2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/rculist.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/rbtree.h>
21 #define DM_MSG_PREFIX "thin"
26 #define ENDIO_HOOK_POOL_SIZE 1024
27 #define MAPPING_POOL_SIZE 1024
28 #define PRISON_CELLS 1024
29 #define COMMIT_PERIOD HZ
31 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
32 "A percentage of time allocated for copy on write");
35 * The block size of the device holding pool data must be
36 * between 64KB and 1GB.
38 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
39 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
42 * Device id is restricted to 24 bits.
44 #define MAX_DEV_ID ((1 << 24) - 1)
47 * How do we handle breaking sharing of data blocks?
48 * =================================================
50 * We use a standard copy-on-write btree to store the mappings for the
51 * devices (note I'm talking about copy-on-write of the metadata here, not
52 * the data). When you take an internal snapshot you clone the root node
53 * of the origin btree. After this there is no concept of an origin or a
54 * snapshot. They are just two device trees that happen to point to the
57 * When we get a write in we decide if it's to a shared data block using
58 * some timestamp magic. If it is, we have to break sharing.
60 * Let's say we write to a shared block in what was the origin. The
63 * i) plug io further to this physical block. (see bio_prison code).
65 * ii) quiesce any read io to that shared data block. Obviously
66 * including all devices that share this block. (see dm_deferred_set code)
68 * iii) copy the data block to a newly allocate block. This step can be
69 * missed out if the io covers the block. (schedule_copy).
71 * iv) insert the new mapping into the origin's btree
72 * (process_prepared_mapping). This act of inserting breaks some
73 * sharing of btree nodes between the two devices. Breaking sharing only
74 * effects the btree of that specific device. Btrees for the other
75 * devices that share the block never change. The btree for the origin
76 * device as it was after the last commit is untouched, ie. we're using
77 * persistent data structures in the functional programming sense.
79 * v) unplug io to this physical block, including the io that triggered
80 * the breaking of sharing.
82 * Steps (ii) and (iii) occur in parallel.
84 * The metadata _doesn't_ need to be committed before the io continues. We
85 * get away with this because the io is always written to a _new_ block.
86 * If there's a crash, then:
88 * - The origin mapping will point to the old origin block (the shared
89 * one). This will contain the data as it was before the io that triggered
90 * the breaking of sharing came in.
92 * - The snap mapping still points to the old block. As it would after
95 * The downside of this scheme is the timestamp magic isn't perfect, and
96 * will continue to think that data block in the snapshot device is shared
97 * even after the write to the origin has broken sharing. I suspect data
98 * blocks will typically be shared by many different devices, so we're
99 * breaking sharing n + 1 times, rather than n, where n is the number of
100 * devices that reference this data block. At the moment I think the
101 * benefits far, far outweigh the disadvantages.
104 /*----------------------------------------------------------------*/
109 static void build_data_key(struct dm_thin_device *td,
110 dm_block_t b, struct dm_cell_key *key)
113 key->dev = dm_thin_dev_id(td);
117 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
118 struct dm_cell_key *key)
121 key->dev = dm_thin_dev_id(td);
125 /*----------------------------------------------------------------*/
128 * A pool device ties together a metadata device and a data device. It
129 * also provides the interface for creating and destroying internal
132 struct dm_thin_new_mapping;
135 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
138 PM_WRITE, /* metadata may be changed */
139 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
140 PM_READ_ONLY, /* metadata may not be changed */
141 PM_FAIL, /* all I/O fails */
144 struct pool_features {
147 bool zero_new_blocks:1;
148 bool discard_enabled:1;
149 bool discard_passdown:1;
150 bool error_if_no_space:1;
154 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
155 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
158 struct list_head list;
159 struct dm_target *ti; /* Only set if a pool target is bound */
161 struct mapped_device *pool_md;
162 struct block_device *md_dev;
163 struct dm_pool_metadata *pmd;
165 dm_block_t low_water_blocks;
166 uint32_t sectors_per_block;
167 int sectors_per_block_shift;
169 struct pool_features pf;
170 bool low_water_triggered:1; /* A dm event has been sent */
172 struct dm_bio_prison *prison;
173 struct dm_kcopyd_client *copier;
175 struct workqueue_struct *wq;
176 struct work_struct worker;
177 struct delayed_work waker;
179 unsigned long last_commit_jiffies;
183 struct bio_list deferred_flush_bios;
184 struct list_head prepared_mappings;
185 struct list_head prepared_discards;
186 struct list_head active_thins;
188 struct dm_deferred_set *shared_read_ds;
189 struct dm_deferred_set *all_io_ds;
191 struct dm_thin_new_mapping *next_mapping;
192 mempool_t *mapping_pool;
194 process_bio_fn process_bio;
195 process_bio_fn process_discard;
197 process_mapping_fn process_prepared_mapping;
198 process_mapping_fn process_prepared_discard;
201 static enum pool_mode get_pool_mode(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
205 * Target context for a pool.
208 struct dm_target *ti;
210 struct dm_dev *data_dev;
211 struct dm_dev *metadata_dev;
212 struct dm_target_callbacks callbacks;
214 dm_block_t low_water_blocks;
215 struct pool_features requested_pf; /* Features requested during table load */
216 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
220 * Target context for a thin.
223 struct list_head list;
224 struct dm_dev *pool_dev;
225 struct dm_dev *origin_dev;
229 struct dm_thin_device *td;
232 struct bio_list deferred_bio_list;
233 struct bio_list retry_on_resume_list;
234 struct rb_root sort_bio_list; /* sorted list of deferred bios */
237 * Ensures the thin is not destroyed until the worker has finished
238 * iterating the active_thins list.
241 struct completion can_destroy;
244 /*----------------------------------------------------------------*/
247 * wake_worker() is used when new work is queued and when pool_resume is
248 * ready to continue deferred IO processing.
250 static void wake_worker(struct pool *pool)
252 queue_work(pool->wq, &pool->worker);
255 /*----------------------------------------------------------------*/
257 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
258 struct dm_bio_prison_cell **cell_result)
261 struct dm_bio_prison_cell *cell_prealloc;
264 * Allocate a cell from the prison's mempool.
265 * This might block but it can't fail.
267 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
269 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
272 * We reused an old cell; we can get rid of
275 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
280 static void cell_release(struct pool *pool,
281 struct dm_bio_prison_cell *cell,
282 struct bio_list *bios)
284 dm_cell_release(pool->prison, cell, bios);
285 dm_bio_prison_free_cell(pool->prison, cell);
288 static void cell_release_no_holder(struct pool *pool,
289 struct dm_bio_prison_cell *cell,
290 struct bio_list *bios)
292 dm_cell_release_no_holder(pool->prison, cell, bios);
293 dm_bio_prison_free_cell(pool->prison, cell);
296 static void cell_defer_no_holder_no_free(struct thin_c *tc,
297 struct dm_bio_prison_cell *cell)
299 struct pool *pool = tc->pool;
302 spin_lock_irqsave(&tc->lock, flags);
303 dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
304 spin_unlock_irqrestore(&tc->lock, flags);
309 static void cell_error(struct pool *pool,
310 struct dm_bio_prison_cell *cell)
312 dm_cell_error(pool->prison, cell);
313 dm_bio_prison_free_cell(pool->prison, cell);
316 /*----------------------------------------------------------------*/
319 * A global list of pools that uses a struct mapped_device as a key.
321 static struct dm_thin_pool_table {
323 struct list_head pools;
324 } dm_thin_pool_table;
326 static void pool_table_init(void)
328 mutex_init(&dm_thin_pool_table.mutex);
329 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
332 static void __pool_table_insert(struct pool *pool)
334 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335 list_add(&pool->list, &dm_thin_pool_table.pools);
338 static void __pool_table_remove(struct pool *pool)
340 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
341 list_del(&pool->list);
344 static struct pool *__pool_table_lookup(struct mapped_device *md)
346 struct pool *pool = NULL, *tmp;
348 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
350 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
351 if (tmp->pool_md == md) {
360 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
362 struct pool *pool = NULL, *tmp;
364 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
366 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
367 if (tmp->md_dev == md_dev) {
376 /*----------------------------------------------------------------*/
378 struct dm_thin_endio_hook {
380 struct dm_deferred_entry *shared_read_entry;
381 struct dm_deferred_entry *all_io_entry;
382 struct dm_thin_new_mapping *overwrite_mapping;
383 struct rb_node rb_node;
386 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
389 struct bio_list bios;
392 bio_list_init(&bios);
394 spin_lock_irqsave(&tc->lock, flags);
395 bio_list_merge(&bios, master);
396 bio_list_init(master);
397 spin_unlock_irqrestore(&tc->lock, flags);
399 while ((bio = bio_list_pop(&bios)))
400 bio_endio(bio, DM_ENDIO_REQUEUE);
403 static void requeue_io(struct thin_c *tc)
405 requeue_bio_list(tc, &tc->deferred_bio_list);
406 requeue_bio_list(tc, &tc->retry_on_resume_list);
409 static void error_thin_retry_list(struct thin_c *tc)
413 struct bio_list bios;
415 bio_list_init(&bios);
417 spin_lock_irqsave(&tc->lock, flags);
418 bio_list_merge(&bios, &tc->retry_on_resume_list);
419 bio_list_init(&tc->retry_on_resume_list);
420 spin_unlock_irqrestore(&tc->lock, flags);
422 while ((bio = bio_list_pop(&bios)))
426 static void error_retry_list(struct pool *pool)
431 list_for_each_entry_rcu(tc, &pool->active_thins, list)
432 error_thin_retry_list(tc);
437 * This section of code contains the logic for processing a thin device's IO.
