name: name format string
1046 * @buf: scratch buffer and result name string
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1061 const int max_netdevices = 8*PAGE_SIZE;
1062 unsigned long *inuse;
1063 struct net_device *d;
1065 if (!dev_valid_name(name))
1068 p = strchr(name, '%');
1071 * Verify the string as this thing may have come from
1072 * the user. There must be either one "%d" and no other "%"
1075 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 /* Use one page as a bit array of possible slots */
1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1083 for_each_netdev(net, d) {
1084 if (!sscanf(d->name, name, &i))
1086 if (i < 0 || i >= max_netdevices)
1089 /* avoid cases where sscanf is not exact inverse of printf */
1090 snprintf(buf, IFNAMSIZ, name, i);
1091 if (!strncmp(buf, d->name, IFNAMSIZ))
1095 i = find_first_zero_bit(inuse, max_netdevices);
1096 free_page((unsigned long) inuse);
1099 snprintf(buf, IFNAMSIZ, name, i);
1100 if (!__dev_get_by_name(net, buf))
1103 /* It is possible to run out of possible slots
1104 * when the name is long and there isn't enough space left
1105 * for the digits, or if all bits are used.
1110 static int dev_alloc_name_ns(struct net *net,
1111 struct net_device *dev,
1118 ret = __dev_alloc_name(net, name, buf);
1120 strlcpy(dev->name, buf, IFNAMSIZ);
1125 * dev_alloc_name - allocate a name for a device
1127 * @name: name format string
1129 * Passed a format string - eg "lt%d" it will try and find a suitable
1130 * id. It scans list of devices to build up a free map, then chooses
1131 * the first empty slot. The caller must hold the dev_base or rtnl lock
1132 * while allocating the name and adding the device in order to avoid
1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135 * Returns the number of the unit assigned or a negative errno code.
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1140 return dev_alloc_name_ns(dev_net(dev), dev, name);
1142 EXPORT_SYMBOL(dev_alloc_name);
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1149 if (!dev_valid_name(name))
1152 if (strchr(name, '%'))
1153 return dev_alloc_name_ns(net, dev, name);
1154 else if (__dev_get_by_name(net, name))
1156 else if (dev->name != name)
1157 strlcpy(dev->name, name, IFNAMSIZ);
1161 EXPORT_SYMBOL(dev_get_valid_name);
1164 * dev_change_name - change name of a device
1166 * @newname: name (or format string) must be at least IFNAMSIZ
1168 * Change name of a device, can pass format strings "eth%d".
1171 int dev_change_name(struct net_device *dev, const char *newname)
1173 unsigned char old_assign_type;
1174 char oldname[IFNAMSIZ];
1180 BUG_ON(!dev_net(dev));
1184 /* Some auto-enslaved devices e.g. failover slaves are
1185 * special, as userspace might rename the device after
1186 * the interface had been brought up and running since
1187 * the point kernel initiated auto-enslavement. Allow
1188 * live name change even when these slave devices are
1191 * Typically, users of these auto-enslaving devices
1192 * don't actually care about slave name change, as
1193 * they are supposed to operate on master interface
1196 if (dev->flags & IFF_UP &&
1197 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1200 write_seqcount_begin(&devnet_rename_seq);
1202 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1203 write_seqcount_end(&devnet_rename_seq);
1207 memcpy(oldname, dev->name, IFNAMSIZ);
1209 err = dev_get_valid_name(net, dev, newname);
1211 write_seqcount_end(&devnet_rename_seq);
1215 if (oldname[0] && !strchr(oldname, '%'))
1216 netdev_info(dev, "renamed from %s\n", oldname);
1218 old_assign_type = dev->name_assign_type;
1219 dev->name_assign_type = NET_NAME_RENAMED;
1222 ret = device_rename(&dev->dev, dev->name);
1224 memcpy(dev->name, oldname, IFNAMSIZ);
1225 dev->name_assign_type = old_assign_type;
1226 write_seqcount_end(&devnet_rename_seq);
1230 write_seqcount_end(&devnet_rename_seq);
1232 netdev_adjacent_rename_links(dev, oldname);
1234 write_lock_bh(&dev_base_lock);
1235 hlist_del_rcu(&dev->name_hlist);
1236 write_unlock_bh(&dev_base_lock);
1240 write_lock_bh(&dev_base_lock);
1241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1242 write_unlock_bh(&dev_base_lock);
1244 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245 ret = notifier_to_errno(ret);
1248 /* err >= 0 after dev_alloc_name() or stores the first errno */
1251 write_seqcount_begin(&devnet_rename_seq);
1252 memcpy(dev->name, oldname, IFNAMSIZ);
1253 memcpy(oldname, newname, IFNAMSIZ);
1254 dev->name_assign_type = old_assign_type;
1255 old_assign_type = NET_NAME_RENAMED;
1258 pr_err("%s: name change rollback failed: %d\n",
1267 * dev_set_alias - change ifalias of a device
1269 * @alias: name up to IFALIASZ
1270 * @len: limit of bytes to copy from info
1272 * Set ifalias for a device,
1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1276 struct dev_ifalias *new_alias = NULL;
1278 if (len >= IFALIASZ)
1282 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1286 memcpy(new_alias->ifalias, alias, len);
1287 new_alias->ifalias[len] = 0;
1290 mutex_lock(&ifalias_mutex);
1291 rcu_swap_protected(dev->ifalias, new_alias,
1292 mutex_is_locked(&ifalias_mutex));
1293 mutex_unlock(&ifalias_mutex);
1296 kfree_rcu(new_alias, rcuhead);
1300 EXPORT_SYMBOL(dev_set_alias);
1303 * dev_get_alias - get ifalias of a device
1305 * @name: buffer to store name of ifalias
1306 * @len: size of buffer
1308 * get ifalias for a device. Caller must make sure dev cannot go
1309 * away, e.g. rcu read lock or own a reference count to device.
1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1313 const struct dev_ifalias *alias;
1317 alias = rcu_dereference(dev->ifalias);
1319 ret = snprintf(name, len, "%s", alias->ifalias);
1326 * netdev_features_change - device changes features
1327 * @dev: device to cause notification
1329 * Called to indicate a device has changed features.
1331 void netdev_features_change(struct net_device *dev)
1333 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1335 EXPORT_SYMBOL(netdev_features_change);
1338 * netdev_state_change - device changes state
1339 * @dev: device to cause notification
1341 * Called to indicate a device has changed state. This function calls
1342 * the notifier chains for netdev_chain and sends a NEWLINK message
1343 * to the routing socket.
1345 void netdev_state_change(struct net_device *dev)
1347 if (dev->flags & IFF_UP) {
1348 struct netdev_notifier_change_info change_info = {
1352 call_netdevice_notifiers_info(NETDEV_CHANGE,
1354 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1357 EXPORT_SYMBOL(netdev_state_change);
1360 * netdev_notify_peers - notify network peers about existence of @dev
1361 * @dev: network device
1363 * Generate traffic such that interested network peers are aware of
1364 * @dev, such as by generating a gratuitous ARP. This may be used when
1365 * a device wants to inform the rest of the network about some sort of
1366 * reconfiguration such as a failover event or virtual machine
1369 void netdev_notify_peers(struct net_device *dev)
1372 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1373 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1376 EXPORT_SYMBOL(netdev_notify_peers);
1378 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1380 const struct net_device_ops *ops = dev->netdev_ops;
1385 if (!netif_device_present(dev))
1388 /* Block netpoll from trying to do any rx path servicing.
1389 * If we don't do this there is a chance ndo_poll_controller
1390 * or ndo_poll may be running while we open the device
1392 netpoll_poll_disable(dev);
1394 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1395 ret = notifier_to_errno(ret);
1399 set_bit(__LINK_STATE_START, &dev->state);
1401 if (ops->ndo_validate_addr)
1402 ret = ops->ndo_validate_addr(dev);
1404 if (!ret && ops->ndo_open)
1405 ret = ops->ndo_open(dev);
1407 netpoll_poll_enable(dev);
1410 clear_bit(__LINK_STATE_START, &dev->state);
1412 dev->flags |= IFF_UP;
1413 dev_set_rx_mode(dev);
1415 add_device_randomness(dev->dev_addr, dev->addr_len);
1422 * dev_open - prepare an interface for use.
1423 * @dev: device to open
1424 * @extack: netlink extended ack
1426 * Takes a device from down to up state. The device's private open
1427 * function is invoked and then the multicast lists are loaded. Finally
1428 * the device is moved into the up state and a %NETDEV_UP message is
1429 * sent to the netdev notifier chain.
1431 * Calling this function on an active interface is a nop. On a failure
1432 * a negative errno code is returned.
1434 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1438 if (dev->flags & IFF_UP)
1441 ret = __dev_open(dev, extack);
1445 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1446 call_netdevice_notifiers(NETDEV_UP, dev);
1450 EXPORT_SYMBOL(dev_open);
1452 static void __dev_close_many(struct list_head *head)
1454 struct net_device *dev;
1459 list_for_each_entry(dev, head, close_list) {
1460 /* Temporarily disable netpoll until the interface is down */
1461 netpoll_poll_disable(dev);
1463 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1465 clear_bit(__LINK_STATE_START, &dev->state);
1467 /* Synchronize to scheduled poll. We cannot touch poll list, it
1468 * can be even on different cpu. So just clear netif_running().
1470 * dev->stop() will invoke napi_disable() on all of it's
1471 * napi_struct instances on this device.
1473 smp_mb__after_atomic(); /* Commit netif_running(). */
1476 dev_deactivate_many(head);
1478 list_for_each_entry(dev, head, close_list) {
1479 const struct net_device_ops *ops = dev->netdev_ops;
1482 * Call the device specific close. This cannot fail.
1483 * Only if device is UP
1485 * We allow it to be called even after a DETACH hot-plug
1491 dev->flags &= ~IFF_UP;
1492 netpoll_poll_enable(dev);
1496 static void __dev_close(struct net_device *dev)
1500 list_add(&dev->close_list, &single);
1501 __dev_close_many(&single);
1505 void dev_close_many(struct list_head *head, bool unlink)
1507 struct net_device *dev, *tmp;
1509 /* Remove the devices that don't need to be closed */
1510 list_for_each_entry_safe(dev, tmp, head, close_list)
1511 if (!(dev->flags & IFF_UP))
1512 list_del_init(&dev->close_list);
1514 __dev_close_many(head);
1516 list_for_each_entry_safe(dev, tmp, head, close_list) {
1517 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1518 call_netdevice_notifiers(NETDEV_DOWN, dev);
1520 list_del_init(&dev->close_list);
1523 EXPORT_SYMBOL(dev_close_many);
1526 * dev_close - shutdown an interface.
1527 * @dev: device to shutdown
1529 * This function moves an active device into down state. A
1530 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1531 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1534 void dev_close(struct net_device *dev)
1536 if (dev->flags & IFF_UP) {
1539 list_add(&dev->close_list, &single);
1540 dev_close_many(&single, true);
1544 EXPORT_SYMBOL(dev_close);
1548 * dev_disable_lro - disable Large Receive Offload on a device
1551 * Disable Large Receive Offload (LRO) on a net device. Must be
1552 * called under RTNL. This is needed if received packets may be
1553 * forwarded to another interface.
1555 void dev_disable_lro(struct net_device *dev)
1557 struct net_device *lower_dev;
1558 struct list_head *iter;
1560 dev->wanted_features &= ~NETIF_F_LRO;
1561 netdev_update_features(dev);
1563 if (unlikely(dev->features & NETIF_F_LRO))
1564 netdev_WARN(dev, "failed to disable LRO!\n");
1566 netdev_for_each_lower_dev(dev, lower_dev, iter)
1567 dev_disable_lro(lower_dev);
1569 EXPORT_SYMBOL(dev_disable_lro);
1572 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1575 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1576 * called under RTNL. This is needed if Generic XDP is installed on
1579 static void dev_disable_gro_hw(struct net_device *dev)
1581 dev->wanted_features &= ~NETIF_F_GRO_HW;
1582 netdev_update_features(dev);
1584 if (unlikely(dev->features & NETIF_F_GRO_HW))
1585 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1588 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1591 case NETDEV_##val: \
1592 return "NETDEV_" __stringify(val);
1594 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1595 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1596 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1597 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1598 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1599 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1600 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1601 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1602 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1606 return "UNKNOWN_NETDEV_EVENT";
1608 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1610 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1611 struct net_device *dev)
1613 struct netdev_notifier_info info = {
1617 return nb->notifier_call(nb, val, &info);
1620 static int dev_boot_phase = 1;
1623 * register_netdevice_notifier - register a network notifier block
1626 * Register a notifier to be called when network device events occur.
1627 * The notifier passed is linked into the kernel structures and must
1628 * not be reused until it has been unregistered. A negative errno code
1629 * is returned on a failure.
1631 * When registered all registration and up events are replayed
1632 * to the new notifier to allow device to have a race free
1633 * view of the network device list.
1636 int register_netdevice_notifier(struct notifier_block *nb)
1638 struct net_device *dev;
1639 struct net_device *last;
1643 /* Close race with setup_net() and cleanup_net() */
1644 down_write(&pernet_ops_rwsem);
1646 err = raw_notifier_chain_register(&netdev_chain, nb);
1652 for_each_netdev(net, dev) {
1653 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654 err = notifier_to_errno(err);
1658 if (!(dev->flags & IFF_UP))
1661 call_netdevice_notifier(nb, NETDEV_UP, dev);
1667 up_write(&pernet_ops_rwsem);
1673 for_each_netdev(net, dev) {
1677 if (dev->flags & IFF_UP) {
1678 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1680 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1682 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1687 raw_notifier_chain_unregister(&netdev_chain, nb);
1690 EXPORT_SYMBOL(register_netdevice_notifier);
1693 * unregister_netdevice_notifier - unregister a network notifier block
1696 * Unregister a notifier previously registered by
1697 * register_netdevice_notifier(). The notifier is unlinked into the
1698 * kernel structures and may then be reused. A negative errno code
1699 * is returned on a failure.
1701 * After unregistering unregister and down device events are synthesized
1702 * for all devices on the device list to the removed notifier to remove
1703 * the need for special case cleanup code.
1706 int unregister_netdevice_notifier(struct notifier_block *nb)
1708 struct net_device *dev;
1712 /* Close race with setup_net() and cleanup_net() */
1713 down_write(&pernet_ops_rwsem);
1715 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1720 for_each_netdev(net, dev) {
1721 if (dev->flags & IFF_UP) {
1722 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1724 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1726 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1731 up_write(&pernet_ops_rwsem);
1734 EXPORT_SYMBOL(unregister_netdevice_notifier);
1737 * call_netdevice_notifiers_info - call all network notifier blocks
1738 * @val: value passed unmodified to notifier function
1739 * @info: notifier information data
1741 * Call all network notifier blocks. Parameters and return value
1742 * are as for raw_notifier_call_chain().
1745 static int call_netdevice_notifiers_info(unsigned long val,
1746 struct netdev_notifier_info *info)
1749 return raw_notifier_call_chain(&netdev_chain, val, info);
1752 static int call_netdevice_notifiers_extack(unsigned long val,
1753 struct net_device *dev,
1754 struct netlink_ext_ack *extack)
1756 struct netdev_notifier_info info = {
1761 return call_netdevice_notifiers_info(val, &info);
1765 * call_netdevice_notifiers - call all network notifier blocks
1766 * @val: value passed unmodified to notifier function
1767 * @dev: net_device pointer passed unmodified to notifier function
1769 * Call all network notifier blocks. Parameters and return value
1770 * are as for raw_notifier_call_chain().
1773 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1775 return call_netdevice_notifiers_extack(val, dev, NULL);
1777 EXPORT_SYMBOL(call_netdevice_notifiers);
1780 * call_netdevice_notifiers_mtu - call all network notifier blocks
1781 * @val: value passed unmodified to notifier function
1782 * @dev: net_device pointer passed unmodified to notifier function
1783 * @arg: additional u32 argument passed to the notifier function
1785 * Call all network notifier blocks. Parameters and return value
1786 * are as for raw_notifier_call_chain().
1788 static int call_netdevice_notifiers_mtu(unsigned long val,
1789 struct net_device *dev, u32 arg)
1791 struct netdev_notifier_info_ext info = {
1796 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1798 return call_netdevice_notifiers_info(val, &info.info);
1801 #ifdef CONFIG_NET_INGRESS
1802 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1804 void net_inc_ingress_queue(void)
1806 static_branch_inc(&ingress_needed_key);
1808 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1810 void net_dec_ingress_queue(void)
1812 static_branch_dec(&ingress_needed_key);
1814 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1817 #ifdef CONFIG_NET_EGRESS
1818 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1820 void net_inc_egress_queue(void)
1822 static_branch_inc(&egress_needed_key);
1824 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1826 void net_dec_egress_queue(void)
1828 static_branch_dec(&egress_needed_key);
1830 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1833 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1834 #ifdef CONFIG_JUMP_LABEL
1835 static atomic_t netstamp_needed_deferred;
1836 static atomic_t netstamp_wanted;
1837 static void netstamp_clear(struct work_struct *work)
1839 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1842 wanted = atomic_add_return(deferred, &netstamp_wanted);
1844 static_branch_enable(&netstamp_needed_key);
1846 static_branch_disable(&netstamp_needed_key);
1848 static DECLARE_WORK(netstamp_work, netstamp_clear);
1851 void net_enable_timestamp(void)
1853 #ifdef CONFIG_JUMP_LABEL
1857 wanted = atomic_read(&netstamp_wanted);
1860 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1863 atomic_inc(&netstamp_needed_deferred);
1864 schedule_work(&netstamp_work);
1866 static_branch_inc(&netstamp_needed_key);
1869 EXPORT_SYMBOL(net_enable_timestamp);
1871 void net_disable_timestamp(void)
1873 #ifdef CONFIG_JUMP_LABEL
1877 wanted = atomic_read(&netstamp_wanted);
1880 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1883 atomic_dec(&netstamp_needed_deferred);
1884 schedule_work(&netstamp_work);
1886 static_branch_dec(&netstamp_needed_key);
1889 EXPORT_SYMBOL(net_disable_timestamp);
1891 static inline void net_timestamp_set(struct sk_buff *skb)
1894 if (static_branch_unlikely(&netstamp_needed_key))
1895 __net_timestamp(skb);
1898 #define net_timestamp_check(COND, SKB) \
1899 if (static_branch_unlikely(&netstamp_needed_key)) { \
1900 if ((COND) && !(SKB)->tstamp) \
1901 __net_timestamp(SKB); \
1904 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1908 if (!(dev->flags & IFF_UP))
1911 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1912 if (skb->len <= len)
1915 /* if TSO is enabled, we don't care about the length as the packet
1916 * could be forwarded without being segmented before
1918 if (skb_is_gso(skb))
1923 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1925 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1927 int ret = ____dev_forward_skb(dev, skb);
1930 skb->protocol = eth_type_trans(skb, dev);
1931 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1936 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1939 * dev_forward_skb - loopback an skb to another netif
1941 * @dev: destination network device
1942 * @skb: buffer to forward
1945 * NET_RX_SUCCESS (no congestion)
1946 * NET_RX_DROP (packet was dropped, but freed)
1948 * dev_forward_skb can be used for injecting an skb from the
1949 * start_xmit function of one device into the receive queue
1950 * of another device.
1952 * The receiving device may be in another namespace, so
1953 * we have to clear all information in the skb that could
1954 * impact namespace isolation.
1956 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1958 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1960 EXPORT_SYMBOL_GPL(dev_forward_skb);
1962 static inline int deliver_skb(struct sk_buff *skb,
1963 struct packet_type *pt_prev,
1964 struct net_device *orig_dev)
1966 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1968 refcount_inc(&skb->users);
1969 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1972 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1973 struct packet_type **pt,
1974 struct net_device *orig_dev,
1976 struct list_head *ptype_list)
1978 struct packet_type *ptype, *pt_prev = *pt;
1980 list_for_each_entry_rcu(ptype, ptype_list, list) {
1981 if (ptype->type != type)
1984 deliver_skb(skb, pt_prev, orig_dev);
1990 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1992 if (!ptype->af_packet_priv || !skb->sk)
1995 if (ptype->id_match)
1996 return ptype->id_match(ptype, skb->sk);
1997 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2004 * dev_nit_active - return true if any network interface taps are in use
2006 * @dev: network device to check for the presence of taps
2008 bool dev_nit_active(struct net_device *dev)
2010 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2012 EXPORT_SYMBOL_GPL(dev_nit_active);
2015 * Support routine. Sends outgoing frames to any network
2016 * taps currently in use.
2019 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2021 struct packet_type *ptype;
2022 struct sk_buff *skb2 = NULL;
2023 struct packet_type *pt_prev = NULL;
2024 struct list_head *ptype_list = &ptype_all;
2028 list_for_each_entry_rcu(ptype, ptype_list, list) {
2029 if (ptype->ignore_outgoing)
2032 /* Never send packets back to the socket
2035 if (skb_loop_sk(ptype, skb))
2039 deliver_skb(skb2, pt_prev, skb->dev);
2044 /* need to clone skb, done only once */
2045 skb2 = skb_clone(skb, GFP_ATOMIC);
2049 net_timestamp_set(skb2);
2051 /* skb->nh should be correctly
2052 * set by sender, so that the second statement is
2053 * just protection against buggy protocols.
2055 skb_reset_mac_header(skb2);
2057 if (skb_network_header(skb2) < skb2->data ||
2058 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2059 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2060 ntohs(skb2->protocol),
2062 skb_reset_network_header(skb2);
2065 skb2->transport_header = skb2->network_header;
2066 skb2->pkt_type = PACKET_OUTGOING;
2070 if (ptype_list == &ptype_all) {
2071 ptype_list = &dev->ptype_all;
2076 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2077 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2083 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2086 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2087 * @dev: Network device
2088 * @txq: number of queues available
2090 * If real_num_tx_queues is changed the tc mappings may no longer be
2091 * valid. To resolve this verify the tc mapping remains valid and if
2092 * not NULL the mapping. With no priorities mapping to this
2093 * offset/count pair it will no longer be used. In the worst case TC0
2094 * is invalid nothing can be done so disable priority mappings. If is
2095 * expected that drivers will fix this mapping if they can before
2096 * calling netif_set_real_num_tx_queues.
