]> Git Repo - linux.git/blob - fs/f2fs/segment.c
kprobes: Return error if we fail to reuse kprobe instead of BUG_ON()
[linux.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched/signal.h>
21
22 #include "f2fs.h"
23 #include "segment.h"
24 #include "node.h"
25 #include "gc.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
30
31 static struct kmem_cache *discard_entry_slab;
32 static struct kmem_cache *discard_cmd_slab;
33 static struct kmem_cache *sit_entry_set_slab;
34 static struct kmem_cache *inmem_entry_slab;
35
36 static unsigned long __reverse_ulong(unsigned char *str)
37 {
38         unsigned long tmp = 0;
39         int shift = 24, idx = 0;
40
41 #if BITS_PER_LONG == 64
42         shift = 56;
43 #endif
44         while (shift >= 0) {
45                 tmp |= (unsigned long)str[idx++] << shift;
46                 shift -= BITS_PER_BYTE;
47         }
48         return tmp;
49 }
50
51 /*
52  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53  * MSB and LSB are reversed in a byte by f2fs_set_bit.
54  */
55 static inline unsigned long __reverse_ffs(unsigned long word)
56 {
57         int num = 0;
58
59 #if BITS_PER_LONG == 64
60         if ((word & 0xffffffff00000000UL) == 0)
61                 num += 32;
62         else
63                 word >>= 32;
64 #endif
65         if ((word & 0xffff0000) == 0)
66                 num += 16;
67         else
68                 word >>= 16;
69
70         if ((word & 0xff00) == 0)
71                 num += 8;
72         else
73                 word >>= 8;
74
75         if ((word & 0xf0) == 0)
76                 num += 4;
77         else
78                 word >>= 4;
79
80         if ((word & 0xc) == 0)
81                 num += 2;
82         else
83                 word >>= 2;
84
85         if ((word & 0x2) == 0)
86                 num += 1;
87         return num;
88 }
89
90 /*
91  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92  * f2fs_set_bit makes MSB and LSB reversed in a byte.
93  * @size must be integral times of unsigned long.
94  * Example:
95  *                             MSB <--> LSB
96  *   f2fs_set_bit(0, bitmap) => 1000 0000
97  *   f2fs_set_bit(7, bitmap) => 0000 0001
98  */
99 static unsigned long __find_rev_next_bit(const unsigned long *addr,
100                         unsigned long size, unsigned long offset)
101 {
102         const unsigned long *p = addr + BIT_WORD(offset);
103         unsigned long result = size;
104         unsigned long tmp;
105
106         if (offset >= size)
107                 return size;
108
109         size -= (offset & ~(BITS_PER_LONG - 1));
110         offset %= BITS_PER_LONG;
111
112         while (1) {
113                 if (*p == 0)
114                         goto pass;
115
116                 tmp = __reverse_ulong((unsigned char *)p);
117
118                 tmp &= ~0UL >> offset;
119                 if (size < BITS_PER_LONG)
120                         tmp &= (~0UL << (BITS_PER_LONG - size));
121                 if (tmp)
122                         goto found;
123 pass:
124                 if (size <= BITS_PER_LONG)
125                         break;
126                 size -= BITS_PER_LONG;
127                 offset = 0;
128                 p++;
129         }
130         return result;
131 found:
132         return result - size + __reverse_ffs(tmp);
133 }
134
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136                         unsigned long size, unsigned long offset)
137 {
138         const unsigned long *p = addr + BIT_WORD(offset);
139         unsigned long result = size;
140         unsigned long tmp;
141
142         if (offset >= size)
143                 return size;
144
145         size -= (offset & ~(BITS_PER_LONG - 1));
146         offset %= BITS_PER_LONG;
147
148         while (1) {
149                 if (*p == ~0UL)
150                         goto pass;
151
152                 tmp = __reverse_ulong((unsigned char *)p);
153
154                 if (offset)
155                         tmp |= ~0UL << (BITS_PER_LONG - offset);
156                 if (size < BITS_PER_LONG)
157                         tmp |= ~0UL >> size;
158                 if (tmp != ~0UL)
159                         goto found;
160 pass:
161                 if (size <= BITS_PER_LONG)
162                         break;
163                 size -= BITS_PER_LONG;
164                 offset = 0;
165                 p++;
166         }
167         return result;
168 found:
169         return result - size + __reverse_ffz(tmp);
170 }
171
172 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
173 {
174         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177
178         if (test_opt(sbi, LFS))
179                 return false;
180         if (sbi->gc_mode == GC_URGENT)
181                 return true;
182
183         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185 }
186
187 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
188 {
189         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190         struct f2fs_inode_info *fi = F2FS_I(inode);
191         struct inmem_pages *new;
192
193         f2fs_trace_pid(page);
194
195         set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196         SetPagePrivate(page);
197
198         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199
200         /* add atomic page indices to the list */
201         new->page = page;
202         INIT_LIST_HEAD(&new->list);
203
204         /* increase reference count with clean state */
205         mutex_lock(&fi->inmem_lock);
206         get_page(page);
207         list_add_tail(&new->list, &fi->inmem_pages);
208         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
209         if (list_empty(&fi->inmem_ilist))
210                 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
211         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
212         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
213         mutex_unlock(&fi->inmem_lock);
214
215         trace_f2fs_register_inmem_page(page, INMEM);
216 }
217
218 static int __revoke_inmem_pages(struct inode *inode,
219                                 struct list_head *head, bool drop, bool recover)
220 {
221         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222         struct inmem_pages *cur, *tmp;
223         int err = 0;
224
225         list_for_each_entry_safe(cur, tmp, head, list) {
226                 struct page *page = cur->page;
227
228                 if (drop)
229                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
230
231                 lock_page(page);
232
233                 f2fs_wait_on_page_writeback(page, DATA, true);
234
235                 if (recover) {
236                         struct dnode_of_data dn;
237                         struct node_info ni;
238
239                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
240 retry:
241                         set_new_dnode(&dn, inode, NULL, NULL, 0);
242                         err = f2fs_get_dnode_of_data(&dn, page->index,
243                                                                 LOOKUP_NODE);
244                         if (err) {
245                                 if (err == -ENOMEM) {
246                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
247                                         cond_resched();
248                                         goto retry;
249                                 }
250                                 err = -EAGAIN;
251                                 goto next;
252                         }
253
254                         err = f2fs_get_node_info(sbi, dn.nid, &ni);
255                         if (err) {
256                                 f2fs_put_dnode(&dn);
257                                 return err;
258                         }
259
260                         if (cur->old_addr == NEW_ADDR) {
261                                 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
262                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
263                         } else
264                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
265                                         cur->old_addr, ni.version, true, true);
266                         f2fs_put_dnode(&dn);
267                 }
268 next:
269                 /* we don't need to invalidate this in the sccessful status */
270                 if (drop || recover)
271                         ClearPageUptodate(page);
272                 set_page_private(page, 0);
273                 ClearPagePrivate(page);
274                 f2fs_put_page(page, 1);
275
276                 list_del(&cur->list);
277                 kmem_cache_free(inmem_entry_slab, cur);
278                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
279         }
280         return err;
281 }
282
283 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
284 {
285         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
286         struct inode *inode;
287         struct f2fs_inode_info *fi;
288 next:
289         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
290         if (list_empty(head)) {
291                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
292                 return;
293         }
294         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
295         inode = igrab(&fi->vfs_inode);
296         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
297
298         if (inode) {
299                 if (gc_failure) {
300                         if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
301                                 goto drop;
302                         goto skip;
303                 }
304 drop:
305                 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
306                 f2fs_drop_inmem_pages(inode);
307                 iput(inode);
308         }
309 skip:
310         congestion_wait(BLK_RW_ASYNC, HZ/50);
311         cond_resched();
312         goto next;
313 }
314
315 void f2fs_drop_inmem_pages(struct inode *inode)
316 {
317         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
318         struct f2fs_inode_info *fi = F2FS_I(inode);
319
320         mutex_lock(&fi->inmem_lock);
321         __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
322         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
323         if (!list_empty(&fi->inmem_ilist))
324                 list_del_init(&fi->inmem_ilist);
325         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
326         mutex_unlock(&fi->inmem_lock);
327
328         clear_inode_flag(inode, FI_ATOMIC_FILE);
329         fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
330         stat_dec_atomic_write(inode);
331 }
332
333 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
334 {
335         struct f2fs_inode_info *fi = F2FS_I(inode);
336         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
337         struct list_head *head = &fi->inmem_pages;
338         struct inmem_pages *cur = NULL;
339
340         f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
341
342         mutex_lock(&fi->inmem_lock);
343         list_for_each_entry(cur, head, list) {
344                 if (cur->page == page)
345                         break;
346         }
347
348         f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
349         list_del(&cur->list);
350         mutex_unlock(&fi->inmem_lock);
351
352         dec_page_count(sbi, F2FS_INMEM_PAGES);
353         kmem_cache_free(inmem_entry_slab, cur);
354
355         ClearPageUptodate(page);
356         set_page_private(page, 0);
357         ClearPagePrivate(page);
358         f2fs_put_page(page, 0);
359
360         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
361 }
362
363 static int __f2fs_commit_inmem_pages(struct inode *inode)
364 {
365         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
366         struct f2fs_inode_info *fi = F2FS_I(inode);
367         struct inmem_pages *cur, *tmp;
368         struct f2fs_io_info fio = {
369                 .sbi = sbi,
370                 .ino = inode->i_ino,
371                 .type = DATA,
372                 .op = REQ_OP_WRITE,
373                 .op_flags = REQ_SYNC | REQ_PRIO,
374                 .io_type = FS_DATA_IO,
375         };
376         struct list_head revoke_list;
377         pgoff_t last_idx = ULONG_MAX;
378         int err = 0;
379
380         INIT_LIST_HEAD(&revoke_list);
381
382         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
383                 struct page *page = cur->page;
384
385                 lock_page(page);
386                 if (page->mapping == inode->i_mapping) {
387                         trace_f2fs_commit_inmem_page(page, INMEM);
388
389                         set_page_dirty(page);
390                         f2fs_wait_on_page_writeback(page, DATA, true);
391                         if (clear_page_dirty_for_io(page)) {
392                                 inode_dec_dirty_pages(inode);
393                                 f2fs_remove_dirty_inode(inode);
394                         }
395 retry:
396                         fio.page = page;
397                         fio.old_blkaddr = NULL_ADDR;
398                         fio.encrypted_page = NULL;
399                         fio.need_lock = LOCK_DONE;
400                         err = f2fs_do_write_data_page(&fio);
401                         if (err) {
402                                 if (err == -ENOMEM) {
403                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
404                                         cond_resched();
405                                         goto retry;
406                                 }
407                                 unlock_page(page);
408                                 break;
409                         }
410                         /* record old blkaddr for revoking */
411                         cur->old_addr = fio.old_blkaddr;
412                         last_idx = page->index;
413                 }
414                 unlock_page(page);
415                 list_move_tail(&cur->list, &revoke_list);
416         }
417
418         if (last_idx != ULONG_MAX)
419                 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
420
421         if (err) {
422                 /*
423                  * try to revoke all committed pages, but still we could fail
424                  * due to no memory or other reason, if that happened, EAGAIN
425                  * will be returned, which means in such case, transaction is
426                  * already not integrity, caller should use journal to do the
427                  * recovery or rewrite & commit last transaction. For other
428                  * error number, revoking was done by filesystem itself.
429                  */
430                 err = __revoke_inmem_pages(inode, &revoke_list, false, true);
431
432                 /* drop all uncommitted pages */
433                 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
434         } else {
435                 __revoke_inmem_pages(inode, &revoke_list, false, false);
436         }
437
438         return err;
439 }
440
441 int f2fs_commit_inmem_pages(struct inode *inode)
442 {
443         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
444         struct f2fs_inode_info *fi = F2FS_I(inode);
445         int err;
446
447         f2fs_balance_fs(sbi, true);
448
449         down_write(&fi->i_gc_rwsem[WRITE]);
450
451         f2fs_lock_op(sbi);
452         set_inode_flag(inode, FI_ATOMIC_COMMIT);
453
454         mutex_lock(&fi->inmem_lock);
455         err = __f2fs_commit_inmem_pages(inode);
456
457         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
458         if (!list_empty(&fi->inmem_ilist))
459                 list_del_init(&fi->inmem_ilist);
460         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
461         mutex_unlock(&fi->inmem_lock);
462
463         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
464
465         f2fs_unlock_op(sbi);
466         up_write(&fi->i_gc_rwsem[WRITE]);
467
468         return err;
469 }
470
471 /*
472  * This function balances dirty node and dentry pages.
473  * In addition, it controls garbage collection.
474  */
475 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
476 {
477         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
478                 f2fs_show_injection_info(FAULT_CHECKPOINT);
479                 f2fs_stop_checkpoint(sbi, false);
480         }
481
482         /* balance_fs_bg is able to be pending */
483         if (need && excess_cached_nats(sbi))
484                 f2fs_balance_fs_bg(sbi);
485
486         /*
487          * We should do GC or end up with checkpoint, if there are so many dirty
488          * dir/node pages without enough free segments.