438 * Much of the code depends on pool object resources (lists, workqueues, etc)
439 * but most is exclusively called from the thin target rather than the thin-pool
443 static bool block_size_is_power_of_two(struct pool *pool)
445 return pool->sectors_per_block_shift >= 0;
448 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
450 struct pool *pool = tc->pool;
451 sector_t block_nr = bio->bi_iter.bi_sector;
453 if (block_size_is_power_of_two(pool))
454 block_nr >>= pool->sectors_per_block_shift;
456 (void) sector_div(block_nr, pool->sectors_per_block);
461 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
463 struct pool *pool = tc->pool;
464 sector_t bi_sector = bio->bi_iter.bi_sector;
466 bio->bi_bdev = tc->pool_dev->bdev;
467 if (block_size_is_power_of_two(pool))
468 bio->bi_iter.bi_sector =
469 (block << pool->sectors_per_block_shift) |
470 (bi_sector & (pool->sectors_per_block - 1));
472 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
473 sector_div(bi_sector, pool->sectors_per_block);
476 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
478 bio->bi_bdev = tc->origin_dev->bdev;
481 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
483 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
484 dm_thin_changed_this_transaction(tc->td);
487 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
489 struct dm_thin_endio_hook *h;
491 if (bio->bi_rw & REQ_DISCARD)
494 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
495 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
498 static void issue(struct thin_c *tc, struct bio *bio)
500 struct pool *pool = tc->pool;
503 if (!bio_triggers_commit(tc, bio)) {
504 generic_make_request(bio);
509 * Complete bio with an error if earlier I/O caused changes to
510 * the metadata that can't be committed e.g, due to I/O errors
511 * on the metadata device.
513 if (dm_thin_aborted_changes(tc->td)) {
519 * Batch together any bios that trigger commits and then issue a
520 * single commit for them in process_deferred_bios().
522 spin_lock_irqsave(&pool->lock, flags);
523 bio_list_add(&pool->deferred_flush_bios, bio);
524 spin_unlock_irqrestore(&pool->lock, flags);
527 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
529 remap_to_origin(tc, bio);
533 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
536 remap(tc, bio, block);
540 /*----------------------------------------------------------------*/
543 * Bio endio functions.
545 struct dm_thin_new_mapping {
546 struct list_head list;
551 bool definitely_not_shared:1;
555 dm_block_t virt_block;
556 dm_block_t data_block;
557 struct dm_bio_prison_cell *cell, *cell2;
560 * If the bio covers the whole area of a block then we can avoid
561 * zeroing or copying. Instead this bio is hooked. The bio will
562 * still be in the cell, so care has to be taken to avoid issuing
566 bio_end_io_t *saved_bi_end_io;
569 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
571 struct pool *pool = m->tc->pool;
573 if (m->quiesced && m->prepared) {
574 list_add_tail(&m->list, &pool->prepared_mappings);
579 static void copy_complete(int read_err, unsigned long write_err, void *context)
582 struct dm_thin_new_mapping *m = context;
583 struct pool *pool = m->tc->pool;
585 m->err = read_err || write_err ? -EIO : 0;
587 spin_lock_irqsave(&pool->lock, flags);
589 __maybe_add_mapping(m);
590 spin_unlock_irqrestore(&pool->lock, flags);
593 static void overwrite_endio(struct bio *bio, int err)
596 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
597 struct dm_thin_new_mapping *m = h->overwrite_mapping;
598 struct pool *pool = m->tc->pool;
602 spin_lock_irqsave(&pool->lock, flags);
604 __maybe_add_mapping(m);
605 spin_unlock_irqrestore(&pool->lock, flags);
608 /*----------------------------------------------------------------*/
615 * Prepared mapping jobs.
619 * This sends the bios in the cell back to the deferred_bios list.
621 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
623 struct pool *pool = tc->pool;
626 spin_lock_irqsave(&tc->lock, flags);
627 cell_release(pool, cell, &tc->deferred_bio_list);
628 spin_unlock_irqrestore(&tc->lock, flags);
634 * Same as cell_defer above, except it omits the original holder of the cell.
636 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
638 struct pool *pool = tc->pool;
641 spin_lock_irqsave(&tc->lock, flags);
642 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
643 spin_unlock_irqrestore(&tc->lock, flags);
648 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
651 m->bio->bi_end_io = m->saved_bi_end_io;
652 atomic_inc(&m->bio->bi_remaining);
654 cell_error(m->tc->pool, m->cell);
656 mempool_free(m, m->tc->pool->mapping_pool);
659 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
661 struct thin_c *tc = m->tc;
662 struct pool *pool = tc->pool;
668 bio->bi_end_io = m->saved_bi_end_io;
669 atomic_inc(&bio->bi_remaining);
673 cell_error(pool, m->cell);
678 * Commit the prepared block into the mapping btree.
679 * Any I/O for this block arriving after this point will get
680 * remapped to it directly.
682 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
684 metadata_operation_failed(pool, "dm_thin_insert_block", r);
685 cell_error(pool, m->cell);
690 * Release any bios held while the block was being provisioned.
691 * If we are processing a write bio that completely covers the block,
692 * we already processed it so can ignore it now when processing
693 * the bios in the cell.
696 cell_defer_no_holder(tc, m->cell);
699 cell_defer(tc, m->cell);
703 mempool_free(m, pool->mapping_pool);
706 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
708 struct thin_c *tc = m->tc;
710 bio_io_error(m->bio);
711 cell_defer_no_holder(tc, m->cell);
712 cell_defer_no_holder(tc, m->cell2);
713 mempool_free(m, tc->pool->mapping_pool);
716 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
718 struct thin_c *tc = m->tc;
720 inc_all_io_entry(tc->pool, m->bio);
721 cell_defer_no_holder(tc, m->cell);
722 cell_defer_no_holder(tc, m->cell2);
725 if (m->definitely_not_shared)
726 remap_and_issue(tc, m->bio, m->data_block);
729 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
730 bio_endio(m->bio, 0);
732 remap_and_issue(tc, m->bio, m->data_block);
735 bio_endio(m->bio, 0);
737 mempool_free(m, tc->pool->mapping_pool);
740 static void process_prepared_discard(struct dm_thin_new_mapping *m)
743 struct thin_c *tc = m->tc;
745 r = dm_thin_remove_block(tc->td, m->virt_block);
747 DMERR_LIMIT("dm_thin_remove_block() failed");
749 process_prepared_discard_passdown(m);
752 static void process_prepared(struct pool *pool, struct list_head *head,
753 process_mapping_fn *fn)
756 struct list_head maps;
757 struct dm_thin_new_mapping *m, *tmp;
759 INIT_LIST_HEAD(&maps);
760 spin_lock_irqsave(&pool->lock, flags);
761 list_splice_init(head, &maps);
762 spin_unlock_irqrestore(&pool->lock, flags);
764 list_for_each_entry_safe(m, tmp, &maps, list)
771 static int io_overlaps_block(struct pool *pool, struct bio *bio)
773 return bio->bi_iter.bi_size ==
774 (pool->sectors_per_block << SECTOR_SHIFT);
777 static int io_overwrites_block(struct pool *pool, struct bio *bio)
779 return (bio_data_dir(bio) == WRITE) &&
780 io_overlaps_block(pool, bio);
783 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
786 *save = bio->bi_end_io;
790 static int ensure_next_mapping(struct pool *pool)
792 if (pool->next_mapping)
795 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
797 return pool->next_mapping ? 0 : -ENOMEM;
800 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
802 struct dm_thin_new_mapping *m = pool->next_mapping;
804 BUG_ON(!pool->next_mapping);
806 memset(m, 0, sizeof(struct dm_thin_new_mapping));
807 INIT_LIST_HEAD(&m->list);
810 pool->next_mapping = NULL;
815 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
816 struct dm_dev *origin, dm_block_t data_origin,
817 dm_block_t data_dest,
818 struct dm_bio_prison_cell *cell, struct bio *bio)
821 struct pool *pool = tc->pool;
822 struct dm_thin_new_mapping *m = get_next_mapping(pool);
825 m->virt_block = virt_block;
826 m->data_block = data_dest;
829 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
833 * IO to pool_dev remaps to the pool target's data_dev.
835 * If the whole block of data is being overwritten, we can issue the
836 * bio immediately. Otherwise we use kcopyd to clone the data first.