2098 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2101 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2103 /* If TC0 is invalidated disable TC mapping */
2104 if (tc->offset + tc->count > txq) {
2105 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2110 /* Invalidated prio to tc mappings set to TC0 */
2111 for (i = 1; i < TC_BITMASK + 1; i++) {
2112 int q = netdev_get_prio_tc_map(dev, i);
2114 tc = &dev->tc_to_txq[q];
2115 if (tc->offset + tc->count > txq) {
2116 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2118 netdev_set_prio_tc_map(dev, i, 0);
2123 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2126 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2129 /* walk through the TCs and see if it falls into any of them */
2130 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2131 if ((txq - tc->offset) < tc->count)
2135 /* didn't find it, just return -1 to indicate no match */
2141 EXPORT_SYMBOL(netdev_txq_to_tc);
2144 struct static_key xps_needed __read_mostly;
2145 EXPORT_SYMBOL(xps_needed);
2146 struct static_key xps_rxqs_needed __read_mostly;
2147 EXPORT_SYMBOL(xps_rxqs_needed);
2148 static DEFINE_MUTEX(xps_map_mutex);
2149 #define xmap_dereference(P) \
2150 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2152 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2155 struct xps_map *map = NULL;
2159 map = xmap_dereference(dev_maps->attr_map[tci]);
2163 for (pos = map->len; pos--;) {
2164 if (map->queues[pos] != index)
2168 map->queues[pos] = map->queues[--map->len];
2172 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2173 kfree_rcu(map, rcu);
2180 static bool remove_xps_queue_cpu(struct net_device *dev,
2181 struct xps_dev_maps *dev_maps,
2182 int cpu, u16 offset, u16 count)
2184 int num_tc = dev->num_tc ? : 1;
2185 bool active = false;
2188 for (tci = cpu * num_tc; num_tc--; tci++) {
2191 for (i = count, j = offset; i--; j++) {
2192 if (!remove_xps_queue(dev_maps, tci, j))
2202 static void reset_xps_maps(struct net_device *dev,
2203 struct xps_dev_maps *dev_maps,
2207 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2208 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2210 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2212 static_key_slow_dec_cpuslocked(&xps_needed);
2213 kfree_rcu(dev_maps, rcu);
2216 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2217 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2218 u16 offset, u16 count, bool is_rxqs_map)
2220 bool active = false;
2223 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2225 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2228 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2231 for (i = offset + (count - 1); count--; i--) {
2232 netdev_queue_numa_node_write(
2233 netdev_get_tx_queue(dev, i),
2239 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2242 const unsigned long *possible_mask = NULL;
2243 struct xps_dev_maps *dev_maps;
2244 unsigned int nr_ids;
2246 if (!static_key_false(&xps_needed))
2250 mutex_lock(&xps_map_mutex);
2252 if (static_key_false(&xps_rxqs_needed)) {
2253 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2255 nr_ids = dev->num_rx_queues;
2256 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2257 offset, count, true);
2261 dev_maps = xmap_dereference(dev->xps_cpus_map);
2265 if (num_possible_cpus() > 1)
2266 possible_mask = cpumask_bits(cpu_possible_mask);
2267 nr_ids = nr_cpu_ids;
2268 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2272 mutex_unlock(&xps_map_mutex);
2276 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2278 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2281 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2282 u16 index, bool is_rxqs_map)
2284 struct xps_map *new_map;
2285 int alloc_len = XPS_MIN_MAP_ALLOC;
2288 for (pos = 0; map && pos < map->len; pos++) {
2289 if (map->queues[pos] != index)
2294 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2296 if (pos < map->alloc_len)
2299 alloc_len = map->alloc_len * 2;
2302 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2306 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2308 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2309 cpu_to_node(attr_index));
2313 for (i = 0; i < pos; i++)
2314 new_map->queues[i] = map->queues[i];
2315 new_map->alloc_len = alloc_len;
2321 /* Must be called under cpus_read_lock */
2322 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2323 u16 index, bool is_rxqs_map)
2325 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2326 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2327 int i, j, tci, numa_node_id = -2;
2328 int maps_sz, num_tc = 1, tc = 0;
2329 struct xps_map *map, *new_map;
2330 bool active = false;
2331 unsigned int nr_ids;
2334 /* Do not allow XPS on subordinate device directly */
2335 num_tc = dev->num_tc;
2339 /* If queue belongs to subordinate dev use its map */
2340 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2342 tc = netdev_txq_to_tc(dev, index);
2347 mutex_lock(&xps_map_mutex);
2349 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2350 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2351 nr_ids = dev->num_rx_queues;
2353 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2354 if (num_possible_cpus() > 1) {
2355 online_mask = cpumask_bits(cpu_online_mask);
2356 possible_mask = cpumask_bits(cpu_possible_mask);
2358 dev_maps = xmap_dereference(dev->xps_cpus_map);
2359 nr_ids = nr_cpu_ids;
2362 if (maps_sz < L1_CACHE_BYTES)
2363 maps_sz = L1_CACHE_BYTES;
2365 /* allocate memory for queue storage */
2366 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2369 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2370 if (!new_dev_maps) {
2371 mutex_unlock(&xps_map_mutex);
2375 tci = j * num_tc + tc;
2376 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2379 map = expand_xps_map(map, j, index, is_rxqs_map);
2383 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2387 goto out_no_new_maps;
2390 /* Increment static keys at most once per type */
2391 static_key_slow_inc_cpuslocked(&xps_needed);
2393 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2396 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2398 /* copy maps belonging to foreign traffic classes */
2399 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2400 /* fill in the new device map from the old device map */
2401 map = xmap_dereference(dev_maps->attr_map[tci]);
2402 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2405 /* We need to explicitly update tci as prevous loop
2406 * could break out early if dev_maps is NULL.
2408 tci = j * num_tc + tc;
2410 if (netif_attr_test_mask(j, mask, nr_ids) &&
2411 netif_attr_test_online(j, online_mask, nr_ids)) {
2412 /* add tx-queue to CPU/rx-queue maps */
2415 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2416 while ((pos < map->len) && (map->queues[pos] != index))
2419 if (pos == map->len)
2420 map->queues[map->len++] = index;
2423 if (numa_node_id == -2)
2424 numa_node_id = cpu_to_node(j);
2425 else if (numa_node_id != cpu_to_node(j))
2429 } else if (dev_maps) {
2430 /* fill in the new device map from the old device map */
2431 map = xmap_dereference(dev_maps->attr_map[tci]);
2432 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2435 /* copy maps belonging to foreign traffic classes */
2436 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2437 /* fill in the new device map from the old device map */
2438 map = xmap_dereference(dev_maps->attr_map[tci]);
2439 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2444 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2446 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2448 /* Cleanup old maps */
2450 goto out_no_old_maps;
2452 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2454 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2455 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2456 map = xmap_dereference(dev_maps->attr_map[tci]);
2457 if (map && map != new_map)
2458 kfree_rcu(map, rcu);
2462 kfree_rcu(dev_maps, rcu);
2465 dev_maps = new_dev_maps;
2470 /* update Tx queue numa node */
2471 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2472 (numa_node_id >= 0) ?
2473 numa_node_id : NUMA_NO_NODE);
2479 /* removes tx-queue from unused CPUs/rx-queues */
2480 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2482 for (i = tc, tci = j * num_tc; i--; tci++)
2483 active |= remove_xps_queue(dev_maps, tci, index);
2484 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2485 !netif_attr_test_online(j, online_mask, nr_ids))
2486 active |= remove_xps_queue(dev_maps, tci, index);
2487 for (i = num_tc - tc, tci++; --i; tci++)
2488 active |= remove_xps_queue(dev_maps, tci, index);
2491 /* free map if not active */
2493 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2496 mutex_unlock(&xps_map_mutex);
2500 /* remove any maps that we added */
2501 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2503 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2504 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2506 xmap_dereference(dev_maps->attr_map[tci]) :
2508 if (new_map && new_map != map)
2513 mutex_unlock(&xps_map_mutex);
2515 kfree(new_dev_maps);
2518 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2520 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2526 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2531 EXPORT_SYMBOL(netif_set_xps_queue);
2534 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2536 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2538 /* Unbind any subordinate channels */
2539 while (txq-- != &dev->_tx[0]) {
2541 netdev_unbind_sb_channel(dev, txq->sb_dev);
2545 void netdev_reset_tc(struct net_device *dev)
2548 netif_reset_xps_queues_gt(dev, 0);
2550 netdev_unbind_all_sb_channels(dev);
2552 /* Reset TC configuration of device */
2554 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2555 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2557 EXPORT_SYMBOL(netdev_reset_tc);
2559 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2561 if (tc >= dev->num_tc)
2565 netif_reset_xps_queues(dev, offset, count);
2567 dev->tc_to_txq[tc].count = count;
2568 dev->tc_to_txq[tc].offset = offset;
2571 EXPORT_SYMBOL(netdev_set_tc_queue);
2573 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2575 if (num_tc > TC_MAX_QUEUE)
2579 netif_reset_xps_queues_gt(dev, 0);
2581 netdev_unbind_all_sb_channels(dev);
2583 dev->num_tc = num_tc;
2586 EXPORT_SYMBOL(netdev_set_num_tc);
2588 void netdev_unbind_sb_channel(struct net_device *dev,
2589 struct net_device *sb_dev)
2591 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2594 netif_reset_xps_queues_gt(sb_dev, 0);
2596 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2597 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2599 while (txq-- != &dev->_tx[0]) {
2600 if (txq->sb_dev == sb_dev)
2604 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2606 int netdev_bind_sb_channel_queue(struct net_device *dev,
2607 struct net_device *sb_dev,
2608 u8 tc, u16 count, u16 offset)
2610 /* Make certain the sb_dev and dev are already configured */
2611 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2614 /* We cannot hand out queues we don't have */
2615 if ((offset + count) > dev->real_num_tx_queues)
2618 /* Record the mapping */
2619 sb_dev->tc_to_txq[tc].count = count;
2620 sb_dev->tc_to_txq[tc].offset = offset;
2622 /* Provide a way for Tx queue to find the tc_to_txq map or
2623 * XPS map for itself.
2626 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2630 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2632 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2634 /* Do not use a multiqueue device to represent a subordinate channel */
2635 if (netif_is_multiqueue(dev))
2638 /* We allow channels 1 - 32767 to be used for subordinate channels.
2639 * Channel 0 is meant to be "native" mode and used only to represent
2640 * the main root device. We allow writing 0 to reset the device back
2641 * to normal mode after being used as a subordinate channel.
2643 if (channel > S16_MAX)
2646 dev->num_tc = -channel;
2650 EXPORT_SYMBOL(netdev_set_sb_channel);
2653 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2654 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2656 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2661 disabling = txq < dev->real_num_tx_queues;
2663 if (txq < 1 || txq > dev->num_tx_queues)
2666 if (dev->reg_state == NETREG_REGISTERED ||
2667 dev->reg_state == NETREG_UNREGISTERING) {
2670 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2676 netif_setup_tc(dev, txq);
2678 dev->real_num_tx_queues = txq;
2682 qdisc_reset_all_tx_gt(dev, txq);
2684 netif_reset_xps_queues_gt(dev, txq);
2688 dev->real_num_tx_queues = txq;
2693 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2697 * netif_set_real_num_rx_queues - set actual number of RX queues used
2698 * @dev: Network device
2699 * @rxq: Actual number of RX queues
2701 * This must be called either with the rtnl_lock held or before
2702 * registration of the net device. Returns 0 on success, or a
2703 * negative error code. If called before registration, it always
2706 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2710 if (rxq < 1 || rxq > dev->num_rx_queues)
2713 if (dev->reg_state == NETREG_REGISTERED) {
2716 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2722 dev->real_num_rx_queues = rxq;
2725 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2729 * netif_get_num_default_rss_queues - default number of RSS queues
2731 * This routine should set an upper limit on the number of RSS queues
2732 * used by default by multiqueue devices.
2734 int netif_get_num_default_rss_queues(void)
2736 return is_kdump_kernel() ?
2737 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2739 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2741 static void __netif_reschedule(struct Qdisc *q)
2743 struct softnet_data *sd;
2744 unsigned long flags;
2746 local_irq_save(flags);
2747 sd = this_cpu_ptr(&softnet_data);
2748 q->next_sched = NULL;
2749 *sd->output_queue_tailp = q;
2750 sd->output_queue_tailp = &q->next_sched;
2751 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752 local_irq_restore(flags);
2755 void __netif_schedule(struct Qdisc *q)
2757 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2758 __netif_reschedule(q);
2760 EXPORT_SYMBOL(__netif_schedule);
2762 struct dev_kfree_skb_cb {
2763 enum skb_free_reason reason;
2766 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2768 return (struct dev_kfree_skb_cb *)skb->cb;
2771 void netif_schedule_queue(struct netdev_queue *txq)
2774 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2775 struct Qdisc *q = rcu_dereference(txq->qdisc);
2777 __netif_schedule(q);
2781 EXPORT_SYMBOL(netif_schedule_queue);
2783 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2785 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2789 q = rcu_dereference(dev_queue->qdisc);
2790 __netif_schedule(q);
2794 EXPORT_SYMBOL(netif_tx_wake_queue);
2796 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2798 unsigned long flags;
2803 if (likely(refcount_read(&skb->users) == 1)) {
2805 refcount_set(&skb->users, 0);
2806 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2809 get_kfree_skb_cb(skb)->reason = reason;
2810 local_irq_save(flags);
2811 skb->next = __this_cpu_read(softnet_data.completion_queue);
2812 __this_cpu_write(softnet_data.completion_queue, skb);
2813 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2814 local_irq_restore(flags);
2816 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2818 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2820 if (in_irq() || irqs_disabled())
2821 __dev_kfree_skb_irq(skb, reason);
2825 EXPORT_SYMBOL(__dev_kfree_skb_any);
2829 * netif_device_detach - mark device as removed
2830 * @dev: network device
2832 * Mark device as removed from system and therefore no longer available.
2834 void netif_device_detach(struct net_device *dev)
2836 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2837 netif_running(dev)) {
2838 netif_tx_stop_all_queues(dev);
2841 EXPORT_SYMBOL(netif_device_detach);
2844 * netif_device_attach - mark device as attached
2845 * @dev: network device
2847 * Mark device as attached from system and restart if needed.
2849 void netif_device_attach(struct net_device *dev)
2851 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2852 netif_running(dev)) {
2853 netif_tx_wake_all_queues(dev);
2854 __netdev_watchdog_up(dev);
2857 EXPORT_SYMBOL(netif_device_attach);
2860 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2861 * to be used as a distribution range.
2863 static u16 skb_tx_hash(const struct net_device *dev,
2864 const struct net_device *sb_dev,
2865 struct sk_buff *skb)
2869 u16 qcount = dev->real_num_tx_queues;
2872 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2874 qoffset = sb_dev->tc_to_txq[tc].offset;
2875 qcount = sb_dev->tc_to_txq[tc].count;
2878 if (skb_rx_queue_recorded(skb)) {
2879 hash = skb_get_rx_queue(skb);
2880 while (unlikely(hash >= qcount))
2882 return hash + qoffset;
2885 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2888 static void skb_warn_bad_offload(const struct sk_buff *skb)
2890 static const netdev_features_t null_features;
2891 struct net_device *dev = skb->dev;
2892 const char *name = "";
2894 if (!net_ratelimit())
2898 if (dev->dev.parent)
2899 name = dev_driver_string(dev->dev.parent);
2901 name = netdev_name(dev);
2903 skb_dump(KERN_WARNING, skb, false);
2904 WARN(1, "%s: caps=(%pNF, %pNF)\n",
2905 name, dev ? &dev->features : &null_features,
2906 skb->sk ? &skb->sk->sk_route_caps : &null_features);
2910 * Invalidate hardware checksum when packet is to be mangled, and
2911 * complete checksum manually on outgoing path.
2913 int skb_checksum_help(struct sk_buff *skb)
2916 int ret = 0, offset;
2918 if (skb->ip_summed == CHECKSUM_COMPLETE)
2919 goto out_set_summed;
2921 if (unlikely(skb_shinfo(skb)->gso_size)) {
2922 skb_warn_bad_offload(skb);
2926 /* Before computing a checksum, we should make sure no frag could
2927 * be modified by an external entity : checksum could be wrong.
2929 if (skb_has_shared_frag(skb)) {
2930 ret = __skb_linearize(skb);
2935 offset = skb_checksum_start_offset(skb);
2936 BUG_ON(offset >= skb_headlen(skb));
2937 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2939 offset += skb->csum_offset;
2940 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2942 if (skb_cloned(skb) &&
2943 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2944 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2949 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2951 skb->ip_summed = CHECKSUM_NONE;
2955 EXPORT_SYMBOL(skb_checksum_help);
2957 int skb_crc32c_csum_help(struct sk_buff *skb)
2960 int ret = 0, offset, start;
2962 if (skb->ip_summed != CHECKSUM_PARTIAL)
2965 if (unlikely(skb_is_gso(skb)))
2968 /* Before computing a checksum, we should make sure no frag could
2969 * be modified by an external entity : checksum could be wrong.
2971 if (unlikely(skb_has_shared_frag(skb))) {
2972 ret = __skb_linearize(skb);
2976 start = skb_checksum_start_offset(skb);
2977 offset = start + offsetof(struct sctphdr, checksum);
2978 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2982 if (skb_cloned(skb) &&
2983 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2984 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2988 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2989 skb->len - start, ~(__u32)0,
2991 *(__le32 *)(skb->data + offset) = crc32c_csum;
2992 skb->ip_summed = CHECKSUM_NONE;
2993 skb->csum_not_inet = 0;
2998 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3000 __be16 type = skb->protocol;
3002 /* Tunnel gso handlers can set protocol to ethernet. */
3003 if (type == htons(ETH_P_TEB)) {
3006 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3009 eth = (struct ethhdr *)skb->data;
3010 type = eth->h_proto;
3013 return __vlan_get_protocol(skb, type, depth);
3017 * skb_mac_gso_segment - mac layer segmentation handler.
3018 * @skb: buffer to segment
3019 * @features: features for the output path (see dev->features)
3021 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3022 netdev_features_t features)
3024 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3025 struct packet_offload *ptype;
3026 int vlan_depth = skb->mac_len;
3027 __be16 type = skb_network_protocol(skb, &vlan_depth);
3029 if (unlikely(!type))
3030 return ERR_PTR(-EINVAL);
3032 __skb_pull(skb, vlan_depth);
3035 list_for_each_entry_rcu(ptype, &offload_base, list) {
3036 if (ptype->type == type && ptype->callbacks.gso_segment) {
3037 segs = ptype->callbacks.gso_segment(skb, features);
3043 __skb_push(skb, skb->data - skb_mac_header(skb));
3047 EXPORT_SYMBOL(skb_mac_gso_segment);
3050 /* openvswitch calls this on rx path, so we need a different check.
3052 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3055 return skb->ip_summed != CHECKSUM_PARTIAL &&
3056 skb->ip_summed != CHECKSUM_UNNECESSARY;
3058 return skb->ip_summed == CHECKSUM_NONE;
3062 * __skb_gso_segment - Perform segmentation on skb.
3063 * @skb: buffer to segment
3064 * @features: features for the output path (see dev->features)
3065 * @tx_path: whether it is called in TX path
3067 * This function segments the given skb and returns a list of segments.
3069 * It may return NULL if the skb requires no segmentation. This is
3070 * only possible when GSO is used for verifying header integrity.
3072 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3074 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3075 netdev_features_t features, bool tx_path)
3077 struct sk_buff *segs;
3079 if (unlikely(skb_needs_check(skb, tx_path))) {
3082 /* We're going to init ->check field in TCP or UDP header */
3083 err = skb_cow_head(skb, 0);
3085 return ERR_PTR(err);
3088 /* Only report GSO partial support if it will enable us to
3089 * support segmentation on this frame without needing additional
3092 if (features & NETIF_F_GSO_PARTIAL) {
3093 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3094 struct net_device *dev = skb->dev;
3096 partial_features |= dev->features & dev->gso_partial_features;
3097 if (!skb_gso_ok(skb, features | partial_features))
3098 features &= ~NETIF_F_GSO_PARTIAL;
3101 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3102 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3104 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3105 SKB_GSO_CB(skb)->encap_level = 0;
3107 skb_reset_mac_header(skb);
3108 skb_reset_mac_len(skb);
3110 segs = skb_mac_gso_segment(skb, features);
3112 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3113 skb_warn_bad_offload(skb);
3117 EXPORT_SYMBOL(__skb_gso_segment);
3119 /* Take action when hardware reception checksum errors are detected. */
3121 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3123 if (net_ratelimit()) {
3124 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3125 skb_dump(KERN_ERR, skb, true);
3129 EXPORT_SYMBOL(netdev_rx_csum_fault);
3132 /* XXX: check that highmem exists at all on the given machine. */
3133 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3135 #ifdef CONFIG_HIGHMEM
3138 if (!(dev->features & NETIF_F_HIGHDMA)) {
3139 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3140 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3142 if (PageHighMem(skb_frag_page(frag)))
3150 /* If MPLS offload request, verify we are testing hardware MPLS features
3151 * instead of standard features for the netdev.
3153 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3154 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3155 netdev_features_t features,
3158 if (eth_p_mpls(type))
3159 features &= skb->dev->mpls_features;
3164 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3165 netdev_features_t features,
3172 static netdev_features_t harmonize_features(struct sk_buff *skb,
3173 netdev_features_t features)
3178 type = skb_network_protocol(skb, &tmp);
3179 features = net_mpls_features(skb, features, type);
3181 if (skb->ip_summed != CHECKSUM_NONE &&
3182 !can_checksum_protocol(features, type)) {
3183 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3185 if (illegal_highdma(skb->dev, skb))
3186 features &= ~NETIF_F_SG;
3191 netdev_features_t passthru_features_check(struct sk_buff *skb,
3192 struct net_device *dev,
3193 netdev_features_t features)
3197 EXPORT_SYMBOL(passthru_features_check);
3199 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3200 struct net_device *dev,
3201 netdev_features_t features)
3203 return vlan_features_check(skb, features);
3206 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3207 struct net_device *dev,
3208 netdev_features_t features)
3210 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3212 if (gso_segs > dev->gso_max_segs)
3213 return features & ~NETIF_F_GSO_MASK;
3215 /* Support for GSO partial features requires software
3216 * intervention before we can actually process the packets
3217 * so we need to strip support for any partial features now
3218 * and we can pull them back in after we have partially
3219 * segmented the frame.
3221 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3222 features &= ~dev->gso_partial_features;
3224 /* Make sure to clear the IPv4 ID mangling feature if the
3225 * IPv4 header has the potential to be fragmented.
3227 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3228 struct iphdr *iph = skb->encapsulation ?
3229 inner_ip_hdr(skb) : ip_hdr(skb);
3231 if (!(iph->frag_off & htons(IP_DF)))
3232 features &= ~NETIF_F_TSO_MANGLEID;
3238 netdev_features_t netif_skb_features(struct sk_buff *skb)
3240 struct net_device *dev = skb->dev;
3241 netdev_features_t features = dev->features;
3243 if (skb_is_gso(skb))
3244 features = gso_features_check(skb, dev, features);
3246 /* If encapsulation offload request, verify we are testing
3247 * hardware encapsulation features instead of standard
3248 * features for the netdev
3250 if (skb->encapsulation)
3251 features &= dev->hw_enc_features;
3253 if (skb_vlan_tagged(skb))
3254 features = netdev_intersect_features(features,
3255 dev->vlan_features |
3256 NETIF_F_HW_VLAN_CTAG_TX |
3257 NETIF_F_HW_VLAN_STAG_TX);
3259 if (dev->netdev_ops->ndo_features_check)
3260 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3263 features &= dflt_features_check(skb, dev, features);
3265 return harmonize_features(skb, features);
3267 EXPORT_SYMBOL(netif_skb_features);
3269 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3270 struct netdev_queue *txq, bool more)
3275 if (dev_nit_active(dev))
3276 dev_queue_xmit_nit(skb, dev);
3279 trace_net_dev_start_xmit(skb, dev);
3280 rc = netdev_start_xmit(skb, dev, txq, more);
3281 trace_net_dev_xmit(skb, rc, dev, len);
3286 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3287 struct netdev_queue *txq, int *ret)
3289 struct sk_buff *skb = first;
3290 int rc = NETDEV_TX_OK;
3293 struct sk_buff *next = skb->next;
3295 skb_mark_not_on_list(skb);
3296 rc = xmit_one(skb, dev, txq, next != NULL);
3297 if (unlikely(!dev_xmit_complete(rc))) {
3303 if (netif_tx_queue_stopped(txq) && skb) {
3304 rc = NETDEV_TX_BUSY;
3314 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3315 netdev_features_t features)
3317 if (skb_vlan_tag_present(skb) &&
3318 !vlan_hw_offload_capable(features, skb->vlan_proto))
3319 skb = __vlan_hwaccel_push_inside(skb);
3323 int skb_csum_hwoffload_help(struct sk_buff *skb,
3324 const netdev_features_t features)
3326 if (unlikely(skb->csum_not_inet))
3327 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3328 skb_crc32c_csum_help(skb);
3330 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3332 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3334 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3336 netdev_features_t features;
3338 features = netif_skb_features(skb);
3339 skb = validate_xmit_vlan(skb, features);
3343 skb = sk_validate_xmit_skb(skb, dev);
3347 if (netif_needs_gso(skb, features)) {
3348 struct sk_buff *segs;
3350 segs = skb_gso_segment(skb, features);
3358 if (skb_needs_linearize(skb, features) &&
3359 __skb_linearize(skb))
3362 /* If packet is not checksummed and device does not
3363 * support checksumming for this protocol, complete
3364 * checksumming here.