489          */
490         if (has_not_enough_free_secs(sbi, 0, 0)) {
491                 mutex_lock(&sbi->gc_mutex);
492                 f2fs_gc(sbi, false, false, NULL_SEGNO);
493         }
494 }
495
496 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
497 {
498         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
499                 return;
500
501         /* try to shrink extent cache when there is no enough memory */
502         if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
503                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
504
505         /* check the # of cached NAT entries */
506         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
507                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
508
509         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
510                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
511         else
512                 f2fs_build_free_nids(sbi, false, false);
513
514         if (!is_idle(sbi) &&
515                 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
516                 return;
517
518         /* checkpoint is the only way to shrink partial cached entries */
519         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
520                         !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
521                         excess_prefree_segs(sbi) ||
522                         excess_dirty_nats(sbi) ||
523                         excess_dirty_nodes(sbi) ||
524                         f2fs_time_over(sbi, CP_TIME)) {
525                 if (test_opt(sbi, DATA_FLUSH)) {
526                         struct blk_plug plug;
527
528                         blk_start_plug(&plug);
529                         f2fs_sync_dirty_inodes(sbi, FILE_INODE);
530                         blk_finish_plug(&plug);
531                 }
532                 f2fs_sync_fs(sbi->sb, true);
533                 stat_inc_bg_cp_count(sbi->stat_info);
534         }
535 }
536
537 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
538                                 struct block_device *bdev)
539 {
540         struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
541         int ret;
542
543         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
544         bio_set_dev(bio, bdev);
545         ret = submit_bio_wait(bio);
546         bio_put(bio);
547
548         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
549                                 test_opt(sbi, FLUSH_MERGE), ret);
550         return ret;
551 }
552
553 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
554 {
555         int ret = 0;
556         int i;
557
558         if (!sbi->s_ndevs)
559                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
560
561         for (i = 0; i < sbi->s_ndevs; i++) {
562                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
563                         continue;
564                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
565                 if (ret)
566                         break;
567         }
568         return ret;
569 }
570
571 static int issue_flush_thread(void *data)
572 {
573         struct f2fs_sb_info *sbi = data;
574         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
575         wait_queue_head_t *q = &fcc->flush_wait_queue;
576 repeat:
577         if (kthread_should_stop())
578                 return 0;
579
580         sb_start_intwrite(sbi->sb);
581
582         if (!llist_empty(&fcc->issue_list)) {
583                 struct flush_cmd *cmd, *next;
584                 int ret;
585
586                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
587                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
588
589                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
590
591                 ret = submit_flush_wait(sbi, cmd->ino);
592                 atomic_inc(&fcc->issued_flush);
593
594                 llist_for_each_entry_safe(cmd, next,
595                                           fcc->dispatch_list, llnode) {
596                         cmd->ret = ret;
597                         complete(&cmd->wait);
598                 }
599                 fcc->dispatch_list = NULL;
600         }
601
602         sb_end_intwrite(sbi->sb);
603
604         wait_event_interruptible(*q,
605                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
606         goto repeat;
607 }
608
609 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
610 {
611         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
612         struct flush_cmd cmd;
613         int ret;
614
615         if (test_opt(sbi, NOBARRIER))
616                 return 0;
617
618         if (!test_opt(sbi, FLUSH_MERGE)) {
619                 ret = submit_flush_wait(sbi, ino);
620                 atomic_inc(&fcc->issued_flush);
621                 return ret;
622         }
623
624         if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
625                 ret = submit_flush_wait(sbi, ino);
626                 atomic_dec(&fcc->issing_flush);
627
628                 atomic_inc(&fcc->issued_flush);
629                 return ret;
630         }
631
632         cmd.ino = ino;
633         init_completion(&cmd.wait);
634
635         llist_add(&cmd.llnode, &fcc->issue_list);
636
637         /* update issue_list before we wake up issue_flush thread */
638         smp_mb();
639
640         if (waitqueue_active(&fcc->flush_wait_queue))
641                 wake_up(&fcc->flush_wait_queue);
642
643         if (fcc->f2fs_issue_flush) {
644                 wait_for_completion(&cmd.wait);
645                 atomic_dec(&fcc->issing_flush);
646         } else {
647                 struct llist_node *list;
648
649                 list = llist_del_all(&fcc->issue_list);
650                 if (!list) {
651                         wait_for_completion(&cmd.wait);
652                         atomic_dec(&fcc->issing_flush);
653                 } else {
654                         struct flush_cmd *tmp, *next;
655
656                         ret = submit_flush_wait(sbi, ino);
657
658                         llist_for_each_entry_safe(tmp, next, list, llnode) {
659                                 if (tmp == &cmd) {
660                                         cmd.ret = ret;
661                                         atomic_dec(&fcc->issing_flush);
662                                         continue;
663                                 }
664                                 tmp->ret = ret;
665                                 complete(&tmp->wait);
666                         }
667                 }
668         }
669
670         return cmd.ret;
671 }
672
673 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
674 {
675         dev_t dev = sbi->sb->s_bdev->bd_dev;
676         struct flush_cmd_control *fcc;
677         int err = 0;
678
679         if (SM_I(sbi)->fcc_info) {
680                 fcc = SM_I(sbi)->fcc_info;
681                 if (fcc->f2fs_issue_flush)
682                         return err;
683                 goto init_thread;
684         }
685
686         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
687         if (!fcc)
688                 return -ENOMEM;
689         atomic_set(&fcc->issued_flush, 0);
690         atomic_set(&fcc->issing_flush, 0);
691         init_waitqueue_head(&fcc->flush_wait_queue);
692         init_llist_head(&fcc->issue_list);
693         SM_I(sbi)->fcc_info = fcc;
694         if (!test_opt(sbi, FLUSH_MERGE))
695                 return err;
696
697 init_thread:
698         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
699                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
700         if (IS_ERR(fcc->f2fs_issue_flush)) {
701                 err = PTR_ERR(fcc->f2fs_issue_flush);
702                 kfree(fcc);
703                 SM_I(sbi)->fcc_info = NULL;
704                 return err;
705         }
706
707         return err;
708 }
709
710 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
711 {
712         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
713
714         if (fcc && fcc->f2fs_issue_flush) {
715                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
716
717                 fcc->f2fs_issue_flush = NULL;
718                 kthread_stop(flush_thread);
719         }
720         if (free) {
721                 kfree(fcc);
722                 SM_I(sbi)->fcc_info = NULL;
723         }
724 }
725
726 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
727 {
728         int ret = 0, i;
729
730         if (!sbi->s_ndevs)
731                 return 0;
732
733         for (i = 1; i < sbi->s_ndevs; i++) {
734                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
735                         continue;
736                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
737                 if (ret)
738                         break;
739
740                 spin_lock(&sbi->dev_lock);
741                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
742                 spin_unlock(&sbi->dev_lock);
743         }
744
745         return ret;
746 }
747
748 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
749                 enum dirty_type dirty_type)
750 {
751         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
752
753         /* need not be added */
754         if (IS_CURSEG(sbi, segno))
755                 return;
756
757         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
758                 dirty_i->nr_dirty[dirty_type]++;
759
760         if (dirty_type == DIRTY) {
761                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
762                 enum dirty_type t = sentry->type;
763
764                 if (unlikely(t >= DIRTY)) {
765                         f2fs_bug_on(sbi, 1);
766                         return;
767                 }
768                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
769                         dirty_i->nr_dirty[t]++;
770         }
771 }
772
773 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
774                 enum dirty_type dirty_type)
775 {
776         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
777
778         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
779                 dirty_i->nr_dirty[dirty_type]--;
780
781         if (dirty_type == DIRTY) {
782                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
783                 enum dirty_type t = sentry->type;
784
785                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
786                         dirty_i->nr_dirty[t]--;
787
788                 if (get_valid_blocks(sbi, segno, true) == 0)
789                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
790                                                 dirty_i->victim_secmap);
791         }
792 }
793
794 /*
795  * Should not occur error such as -ENOMEM.
796  * Adding dirty entry into seglist is not critical operation.
797  * If a given segment is one of current working segments, it won't be added.
798  */
799 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
800 {
801         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
802         unsigned short valid_blocks;
803
804         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
805                 return;
806
807         mutex_lock(&dirty_i->seglist_lock);
808
809         valid_blocks = get_valid_blocks(sbi, segno, false);
810
811         if (valid_blocks == 0) {
812                 __locate_dirty_segment(sbi, segno, PRE);
813                 __remove_dirty_segment(sbi, segno, DIRTY);
814         } else if (valid_blocks < sbi->blocks_per_seg) {
815                 __locate_dirty_segment(sbi, segno, DIRTY);
816         } else {
817                 /* Recovery routine with SSR needs this */
818                 __remove_dirty_segment(sbi, segno, DIRTY);
819         }
820
821         mutex_unlock(&dirty_i->seglist_lock);
822 }
823
824 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
825                 struct block_device *bdev, block_t lstart,
826                 block_t start, block_t len)
827 {
828         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
829         struct list_head *pend_list;
830         struct discard_cmd *dc;
831
832         f2fs_bug_on(sbi, !len);
833
834         pend_list = &dcc->pend_list[plist_idx(len)];
835
836         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
837         INIT_LIST_HEAD(&dc->list);
838         dc->bdev = bdev;
839         dc->lstart = lstart;
840         dc->start = start;
841         dc->len = len;
842         dc->ref = 0;
843         dc->state = D_PREP;
844         dc->issuing = 0;
845         dc->error = 0;
846         init_completion(&dc->wait);
847         list_add_tail(&dc->list, pend_list);
848         spin_lock_init(&dc->lock);
849         dc->bio_ref = 0;
850         atomic_inc(&dcc->discard_cmd_cnt);
851         dcc->undiscard_blks += len;
852
853         return dc;
854 }
855
856 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
857                                 struct block_device *bdev, block_t lstart,
858                                 block_t start, block_t len,
859                                 struct rb_node *parent, struct rb_node **p)
860 {
861         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
862         struct discard_cmd *dc;
863
864         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
865
866         rb_link_node(&dc->rb_node, parent, p);
867         rb_insert_color(&dc->rb_node, &dcc->root);
868
869         return dc;
870 }
871
872 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
873                                                         struct discard_cmd *dc)
874 {
875         if (dc->state == D_DONE)
876                 atomic_sub(dc->issuing, &dcc->issing_discard);
877
878         list_del(&dc->list);
879         rb_erase(&dc->rb_node, &dcc->root);
880         dcc->undiscard_blks -= dc->len;
881
882         kmem_cache_free(discard_cmd_slab, dc);
883
884         atomic_dec(&dcc->discard_cmd_cnt);
885 }
886
887 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
888                                                         struct discard_cmd *dc)
889 {
890         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
891         unsigned long flags;
892
893         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
894
895         spin_lock_irqsave(&dc->lock, flags);
896         if (dc->bio_ref) {
897                 spin_unlock_irqrestore(&dc->lock, flags);
898                 return;
899         }
900         spin_unlock_irqrestore(&dc->lock, flags);
901
902         f2fs_bug_on(sbi, dc->ref);
903
904         if (dc->error == -EOPNOTSUPP)
905                 dc->error = 0;
906
907         if (dc->error)
908                 f2fs_msg(sbi->sb, KERN_INFO,
909                         "Issue discard(%u, %u, %u) failed, ret: %d",
910                         dc->lstart, dc->start, dc->len, dc->error);
911         __detach_discard_cmd(dcc, dc);
912 }
913
914 static void f2fs_submit_discard_endio(struct bio *bio)
915 {
916         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
917         unsigned long flags;
918
919         dc->error = blk_status_to_errno(bio->bi_status);
920
921         spin_lock_irqsave(&dc->lock, flags);
922         dc->bio_ref--;
923         if (!dc->bio_ref && dc->state == D_SUBMIT) {
924                 dc->state = D_DONE;
925                 complete_all(&dc->wait);
926         }
927         spin_unlock_irqrestore(&dc->lock, flags);
928         bio_put(bio);
929 }
930
931 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
932                                 block_t start, block_t end)
933 {
934 #ifdef CONFIG_F2FS_CHECK_FS
935         struct seg_entry *sentry;
936         unsigned int segno;
937         block_t blk = start;
938         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
939         unsigned long *map;
940
941         while (blk < end) {
942                 segno = GET_SEGNO(sbi, blk);
943                 sentry = get_seg_entry(sbi, segno);
944                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
945
946                 if (end < START_BLOCK(sbi, segno + 1))
947                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
948                 else
949                         size = max_blocks;
950                 map = (unsigned long *)(sentry->cur_valid_map);
951                 offset = __find_rev_next_bit(map, size, offset);
952                 f2fs_bug_on(sbi, offset != size);
953                 blk = START_BLOCK(sbi, segno + 1);
954         }
955 #endif
956 }
957
958 static void __init_discard_policy(struct f2fs_sb_info *sbi,
959                                 struct discard_policy *dpolicy,
960                                 int discard_type, unsigned int granularity)
961 {
962         /* common policy */
963         dpolicy->type = discard_type;
964         dpolicy->sync = true;
965         dpolicy->ordered = false;
966         dpolicy->granularity = granularity;
967
968         dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
969         dpolicy->io_aware_gran = MAX_PLIST_NUM;
970
971         if (discard_type == DPOLICY_BG) {
972                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
973                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
974                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
975                 dpolicy->io_aware = true;
976                 dpolicy->sync = false;
977                 dpolicy->ordered = true;
978                 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
979                         dpolicy->granularity = 1;
980                         dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
981                 }
982         } else if (discard_type == DPOLICY_FORCE) {
983                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
984                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
985                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
986                 dpolicy->io_aware = false;
987         } else if (discard_type == DPOLICY_FSTRIM) {
988                 dpolicy->io_aware = false;
989         } else if (discard_type == DPOLICY_UMOUNT) {
990                 dpolicy->max_requests = UINT_MAX;
991                 dpolicy->io_aware = false;
992         }
993 }
994
995 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
996                                 struct block_device *bdev, block_t lstart,
997                                 block_t start, block_t len);
998 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
999 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1000                                                 struct discard_policy *dpolicy,
1001                                                 struct discard_cmd *dc,
1002                                                 unsigned int *issued)
1003 {
1004         struct block_device *bdev = dc->bdev;
1005         struct request_queue *q = bdev_get_queue(bdev);
1006         unsigned int max_discard_blocks =
1007                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1008         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1009         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1010                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1011         int flag = dpolicy->sync ? REQ_SYNC : 0;
1012         block_t lstart, start, len, total_len;
1013         int err = 0;
1014
1015         if (dc->state != D_PREP)
1016                 return 0;
1017
1018         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1019                 return 0;
1020
1021         trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1022
1023         lstart = dc->lstart;
1024         start = dc->start;
1025         len = dc->len;
1026         total_len = len;
1027
1028         dc->len = 0;
1029
1030         while (total_len && *issued < dpolicy->max_requests && !err) {
1031                 struct bio *bio = NULL;
1032                 unsigned long flags;
1033                 bool last = true;
1034
1035                 if (len > max_discard_blocks) {
1036                         len = max_discard_blocks;
1037                         last = false;
1038                 }
1039
1040                 (*issued)++;
1041                 if (*issued == dpolicy->max_requests)
1042                         last = true;
1043
1044                 dc->len += len;
1045
1046                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1047                         f2fs_show_injection_info(FAULT_DISCARD);
1048                         err = -EIO;
1049                         goto submit;
1050                 }
1051                 err = __blkdev_issue_discard(bdev,
1052                                         SECTOR_FROM_BLOCK(start),
1053                                         SECTOR_FROM_BLOCK(len),
1054                                         GFP_NOFS, 0, &bio);
1055 submit:
1056                 if (err) {
1057                         spin_lock_irqsave(&dc->lock, flags);
1058                         if (dc->state == D_PARTIAL)
1059                                 dc->state = D_SUBMIT;
1060                         spin_unlock_irqrestore(&dc->lock, flags);
1061
1062                         break;
1063                 }
1064
1065                 f2fs_bug_on(sbi, !bio);
1066
1067                 /*
1068                  * should keep before submission to avoid D_DONE
1069                  * right away
1070                  */
1071                 spin_lock_irqsave(&dc->lock, flags);
1072                 if (last)