838 if (io_overwrites_block(pool, bio)) {
839 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
841 h->overwrite_mapping = m;
843 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
844 inc_all_io_entry(pool, bio);
845 remap_and_issue(tc, bio, data_dest);
847 struct dm_io_region from, to;
849 from.bdev = origin->bdev;
850 from.sector = data_origin * pool->sectors_per_block;
851 from.count = pool->sectors_per_block;
853 to.bdev = tc->pool_dev->bdev;
854 to.sector = data_dest * pool->sectors_per_block;
855 to.count = pool->sectors_per_block;
857 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
858 0, copy_complete, m);
860 mempool_free(m, pool->mapping_pool);
861 DMERR_LIMIT("dm_kcopyd_copy() failed");
862 cell_error(pool, cell);
867 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
868 dm_block_t data_origin, dm_block_t data_dest,
869 struct dm_bio_prison_cell *cell, struct bio *bio)
871 schedule_copy(tc, virt_block, tc->pool_dev,
872 data_origin, data_dest, cell, bio);
875 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
876 dm_block_t data_dest,
877 struct dm_bio_prison_cell *cell, struct bio *bio)
879 schedule_copy(tc, virt_block, tc->origin_dev,
880 virt_block, data_dest, cell, bio);
883 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
884 dm_block_t data_block, struct dm_bio_prison_cell *cell,
887 struct pool *pool = tc->pool;
888 struct dm_thin_new_mapping *m = get_next_mapping(pool);
893 m->virt_block = virt_block;
894 m->data_block = data_block;
898 * If the whole block of data is being overwritten or we are not
899 * zeroing pre-existing data, we can issue the bio immediately.
900 * Otherwise we use kcopyd to zero the data first.
902 if (!pool->pf.zero_new_blocks)
903 process_prepared_mapping(m);
905 else if (io_overwrites_block(pool, bio)) {
906 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
908 h->overwrite_mapping = m;
910 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
911 inc_all_io_entry(pool, bio);
912 remap_and_issue(tc, bio, data_block);
915 struct dm_io_region to;
917 to.bdev = tc->pool_dev->bdev;
918 to.sector = data_block * pool->sectors_per_block;
919 to.count = pool->sectors_per_block;
921 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
923 mempool_free(m, pool->mapping_pool);
924 DMERR_LIMIT("dm_kcopyd_zero() failed");
925 cell_error(pool, cell);
931 * A non-zero return indicates read_only or fail_io mode.
932 * Many callers don't care about the return value.
934 static int commit(struct pool *pool)
938 if (get_pool_mode(pool) != PM_WRITE)
941 r = dm_pool_commit_metadata(pool->pmd);
943 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
948 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
952 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
953 DMWARN("%s: reached low water mark for data device: sending event.",
954 dm_device_name(pool->pool_md));
955 spin_lock_irqsave(&pool->lock, flags);
956 pool->low_water_triggered = true;
957 spin_unlock_irqrestore(&pool->lock, flags);
958 dm_table_event(pool->ti->table);
962 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
964 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
967 dm_block_t free_blocks;
968 struct pool *pool = tc->pool;
970 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
973 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
975 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
979 check_low_water_mark(pool, free_blocks);
983 * Try to commit to see if that will free up some
990 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
992 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
997 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1002 r = dm_pool_alloc_data_block(pool->pmd, result);
1004 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1012 * If we have run out of space, queue bios until the device is
1013 * resumed, presumably after having been reloaded with more space.
1015 static void retry_on_resume(struct bio *bio)
1017 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1018 struct thin_c *tc = h->tc;
1019 unsigned long flags;
1021 spin_lock_irqsave(&tc->lock, flags);
1022 bio_list_add(&tc->retry_on_resume_list, bio);
1023 spin_unlock_irqrestore(&tc->lock, flags);
1026 static bool should_error_unserviceable_bio(struct pool *pool)
1028 enum pool_mode m = get_pool_mode(pool);
1032 /* Shouldn't get here */
1033 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1036 case PM_OUT_OF_DATA_SPACE:
1037 return pool->pf.error_if_no_space;
1043 /* Shouldn't get here */
1044 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1049 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1051 if (should_error_unserviceable_bio(pool))
1054 retry_on_resume(bio);
1057 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1060 struct bio_list bios;
1062 if (should_error_unserviceable_bio(pool)) {
1063 cell_error(pool, cell);
1067 bio_list_init(&bios);
1068 cell_release(pool, cell, &bios);
1070 if (should_error_unserviceable_bio(pool))
1071 while ((bio = bio_list_pop(&bios)))
1074 while ((bio = bio_list_pop(&bios)))
1075 retry_on_resume(bio);
1078 static void process_discard(struct thin_c *tc, struct bio *bio)
1081 unsigned long flags;
1082 struct pool *pool = tc->pool;
1083 struct dm_bio_prison_cell *cell, *cell2;
1084 struct dm_cell_key key, key2;
1085 dm_block_t block = get_bio_block(tc, bio);
1086 struct dm_thin_lookup_result lookup_result;
1087 struct dm_thin_new_mapping *m;
1089 build_virtual_key(tc->td, block, &key);
1090 if (bio_detain(tc->pool, &key, bio, &cell))
1093 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1097 * Check nobody is fiddling with this pool block. This can
1098 * happen if someone's in the process of breaking sharing
1101 build_data_key(tc->td, lookup_result.block, &key2);
1102 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1103 cell_defer_no_holder(tc, cell);
1107 if (io_overlaps_block(pool, bio)) {
1109 * IO may still be going to the destination block. We must
1110 * quiesce before we can do the removal.
1112 m = get_next_mapping(pool);
1114 m->pass_discard = pool->pf.discard_passdown;
1115 m->definitely_not_shared = !lookup_result.shared;
1116 m->virt_block = block;
1117 m->data_block = lookup_result.block;
1122 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1123 spin_lock_irqsave(&pool->lock, flags);
1124 list_add_tail(&m->list, &pool->prepared_discards);
1125 spin_unlock_irqrestore(&pool->lock, flags);
1129 inc_all_io_entry(pool, bio);
1130 cell_defer_no_holder(tc, cell);
1131 cell_defer_no_holder(tc, cell2);
1134 * The DM core makes sure that the discard doesn't span
1135 * a block boundary. So we submit the discard of a
1136 * partial block appropriately.
1138 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1139 remap_and_issue(tc, bio, lookup_result.block);
1147 * It isn't provisioned, just forget it.
1149 cell_defer_no_holder(tc, cell);
1154 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1156 cell_defer_no_holder(tc, cell);
1162 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1163 struct dm_cell_key *key,
1164 struct dm_thin_lookup_result *lookup_result,
1165 struct dm_bio_prison_cell *cell)
1168 dm_block_t data_block;
1169 struct pool *pool = tc->pool;
1171 r = alloc_data_block(tc, &data_block);
1174 schedule_internal_copy(tc, block, lookup_result->block,
1175 data_block, cell, bio);
1179 retry_bios_on_resume(pool, cell);
1183 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1185 cell_error(pool, cell);
1190 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1192 struct dm_thin_lookup_result *lookup_result)
1194 struct dm_bio_prison_cell *cell;
1195 struct pool *pool = tc->pool;
1196 struct dm_cell_key key;
1199 * If cell is already occupied, then sharing is already in the process
1200 * of being broken so we have nothing further to do here.
1202 build_data_key(tc->td, lookup_result->block, &key);
1203 if (bio_detain(pool, &key, bio, &cell))
1206 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1207 break_sharing(tc, bio, block, &key, lookup_result, cell);
1209 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1211 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1212 inc_all_io_entry(pool, bio);
1213 cell_defer_no_holder(tc, cell);
1215 remap_and_issue(tc, bio, lookup_result->block);
1219 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1220 struct dm_bio_prison_cell *cell)
1223 dm_block_t data_block;
1224 struct pool *pool = tc->pool;
1227 * Remap empty bios (flushes) immediately, without provisioning.
1229 if (!bio->bi_iter.bi_size) {
1230 inc_all_io_entry(pool, bio);
1231 cell_defer_no_holder(tc, cell);
1233 remap_and_issue(tc, bio, 0);
1238 * Fill read bios with zeroes and complete them immediately.
1240 if (bio_data_dir(bio) == READ) {
1242 cell_defer_no_holder(tc, cell);
1247 r = alloc_data_block(tc, &data_block);
1251 schedule_external_copy(tc, block, data_block, cell, bio);
1253 schedule_zero(tc, block, data_block, cell, bio);
1257 retry_bios_on_resume(pool, cell);
1261 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1263 cell_error(pool, cell);
1268 static void process_bio(struct thin_c *tc, struct bio *bio)
1271 struct pool *pool = tc->pool;
1272 dm_block_t block = get_bio_block(tc, bio);
1273 struct dm_bio_prison_cell *cell;
1274 struct dm_cell_key key;
1275 struct dm_thin_lookup_result lookup_result;
1278 * If cell is already occupied, then the block is already
1279 * being provisioned so we have nothing further to do here.