3366 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3367 if (skb->encapsulation)
3368 skb_set_inner_transport_header(skb,
3369 skb_checksum_start_offset(skb));
3371 skb_set_transport_header(skb,
3372 skb_checksum_start_offset(skb));
3373 if (skb_csum_hwoffload_help(skb, features))
3378 skb = validate_xmit_xfrm(skb, features, again);
3385 atomic_long_inc(&dev->tx_dropped);
3389 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3391 struct sk_buff *next, *head = NULL, *tail;
3393 for (; skb != NULL; skb = next) {
3395 skb_mark_not_on_list(skb);
3397 /* in case skb wont be segmented, point to itself */
3400 skb = validate_xmit_skb(skb, dev, again);
3408 /* If skb was segmented, skb->prev points to
3409 * the last segment. If not, it still contains skb.
3415 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3417 static void qdisc_pkt_len_init(struct sk_buff *skb)
3419 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3421 qdisc_skb_cb(skb)->pkt_len = skb->len;
3423 /* To get more precise estimation of bytes sent on wire,
3424 * we add to pkt_len the headers size of all segments
3426 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3427 unsigned int hdr_len;
3428 u16 gso_segs = shinfo->gso_segs;
3430 /* mac layer + network layer */
3431 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3433 /* + transport layer */
3434 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3435 const struct tcphdr *th;
3436 struct tcphdr _tcphdr;
3438 th = skb_header_pointer(skb, skb_transport_offset(skb),
3439 sizeof(_tcphdr), &_tcphdr);
3441 hdr_len += __tcp_hdrlen(th);
3443 struct udphdr _udphdr;
3445 if (skb_header_pointer(skb, skb_transport_offset(skb),
3446 sizeof(_udphdr), &_udphdr))
3447 hdr_len += sizeof(struct udphdr);
3450 if (shinfo->gso_type & SKB_GSO_DODGY)
3451 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3454 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3458 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3459 struct net_device *dev,
3460 struct netdev_queue *txq)
3462 spinlock_t *root_lock = qdisc_lock(q);
3463 struct sk_buff *to_free = NULL;
3467 qdisc_calculate_pkt_len(skb, q);
3469 if (q->flags & TCQ_F_NOLOCK) {
3470 if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3471 qdisc_run_begin(q)) {
3472 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3474 __qdisc_drop(skb, &to_free);
3478 qdisc_bstats_cpu_update(q, skb);
3480 rc = NET_XMIT_SUCCESS;
3481 if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3487 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3491 if (unlikely(to_free))
3492 kfree_skb_list(to_free);
3497 * Heuristic to force contended enqueues to serialize on a
3498 * separate lock before trying to get qdisc main lock.
3499 * This permits qdisc->running owner to get the lock more
3500 * often and dequeue packets faster.
3502 contended = qdisc_is_running(q);
3503 if (unlikely(contended))
3504 spin_lock(&q->busylock);
3506 spin_lock(root_lock);
3507 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3508 __qdisc_drop(skb, &to_free);
3510 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3511 qdisc_run_begin(q)) {
3513 * This is a work-conserving queue; there are no old skbs
3514 * waiting to be sent out; and the qdisc is not running -
3515 * xmit the skb directly.
3518 qdisc_bstats_update(q, skb);
3520 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3521 if (unlikely(contended)) {
3522 spin_unlock(&q->busylock);
3529 rc = NET_XMIT_SUCCESS;
3531 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3532 if (qdisc_run_begin(q)) {
3533 if (unlikely(contended)) {
3534 spin_unlock(&q->busylock);
3541 spin_unlock(root_lock);
3542 if (unlikely(to_free))
3543 kfree_skb_list(to_free);
3544 if (unlikely(contended))
3545 spin_unlock(&q->busylock);
3549 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3550 static void skb_update_prio(struct sk_buff *skb)
3552 const struct netprio_map *map;
3553 const struct sock *sk;
3554 unsigned int prioidx;
3558 map = rcu_dereference_bh(skb->dev->priomap);
3561 sk = skb_to_full_sk(skb);
3565 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3567 if (prioidx < map->priomap_len)
3568 skb->priority = map->priomap[prioidx];
3571 #define skb_update_prio(skb)
3575 * dev_loopback_xmit - loop back @skb
3576 * @net: network namespace this loopback is happening in
3577 * @sk: sk needed to be a netfilter okfn
3578 * @skb: buffer to transmit
3580 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3582 skb_reset_mac_header(skb);
3583 __skb_pull(skb, skb_network_offset(skb));
3584 skb->pkt_type = PACKET_LOOPBACK;
3585 skb->ip_summed = CHECKSUM_UNNECESSARY;
3586 WARN_ON(!skb_dst(skb));
3591 EXPORT_SYMBOL(dev_loopback_xmit);
3593 #ifdef CONFIG_NET_EGRESS
3594 static struct sk_buff *
3595 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3597 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3598 struct tcf_result cl_res;
3603 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3604 mini_qdisc_bstats_cpu_update(miniq, skb);
3606 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3608 case TC_ACT_RECLASSIFY:
3609 skb->tc_index = TC_H_MIN(cl_res.classid);
3612 mini_qdisc_qstats_cpu_drop(miniq);
3613 *ret = NET_XMIT_DROP;
3619 *ret = NET_XMIT_SUCCESS;
3622 case TC_ACT_REDIRECT:
3623 /* No need to push/pop skb's mac_header here on egress! */
3624 skb_do_redirect(skb);
3625 *ret = NET_XMIT_SUCCESS;
3633 #endif /* CONFIG_NET_EGRESS */
3636 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3637 struct xps_dev_maps *dev_maps, unsigned int tci)
3639 struct xps_map *map;
3640 int queue_index = -1;
3644 tci += netdev_get_prio_tc_map(dev, skb->priority);
3647 map = rcu_dereference(dev_maps->attr_map[tci]);
3650 queue_index = map->queues[0];
3652 queue_index = map->queues[reciprocal_scale(
3653 skb_get_hash(skb), map->len)];
3654 if (unlikely(queue_index >= dev->real_num_tx_queues))
3661 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3662 struct sk_buff *skb)
3665 struct xps_dev_maps *dev_maps;
3666 struct sock *sk = skb->sk;
3667 int queue_index = -1;
3669 if (!static_key_false(&xps_needed))
3673 if (!static_key_false(&xps_rxqs_needed))
3676 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3678 int tci = sk_rx_queue_get(sk);
3680 if (tci >= 0 && tci < dev->num_rx_queues)
3681 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3686 if (queue_index < 0) {
3687 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3689 unsigned int tci = skb->sender_cpu - 1;
3691 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3703 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3704 struct net_device *sb_dev)
3708 EXPORT_SYMBOL(dev_pick_tx_zero);
3710 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3711 struct net_device *sb_dev)
3713 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3715 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3717 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3718 struct net_device *sb_dev)
3720 struct sock *sk = skb->sk;
3721 int queue_index = sk_tx_queue_get(sk);
3723 sb_dev = sb_dev ? : dev;
3725 if (queue_index < 0 || skb->ooo_okay ||
3726 queue_index >= dev->real_num_tx_queues) {
3727 int new_index = get_xps_queue(dev, sb_dev, skb);
3730 new_index = skb_tx_hash(dev, sb_dev, skb);
3732 if (queue_index != new_index && sk &&
3734 rcu_access_pointer(sk->sk_dst_cache))
3735 sk_tx_queue_set(sk, new_index);
3737 queue_index = new_index;
3742 EXPORT_SYMBOL(netdev_pick_tx);
3744 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3745 struct sk_buff *skb,
3746 struct net_device *sb_dev)
3748 int queue_index = 0;
3751 u32 sender_cpu = skb->sender_cpu - 1;
3753 if (sender_cpu >= (u32)NR_CPUS)
3754 skb->sender_cpu = raw_smp_processor_id() + 1;
3757 if (dev->real_num_tx_queues != 1) {
3758 const struct net_device_ops *ops = dev->netdev_ops;
3760 if (ops->ndo_select_queue)
3761 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3763 queue_index = netdev_pick_tx(dev, skb, sb_dev);
3765 queue_index = netdev_cap_txqueue(dev, queue_index);
3768 skb_set_queue_mapping(skb, queue_index);
3769 return netdev_get_tx_queue(dev, queue_index);
3773 * __dev_queue_xmit - transmit a buffer
3774 * @skb: buffer to transmit
3775 * @sb_dev: suboordinate device used for L2 forwarding offload
3777 * Queue a buffer for transmission to a network device. The caller must
3778 * have set the device and priority and built the buffer before calling
3779 * this function. The function can be called from an interrupt.
3781 * A negative errno code is returned on a failure. A success does not
3782 * guarantee the frame will be transmitted as it may be dropped due
3783 * to congestion or traffic shaping.
3785 * -----------------------------------------------------------------------------------
3786 * I notice this method can also return errors from the queue disciplines,
3787 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3790 * Regardless of the return value, the skb is consumed, so it is currently
3791 * difficult to retry a send to this method. (You can bump the ref count
3792 * before sending to hold a reference for retry if you are careful.)
3794 * When calling this method, interrupts MUST be enabled. This is because
3795 * the BH enable code must have IRQs enabled so that it will not deadlock.
3798 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3800 struct net_device *dev = skb->dev;
3801 struct netdev_queue *txq;
3806 skb_reset_mac_header(skb);
3808 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3809 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3811 /* Disable soft irqs for various locks below. Also
3812 * stops preemption for RCU.
3816 skb_update_prio(skb);
3818 qdisc_pkt_len_init(skb);
3819 #ifdef CONFIG_NET_CLS_ACT
3820 skb->tc_at_ingress = 0;
3821 # ifdef CONFIG_NET_EGRESS
3822 if (static_branch_unlikely(&egress_needed_key)) {
3823 skb = sch_handle_egress(skb, &rc, dev);
3829 /* If device/qdisc don't need skb->dst, release it right now while
3830 * its hot in this cpu cache.
3832 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3837 txq = netdev_core_pick_tx(dev, skb, sb_dev);
3838 q = rcu_dereference_bh(txq->qdisc);
3840 trace_net_dev_queue(skb);
3842 rc = __dev_xmit_skb(skb, q, dev, txq);
3846 /* The device has no queue. Common case for software devices:
3847 * loopback, all the sorts of tunnels...
3849 * Really, it is unlikely that netif_tx_lock protection is necessary
3850 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3852 * However, it is possible, that they rely on protection
3855 * Check this and shot the lock. It is not prone from deadlocks.
3856 *Either shot noqueue qdisc, it is even simpler 8)
3858 if (dev->flags & IFF_UP) {
3859 int cpu = smp_processor_id(); /* ok because BHs are off */
3861 if (txq->xmit_lock_owner != cpu) {
3862 if (dev_xmit_recursion())
3863 goto recursion_alert;
3865 skb = validate_xmit_skb(skb, dev, &again);
3869 HARD_TX_LOCK(dev, txq, cpu);
3871 if (!netif_xmit_stopped(txq)) {
3872 dev_xmit_recursion_inc();
3873 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3874 dev_xmit_recursion_dec();
3875 if (dev_xmit_complete(rc)) {
3876 HARD_TX_UNLOCK(dev, txq);
3880 HARD_TX_UNLOCK(dev, txq);
3881 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3884 /* Recursion is detected! It is possible,
3888 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3894 rcu_read_unlock_bh();
3896 atomic_long_inc(&dev->tx_dropped);
3897 kfree_skb_list(skb);
3900 rcu_read_unlock_bh();
3904 int dev_queue_xmit(struct sk_buff *skb)
3906 return __dev_queue_xmit(skb, NULL);
3908 EXPORT_SYMBOL(dev_queue_xmit);
3910 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3912 return __dev_queue_xmit(skb, sb_dev);
3914 EXPORT_SYMBOL(dev_queue_xmit_accel);
3916 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3918 struct net_device *dev = skb->dev;
3919 struct sk_buff *orig_skb = skb;
3920 struct netdev_queue *txq;
3921 int ret = NETDEV_TX_BUSY;
3924 if (unlikely(!netif_running(dev) ||
3925 !netif_carrier_ok(dev)))
3928 skb = validate_xmit_skb_list(skb, dev, &again);
3929 if (skb != orig_skb)
3932 skb_set_queue_mapping(skb, queue_id);
3933 txq = skb_get_tx_queue(dev, skb);
3937 HARD_TX_LOCK(dev, txq, smp_processor_id());
3938 if (!netif_xmit_frozen_or_drv_stopped(txq))
3939 ret = netdev_start_xmit(skb, dev, txq, false);
3940 HARD_TX_UNLOCK(dev, txq);
3944 if (!dev_xmit_complete(ret))
3949 atomic_long_inc(&dev->tx_dropped);
3950 kfree_skb_list(skb);
3951 return NET_XMIT_DROP;
3953 EXPORT_SYMBOL(dev_direct_xmit);
3955 /*************************************************************************
3957 *************************************************************************/
3959 int netdev_max_backlog __read_mostly = 1000;
3960 EXPORT_SYMBOL(netdev_max_backlog);
3962 int netdev_tstamp_prequeue __read_mostly = 1;
3963 int netdev_budget __read_mostly = 300;
3964 unsigned int __read_mostly netdev_budget_usecs = 2000;
3965 int weight_p __read_mostly = 64; /* old backlog weight */
3966 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3967 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3968 int dev_rx_weight __read_mostly = 64;
3969 int dev_tx_weight __read_mostly = 64;
3970 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
3971 int gro_normal_batch __read_mostly = 8;
3973 /* Called with irq disabled */
3974 static inline void ____napi_schedule(struct softnet_data *sd,
3975 struct napi_struct *napi)
3977 list_add_tail(&napi->poll_list, &sd->poll_list);
3978 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3983 /* One global table that all flow-based protocols share. */
3984 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3985 EXPORT_SYMBOL(rps_sock_flow_table);
3986 u32 rps_cpu_mask __read_mostly;
3987 EXPORT_SYMBOL(rps_cpu_mask);
3989 struct static_key_false rps_needed __read_mostly;
3990 EXPORT_SYMBOL(rps_needed);
3991 struct static_key_false rfs_needed __read_mostly;
3992 EXPORT_SYMBOL(rfs_needed);
3994 static struct rps_dev_flow *
3995 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3996 struct rps_dev_flow *rflow, u16 next_cpu)
3998 if (next_cpu < nr_cpu_ids) {
3999 #ifdef CONFIG_RFS_ACCEL
4000 struct netdev_rx_queue *rxqueue;
4001 struct rps_dev_flow_table *flow_table;
4002 struct rps_dev_flow *old_rflow;
4007 /* Should we steer this flow to a different hardware queue? */
4008 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4009 !(dev->features & NETIF_F_NTUPLE))
4011 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4012 if (rxq_index == skb_get_rx_queue(skb))
4015 rxqueue = dev->_rx + rxq_index;
4016 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4019 flow_id = skb_get_hash(skb) & flow_table->mask;
4020 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4021 rxq_index, flow_id);
4025 rflow = &flow_table->flows[flow_id];
4027 if (old_rflow->filter == rflow->filter)
4028 old_rflow->filter = RPS_NO_FILTER;
4032 per_cpu(softnet_data, next_cpu).input_queue_head;
4035 rflow->cpu = next_cpu;
4040 * get_rps_cpu is called from netif_receive_skb and returns the target
4041 * CPU from the RPS map of the receiving queue for a given skb.
4042 * rcu_read_lock must be held on entry.
4044 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4045 struct rps_dev_flow **rflowp)
4047 const struct rps_sock_flow_table *sock_flow_table;
4048 struct netdev_rx_queue *rxqueue = dev->_rx;
4049 struct rps_dev_flow_table *flow_table;
4050 struct rps_map *map;
4055 if (skb_rx_queue_recorded(skb)) {
4056 u16 index = skb_get_rx_queue(skb);
4058 if (unlikely(index >= dev->real_num_rx_queues)) {
4059 WARN_ONCE(dev->real_num_rx_queues > 1,
4060 "%s received packet on queue %u, but number "
4061 "of RX queues is %u\n",
4062 dev->name, index, dev->real_num_rx_queues);
4068 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4070 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4071 map = rcu_dereference(rxqueue->rps_map);
4072 if (!flow_table && !map)
4075 skb_reset_network_header(skb);
4076 hash = skb_get_hash(skb);
4080 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4081 if (flow_table && sock_flow_table) {
4082 struct rps_dev_flow *rflow;
4086 /* First check into global flow table if there is a match */
4087 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4088 if ((ident ^ hash) & ~rps_cpu_mask)
4091 next_cpu = ident & rps_cpu_mask;
4093 /* OK, now we know there is a match,
4094 * we can look at the local (per receive queue) flow table
4096 rflow = &flow_table->flows[hash & flow_table->mask];
4100 * If the desired CPU (where last recvmsg was done) is
4101 * different from current CPU (one in the rx-queue flow
4102 * table entry), switch if one of the following holds:
4103 * - Current CPU is unset (>= nr_cpu_ids).
4104 * - Current CPU is offline.
4105 * - The current CPU's queue tail has advanced beyond the
4106 * last packet that was enqueued using this table entry.
4107 * This guarantees that all previous packets for the flow
4108 * have been dequeued, thus preserving in order delivery.
4110 if (unlikely(tcpu != next_cpu) &&
4111 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4112 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4113 rflow->last_qtail)) >= 0)) {
4115 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4118 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4128 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4129 if (cpu_online(tcpu)) {
4139 #ifdef CONFIG_RFS_ACCEL
4142 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4143 * @dev: Device on which the filter was set
4144 * @rxq_index: RX queue index
4145 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4146 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4148 * Drivers that implement ndo_rx_flow_steer() should periodically call
4149 * this function for each installed filter and remove the filters for
4150 * which it returns %true.
4152 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4153 u32 flow_id, u16 filter_id)
4155 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4156 struct rps_dev_flow_table *flow_table;
4157 struct rps_dev_flow *rflow;
4162 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4163 if (flow_table && flow_id <= flow_table->mask) {
4164 rflow = &flow_table->flows[flow_id];
4165 cpu = READ_ONCE(rflow->cpu);
4166 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4167 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4168 rflow->last_qtail) <
4169 (int)(10 * flow_table->mask)))
4175 EXPORT_SYMBOL(rps_may_expire_flow);
4177 #endif /* CONFIG_RFS_ACCEL */
4179 /* Called from hardirq (IPI) context */
4180 static void rps_trigger_softirq(void *data)
4182 struct softnet_data *sd = data;
4184 ____napi_schedule(sd, &sd->backlog);
4188 #endif /* CONFIG_RPS */
4191 * Check if this softnet_data structure is another cpu one
4192 * If yes, queue it to our IPI list and return 1
4195 static int rps_ipi_queued(struct softnet_data *sd)
4198 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4201 sd->rps_ipi_next = mysd->rps_ipi_list;
4202 mysd->rps_ipi_list = sd;
4204 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4207 #endif /* CONFIG_RPS */
4211 #ifdef CONFIG_NET_FLOW_LIMIT
4212 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4215 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4217 #ifdef CONFIG_NET_FLOW_LIMIT
4218 struct sd_flow_limit *fl;
4219 struct softnet_data *sd;
4220 unsigned int old_flow, new_flow;
4222 if (qlen < (netdev_max_backlog >> 1))
4225 sd = this_cpu_ptr(&softnet_data);
4228 fl = rcu_dereference(sd->flow_limit);
4230 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4231 old_flow = fl->history[fl->history_head];
4232 fl->history[fl->history_head] = new_flow;
4235 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4237 if (likely(fl->buckets[old_flow]))
4238 fl->buckets[old_flow]--;
4240 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4252 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4253 * queue (may be a remote CPU queue).
4255 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4256 unsigned int *qtail)
4258 struct softnet_data *sd;
4259 unsigned long flags;
4262 sd = &per_cpu(softnet_data, cpu);
4264 local_irq_save(flags);
4267 if (!netif_running(skb->dev))
4269 qlen = skb_queue_len(&sd->input_pkt_queue);
4270 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4273 __skb_queue_tail(&sd->input_pkt_queue, skb);
4274 input_queue_tail_incr_save(sd, qtail);
4276 local_irq_restore(flags);
4277 return NET_RX_SUCCESS;
4280 /* Schedule NAPI for backlog device
4281 * We can use non atomic operation since we own the queue lock
4283 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4284 if (!rps_ipi_queued(sd))
4285 ____napi_schedule(sd, &sd->backlog);
4294 local_irq_restore(flags);
4296 atomic_long_inc(&skb->dev->rx_dropped);
4301 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4303 struct net_device *dev = skb->dev;
4304 struct netdev_rx_queue *rxqueue;
4308 if (skb_rx_queue_recorded(skb)) {
4309 u16 index = skb_get_rx_queue(skb);
4311 if (unlikely(index >= dev->real_num_rx_queues)) {
4312 WARN_ONCE(dev->real_num_rx_queues > 1,
4313 "%s received packet on queue %u, but number "
4314 "of RX queues is %u\n",
4315 dev->name, index, dev->real_num_rx_queues);
4317 return rxqueue; /* Return first rxqueue */
4324 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4325 struct xdp_buff *xdp,
4326 struct bpf_prog *xdp_prog)
4328 struct netdev_rx_queue *rxqueue;
4329 void *orig_data, *orig_data_end;
4330 u32 metalen, act = XDP_DROP;
4331 __be16 orig_eth_type;
4337 /* Reinjected packets coming from act_mirred or similar should
4338 * not get XDP generic processing.
4340 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4343 /* XDP packets must be linear and must have sufficient headroom
4344 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4345 * native XDP provides, thus we need to do it here as well.
4347 if (skb_is_nonlinear(skb) ||
4348 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4349 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4350 int troom = skb->tail + skb->data_len - skb->end;
4352 /* In case we have to go down the path and also linearize,
4353 * then lets do the pskb_expand_head() work just once here.
4355 if (pskb_expand_head(skb,
4356 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4357 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4359 if (skb_linearize(skb))
4363 /* The XDP program wants to see the packet starting at the MAC
4366 mac_len = skb->data - skb_mac_header(skb);
4367 hlen = skb_headlen(skb) + mac_len;
4368 xdp->data = skb->data - mac_len;
4369 xdp->data_meta = xdp->data;
4370 xdp->data_end = xdp->data + hlen;
4371 xdp->data_hard_start = skb->data - skb_headroom(skb);
4372 orig_data_end = xdp->data_end;
4373 orig_data = xdp->data;
4374 eth = (struct ethhdr *)xdp->data;
4375 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4376 orig_eth_type = eth->h_proto;
4378 rxqueue = netif_get_rxqueue(skb);
4379 xdp->rxq = &rxqueue->xdp_rxq;
4381 act = bpf_prog_run_xdp(xdp_prog, xdp);
4383 /* check if bpf_xdp_adjust_head was used */
4384 off = xdp->data - orig_data;
4387 __skb_pull(skb, off);
4389 __skb_push(skb, -off);
4391 skb->mac_header += off;
4392 skb_reset_network_header(skb);
4395 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4398 off = orig_data_end - xdp->data_end;
4400 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4405 /* check if XDP changed eth hdr such SKB needs update */
4406 eth = (struct ethhdr *)xdp->data;
4407 if ((orig_eth_type != eth->h_proto) ||
4408 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4409 __skb_push(skb, ETH_HLEN);
4410 skb->protocol = eth_type_trans(skb, skb->dev);
4416 __skb_push(skb, mac_len);
4419 metalen = xdp->data - xdp->data_meta;
4421 skb_metadata_set(skb, metalen);
4424 bpf_warn_invalid_xdp_action(act);
4427 trace_xdp_exception(skb->dev, xdp_prog, act);
4438 /* When doing generic XDP we have to bypass the qdisc layer and the
4439 * network taps in order to match in-driver-XDP behavior.