1073                         dc->state = D_SUBMIT;
1074                 else
1075                         dc->state = D_PARTIAL;
1076                 dc->bio_ref++;
1077                 spin_unlock_irqrestore(&dc->lock, flags);
1078
1079                 atomic_inc(&dcc->issing_discard);
1080                 dc->issuing++;
1081                 list_move_tail(&dc->list, wait_list);
1082
1083                 /* sanity check on discard range */
1084                 __check_sit_bitmap(sbi, start, start + len);
1085
1086                 bio->bi_private = dc;
1087                 bio->bi_end_io = f2fs_submit_discard_endio;
1088                 bio->bi_opf |= flag;
1089                 submit_bio(bio);
1090
1091                 atomic_inc(&dcc->issued_discard);
1092
1093                 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1094
1095                 lstart += len;
1096                 start += len;
1097                 total_len -= len;
1098                 len = total_len;
1099         }
1100
1101         if (!err && len)
1102                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1103         return err;
1104 }
1105
1106 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1107                                 struct block_device *bdev, block_t lstart,
1108                                 block_t start, block_t len,
1109                                 struct rb_node **insert_p,
1110                                 struct rb_node *insert_parent)
1111 {
1112         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1113         struct rb_node **p;
1114         struct rb_node *parent = NULL;
1115         struct discard_cmd *dc = NULL;
1116
1117         if (insert_p && insert_parent) {
1118                 parent = insert_parent;
1119                 p = insert_p;
1120                 goto do_insert;
1121         }
1122
1123         p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
1124 do_insert:
1125         dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
1126         if (!dc)
1127                 return NULL;
1128
1129         return dc;
1130 }
1131
1132 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1133                                                 struct discard_cmd *dc)
1134 {
1135         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1136 }
1137
1138 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1139                                 struct discard_cmd *dc, block_t blkaddr)
1140 {
1141         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1142         struct discard_info di = dc->di;
1143         bool modified = false;
1144
1145         if (dc->state == D_DONE || dc->len == 1) {
1146                 __remove_discard_cmd(sbi, dc);
1147                 return;
1148         }
1149
1150         dcc->undiscard_blks -= di.len;
1151
1152         if (blkaddr > di.lstart) {
1153                 dc->len = blkaddr - dc->lstart;
1154                 dcc->undiscard_blks += dc->len;
1155                 __relocate_discard_cmd(dcc, dc);
1156                 modified = true;
1157         }
1158
1159         if (blkaddr < di.lstart + di.len - 1) {
1160                 if (modified) {
1161                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1162                                         di.start + blkaddr + 1 - di.lstart,
1163                                         di.lstart + di.len - 1 - blkaddr,
1164                                         NULL, NULL);
1165                 } else {
1166                         dc->lstart++;
1167                         dc->len--;
1168                         dc->start++;
1169                         dcc->undiscard_blks += dc->len;
1170                         __relocate_discard_cmd(dcc, dc);
1171                 }
1172         }
1173 }
1174
1175 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1176                                 struct block_device *bdev, block_t lstart,
1177                                 block_t start, block_t len)
1178 {
1179         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1180         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1181         struct discard_cmd *dc;
1182         struct discard_info di = {0};
1183         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1184         struct request_queue *q = bdev_get_queue(bdev);
1185         unsigned int max_discard_blocks =
1186                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1187         block_t end = lstart + len;
1188
1189         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1190                                         NULL, lstart,
1191                                         (struct rb_entry **)&prev_dc,
1192                                         (struct rb_entry **)&next_dc,
1193                                         &insert_p, &insert_parent, true);
1194         if (dc)
1195                 prev_dc = dc;
1196
1197         if (!prev_dc) {
1198                 di.lstart = lstart;
1199                 di.len = next_dc ? next_dc->lstart - lstart : len;
1200                 di.len = min(di.len, len);
1201                 di.start = start;
1202         }
1203
1204         while (1) {
1205                 struct rb_node *node;
1206                 bool merged = false;
1207                 struct discard_cmd *tdc = NULL;
1208
1209                 if (prev_dc) {
1210                         di.lstart = prev_dc->lstart + prev_dc->len;
1211                         if (di.lstart < lstart)
1212                                 di.lstart = lstart;
1213                         if (di.lstart >= end)
1214                                 break;
1215
1216                         if (!next_dc || next_dc->lstart > end)
1217                                 di.len = end - di.lstart;
1218                         else
1219                                 di.len = next_dc->lstart - di.lstart;
1220                         di.start = start + di.lstart - lstart;
1221                 }
1222
1223                 if (!di.len)
1224                         goto next;
1225
1226                 if (prev_dc && prev_dc->state == D_PREP &&
1227                         prev_dc->bdev == bdev &&
1228                         __is_discard_back_mergeable(&di, &prev_dc->di,
1229                                                         max_discard_blocks)) {
1230                         prev_dc->di.len += di.len;
1231                         dcc->undiscard_blks += di.len;
1232                         __relocate_discard_cmd(dcc, prev_dc);
1233                         di = prev_dc->di;
1234                         tdc = prev_dc;
1235                         merged = true;
1236                 }
1237
1238                 if (next_dc && next_dc->state == D_PREP &&
1239                         next_dc->bdev == bdev &&
1240                         __is_discard_front_mergeable(&di, &next_dc->di,
1241                                                         max_discard_blocks)) {
1242                         next_dc->di.lstart = di.lstart;
1243                         next_dc->di.len += di.len;
1244                         next_dc->di.start = di.start;
1245                         dcc->undiscard_blks += di.len;
1246                         __relocate_discard_cmd(dcc, next_dc);
1247                         if (tdc)
1248                                 __remove_discard_cmd(sbi, tdc);
1249                         merged = true;
1250                 }
1251
1252                 if (!merged) {
1253                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1254                                                         di.len, NULL, NULL);
1255                 }
1256  next:
1257                 prev_dc = next_dc;
1258                 if (!prev_dc)
1259                         break;
1260
1261                 node = rb_next(&prev_dc->rb_node);
1262                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1263         }
1264 }
1265
1266 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1267                 struct block_device *bdev, block_t blkstart, block_t blklen)
1268 {
1269         block_t lblkstart = blkstart;
1270
1271         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1272
1273         if (sbi->s_ndevs) {
1274                 int devi = f2fs_target_device_index(sbi, blkstart);
1275
1276                 blkstart -= FDEV(devi).start_blk;
1277         }
1278         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1279         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1280         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1281         return 0;
1282 }
1283
1284 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1285                                         struct discard_policy *dpolicy)
1286 {
1287         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1288         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1289         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1290         struct discard_cmd *dc;
1291         struct blk_plug plug;
1292         unsigned int pos = dcc->next_pos;
1293         unsigned int issued = 0;
1294         bool io_interrupted = false;
1295
1296         mutex_lock(&dcc->cmd_lock);
1297         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1298                                         NULL, pos,
1299                                         (struct rb_entry **)&prev_dc,
1300                                         (struct rb_entry **)&next_dc,
1301                                         &insert_p, &insert_parent, true);
1302         if (!dc)
1303                 dc = next_dc;
1304
1305         blk_start_plug(&plug);
1306
1307         while (dc) {
1308                 struct rb_node *node;
1309                 int err = 0;
1310
1311                 if (dc->state != D_PREP)
1312                         goto next;
1313
1314                 if (dpolicy->io_aware && !is_idle(sbi)) {
1315                         io_interrupted = true;
1316                         break;
1317                 }
1318
1319                 dcc->next_pos = dc->lstart + dc->len;
1320                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1321
1322                 if (issued >= dpolicy->max_requests)
1323                         break;
1324 next:
1325                 node = rb_next(&dc->rb_node);
1326                 if (err)
1327                         __remove_discard_cmd(sbi, dc);
1328                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1329         }
1330
1331         blk_finish_plug(&plug);
1332
1333         if (!dc)
1334                 dcc->next_pos = 0;
1335
1336         mutex_unlock(&dcc->cmd_lock);
1337
1338         if (!issued && io_interrupted)
1339                 issued = -1;
1340
1341         return issued;
1342 }
1343
1344 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1345                                         struct discard_policy *dpolicy)
1346 {
1347         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1348         struct list_head *pend_list;
1349         struct discard_cmd *dc, *tmp;
1350         struct blk_plug plug;
1351         int i, issued = 0;
1352         bool io_interrupted = false;
1353
1354         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1355                 if (i + 1 < dpolicy->granularity)
1356                         break;
1357
1358                 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1359                         return __issue_discard_cmd_orderly(sbi, dpolicy);
1360
1361                 pend_list = &dcc->pend_list[i];
1362
1363                 mutex_lock(&dcc->cmd_lock);
1364                 if (list_empty(pend_list))
1365                         goto next;
1366                 if (unlikely(dcc->rbtree_check))
1367                         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1368                                                                 &dcc->root));
1369                 blk_start_plug(&plug);
1370                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1371                         f2fs_bug_on(sbi, dc->state != D_PREP);
1372
1373                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1374                                                                 !is_idle(sbi)) {
1375                                 io_interrupted = true;
1376                                 break;
1377                         }
1378
1379                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1380
1381                         if (issued >= dpolicy->max_requests)
1382                                 break;
1383                 }
1384                 blk_finish_plug(&plug);
1385 next:
1386                 mutex_unlock(&dcc->cmd_lock);
1387
1388                 if (issued >= dpolicy->max_requests || io_interrupted)
1389                         break;
1390         }
1391
1392         if (!issued && io_interrupted)
1393                 issued = -1;
1394
1395         return issued;
1396 }
1397
1398 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1399 {
1400         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1401         struct list_head *pend_list;
1402         struct discard_cmd *dc, *tmp;
1403         int i;
1404         bool dropped = false;
1405
1406         mutex_lock(&dcc->cmd_lock);
1407         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1408                 pend_list = &dcc->pend_list[i];
1409                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1410                         f2fs_bug_on(sbi, dc->state != D_PREP);
1411                         __remove_discard_cmd(sbi, dc);
1412                         dropped = true;
1413                 }
1414         }
1415         mutex_unlock(&dcc->cmd_lock);
1416
1417         return dropped;
1418 }
1419
1420 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1421 {
1422         __drop_discard_cmd(sbi);
1423 }
1424
1425 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1426                                                         struct discard_cmd *dc)
1427 {
1428         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1429         unsigned int len = 0;
1430
1431         wait_for_completion_io(&dc->wait);
1432         mutex_lock(&dcc->cmd_lock);
1433         f2fs_bug_on(sbi, dc->state != D_DONE);
1434         dc->ref--;
1435         if (!dc->ref) {
1436                 if (!dc->error)
1437                         len = dc->len;
1438                 __remove_discard_cmd(sbi, dc);
1439         }
1440         mutex_unlock(&dcc->cmd_lock);
1441
1442         return len;
1443 }
1444
1445 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1446                                                 struct discard_policy *dpolicy,
1447                                                 block_t start, block_t end)
1448 {
1449         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1450         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1451                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1452         struct discard_cmd *dc, *tmp;
1453         bool need_wait;
1454         unsigned int trimmed = 0;
1455
1456 next:
1457         need_wait = false;
1458
1459         mutex_lock(&dcc->cmd_lock);
1460         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1461                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1462                         continue;
1463                 if (dc->len < dpolicy->granularity)
1464                         continue;
1465                 if (dc->state == D_DONE && !dc->ref) {
1466                         wait_for_completion_io(&dc->wait);
1467                         if (!dc->error)
1468                                 trimmed += dc->len;
1469                         __remove_discard_cmd(sbi, dc);
1470                 } else {
1471                         dc->ref++;
1472                         need_wait = true;
1473                         break;
1474                 }
1475         }
1476         mutex_unlock(&dcc->cmd_lock);
1477
1478         if (need_wait) {
1479                 trimmed += __wait_one_discard_bio(sbi, dc);
1480                 goto next;
1481         }
1482
1483         return trimmed;
1484 }
1485
1486 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1487                                                 struct discard_policy *dpolicy)
1488 {
1489         struct discard_policy dp;
1490         unsigned int discard_blks;
1491
1492         if (dpolicy)
1493                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1494
1495         /* wait all */
1496         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1497         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1498         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1499         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1500
1501         return discard_blks;
1502 }
1503
1504 /* This should be covered by global mutex, &sit_i->sentry_lock */
1505 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1506 {
1507         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1508         struct discard_cmd *dc;
1509         bool need_wait = false;
1510
1511         mutex_lock(&dcc->cmd_lock);
1512         dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1513                                                         NULL, blkaddr);
1514         if (dc) {
1515                 if (dc->state == D_PREP) {
1516                         __punch_discard_cmd(sbi, dc, blkaddr);
1517                 } else {
1518                         dc->ref++;
1519                         need_wait = true;
1520                 }
1521         }
1522         mutex_unlock(&dcc->cmd_lock);
1523
1524         if (need_wait)
1525                 __wait_one_discard_bio(sbi, dc);
1526 }
1527
1528 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1529 {
1530         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1531
1532         if (dcc && dcc->f2fs_issue_discard) {
1533                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1534
1535                 dcc->f2fs_issue_discard = NULL;
1536                 kthread_stop(discard_thread);
1537         }
1538 }
1539
1540 /* This comes from f2fs_put_super */
1541 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1542 {
1543         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1544         struct discard_policy dpolicy;
1545         bool dropped;
1546
1547         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1548                                         dcc->discard_granularity);
1549         __issue_discard_cmd(sbi, &dpolicy);
1550         dropped = __drop_discard_cmd(sbi);
1551
1552         /* just to make sure there is no pending discard commands */
1553         __wait_all_discard_cmd(sbi, NULL);
1554
1555         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1556         return dropped;
1557 }
1558
1559 static int issue_discard_thread(void *data)
1560 {
1561         struct f2fs_sb_info *sbi = data;
1562         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1563         wait_queue_head_t *q = &dcc->discard_wait_queue;
1564         struct discard_policy dpolicy;
1565         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1566         int issued;
1567
1568         set_freezable();
1569
1570         do {
1571                 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1572                                         dcc->discard_granularity);
1573
1574                 wait_event_interruptible_timeout(*q,
1575                                 kthread_should_stop() || freezing(current) ||
1576                                 dcc->discard_wake,
1577                                 msecs_to_jiffies(wait_ms));
1578
1579                 if (dcc->discard_wake)
1580                         dcc->discard_wake = 0;
1581
1582                 if (try_to_freeze())
1583                         continue;
1584                 if (f2fs_readonly(sbi->sb))
1585                         continue;
1586                 if (kthread_should_stop())
1587                         return 0;
1588                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1589                         wait_ms = dpolicy.max_interval;
1590                         continue;
1591                 }
1592
1593                 if (sbi->gc_mode == GC_URGENT)
1594                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1595
1596                 sb_start_intwrite(sbi->sb);
1597
1598                 issued = __issue_discard_cmd(sbi, &dpolicy);
1599                 if (issued > 0) {
1600                         __wait_all_discard_cmd(sbi, &dpolicy);
1601                         wait_ms = dpolicy.min_interval;
1602                 } else if (issued == -1){
1603                         wait_ms = dpolicy.mid_interval;
1604                 } else {
1605                         wait_ms = dpolicy.max_interval;
1606                 }
1607
1608                 sb_end_intwrite(sbi->sb);
1609
1610         } while (!kthread_should_stop());
1611         return 0;
1612 }
1613
1614 #ifdef CONFIG_BLK_DEV_ZONED
1615 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1616                 struct block_device *bdev, block_t blkstart, block_t blklen)
1617 {
1618         sector_t sector, nr_sects;
1619         block_t lblkstart = blkstart;
1620         int devi = 0;
1621
1622         if (sbi->s_ndevs) {
1623                 devi = f2fs_target_device_index(sbi, blkstart);
1624                 blkstart -= FDEV(devi).start_blk;
1625         }
1626
1627         /*
1628          * We need to know the type of the zone: for conventional zones,
1629          * use regular discard if the drive supports it. For sequential
1630          * zones, reset the zone write pointer.