1281 build_virtual_key(tc->td, block, &key);
1282 if (bio_detain(pool, &key, bio, &cell))
1285 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1288 if (lookup_result.shared) {
1289 process_shared_bio(tc, bio, block, &lookup_result);
1290 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1292 inc_all_io_entry(pool, bio);
1293 cell_defer_no_holder(tc, cell);
1295 remap_and_issue(tc, bio, lookup_result.block);
1300 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1301 inc_all_io_entry(pool, bio);
1302 cell_defer_no_holder(tc, cell);
1304 remap_to_origin_and_issue(tc, bio);
1306 provision_block(tc, bio, block, cell);
1310 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1312 cell_defer_no_holder(tc, cell);
1318 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1321 int rw = bio_data_dir(bio);
1322 dm_block_t block = get_bio_block(tc, bio);
1323 struct dm_thin_lookup_result lookup_result;
1325 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1328 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1329 handle_unserviceable_bio(tc->pool, bio);
1331 inc_all_io_entry(tc->pool, bio);
1332 remap_and_issue(tc, bio, lookup_result.block);
1338 handle_unserviceable_bio(tc->pool, bio);
1342 if (tc->origin_dev) {
1343 inc_all_io_entry(tc->pool, bio);
1344 remap_to_origin_and_issue(tc, bio);
1353 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1360 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1365 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1371 * FIXME: should we also commit due to size of transaction, measured in
1374 static int need_commit_due_to_time(struct pool *pool)
1376 return jiffies < pool->last_commit_jiffies ||
1377 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1380 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1381 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1383 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1385 struct rb_node **rbp, *parent;
1386 struct dm_thin_endio_hook *pbd;
1387 sector_t bi_sector = bio->bi_iter.bi_sector;
1389 rbp = &tc->sort_bio_list.rb_node;
1393 pbd = thin_pbd(parent);
1395 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1396 rbp = &(*rbp)->rb_left;
1398 rbp = &(*rbp)->rb_right;
1401 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1402 rb_link_node(&pbd->rb_node, parent, rbp);
1403 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1406 static void __extract_sorted_bios(struct thin_c *tc)
1408 struct rb_node *node;
1409 struct dm_thin_endio_hook *pbd;
1412 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1413 pbd = thin_pbd(node);
1414 bio = thin_bio(pbd);
1416 bio_list_add(&tc->deferred_bio_list, bio);
1417 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1420 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1423 static void __sort_thin_deferred_bios(struct thin_c *tc)
1426 struct bio_list bios;
1428 bio_list_init(&bios);
1429 bio_list_merge(&bios, &tc->deferred_bio_list);
1430 bio_list_init(&tc->deferred_bio_list);
1432 /* Sort deferred_bio_list using rb-tree */
1433 while ((bio = bio_list_pop(&bios)))
1434 __thin_bio_rb_add(tc, bio);
1437 * Transfer the sorted bios in sort_bio_list back to
1438 * deferred_bio_list to allow lockless submission of
1441 __extract_sorted_bios(tc);
1444 static void process_thin_deferred_bios(struct thin_c *tc)
1446 struct pool *pool = tc->pool;
1447 unsigned long flags;
1449 struct bio_list bios;
1450 struct blk_plug plug;
1452 if (tc->requeue_mode) {
1453 requeue_bio_list(tc, &tc->deferred_bio_list);
1457 bio_list_init(&bios);
1459 spin_lock_irqsave(&tc->lock, flags);
1461 if (bio_list_empty(&tc->deferred_bio_list)) {
1462 spin_unlock_irqrestore(&tc->lock, flags);
1466 __sort_thin_deferred_bios(tc);
1468 bio_list_merge(&bios, &tc->deferred_bio_list);
1469 bio_list_init(&tc->deferred_bio_list);
1471 spin_unlock_irqrestore(&tc->lock, flags);
1473 blk_start_plug(&plug);
1474 while ((bio = bio_list_pop(&bios))) {
1476 * If we've got no free new_mapping structs, and processing
1477 * this bio might require one, we pause until there are some
1478 * prepared mappings to process.
1480 if (ensure_next_mapping(pool)) {
1481 spin_lock_irqsave(&tc->lock, flags);
1482 bio_list_add(&tc->deferred_bio_list, bio);
1483 bio_list_merge(&tc->deferred_bio_list, &bios);
1484 spin_unlock_irqrestore(&tc->lock, flags);
1488 if (bio->bi_rw & REQ_DISCARD)
1489 pool->process_discard(tc, bio);
1491 pool->process_bio(tc, bio);
1493 blk_finish_plug(&plug);
1496 static void thin_get(struct thin_c *tc);
1497 static void thin_put(struct thin_c *tc);
1500 * We can't hold rcu_read_lock() around code that can block. So we
1501 * find a thin with the rcu lock held; bump a refcount; then drop
1504 static struct thin_c *get_first_thin(struct pool *pool)
1506 struct thin_c *tc = NULL;
1509 if (!list_empty(&pool->active_thins)) {
1510 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1518 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1520 struct thin_c *old_tc = tc;
1523 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1535 static void process_deferred_bios(struct pool *pool)
1537 unsigned long flags;
1539 struct bio_list bios;
1542 tc = get_first_thin(pool);
1544 process_thin_deferred_bios(tc);
1545 tc = get_next_thin(pool, tc);
1549 * If there are any deferred flush bios, we must commit
1550 * the metadata before issuing them.
1552 bio_list_init(&bios);
1553 spin_lock_irqsave(&pool->lock, flags);
1554 bio_list_merge(&bios, &pool->deferred_flush_bios);
1555 bio_list_init(&pool->deferred_flush_bios);
1556 spin_unlock_irqrestore(&pool->lock, flags);
1558 if (bio_list_empty(&bios) &&
1559 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1563 while ((bio = bio_list_pop(&bios)))
1567 pool->last_commit_jiffies = jiffies;
1569 while ((bio = bio_list_pop(&bios)))
1570 generic_make_request(bio);
1573 static void do_worker(struct work_struct *ws)
1575 struct pool *pool = container_of(ws, struct pool, worker);
1577 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1578 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1579 process_deferred_bios(pool);
1583 * We want to commit periodically so that not too much
1584 * unwritten data builds up.
1586 static void do_waker(struct work_struct *ws)
1588 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1590 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1593 /*----------------------------------------------------------------*/
1595 struct noflush_work {
1596 struct work_struct worker;
1600 wait_queue_head_t wait;
1603 static void complete_noflush_work(struct noflush_work *w)
1605 atomic_set(&w->complete, 1);
1609 static void do_noflush_start(struct work_struct *ws)
1611 struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1612 w->tc->requeue_mode = true;
1614 complete_noflush_work(w);
1617 static void do_noflush_stop(struct work_struct *ws)
1619 struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1620 w->tc->requeue_mode = false;
1621 complete_noflush_work(w);
1624 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1626 struct noflush_work w;
1628 INIT_WORK_ONSTACK(&w.worker, fn);
1630 atomic_set(&w.complete, 0);
1631 init_waitqueue_head(&w.wait);
1633 queue_work(tc->pool->wq, &w.worker);
1635 wait_event(w.wait, atomic_read(&w.complete));
1638 /*----------------------------------------------------------------*/
1640 static enum pool_mode get_pool_mode(struct pool *pool)
1642 return pool->pf.mode;
1645 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1647 dm_table_event(pool->ti->table);
1648 DMINFO("%s: switching pool to %s mode",
1649 dm_device_name(pool->pool_md), new_mode);
1652 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1654 struct pool_c *pt = pool->ti->private;
1655 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1656 enum pool_mode old_mode = get_pool_mode(pool);
1659 * Never allow the pool to transition to PM_WRITE mode if user
1660 * intervention is required to verify metadata and data consistency.
1662 if (new_mode == PM_WRITE && needs_check) {
1663 DMERR("%s: unable to switch pool to write mode until repaired.",
1664 dm_device_name(pool->pool_md));
1665 if (old_mode != new_mode)
1666 new_mode = old_mode;
1668 new_mode = PM_READ_ONLY;
1671 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1672 * not going to recover without a thin_repair. So we never let the
1673 * pool move out of the old mode.
1675 if (old_mode == PM_FAIL)
1676 new_mode = old_mode;
1680 if (old_mode != new_mode)
1681 notify_of_pool_mode_change(pool, "failure");
1682 dm_pool_metadata_read_only(pool->pmd);
1683 pool->process_bio = process_bio_fail;
1684 pool->process_discard = process_bio_fail;
1685 pool->process_prepared_mapping = process_prepared_mapping_fail;
1686 pool->process_prepared_discard = process_prepared_discard_fail;
1688 error_retry_list(pool);
1692 if (old_mode != new_mode)
1693 notify_of_pool_mode_change(pool, "read-only");
1694 dm_pool_metadata_read_only(pool->pmd);
1695 pool->process_bio = process_bio_read_only;
1696 pool->process_discard = process_bio_success;
1697 pool->process_prepared_mapping = process_prepared_mapping_fail;
1698 pool->process_prepared_discard = process_prepared_discard_passdown;
1700 error_retry_list(pool);
1703 case PM_OUT_OF_DATA_SPACE:
1705 * Ideally we'd never hit this state; the low water mark
1706 * would trigger userland to extend the pool before we
1707 * completely run out of data space. However, many small
1708 * IOs to unprovisioned space can consume data space at an
1709 * alarming rate. Adjust your low water mark if you're
1710 * frequently seeing this mode.
1712 if (old_mode != new_mode)
1713 notify_of_pool_mode_change(pool, "out-of-data-space");
1714 pool->process_bio = process_bio_read_only;
1715 pool->process_discard = process_discard;
1716 pool->process_prepared_mapping = process_prepared_mapping;
1717 pool->process_prepared_discard = process_prepared_discard_passdown;
1721 if (old_mode != new_mode)
1722 notify_of_pool_mode_change(pool, "write");
1723 dm_pool_metadata_read_write(pool->pmd);
1724 pool->process_bio = process_bio;
1725 pool->process_discard = process_discard;
1726 pool->process_prepared_mapping = process_prepared_mapping;
1727 pool->process_prepared_discard = process_prepared_discard;
1731 pool->pf.mode = new_mode;
1733 * The pool mode may have changed, sync it so bind_control_target()
1734 * doesn't cause an unexpected mode transition on resume.