4441 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4443 struct net_device *dev = skb->dev;
4444 struct netdev_queue *txq;
4445 bool free_skb = true;
4448 txq = netdev_core_pick_tx(dev, skb, NULL);
4449 cpu = smp_processor_id();
4450 HARD_TX_LOCK(dev, txq, cpu);
4451 if (!netif_xmit_stopped(txq)) {
4452 rc = netdev_start_xmit(skb, dev, txq, 0);
4453 if (dev_xmit_complete(rc))
4456 HARD_TX_UNLOCK(dev, txq);
4458 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4462 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4464 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4466 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4469 struct xdp_buff xdp;
4473 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4474 if (act != XDP_PASS) {
4477 err = xdp_do_generic_redirect(skb->dev, skb,
4483 generic_xdp_tx(skb, xdp_prog);
4494 EXPORT_SYMBOL_GPL(do_xdp_generic);
4496 static int netif_rx_internal(struct sk_buff *skb)
4500 net_timestamp_check(netdev_tstamp_prequeue, skb);
4502 trace_netif_rx(skb);
4505 if (static_branch_unlikely(&rps_needed)) {
4506 struct rps_dev_flow voidflow, *rflow = &voidflow;
4512 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4514 cpu = smp_processor_id();
4516 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4525 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4532 * netif_rx - post buffer to the network code
4533 * @skb: buffer to post
4535 * This function receives a packet from a device driver and queues it for
4536 * the upper (protocol) levels to process. It always succeeds. The buffer
4537 * may be dropped during processing for congestion control or by the
4541 * NET_RX_SUCCESS (no congestion)
4542 * NET_RX_DROP (packet was dropped)
4546 int netif_rx(struct sk_buff *skb)
4550 trace_netif_rx_entry(skb);
4552 ret = netif_rx_internal(skb);
4553 trace_netif_rx_exit(ret);
4557 EXPORT_SYMBOL(netif_rx);
4559 int netif_rx_ni(struct sk_buff *skb)
4563 trace_netif_rx_ni_entry(skb);
4566 err = netif_rx_internal(skb);
4567 if (local_softirq_pending())
4570 trace_netif_rx_ni_exit(err);
4574 EXPORT_SYMBOL(netif_rx_ni);
4576 static __latent_entropy void net_tx_action(struct softirq_action *h)
4578 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4580 if (sd->completion_queue) {
4581 struct sk_buff *clist;
4583 local_irq_disable();
4584 clist = sd->completion_queue;
4585 sd->completion_queue = NULL;
4589 struct sk_buff *skb = clist;
4591 clist = clist->next;
4593 WARN_ON(refcount_read(&skb->users));
4594 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4595 trace_consume_skb(skb);
4597 trace_kfree_skb(skb, net_tx_action);
4599 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4602 __kfree_skb_defer(skb);
4605 __kfree_skb_flush();
4608 if (sd->output_queue) {
4611 local_irq_disable();
4612 head = sd->output_queue;
4613 sd->output_queue = NULL;
4614 sd->output_queue_tailp = &sd->output_queue;
4618 struct Qdisc *q = head;
4619 spinlock_t *root_lock = NULL;
4621 head = head->next_sched;
4623 if (!(q->flags & TCQ_F_NOLOCK)) {
4624 root_lock = qdisc_lock(q);
4625 spin_lock(root_lock);
4627 /* We need to make sure head->next_sched is read
4628 * before clearing __QDISC_STATE_SCHED
4630 smp_mb__before_atomic();
4631 clear_bit(__QDISC_STATE_SCHED, &q->state);
4634 spin_unlock(root_lock);
4638 xfrm_dev_backlog(sd);
4641 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4642 /* This hook is defined here for ATM LANE */
4643 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4644 unsigned char *addr) __read_mostly;
4645 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4648 static inline struct sk_buff *
4649 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4650 struct net_device *orig_dev)
4652 #ifdef CONFIG_NET_CLS_ACT
4653 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4654 struct tcf_result cl_res;
4656 /* If there's at least one ingress present somewhere (so
4657 * we get here via enabled static key), remaining devices
4658 * that are not configured with an ingress qdisc will bail
4665 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4669 qdisc_skb_cb(skb)->pkt_len = skb->len;
4670 skb->tc_at_ingress = 1;
4671 mini_qdisc_bstats_cpu_update(miniq, skb);
4673 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4675 case TC_ACT_RECLASSIFY:
4676 skb->tc_index = TC_H_MIN(cl_res.classid);
4679 mini_qdisc_qstats_cpu_drop(miniq);
4687 case TC_ACT_REDIRECT:
4688 /* skb_mac_header check was done by cls/act_bpf, so
4689 * we can safely push the L2 header back before
4690 * redirecting to another netdev
4692 __skb_push(skb, skb->mac_len);
4693 skb_do_redirect(skb);
4695 case TC_ACT_CONSUMED:
4700 #endif /* CONFIG_NET_CLS_ACT */
4705 * netdev_is_rx_handler_busy - check if receive handler is registered
4706 * @dev: device to check
4708 * Check if a receive handler is already registered for a given device.
4709 * Return true if there one.
4711 * The caller must hold the rtnl_mutex.
4713 bool netdev_is_rx_handler_busy(struct net_device *dev)
4716 return dev && rtnl_dereference(dev->rx_handler);
4718 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4721 * netdev_rx_handler_register - register receive handler
4722 * @dev: device to register a handler for
4723 * @rx_handler: receive handler to register
4724 * @rx_handler_data: data pointer that is used by rx handler
4726 * Register a receive handler for a device. This handler will then be
4727 * called from __netif_receive_skb. A negative errno code is returned
4730 * The caller must hold the rtnl_mutex.
4732 * For a general description of rx_handler, see enum rx_handler_result.
4734 int netdev_rx_handler_register(struct net_device *dev,
4735 rx_handler_func_t *rx_handler,
4736 void *rx_handler_data)
4738 if (netdev_is_rx_handler_busy(dev))
4741 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4744 /* Note: rx_handler_data must be set before rx_handler */
4745 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4746 rcu_assign_pointer(dev->rx_handler, rx_handler);
4750 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4753 * netdev_rx_handler_unregister - unregister receive handler
4754 * @dev: device to unregister a handler from
4756 * Unregister a receive handler from a device.
4758 * The caller must hold the rtnl_mutex.
4760 void netdev_rx_handler_unregister(struct net_device *dev)
4764 RCU_INIT_POINTER(dev->rx_handler, NULL);
4765 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4766 * section has a guarantee to see a non NULL rx_handler_data
4770 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4772 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4775 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4776 * the special handling of PFMEMALLOC skbs.
4778 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4780 switch (skb->protocol) {
4781 case htons(ETH_P_ARP):
4782 case htons(ETH_P_IP):
4783 case htons(ETH_P_IPV6):
4784 case htons(ETH_P_8021Q):
4785 case htons(ETH_P_8021AD):
4792 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4793 int *ret, struct net_device *orig_dev)
4795 #ifdef CONFIG_NETFILTER_INGRESS
4796 if (nf_hook_ingress_active(skb)) {
4800 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4805 ingress_retval = nf_hook_ingress(skb);
4807 return ingress_retval;
4809 #endif /* CONFIG_NETFILTER_INGRESS */
4813 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4814 struct packet_type **ppt_prev)
4816 struct packet_type *ptype, *pt_prev;
4817 rx_handler_func_t *rx_handler;
4818 struct net_device *orig_dev;
4819 bool deliver_exact = false;
4820 int ret = NET_RX_DROP;
4823 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4825 trace_netif_receive_skb(skb);
4827 orig_dev = skb->dev;
4829 skb_reset_network_header(skb);
4830 if (!skb_transport_header_was_set(skb))
4831 skb_reset_transport_header(skb);
4832 skb_reset_mac_len(skb);
4837 skb->skb_iif = skb->dev->ifindex;
4839 __this_cpu_inc(softnet_data.processed);
4841 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4845 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4848 if (ret2 != XDP_PASS)
4850 skb_reset_mac_len(skb);
4853 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4854 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4855 skb = skb_vlan_untag(skb);
4860 if (skb_skip_tc_classify(skb))
4866 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4868 ret = deliver_skb(skb, pt_prev, orig_dev);
4872 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4874 ret = deliver_skb(skb, pt_prev, orig_dev);
4879 #ifdef CONFIG_NET_INGRESS
4880 if (static_branch_unlikely(&ingress_needed_key)) {
4881 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4885 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4891 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4894 if (skb_vlan_tag_present(skb)) {
4896 ret = deliver_skb(skb, pt_prev, orig_dev);
4899 if (vlan_do_receive(&skb))
4901 else if (unlikely(!skb))
4905 rx_handler = rcu_dereference(skb->dev->rx_handler);
4908 ret = deliver_skb(skb, pt_prev, orig_dev);
4911 switch (rx_handler(&skb)) {
4912 case RX_HANDLER_CONSUMED:
4913 ret = NET_RX_SUCCESS;
4915 case RX_HANDLER_ANOTHER:
4917 case RX_HANDLER_EXACT:
4918 deliver_exact = true;
4919 case RX_HANDLER_PASS:
4926 if (unlikely(skb_vlan_tag_present(skb))) {
4928 if (skb_vlan_tag_get_id(skb)) {
4929 /* Vlan id is non 0 and vlan_do_receive() above couldn't
4932 skb->pkt_type = PACKET_OTHERHOST;
4933 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4934 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4935 /* Outer header is 802.1P with vlan 0, inner header is
4936 * 802.1Q or 802.1AD and vlan_do_receive() above could
4937 * not find vlan dev for vlan id 0.
4939 __vlan_hwaccel_clear_tag(skb);
4940 skb = skb_vlan_untag(skb);
4943 if (vlan_do_receive(&skb))
4944 /* After stripping off 802.1P header with vlan 0
4945 * vlan dev is found for inner header.
4948 else if (unlikely(!skb))
4951 /* We have stripped outer 802.1P vlan 0 header.
4952 * But could not find vlan dev.
4953 * check again for vlan id to set OTHERHOST.
4957 /* Note: we might in the future use prio bits
4958 * and set skb->priority like in vlan_do_receive()
4959 * For the time being, just ignore Priority Code Point
4961 __vlan_hwaccel_clear_tag(skb);
4964 type = skb->protocol;
4966 /* deliver only exact match when indicated */
4967 if (likely(!deliver_exact)) {
4968 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4969 &ptype_base[ntohs(type) &
4973 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4974 &orig_dev->ptype_specific);
4976 if (unlikely(skb->dev != orig_dev)) {
4977 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4978 &skb->dev->ptype_specific);
4982 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4984 *ppt_prev = pt_prev;
4988 atomic_long_inc(&skb->dev->rx_dropped);
4990 atomic_long_inc(&skb->dev->rx_nohandler);
4992 /* Jamal, now you will not able to escape explaining
4993 * me how you were going to use this. :-)
5002 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5004 struct net_device *orig_dev = skb->dev;
5005 struct packet_type *pt_prev = NULL;
5008 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5010 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5011 skb->dev, pt_prev, orig_dev);
5016 * netif_receive_skb_core - special purpose version of netif_receive_skb
5017 * @skb: buffer to process
5019 * More direct receive version of netif_receive_skb(). It should
5020 * only be used by callers that have a need to skip RPS and Generic XDP.
5021 * Caller must also take care of handling if (page_is_)pfmemalloc.
5023 * This function may only be called from softirq context and interrupts
5024 * should be enabled.
5026 * Return values (usually ignored):
5027 * NET_RX_SUCCESS: no congestion
5028 * NET_RX_DROP: packet was dropped
5030 int netif_receive_skb_core(struct sk_buff *skb)
5035 ret = __netif_receive_skb_one_core(skb, false);
5040 EXPORT_SYMBOL(netif_receive_skb_core);
5042 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5043 struct packet_type *pt_prev,
5044 struct net_device *orig_dev)
5046 struct sk_buff *skb, *next;
5050 if (list_empty(head))
5052 if (pt_prev->list_func != NULL)
5053 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5054 ip_list_rcv, head, pt_prev, orig_dev);
5056 list_for_each_entry_safe(skb, next, head, list) {
5057 skb_list_del_init(skb);
5058 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5062 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5064 /* Fast-path assumptions:
5065 * - There is no RX handler.
5066 * - Only one packet_type matches.
5067 * If either of these fails, we will end up doing some per-packet
5068 * processing in-line, then handling the 'last ptype' for the whole
5069 * sublist. This can't cause out-of-order delivery to any single ptype,
5070 * because the 'last ptype' must be constant across the sublist, and all
5071 * other ptypes are handled per-packet.
5073 /* Current (common) ptype of sublist */
5074 struct packet_type *pt_curr = NULL;
5075 /* Current (common) orig_dev of sublist */
5076 struct net_device *od_curr = NULL;
5077 struct list_head sublist;
5078 struct sk_buff *skb, *next;
5080 INIT_LIST_HEAD(&sublist);
5081 list_for_each_entry_safe(skb, next, head, list) {
5082 struct net_device *orig_dev = skb->dev;
5083 struct packet_type *pt_prev = NULL;
5085 skb_list_del_init(skb);
5086 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5089 if (pt_curr != pt_prev || od_curr != orig_dev) {
5090 /* dispatch old sublist */
5091 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5092 /* start new sublist */
5093 INIT_LIST_HEAD(&sublist);
5097 list_add_tail(&skb->list, &sublist);
5100 /* dispatch final sublist */
5101 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5104 static int __netif_receive_skb(struct sk_buff *skb)
5108 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5109 unsigned int noreclaim_flag;
5112 * PFMEMALLOC skbs are special, they should
5113 * - be delivered to SOCK_MEMALLOC sockets only
5114 * - stay away from userspace
5115 * - have bounded memory usage
5117 * Use PF_MEMALLOC as this saves us from propagating the allocation
5118 * context down to all allocation sites.
5120 noreclaim_flag = memalloc_noreclaim_save();
5121 ret = __netif_receive_skb_one_core(skb, true);
5122 memalloc_noreclaim_restore(noreclaim_flag);
5124 ret = __netif_receive_skb_one_core(skb, false);
5129 static void __netif_receive_skb_list(struct list_head *head)
5131 unsigned long noreclaim_flag = 0;
5132 struct sk_buff *skb, *next;
5133 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5135 list_for_each_entry_safe(skb, next, head, list) {
5136 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5137 struct list_head sublist;
5139 /* Handle the previous sublist */
5140 list_cut_before(&sublist, head, &skb->list);
5141 if (!list_empty(&sublist))
5142 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5143 pfmemalloc = !pfmemalloc;
5144 /* See comments in __netif_receive_skb */
5146 noreclaim_flag = memalloc_noreclaim_save();
5148 memalloc_noreclaim_restore(noreclaim_flag);
5151 /* Handle the remaining sublist */
5152 if (!list_empty(head))
5153 __netif_receive_skb_list_core(head, pfmemalloc);
5154 /* Restore pflags */
5156 memalloc_noreclaim_restore(noreclaim_flag);
5159 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5161 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5162 struct bpf_prog *new = xdp->prog;
5165 switch (xdp->command) {
5166 case XDP_SETUP_PROG:
5167 rcu_assign_pointer(dev->xdp_prog, new);
5172 static_branch_dec(&generic_xdp_needed_key);
5173 } else if (new && !old) {
5174 static_branch_inc(&generic_xdp_needed_key);
5175 dev_disable_lro(dev);
5176 dev_disable_gro_hw(dev);
5180 case XDP_QUERY_PROG:
5181 xdp->prog_id = old ? old->aux->id : 0;
5192 static int netif_receive_skb_internal(struct sk_buff *skb)
5196 net_timestamp_check(netdev_tstamp_prequeue, skb);
5198 if (skb_defer_rx_timestamp(skb))
5199 return NET_RX_SUCCESS;
5203 if (static_branch_unlikely(&rps_needed)) {
5204 struct rps_dev_flow voidflow, *rflow = &voidflow;
5205 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5208 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5214 ret = __netif_receive_skb(skb);
5219 static void netif_receive_skb_list_internal(struct list_head *head)
5221 struct sk_buff *skb, *next;
5222 struct list_head sublist;
5224 INIT_LIST_HEAD(&sublist);
5225 list_for_each_entry_safe(skb, next, head, list) {
5226 net_timestamp_check(netdev_tstamp_prequeue, skb);
5227 skb_list_del_init(skb);
5228 if (!skb_defer_rx_timestamp(skb))
5229 list_add_tail(&skb->list, &sublist);
5231 list_splice_init(&sublist, head);
5235 if (static_branch_unlikely(&rps_needed)) {
5236 list_for_each_entry_safe(skb, next, head, list) {
5237 struct rps_dev_flow voidflow, *rflow = &voidflow;
5238 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5241 /* Will be handled, remove from list */
5242 skb_list_del_init(skb);
5243 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5248 __netif_receive_skb_list(head);
5253 * netif_receive_skb - process receive buffer from network
5254 * @skb: buffer to process
5256 * netif_receive_skb() is the main receive data processing function.
5257 * It always succeeds. The buffer may be dropped during processing
5258 * for congestion control or by the protocol layers.
5260 * This function may only be called from softirq context and interrupts
5261 * should be enabled.
5263 * Return values (usually ignored):
5264 * NET_RX_SUCCESS: no congestion
5265 * NET_RX_DROP: packet was dropped
5267 int netif_receive_skb(struct sk_buff *skb)
5271 trace_netif_receive_skb_entry(skb);
5273 ret = netif_receive_skb_internal(skb);
5274 trace_netif_receive_skb_exit(ret);
5278 EXPORT_SYMBOL(netif_receive_skb);
5281 * netif_receive_skb_list - process many receive buffers from network
5282 * @head: list of skbs to process.
5284 * Since return value of netif_receive_skb() is normally ignored, and
5285 * wouldn't be meaningful for a list, this function returns void.
5287 * This function may only be called from softirq context and interrupts
5288 * should be enabled.
5290 void netif_receive_skb_list(struct list_head *head)
5292 struct sk_buff *skb;
5294 if (list_empty(head))
5296 if (trace_netif_receive_skb_list_entry_enabled()) {
5297 list_for_each_entry(skb, head, list)
5298 trace_netif_receive_skb_list_entry(skb);
5300 netif_receive_skb_list_internal(head);
5301 trace_netif_receive_skb_list_exit(0);
5303 EXPORT_SYMBOL(netif_receive_skb_list);
5305 DEFINE_PER_CPU(struct work_struct, flush_works);
5307 /* Network device is going away, flush any packets still pending */
5308 static void flush_backlog(struct work_struct *work)
5310 struct sk_buff *skb, *tmp;
5311 struct softnet_data *sd;
5314 sd = this_cpu_ptr(&softnet_data);
5316 local_irq_disable();
5318 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5319 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5320 __skb_unlink(skb, &sd->input_pkt_queue);
5322 input_queue_head_incr(sd);
5328 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5329 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5330 __skb_unlink(skb, &sd->process_queue);
5332 input_queue_head_incr(sd);
5338 static void flush_all_backlogs(void)
5344 for_each_online_cpu(cpu)
5345 queue_work_on(cpu, system_highpri_wq,
5346 per_cpu_ptr(&flush_works, cpu));
5348 for_each_online_cpu(cpu)
5349 flush_work(per_cpu_ptr(&flush_works, cpu));
5354 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5355 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5356 static int napi_gro_complete(struct sk_buff *skb)
5358 struct packet_offload *ptype;
5359 __be16 type = skb->protocol;
5360 struct list_head *head = &offload_base;
5363 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5365 if (NAPI_GRO_CB(skb)->count == 1) {
5366 skb_shinfo(skb)->gso_size = 0;
5371 list_for_each_entry_rcu(ptype, head, list) {
5372 if (ptype->type != type || !ptype->callbacks.gro_complete)
5375 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5376 ipv6_gro_complete, inet_gro_complete,
5383 WARN_ON(&ptype->list == head);
5385 return NET_RX_SUCCESS;
5389 return netif_receive_skb_internal(skb);
5392 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5395 struct list_head *head = &napi->gro_hash[index].list;
5396 struct sk_buff *skb, *p;
5398 list_for_each_entry_safe_reverse(skb, p, head, list) {
5399 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5401 skb_list_del_init(skb);
5402 napi_gro_complete(skb);
5403 napi->gro_hash[index].count--;
5406 if (!napi->gro_hash[index].count)
5407 __clear_bit(index, &napi->gro_bitmask);
5410 /* napi->gro_hash[].list contains packets ordered by age.
5411 * youngest packets at the head of it.
5412 * Complete skbs in reverse order to reduce latencies.