1631          */
1632         switch (get_blkz_type(sbi, bdev, blkstart)) {
1633
1634         case BLK_ZONE_TYPE_CONVENTIONAL:
1635                 if (!blk_queue_discard(bdev_get_queue(bdev)))
1636                         return 0;
1637                 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1638         case BLK_ZONE_TYPE_SEQWRITE_REQ:
1639         case BLK_ZONE_TYPE_SEQWRITE_PREF:
1640                 sector = SECTOR_FROM_BLOCK(blkstart);
1641                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1642
1643                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1644                                 nr_sects != bdev_zone_sectors(bdev)) {
1645                         f2fs_msg(sbi->sb, KERN_INFO,
1646                                 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1647                                 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1648                                 blkstart, blklen);
1649                         return -EIO;
1650                 }
1651                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1652                 return blkdev_reset_zones(bdev, sector,
1653                                           nr_sects, GFP_NOFS);
1654         default:
1655                 /* Unknown zone type: broken device ? */
1656                 return -EIO;
1657         }
1658 }
1659 #endif
1660
1661 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1662                 struct block_device *bdev, block_t blkstart, block_t blklen)
1663 {
1664 #ifdef CONFIG_BLK_DEV_ZONED
1665         if (f2fs_sb_has_blkzoned(sbi->sb) &&
1666                                 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1667                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1668 #endif
1669         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1670 }
1671
1672 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1673                                 block_t blkstart, block_t blklen)
1674 {
1675         sector_t start = blkstart, len = 0;
1676         struct block_device *bdev;
1677         struct seg_entry *se;
1678         unsigned int offset;
1679         block_t i;
1680         int err = 0;
1681
1682         bdev = f2fs_target_device(sbi, blkstart, NULL);
1683
1684         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1685                 if (i != start) {
1686                         struct block_device *bdev2 =
1687                                 f2fs_target_device(sbi, i, NULL);
1688
1689                         if (bdev2 != bdev) {
1690                                 err = __issue_discard_async(sbi, bdev,
1691                                                 start, len);
1692                                 if (err)
1693                                         return err;
1694                                 bdev = bdev2;
1695                                 start = i;
1696                                 len = 0;
1697                         }
1698                 }
1699
1700                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1701                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1702
1703                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1704                         sbi->discard_blks--;
1705         }
1706
1707         if (len)
1708                 err = __issue_discard_async(sbi, bdev, start, len);
1709         return err;
1710 }
1711
1712 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1713                                                         bool check_only)
1714 {
1715         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1716         int max_blocks = sbi->blocks_per_seg;
1717         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1718         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1719         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1720         unsigned long *discard_map = (unsigned long *)se->discard_map;
1721         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1722         unsigned int start = 0, end = -1;
1723         bool force = (cpc->reason & CP_DISCARD);
1724         struct discard_entry *de = NULL;
1725         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1726         int i;
1727
1728         if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1729                 return false;
1730
1731         if (!force) {
1732                 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1733                         SM_I(sbi)->dcc_info->nr_discards >=
1734                                 SM_I(sbi)->dcc_info->max_discards)
1735                         return false;
1736         }
1737
1738         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1739         for (i = 0; i < entries; i++)
1740                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1741                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1742
1743         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1744                                 SM_I(sbi)->dcc_info->max_discards) {
1745                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1746                 if (start >= max_blocks)
1747                         break;
1748
1749                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1750                 if (force && start && end != max_blocks
1751                                         && (end - start) < cpc->trim_minlen)
1752                         continue;
1753
1754                 if (check_only)
1755                         return true;
1756
1757                 if (!de) {
1758                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1759                                                                 GFP_F2FS_ZERO);
1760                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1761                         list_add_tail(&de->list, head);
1762                 }
1763
1764                 for (i = start; i < end; i++)
1765                         __set_bit_le(i, (void *)de->discard_map);
1766
1767                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1768         }
1769         return false;
1770 }
1771
1772 static void release_discard_addr(struct discard_entry *entry)
1773 {
1774         list_del(&entry->list);
1775         kmem_cache_free(discard_entry_slab, entry);
1776 }
1777
1778 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1779 {
1780         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1781         struct discard_entry *entry, *this;
1782
1783         /* drop caches */
1784         list_for_each_entry_safe(entry, this, head, list)
1785                 release_discard_addr(entry);
1786 }
1787
1788 /*
1789  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1790  */
1791 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1792 {
1793         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1794         unsigned int segno;
1795
1796         mutex_lock(&dirty_i->seglist_lock);
1797         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1798                 __set_test_and_free(sbi, segno);
1799         mutex_unlock(&dirty_i->seglist_lock);
1800 }
1801
1802 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1803                                                 struct cp_control *cpc)
1804 {
1805         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1806         struct list_head *head = &dcc->entry_list;
1807         struct discard_entry *entry, *this;
1808         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1809         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1810         unsigned int start = 0, end = -1;
1811         unsigned int secno, start_segno;
1812         bool force = (cpc->reason & CP_DISCARD);
1813         bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
1814
1815         mutex_lock(&dirty_i->seglist_lock);
1816
1817         while (1) {
1818                 int i;
1819
1820                 if (need_align && end != -1)
1821                         end--;
1822                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1823                 if (start >= MAIN_SEGS(sbi))
1824                         break;
1825                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1826                                                                 start + 1);
1827
1828                 if (need_align) {
1829                         start = rounddown(start, sbi->segs_per_sec);
1830                         end = roundup(end, sbi->segs_per_sec);
1831                 }
1832
1833                 for (i = start; i < end; i++) {
1834                         if (test_and_clear_bit(i, prefree_map))
1835                                 dirty_i->nr_dirty[PRE]--;
1836                 }
1837
1838                 if (!test_opt(sbi, DISCARD))
1839                         continue;
1840
1841                 if (force && start >= cpc->trim_start &&
1842                                         (end - 1) <= cpc->trim_end)
1843                                 continue;
1844
1845                 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1846                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1847                                 (end - start) << sbi->log_blocks_per_seg);
1848                         continue;
1849                 }
1850 next:
1851                 secno = GET_SEC_FROM_SEG(sbi, start);
1852                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1853                 if (!IS_CURSEC(sbi, secno) &&
1854                         !get_valid_blocks(sbi, start, true))
1855                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1856                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1857
1858                 start = start_segno + sbi->segs_per_sec;
1859                 if (start < end)
1860                         goto next;
1861                 else
1862                         end = start - 1;
1863         }
1864         mutex_unlock(&dirty_i->seglist_lock);
1865
1866         /* send small discards */
1867         list_for_each_entry_safe(entry, this, head, list) {
1868                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1869                 bool is_valid = test_bit_le(0, entry->discard_map);
1870
1871 find_next:
1872                 if (is_valid) {
1873                         next_pos = find_next_zero_bit_le(entry->discard_map,
1874                                         sbi->blocks_per_seg, cur_pos);
1875                         len = next_pos - cur_pos;
1876
1877                         if (f2fs_sb_has_blkzoned(sbi->sb) ||
1878                             (force && len < cpc->trim_minlen))
1879                                 goto skip;
1880
1881                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1882                                                                         len);
1883                         total_len += len;
1884                 } else {
1885                         next_pos = find_next_bit_le(entry->discard_map,
1886                                         sbi->blocks_per_seg, cur_pos);
1887                 }
1888 skip:
1889                 cur_pos = next_pos;
1890                 is_valid = !is_valid;
1891
1892                 if (cur_pos < sbi->blocks_per_seg)
1893                         goto find_next;
1894
1895                 release_discard_addr(entry);
1896                 dcc->nr_discards -= total_len;
1897         }
1898
1899         wake_up_discard_thread(sbi, false);
1900 }
1901
1902 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1903 {
1904         dev_t dev = sbi->sb->s_bdev->bd_dev;
1905         struct discard_cmd_control *dcc;
1906         int err = 0, i;
1907
1908         if (SM_I(sbi)->dcc_info) {
1909                 dcc = SM_I(sbi)->dcc_info;
1910                 goto init_thread;
1911         }
1912
1913         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1914         if (!dcc)
1915                 return -ENOMEM;
1916
1917         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1918         INIT_LIST_HEAD(&dcc->entry_list);
1919         for (i = 0; i < MAX_PLIST_NUM; i++)
1920                 INIT_LIST_HEAD(&dcc->pend_list[i]);
1921         INIT_LIST_HEAD(&dcc->wait_list);
1922         INIT_LIST_HEAD(&dcc->fstrim_list);
1923         mutex_init(&dcc->cmd_lock);
1924         atomic_set(&dcc->issued_discard, 0);
1925         atomic_set(&dcc->issing_discard, 0);
1926         atomic_set(&dcc->discard_cmd_cnt, 0);
1927         dcc->nr_discards = 0;
1928         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1929         dcc->undiscard_blks = 0;
1930         dcc->next_pos = 0;
1931         dcc->root = RB_ROOT;
1932         dcc->rbtree_check = false;
1933
1934         init_waitqueue_head(&dcc->discard_wait_queue);
1935         SM_I(sbi)->dcc_info = dcc;
1936 init_thread:
1937         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1938                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1939         if (IS_ERR(dcc->f2fs_issue_discard)) {
1940                 err = PTR_ERR(dcc->f2fs_issue_discard);
1941                 kfree(dcc);
1942                 SM_I(sbi)->dcc_info = NULL;
1943                 return err;
1944         }
1945
1946         return err;
1947 }
1948
1949 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1950 {
1951         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1952
1953         if (!dcc)
1954                 return;
1955
1956         f2fs_stop_discard_thread(sbi);
1957
1958         kfree(dcc);
1959         SM_I(sbi)->dcc_info = NULL;
1960 }
1961
1962 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1963 {
1964         struct sit_info *sit_i = SIT_I(sbi);
1965
1966         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1967                 sit_i->dirty_sentries++;
1968                 return false;
1969         }
1970
1971         return true;
1972 }
1973
1974 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1975                                         unsigned int segno, int modified)
1976 {
1977         struct seg_entry *se = get_seg_entry(sbi, segno);
1978         se->type = type;
1979         if (modified)
1980                 __mark_sit_entry_dirty(sbi, segno);
1981 }
1982
1983 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1984 {
1985         struct seg_entry *se;
1986         unsigned int segno, offset;
1987         long int new_vblocks;
1988         bool exist;
1989 #ifdef CONFIG_F2FS_CHECK_FS
1990         bool mir_exist;
1991 #endif
1992
1993         segno = GET_SEGNO(sbi, blkaddr);
1994
1995         se = get_seg_entry(sbi, segno);
1996         new_vblocks = se->valid_blocks + del;
1997         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1998
1999         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2000                                 (new_vblocks > sbi->blocks_per_seg)));
2001
2002         se->valid_blocks = new_vblocks;
2003         se->mtime = get_mtime(sbi, false);
2004         if (se->mtime > SIT_I(sbi)->max_mtime)
2005                 SIT_I(sbi)->max_mtime = se->mtime;
2006
2007         /* Update valid block bitmap */
2008         if (del > 0) {
2009                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2010 #ifdef CONFIG_F2FS_CHECK_FS
2011                 mir_exist = f2fs_test_and_set_bit(offset,
2012                                                 se->cur_valid_map_mir);
2013                 if (unlikely(exist != mir_exist)) {
2014                         f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2015                                 "when setting bitmap, blk:%u, old bit:%d",
2016                                 blkaddr, exist);
2017                         f2fs_bug_on(sbi, 1);
2018                 }
2019 #endif
2020                 if (unlikely(exist)) {
2021                         f2fs_msg(sbi->sb, KERN_ERR,
2022                                 "Bitmap was wrongly set, blk:%u", blkaddr);
2023                         f2fs_bug_on(sbi, 1);
2024                         se->valid_blocks--;
2025                         del = 0;
2026                 }
2027
2028                 if (f2fs_discard_en(sbi) &&
2029                         !f2fs_test_and_set_bit(offset, se->discard_map))
2030                         sbi->discard_blks--;
2031
2032                 /* don't overwrite by SSR to keep node chain */
2033                 if (IS_NODESEG(se->type)) {
2034                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2035                                 se->ckpt_valid_blocks++;
2036                 }
2037         } else {
2038                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2039 #ifdef CONFIG_F2FS_CHECK_FS
2040                 mir_exist = f2fs_test_and_clear_bit(offset,
2041                                                 se->cur_valid_map_mir);
2042                 if (unlikely(exist != mir_exist)) {
2043                         f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2044                                 "when clearing bitmap, blk:%u, old bit:%d",
2045                                 blkaddr, exist);
2046                         f2fs_bug_on(sbi, 1);
2047                 }
2048 #endif
2049                 if (unlikely(!exist)) {
2050                         f2fs_msg(sbi->sb, KERN_ERR,
2051                                 "Bitmap was wrongly cleared, blk:%u", blkaddr);
2052                         f2fs_bug_on(sbi, 1);
2053                         se->valid_blocks++;
2054                         del = 0;
2055                 }
2056
2057                 if (f2fs_discard_en(sbi) &&
2058                         f2fs_test_and_clear_bit(offset, se->discard_map))
2059                         sbi->discard_blks++;
2060         }
2061         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2062                 se->ckpt_valid_blocks += del;
2063
2064         __mark_sit_entry_dirty(sbi, segno);
2065
2066         /* update total number of valid blocks to be written in ckpt area */
2067         SIT_I(sbi)->written_valid_blocks += del;
2068
2069         if (sbi->segs_per_sec > 1)
2070                 get_sec_entry(sbi, segno)->valid_blocks += del;
2071 }
2072
2073 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2074 {
2075         unsigned int segno = GET_SEGNO(sbi, addr);
2076         struct sit_info *sit_i = SIT_I(sbi);
2077
2078         f2fs_bug_on(sbi, addr == NULL_ADDR);
2079         if (addr == NEW_ADDR)
2080                 return;
2081
2082         invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2083
2084         /* add it into sit main buffer */
2085         down_write(&sit_i->sentry_lock);
2086
2087         update_sit_entry(sbi, addr, -1);
2088
2089         /* add it into dirty seglist */
2090         locate_dirty_segment(sbi, segno);
2091
2092         up_write(&sit_i->sentry_lock);
2093 }
2094
2095 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2096 {
2097         struct sit_info *sit_i = SIT_I(sbi);
2098         unsigned int segno, offset;
2099         struct seg_entry *se;
2100         bool is_cp = false;
2101
2102         if (!is_valid_data_blkaddr(sbi, blkaddr))
2103                 return true;
2104
2105         down_read(&sit_i->sentry_lock);
2106
2107         segno = GET_SEGNO(sbi, blkaddr);
2108         se = get_seg_entry(sbi, segno);
2109         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2110
2111         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2112                 is_cp = true;
2113
2114         up_read(&sit_i->sentry_lock);
2115
2116         return is_cp;
2117 }
2118
2119 /*
2120  * This function should be resided under the curseg_mutex lock
2121  */
2122 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2123                                         struct f2fs_summary *sum)
2124 {
2125         struct curseg_info *curseg = CURSEG_I(sbi, type);
2126         void *addr = curseg->sum_blk;
2127         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2128         memcpy(addr, sum, sizeof(struct f2fs_summary));
2129 }
2130
2131 /*
2132  * Calculate the number of current summary pages for writing
2133  */
2134 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2135 {
2136         int valid_sum_count = 0;
2137         int i, sum_in_page;
2138
2139         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2140                 if (sbi->ckpt->alloc_type[i] == SSR)
2141                         valid_sum_count += sbi->blocks_per_seg;
2142                 else {
2143                         if (for_ra)
2144                                 valid_sum_count += le16_to_cpu(
2145                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2146                         else
2147                                 valid_sum_count += curseg_blkoff(sbi, i);
2148                 }
2149         }
2150
2151         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2152                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2153         if (valid_sum_count <= sum_in_page)
2154                 return 1;
2155         else if ((valid_sum_count - sum_in_page) <=
2156                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2157                 return 2;
2158         return 3;
2159 }
2160
2161 /*
2162  * Caller should put this summary page
2163  */
2164 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2165 {
2166         return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2167 }
2168
2169 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2170                                         void *src, block_t blk_addr)
2171 {
2172         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2173
2174         memcpy(page_address(page), src, PAGE_SIZE);
2175         set_page_dirty(page);
2176         f2fs_put_page(page, 1);
2177 }
2178
2179 static void write_sum_page(struct f2fs_sb_info *sbi,
2180                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2181 {
2182         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2183 }
2184
2185 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2186                                                 int type, block_t blk_addr)
2187 {
2188         struct curseg_info *curseg = CURSEG_I(sbi, type);
2189         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2190         struct f2fs_summary_block *src = curseg->sum_blk;
2191         struct f2fs_summary_block *dst;
2192
2193         dst = (struct f2fs_summary_block *)page_address(page);
2194         memset(dst, 0, PAGE_SIZE);
2195
2196         mutex_lock(&curseg->curseg_mutex);
2197
2198         down_read(&curseg->journal_rwsem);
2199         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2200         up_read(&curseg->journal_rwsem);
2201
2202         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2203         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2204
2205         mutex_unlock(&curseg->curseg_mutex);
2206
2207         set_page_dirty(page);
2208         f2fs_put_page(page, 1);
2209 }
2210
2211 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2212 {
2213         struct curseg_info *curseg = CURSEG_I(sbi, type);
2214         unsigned int segno = curseg->segno + 1;
2215         struct free_segmap_info *free_i = FREE_I(sbi);
2216
2217         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2218                 return !test_bit(segno, free_i->free_segmap);
2219         return 0;
2220 }
2221
2222 /*
2223  * Find a new segment from the free segments bitmap to right order
2224  * This function should be returned with success, otherwise BUG
2225  */
2226 static void get_new_segment(struct f2fs_sb_info *sbi,
2227                         unsigned int *newseg, bool new_sec, int dir)
2228 {
2229         struct free_segmap_info *free_i = FREE_I(sbi);
2230         unsigned int segno, secno, zoneno;
2231         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2232         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2233         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2234         unsigned int left_start = hint;
2235         bool init = true;
2236         int go_left = 0;
2237         int i;
2238
2239         spin_lock(&free_i->segmap_lock);
2240
2241         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2242                 segno = find_next_zero_bit(free_i->free_segmap,
2243                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2244                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2245                         goto got_it;
2246         }
2247 find_other_zone:
2248         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2249         if (secno >= MAIN_SECS(sbi)) {
2250                 if (dir == ALLOC_RIGHT) {
2251                         secno = find_next_zero_bit(free_i->free_secmap,
2252                                                         MAIN_SECS(sbi), 0);
2253                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2254                 } else {
2255                         go_left = 1;
2256                         left_start = hint - 1;
2257                 }
2258         }
2259         if (go_left == 0)
2260                 goto skip_left;
2261
2262         while (test_bit(left_start, free_i->free_secmap)) {
2263                 if (left_start > 0) {
2264                         left_start--;
2265                         continue;
2266                 }
2267                 left_start = find_next_zero_bit(free_i->free_secmap,
2268                                                         MAIN_SECS(sbi), 0);
2269                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2270                 break;
2271         }
2272         secno = left_start;
2273 skip_left:
2274         segno = GET_SEG_FROM_SEC(sbi, secno);
2275         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2276
2277         /* give up on finding another zone */
2278         if (!init)
2279                 goto got_it;
2280         if (sbi->secs_per_zone == 1)
2281                 goto got_it;
2282         if (zoneno == old_zoneno)
2283                 goto got_it;
2284         if (dir == ALLOC_LEFT) {
2285                 if (!go_left && zoneno + 1 >= total_zones)
2286                         goto got_it;
2287                 if (go_left && zoneno == 0)
2288                         goto got_it;
2289         }
2290         for (i = 0; i < NR_CURSEG_TYPE; i++)
2291                 if (CURSEG_I(sbi, i)->zone == zoneno)
2292                         break;
2293
2294         if (i < NR_CURSEG_TYPE) {
2295                 /* zone is in user, try another */
2296                 if (go_left)
2297                         hint = zoneno * sbi->secs_per_zone - 1;
2298                 else if (zoneno + 1 >= total_zones)
2299                         hint = 0;
2300                 else
2301                         hint = (zoneno + 1) * sbi->secs_per_zone;
2302                 init = false;
2303                 goto find_other_zone;
2304         }
2305 got_it:
2306         /* set it as dirty segment in free segmap */
2307         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2308         __set_inuse(sbi, segno);
2309         *newseg = segno;
2310         spin_unlock(&free_i->segmap_lock);
2311 }
2312
2313 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2314 {
2315         struct curseg_info *curseg = CURSEG_I(sbi, type);
2316         struct summary_footer *sum_footer;
2317
2318         curseg->segno = curseg->next_segno;
2319         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2320         curseg->next_blkoff = 0;
2321         curseg->next_segno = NULL_SEGNO;
2322
2323         sum_footer = &(curseg->sum_blk->footer);
2324         memset(sum_footer, 0, sizeof(struct summary_footer));
2325         if (IS_DATASEG(type))
2326                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2327         if (IS_NODESEG(type))
2328                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2329         __set_sit_entry_type(sbi, type, curseg->segno, modified);
2330 }
2331
2332 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2333 {
2334         /* if segs_per_sec is large than 1, we need to keep original policy. */
2335         if (sbi->segs_per_sec != 1)
2336                 return CURSEG_I(sbi, type)->segno;
2337
2338         if (test_opt(sbi, NOHEAP) &&
2339                 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2340                 return 0;
2341
2342         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2343                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2344
2345         /* find segments from 0 to reuse freed segments */
2346         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2347                 return 0;
2348
2349         return CURSEG_I(sbi, type)->segno;
2350 }
2351
2352 /*
2353  * Allocate a current working segment.