1736 pt->adjusted_pf.mode = new_mode;
1739 static void abort_transaction(struct pool *pool)
1741 const char *dev_name = dm_device_name(pool->pool_md);
1743 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1744 if (dm_pool_abort_metadata(pool->pmd)) {
1745 DMERR("%s: failed to abort metadata transaction", dev_name);
1746 set_pool_mode(pool, PM_FAIL);
1749 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1750 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1751 set_pool_mode(pool, PM_FAIL);
1755 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1757 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1758 dm_device_name(pool->pool_md), op, r);
1760 abort_transaction(pool);
1761 set_pool_mode(pool, PM_READ_ONLY);
1764 /*----------------------------------------------------------------*/
1767 * Mapping functions.
1771 * Called only while mapping a thin bio to hand it over to the workqueue.
1773 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1775 unsigned long flags;
1776 struct pool *pool = tc->pool;
1778 spin_lock_irqsave(&tc->lock, flags);
1779 bio_list_add(&tc->deferred_bio_list, bio);
1780 spin_unlock_irqrestore(&tc->lock, flags);
1785 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1787 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1790 h->shared_read_entry = NULL;
1791 h->all_io_entry = NULL;
1792 h->overwrite_mapping = NULL;
1796 * Non-blocking function called from the thin target's map function.
1798 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1801 struct thin_c *tc = ti->private;
1802 dm_block_t block = get_bio_block(tc, bio);
1803 struct dm_thin_device *td = tc->td;
1804 struct dm_thin_lookup_result result;
1805 struct dm_bio_prison_cell cell1, cell2;
1806 struct dm_bio_prison_cell *cell_result;
1807 struct dm_cell_key key;
1809 thin_hook_bio(tc, bio);
1811 if (tc->requeue_mode) {
1812 bio_endio(bio, DM_ENDIO_REQUEUE);
1813 return DM_MAPIO_SUBMITTED;
1816 if (get_pool_mode(tc->pool) == PM_FAIL) {
1818 return DM_MAPIO_SUBMITTED;
1821 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1822 thin_defer_bio(tc, bio);
1823 return DM_MAPIO_SUBMITTED;
1826 r = dm_thin_find_block(td, block, 0, &result);
1829 * Note that we defer readahead too.
1833 if (unlikely(result.shared)) {
1835 * We have a race condition here between the
1836 * result.shared value returned by the lookup and
1837 * snapshot creation, which may cause new
1840 * To avoid this always quiesce the origin before
1841 * taking the snap. You want to do this anyway to
1842 * ensure a consistent application view
1845 * More distant ancestors are irrelevant. The
1846 * shared flag will be set in their case.
1848 thin_defer_bio(tc, bio);
1849 return DM_MAPIO_SUBMITTED;
1852 build_virtual_key(tc->td, block, &key);
1853 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1854 return DM_MAPIO_SUBMITTED;
1856 build_data_key(tc->td, result.block, &key);
1857 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1858 cell_defer_no_holder_no_free(tc, &cell1);
1859 return DM_MAPIO_SUBMITTED;
1862 inc_all_io_entry(tc->pool, bio);
1863 cell_defer_no_holder_no_free(tc, &cell2);
1864 cell_defer_no_holder_no_free(tc, &cell1);
1866 remap(tc, bio, result.block);
1867 return DM_MAPIO_REMAPPED;
1870 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1872 * This block isn't provisioned, and we have no way
1875 handle_unserviceable_bio(tc->pool, bio);
1876 return DM_MAPIO_SUBMITTED;
1882 * In future, the failed dm_thin_find_block above could
1883 * provide the hint to load the metadata into cache.
1885 thin_defer_bio(tc, bio);
1886 return DM_MAPIO_SUBMITTED;
1890 * Must always call bio_io_error on failure.
1891 * dm_thin_find_block can fail with -EINVAL if the
1892 * pool is switched to fail-io mode.
1895 return DM_MAPIO_SUBMITTED;
1899 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1901 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1902 struct request_queue *q;
1904 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
1907 q = bdev_get_queue(pt->data_dev->bdev);
1908 return bdi_congested(&q->backing_dev_info, bdi_bits);
1911 static void requeue_bios(struct pool *pool)
1913 unsigned long flags;
1917 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
1918 spin_lock_irqsave(&tc->lock, flags);
1919 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
1920 bio_list_init(&tc->retry_on_resume_list);
1921 spin_unlock_irqrestore(&tc->lock, flags);
1926 /*----------------------------------------------------------------
1927 * Binding of control targets to a pool object
1928 *--------------------------------------------------------------*/
1929 static bool data_dev_supports_discard(struct pool_c *pt)
1931 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1933 return q && blk_queue_discard(q);
1936 static bool is_factor(sector_t block_size, uint32_t n)
1938 return !sector_div(block_size, n);
1942 * If discard_passdown was enabled verify that the data device
1943 * supports discards. Disable discard_passdown if not.
1945 static void disable_passdown_if_not_supported(struct pool_c *pt)
1947 struct pool *pool = pt->pool;
1948 struct block_device *data_bdev = pt->data_dev->bdev;
1949 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1950 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1951 const char *reason = NULL;
1952 char buf[BDEVNAME_SIZE];
1954 if (!pt->adjusted_pf.discard_passdown)
1957 if (!data_dev_supports_discard(pt))
1958 reason = "discard unsupported";
1960 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1961 reason = "max discard sectors smaller than a block";
1963 else if (data_limits->discard_granularity > block_size)
1964 reason = "discard granularity larger than a block";
1966 else if (!is_factor(block_size, data_limits->discard_granularity))
1967 reason = "discard granularity not a factor of block size";
1970 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1971 pt->adjusted_pf.discard_passdown = false;
1975 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1977 struct pool_c *pt = ti->private;
1980 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1982 enum pool_mode old_mode = get_pool_mode(pool);
1983 enum pool_mode new_mode = pt->adjusted_pf.mode;
1986 * Don't change the pool's mode until set_pool_mode() below.
1987 * Otherwise the pool's process_* function pointers may
1988 * not match the desired pool mode.
1990 pt->adjusted_pf.mode = old_mode;
1993 pool->pf = pt->adjusted_pf;
1994 pool->low_water_blocks = pt->low_water_blocks;
1996 set_pool_mode(pool, new_mode);
2001 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2007 /*----------------------------------------------------------------
2009 *--------------------------------------------------------------*/
2010 /* Initialize pool features. */
2011 static void pool_features_init(struct pool_features *pf)
2013 pf->mode = PM_WRITE;
2014 pf->zero_new_blocks = true;
2015 pf->discard_enabled = true;
2016 pf->discard_passdown = true;
2017 pf->error_if_no_space = false;
2020 static void __pool_destroy(struct pool *pool)
2022 __pool_table_remove(pool);
2024 if (dm_pool_metadata_close(pool->pmd) < 0)
2025 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2027 dm_bio_prison_destroy(pool->prison);
2028 dm_kcopyd_client_destroy(pool->copier);
2031 destroy_workqueue(pool->wq);
2033 if (pool->next_mapping)
2034 mempool_free(pool->next_mapping, pool->mapping_pool);
2035 mempool_destroy(pool->mapping_pool);
2036 dm_deferred_set_destroy(pool->shared_read_ds);
2037 dm_deferred_set_destroy(pool->all_io_ds);
2041 static struct kmem_cache *_new_mapping_cache;
2043 static struct pool *pool_create(struct mapped_device *pool_md,
2044 struct block_device *metadata_dev,
2045 unsigned long block_size,
2046 int read_only, char **error)
2051 struct dm_pool_metadata *pmd;
2052 bool format_device = read_only ? false : true;
2054 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2056 *error = "Error creating metadata object";
2057 return (struct pool *)pmd;
2060 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2062 *error = "Error allocating memory for pool";
2063 err_p = ERR_PTR(-ENOMEM);
2068 pool->sectors_per_block = block_size;
2069 if (block_size & (block_size - 1))
2070 pool->sectors_per_block_shift = -1;
2072 pool->sectors_per_block_shift = __ffs(block_size);
2073 pool->low_water_blocks = 0;
2074 pool_features_init(&pool->pf);
2075 pool->prison = dm_bio_prison_create(PRISON_CELLS);
2076 if (!pool->prison) {
2077 *error = "Error creating pool's bio prison";
2078 err_p = ERR_PTR(-ENOMEM);
2082 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2083 if (IS_ERR(pool->copier)) {
2084 r = PTR_ERR(pool->copier);
2085 *error = "Error creating pool's kcopyd client";
2087 goto bad_kcopyd_client;
2091 * Create singlethreaded workqueue that will service all devices
2092 * that use this metadata.