5414 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5416 unsigned long bitmask = napi->gro_bitmask;
5417 unsigned int i, base = ~0U;
5419 while ((i = ffs(bitmask)) != 0) {
5422 __napi_gro_flush_chain(napi, base, flush_old);
5425 EXPORT_SYMBOL(napi_gro_flush);
5427 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5428 struct sk_buff *skb)
5430 unsigned int maclen = skb->dev->hard_header_len;
5431 u32 hash = skb_get_hash_raw(skb);
5432 struct list_head *head;
5435 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5436 list_for_each_entry(p, head, list) {
5437 unsigned long diffs;
5439 NAPI_GRO_CB(p)->flush = 0;
5441 if (hash != skb_get_hash_raw(p)) {
5442 NAPI_GRO_CB(p)->same_flow = 0;
5446 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5447 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5448 if (skb_vlan_tag_present(p))
5449 diffs |= p->vlan_tci ^ skb->vlan_tci;
5450 diffs |= skb_metadata_dst_cmp(p, skb);
5451 diffs |= skb_metadata_differs(p, skb);
5452 if (maclen == ETH_HLEN)
5453 diffs |= compare_ether_header(skb_mac_header(p),
5454 skb_mac_header(skb));
5456 diffs = memcmp(skb_mac_header(p),
5457 skb_mac_header(skb),
5459 NAPI_GRO_CB(p)->same_flow = !diffs;
5465 static void skb_gro_reset_offset(struct sk_buff *skb)
5467 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5468 const skb_frag_t *frag0 = &pinfo->frags[0];
5470 NAPI_GRO_CB(skb)->data_offset = 0;
5471 NAPI_GRO_CB(skb)->frag0 = NULL;
5472 NAPI_GRO_CB(skb)->frag0_len = 0;
5474 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5476 !PageHighMem(skb_frag_page(frag0))) {
5477 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5478 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5479 skb_frag_size(frag0),
5480 skb->end - skb->tail);
5484 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5486 struct skb_shared_info *pinfo = skb_shinfo(skb);
5488 BUG_ON(skb->end - skb->tail < grow);
5490 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5492 skb->data_len -= grow;
5495 skb_frag_off_add(&pinfo->frags[0], grow);
5496 skb_frag_size_sub(&pinfo->frags[0], grow);
5498 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5499 skb_frag_unref(skb, 0);
5500 memmove(pinfo->frags, pinfo->frags + 1,
5501 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5505 static void gro_flush_oldest(struct list_head *head)
5507 struct sk_buff *oldest;
5509 oldest = list_last_entry(head, struct sk_buff, list);
5511 /* We are called with head length >= MAX_GRO_SKBS, so this is
5514 if (WARN_ON_ONCE(!oldest))
5517 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5520 skb_list_del_init(oldest);
5521 napi_gro_complete(oldest);
5524 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5526 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5528 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5530 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5531 struct list_head *head = &offload_base;
5532 struct packet_offload *ptype;
5533 __be16 type = skb->protocol;
5534 struct list_head *gro_head;
5535 struct sk_buff *pp = NULL;
5536 enum gro_result ret;
5540 if (netif_elide_gro(skb->dev))
5543 gro_head = gro_list_prepare(napi, skb);
5546 list_for_each_entry_rcu(ptype, head, list) {
5547 if (ptype->type != type || !ptype->callbacks.gro_receive)
5550 skb_set_network_header(skb, skb_gro_offset(skb));
5551 skb_reset_mac_len(skb);
5552 NAPI_GRO_CB(skb)->same_flow = 0;
5553 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5554 NAPI_GRO_CB(skb)->free = 0;
5555 NAPI_GRO_CB(skb)->encap_mark = 0;
5556 NAPI_GRO_CB(skb)->recursion_counter = 0;
5557 NAPI_GRO_CB(skb)->is_fou = 0;
5558 NAPI_GRO_CB(skb)->is_atomic = 1;
5559 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5561 /* Setup for GRO checksum validation */
5562 switch (skb->ip_summed) {
5563 case CHECKSUM_COMPLETE:
5564 NAPI_GRO_CB(skb)->csum = skb->csum;
5565 NAPI_GRO_CB(skb)->csum_valid = 1;
5566 NAPI_GRO_CB(skb)->csum_cnt = 0;
5568 case CHECKSUM_UNNECESSARY:
5569 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5570 NAPI_GRO_CB(skb)->csum_valid = 0;
5573 NAPI_GRO_CB(skb)->csum_cnt = 0;
5574 NAPI_GRO_CB(skb)->csum_valid = 0;
5577 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5578 ipv6_gro_receive, inet_gro_receive,
5584 if (&ptype->list == head)
5587 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5592 same_flow = NAPI_GRO_CB(skb)->same_flow;
5593 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5596 skb_list_del_init(pp);
5597 napi_gro_complete(pp);
5598 napi->gro_hash[hash].count--;
5604 if (NAPI_GRO_CB(skb)->flush)
5607 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5608 gro_flush_oldest(gro_head);
5610 napi->gro_hash[hash].count++;
5612 NAPI_GRO_CB(skb)->count = 1;
5613 NAPI_GRO_CB(skb)->age = jiffies;
5614 NAPI_GRO_CB(skb)->last = skb;
5615 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5616 list_add(&skb->list, gro_head);
5620 grow = skb_gro_offset(skb) - skb_headlen(skb);
5622 gro_pull_from_frag0(skb, grow);
5624 if (napi->gro_hash[hash].count) {
5625 if (!test_bit(hash, &napi->gro_bitmask))
5626 __set_bit(hash, &napi->gro_bitmask);
5627 } else if (test_bit(hash, &napi->gro_bitmask)) {
5628 __clear_bit(hash, &napi->gro_bitmask);
5638 struct packet_offload *gro_find_receive_by_type(__be16 type)
5640 struct list_head *offload_head = &offload_base;
5641 struct packet_offload *ptype;
5643 list_for_each_entry_rcu(ptype, offload_head, list) {
5644 if (ptype->type != type || !ptype->callbacks.gro_receive)
5650 EXPORT_SYMBOL(gro_find_receive_by_type);
5652 struct packet_offload *gro_find_complete_by_type(__be16 type)
5654 struct list_head *offload_head = &offload_base;
5655 struct packet_offload *ptype;
5657 list_for_each_entry_rcu(ptype, offload_head, list) {
5658 if (ptype->type != type || !ptype->callbacks.gro_complete)
5664 EXPORT_SYMBOL(gro_find_complete_by_type);
5666 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5670 kmem_cache_free(skbuff_head_cache, skb);
5673 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5677 if (netif_receive_skb_internal(skb))
5685 case GRO_MERGED_FREE:
5686 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5687 napi_skb_free_stolen_head(skb);
5701 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5705 skb_mark_napi_id(skb, napi);
5706 trace_napi_gro_receive_entry(skb);
5708 skb_gro_reset_offset(skb);
5710 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5711 trace_napi_gro_receive_exit(ret);
5715 EXPORT_SYMBOL(napi_gro_receive);
5717 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5719 if (unlikely(skb->pfmemalloc)) {
5723 __skb_pull(skb, skb_headlen(skb));
5724 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5725 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5726 __vlan_hwaccel_clear_tag(skb);
5727 skb->dev = napi->dev;
5730 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5731 skb->pkt_type = PACKET_HOST;
5733 skb->encapsulation = 0;
5734 skb_shinfo(skb)->gso_type = 0;
5735 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5741 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5743 struct sk_buff *skb = napi->skb;
5746 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5749 skb_mark_napi_id(skb, napi);
5754 EXPORT_SYMBOL(napi_get_frags);
5756 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5757 static void gro_normal_list(struct napi_struct *napi)
5759 if (!napi->rx_count)
5761 netif_receive_skb_list_internal(&napi->rx_list);
5762 INIT_LIST_HEAD(&napi->rx_list);
5766 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5767 * pass the whole batch up to the stack.
5769 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5771 list_add_tail(&skb->list, &napi->rx_list);
5772 if (++napi->rx_count >= gro_normal_batch)
5773 gro_normal_list(napi);
5776 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5777 struct sk_buff *skb,
5783 __skb_push(skb, ETH_HLEN);
5784 skb->protocol = eth_type_trans(skb, skb->dev);
5785 if (ret == GRO_NORMAL)
5786 gro_normal_one(napi, skb);
5790 napi_reuse_skb(napi, skb);
5793 case GRO_MERGED_FREE:
5794 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5795 napi_skb_free_stolen_head(skb);
5797 napi_reuse_skb(napi, skb);
5808 /* Upper GRO stack assumes network header starts at gro_offset=0
5809 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5810 * We copy ethernet header into skb->data to have a common layout.
5812 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5814 struct sk_buff *skb = napi->skb;
5815 const struct ethhdr *eth;
5816 unsigned int hlen = sizeof(*eth);
5820 skb_reset_mac_header(skb);
5821 skb_gro_reset_offset(skb);
5823 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5824 eth = skb_gro_header_slow(skb, hlen, 0);
5825 if (unlikely(!eth)) {
5826 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5827 __func__, napi->dev->name);
5828 napi_reuse_skb(napi, skb);
5832 eth = (const struct ethhdr *)skb->data;
5833 gro_pull_from_frag0(skb, hlen);
5834 NAPI_GRO_CB(skb)->frag0 += hlen;
5835 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5837 __skb_pull(skb, hlen);
5840 * This works because the only protocols we care about don't require
5842 * We'll fix it up properly in napi_frags_finish()
5844 skb->protocol = eth->h_proto;
5849 gro_result_t napi_gro_frags(struct napi_struct *napi)
5852 struct sk_buff *skb = napi_frags_skb(napi);
5857 trace_napi_gro_frags_entry(skb);
5859 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5860 trace_napi_gro_frags_exit(ret);
5864 EXPORT_SYMBOL(napi_gro_frags);
5866 /* Compute the checksum from gro_offset and return the folded value
5867 * after adding in any pseudo checksum.
5869 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5874 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5876 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5877 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5878 /* See comments in __skb_checksum_complete(). */
5880 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5881 !skb->csum_complete_sw)
5882 netdev_rx_csum_fault(skb->dev, skb);
5885 NAPI_GRO_CB(skb)->csum = wsum;
5886 NAPI_GRO_CB(skb)->csum_valid = 1;
5890 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5892 static void net_rps_send_ipi(struct softnet_data *remsd)
5896 struct softnet_data *next = remsd->rps_ipi_next;
5898 if (cpu_online(remsd->cpu))
5899 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5906 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5907 * Note: called with local irq disabled, but exits with local irq enabled.
5909 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5912 struct softnet_data *remsd = sd->rps_ipi_list;
5915 sd->rps_ipi_list = NULL;
5919 /* Send pending IPI's to kick RPS processing on remote cpus. */
5920 net_rps_send_ipi(remsd);
5926 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5929 return sd->rps_ipi_list != NULL;
5935 static int process_backlog(struct napi_struct *napi, int quota)
5937 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5941 /* Check if we have pending ipi, its better to send them now,
5942 * not waiting net_rx_action() end.
5944 if (sd_has_rps_ipi_waiting(sd)) {
5945 local_irq_disable();
5946 net_rps_action_and_irq_enable(sd);
5949 napi->weight = dev_rx_weight;
5951 struct sk_buff *skb;
5953 while ((skb = __skb_dequeue(&sd->process_queue))) {
5955 __netif_receive_skb(skb);
5957 input_queue_head_incr(sd);
5958 if (++work >= quota)
5963 local_irq_disable();
5965 if (skb_queue_empty(&sd->input_pkt_queue)) {
5967 * Inline a custom version of __napi_complete().
5968 * only current cpu owns and manipulates this napi,
5969 * and NAPI_STATE_SCHED is the only possible flag set
5971 * We can use a plain write instead of clear_bit(),
5972 * and we dont need an smp_mb() memory barrier.
5977 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5978 &sd->process_queue);
5988 * __napi_schedule - schedule for receive
5989 * @n: entry to schedule
5991 * The entry's receive function will be scheduled to run.
5992 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5994 void __napi_schedule(struct napi_struct *n)
5996 unsigned long flags;
5998 local_irq_save(flags);
5999 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6000 local_irq_restore(flags);
6002 EXPORT_SYMBOL(__napi_schedule);
6005 * napi_schedule_prep - check if napi can be scheduled
6008 * Test if NAPI routine is already running, and if not mark
6009 * it as running. This is used as a condition variable
6010 * insure only one NAPI poll instance runs. We also make
6011 * sure there is no pending NAPI disable.
6013 bool napi_schedule_prep(struct napi_struct *n)
6015 unsigned long val, new;
6018 val = READ_ONCE(n->state);
6019 if (unlikely(val & NAPIF_STATE_DISABLE))
6021 new = val | NAPIF_STATE_SCHED;
6023 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6024 * This was suggested by Alexander Duyck, as compiler
6025 * emits better code than :
6026 * if (val & NAPIF_STATE_SCHED)
6027 * new |= NAPIF_STATE_MISSED;
6029 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6031 } while (cmpxchg(&n->state, val, new) != val);
6033 return !(val & NAPIF_STATE_SCHED);
6035 EXPORT_SYMBOL(napi_schedule_prep);
6038 * __napi_schedule_irqoff - schedule for receive
6039 * @n: entry to schedule
6041 * Variant of __napi_schedule() assuming hard irqs are masked
6043 void __napi_schedule_irqoff(struct napi_struct *n)
6045 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6047 EXPORT_SYMBOL(__napi_schedule_irqoff);
6049 bool napi_complete_done(struct napi_struct *n, int work_done)
6051 unsigned long flags, val, new;
6054 * 1) Don't let napi dequeue from the cpu poll list
6055 * just in case its running on a different cpu.
6056 * 2) If we are busy polling, do nothing here, we have
6057 * the guarantee we will be called later.
6059 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6060 NAPIF_STATE_IN_BUSY_POLL)))
6065 if (n->gro_bitmask) {
6066 unsigned long timeout = 0;
6069 timeout = n->dev->gro_flush_timeout;
6071 /* When the NAPI instance uses a timeout and keeps postponing
6072 * it, we need to bound somehow the time packets are kept in
6075 napi_gro_flush(n, !!timeout);
6077 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6078 HRTIMER_MODE_REL_PINNED);
6080 if (unlikely(!list_empty(&n->poll_list))) {
6081 /* If n->poll_list is not empty, we need to mask irqs */
6082 local_irq_save(flags);
6083 list_del_init(&n->poll_list);
6084 local_irq_restore(flags);
6088 val = READ_ONCE(n->state);
6090 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6092 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6094 /* If STATE_MISSED was set, leave STATE_SCHED set,
6095 * because we will call napi->poll() one more time.
6096 * This C code was suggested by Alexander Duyck to help gcc.
6098 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6100 } while (cmpxchg(&n->state, val, new) != val);
6102 if (unlikely(val & NAPIF_STATE_MISSED)) {
6109 EXPORT_SYMBOL(napi_complete_done);
6111 /* must be called under rcu_read_lock(), as we dont take a reference */
6112 static struct napi_struct *napi_by_id(unsigned int napi_id)
6114 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6115 struct napi_struct *napi;
6117 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6118 if (napi->napi_id == napi_id)
6124 #if defined(CONFIG_NET_RX_BUSY_POLL)
6126 #define BUSY_POLL_BUDGET 8
6128 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6132 /* Busy polling means there is a high chance device driver hard irq
6133 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6134 * set in napi_schedule_prep().
6135 * Since we are about to call napi->poll() once more, we can safely
6136 * clear NAPI_STATE_MISSED.
6138 * Note: x86 could use a single "lock and ..." instruction
6139 * to perform these two clear_bit()
6141 clear_bit(NAPI_STATE_MISSED, &napi->state);
6142 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6146 /* All we really want here is to re-enable device interrupts.
6147 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6149 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6150 /* We can't gro_normal_list() here, because napi->poll() might have
6151 * rearmed the napi (napi_complete_done()) in which case it could
6152 * already be running on another CPU.
6154 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6155 netpoll_poll_unlock(have_poll_lock);
6156 if (rc == BUSY_POLL_BUDGET) {
6157 /* As the whole budget was spent, we still own the napi so can
6158 * safely handle the rx_list.
6160 gro_normal_list(napi);
6161 __napi_schedule(napi);
6166 void napi_busy_loop(unsigned int napi_id,
6167 bool (*loop_end)(void *, unsigned long),
6170 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6171 int (*napi_poll)(struct napi_struct *napi, int budget);
6172 void *have_poll_lock = NULL;
6173 struct napi_struct *napi;
6180 napi = napi_by_id(napi_id);
6190 unsigned long val = READ_ONCE(napi->state);
6192 /* If multiple threads are competing for this napi,
6193 * we avoid dirtying napi->state as much as we can.
6195 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6196 NAPIF_STATE_IN_BUSY_POLL))
6198 if (cmpxchg(&napi->state, val,
6199 val | NAPIF_STATE_IN_BUSY_POLL |
6200 NAPIF_STATE_SCHED) != val)
6202 have_poll_lock = netpoll_poll_lock(napi);
6203 napi_poll = napi->poll;
6205 work = napi_poll(napi, BUSY_POLL_BUDGET);
6206 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6207 gro_normal_list(napi);
6210 __NET_ADD_STATS(dev_net(napi->dev),
6211 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6214 if (!loop_end || loop_end(loop_end_arg, start_time))
6217 if (unlikely(need_resched())) {
6219 busy_poll_stop(napi, have_poll_lock);
6223 if (loop_end(loop_end_arg, start_time))
6230 busy_poll_stop(napi, have_poll_lock);
6235 EXPORT_SYMBOL(napi_busy_loop);
6237 #endif /* CONFIG_NET_RX_BUSY_POLL */
6239 static void napi_hash_add(struct napi_struct *napi)
6241 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6242 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6245 spin_lock(&napi_hash_lock);
6247 /* 0..NR_CPUS range is reserved for sender_cpu use */
6249 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6250 napi_gen_id = MIN_NAPI_ID;
6251 } while (napi_by_id(napi_gen_id));
6252 napi->napi_id = napi_gen_id;
6254 hlist_add_head_rcu(&napi->napi_hash_node,
6255 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6257 spin_unlock(&napi_hash_lock);
6260 /* Warning : caller is responsible to make sure rcu grace period
6261 * is respected before freeing memory containing @napi
6263 bool napi_hash_del(struct napi_struct *napi)
6265 bool rcu_sync_needed = false;
6267 spin_lock(&napi_hash_lock);
6269 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6270 rcu_sync_needed = true;
6271 hlist_del_rcu(&napi->napi_hash_node);
6273 spin_unlock(&napi_hash_lock);
6274 return rcu_sync_needed;
6276 EXPORT_SYMBOL_GPL(napi_hash_del);
6278 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6280 struct napi_struct *napi;
6282 napi = container_of(timer, struct napi_struct, timer);
6284 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6285 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6287 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6288 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6289 __napi_schedule_irqoff(napi);
6291 return HRTIMER_NORESTART;
6294 static void init_gro_hash(struct napi_struct *napi)
6298 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6299 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6300 napi->gro_hash[i].count = 0;
6302 napi->gro_bitmask = 0;
6305 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6306 int (*poll)(struct napi_struct *, int), int weight)
6308 INIT_LIST_HEAD(&napi->poll_list);
6309 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6310 napi->timer.function = napi_watchdog;
6311 init_gro_hash(napi);
6313 INIT_LIST_HEAD(&napi->rx_list);
6316 if (weight > NAPI_POLL_WEIGHT)
6317 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6319 napi->weight = weight;
6320 list_add(&napi->dev_list, &dev->napi_list);
6322 #ifdef CONFIG_NETPOLL
6323 napi->poll_owner = -1;
6325 set_bit(NAPI_STATE_SCHED, &napi->state);
6326 napi_hash_add(napi);
6328 EXPORT_SYMBOL(netif_napi_add);
6330 void napi_disable(struct napi_struct *n)
6333 set_bit(NAPI_STATE_DISABLE, &n->state);
6335 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6337 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6340 hrtimer_cancel(&n->timer);
6342 clear_bit(NAPI_STATE_DISABLE, &n->state);
6344 EXPORT_SYMBOL(napi_disable);
6346 static void flush_gro_hash(struct napi_struct *napi)
6350 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6351 struct sk_buff *skb, *n;
6353 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6355 napi->gro_hash[i].count = 0;
6359 /* Must be called in process context */
6360 void netif_napi_del(struct napi_struct *napi)
6363 if (napi_hash_del(napi))
6365 list_del_init(&napi->dev_list);
6366 napi_free_frags(napi);
6368 flush_gro_hash(napi);
6369 napi->gro_bitmask = 0;
6371 EXPORT_SYMBOL(netif_napi_del);
6373 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6378 list_del_init(&n->poll_list);
6380 have = netpoll_poll_lock(n);
6384 /* This NAPI_STATE_SCHED test is for avoiding a race
6385 * with netpoll's poll_napi(). Only the entity which
6386 * obtains the lock and sees NAPI_STATE_SCHED set will
6387 * actually make the ->poll() call. Therefore we avoid
6388 * accidentally calling ->poll() when NAPI is not scheduled.
6391 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6392 work = n->poll(n, weight);
6393 trace_napi_poll(n, work, weight);
6396 WARN_ON_ONCE(work > weight);
6398 if (likely(work < weight))
6401 /* Drivers must not modify the NAPI state if they
6402 * consume the entire weight. In such cases this code
6403 * still "owns" the NAPI instance and therefore can
6404 * move the instance around on the list at-will.
6406 if (unlikely(napi_disable_pending(n))) {
6413 if (n->gro_bitmask) {
6414 /* flush too old packets
6415 * If HZ < 1000, flush all packets.
6417 napi_gro_flush(n, HZ >= 1000);
6420 /* Some drivers may have called napi_schedule
6421 * prior to exhausting their budget.
6423 if (unlikely(!list_empty(&n->poll_list))) {
6424 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6425 n->dev ? n->dev->name : "backlog");
6429 list_add_tail(&n->poll_list, repoll);
6432 netpoll_poll_unlock(have);
6437 static __latent_entropy void net_rx_action(struct softirq_action *h)
6439 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6440 unsigned long time_limit = jiffies +
6441 usecs_to_jiffies(netdev_budget_usecs);
6442 int budget = netdev_budget;
6446 local_irq_disable();
6447 list_splice_init(&sd->poll_list, &list);
6451 struct napi_struct *n;
6453 if (list_empty(&list)) {
6454 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6459 n = list_first_entry(&list, struct napi_struct, poll_list);
6460 budget -= napi_poll(n, &repoll);
6462 /* If softirq window is exhausted then punt.
6463 * Allow this to run for 2 jiffies since which will allow
6464 * an average latency of 1.5/HZ.
6466 if (unlikely(budget <= 0 ||
6467 time_after_eq(jiffies, time_limit))) {
6473 local_irq_disable();
6475 list_splice_tail_init(&sd->poll_list, &list);
6476 list_splice_tail(&repoll, &list);
6477 list_splice(&list, &sd->poll_list);
6478 if (!list_empty(&sd->poll_list))
6479 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6481 net_rps_action_and_irq_enable(sd);
6483 __kfree_skb_flush();
6486 struct netdev_adjacent {
6487 struct net_device *dev;
6489 /* upper master flag, there can only be one master device per list */
6492 /* counter for the number of times this device was added to us */
6495 /* private field for the users */
6498 struct list_head list;
6499 struct rcu_head rcu;
6502 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6503 struct list_head *adj_list)
6505 struct netdev_adjacent *adj;
6507 list_for_each_entry(adj, adj_list, list) {
6508 if (adj->dev == adj_dev)
6514 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6516 struct net_device *dev = data;
6518 return upper_dev == dev;
6522 * netdev_has_upper_dev - Check if device is linked to an upper device
6524 * @upper_dev: upper device to check
6526 * Find out if a device is linked to specified upper device and return true
6527 * in case it is. Note that this checks only immediate upper device,
6528 * not through a complete stack of devices. The caller must hold the RTNL lock.
6530 bool netdev_has_upper_dev(struct net_device *dev,
6531 struct net_device *upper_dev)
6535 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6538 EXPORT_SYMBOL(netdev_has_upper_dev);
6541 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6543 * @upper_dev: upper device to check
6545 * Find out if a device is linked to specified upper device and return true
6546 * in case it is. Note that this checks the entire upper device chain.
6547 * The caller must hold rcu lock.
6550 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6551 struct net_device *upper_dev)
6553 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6556 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6559 * netdev_has_any_upper_dev - Check if device is linked to some device
6562 * Find out if a device is linked to an upper device and return true in case
6563 * it is. The caller must hold the RTNL lock.
6565 bool netdev_has_any_upper_dev(struct net_device *dev)
6569 return !list_empty(&dev->adj_list.upper);
6571 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6574 * netdev_master_upper_dev_get - Get master upper device
6577 * Find a master upper device and return pointer to it or NULL in case
6578 * it's not there. The caller must hold the RTNL lock.
6580 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6582 struct netdev_adjacent *upper;
6586 if (list_empty(&dev->adj_list.upper))
6589 upper = list_first_entry(&dev->adj_list.upper,
6590 struct netdev_adjacent, list);
6591 if (likely(upper->master))
6595 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6598 * netdev_has_any_lower_dev - Check if device is linked to some device
6601 * Find out if a device is linked to a lower device and return true in case
6602 * it is. The caller must hold the RTNL lock.
6604 static bool netdev_has_any_lower_dev(struct net_device *dev)
6608 return !list_empty(&dev->adj_list.lower);
6611 void *netdev_adjacent_get_private(struct list_head *adj_list)
6613 struct netdev_adjacent *adj;
6615 adj = list_entry(adj_list, struct netdev_adjacent, list);
6617 return adj->private;
6619 EXPORT_SYMBOL(netdev_adjacent_get_private);
6622 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6624 * @iter: list_head ** of the current position
6626 * Gets the next device from the dev's upper list, starting from iter
6627 * position. The caller must hold RCU read lock.