2354  * This function always allocates a free segment in LFS manner.
2355  */
2356 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2357 {
2358         struct curseg_info *curseg = CURSEG_I(sbi, type);
2359         unsigned int segno = curseg->segno;
2360         int dir = ALLOC_LEFT;
2361
2362         write_sum_page(sbi, curseg->sum_blk,
2363                                 GET_SUM_BLOCK(sbi, segno));
2364         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2365                 dir = ALLOC_RIGHT;
2366
2367         if (test_opt(sbi, NOHEAP))
2368                 dir = ALLOC_RIGHT;
2369
2370         segno = __get_next_segno(sbi, type);
2371         get_new_segment(sbi, &segno, new_sec, dir);
2372         curseg->next_segno = segno;
2373         reset_curseg(sbi, type, 1);
2374         curseg->alloc_type = LFS;
2375 }
2376
2377 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2378                         struct curseg_info *seg, block_t start)
2379 {
2380         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2381         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2382         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2383         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2384         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2385         int i, pos;
2386
2387         for (i = 0; i < entries; i++)
2388                 target_map[i] = ckpt_map[i] | cur_map[i];
2389
2390         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2391
2392         seg->next_blkoff = pos;
2393 }
2394
2395 /*
2396  * If a segment is written by LFS manner, next block offset is just obtained
2397  * by increasing the current block offset. However, if a segment is written by
2398  * SSR manner, next block offset obtained by calling __next_free_blkoff
2399  */
2400 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2401                                 struct curseg_info *seg)
2402 {
2403         if (seg->alloc_type == SSR)
2404                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2405         else
2406                 seg->next_blkoff++;
2407 }
2408
2409 /*
2410  * This function always allocates a used segment(from dirty seglist) by SSR
2411  * manner, so it should recover the existing segment information of valid blocks
2412  */
2413 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2414 {
2415         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2416         struct curseg_info *curseg = CURSEG_I(sbi, type);
2417         unsigned int new_segno = curseg->next_segno;
2418         struct f2fs_summary_block *sum_node;
2419         struct page *sum_page;
2420
2421         write_sum_page(sbi, curseg->sum_blk,
2422                                 GET_SUM_BLOCK(sbi, curseg->segno));
2423         __set_test_and_inuse(sbi, new_segno);
2424
2425         mutex_lock(&dirty_i->seglist_lock);
2426         __remove_dirty_segment(sbi, new_segno, PRE);
2427         __remove_dirty_segment(sbi, new_segno, DIRTY);
2428         mutex_unlock(&dirty_i->seglist_lock);
2429
2430         reset_curseg(sbi, type, 1);
2431         curseg->alloc_type = SSR;
2432         __next_free_blkoff(sbi, curseg, 0);
2433
2434         sum_page = f2fs_get_sum_page(sbi, new_segno);
2435         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2436         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2437         f2fs_put_page(sum_page, 1);
2438 }
2439
2440 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2441 {
2442         struct curseg_info *curseg = CURSEG_I(sbi, type);
2443         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2444         unsigned segno = NULL_SEGNO;
2445         int i, cnt;
2446         bool reversed = false;
2447
2448         /* f2fs_need_SSR() already forces to do this */
2449         if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2450                 curseg->next_segno = segno;
2451                 return 1;
2452         }
2453
2454         /* For node segments, let's do SSR more intensively */
2455         if (IS_NODESEG(type)) {
2456                 if (type >= CURSEG_WARM_NODE) {
2457                         reversed = true;
2458                         i = CURSEG_COLD_NODE;
2459                 } else {
2460                         i = CURSEG_HOT_NODE;
2461                 }
2462                 cnt = NR_CURSEG_NODE_TYPE;
2463         } else {
2464                 if (type >= CURSEG_WARM_DATA) {
2465                         reversed = true;
2466                         i = CURSEG_COLD_DATA;
2467                 } else {
2468                         i = CURSEG_HOT_DATA;
2469                 }
2470                 cnt = NR_CURSEG_DATA_TYPE;
2471         }
2472
2473         for (; cnt-- > 0; reversed ? i-- : i++) {
2474                 if (i == type)
2475                         continue;
2476                 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2477                         curseg->next_segno = segno;
2478                         return 1;
2479                 }
2480         }
2481         return 0;
2482 }
2483
2484 /*
2485  * flush out current segment and replace it with new segment
2486  * This function should be returned with success, otherwise BUG
2487  */
2488 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2489                                                 int type, bool force)
2490 {
2491         struct curseg_info *curseg = CURSEG_I(sbi, type);
2492
2493         if (force)
2494                 new_curseg(sbi, type, true);
2495         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2496                                         type == CURSEG_WARM_NODE)
2497                 new_curseg(sbi, type, false);
2498         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2499                 new_curseg(sbi, type, false);
2500         else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2501                 change_curseg(sbi, type);
2502         else
2503                 new_curseg(sbi, type, false);
2504
2505         stat_inc_seg_type(sbi, curseg);
2506 }
2507
2508 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2509 {
2510         struct curseg_info *curseg;
2511         unsigned int old_segno;
2512         int i;
2513
2514         down_write(&SIT_I(sbi)->sentry_lock);
2515
2516         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2517                 curseg = CURSEG_I(sbi, i);
2518                 old_segno = curseg->segno;
2519                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2520                 locate_dirty_segment(sbi, old_segno);
2521         }
2522
2523         up_write(&SIT_I(sbi)->sentry_lock);
2524 }
2525
2526 static const struct segment_allocation default_salloc_ops = {
2527         .allocate_segment = allocate_segment_by_default,
2528 };
2529
2530 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2531                                                 struct cp_control *cpc)
2532 {
2533         __u64 trim_start = cpc->trim_start;
2534         bool has_candidate = false;
2535
2536         down_write(&SIT_I(sbi)->sentry_lock);
2537         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2538                 if (add_discard_addrs(sbi, cpc, true)) {
2539                         has_candidate = true;
2540                         break;
2541                 }
2542         }
2543         up_write(&SIT_I(sbi)->sentry_lock);
2544
2545         cpc->trim_start = trim_start;
2546         return has_candidate;
2547 }
2548
2549 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2550                                         struct discard_policy *dpolicy,
2551                                         unsigned int start, unsigned int end)
2552 {
2553         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2554         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2555         struct rb_node **insert_p = NULL, *insert_parent = NULL;
2556         struct discard_cmd *dc;
2557         struct blk_plug plug;
2558         int issued;
2559         unsigned int trimmed = 0;
2560
2561 next:
2562         issued = 0;
2563
2564         mutex_lock(&dcc->cmd_lock);
2565         if (unlikely(dcc->rbtree_check))
2566                 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2567                                                                 &dcc->root));
2568
2569         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2570                                         NULL, start,
2571                                         (struct rb_entry **)&prev_dc,
2572                                         (struct rb_entry **)&next_dc,
2573                                         &insert_p, &insert_parent, true);
2574         if (!dc)
2575                 dc = next_dc;
2576
2577         blk_start_plug(&plug);
2578
2579         while (dc && dc->lstart <= end) {
2580                 struct rb_node *node;
2581                 int err = 0;
2582
2583                 if (dc->len < dpolicy->granularity)
2584                         goto skip;
2585
2586                 if (dc->state != D_PREP) {
2587                         list_move_tail(&dc->list, &dcc->fstrim_list);
2588                         goto skip;
2589                 }
2590
2591                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2592
2593                 if (issued >= dpolicy->max_requests) {
2594                         start = dc->lstart + dc->len;
2595
2596                         if (err)
2597                                 __remove_discard_cmd(sbi, dc);
2598
2599                         blk_finish_plug(&plug);
2600                         mutex_unlock(&dcc->cmd_lock);
2601                         trimmed += __wait_all_discard_cmd(sbi, NULL);
2602                         congestion_wait(BLK_RW_ASYNC, HZ/50);
2603                         goto next;
2604                 }
2605 skip:
2606                 node = rb_next(&dc->rb_node);
2607                 if (err)
2608                         __remove_discard_cmd(sbi, dc);
2609                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2610
2611                 if (fatal_signal_pending(current))
2612                         break;
2613         }
2614
2615         blk_finish_plug(&plug);
2616         mutex_unlock(&dcc->cmd_lock);
2617
2618         return trimmed;
2619 }
2620
2621 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2622 {
2623         __u64 start = F2FS_BYTES_TO_BLK(range->start);
2624         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2625         unsigned int start_segno, end_segno;
2626         block_t start_block, end_block;
2627         struct cp_control cpc;
2628         struct discard_policy dpolicy;
2629         unsigned long long trimmed = 0;
2630         int err = 0;
2631         bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
2632
2633         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2634                 return -EINVAL;
2635
2636         if (end < MAIN_BLKADDR(sbi))
2637                 goto out;
2638
2639         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2640                 f2fs_msg(sbi->sb, KERN_WARNING,
2641                         "Found FS corruption, run fsck to fix.");
2642                 return -EIO;
2643         }
2644
2645         /* start/end segment number in main_area */
2646         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2647         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2648                                                 GET_SEGNO(sbi, end);
2649         if (need_align) {
2650                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2651                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2652         }
2653
2654         cpc.reason = CP_DISCARD;
2655         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2656         cpc.trim_start = start_segno;
2657         cpc.trim_end = end_segno;
2658
2659         if (sbi->discard_blks == 0)
2660                 goto out;
2661
2662         mutex_lock(&sbi->gc_mutex);
2663         err = f2fs_write_checkpoint(sbi, &cpc);
2664         mutex_unlock(&sbi->gc_mutex);
2665         if (err)
2666                 goto out;
2667
2668         /*
2669          * We filed discard candidates, but actually we don't need to wait for
2670          * all of them, since they'll be issued in idle time along with runtime
2671          * discard option. User configuration looks like using runtime discard
2672          * or periodic fstrim instead of it.
2673          */
2674         if (test_opt(sbi, DISCARD))
2675                 goto out;
2676
2677         start_block = START_BLOCK(sbi, start_segno);
2678         end_block = START_BLOCK(sbi, end_segno + 1);
2679
2680         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2681         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2682                                         start_block, end_block);
2683
2684         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2685                                         start_block, end_block);
2686 out:
2687         if (!err)
2688                 range->len = F2FS_BLK_TO_BYTES(trimmed);
2689         return err;
2690 }
2691
2692 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2693 {
2694         struct curseg_info *curseg = CURSEG_I(sbi, type);
2695         if (curseg->next_blkoff < sbi->blocks_per_seg)
2696                 return true;
2697         return false;
2698 }
2699
2700 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2701 {
2702         switch (hint) {
2703         case WRITE_LIFE_SHORT:
2704                 return CURSEG_HOT_DATA;
2705         case WRITE_LIFE_EXTREME:
2706                 return CURSEG_COLD_DATA;
2707         default:
2708                 return CURSEG_WARM_DATA;
2709         }
2710 }
2711
2712 /* This returns write hints for each segment type. This hints will be
2713  * passed down to block layer. There are mapping tables which depend on
2714  * the mount option 'whint_mode'.