2094 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2096 *error = "Error creating pool's workqueue";
2097 err_p = ERR_PTR(-ENOMEM);
2101 INIT_WORK(&pool->worker, do_worker);
2102 INIT_DELAYED_WORK(&pool->waker, do_waker);
2103 spin_lock_init(&pool->lock);
2104 bio_list_init(&pool->deferred_flush_bios);
2105 INIT_LIST_HEAD(&pool->prepared_mappings);
2106 INIT_LIST_HEAD(&pool->prepared_discards);
2107 INIT_LIST_HEAD(&pool->active_thins);
2108 pool->low_water_triggered = false;
2110 pool->shared_read_ds = dm_deferred_set_create();
2111 if (!pool->shared_read_ds) {
2112 *error = "Error creating pool's shared read deferred set";
2113 err_p = ERR_PTR(-ENOMEM);
2114 goto bad_shared_read_ds;
2117 pool->all_io_ds = dm_deferred_set_create();
2118 if (!pool->all_io_ds) {
2119 *error = "Error creating pool's all io deferred set";
2120 err_p = ERR_PTR(-ENOMEM);
2124 pool->next_mapping = NULL;
2125 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2126 _new_mapping_cache);
2127 if (!pool->mapping_pool) {
2128 *error = "Error creating pool's mapping mempool";
2129 err_p = ERR_PTR(-ENOMEM);
2130 goto bad_mapping_pool;
2133 pool->ref_count = 1;
2134 pool->last_commit_jiffies = jiffies;
2135 pool->pool_md = pool_md;
2136 pool->md_dev = metadata_dev;
2137 __pool_table_insert(pool);
2142 dm_deferred_set_destroy(pool->all_io_ds);
2144 dm_deferred_set_destroy(pool->shared_read_ds);
2146 destroy_workqueue(pool->wq);
2148 dm_kcopyd_client_destroy(pool->copier);
2150 dm_bio_prison_destroy(pool->prison);
2154 if (dm_pool_metadata_close(pmd))
2155 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2160 static void __pool_inc(struct pool *pool)
2162 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2166 static void __pool_dec(struct pool *pool)
2168 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2169 BUG_ON(!pool->ref_count);
2170 if (!--pool->ref_count)
2171 __pool_destroy(pool);
2174 static struct pool *__pool_find(struct mapped_device *pool_md,
2175 struct block_device *metadata_dev,
2176 unsigned long block_size, int read_only,
2177 char **error, int *created)
2179 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2182 if (pool->pool_md != pool_md) {
2183 *error = "metadata device already in use by a pool";
2184 return ERR_PTR(-EBUSY);
2189 pool = __pool_table_lookup(pool_md);
2191 if (pool->md_dev != metadata_dev) {
2192 *error = "different pool cannot replace a pool";
2193 return ERR_PTR(-EINVAL);
2198 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2206 /*----------------------------------------------------------------
2207 * Pool target methods
2208 *--------------------------------------------------------------*/
2209 static void pool_dtr(struct dm_target *ti)
2211 struct pool_c *pt = ti->private;
2213 mutex_lock(&dm_thin_pool_table.mutex);
2215 unbind_control_target(pt->pool, ti);
2216 __pool_dec(pt->pool);
2217 dm_put_device(ti, pt->metadata_dev);
2218 dm_put_device(ti, pt->data_dev);
2221 mutex_unlock(&dm_thin_pool_table.mutex);
2224 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2225 struct dm_target *ti)
2229 const char *arg_name;
2231 static struct dm_arg _args[] = {
2232 {0, 4, "Invalid number of pool feature arguments"},
2236 * No feature arguments supplied.
2241 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2245 while (argc && !r) {
2246 arg_name = dm_shift_arg(as);
2249 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2250 pf->zero_new_blocks = false;
2252 else if (!strcasecmp(arg_name, "ignore_discard"))
2253 pf->discard_enabled = false;
2255 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2256 pf->discard_passdown = false;
2258 else if (!strcasecmp(arg_name, "read_only"))
2259 pf->mode = PM_READ_ONLY;
2261 else if (!strcasecmp(arg_name, "error_if_no_space"))
2262 pf->error_if_no_space = true;
2265 ti->error = "Unrecognised pool feature requested";
2274 static void metadata_low_callback(void *context)
2276 struct pool *pool = context;
2278 DMWARN("%s: reached low water mark for metadata device: sending event.",
2279 dm_device_name(pool->pool_md));
2281 dm_table_event(pool->ti->table);
2284 static sector_t get_dev_size(struct block_device *bdev)
2286 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2289 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2291 sector_t metadata_dev_size = get_dev_size(bdev);
2292 char buffer[BDEVNAME_SIZE];
2294 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2295 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2296 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2299 static sector_t get_metadata_dev_size(struct block_device *bdev)
2301 sector_t metadata_dev_size = get_dev_size(bdev);
2303 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2304 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2306 return metadata_dev_size;
2309 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2311 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2313 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2315 return metadata_dev_size;
2319 * When a metadata threshold is crossed a dm event is triggered, and
2320 * userland should respond by growing the metadata device. We could let
2321 * userland set the threshold, like we do with the data threshold, but I'm
2322 * not sure they know enough to do this well.
2324 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2327 * 4M is ample for all ops with the possible exception of thin
2328 * device deletion which is harmless if it fails (just retry the
2329 * delete after you've grown the device).
2331 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2332 return min((dm_block_t)1024ULL /* 4M */, quarter);
2336 * thin-pool <metadata dev> <data dev>
2337 * <data block size (sectors)>
2338 * <low water mark (blocks)>
2339 * [<#feature args> [<arg>]*]
2341 * Optional feature arguments are:
2342 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2343 * ignore_discard: disable discard
2344 * no_discard_passdown: don't pass discards down to the data device
2345 * read_only: Don't allow any changes to be made to the pool metadata.
2346 * error_if_no_space: error IOs, instead of queueing, if no space.
2348 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2350 int r, pool_created = 0;
2353 struct pool_features pf;
2354 struct dm_arg_set as;
2355 struct dm_dev *data_dev;
2356 unsigned long block_size;
2357 dm_block_t low_water_blocks;
2358 struct dm_dev *metadata_dev;
2359 fmode_t metadata_mode;
2362 * FIXME Remove validation from scope of lock.
2364 mutex_lock(&dm_thin_pool_table.mutex);
2367 ti->error = "Invalid argument count";
2376 * Set default pool features.
2378 pool_features_init(&pf);
2380 dm_consume_args(&as, 4);
2381 r = parse_pool_features(&as, &pf, ti);
2385 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2386 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2388 ti->error = "Error opening metadata block device";
2391 warn_if_metadata_device_too_big(metadata_dev->bdev);
2393 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2395 ti->error = "Error getting data device";
2399 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2400 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2401 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2402 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2403 ti->error = "Invalid block size";
2408 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2409 ti->error = "Invalid low water mark";
2414 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2420 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2421 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2428 * 'pool_created' reflects whether this is the first table load.
2429 * Top level discard support is not allowed to be changed after
2430 * initial load. This would require a pool reload to trigger thin
2433 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2434 ti->error = "Discard support cannot be disabled once enabled";
2436 goto out_flags_changed;
2441 pt->metadata_dev = metadata_dev;
2442 pt->data_dev = data_dev;
2443 pt->low_water_blocks = low_water_blocks;
2444 pt->adjusted_pf = pt->requested_pf = pf;
2445 ti->num_flush_bios = 1;
2448 * Only need to enable discards if the pool should pass
2449 * them down to the data device. The thin device's discard
2450 * processing will cause mappings to be removed from the btree.
2452 ti->discard_zeroes_data_unsupported = true;
2453 if (pf.discard_enabled && pf.discard_passdown) {
2454 ti->num_discard_bios = 1;
2457 * Setting 'discards_supported' circumvents the normal
2458 * stacking of discard limits (this keeps the pool and
2459 * thin devices' discard limits consistent).
2461 ti->discards_supported = true;
2465 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2466 calc_metadata_threshold(pt),
2467 metadata_low_callback,
2472 pt->callbacks.congested_fn = pool_is_congested;
2473 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2475 mutex_unlock(&dm_thin_pool_table.mutex);
2484 dm_put_device(ti, data_dev);
2486 dm_put_device(ti, metadata_dev);
2488 mutex_unlock(&dm_thin_pool_table.mutex);
2493 static int pool_map(struct dm_target *ti, struct bio *bio)
2496 struct pool_c *pt = ti->private;
2497 struct pool *pool = pt->pool;
2498 unsigned long flags;
2501 * As this is a singleton target, ti->begin is always zero.
2503 spin_lock_irqsave(&pool->lock, flags);
2504 bio->bi_bdev = pt->data_dev->bdev;
2505 r = DM_MAPIO_REMAPPED;
2506 spin_unlock_irqrestore(&pool->lock, flags);
2511 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2514 struct pool_c *pt = ti->private;
2515 struct pool *pool = pt->pool;
2516 sector_t data_size = ti->len;
2517 dm_block_t sb_data_size;
2519 *need_commit = false;
2521 (void) sector_div(data_size, pool->sectors_per_block);
2523 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2525 DMERR("%s: failed to retrieve data device size",
2526 dm_device_name(pool->pool_md));
2530 if (data_size < sb_data_size) {
2531 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2532 dm_device_name(pool->pool_md),
2533 (unsigned long long)data_size, sb_data_size);
2536 } else if (data_size > sb_data_size) {
2537 if (dm_pool_metadata_needs_check(pool->pmd)) {
2538 DMERR("%s: unable to grow the data device until repaired.",
2539 dm_device_name(pool->pool_md));
2544 DMINFO("%s: growing the data device from %llu to %llu blocks",
2545 dm_device_name(pool->pool_md),
2546 sb_data_size, (unsigned long long)data_size);
2547 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2549 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2553 *need_commit = true;
2559 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2562 struct pool_c *pt = ti->private;
2563 struct pool *pool = pt->pool;
2564 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2566 *need_commit = false;
2568 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2570 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2572 DMERR("%s: failed to retrieve metadata device size",
2573 dm_device_name(pool->pool_md));
2577 if (metadata_dev_size < sb_metadata_dev_size) {
2578 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2579 dm_device_name(pool->pool_md),
2580 metadata_dev_size, sb_metadata_dev_size);
2583 } else if (metadata_dev_size > sb_metadata_dev_size) {
2584 if (dm_pool_metadata_needs_check(pool->pmd)) {
2585 DMERR("%s: unable to grow the metadata device until repaired.",
2586 dm_device_name(pool->pool_md));
2590 warn_if_metadata_device_too_big(pool->md_dev);
2591 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2592 dm_device_name(pool->pool_md),
2593 sb_metadata_dev_size, metadata_dev_size);
2594 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2596 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2600 *need_commit = true;
2607 * Retrieves the number of blocks of the data device from
2608 * the superblock and compares it to the actual device size,
2609 * thus resizing the data device in case it has grown.