6629 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6630 struct list_head **iter)
6632 struct netdev_adjacent *upper;
6634 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6636 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6638 if (&upper->list == &dev->adj_list.upper)
6641 *iter = &upper->list;
6645 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6647 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6648 struct list_head **iter)
6650 struct netdev_adjacent *upper;
6652 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6654 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6656 if (&upper->list == &dev->adj_list.upper)
6659 *iter = &upper->list;
6664 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6665 int (*fn)(struct net_device *dev,
6669 struct net_device *udev;
6670 struct list_head *iter;
6673 for (iter = &dev->adj_list.upper,
6674 udev = netdev_next_upper_dev_rcu(dev, &iter);
6676 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6677 /* first is the upper device itself */
6678 ret = fn(udev, data);
6682 /* then look at all of its upper devices */
6683 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6690 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6693 * netdev_lower_get_next_private - Get the next ->private from the
6694 * lower neighbour list
6696 * @iter: list_head ** of the current position
6698 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6699 * list, starting from iter position. The caller must hold either hold the
6700 * RTNL lock or its own locking that guarantees that the neighbour lower
6701 * list will remain unchanged.
6703 void *netdev_lower_get_next_private(struct net_device *dev,
6704 struct list_head **iter)
6706 struct netdev_adjacent *lower;
6708 lower = list_entry(*iter, struct netdev_adjacent, list);
6710 if (&lower->list == &dev->adj_list.lower)
6713 *iter = lower->list.next;
6715 return lower->private;
6717 EXPORT_SYMBOL(netdev_lower_get_next_private);
6720 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6721 * lower neighbour list, RCU
6724 * @iter: list_head ** of the current position
6726 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6727 * list, starting from iter position. The caller must hold RCU read lock.
6729 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6730 struct list_head **iter)
6732 struct netdev_adjacent *lower;
6734 WARN_ON_ONCE(!rcu_read_lock_held());
6736 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6738 if (&lower->list == &dev->adj_list.lower)
6741 *iter = &lower->list;
6743 return lower->private;
6745 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6748 * netdev_lower_get_next - Get the next device from the lower neighbour
6751 * @iter: list_head ** of the current position
6753 * Gets the next netdev_adjacent from the dev's lower neighbour
6754 * list, starting from iter position. The caller must hold RTNL lock or
6755 * its own locking that guarantees that the neighbour lower
6756 * list will remain unchanged.
6758 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6760 struct netdev_adjacent *lower;
6762 lower = list_entry(*iter, struct netdev_adjacent, list);
6764 if (&lower->list == &dev->adj_list.lower)
6767 *iter = lower->list.next;
6771 EXPORT_SYMBOL(netdev_lower_get_next);
6773 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6774 struct list_head **iter)
6776 struct netdev_adjacent *lower;
6778 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6780 if (&lower->list == &dev->adj_list.lower)
6783 *iter = &lower->list;
6788 int netdev_walk_all_lower_dev(struct net_device *dev,
6789 int (*fn)(struct net_device *dev,
6793 struct net_device *ldev;
6794 struct list_head *iter;
6797 for (iter = &dev->adj_list.lower,
6798 ldev = netdev_next_lower_dev(dev, &iter);
6800 ldev = netdev_next_lower_dev(dev, &iter)) {
6801 /* first is the lower device itself */
6802 ret = fn(ldev, data);
6806 /* then look at all of its lower devices */
6807 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6814 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6816 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6817 struct list_head **iter)
6819 struct netdev_adjacent *lower;
6821 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6822 if (&lower->list == &dev->adj_list.lower)
6825 *iter = &lower->list;
6830 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6831 int (*fn)(struct net_device *dev,
6835 struct net_device *ldev;
6836 struct list_head *iter;
6839 for (iter = &dev->adj_list.lower,
6840 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6842 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6843 /* first is the lower device itself */
6844 ret = fn(ldev, data);
6848 /* then look at all of its lower devices */
6849 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6856 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6859 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6860 * lower neighbour list, RCU
6864 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6865 * list. The caller must hold RCU read lock.
6867 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6869 struct netdev_adjacent *lower;
6871 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6872 struct netdev_adjacent, list);
6874 return lower->private;
6877 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6880 * netdev_master_upper_dev_get_rcu - Get master upper device
6883 * Find a master upper device and return pointer to it or NULL in case
6884 * it's not there. The caller must hold the RCU read lock.
6886 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6888 struct netdev_adjacent *upper;
6890 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6891 struct netdev_adjacent, list);
6892 if (upper && likely(upper->master))
6896 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6898 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6899 struct net_device *adj_dev,
6900 struct list_head *dev_list)
6902 char linkname[IFNAMSIZ+7];
6904 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6905 "upper_%s" : "lower_%s", adj_dev->name);
6906 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6909 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6911 struct list_head *dev_list)
6913 char linkname[IFNAMSIZ+7];
6915 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6916 "upper_%s" : "lower_%s", name);
6917 sysfs_remove_link(&(dev->dev.kobj), linkname);
6920 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6921 struct net_device *adj_dev,
6922 struct list_head *dev_list)
6924 return (dev_list == &dev->adj_list.upper ||
6925 dev_list == &dev->adj_list.lower) &&
6926 net_eq(dev_net(dev), dev_net(adj_dev));
6929 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6930 struct net_device *adj_dev,
6931 struct list_head *dev_list,
6932 void *private, bool master)
6934 struct netdev_adjacent *adj;
6937 adj = __netdev_find_adj(adj_dev, dev_list);
6941 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6942 dev->name, adj_dev->name, adj->ref_nr);
6947 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6952 adj->master = master;
6954 adj->private = private;
6957 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6958 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6960 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6961 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6966 /* Ensure that master link is always the first item in list. */
6968 ret = sysfs_create_link(&(dev->dev.kobj),
6969 &(adj_dev->dev.kobj), "master");
6971 goto remove_symlinks;
6973 list_add_rcu(&adj->list, dev_list);
6975 list_add_tail_rcu(&adj->list, dev_list);
6981 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6982 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6990 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6991 struct net_device *adj_dev,
6993 struct list_head *dev_list)
6995 struct netdev_adjacent *adj;
6997 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6998 dev->name, adj_dev->name, ref_nr);
7000 adj = __netdev_find_adj(adj_dev, dev_list);
7003 pr_err("Adjacency does not exist for device %s from %s\n",
7004 dev->name, adj_dev->name);
7009 if (adj->ref_nr > ref_nr) {
7010 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7011 dev->name, adj_dev->name, ref_nr,
7012 adj->ref_nr - ref_nr);
7013 adj->ref_nr -= ref_nr;
7018 sysfs_remove_link(&(dev->dev.kobj), "master");
7020 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7021 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7023 list_del_rcu(&adj->list);
7024 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7025 adj_dev->name, dev->name, adj_dev->name);
7027 kfree_rcu(adj, rcu);
7030 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7031 struct net_device *upper_dev,
7032 struct list_head *up_list,
7033 struct list_head *down_list,
7034 void *private, bool master)
7038 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7043 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7046 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7053 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7054 struct net_device *upper_dev,
7056 struct list_head *up_list,
7057 struct list_head *down_list)
7059 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7060 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7063 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7064 struct net_device *upper_dev,
7065 void *private, bool master)
7067 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7068 &dev->adj_list.upper,
7069 &upper_dev->adj_list.lower,
7073 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7074 struct net_device *upper_dev)
7076 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7077 &dev->adj_list.upper,
7078 &upper_dev->adj_list.lower);
7081 static int __netdev_upper_dev_link(struct net_device *dev,
7082 struct net_device *upper_dev, bool master,
7083 void *upper_priv, void *upper_info,
7084 struct netlink_ext_ack *extack)
7086 struct netdev_notifier_changeupper_info changeupper_info = {
7091 .upper_dev = upper_dev,
7094 .upper_info = upper_info,
7096 struct net_device *master_dev;
7101 if (dev == upper_dev)
7104 /* To prevent loops, check if dev is not upper device to upper_dev. */
7105 if (netdev_has_upper_dev(upper_dev, dev))
7109 if (netdev_has_upper_dev(dev, upper_dev))
7112 master_dev = netdev_master_upper_dev_get(dev);
7114 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7117 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7118 &changeupper_info.info);
7119 ret = notifier_to_errno(ret);
7123 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7128 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7129 &changeupper_info.info);
7130 ret = notifier_to_errno(ret);
7137 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7143 * netdev_upper_dev_link - Add a link to the upper device
7145 * @upper_dev: new upper device
7146 * @extack: netlink extended ack
7148 * Adds a link to device which is upper to this one. The caller must hold
7149 * the RTNL lock. On a failure a negative errno code is returned.
7150 * On success the reference counts are adjusted and the function
7153 int netdev_upper_dev_link(struct net_device *dev,
7154 struct net_device *upper_dev,
7155 struct netlink_ext_ack *extack)
7157 return __netdev_upper_dev_link(dev, upper_dev, false,
7158 NULL, NULL, extack);
7160 EXPORT_SYMBOL(netdev_upper_dev_link);
7163 * netdev_master_upper_dev_link - Add a master link to the upper device
7165 * @upper_dev: new upper device
7166 * @upper_priv: upper device private
7167 * @upper_info: upper info to be passed down via notifier
7168 * @extack: netlink extended ack
7170 * Adds a link to device which is upper to this one. In this case, only
7171 * one master upper device can be linked, although other non-master devices
7172 * might be linked as well. The caller must hold the RTNL lock.
7173 * On a failure a negative errno code is returned. On success the reference
7174 * counts are adjusted and the function returns zero.
7176 int netdev_master_upper_dev_link(struct net_device *dev,
7177 struct net_device *upper_dev,
7178 void *upper_priv, void *upper_info,
7179 struct netlink_ext_ack *extack)
7181 return __netdev_upper_dev_link(dev, upper_dev, true,
7182 upper_priv, upper_info, extack);
7184 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7187 * netdev_upper_dev_unlink - Removes a link to upper device
7189 * @upper_dev: new upper device
7191 * Removes a link to device which is upper to this one. The caller must hold
7194 void netdev_upper_dev_unlink(struct net_device *dev,
7195 struct net_device *upper_dev)
7197 struct netdev_notifier_changeupper_info changeupper_info = {
7201 .upper_dev = upper_dev,
7207 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7209 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7210 &changeupper_info.info);
7212 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7214 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7215 &changeupper_info.info);
7217 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7220 * netdev_bonding_info_change - Dispatch event about slave change
7222 * @bonding_info: info to dispatch
7224 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7225 * The caller must hold the RTNL lock.
7227 void netdev_bonding_info_change(struct net_device *dev,
7228 struct netdev_bonding_info *bonding_info)
7230 struct netdev_notifier_bonding_info info = {
7234 memcpy(&info.bonding_info, bonding_info,
7235 sizeof(struct netdev_bonding_info));
7236 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7239 EXPORT_SYMBOL(netdev_bonding_info_change);
7241 static void netdev_adjacent_add_links(struct net_device *dev)
7243 struct netdev_adjacent *iter;
7245 struct net *net = dev_net(dev);
7247 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7248 if (!net_eq(net, dev_net(iter->dev)))
7250 netdev_adjacent_sysfs_add(iter->dev, dev,
7251 &iter->dev->adj_list.lower);
7252 netdev_adjacent_sysfs_add(dev, iter->dev,
7253 &dev->adj_list.upper);
7256 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7257 if (!net_eq(net, dev_net(iter->dev)))
7259 netdev_adjacent_sysfs_add(iter->dev, dev,
7260 &iter->dev->adj_list.upper);
7261 netdev_adjacent_sysfs_add(dev, iter->dev,
7262 &dev->adj_list.lower);
7266 static void netdev_adjacent_del_links(struct net_device *dev)
7268 struct netdev_adjacent *iter;
7270 struct net *net = dev_net(dev);
7272 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7273 if (!net_eq(net, dev_net(iter->dev)))
7275 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7276 &iter->dev->adj_list.lower);
7277 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7278 &dev->adj_list.upper);
7281 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7282 if (!net_eq(net, dev_net(iter->dev)))
7284 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7285 &iter->dev->adj_list.upper);
7286 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7287 &dev->adj_list.lower);
7291 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7293 struct netdev_adjacent *iter;
7295 struct net *net = dev_net(dev);
7297 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7298 if (!net_eq(net, dev_net(iter->dev)))
7300 netdev_adjacent_sysfs_del(iter->dev, oldname,
7301 &iter->dev->adj_list.lower);
7302 netdev_adjacent_sysfs_add(iter->dev, dev,
7303 &iter->dev->adj_list.lower);
7306 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7307 if (!net_eq(net, dev_net(iter->dev)))
7309 netdev_adjacent_sysfs_del(iter->dev, oldname,
7310 &iter->dev->adj_list.upper);
7311 netdev_adjacent_sysfs_add(iter->dev, dev,
7312 &iter->dev->adj_list.upper);
7316 void *netdev_lower_dev_get_private(struct net_device *dev,
7317 struct net_device *lower_dev)
7319 struct netdev_adjacent *lower;
7323 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7327 return lower->private;
7329 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7332 int dev_get_nest_level(struct net_device *dev)
7334 struct net_device *lower = NULL;
7335 struct list_head *iter;
7341 netdev_for_each_lower_dev(dev, lower, iter) {
7342 nest = dev_get_nest_level(lower);
7343 if (max_nest < nest)
7347 return max_nest + 1;
7349 EXPORT_SYMBOL(dev_get_nest_level);
7352 * netdev_lower_change - Dispatch event about lower device state change
7353 * @lower_dev: device
7354 * @lower_state_info: state to dispatch
7356 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7357 * The caller must hold the RTNL lock.
7359 void netdev_lower_state_changed(struct net_device *lower_dev,
7360 void *lower_state_info)
7362 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7363 .info.dev = lower_dev,
7367 changelowerstate_info.lower_state_info = lower_state_info;
7368 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7369 &changelowerstate_info.info);
7371 EXPORT_SYMBOL(netdev_lower_state_changed);
7373 static void dev_change_rx_flags(struct net_device *dev, int flags)
7375 const struct net_device_ops *ops = dev->netdev_ops;
7377 if (ops->ndo_change_rx_flags)
7378 ops->ndo_change_rx_flags(dev, flags);
7381 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7383 unsigned int old_flags = dev->flags;
7389 dev->flags |= IFF_PROMISC;
7390 dev->promiscuity += inc;
7391 if (dev->promiscuity == 0) {
7394 * If inc causes overflow, untouch promisc and return error.
7397 dev->flags &= ~IFF_PROMISC;
7399 dev->promiscuity -= inc;
7400 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7405 if (dev->flags != old_flags) {
7406 pr_info("device %s %s promiscuous mode\n",
7408 dev->flags & IFF_PROMISC ? "entered" : "left");
7409 if (audit_enabled) {
7410 current_uid_gid(&uid, &gid);
7411 audit_log(audit_context(), GFP_ATOMIC,
7412 AUDIT_ANOM_PROMISCUOUS,
7413 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7414 dev->name, (dev->flags & IFF_PROMISC),
7415 (old_flags & IFF_PROMISC),
7416 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7417 from_kuid(&init_user_ns, uid),
7418 from_kgid(&init_user_ns, gid),
7419 audit_get_sessionid(current));
7422 dev_change_rx_flags(dev, IFF_PROMISC);
7425 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7430 * dev_set_promiscuity - update promiscuity count on a device
7434 * Add or remove promiscuity from a device. While the count in the device
7435 * remains above zero the interface remains promiscuous. Once it hits zero
7436 * the device reverts back to normal filtering operation. A negative inc
7437 * value is used to drop promiscuity on the device.
7438 * Return 0 if successful or a negative errno code on error.
7440 int dev_set_promiscuity(struct net_device *dev, int inc)
7442 unsigned int old_flags = dev->flags;
7445 err = __dev_set_promiscuity(dev, inc, true);
7448 if (dev->flags != old_flags)
7449 dev_set_rx_mode(dev);
7452 EXPORT_SYMBOL(dev_set_promiscuity);
7454 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7456 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7460 dev->flags |= IFF_ALLMULTI;
7461 dev->allmulti += inc;
7462 if (dev->allmulti == 0) {
7465 * If inc causes overflow, untouch allmulti and return error.
7468 dev->flags &= ~IFF_ALLMULTI;
7470 dev->allmulti -= inc;
7471 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7476 if (dev->flags ^ old_flags) {
7477 dev_change_rx_flags(dev, IFF_ALLMULTI);
7478 dev_set_rx_mode(dev);
7480 __dev_notify_flags(dev, old_flags,
7481 dev->gflags ^ old_gflags);
7487 * dev_set_allmulti - update allmulti count on a device
7491 * Add or remove reception of all multicast frames to a device. While the
7492 * count in the device remains above zero the interface remains listening
7493 * to all interfaces. Once it hits zero the device reverts back to normal
7494 * filtering operation. A negative @inc value is used to drop the counter
7495 * when releasing a resource needing all multicasts.
7496 * Return 0 if successful or a negative errno code on error.
7499 int dev_set_allmulti(struct net_device *dev, int inc)
7501 return __dev_set_allmulti(dev, inc, true);
7503 EXPORT_SYMBOL(dev_set_allmulti);
7506 * Upload unicast and multicast address lists to device and
7507 * configure RX filtering. When the device doesn't support unicast
7508 * filtering it is put in promiscuous mode while unicast addresses
7511 void __dev_set_rx_mode(struct net_device *dev)
7513 const struct net_device_ops *ops = dev->netdev_ops;
7515 /* dev_open will call this function so the list will stay sane. */
7516 if (!(dev->flags&IFF_UP))
7519 if (!netif_device_present(dev))
7522 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7523 /* Unicast addresses changes may only happen under the rtnl,
7524 * therefore calling __dev_set_promiscuity here is safe.
7526 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7527 __dev_set_promiscuity(dev, 1, false);
7528 dev->uc_promisc = true;
7529 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7530 __dev_set_promiscuity(dev, -1, false);
7531 dev->uc_promisc = false;
7535 if (ops->ndo_set_rx_mode)
7536 ops->ndo_set_rx_mode(dev);
7539 void dev_set_rx_mode(struct net_device *dev)
7541 netif_addr_lock_bh(dev);
7542 __dev_set_rx_mode(dev);
7543 netif_addr_unlock_bh(dev);
7547 * dev_get_flags - get flags reported to userspace
7550 * Get the combination of flag bits exported through APIs to userspace.
7552 unsigned int dev_get_flags(const struct net_device *dev)
7556 flags = (dev->flags & ~(IFF_PROMISC |
7561 (dev->gflags & (IFF_PROMISC |
7564 if (netif_running(dev)) {
7565 if (netif_oper_up(dev))
7566 flags |= IFF_RUNNING;
7567 if (netif_carrier_ok(dev))
7568 flags |= IFF_LOWER_UP;
7569 if (netif_dormant(dev))
7570 flags |= IFF_DORMANT;
7575 EXPORT_SYMBOL(dev_get_flags);
7577 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7578 struct netlink_ext_ack *extack)
7580 unsigned int old_flags = dev->flags;
7586 * Set the flags on our device.
7589 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7590 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7592 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7596 * Load in the correct multicast list now the flags have changed.
7599 if ((old_flags ^ flags) & IFF_MULTICAST)
7600 dev_change_rx_flags(dev, IFF_MULTICAST);
7602 dev_set_rx_mode(dev);
7605 * Have we downed the interface. We handle IFF_UP ourselves
7606 * according to user attempts to set it, rather than blindly
7611 if ((old_flags ^ flags) & IFF_UP) {
7612 if (old_flags & IFF_UP)
7615 ret = __dev_open(dev, extack);
7618 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7619 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7620 unsigned int old_flags = dev->flags;
7622 dev->gflags ^= IFF_PROMISC;
7624 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7625 if (dev->flags != old_flags)
7626 dev_set_rx_mode(dev);
7629 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7630 * is important. Some (broken) drivers set IFF_PROMISC, when
7631 * IFF_ALLMULTI is requested not asking us and not reporting.
7633 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7634 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7636 dev->gflags ^= IFF_ALLMULTI;
7637 __dev_set_allmulti(dev, inc, false);
7643 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7644 unsigned int gchanges)
7646 unsigned int changes = dev->flags ^ old_flags;
7649 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7651 if (changes & IFF_UP) {
7652 if (dev->flags & IFF_UP)
7653 call_netdevice_notifiers(NETDEV_UP, dev);
7655 call_netdevice_notifiers(NETDEV_DOWN, dev);
7658 if (dev->flags & IFF_UP &&
7659 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7660 struct netdev_notifier_change_info change_info = {
7664 .flags_changed = changes,
7667 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7672 * dev_change_flags - change device settings
7674 * @flags: device state flags
7675 * @extack: netlink extended ack
7677 * Change settings on device based state flags. The flags are
7678 * in the userspace exported format.
7680 int dev_change_flags(struct net_device *dev, unsigned int flags,
7681 struct netlink_ext_ack *extack)
7684 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7686 ret = __dev_change_flags(dev, flags, extack);
7690 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7691 __dev_notify_flags(dev, old_flags, changes);
7694 EXPORT_SYMBOL(dev_change_flags);
7696 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7698 const struct net_device_ops *ops = dev->netdev_ops;
7700 if (ops->ndo_change_mtu)
7701 return ops->ndo_change_mtu(dev, new_mtu);
7706 EXPORT_SYMBOL(__dev_set_mtu);
7709 * dev_set_mtu_ext - Change maximum transfer unit
7711 * @new_mtu: new transfer unit
7712 * @extack: netlink extended ack
7714 * Change the maximum transfer size of the network device.
7716 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7717 struct netlink_ext_ack *extack)
7721 if (new_mtu == dev->mtu)
7724 /* MTU must be positive, and in range */
7725 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7726 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7730 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7731 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7735 if (!netif_device_present(dev))
7738 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7739 err = notifier_to_errno(err);
7743 orig_mtu = dev->mtu;
7744 err = __dev_set_mtu(dev, new_mtu);
7747 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7749 err = notifier_to_errno(err);
7751 /* setting mtu back and notifying everyone again,
7752 * so that they have a chance to revert changes.