2715  *
2716  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2717  *
2718  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2719  *
2720  * User                  F2FS                     Block
2721  * ----                  ----                     -----
2722  *                       META                     WRITE_LIFE_NOT_SET
2723  *                       HOT_NODE                 "
2724  *                       WARM_NODE                "
2725  *                       COLD_NODE                "
2726  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2727  * extension list        "                        "
2728  *
2729  * -- buffered io
2730  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2731  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2732  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2733  * WRITE_LIFE_NONE       "                        "
2734  * WRITE_LIFE_MEDIUM     "                        "
2735  * WRITE_LIFE_LONG       "                        "
2736  *
2737  * -- direct io
2738  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2739  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2740  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2741  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2742  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2743  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2744  *
2745  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2746  *
2747  * User                  F2FS                     Block
2748  * ----                  ----                     -----
2749  *                       META                     WRITE_LIFE_MEDIUM;
2750  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2751  *                       WARM_NODE                "
2752  *                       COLD_NODE                WRITE_LIFE_NONE
2753  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2754  * extension list        "                        "
2755  *
2756  * -- buffered io
2757  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2758  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2759  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2760  * WRITE_LIFE_NONE       "                        "
2761  * WRITE_LIFE_MEDIUM     "                        "
2762  * WRITE_LIFE_LONG       "                        "
2763  *
2764  * -- direct io
2765  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2766  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2767  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2768  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2769  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2770  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2771  */
2772
2773 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2774                                 enum page_type type, enum temp_type temp)
2775 {
2776         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2777                 if (type == DATA) {
2778                         if (temp == WARM)
2779                                 return WRITE_LIFE_NOT_SET;
2780                         else if (temp == HOT)
2781                                 return WRITE_LIFE_SHORT;
2782                         else if (temp == COLD)
2783                                 return WRITE_LIFE_EXTREME;
2784                 } else {
2785                         return WRITE_LIFE_NOT_SET;
2786                 }
2787         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2788                 if (type == DATA) {
2789                         if (temp == WARM)
2790                                 return WRITE_LIFE_LONG;
2791                         else if (temp == HOT)
2792                                 return WRITE_LIFE_SHORT;
2793                         else if (temp == COLD)
2794                                 return WRITE_LIFE_EXTREME;
2795                 } else if (type == NODE) {
2796                         if (temp == WARM || temp == HOT)
2797                                 return WRITE_LIFE_NOT_SET;
2798                         else if (temp == COLD)
2799                                 return WRITE_LIFE_NONE;
2800                 } else if (type == META) {
2801                         return WRITE_LIFE_MEDIUM;
2802                 }
2803         }
2804         return WRITE_LIFE_NOT_SET;
2805 }
2806
2807 static int __get_segment_type_2(struct f2fs_io_info *fio)
2808 {
2809         if (fio->type == DATA)
2810                 return CURSEG_HOT_DATA;
2811         else
2812                 return CURSEG_HOT_NODE;
2813 }
2814
2815 static int __get_segment_type_4(struct f2fs_io_info *fio)
2816 {
2817         if (fio->type == DATA) {
2818                 struct inode *inode = fio->page->mapping->host;
2819
2820                 if (S_ISDIR(inode->i_mode))
2821                         return CURSEG_HOT_DATA;
2822                 else
2823                         return CURSEG_COLD_DATA;
2824         } else {
2825                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2826                         return CURSEG_WARM_NODE;
2827                 else
2828                         return CURSEG_COLD_NODE;
2829         }
2830 }
2831
2832 static int __get_segment_type_6(struct f2fs_io_info *fio)
2833 {
2834         if (fio->type == DATA) {
2835                 struct inode *inode = fio->page->mapping->host;
2836
2837                 if (is_cold_data(fio->page) || file_is_cold(inode))
2838                         return CURSEG_COLD_DATA;
2839                 if (file_is_hot(inode) ||
2840                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
2841                                 f2fs_is_atomic_file(inode) ||
2842                                 f2fs_is_volatile_file(inode))
2843                         return CURSEG_HOT_DATA;
2844                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2845         } else {
2846                 if (IS_DNODE(fio->page))
2847                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2848                                                 CURSEG_HOT_NODE;
2849                 return CURSEG_COLD_NODE;
2850         }
2851 }
2852
2853 static int __get_segment_type(struct f2fs_io_info *fio)
2854 {
2855         int type = 0;
2856
2857         switch (F2FS_OPTION(fio->sbi).active_logs) {
2858         case 2:
2859                 type = __get_segment_type_2(fio);
2860                 break;
2861         case 4:
2862                 type = __get_segment_type_4(fio);
2863                 break;
2864         case 6:
2865                 type = __get_segment_type_6(fio);
2866                 break;
2867         default:
2868                 f2fs_bug_on(fio->sbi, true);
2869         }
2870
2871         if (IS_HOT(type))
2872                 fio->temp = HOT;
2873         else if (IS_WARM(type))
2874                 fio->temp = WARM;
2875         else
2876                 fio->temp = COLD;
2877         return type;
2878 }
2879
2880 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2881                 block_t old_blkaddr, block_t *new_blkaddr,
2882                 struct f2fs_summary *sum, int type,
2883                 struct f2fs_io_info *fio, bool add_list)
2884 {
2885         struct sit_info *sit_i = SIT_I(sbi);
2886         struct curseg_info *curseg = CURSEG_I(sbi, type);
2887
2888         down_read(&SM_I(sbi)->curseg_lock);
2889
2890         mutex_lock(&curseg->curseg_mutex);
2891         down_write(&sit_i->sentry_lock);
2892
2893         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2894
2895         f2fs_wait_discard_bio(sbi, *new_blkaddr);
2896
2897         /*
2898          * __add_sum_entry should be resided under the curseg_mutex
2899          * because, this function updates a summary entry in the
2900          * current summary block.
2901          */
2902         __add_sum_entry(sbi, type, sum);
2903
2904         __refresh_next_blkoff(sbi, curseg);
2905
2906         stat_inc_block_count(sbi, curseg);
2907
2908         /*
2909          * SIT information should be updated before segment allocation,
2910          * since SSR needs latest valid block information.
2911          */
2912         update_sit_entry(sbi, *new_blkaddr, 1);
2913         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2914                 update_sit_entry(sbi, old_blkaddr, -1);
2915
2916         if (!__has_curseg_space(sbi, type))
2917                 sit_i->s_ops->allocate_segment(sbi, type, false);
2918
2919         /*
2920          * segment dirty status should be updated after segment allocation,
2921          * so we just need to update status only one time after previous
2922          * segment being closed.
2923          */
2924         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2925         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2926
2927         up_write(&sit_i->sentry_lock);
2928
2929         if (page && IS_NODESEG(type)) {
2930                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2931
2932                 f2fs_inode_chksum_set(sbi, page);
2933         }
2934
2935         if (add_list) {
2936                 struct f2fs_bio_info *io;
2937
2938                 INIT_LIST_HEAD(&fio->list);
2939                 fio->in_list = true;
2940                 fio->retry = false;
2941                 io = sbi->write_io[fio->type] + fio->temp;
2942                 spin_lock(&io->io_lock);
2943                 list_add_tail(&fio->list, &io->io_list);
2944                 spin_unlock(&io->io_lock);
2945         }
2946
2947         mutex_unlock(&curseg->curseg_mutex);
2948
2949         up_read(&SM_I(sbi)->curseg_lock);
2950 }
2951
2952 static void update_device_state(struct f2fs_io_info *fio)
2953 {
2954         struct f2fs_sb_info *sbi = fio->sbi;
2955         unsigned int devidx;
2956
2957         if (!sbi->s_ndevs)
2958                 return;
2959
2960         devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2961
2962         /* update device state for fsync */
2963         f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2964
2965         /* update device state for checkpoint */
2966         if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2967                 spin_lock(&sbi->dev_lock);
2968                 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2969                 spin_unlock(&sbi->dev_lock);
2970         }
2971 }
2972
2973 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2974 {
2975         int type = __get_segment_type(fio);
2976         bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
2977
2978         if (keep_order)
2979                 down_read(&fio->sbi->io_order_lock);
2980 reallocate:
2981         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2982                         &fio->new_blkaddr, sum, type, fio, true);
2983         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
2984                 invalidate_mapping_pages(META_MAPPING(fio->sbi),
2985                                         fio->old_blkaddr, fio->old_blkaddr);
2986
2987         /* writeout dirty page into bdev */
2988         f2fs_submit_page_write(fio);
2989         if (fio->retry) {
2990                 fio->old_blkaddr = fio->new_blkaddr;
2991                 goto reallocate;
2992         }
2993
2994         update_device_state(fio);
2995
2996         if (keep_order)
2997                 up_read(&fio->sbi->io_order_lock);
2998 }
2999
3000 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3001                                         enum iostat_type io_type)
3002 {
3003         struct f2fs_io_info fio = {
3004                 .sbi = sbi,
3005                 .type = META,
3006                 .temp = HOT,
3007                 .op = REQ_OP_WRITE,
3008                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3009                 .old_blkaddr = page->index,
3010                 .new_blkaddr = page->index,
3011                 .page = page,
3012                 .encrypted_page = NULL,
3013                 .in_list = false,
3014         };
3015
3016         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3017                 fio.op_flags &= ~REQ_META;
3018
3019         set_page_writeback(page);
3020         ClearPageError(page);
3021         f2fs_submit_page_write(&fio);
3022
3023         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3024 }
3025
3026 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3027 {
3028         struct f2fs_summary sum;
3029
3030         set_summary(&sum, nid, 0, 0);
3031         do_write_page(&sum, fio);
3032
3033         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3034 }
3035
3036 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3037                                         struct f2fs_io_info *fio)
3038 {
3039         struct f2fs_sb_info *sbi = fio->sbi;
3040         struct f2fs_summary sum;
3041
3042         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3043         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3044         do_write_page(&sum, fio);
3045         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3046
3047         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3048 }
3049
3050 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3051 {
3052         int err;
3053         struct f2fs_sb_info *sbi = fio->sbi;
3054
3055         fio->new_blkaddr = fio->old_blkaddr;
3056         /* i/o temperature is needed for passing down write hints */
3057         __get_segment_type(fio);
3058
3059         f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
3060                         GET_SEGNO(sbi, fio->new_blkaddr))->type));
3061
3062         stat_inc_inplace_blocks(fio->sbi);
3063
3064         err = f2fs_submit_page_bio(fio);
3065         if (!err)
3066                 update_device_state(fio);
3067
3068         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3069
3070         return err;
3071 }
3072
3073 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3074                                                 unsigned int segno)
3075 {
3076         int i;
3077
3078         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3079                 if (CURSEG_I(sbi, i)->segno == segno)
3080                         break;
3081         }
3082         return i;
3083 }
3084
3085 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3086                                 block_t old_blkaddr, block_t new_blkaddr,
3087                                 bool recover_curseg, bool recover_newaddr)
3088 {
3089         struct sit_info *sit_i = SIT_I(sbi);
3090         struct curseg_info *curseg;
3091         unsigned int segno, old_cursegno;
3092         struct seg_entry *se;
3093         int type;
3094         unsigned short old_blkoff;
3095
3096         segno = GET_SEGNO(sbi, new_blkaddr);
3097         se = get_seg_entry(sbi, segno);
3098         type = se->type;
3099
3100         down_write(&SM_I(sbi)->curseg_lock);
3101
3102         if (!recover_curseg) {
3103                 /* for recovery flow */
3104                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3105                         if (old_blkaddr == NULL_ADDR)
3106                                 type = CURSEG_COLD_DATA;
3107                         else
3108                                 type = CURSEG_WARM_DATA;
3109                 }
3110         } else {
3111                 if (IS_CURSEG(sbi, segno)) {
3112                         /* se->type is volatile as SSR allocation */
3113                         type = __f2fs_get_curseg(sbi, segno);
3114                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3115                 } else {
3116                         type = CURSEG_WARM_DATA;
3117                 }
3118         }
3119
3120         f2fs_bug_on(sbi, !IS_DATASEG(type));
3121         curseg = CURSEG_I(sbi, type);
3122
3123         mutex_lock(&curseg->curseg_mutex);
3124         down_write(&sit_i->sentry_lock);
3125
3126         old_cursegno = curseg->segno;
3127         old_blkoff = curseg->next_blkoff;
3128
3129         /* change the current segment */
3130         if (segno != curseg->segno) {
3131                 curseg->next_segno = segno;
3132                 change_curseg(sbi, type);
3133         }
3134
3135         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3136         __add_sum_entry(sbi, type, sum);
3137
3138         if (!recover_curseg || recover_newaddr)
3139                 update_sit_entry(sbi, new_blkaddr, 1);
3140         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3141                 invalidate_mapping_pages(META_MAPPING(sbi),
3142                                         old_blkaddr, old_blkaddr);
3143                 update_sit_entry(sbi, old_blkaddr, -1);
3144         }
3145
3146         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3147         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3148
3149         locate_dirty_segment(sbi, old_cursegno);
3150
3151         if (recover_curseg) {
3152                 if (old_cursegno != curseg->segno) {
3153                         curseg->next_segno = old_cursegno;
3154                         change_curseg(sbi, type);
3155                 }
3156                 curseg->next_blkoff = old_blkoff;
3157         }
3158
3159         up_write(&sit_i->sentry_lock);
3160         mutex_unlock(&curseg->curseg_mutex);
3161         up_write(&SM_I(sbi)->curseg_lock);
3162 }
3163
3164 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3165                                 block_t old_addr, block_t new_addr,
3166                                 unsigned char version, bool recover_curseg,
3167                                 bool recover_newaddr)
3168 {
3169         struct f2fs_summary sum;
3170
3171         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3172
3173         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3174                                         recover_curseg, recover_newaddr);
3175
3176         f2fs_update_data_blkaddr(dn, new_addr);
3177 }
3178
3179 void f2fs_wait_on_page_writeback(struct page *page,
3180                                 enum page_type type, bool ordered)
3181 {
3182         if (PageWriteback(page)) {
3183                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3184
3185                 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
3186                                                 0, page->index, type);
3187                 if (ordered)
3188                         wait_on_page_writeback(page);
3189                 else
3190                         wait_for_stable_page(page);
3191         }
3192 }
3193
3194 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
3195 {
3196         struct page *cpage;
3197
3198         if (!is_valid_data_blkaddr(sbi, blkaddr))
3199                 return;
3200
3201         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3202         if (cpage) {
3203                 f2fs_wait_on_page_writeback(cpage, DATA, true);
3204                 f2fs_put_page(cpage, 1);
3205         }
3206 }
3207
3208 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3209 {
3210         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3211         struct curseg_info *seg_i;
3212         unsigned char *kaddr;
3213         struct page *page;
3214         block_t start;
3215         int i, j, offset;
3216
3217         start = start_sum_block(sbi);
3218
3219         page = f2fs_get_meta_page(sbi, start++);
3220         if (IS_ERR(page))
3221                 return PTR_ERR(page);
3222         kaddr = (unsigned char *)page_address(page);
3223
3224         /* Step 1: restore nat cache */
3225         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3226         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3227
3228         /* Step 2: restore sit cache */
3229         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3230         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3231         offset = 2 * SUM_JOURNAL_SIZE;
3232
3233         /* Step 3: restore summary entries */
3234         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3235                 unsigned short blk_off;
3236                 unsigned int segno;
3237
3238                 seg_i = CURSEG_I(sbi, i);
3239                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3240                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3241                 seg_i->next_segno = segno;
3242                 reset_curseg(sbi, i, 0);
3243                 seg_i->alloc_type = ckpt->alloc_type[i];
3244                 seg_i->next_blkoff = blk_off;
3245
3246                 if (seg_i->alloc_type == SSR)
3247                         blk_off = sbi->blocks_per_seg;
3248
3249                 for (j = 0; j < blk_off; j++) {
3250                         struct f2fs_summary *s;
3251                         s = (struct f2fs_summary *)(kaddr + offset);
3252                         seg_i->sum_blk->entries[j] = *s;
3253                         offset += SUMMARY_SIZE;
3254                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3255                                                 SUM_FOOTER_SIZE)
3256                                 continue;
3257
3258                         f2fs_put_page(page, 1);
3259                         page = NULL;
3260
3261                         page = f2fs_get_meta_page(sbi, start++);
3262                         if (IS_ERR(page))
3263                                 return PTR_ERR(page);