2611 * This both copes with opening preallocated data devices in the ctr
2612 * being followed by a resume
2614 * calling the resume method individually after userspace has
2615 * grown the data device in reaction to a table event.
2617 static int pool_preresume(struct dm_target *ti)
2620 bool need_commit1, need_commit2;
2621 struct pool_c *pt = ti->private;
2622 struct pool *pool = pt->pool;
2625 * Take control of the pool object.
2627 r = bind_control_target(pool, ti);
2631 r = maybe_resize_data_dev(ti, &need_commit1);
2635 r = maybe_resize_metadata_dev(ti, &need_commit2);
2639 if (need_commit1 || need_commit2)
2640 (void) commit(pool);
2645 static void pool_resume(struct dm_target *ti)
2647 struct pool_c *pt = ti->private;
2648 struct pool *pool = pt->pool;
2649 unsigned long flags;
2651 spin_lock_irqsave(&pool->lock, flags);
2652 pool->low_water_triggered = false;
2653 spin_unlock_irqrestore(&pool->lock, flags);
2656 do_waker(&pool->waker.work);
2659 static void pool_postsuspend(struct dm_target *ti)
2661 struct pool_c *pt = ti->private;
2662 struct pool *pool = pt->pool;
2664 cancel_delayed_work(&pool->waker);
2665 flush_workqueue(pool->wq);
2666 (void) commit(pool);
2669 static int check_arg_count(unsigned argc, unsigned args_required)
2671 if (argc != args_required) {
2672 DMWARN("Message received with %u arguments instead of %u.",
2673 argc, args_required);
2680 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2682 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2683 *dev_id <= MAX_DEV_ID)
2687 DMWARN("Message received with invalid device id: %s", arg);
2692 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2697 r = check_arg_count(argc, 2);
2701 r = read_dev_id(argv[1], &dev_id, 1);
2705 r = dm_pool_create_thin(pool->pmd, dev_id);
2707 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2715 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2718 dm_thin_id origin_dev_id;
2721 r = check_arg_count(argc, 3);
2725 r = read_dev_id(argv[1], &dev_id, 1);
2729 r = read_dev_id(argv[2], &origin_dev_id, 1);
2733 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2735 DMWARN("Creation of new snapshot %s of device %s failed.",
2743 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2748 r = check_arg_count(argc, 2);
2752 r = read_dev_id(argv[1], &dev_id, 1);
2756 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2758 DMWARN("Deletion of thin device %s failed.", argv[1]);
2763 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2765 dm_thin_id old_id, new_id;
2768 r = check_arg_count(argc, 3);
2772 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2773 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2777 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2778 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2782 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2784 DMWARN("Failed to change transaction id from %s to %s.",
2792 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2796 r = check_arg_count(argc, 1);
2800 (void) commit(pool);
2802 r = dm_pool_reserve_metadata_snap(pool->pmd);
2804 DMWARN("reserve_metadata_snap message failed.");
2809 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2813 r = check_arg_count(argc, 1);
2817 r = dm_pool_release_metadata_snap(pool->pmd);
2819 DMWARN("release_metadata_snap message failed.");
2825 * Messages supported:
2826 * create_thin <dev_id>
2827 * create_snap <dev_id> <origin_id>
2829 * trim <dev_id> <new_size_in_sectors>
2830 * set_transaction_id <current_trans_id> <new_trans_id>
2831 * reserve_metadata_snap
2832 * release_metadata_snap
2834 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2837 struct pool_c *pt = ti->private;
2838 struct pool *pool = pt->pool;
2840 if (!strcasecmp(argv[0], "create_thin"))
2841 r = process_create_thin_mesg(argc, argv, pool);
2843 else if (!strcasecmp(argv[0], "create_snap"))
2844 r = process_create_snap_mesg(argc, argv, pool);
2846 else if (!strcasecmp(argv[0], "delete"))
2847 r = process_delete_mesg(argc, argv, pool);
2849 else if (!strcasecmp(argv[0], "set_transaction_id"))
2850 r = process_set_transaction_id_mesg(argc, argv, pool);
2852 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2853 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2855 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2856 r = process_release_metadata_snap_mesg(argc, argv, pool);
2859 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2862 (void) commit(pool);
2867 static void emit_flags(struct pool_features *pf, char *result,
2868 unsigned sz, unsigned maxlen)
2870 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2871 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2872 pf->error_if_no_space;
2873 DMEMIT("%u ", count);
2875 if (!pf->zero_new_blocks)
2876 DMEMIT("skip_block_zeroing ");
2878 if (!pf->discard_enabled)
2879 DMEMIT("ignore_discard ");
2881 if (!pf->discard_passdown)
2882 DMEMIT("no_discard_passdown ");
2884 if (pf->mode == PM_READ_ONLY)
2885 DMEMIT("read_only ");
2887 if (pf->error_if_no_space)
2888 DMEMIT("error_if_no_space ");
2893 * <transaction id> <used metadata sectors>/<total metadata sectors>
2894 * <used data sectors>/<total data sectors> <held metadata root>
2896 static void pool_status(struct dm_target *ti, status_type_t type,
2897 unsigned status_flags, char *result, unsigned maxlen)
2901 uint64_t transaction_id;
2902 dm_block_t nr_free_blocks_data;
2903 dm_block_t nr_free_blocks_metadata;
2904 dm_block_t nr_blocks_data;
2905 dm_block_t nr_blocks_metadata;
2906 dm_block_t held_root;
2907 char buf[BDEVNAME_SIZE];
2908 char buf2[BDEVNAME_SIZE];
2909 struct pool_c *pt = ti->private;
2910 struct pool *pool = pt->pool;
2913 case STATUSTYPE_INFO:
2914 if (get_pool_mode(pool) == PM_FAIL) {
2919 /* Commit to ensure statistics aren't out-of-date */
2920 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2921 (void) commit(pool);
2923 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2925 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2926 dm_device_name(pool->pool_md), r);
2930 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2932 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2933 dm_device_name(pool->pool_md), r);
2937 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2939 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2940 dm_device_name(pool->pool_md), r);
2944 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2946 DMERR("%s: dm_pool_get_free_block_count returned %d",
2947 dm_device_name(pool->pool_md), r);
2951 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2953 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2954 dm_device_name(pool->pool_md), r);
2958 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2960 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2961 dm_device_name(pool->pool_md), r);
2965 DMEMIT("%llu %llu/%llu %llu/%llu ",
2966 (unsigned long long)transaction_id,
2967 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2968 (unsigned long long)nr_blocks_metadata,
2969 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2970 (unsigned long long)nr_blocks_data);
2973 DMEMIT("%llu ", held_root);
2977 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
2978 DMEMIT("out_of_data_space ");
2979 else if (pool->pf.mode == PM_READ_ONLY)
2984 if (!pool->pf.discard_enabled)
2985 DMEMIT("ignore_discard ");
2986 else if (pool->pf.discard_passdown)
2987 DMEMIT("discard_passdown ");
2989 DMEMIT("no_discard_passdown ");
2991 if (pool->pf.error_if_no_space)
2992 DMEMIT("error_if_no_space ");
2994 DMEMIT("queue_if_no_space ");
2998 case STATUSTYPE_TABLE:
2999 DMEMIT("%s %s %lu %llu ",
3000 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3001 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3002 (unsigned long)pool->sectors_per_block,
3003 (unsigned long long)pt->low_water_blocks);
3004 emit_flags(&pt->requested_pf, result, sz, maxlen);
3013 static int pool_iterate_devices(struct dm_target *ti,
3014 iterate_devices_callout_fn fn, void *data)
3016 struct pool_c *pt = ti->private;
3018 return fn(ti, pt->data_dev, 0, ti->len, data);
3021 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3022 struct bio_vec *biovec, int max_size)
3024 struct pool_c *pt = ti->private;
3025 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3027 if (!q->merge_bvec_fn)
3030 bvm->bi_bdev = pt->data_dev->bdev;
3032 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3035 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3037 struct pool *pool = pt->pool;
3038 struct queue_limits *data_limits;
3040 limits->max_discard_sectors = pool->sectors_per_block;
3043 * discard_granularity is just a hint, and not enforced.
3045 if (pt->adjusted_pf.discard_passdown) {
3046 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3047 limits->discard_granularity = data_limits->discard_granularity;
3049 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3052 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3054 struct pool_c *pt = ti->private;
3055 struct pool *pool = pt->pool;
3056 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3059 * If the system-determined stacked limits are compatible with the
3060 * pool's blocksize (io_opt is a factor) do not override them.