7754 __dev_set_mtu(dev, orig_mtu);
7755 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7762 int dev_set_mtu(struct net_device *dev, int new_mtu)
7764 struct netlink_ext_ack extack;
7767 memset(&extack, 0, sizeof(extack));
7768 err = dev_set_mtu_ext(dev, new_mtu, &extack);
7769 if (err && extack._msg)
7770 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7773 EXPORT_SYMBOL(dev_set_mtu);
7776 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7778 * @new_len: new tx queue length
7780 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7782 unsigned int orig_len = dev->tx_queue_len;
7785 if (new_len != (unsigned int)new_len)
7788 if (new_len != orig_len) {
7789 dev->tx_queue_len = new_len;
7790 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7791 res = notifier_to_errno(res);
7794 res = dev_qdisc_change_tx_queue_len(dev);
7802 netdev_err(dev, "refused to change device tx_queue_len\n");
7803 dev->tx_queue_len = orig_len;
7808 * dev_set_group - Change group this device belongs to
7810 * @new_group: group this device should belong to
7812 void dev_set_group(struct net_device *dev, int new_group)
7814 dev->group = new_group;
7816 EXPORT_SYMBOL(dev_set_group);
7819 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7821 * @addr: new address
7822 * @extack: netlink extended ack
7824 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7825 struct netlink_ext_ack *extack)
7827 struct netdev_notifier_pre_changeaddr_info info = {
7829 .info.extack = extack,
7834 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7835 return notifier_to_errno(rc);
7837 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7840 * dev_set_mac_address - Change Media Access Control Address
7843 * @extack: netlink extended ack
7845 * Change the hardware (MAC) address of the device
7847 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7848 struct netlink_ext_ack *extack)
7850 const struct net_device_ops *ops = dev->netdev_ops;
7853 if (!ops->ndo_set_mac_address)
7855 if (sa->sa_family != dev->type)
7857 if (!netif_device_present(dev))
7859 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7862 err = ops->ndo_set_mac_address(dev, sa);
7865 dev->addr_assign_type = NET_ADDR_SET;
7866 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7867 add_device_randomness(dev->dev_addr, dev->addr_len);
7870 EXPORT_SYMBOL(dev_set_mac_address);
7873 * dev_change_carrier - Change device carrier
7875 * @new_carrier: new value
7877 * Change device carrier
7879 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7881 const struct net_device_ops *ops = dev->netdev_ops;
7883 if (!ops->ndo_change_carrier)
7885 if (!netif_device_present(dev))
7887 return ops->ndo_change_carrier(dev, new_carrier);
7889 EXPORT_SYMBOL(dev_change_carrier);
7892 * dev_get_phys_port_id - Get device physical port ID
7896 * Get device physical port ID
7898 int dev_get_phys_port_id(struct net_device *dev,
7899 struct netdev_phys_item_id *ppid)
7901 const struct net_device_ops *ops = dev->netdev_ops;
7903 if (!ops->ndo_get_phys_port_id)
7905 return ops->ndo_get_phys_port_id(dev, ppid);
7907 EXPORT_SYMBOL(dev_get_phys_port_id);
7910 * dev_get_phys_port_name - Get device physical port name
7913 * @len: limit of bytes to copy to name
7915 * Get device physical port name
7917 int dev_get_phys_port_name(struct net_device *dev,
7918 char *name, size_t len)
7920 const struct net_device_ops *ops = dev->netdev_ops;
7923 if (ops->ndo_get_phys_port_name) {
7924 err = ops->ndo_get_phys_port_name(dev, name, len);
7925 if (err != -EOPNOTSUPP)
7928 return devlink_compat_phys_port_name_get(dev, name, len);
7930 EXPORT_SYMBOL(dev_get_phys_port_name);
7933 * dev_get_port_parent_id - Get the device's port parent identifier
7934 * @dev: network device
7935 * @ppid: pointer to a storage for the port's parent identifier
7936 * @recurse: allow/disallow recursion to lower devices
7938 * Get the devices's port parent identifier
7940 int dev_get_port_parent_id(struct net_device *dev,
7941 struct netdev_phys_item_id *ppid,
7944 const struct net_device_ops *ops = dev->netdev_ops;
7945 struct netdev_phys_item_id first = { };
7946 struct net_device *lower_dev;
7947 struct list_head *iter;
7950 if (ops->ndo_get_port_parent_id) {
7951 err = ops->ndo_get_port_parent_id(dev, ppid);
7952 if (err != -EOPNOTSUPP)
7956 err = devlink_compat_switch_id_get(dev, ppid);
7957 if (!err || err != -EOPNOTSUPP)
7963 netdev_for_each_lower_dev(dev, lower_dev, iter) {
7964 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7969 else if (memcmp(&first, ppid, sizeof(*ppid)))
7975 EXPORT_SYMBOL(dev_get_port_parent_id);
7978 * netdev_port_same_parent_id - Indicate if two network devices have
7979 * the same port parent identifier
7980 * @a: first network device
7981 * @b: second network device
7983 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7985 struct netdev_phys_item_id a_id = { };
7986 struct netdev_phys_item_id b_id = { };
7988 if (dev_get_port_parent_id(a, &a_id, true) ||
7989 dev_get_port_parent_id(b, &b_id, true))
7992 return netdev_phys_item_id_same(&a_id, &b_id);
7994 EXPORT_SYMBOL(netdev_port_same_parent_id);
7997 * dev_change_proto_down - update protocol port state information
7999 * @proto_down: new value
8001 * This info can be used by switch drivers to set the phys state of the
8004 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8006 const struct net_device_ops *ops = dev->netdev_ops;
8008 if (!ops->ndo_change_proto_down)
8010 if (!netif_device_present(dev))
8012 return ops->ndo_change_proto_down(dev, proto_down);
8014 EXPORT_SYMBOL(dev_change_proto_down);
8017 * dev_change_proto_down_generic - generic implementation for
8018 * ndo_change_proto_down that sets carrier according to
8022 * @proto_down: new value
8024 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8027 netif_carrier_off(dev);
8029 netif_carrier_on(dev);
8030 dev->proto_down = proto_down;
8033 EXPORT_SYMBOL(dev_change_proto_down_generic);
8035 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8036 enum bpf_netdev_command cmd)
8038 struct netdev_bpf xdp;
8043 memset(&xdp, 0, sizeof(xdp));
8046 /* Query must always succeed. */
8047 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8052 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8053 struct netlink_ext_ack *extack, u32 flags,
8054 struct bpf_prog *prog)
8056 struct netdev_bpf xdp;
8058 memset(&xdp, 0, sizeof(xdp));
8059 if (flags & XDP_FLAGS_HW_MODE)
8060 xdp.command = XDP_SETUP_PROG_HW;
8062 xdp.command = XDP_SETUP_PROG;
8063 xdp.extack = extack;
8067 return bpf_op(dev, &xdp);
8070 static void dev_xdp_uninstall(struct net_device *dev)
8072 struct netdev_bpf xdp;
8075 /* Remove generic XDP */
8076 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8078 /* Remove from the driver */
8079 ndo_bpf = dev->netdev_ops->ndo_bpf;
8083 memset(&xdp, 0, sizeof(xdp));
8084 xdp.command = XDP_QUERY_PROG;
8085 WARN_ON(ndo_bpf(dev, &xdp));
8087 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8090 /* Remove HW offload */
8091 memset(&xdp, 0, sizeof(xdp));
8092 xdp.command = XDP_QUERY_PROG_HW;
8093 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8094 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8099 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8101 * @extack: netlink extended ack
8102 * @fd: new program fd or negative value to clear
8103 * @flags: xdp-related flags
8105 * Set or clear a bpf program for a device
8107 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8110 const struct net_device_ops *ops = dev->netdev_ops;
8111 enum bpf_netdev_command query;
8112 struct bpf_prog *prog = NULL;
8113 bpf_op_t bpf_op, bpf_chk;
8119 offload = flags & XDP_FLAGS_HW_MODE;
8120 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8122 bpf_op = bpf_chk = ops->ndo_bpf;
8123 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8124 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8127 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8128 bpf_op = generic_xdp_install;
8129 if (bpf_op == bpf_chk)
8130 bpf_chk = generic_xdp_install;
8135 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8136 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8140 prog_id = __dev_xdp_query(dev, bpf_op, query);
8141 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8142 NL_SET_ERR_MSG(extack, "XDP program already attached");
8146 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8147 bpf_op == ops->ndo_bpf);
8149 return PTR_ERR(prog);
8151 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8152 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8157 if (prog->aux->id == prog_id) {
8162 if (!__dev_xdp_query(dev, bpf_op, query))
8166 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8167 if (err < 0 && prog)
8174 * dev_new_index - allocate an ifindex
8175 * @net: the applicable net namespace
8177 * Returns a suitable unique value for a new device interface
8178 * number. The caller must hold the rtnl semaphore or the
8179 * dev_base_lock to be sure it remains unique.
8181 static int dev_new_index(struct net *net)
8183 int ifindex = net->ifindex;
8188 if (!__dev_get_by_index(net, ifindex))
8189 return net->ifindex = ifindex;
8193 /* Delayed registration/unregisteration */
8194 static LIST_HEAD(net_todo_list);
8195 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8197 static void net_set_todo(struct net_device *dev)
8199 list_add_tail(&dev->todo_list, &net_todo_list);
8200 dev_net(dev)->dev_unreg_count++;
8203 static void rollback_registered_many(struct list_head *head)
8205 struct net_device *dev, *tmp;
8206 LIST_HEAD(close_head);
8208 BUG_ON(dev_boot_phase);
8211 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8212 /* Some devices call without registering
8213 * for initialization unwind. Remove those
8214 * devices and proceed with the remaining.
8216 if (dev->reg_state == NETREG_UNINITIALIZED) {
8217 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8221 list_del(&dev->unreg_list);
8224 dev->dismantle = true;
8225 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8228 /* If device is running, close it first. */
8229 list_for_each_entry(dev, head, unreg_list)
8230 list_add_tail(&dev->close_list, &close_head);
8231 dev_close_many(&close_head, true);
8233 list_for_each_entry(dev, head, unreg_list) {
8234 /* And unlink it from device chain. */
8235 unlist_netdevice(dev);
8237 dev->reg_state = NETREG_UNREGISTERING;
8239 flush_all_backlogs();
8243 list_for_each_entry(dev, head, unreg_list) {
8244 struct sk_buff *skb = NULL;
8246 /* Shutdown queueing discipline. */
8249 dev_xdp_uninstall(dev);
8251 /* Notify protocols, that we are about to destroy
8252 * this device. They should clean all the things.
8254 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8256 if (!dev->rtnl_link_ops ||
8257 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8258 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8259 GFP_KERNEL, NULL, 0);
8262 * Flush the unicast and multicast chains
8267 if (dev->netdev_ops->ndo_uninit)
8268 dev->netdev_ops->ndo_uninit(dev);
8271 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8273 /* Notifier chain MUST detach us all upper devices. */
8274 WARN_ON(netdev_has_any_upper_dev(dev));
8275 WARN_ON(netdev_has_any_lower_dev(dev));
8277 /* Remove entries from kobject tree */
8278 netdev_unregister_kobject(dev);
8280 /* Remove XPS queueing entries */
8281 netif_reset_xps_queues_gt(dev, 0);
8287 list_for_each_entry(dev, head, unreg_list)
8291 static void rollback_registered(struct net_device *dev)
8295 list_add(&dev->unreg_list, &single);
8296 rollback_registered_many(&single);
8300 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8301 struct net_device *upper, netdev_features_t features)
8303 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8304 netdev_features_t feature;
8307 for_each_netdev_feature(upper_disables, feature_bit) {
8308 feature = __NETIF_F_BIT(feature_bit);
8309 if (!(upper->wanted_features & feature)
8310 && (features & feature)) {
8311 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8312 &feature, upper->name);
8313 features &= ~feature;
8320 static void netdev_sync_lower_features(struct net_device *upper,
8321 struct net_device *lower, netdev_features_t features)
8323 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8324 netdev_features_t feature;
8327 for_each_netdev_feature(upper_disables, feature_bit) {
8328 feature = __NETIF_F_BIT(feature_bit);
8329 if (!(features & feature) && (lower->features & feature)) {
8330 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8331 &feature, lower->name);
8332 lower->wanted_features &= ~feature;
8333 netdev_update_features(lower);
8335 if (unlikely(lower->features & feature))
8336 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8337 &feature, lower->name);
8342 static netdev_features_t netdev_fix_features(struct net_device *dev,
8343 netdev_features_t features)
8345 /* Fix illegal checksum combinations */
8346 if ((features & NETIF_F_HW_CSUM) &&
8347 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8348 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8349 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8352 /* TSO requires that SG is present as well. */
8353 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8354 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8355 features &= ~NETIF_F_ALL_TSO;
8358 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8359 !(features & NETIF_F_IP_CSUM)) {
8360 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8361 features &= ~NETIF_F_TSO;
8362 features &= ~NETIF_F_TSO_ECN;
8365 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8366 !(features & NETIF_F_IPV6_CSUM)) {
8367 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8368 features &= ~NETIF_F_TSO6;
8371 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8372 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8373 features &= ~NETIF_F_TSO_MANGLEID;
8375 /* TSO ECN requires that TSO is present as well. */
8376 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8377 features &= ~NETIF_F_TSO_ECN;
8379 /* Software GSO depends on SG. */
8380 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8381 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8382 features &= ~NETIF_F_GSO;
8385 /* GSO partial features require GSO partial be set */
8386 if ((features & dev->gso_partial_features) &&
8387 !(features & NETIF_F_GSO_PARTIAL)) {
8389 "Dropping partially supported GSO features since no GSO partial.\n");
8390 features &= ~dev->gso_partial_features;
8393 if (!(features & NETIF_F_RXCSUM)) {
8394 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8395 * successfully merged by hardware must also have the
8396 * checksum verified by hardware. If the user does not
8397 * want to enable RXCSUM, logically, we should disable GRO_HW.
8399 if (features & NETIF_F_GRO_HW) {
8400 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8401 features &= ~NETIF_F_GRO_HW;
8405 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8406 if (features & NETIF_F_RXFCS) {
8407 if (features & NETIF_F_LRO) {
8408 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8409 features &= ~NETIF_F_LRO;
8412 if (features & NETIF_F_GRO_HW) {
8413 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8414 features &= ~NETIF_F_GRO_HW;
8421 int __netdev_update_features(struct net_device *dev)
8423 struct net_device *upper, *lower;
8424 netdev_features_t features;
8425 struct list_head *iter;
8430 features = netdev_get_wanted_features(dev);
8432 if (dev->netdev_ops->ndo_fix_features)
8433 features = dev->netdev_ops->ndo_fix_features(dev, features);
8435 /* driver might be less strict about feature dependencies */
8436 features = netdev_fix_features(dev, features);
8438 /* some features can't be enabled if they're off an an upper device */
8439 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8440 features = netdev_sync_upper_features(dev, upper, features);
8442 if (dev->features == features)
8445 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8446 &dev->features, &features);
8448 if (dev->netdev_ops->ndo_set_features)
8449 err = dev->netdev_ops->ndo_set_features(dev, features);
8453 if (unlikely(err < 0)) {
8455 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8456 err, &features, &dev->features);
8457 /* return non-0 since some features might have changed and
8458 * it's better to fire a spurious notification than miss it
8464 /* some features must be disabled on lower devices when disabled
8465 * on an upper device (think: bonding master or bridge)
8467 netdev_for_each_lower_dev(dev, lower, iter)
8468 netdev_sync_lower_features(dev, lower, features);
8471 netdev_features_t diff = features ^ dev->features;
8473 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8474 /* udp_tunnel_{get,drop}_rx_info both need
8475 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8476 * device, or they won't do anything.
8477 * Thus we need to update dev->features
8478 * *before* calling udp_tunnel_get_rx_info,
8479 * but *after* calling udp_tunnel_drop_rx_info.
8481 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8482 dev->features = features;
8483 udp_tunnel_get_rx_info(dev);
8485 udp_tunnel_drop_rx_info(dev);
8489 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8490 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8491 dev->features = features;
8492 err |= vlan_get_rx_ctag_filter_info(dev);
8494 vlan_drop_rx_ctag_filter_info(dev);
8498 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8499 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8500 dev->features = features;
8501 err |= vlan_get_rx_stag_filter_info(dev);
8503 vlan_drop_rx_stag_filter_info(dev);
8507 dev->features = features;
8510 return err < 0 ? 0 : 1;
8514 * netdev_update_features - recalculate device features
8515 * @dev: the device to check
8517 * Recalculate dev->features set and send notifications if it
8518 * has changed. Should be called after driver or hardware dependent
8519 * conditions might have changed that influence the features.
8521 void netdev_update_features(struct net_device *dev)
8523 if (__netdev_update_features(dev))
8524 netdev_features_change(dev);
8526 EXPORT_SYMBOL(netdev_update_features);
8529 * netdev_change_features - recalculate device features
8530 * @dev: the device to check
8532 * Recalculate dev->features set and send notifications even
8533 * if they have not changed. Should be called instead of
8534 * netdev_update_features() if also dev->vlan_features might
8535 * have changed to allow the changes to be propagated to stacked
8538 void netdev_change_features(struct net_device *dev)
8540 __netdev_update_features(dev);
8541 netdev_features_change(dev);
8543 EXPORT_SYMBOL(netdev_change_features);
8546 * netif_stacked_transfer_operstate - transfer operstate
8547 * @rootdev: the root or lower level device to transfer state from
8548 * @dev: the device to transfer operstate to
8550 * Transfer operational state from root to device. This is normally
8551 * called when a stacking relationship exists between the root
8552 * device and the device(a leaf device).
8554 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8555 struct net_device *dev)
8557 if (rootdev->operstate == IF_OPER_DORMANT)
8558 netif_dormant_on(dev);
8560 netif_dormant_off(dev);
8562 if (netif_carrier_ok(rootdev))
8563 netif_carrier_on(dev);
8565 netif_carrier_off(dev);
8567 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8569 static int netif_alloc_rx_queues(struct net_device *dev)
8571 unsigned int i, count = dev->num_rx_queues;
8572 struct netdev_rx_queue *rx;
8573 size_t sz = count * sizeof(*rx);
8578 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8584 for (i = 0; i < count; i++) {
8587 /* XDP RX-queue setup */
8588 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8595 /* Rollback successful reg's and free other resources */
8597 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8603 static void netif_free_rx_queues(struct net_device *dev)
8605 unsigned int i, count = dev->num_rx_queues;
8607 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8611 for (i = 0; i < count; i++)
8612 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8617 static void netdev_init_one_queue(struct net_device *dev,
8618 struct netdev_queue *queue, void *_unused)
8620 /* Initialize queue lock */
8621 spin_lock_init(&queue->_xmit_lock);
8622 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8623 queue->xmit_lock_owner = -1;
8624 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8627 dql_init(&queue->dql, HZ);
8631 static void netif_free_tx_queues(struct net_device *dev)
8636 static int netif_alloc_netdev_queues(struct net_device *dev)
8638 unsigned int count = dev->num_tx_queues;
8639 struct netdev_queue *tx;
8640 size_t sz = count * sizeof(*tx);
8642 if (count < 1 || count > 0xffff)
8645 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8651 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8652 spin_lock_init(&dev->tx_global_lock);
8657 void netif_tx_stop_all_queues(struct net_device *dev)
8661 for (i = 0; i < dev->num_tx_queues; i++) {
8662 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8664 netif_tx_stop_queue(txq);
8667 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8670 * register_netdevice - register a network device
8671 * @dev: device to register
8673 * Take a completed network device structure and add it to the kernel
8674 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8675 * chain. 0 is returned on success. A negative errno code is returned
8676 * on a failure to set up the device, or if the name is a duplicate.
8678 * Callers must hold the rtnl semaphore. You may want
8679 * register_netdev() instead of this.
8682 * The locking appears insufficient to guarantee two parallel registers
8683 * will not get the same name.
8686 int register_netdevice(struct net_device *dev)
8689 struct net *net = dev_net(dev);
8691 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8692 NETDEV_FEATURE_COUNT);
8693 BUG_ON(dev_boot_phase);
8698 /* When net_device's are persistent, this will be fatal. */
8699 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8702 spin_lock_init(&dev->addr_list_lock);
8703 netdev_set_addr_lockdep_class(dev);
8705 ret = dev_get_valid_name(net, dev, dev->name);
8709 /* Init, if this function is available */
8710 if (dev->netdev_ops->ndo_init) {
8711 ret = dev->netdev_ops->ndo_init(dev);
8719 if (((dev->hw_features | dev->features) &
8720 NETIF_F_HW_VLAN_CTAG_FILTER) &&
8721 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8722 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8723 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8730 dev->ifindex = dev_new_index(net);
8731 else if (__dev_get_by_index(net, dev->ifindex))
8734 /* Transfer changeable features to wanted_features and enable
8735 * software offloads (GSO and GRO).
8737 dev->hw_features |= NETIF_F_SOFT_FEATURES;
8738 dev->features |= NETIF_F_SOFT_FEATURES;
8740 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8741 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8742 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8745 dev->wanted_features = dev->features & dev->hw_features;
8747 if (!(dev->flags & IFF_LOOPBACK))
8748 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8750 /* If IPv4 TCP segmentation offload is supported we should also
8751 * allow the device to enable segmenting the frame with the option
8752 * of ignoring a static IP ID value. This doesn't enable the
8753 * feature itself but allows the user to enable it later.
8755 if (dev->hw_features & NETIF_F_TSO)
8756 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8757 if (dev->vlan_features & NETIF_F_TSO)
8758 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8759 if (dev->mpls_features & NETIF_F_TSO)
8760 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8761 if (dev->hw_enc_features & NETIF_F_TSO)
8762 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8764 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8766 dev->vlan_features |= NETIF_F_HIGHDMA;
8768 /* Make NETIF_F_SG inheritable to tunnel devices.
8770 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8772 /* Make NETIF_F_SG inheritable to MPLS.
8774 dev->mpls_features |= NETIF_F_SG;
8776 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8777 ret = notifier_to_errno(ret);
8781 ret = netdev_register_kobject(dev);
8784 dev->reg_state = NETREG_REGISTERED;
8786 __netdev_update_features(dev);
8789 * Default initial state at registry is that the
8790 * device is present.
8793 set_bit(__LINK_STATE_PRESENT, &dev->state);
8795 linkwatch_init_dev(dev);
8797 dev_init_scheduler(dev);
8799 list_netdevice(dev);
8800 add_device_randomness(dev->dev_addr, dev->addr_len);
8802 /* If the device has permanent device address, driver should
8803 * set dev_addr and also addr_assign_type should be set to
8804 * NET_ADDR_PERM (default value).
8806 if (dev->addr_assign_type == NET_ADDR_PERM)
8807 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8809 /* Notify protocols, that a new device appeared. */
8810 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8811 ret = notifier_to_errno(ret);
8813 rollback_registered(dev);
8816 dev->reg_state = NETREG_UNREGISTERED;
8819 * Prevent userspace races by waiting until the network
8820 * device is fully setup before sending notifications.
8822 if (!dev->rtnl_link_ops ||
8823 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8824 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8830 if (dev->netdev_ops->ndo_uninit)
8831 dev->netdev_ops->ndo_uninit(dev);
8832 if (dev->priv_destructor)
8833 dev->priv_destructor(dev);
8836 EXPORT_SYMBOL(register_netdevice);
8839 * init_dummy_netdev - init a dummy network device for NAPI
8840 * @dev: device to init
8842 * This takes a network device structure and initialize the minimum
8843 * amount of fields so it can be used to schedule NAPI polls without
8844 * registering a full blown interface. This is to be used by drivers
8845 * that need to tie several hardware interfaces to a single NAPI
8846 * poll scheduler due to HW limitations.
8848 int init_dummy_netdev(struct net_device *dev)
8850 /* Clear everything. Note we don't initialize spinlocks
8851 * are they aren't supposed to be taken by any of the
8852 * NAPI code and this dummy netdev is supposed to be
8853 * only ever used for NAPI polls
8855 memset(dev, 0, sizeof(struct net_device));
8857 /* make sure we BUG if trying to hit standard
8858 * register/unregister code path
8860 dev->reg_state = NETREG_DUMMY;
8862 /* NAPI wants this */
8863 INIT_LIST_HEAD(&dev->napi_list);
8865 /* a dummy interface is started by default */
8866 set_bit(__LINK_STATE_PRESENT, &dev->state);
8867 set_bit(__LINK_STATE_START, &dev->state);
8869 /* napi_busy_loop stats accounting wants this */
8870 dev_net_set(dev, &init_net);
8872 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8873 * because users of this 'device' dont need to change
8879 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8883 * register_netdev - register a network device
8884 * @dev: device to register
8886 * Take a completed network device structure and add it to the kernel
8887 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8888 * chain. 0 is returned on success. A negative errno code is returned
8889 * on a failure to set up the device, or if the name is a duplicate.
8891 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8892 * and expands the device name if you passed a format string to
8895 int register_netdev(struct net_device *dev)
8899 if (rtnl_lock_killable())
8901 err = register_netdevice(dev);
8905 EXPORT_SYMBOL(register_netdev);
8907 int netdev_refcnt_read(const struct net_device *dev)
8911 for_each_possible_cpu(i)
8912 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8915 EXPORT_SYMBOL(netdev_refcnt_read);
8918 * netdev_wait_allrefs - wait until all references are gone.
8919 * @dev: target net_device
8921 * This is called when unregistering network devices.