3264                         kaddr = (unsigned char *)page_address(page);
3265                         offset = 0;
3266                 }
3267         }
3268         f2fs_put_page(page, 1);
3269         return 0;
3270 }
3271
3272 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3273 {
3274         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3275         struct f2fs_summary_block *sum;
3276         struct curseg_info *curseg;
3277         struct page *new;
3278         unsigned short blk_off;
3279         unsigned int segno = 0;
3280         block_t blk_addr = 0;
3281         int err = 0;
3282
3283         /* get segment number and block addr */
3284         if (IS_DATASEG(type)) {
3285                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3286                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3287                                                         CURSEG_HOT_DATA]);
3288                 if (__exist_node_summaries(sbi))
3289                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3290                 else
3291                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3292         } else {
3293                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3294                                                         CURSEG_HOT_NODE]);
3295                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3296                                                         CURSEG_HOT_NODE]);
3297                 if (__exist_node_summaries(sbi))
3298                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3299                                                         type - CURSEG_HOT_NODE);
3300                 else
3301                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3302         }
3303
3304         new = f2fs_get_meta_page(sbi, blk_addr);
3305         if (IS_ERR(new))
3306                 return PTR_ERR(new);
3307         sum = (struct f2fs_summary_block *)page_address(new);
3308
3309         if (IS_NODESEG(type)) {
3310                 if (__exist_node_summaries(sbi)) {
3311                         struct f2fs_summary *ns = &sum->entries[0];
3312                         int i;
3313                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3314                                 ns->version = 0;
3315                                 ns->ofs_in_node = 0;
3316                         }
3317                 } else {
3318                         err = f2fs_restore_node_summary(sbi, segno, sum);
3319                         if (err)
3320                                 goto out;
3321                 }
3322         }
3323
3324         /* set uncompleted segment to curseg */
3325         curseg = CURSEG_I(sbi, type);
3326         mutex_lock(&curseg->curseg_mutex);
3327
3328         /* update journal info */
3329         down_write(&curseg->journal_rwsem);
3330         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3331         up_write(&curseg->journal_rwsem);
3332
3333         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3334         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3335         curseg->next_segno = segno;
3336         reset_curseg(sbi, type, 0);
3337         curseg->alloc_type = ckpt->alloc_type[type];
3338         curseg->next_blkoff = blk_off;
3339         mutex_unlock(&curseg->curseg_mutex);
3340 out:
3341         f2fs_put_page(new, 1);
3342         return err;
3343 }
3344
3345 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3346 {
3347         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3348         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3349         int type = CURSEG_HOT_DATA;
3350         int err;
3351
3352         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3353                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3354
3355                 if (npages >= 2)
3356                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3357                                                         META_CP, true);
3358
3359                 /* restore for compacted data summary */
3360                 err = read_compacted_summaries(sbi);
3361                 if (err)
3362                         return err;
3363                 type = CURSEG_HOT_NODE;
3364         }
3365
3366         if (__exist_node_summaries(sbi))
3367                 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3368                                         NR_CURSEG_TYPE - type, META_CP, true);
3369
3370         for (; type <= CURSEG_COLD_NODE; type++) {
3371                 err = read_normal_summaries(sbi, type);
3372                 if (err)
3373                         return err;
3374         }
3375
3376         /* sanity check for summary blocks */
3377         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3378                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3379                 return -EINVAL;
3380
3381         return 0;
3382 }
3383
3384 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3385 {
3386         struct page *page;
3387         unsigned char *kaddr;
3388         struct f2fs_summary *summary;
3389         struct curseg_info *seg_i;
3390         int written_size = 0;
3391         int i, j;
3392
3393         page = f2fs_grab_meta_page(sbi, blkaddr++);
3394         kaddr = (unsigned char *)page_address(page);
3395         memset(kaddr, 0, PAGE_SIZE);
3396
3397         /* Step 1: write nat cache */
3398         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3399         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3400         written_size += SUM_JOURNAL_SIZE;
3401
3402         /* Step 2: write sit cache */
3403         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3404         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3405         written_size += SUM_JOURNAL_SIZE;
3406
3407         /* Step 3: write summary entries */
3408         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3409                 unsigned short blkoff;
3410                 seg_i = CURSEG_I(sbi, i);
3411                 if (sbi->ckpt->alloc_type[i] == SSR)
3412                         blkoff = sbi->blocks_per_seg;
3413                 else
3414                         blkoff = curseg_blkoff(sbi, i);
3415
3416                 for (j = 0; j < blkoff; j++) {
3417                         if (!page) {
3418                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
3419                                 kaddr = (unsigned char *)page_address(page);
3420                                 memset(kaddr, 0, PAGE_SIZE);
3421                                 written_size = 0;
3422                         }
3423                         summary = (struct f2fs_summary *)(kaddr + written_size);
3424                         *summary = seg_i->sum_blk->entries[j];
3425                         written_size += SUMMARY_SIZE;
3426
3427                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3428                                                         SUM_FOOTER_SIZE)
3429                                 continue;
3430
3431                         set_page_dirty(page);
3432                         f2fs_put_page(page, 1);
3433                         page = NULL;
3434                 }
3435         }
3436         if (page) {
3437                 set_page_dirty(page);
3438                 f2fs_put_page(page, 1);
3439         }
3440 }
3441
3442 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3443                                         block_t blkaddr, int type)
3444 {
3445         int i, end;
3446         if (IS_DATASEG(type))
3447                 end = type + NR_CURSEG_DATA_TYPE;
3448         else
3449                 end = type + NR_CURSEG_NODE_TYPE;
3450
3451         for (i = type; i < end; i++)
3452                 write_current_sum_page(sbi, i, blkaddr + (i - type));
3453 }
3454
3455 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3456 {
3457         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3458                 write_compacted_summaries(sbi, start_blk);
3459         else
3460                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3461 }
3462
3463 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3464 {
3465         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3466 }
3467
3468 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3469                                         unsigned int val, int alloc)
3470 {
3471         int i;
3472
3473         if (type == NAT_JOURNAL) {
3474                 for (i = 0; i < nats_in_cursum(journal); i++) {
3475                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3476                                 return i;
3477                 }
3478                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3479                         return update_nats_in_cursum(journal, 1);
3480         } else if (type == SIT_JOURNAL) {
3481                 for (i = 0; i < sits_in_cursum(journal); i++)
3482                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3483                                 return i;
3484                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3485                         return update_sits_in_cursum(journal, 1);
3486         }
3487         return -1;
3488 }
3489
3490 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3491                                         unsigned int segno)
3492 {
3493         return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3494 }
3495
3496 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3497                                         unsigned int start)
3498 {
3499         struct sit_info *sit_i = SIT_I(sbi);
3500         struct page *page;
3501         pgoff_t src_off, dst_off;
3502
3503         src_off = current_sit_addr(sbi, start);
3504         dst_off = next_sit_addr(sbi, src_off);
3505
3506         page = f2fs_grab_meta_page(sbi, dst_off);
3507         seg_info_to_sit_page(sbi, page, start);
3508
3509         set_page_dirty(page);
3510         set_to_next_sit(sit_i, start);
3511
3512         return page;
3513 }
3514
3515 static struct sit_entry_set *grab_sit_entry_set(void)
3516 {
3517         struct sit_entry_set *ses =
3518                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3519
3520         ses->entry_cnt = 0;
3521         INIT_LIST_HEAD(&ses->set_list);
3522         return ses;
3523 }
3524
3525 static void release_sit_entry_set(struct sit_entry_set *ses)
3526 {
3527         list_del(&ses->set_list);
3528         kmem_cache_free(sit_entry_set_slab, ses);
3529 }
3530
3531 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3532                                                 struct list_head *head)
3533 {
3534         struct sit_entry_set *next = ses;
3535
3536         if (list_is_last(&ses->set_list, head))
3537                 return;
3538
3539         list_for_each_entry_continue(next, head, set_list)
3540                 if (ses->entry_cnt <= next->entry_cnt)
3541                         break;
3542
3543         list_move_tail(&ses->set_list, &next->set_list);
3544 }
3545
3546 static void add_sit_entry(unsigned int segno, struct list_head *head)
3547 {
3548         struct sit_entry_set *ses;
3549         unsigned int start_segno = START_SEGNO(segno);
3550
3551         list_for_each_entry(ses, head, set_list) {
3552                 if (ses->start_segno == start_segno) {
3553                         ses->entry_cnt++;
3554                         adjust_sit_entry_set(ses, head);
3555                         return;
3556                 }
3557         }
3558
3559         ses = grab_sit_entry_set();
3560
3561         ses->start_segno = start_segno;
3562         ses->entry_cnt++;
3563         list_add(&ses->set_list, head);
3564 }
3565
3566 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3567 {
3568         struct f2fs_sm_info *sm_info = SM_I(sbi);
3569         struct list_head *set_list = &sm_info->sit_entry_set;
3570         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3571         unsigned int segno;
3572
3573         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3574                 add_sit_entry(segno, set_list);
3575 }
3576
3577 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3578 {
3579         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3580         struct f2fs_journal *journal = curseg->journal;
3581         int i;
3582
3583         down_write(&curseg->journal_rwsem);
3584         for (i = 0; i < sits_in_cursum(journal); i++) {
3585                 unsigned int segno;
3586                 bool dirtied;
3587
3588                 segno = le32_to_cpu(segno_in_journal(journal, i));
3589                 dirtied = __mark_sit_entry_dirty(sbi, segno);
3590
3591                 if (!dirtied)
3592                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3593         }
3594         update_sits_in_cursum(journal, -i);
3595         up_write(&curseg->journal_rwsem);
3596 }
3597
3598 /*
3599  * CP calls this function, which flushes SIT entries including sit_journal,
3600  * and moves prefree segs to free segs.
3601  */
3602 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3603 {
3604         struct sit_info *sit_i = SIT_I(sbi);
3605         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3606         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3607         struct f2fs_journal *journal = curseg->journal;
3608         struct sit_entry_set *ses, *tmp;
3609         struct list_head *head = &SM_I(sbi)->sit_entry_set;
3610         bool to_journal = true;
3611         struct seg_entry *se;
3612
3613         down_write(&sit_i->sentry_lock);
3614
3615         if (!sit_i->dirty_sentries)
3616                 goto out;
3617
3618         /*
3619          * add and account sit entries of dirty bitmap in sit entry
3620          * set temporarily
3621          */
3622         add_sits_in_set(sbi);
3623
3624         /*
3625          * if there are no enough space in journal to store dirty sit
3626          * entries, remove all entries from journal and add and account
3627          * them in sit entry set.
3628          */
3629         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3630                 remove_sits_in_journal(sbi);
3631
3632         /*
3633          * there are two steps to flush sit entries:
3634          * #1, flush sit entries to journal in current cold data summary block.
3635          * #2, flush sit entries to sit page.
3636          */
3637         list_for_each_entry_safe(ses, tmp, head, set_list) {
3638                 struct page *page = NULL;
3639                 struct f2fs_sit_block *raw_sit = NULL;
3640                 unsigned int start_segno = ses->start_segno;
3641                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3642                                                 (unsigned long)MAIN_SEGS(sbi));
3643                 unsigned int segno = start_segno;
3644
3645                 if (to_journal &&
3646                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3647                         to_journal = false;
3648
3649                 if (to_journal) {
3650                         down_write(&curseg->journal_rwsem);
3651                 } else {
3652                         page = get_next_sit_page(sbi, start_segno);
3653                         raw_sit = page_address(page);
3654                 }
3655
3656                 /* flush dirty sit entries in region of current sit set */
3657                 for_each_set_bit_from(segno, bitmap, end) {
3658                         int offset, sit_offset;
3659
3660                         se = get_seg_entry(sbi, segno);
3661 #ifdef CONFIG_F2FS_CHECK_FS
3662                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3663                                                 SIT_VBLOCK_MAP_SIZE))
3664                                 f2fs_bug_on(sbi, 1);
3665 #endif
3666
3667                         /* add discard candidates */
3668                         if (!(cpc->reason & CP_DISCARD)) {
3669                                 cpc->trim_start = segno;
3670                                 add_discard_addrs(sbi, cpc, false);
3671                         }
3672
3673                         if (to_journal) {
3674                                 offset = f2fs_lookup_journal_in_cursum(journal,
3675                                                         SIT_JOURNAL, segno, 1);
3676                                 f2fs_bug_on(sbi, offset < 0);
3677                                 segno_in_journal(journal, offset) =
3678                                                         cpu_to_le32(segno);
3679                                 seg_info_to_raw_sit(se,
3680                                         &sit_in_journal(journal, offset));
3681                                 check_block_count(sbi, segno,
3682                                         &sit_in_journal(journal, offset));
3683                         } else {
3684                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3685                                 seg_info_to_raw_sit(se,
3686                                                 &raw_sit->entries[sit_offset]);
3687                                 check_block_count(sbi, segno,
3688                                                 &raw_sit->entries[sit_offset]);
3689                         }
3690
3691                         __clear_bit(segno, bitmap);
3692                         sit_i->dirty_sentries--;
3693                         ses->entry_cnt--;
3694                 }
3695
3696                 if (to_journal)
3697                         up_write(&curseg->journal_rwsem);
3698                 else
3699                         f2fs_put_page(page, 1);
3700
3701                 f2fs_bug_on(sbi, ses->entry_cnt);
3702                 release_sit_entry_set(ses);
3703         }
3704
3705         f2fs_bug_on(sbi, !list_empty(head));
3706         f2fs_bug_on(sbi, sit_i->dirty_sentries);
3707 out:
3708         if (cpc->reason & CP_DISCARD) {
3709                 __u64 trim_start = cpc->trim_start;
3710
3711                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3712                         add_discard_addrs(sbi, cpc, false);
3713
3714                 cpc->trim_start = trim_start;
3715         }
3716         up_write(&sit_i->sentry_lock);
3717
3718         set_prefree_as_free_segments(sbi);
3719 }
3720
3721 static int build_sit_info(struct f2fs_sb_info *sbi)
3722 {
3723         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3724         struct sit_info *sit_i;
3725         unsigned int sit_segs, start;
3726         char *src_bitmap;
3727         unsigned int bitmap_size;
3728
3729         /* allocate memory for SIT information */
3730         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3731         if (!sit_i)
3732                 return -ENOMEM;
3733
3734         SM_I(sbi)->sit_info = sit_i;
3735
3736         sit_i->sentries =
3737                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3738                                               MAIN_SEGS(sbi)),
3739                               GFP_KERNEL);
3740         if (!sit_i->sentries)
3741                 return -ENOMEM;
3742
3743         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3744         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3745                                                                 GFP_KERNEL);
3746         if (!sit_i->dirty_sentries_bitmap)
3747                 return -ENOMEM;
3748
3749         for (start = 0; start < MAIN_SEGS(sbi); start++) {
3750                 sit_i->sentries[start].cur_valid_map
3751                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3752                 sit_i->sentries[start].ckpt_valid_map
3753                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3754                 if (!sit_i->sentries[start].cur_valid_map ||
3755                                 !sit_i->sentries[start].ckpt_valid_map)
3756                         return -ENOMEM;
3757
3758 #ifdef CONFIG_F2FS_CHECK_FS
3759                 sit_i->sentries[start].cur_valid_map_mir
3760                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3761                 if (!sit_i->sentries[start].cur_valid_map_mir)
3762                         return -ENOMEM;
3763 #endif
3764
3765                 if (f2fs_discard_en(sbi)) {
3766                         sit_i->sentries[start].discard_map
3767                                 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3768                                                                 GFP_KERNEL);
3769                         if (!sit_i->sentries[start].discard_map)
3770                                 return -ENOMEM;
3771                 }
3772         }
3773
3774         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3775         if (!sit_i->tmp_map)
3776                 return -ENOMEM;
3777
3778         if (sbi->segs_per_sec > 1) {
3779                 sit_i->sec_entries =
3780                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3781                                                       MAIN_SECS(sbi)),
3782                                       GFP_KERNEL);
3783                 if (!sit_i->sec_entries)
3784                         return -ENOMEM;
3785         }
3786
3787         /* get information related with SIT */
3788         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3789