3062 if (io_opt_sectors < pool->sectors_per_block ||
3063 do_div(io_opt_sectors, pool->sectors_per_block)) {
3064 blk_limits_io_min(limits, 0);
3065 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3069 * pt->adjusted_pf is a staging area for the actual features to use.
3070 * They get transferred to the live pool in bind_control_target()
3071 * called from pool_preresume().
3073 if (!pt->adjusted_pf.discard_enabled) {
3075 * Must explicitly disallow stacking discard limits otherwise the
3076 * block layer will stack them if pool's data device has support.
3077 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3078 * user to see that, so make sure to set all discard limits to 0.
3080 limits->discard_granularity = 0;
3084 disable_passdown_if_not_supported(pt);
3086 set_discard_limits(pt, limits);
3089 static struct target_type pool_target = {
3090 .name = "thin-pool",
3091 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3092 DM_TARGET_IMMUTABLE,
3093 .version = {1, 12, 0},
3094 .module = THIS_MODULE,
3098 .postsuspend = pool_postsuspend,
3099 .preresume = pool_preresume,
3100 .resume = pool_resume,
3101 .message = pool_message,
3102 .status = pool_status,
3103 .merge = pool_merge,
3104 .iterate_devices = pool_iterate_devices,
3105 .io_hints = pool_io_hints,
3108 /*----------------------------------------------------------------
3109 * Thin target methods
3110 *--------------------------------------------------------------*/
3111 static void thin_get(struct thin_c *tc)
3113 atomic_inc(&tc->refcount);
3116 static void thin_put(struct thin_c *tc)
3118 if (atomic_dec_and_test(&tc->refcount))
3119 complete(&tc->can_destroy);
3122 static void thin_dtr(struct dm_target *ti)
3124 struct thin_c *tc = ti->private;
3125 unsigned long flags;
3128 wait_for_completion(&tc->can_destroy);
3130 spin_lock_irqsave(&tc->pool->lock, flags);
3131 list_del_rcu(&tc->list);
3132 spin_unlock_irqrestore(&tc->pool->lock, flags);
3135 mutex_lock(&dm_thin_pool_table.mutex);
3137 __pool_dec(tc->pool);
3138 dm_pool_close_thin_device(tc->td);
3139 dm_put_device(ti, tc->pool_dev);
3141 dm_put_device(ti, tc->origin_dev);
3144 mutex_unlock(&dm_thin_pool_table.mutex);
3148 * Thin target parameters:
3150 * <pool_dev> <dev_id> [origin_dev]
3152 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3153 * dev_id: the internal device identifier
3154 * origin_dev: a device external to the pool that should act as the origin
3156 * If the pool device has discards disabled, they get disabled for the thin
3159 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3163 struct dm_dev *pool_dev, *origin_dev;
3164 struct mapped_device *pool_md;
3165 unsigned long flags;
3167 mutex_lock(&dm_thin_pool_table.mutex);
3169 if (argc != 2 && argc != 3) {
3170 ti->error = "Invalid argument count";
3175 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3177 ti->error = "Out of memory";
3181 spin_lock_init(&tc->lock);
3182 bio_list_init(&tc->deferred_bio_list);
3183 bio_list_init(&tc->retry_on_resume_list);
3184 tc->sort_bio_list = RB_ROOT;
3187 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3189 ti->error = "Error opening origin device";
3190 goto bad_origin_dev;
3192 tc->origin_dev = origin_dev;
3195 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3197 ti->error = "Error opening pool device";
3200 tc->pool_dev = pool_dev;
3202 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3203 ti->error = "Invalid device id";
3208 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3210 ti->error = "Couldn't get pool mapped device";
3215 tc->pool = __pool_table_lookup(pool_md);
3217 ti->error = "Couldn't find pool object";
3219 goto bad_pool_lookup;
3221 __pool_inc(tc->pool);
3223 if (get_pool_mode(tc->pool) == PM_FAIL) {
3224 ti->error = "Couldn't open thin device, Pool is in fail mode";
3229 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3231 ti->error = "Couldn't open thin internal device";
3235 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3237 goto bad_target_max_io_len;
3239 ti->num_flush_bios = 1;
3240 ti->flush_supported = true;
3241 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3243 /* In case the pool supports discards, pass them on. */
3244 ti->discard_zeroes_data_unsupported = true;
3245 if (tc->pool->pf.discard_enabled) {
3246 ti->discards_supported = true;
3247 ti->num_discard_bios = 1;
3248 /* Discard bios must be split on a block boundary */
3249 ti->split_discard_bios = true;
3254 mutex_unlock(&dm_thin_pool_table.mutex);
3256 atomic_set(&tc->refcount, 1);
3257 init_completion(&tc->can_destroy);
3259 spin_lock_irqsave(&tc->pool->lock, flags);
3260 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3261 spin_unlock_irqrestore(&tc->pool->lock, flags);
3263 * This synchronize_rcu() call is needed here otherwise we risk a
3264 * wake_worker() call finding no bios to process (because the newly
3265 * added tc isn't yet visible). So this reduces latency since we
3266 * aren't then dependent on the periodic commit to wake_worker().
3272 bad_target_max_io_len:
3273 dm_pool_close_thin_device(tc->td);
3275 __pool_dec(tc->pool);
3279 dm_put_device(ti, tc->pool_dev);
3282 dm_put_device(ti, tc->origin_dev);
3286 mutex_unlock(&dm_thin_pool_table.mutex);
3291 static int thin_map(struct dm_target *ti, struct bio *bio)
3293 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3295 return thin_bio_map(ti, bio);
3298 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3300 unsigned long flags;
3301 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3302 struct list_head work;
3303 struct dm_thin_new_mapping *m, *tmp;
3304 struct pool *pool = h->tc->pool;
3306 if (h->shared_read_entry) {
3307 INIT_LIST_HEAD(&work);
3308 dm_deferred_entry_dec(h->shared_read_entry, &work);
3310 spin_lock_irqsave(&pool->lock, flags);
3311 list_for_each_entry_safe(m, tmp, &work, list) {
3314 __maybe_add_mapping(m);
3316 spin_unlock_irqrestore(&pool->lock, flags);
3319 if (h->all_io_entry) {
3320 INIT_LIST_HEAD(&work);
3321 dm_deferred_entry_dec(h->all_io_entry, &work);
3322 if (!list_empty(&work)) {
3323 spin_lock_irqsave(&pool->lock, flags);
3324 list_for_each_entry_safe(m, tmp, &work, list)
3325 list_add_tail(&m->list, &pool->prepared_discards);
3326 spin_unlock_irqrestore(&pool->lock, flags);
3334 static void thin_presuspend(struct dm_target *ti)
3336 struct thin_c *tc = ti->private;
3338 if (dm_noflush_suspending(ti))
3339 noflush_work(tc, do_noflush_start);
3342 static void thin_postsuspend(struct dm_target *ti)
3344 struct thin_c *tc = ti->private;
3347 * The dm_noflush_suspending flag has been cleared by now, so
3348 * unfortunately we must always run this.
3350 noflush_work(tc, do_noflush_stop);
3354 * <nr mapped sectors> <highest mapped sector>
3356 static void thin_status(struct dm_target *ti, status_type_t type,
3357 unsigned status_flags, char *result, unsigned maxlen)
3361 dm_block_t mapped, highest;
3362 char buf[BDEVNAME_SIZE];
3363 struct thin_c *tc = ti->private;
3365 if (get_pool_mode(tc->pool) == PM_FAIL) {
3374 case STATUSTYPE_INFO:
3375 r = dm_thin_get_mapped_count(tc->td, &mapped);
3377 DMERR("dm_thin_get_mapped_count returned %d", r);
3381 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3383 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3387 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3389 DMEMIT("%llu", ((highest + 1) *
3390 tc->pool->sectors_per_block) - 1);
3395 case STATUSTYPE_TABLE:
3397 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3398 (unsigned long) tc->dev_id);
3400 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3411 static int thin_iterate_devices(struct dm_target *ti,
3412 iterate_devices_callout_fn fn, void *data)
3415 struct thin_c *tc = ti->private;
3416 struct pool *pool = tc->pool;
3419 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3420 * we follow a more convoluted path through to the pool's target.
3423 return 0; /* nothing is bound */
3425 blocks = pool->ti->len;
3426 (void) sector_div(blocks, pool->sectors_per_block);
3428 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3433 static struct target_type thin_target = {
3435 .version = {1, 12, 0},
3436 .module = THIS_MODULE,
3440 .end_io = thin_endio,
3441 .presuspend = thin_presuspend,
3442 .postsuspend = thin_postsuspend,
3443 .status = thin_status,
3444 .iterate_devices = thin_iterate_devices,
3447 /*----------------------------------------------------------------*/
3449 static int __init dm_thin_init(void)
3455 r = dm_register_target(&thin_target);
3459 r = dm_register_target(&pool_target);
3461 goto bad_pool_target;
3465 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3466 if (!_new_mapping_cache)
3467 goto bad_new_mapping_cache;
3471 bad_new_mapping_cache:
3472 dm_unregister_target(&pool_target);
3474 dm_unregister_target(&thin_target);
3479 static void dm_thin_exit(void)
3481 dm_unregister_target(&thin_target);
3482 dm_unregister_target(&pool_target);
3484 kmem_cache_destroy(_new_mapping_cache);
3487 module_init(dm_thin_init);
3488 module_exit(dm_thin_exit);
3490 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3492 MODULE_LICENSE("GPL");