8923 * Any protocol or device that holds a reference should register
8924 * for netdevice notification, and cleanup and put back the
8925 * reference if they receive an UNREGISTER event.
8926 * We can get stuck here if buggy protocols don't correctly
8929 static void netdev_wait_allrefs(struct net_device *dev)
8931 unsigned long rebroadcast_time, warning_time;
8934 linkwatch_forget_dev(dev);
8936 rebroadcast_time = warning_time = jiffies;
8937 refcnt = netdev_refcnt_read(dev);
8939 while (refcnt != 0) {
8940 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8943 /* Rebroadcast unregister notification */
8944 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8950 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8952 /* We must not have linkwatch events
8953 * pending on unregister. If this
8954 * happens, we simply run the queue
8955 * unscheduled, resulting in a noop
8958 linkwatch_run_queue();
8963 rebroadcast_time = jiffies;
8968 refcnt = netdev_refcnt_read(dev);
8970 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8971 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8973 warning_time = jiffies;
8982 * register_netdevice(x1);
8983 * register_netdevice(x2);
8985 * unregister_netdevice(y1);
8986 * unregister_netdevice(y2);
8992 * We are invoked by rtnl_unlock().
8993 * This allows us to deal with problems:
8994 * 1) We can delete sysfs objects which invoke hotplug
8995 * without deadlocking with linkwatch via keventd.
8996 * 2) Since we run with the RTNL semaphore not held, we can sleep
8997 * safely in order to wait for the netdev refcnt to drop to zero.
8999 * We must not return until all unregister events added during
9000 * the interval the lock was held have been completed.
9002 void netdev_run_todo(void)
9004 struct list_head list;
9006 /* Snapshot list, allow later requests */
9007 list_replace_init(&net_todo_list, &list);
9012 /* Wait for rcu callbacks to finish before next phase */
9013 if (!list_empty(&list))
9016 while (!list_empty(&list)) {
9017 struct net_device *dev
9018 = list_first_entry(&list, struct net_device, todo_list);
9019 list_del(&dev->todo_list);
9021 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9022 pr_err("network todo '%s' but state %d\n",
9023 dev->name, dev->reg_state);
9028 dev->reg_state = NETREG_UNREGISTERED;
9030 netdev_wait_allrefs(dev);
9033 BUG_ON(netdev_refcnt_read(dev));
9034 BUG_ON(!list_empty(&dev->ptype_all));
9035 BUG_ON(!list_empty(&dev->ptype_specific));
9036 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9037 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9038 #if IS_ENABLED(CONFIG_DECNET)
9039 WARN_ON(dev->dn_ptr);
9041 if (dev->priv_destructor)
9042 dev->priv_destructor(dev);
9043 if (dev->needs_free_netdev)
9046 /* Report a network device has been unregistered */
9048 dev_net(dev)->dev_unreg_count--;
9050 wake_up(&netdev_unregistering_wq);
9052 /* Free network device */
9053 kobject_put(&dev->dev.kobj);
9057 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9058 * all the same fields in the same order as net_device_stats, with only
9059 * the type differing, but rtnl_link_stats64 may have additional fields
9060 * at the end for newer counters.
9062 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9063 const struct net_device_stats *netdev_stats)
9065 #if BITS_PER_LONG == 64
9066 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9067 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9068 /* zero out counters that only exist in rtnl_link_stats64 */
9069 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9070 sizeof(*stats64) - sizeof(*netdev_stats));
9072 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9073 const unsigned long *src = (const unsigned long *)netdev_stats;
9074 u64 *dst = (u64 *)stats64;
9076 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9077 for (i = 0; i < n; i++)
9079 /* zero out counters that only exist in rtnl_link_stats64 */
9080 memset((char *)stats64 + n * sizeof(u64), 0,
9081 sizeof(*stats64) - n * sizeof(u64));
9084 EXPORT_SYMBOL(netdev_stats_to_stats64);
9087 * dev_get_stats - get network device statistics
9088 * @dev: device to get statistics from
9089 * @storage: place to store stats
9091 * Get network statistics from device. Return @storage.
9092 * The device driver may provide its own method by setting
9093 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9094 * otherwise the internal statistics structure is used.
9096 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9097 struct rtnl_link_stats64 *storage)
9099 const struct net_device_ops *ops = dev->netdev_ops;
9101 if (ops->ndo_get_stats64) {
9102 memset(storage, 0, sizeof(*storage));
9103 ops->ndo_get_stats64(dev, storage);
9104 } else if (ops->ndo_get_stats) {
9105 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9107 netdev_stats_to_stats64(storage, &dev->stats);
9109 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9110 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9111 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9114 EXPORT_SYMBOL(dev_get_stats);
9116 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9118 struct netdev_queue *queue = dev_ingress_queue(dev);
9120 #ifdef CONFIG_NET_CLS_ACT
9123 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9126 netdev_init_one_queue(dev, queue, NULL);
9127 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9128 queue->qdisc_sleeping = &noop_qdisc;
9129 rcu_assign_pointer(dev->ingress_queue, queue);
9134 static const struct ethtool_ops default_ethtool_ops;
9136 void netdev_set_default_ethtool_ops(struct net_device *dev,
9137 const struct ethtool_ops *ops)
9139 if (dev->ethtool_ops == &default_ethtool_ops)
9140 dev->ethtool_ops = ops;
9142 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9144 void netdev_freemem(struct net_device *dev)
9146 char *addr = (char *)dev - dev->padded;
9152 * alloc_netdev_mqs - allocate network device
9153 * @sizeof_priv: size of private data to allocate space for
9154 * @name: device name format string
9155 * @name_assign_type: origin of device name
9156 * @setup: callback to initialize device
9157 * @txqs: the number of TX subqueues to allocate
9158 * @rxqs: the number of RX subqueues to allocate
9160 * Allocates a struct net_device with private data area for driver use
9161 * and performs basic initialization. Also allocates subqueue structs
9162 * for each queue on the device.
9164 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9165 unsigned char name_assign_type,
9166 void (*setup)(struct net_device *),
9167 unsigned int txqs, unsigned int rxqs)
9169 struct net_device *dev;
9170 unsigned int alloc_size;
9171 struct net_device *p;
9173 BUG_ON(strlen(name) >= sizeof(dev->name));
9176 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9181 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9185 alloc_size = sizeof(struct net_device);
9187 /* ensure 32-byte alignment of private area */
9188 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9189 alloc_size += sizeof_priv;
9191 /* ensure 32-byte alignment of whole construct */
9192 alloc_size += NETDEV_ALIGN - 1;
9194 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9198 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9199 dev->padded = (char *)dev - (char *)p;
9201 dev->pcpu_refcnt = alloc_percpu(int);
9202 if (!dev->pcpu_refcnt)
9205 if (dev_addr_init(dev))
9211 dev_net_set(dev, &init_net);
9213 dev->gso_max_size = GSO_MAX_SIZE;
9214 dev->gso_max_segs = GSO_MAX_SEGS;
9216 INIT_LIST_HEAD(&dev->napi_list);
9217 INIT_LIST_HEAD(&dev->unreg_list);
9218 INIT_LIST_HEAD(&dev->close_list);
9219 INIT_LIST_HEAD(&dev->link_watch_list);
9220 INIT_LIST_HEAD(&dev->adj_list.upper);
9221 INIT_LIST_HEAD(&dev->adj_list.lower);
9222 INIT_LIST_HEAD(&dev->ptype_all);
9223 INIT_LIST_HEAD(&dev->ptype_specific);
9224 #ifdef CONFIG_NET_SCHED
9225 hash_init(dev->qdisc_hash);
9227 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9230 if (!dev->tx_queue_len) {
9231 dev->priv_flags |= IFF_NO_QUEUE;
9232 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9235 dev->num_tx_queues = txqs;
9236 dev->real_num_tx_queues = txqs;
9237 if (netif_alloc_netdev_queues(dev))
9240 dev->num_rx_queues = rxqs;
9241 dev->real_num_rx_queues = rxqs;
9242 if (netif_alloc_rx_queues(dev))
9245 strcpy(dev->name, name);
9246 dev->name_assign_type = name_assign_type;
9247 dev->group = INIT_NETDEV_GROUP;
9248 if (!dev->ethtool_ops)
9249 dev->ethtool_ops = &default_ethtool_ops;
9251 nf_hook_ingress_init(dev);
9260 free_percpu(dev->pcpu_refcnt);
9262 netdev_freemem(dev);
9265 EXPORT_SYMBOL(alloc_netdev_mqs);
9268 * free_netdev - free network device
9271 * This function does the last stage of destroying an allocated device
9272 * interface. The reference to the device object is released. If this
9273 * is the last reference then it will be freed.Must be called in process
9276 void free_netdev(struct net_device *dev)
9278 struct napi_struct *p, *n;
9281 netif_free_tx_queues(dev);
9282 netif_free_rx_queues(dev);
9284 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9286 /* Flush device addresses */
9287 dev_addr_flush(dev);
9289 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9292 free_percpu(dev->pcpu_refcnt);
9293 dev->pcpu_refcnt = NULL;
9295 /* Compatibility with error handling in drivers */
9296 if (dev->reg_state == NETREG_UNINITIALIZED) {
9297 netdev_freemem(dev);
9301 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9302 dev->reg_state = NETREG_RELEASED;
9304 /* will free via device release */
9305 put_device(&dev->dev);
9307 EXPORT_SYMBOL(free_netdev);
9310 * synchronize_net - Synchronize with packet receive processing
9312 * Wait for packets currently being received to be done.
9313 * Does not block later packets from starting.
9315 void synchronize_net(void)
9318 if (rtnl_is_locked())
9319 synchronize_rcu_expedited();
9323 EXPORT_SYMBOL(synchronize_net);
9326 * unregister_netdevice_queue - remove device from the kernel
9330 * This function shuts down a device interface and removes it
9331 * from the kernel tables.
9332 * If head not NULL, device is queued to be unregistered later.
9334 * Callers must hold the rtnl semaphore. You may want
9335 * unregister_netdev() instead of this.
9338 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9343 list_move_tail(&dev->unreg_list, head);
9345 rollback_registered(dev);
9346 /* Finish processing unregister after unlock */
9350 EXPORT_SYMBOL(unregister_netdevice_queue);
9353 * unregister_netdevice_many - unregister many devices
9354 * @head: list of devices
9356 * Note: As most callers use a stack allocated list_head,
9357 * we force a list_del() to make sure stack wont be corrupted later.
9359 void unregister_netdevice_many(struct list_head *head)
9361 struct net_device *dev;
9363 if (!list_empty(head)) {
9364 rollback_registered_many(head);
9365 list_for_each_entry(dev, head, unreg_list)
9370 EXPORT_SYMBOL(unregister_netdevice_many);
9373 * unregister_netdev - remove device from the kernel
9376 * This function shuts down a device interface and removes it
9377 * from the kernel tables.
9379 * This is just a wrapper for unregister_netdevice that takes
9380 * the rtnl semaphore. In general you want to use this and not
9381 * unregister_netdevice.
9383 void unregister_netdev(struct net_device *dev)
9386 unregister_netdevice(dev);
9389 EXPORT_SYMBOL(unregister_netdev);
9392 * dev_change_net_namespace - move device to different nethost namespace
9394 * @net: network namespace
9395 * @pat: If not NULL name pattern to try if the current device name
9396 * is already taken in the destination network namespace.
9398 * This function shuts down a device interface and moves it
9399 * to a new network namespace. On success 0 is returned, on
9400 * a failure a netagive errno code is returned.
9402 * Callers must hold the rtnl semaphore.
9405 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9407 int err, new_nsid, new_ifindex;
9411 /* Don't allow namespace local devices to be moved. */
9413 if (dev->features & NETIF_F_NETNS_LOCAL)
9416 /* Ensure the device has been registrered */
9417 if (dev->reg_state != NETREG_REGISTERED)
9420 /* Get out if there is nothing todo */
9422 if (net_eq(dev_net(dev), net))
9425 /* Pick the destination device name, and ensure
9426 * we can use it in the destination network namespace.
9429 if (__dev_get_by_name(net, dev->name)) {
9430 /* We get here if we can't use the current device name */
9433 err = dev_get_valid_name(net, dev, pat);
9439 * And now a mini version of register_netdevice unregister_netdevice.
9442 /* If device is running close it first. */
9445 /* And unlink it from device chain */
9446 unlist_netdevice(dev);
9450 /* Shutdown queueing discipline. */
9453 /* Notify protocols, that we are about to destroy
9454 * this device. They should clean all the things.
9456 * Note that dev->reg_state stays at NETREG_REGISTERED.
9457 * This is wanted because this way 8021q and macvlan know
9458 * the device is just moving and can keep their slaves up.
9460 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9463 new_nsid = peernet2id_alloc(dev_net(dev), net);
9464 /* If there is an ifindex conflict assign a new one */
9465 if (__dev_get_by_index(net, dev->ifindex))
9466 new_ifindex = dev_new_index(net);
9468 new_ifindex = dev->ifindex;
9470 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9474 * Flush the unicast and multicast chains
9479 /* Send a netdev-removed uevent to the old namespace */
9480 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9481 netdev_adjacent_del_links(dev);
9483 /* Actually switch the network namespace */
9484 dev_net_set(dev, net);
9485 dev->ifindex = new_ifindex;
9487 /* Send a netdev-add uevent to the new namespace */
9488 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9489 netdev_adjacent_add_links(dev);
9491 /* Fixup kobjects */
9492 err = device_rename(&dev->dev, dev->name);
9495 /* Add the device back in the hashes */
9496 list_netdevice(dev);
9498 /* Notify protocols, that a new device appeared. */
9499 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9502 * Prevent userspace races by waiting until the network
9503 * device is fully setup before sending notifications.
9505 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9512 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9514 static int dev_cpu_dead(unsigned int oldcpu)
9516 struct sk_buff **list_skb;
9517 struct sk_buff *skb;
9519 struct softnet_data *sd, *oldsd, *remsd = NULL;
9521 local_irq_disable();
9522 cpu = smp_processor_id();
9523 sd = &per_cpu(softnet_data, cpu);
9524 oldsd = &per_cpu(softnet_data, oldcpu);
9526 /* Find end of our completion_queue. */
9527 list_skb = &sd->completion_queue;
9529 list_skb = &(*list_skb)->next;
9530 /* Append completion queue from offline CPU. */
9531 *list_skb = oldsd->completion_queue;
9532 oldsd->completion_queue = NULL;
9534 /* Append output queue from offline CPU. */
9535 if (oldsd->output_queue) {
9536 *sd->output_queue_tailp = oldsd->output_queue;
9537 sd->output_queue_tailp = oldsd->output_queue_tailp;
9538 oldsd->output_queue = NULL;
9539 oldsd->output_queue_tailp = &oldsd->output_queue;
9541 /* Append NAPI poll list from offline CPU, with one exception :
9542 * process_backlog() must be called by cpu owning percpu backlog.
9543 * We properly handle process_queue & input_pkt_queue later.
9545 while (!list_empty(&oldsd->poll_list)) {
9546 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9550 list_del_init(&napi->poll_list);
9551 if (napi->poll == process_backlog)
9554 ____napi_schedule(sd, napi);
9557 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9561 remsd = oldsd->rps_ipi_list;
9562 oldsd->rps_ipi_list = NULL;
9564 /* send out pending IPI's on offline CPU */
9565 net_rps_send_ipi(remsd);
9567 /* Process offline CPU's input_pkt_queue */
9568 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9570 input_queue_head_incr(oldsd);
9572 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9574 input_queue_head_incr(oldsd);
9581 * netdev_increment_features - increment feature set by one
9582 * @all: current feature set
9583 * @one: new feature set
9584 * @mask: mask feature set
9586 * Computes a new feature set after adding a device with feature set
9587 * @one to the master device with current feature set @all. Will not
9588 * enable anything that is off in @mask. Returns the new feature set.
9590 netdev_features_t netdev_increment_features(netdev_features_t all,
9591 netdev_features_t one, netdev_features_t mask)
9593 if (mask & NETIF_F_HW_CSUM)
9594 mask |= NETIF_F_CSUM_MASK;
9595 mask |= NETIF_F_VLAN_CHALLENGED;
9597 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9598 all &= one | ~NETIF_F_ALL_FOR_ALL;
9600 /* If one device supports hw checksumming, set for all. */
9601 if (all & NETIF_F_HW_CSUM)
9602 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9606 EXPORT_SYMBOL(netdev_increment_features);
9608 static struct hlist_head * __net_init netdev_create_hash(void)
9611 struct hlist_head *hash;
9613 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9615 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9616 INIT_HLIST_HEAD(&hash[i]);
9621 /* Initialize per network namespace state */
9622 static int __net_init netdev_init(struct net *net)
9624 BUILD_BUG_ON(GRO_HASH_BUCKETS >
9625 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9627 if (net != &init_net)
9628 INIT_LIST_HEAD(&net->dev_base_head);
9630 net->dev_name_head = netdev_create_hash();
9631 if (net->dev_name_head == NULL)
9634 net->dev_index_head = netdev_create_hash();
9635 if (net->dev_index_head == NULL)
9641 kfree(net->dev_name_head);
9647 * netdev_drivername - network driver for the device
9648 * @dev: network device
9650 * Determine network driver for device.
9652 const char *netdev_drivername(const struct net_device *dev)
9654 const struct device_driver *driver;
9655 const struct device *parent;
9656 const char *empty = "";
9658 parent = dev->dev.parent;
9662 driver = parent->driver;
9663 if (driver && driver->name)
9664 return driver->name;
9668 static void __netdev_printk(const char *level, const struct net_device *dev,
9669 struct va_format *vaf)
9671 if (dev && dev->dev.parent) {
9672 dev_printk_emit(level[1] - '0',
9675 dev_driver_string(dev->dev.parent),
9676 dev_name(dev->dev.parent),
9677 netdev_name(dev), netdev_reg_state(dev),
9680 printk("%s%s%s: %pV",
9681 level, netdev_name(dev), netdev_reg_state(dev), vaf);
9683 printk("%s(NULL net_device): %pV", level, vaf);
9687 void netdev_printk(const char *level, const struct net_device *dev,
9688 const char *format, ...)
9690 struct va_format vaf;
9693 va_start(args, format);
9698 __netdev_printk(level, dev, &vaf);
9702 EXPORT_SYMBOL(netdev_printk);
9704 #define define_netdev_printk_level(func, level) \
9705 void func(const struct net_device *dev, const char *fmt, ...) \
9707 struct va_format vaf; \
9710 va_start(args, fmt); \
9715 __netdev_printk(level, dev, &vaf); \
9719 EXPORT_SYMBOL(func);
9721 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9722 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9723 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9724 define_netdev_printk_level(netdev_err, KERN_ERR);
9725 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9726 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9727 define_netdev_printk_level(netdev_info, KERN_INFO);
9729 static void __net_exit netdev_exit(struct net *net)
9731 kfree(net->dev_name_head);
9732 kfree(net->dev_index_head);
9733 if (net != &init_net)
9734 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9737 static struct pernet_operations __net_initdata netdev_net_ops = {
9738 .init = netdev_init,
9739 .exit = netdev_exit,
9742 static void __net_exit default_device_exit(struct net *net)
9744 struct net_device *dev, *aux;
9746 * Push all migratable network devices back to the
9747 * initial network namespace
9750 for_each_netdev_safe(net, dev, aux) {
9752 char fb_name[IFNAMSIZ];
9754 /* Ignore unmoveable devices (i.e. loopback) */
9755 if (dev->features & NETIF_F_NETNS_LOCAL)
9758 /* Leave virtual devices for the generic cleanup */
9759 if (dev->rtnl_link_ops)
9762 /* Push remaining network devices to init_net */
9763 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9764 if (__dev_get_by_name(&init_net, fb_name))
9765 snprintf(fb_name, IFNAMSIZ, "dev%%d");
9766 err = dev_change_net_namespace(dev, &init_net, fb_name);
9768 pr_emerg("%s: failed to move %s to init_net: %d\n",
9769 __func__, dev->name, err);
9776 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9778 /* Return with the rtnl_lock held when there are no network
9779 * devices unregistering in any network namespace in net_list.
9783 DEFINE_WAIT_FUNC(wait, woken_wake_function);
9785 add_wait_queue(&netdev_unregistering_wq, &wait);
9787 unregistering = false;
9789 list_for_each_entry(net, net_list, exit_list) {
9790 if (net->dev_unreg_count > 0) {
9791 unregistering = true;
9799 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9801 remove_wait_queue(&netdev_unregistering_wq, &wait);
9804 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9806 /* At exit all network devices most be removed from a network
9807 * namespace. Do this in the reverse order of registration.
9808 * Do this across as many network namespaces as possible to
9809 * improve batching efficiency.
9811 struct net_device *dev;
9813 LIST_HEAD(dev_kill_list);
9815 /* To prevent network device cleanup code from dereferencing
9816 * loopback devices or network devices that have been freed
9817 * wait here for all pending unregistrations to complete,
9818 * before unregistring the loopback device and allowing the
9819 * network namespace be freed.
9821 * The netdev todo list containing all network devices
9822 * unregistrations that happen in default_device_exit_batch
9823 * will run in the rtnl_unlock() at the end of
9824 * default_device_exit_batch.
9826 rtnl_lock_unregistering(net_list);
9827 list_for_each_entry(net, net_list, exit_list) {
9828 for_each_netdev_reverse(net, dev) {
9829 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9830 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9832 unregister_netdevice_queue(dev, &dev_kill_list);
9835 unregister_netdevice_many(&dev_kill_list);
9839 static struct pernet_operations __net_initdata default_device_ops = {
9840 .exit = default_device_exit,
9841 .exit_batch = default_device_exit_batch,
9845 * Initialize the DEV module. At boot time this walks the device list and
9846 * unhooks any devices that fail to initialise (normally hardware not
9847 * present) and leaves us with a valid list of present and active devices.
9852 * This is called single threaded during boot, so no need
9853 * to take the rtnl semaphore.
9855 static int __init net_dev_init(void)
9857 int i, rc = -ENOMEM;
9859 BUG_ON(!dev_boot_phase);
9861 if (dev_proc_init())
9864 if (netdev_kobject_init())
9867 INIT_LIST_HEAD(&ptype_all);
9868 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9869 INIT_LIST_HEAD(&ptype_base[i]);
9871 INIT_LIST_HEAD(&offload_base);
9873 if (register_pernet_subsys(&netdev_net_ops))
9877 * Initialise the packet receive queues.
9880 for_each_possible_cpu(i) {
9881 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9882 struct softnet_data *sd = &per_cpu(softnet_data, i);
9884 INIT_WORK(flush, flush_backlog);
9886 skb_queue_head_init(&sd->input_pkt_queue);
9887 skb_queue_head_init(&sd->process_queue);
9888 #ifdef CONFIG_XFRM_OFFLOAD
9889 skb_queue_head_init(&sd->xfrm_backlog);
9891 INIT_LIST_HEAD(&sd->poll_list);
9892 sd->output_queue_tailp = &sd->output_queue;
9894 sd->csd.func = rps_trigger_softirq;
9899 init_gro_hash(&sd->backlog);
9900 sd->backlog.poll = process_backlog;
9901 sd->backlog.weight = weight_p;
9906 /* The loopback device is special if any other network devices
9907 * is present in a network namespace the loopback device must
9908 * be present. Since we now dynamically allocate and free the
9909 * loopback device ensure this invariant is maintained by
9910 * keeping the loopback device as the first device on the
9911 * list of network devices. Ensuring the loopback devices
9912 * is the first device that appears and the last network device
9915 if (register_pernet_device(&loopback_net_ops))
9918 if (register_pernet_device(&default_device_ops))
9921 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9922 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9924 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9925 NULL, dev_cpu_dead);
9932 subsys_initcall(net_dev_init);