3790         /* setup SIT bitmap from ckeckpoint pack */
3791         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3792         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3793
3794         sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3795         if (!sit_i->sit_bitmap)
3796                 return -ENOMEM;
3797
3798 #ifdef CONFIG_F2FS_CHECK_FS
3799         sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3800         if (!sit_i->sit_bitmap_mir)
3801                 return -ENOMEM;
3802 #endif
3803
3804         /* init SIT information */
3805         sit_i->s_ops = &default_salloc_ops;
3806
3807         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3808         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3809         sit_i->written_valid_blocks = 0;
3810         sit_i->bitmap_size = bitmap_size;
3811         sit_i->dirty_sentries = 0;
3812         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3813         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3814         sit_i->mounted_time = ktime_get_real_seconds();
3815         init_rwsem(&sit_i->sentry_lock);
3816         return 0;
3817 }
3818
3819 static int build_free_segmap(struct f2fs_sb_info *sbi)
3820 {
3821         struct free_segmap_info *free_i;
3822         unsigned int bitmap_size, sec_bitmap_size;
3823
3824         /* allocate memory for free segmap information */
3825         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3826         if (!free_i)
3827                 return -ENOMEM;
3828
3829         SM_I(sbi)->free_info = free_i;
3830
3831         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3832         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3833         if (!free_i->free_segmap)
3834                 return -ENOMEM;
3835
3836         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3837         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3838         if (!free_i->free_secmap)
3839                 return -ENOMEM;
3840
3841         /* set all segments as dirty temporarily */
3842         memset(free_i->free_segmap, 0xff, bitmap_size);
3843         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3844
3845         /* init free segmap information */
3846         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3847         free_i->free_segments = 0;
3848         free_i->free_sections = 0;
3849         spin_lock_init(&free_i->segmap_lock);
3850         return 0;
3851 }
3852
3853 static int build_curseg(struct f2fs_sb_info *sbi)
3854 {
3855         struct curseg_info *array;
3856         int i;
3857
3858         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
3859                              GFP_KERNEL);
3860         if (!array)
3861                 return -ENOMEM;
3862
3863         SM_I(sbi)->curseg_array = array;
3864
3865         for (i = 0; i < NR_CURSEG_TYPE; i++) {
3866                 mutex_init(&array[i].curseg_mutex);
3867                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3868                 if (!array[i].sum_blk)
3869                         return -ENOMEM;
3870                 init_rwsem(&array[i].journal_rwsem);
3871                 array[i].journal = f2fs_kzalloc(sbi,
3872                                 sizeof(struct f2fs_journal), GFP_KERNEL);
3873                 if (!array[i].journal)
3874                         return -ENOMEM;
3875                 array[i].segno = NULL_SEGNO;
3876                 array[i].next_blkoff = 0;
3877         }
3878         return restore_curseg_summaries(sbi);
3879 }
3880
3881 static int build_sit_entries(struct f2fs_sb_info *sbi)
3882 {
3883         struct sit_info *sit_i = SIT_I(sbi);
3884         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3885         struct f2fs_journal *journal = curseg->journal;
3886         struct seg_entry *se;
3887         struct f2fs_sit_entry sit;
3888         int sit_blk_cnt = SIT_BLK_CNT(sbi);
3889         unsigned int i, start, end;
3890         unsigned int readed, start_blk = 0;
3891         int err = 0;
3892         block_t total_node_blocks = 0;
3893
3894         do {
3895                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3896                                                         META_SIT, true);
3897
3898                 start = start_blk * sit_i->sents_per_block;
3899                 end = (start_blk + readed) * sit_i->sents_per_block;
3900
3901                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
3902                         struct f2fs_sit_block *sit_blk;
3903                         struct page *page;
3904
3905                         se = &sit_i->sentries[start];
3906                         page = get_current_sit_page(sbi, start);
3907                         sit_blk = (struct f2fs_sit_block *)page_address(page);
3908                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3909                         f2fs_put_page(page, 1);
3910
3911                         err = check_block_count(sbi, start, &sit);
3912                         if (err)
3913                                 return err;
3914                         seg_info_from_raw_sit(se, &sit);
3915                         if (IS_NODESEG(se->type))
3916                                 total_node_blocks += se->valid_blocks;
3917
3918                         /* build discard map only one time */
3919                         if (f2fs_discard_en(sbi)) {
3920                                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3921                                         memset(se->discard_map, 0xff,
3922                                                 SIT_VBLOCK_MAP_SIZE);
3923                                 } else {
3924                                         memcpy(se->discard_map,
3925                                                 se->cur_valid_map,
3926                                                 SIT_VBLOCK_MAP_SIZE);
3927                                         sbi->discard_blks +=
3928                                                 sbi->blocks_per_seg -
3929                                                 se->valid_blocks;
3930                                 }
3931                         }
3932
3933                         if (sbi->segs_per_sec > 1)
3934                                 get_sec_entry(sbi, start)->valid_blocks +=
3935                                                         se->valid_blocks;
3936                 }
3937                 start_blk += readed;
3938         } while (start_blk < sit_blk_cnt);
3939
3940         down_read(&curseg->journal_rwsem);
3941         for (i = 0; i < sits_in_cursum(journal); i++) {
3942                 unsigned int old_valid_blocks;
3943
3944                 start = le32_to_cpu(segno_in_journal(journal, i));
3945                 if (start >= MAIN_SEGS(sbi)) {
3946                         f2fs_msg(sbi->sb, KERN_ERR,
3947                                         "Wrong journal entry on segno %u",
3948                                         start);
3949                         set_sbi_flag(sbi, SBI_NEED_FSCK);
3950                         err = -EINVAL;
3951                         break;
3952                 }
3953
3954                 se = &sit_i->sentries[start];
3955                 sit = sit_in_journal(journal, i);
3956
3957                 old_valid_blocks = se->valid_blocks;
3958                 if (IS_NODESEG(se->type))
3959                         total_node_blocks -= old_valid_blocks;
3960
3961                 err = check_block_count(sbi, start, &sit);
3962                 if (err)
3963                         break;
3964                 seg_info_from_raw_sit(se, &sit);
3965                 if (IS_NODESEG(se->type))
3966                         total_node_blocks += se->valid_blocks;
3967
3968                 if (f2fs_discard_en(sbi)) {
3969                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3970                                 memset(se->discard_map, 0xff,
3971                                                         SIT_VBLOCK_MAP_SIZE);
3972                         } else {
3973                                 memcpy(se->discard_map, se->cur_valid_map,
3974                                                         SIT_VBLOCK_MAP_SIZE);
3975                                 sbi->discard_blks += old_valid_blocks;
3976                                 sbi->discard_blks -= se->valid_blocks;
3977                         }
3978                 }
3979
3980                 if (sbi->segs_per_sec > 1) {
3981                         get_sec_entry(sbi, start)->valid_blocks +=
3982                                                         se->valid_blocks;
3983                         get_sec_entry(sbi, start)->valid_blocks -=
3984                                                         old_valid_blocks;
3985                 }
3986         }
3987         up_read(&curseg->journal_rwsem);
3988
3989         if (!err && total_node_blocks != valid_node_count(sbi)) {
3990                 f2fs_msg(sbi->sb, KERN_ERR,
3991                         "SIT is corrupted node# %u vs %u",
3992                         total_node_blocks, valid_node_count(sbi));
3993                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3994                 err = -EINVAL;
3995         }
3996
3997         return err;
3998 }
3999
4000 static void init_free_segmap(struct f2fs_sb_info *sbi)
4001 {
4002         unsigned int start;
4003         int type;
4004
4005         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4006                 struct seg_entry *sentry = get_seg_entry(sbi, start);
4007                 if (!sentry->valid_blocks)
4008                         __set_free(sbi, start);
4009                 else
4010                         SIT_I(sbi)->written_valid_blocks +=
4011                                                 sentry->valid_blocks;
4012         }
4013
4014         /* set use the current segments */
4015         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4016                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4017                 __set_test_and_inuse(sbi, curseg_t->segno);
4018         }
4019 }
4020
4021 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4022 {
4023         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4024         struct free_segmap_info *free_i = FREE_I(sbi);
4025         unsigned int segno = 0, offset = 0;
4026         unsigned short valid_blocks;
4027
4028         while (1) {
4029                 /* find dirty segment based on free segmap */
4030                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4031                 if (segno >= MAIN_SEGS(sbi))
4032                         break;
4033                 offset = segno + 1;
4034                 valid_blocks = get_valid_blocks(sbi, segno, false);
4035                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4036                         continue;
4037                 if (valid_blocks > sbi->blocks_per_seg) {
4038                         f2fs_bug_on(sbi, 1);
4039                         continue;
4040                 }
4041                 mutex_lock(&dirty_i->seglist_lock);
4042                 __locate_dirty_segment(sbi, segno, DIRTY);
4043                 mutex_unlock(&dirty_i->seglist_lock);
4044         }
4045 }
4046
4047 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4048 {
4049         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4050         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4051
4052         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4053         if (!dirty_i->victim_secmap)
4054                 return -ENOMEM;
4055         return 0;
4056 }
4057
4058 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4059 {
4060         struct dirty_seglist_info *dirty_i;
4061         unsigned int bitmap_size, i;
4062
4063         /* allocate memory for dirty segments list information */
4064         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4065                                                                 GFP_KERNEL);
4066         if (!dirty_i)
4067                 return -ENOMEM;
4068
4069         SM_I(sbi)->dirty_info = dirty_i;
4070         mutex_init(&dirty_i->seglist_lock);
4071
4072         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4073
4074         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4075                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4076                                                                 GFP_KERNEL);
4077                 if (!dirty_i->dirty_segmap[i])
4078                         return -ENOMEM;
4079         }
4080
4081         init_dirty_segmap(sbi);
4082         return init_victim_secmap(sbi);
4083 }
4084
4085 /*
4086  * Update min, max modified time for cost-benefit GC algorithm
4087  */
4088 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4089 {
4090         struct sit_info *sit_i = SIT_I(sbi);
4091         unsigned int segno;
4092
4093         down_write(&sit_i->sentry_lock);
4094
4095         sit_i->min_mtime = ULLONG_MAX;
4096
4097         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4098                 unsigned int i;
4099                 unsigned long long mtime = 0;
4100
4101                 for (i = 0; i < sbi->segs_per_sec; i++)
4102                         mtime += get_seg_entry(sbi, segno + i)->mtime;
4103
4104                 mtime = div_u64(mtime, sbi->segs_per_sec);
4105
4106                 if (sit_i->min_mtime > mtime)
4107                         sit_i->min_mtime = mtime;
4108         }
4109         sit_i->max_mtime = get_mtime(sbi, false);
4110         up_write(&sit_i->sentry_lock);
4111 }
4112
4113 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4114 {
4115         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4116         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4117         struct f2fs_sm_info *sm_info;
4118         int err;
4119
4120         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4121         if (!sm_info)
4122                 return -ENOMEM;
4123
4124         /* init sm info */
4125         sbi->sm_info = sm_info;
4126         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4127         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4128         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4129         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4130         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4131         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4132         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4133         sm_info->rec_prefree_segments = sm_info->main_segments *
4134                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4135         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4136                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4137
4138         if (!test_opt(sbi, LFS))
4139                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4140         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4141         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4142         sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4143         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4144         sm_info->min_ssr_sections = reserved_sections(sbi);
4145
4146         INIT_LIST_HEAD(&sm_info->sit_entry_set);
4147
4148         init_rwsem(&sm_info->curseg_lock);
4149
4150         if (!f2fs_readonly(sbi->sb)) {
4151                 err = f2fs_create_flush_cmd_control(sbi);
4152                 if (err)
4153                         return err;
4154         }
4155
4156         err = create_discard_cmd_control(sbi);
4157         if (err)
4158                 return err;
4159
4160         err = build_sit_info(sbi);
4161         if (err)
4162                 return err;
4163         err = build_free_segmap(sbi);
4164         if (err)
4165                 return err;
4166         err = build_curseg(sbi);
4167         if (err)
4168                 return err;
4169
4170         /* reinit free segmap based on SIT */
4171         err = build_sit_entries(sbi);
4172         if (err)
4173                 return err;
4174
4175         init_free_segmap(sbi);
4176         err = build_dirty_segmap(sbi);
4177         if (err)
4178                 return err;
4179
4180         init_min_max_mtime(sbi);
4181         return 0;
4182 }
4183
4184 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4185                 enum dirty_type dirty_type)
4186 {
4187         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4188
4189         mutex_lock(&dirty_i->seglist_lock);
4190         kvfree(dirty_i->dirty_segmap[dirty_type]);
4191         dirty_i->nr_dirty[dirty_type] = 0;
4192         mutex_unlock(&dirty_i->seglist_lock);
4193 }
4194
4195 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4196 {
4197         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4198         kvfree(dirty_i->victim_secmap);
4199 }
4200
4201 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4202 {
4203         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4204         int i;
4205
4206         if (!dirty_i)
4207                 return;
4208
4209         /* discard pre-free/dirty segments list */
4210         for (i = 0; i < NR_DIRTY_TYPE; i++)
4211                 discard_dirty_segmap(sbi, i);
4212
4213         destroy_victim_secmap(sbi);
4214         SM_I(sbi)->dirty_info = NULL;
4215         kfree(dirty_i);
4216 }
4217
4218 static void destroy_curseg(struct f2fs_sb_info *sbi)
4219 {
4220         struct curseg_info *array = SM_I(sbi)->curseg_array;
4221         int i;
4222
4223         if (!array)
4224                 return;
4225         SM_I(sbi)->curseg_array = NULL;
4226         for (i = 0; i < NR_CURSEG_TYPE; i++) {
4227                 kfree(array[i].sum_blk);
4228                 kfree(array[i].journal);
4229         }
4230         kfree(array);
4231 }
4232
4233 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4234 {
4235         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4236         if (!free_i)
4237                 return;
4238         SM_I(sbi)->free_info = NULL;
4239         kvfree(free_i->free_segmap);
4240         kvfree(free_i->free_secmap);
4241         kfree(free_i);
4242 }
4243
4244 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4245 {
4246         struct sit_info *sit_i = SIT_I(sbi);
4247         unsigned int start;
4248
4249         if (!sit_i)
4250                 return;
4251
4252         if (sit_i->sentries) {
4253                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4254                         kfree(sit_i->sentries[start].cur_valid_map);
4255 #ifdef CONFIG_F2FS_CHECK_FS
4256                         kfree(sit_i->sentries[start].cur_valid_map_mir);
4257 #endif
4258                         kfree(sit_i->sentries[start].ckpt_valid_map);
4259                         kfree(sit_i->sentries[start].discard_map);
4260                 }
4261         }
4262         kfree(sit_i->tmp_map);
4263
4264         kvfree(sit_i->sentries);
4265         kvfree(sit_i->sec_entries);
4266         kvfree(sit_i->dirty_sentries_bitmap);
4267
4268         SM_I(sbi)->sit_info = NULL;
4269         kfree(sit_i->sit_bitmap);
4270 #ifdef CONFIG_F2FS_CHECK_FS
4271         kfree(sit_i->sit_bitmap_mir);
4272 #endif
4273         kfree(sit_i);
4274 }
4275
4276 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4277 {
4278         struct f2fs_sm_info *sm_info = SM_I(sbi);
4279
4280         if (!sm_info)
4281                 return;
4282         f2fs_destroy_flush_cmd_control(sbi, true);
4283         destroy_discard_cmd_control(sbi);
4284         destroy_dirty_segmap(sbi);
4285         destroy_curseg(sbi);
4286         destroy_free_segmap(sbi);
4287         destroy_sit_info(sbi);
4288         sbi->sm_info = NULL;
4289         kfree(sm_info);
4290 }
4291
4292 int __init f2fs_create_segment_manager_caches(void)
4293 {
4294         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4295                         sizeof(struct discard_entry));
4296         if (!discard_entry_slab)
4297                 goto fail;
4298
4299         discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4300                         sizeof(struct discard_cmd));
4301         if (!discard_cmd_slab)
4302                 goto destroy_discard_entry;
4303
4304         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4305                         sizeof(struct sit_entry_set));
4306         if (!sit_entry_set_slab)
4307                 goto destroy_discard_cmd;
4308
4309         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4310                         sizeof(struct inmem_pages));
4311         if (!inmem_entry_slab)
4312                 goto destroy_sit_entry_set;
4313         return 0;
4314
4315 destroy_sit_entry_set:
4316         kmem_cache_destroy(sit_entry_set_slab);
4317 destroy_discard_cmd:
4318         kmem_cache_destroy(discard_cmd_slab);
4319 destroy_discard_entry:
4320         kmem_cache_destroy(discard_entry_slab);
4321 fail:
4322         return -ENOMEM;
4323 }
4324
4325 void f2fs_destroy_segment_manager_caches(void)
4326 {
4327         kmem_cache_destroy(sit_entry_set_slab);
4328         kmem_cache_destroy(discard_cmd_slab);
4329         kmem_cache_destroy(discard_entry_slab);
4330         kmem_cache_destroy(inmem_entry_slab);
4331 }
This page took 0.283247 seconds and 4 git commands to generate.