]> Git Repo - linux.git/blob - fs/btrfs/disk-io.c
Btrfs: fix incorrect inode acl reset
[linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
36 #include "compat.h"
37 #include "ctree.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "btrfs_inode.h"
41 #include "volumes.h"
42 #include "print-tree.h"
43 #include "async-thread.h"
44 #include "locking.h"
45 #include "tree-log.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
48 #include "check-integrity.h"
49 #include "rcu-string.h"
50 #include "dev-replace.h"
51 #include "raid56.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
160         { .id = 0,                              .name_stem = "tree"     },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165         int i, j;
166
167         /* initialize lockdep class names */
168         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172                         snprintf(ks->names[j], sizeof(ks->names[j]),
173                                  "btrfs-%s-%02d", ks->name_stem, j);
174         }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178                                     int level)
179 {
180         struct btrfs_lockdep_keyset *ks;
181
182         BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184         /* find the matching keyset, id 0 is the default entry */
185         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186                 if (ks->id == objectid)
187                         break;
188
189         lockdep_set_class_and_name(&eb->lock,
190                                    &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200                 struct page *page, size_t pg_offset, u64 start, u64 len,
201                 int create)
202 {
203         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204         struct extent_map *em;
205         int ret;
206
207         read_lock(&em_tree->lock);
208         em = lookup_extent_mapping(em_tree, start, len);
209         if (em) {
210                 em->bdev =
211                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212                 read_unlock(&em_tree->lock);
213                 goto out;
214         }
215         read_unlock(&em_tree->lock);
216
217         em = alloc_extent_map();
218         if (!em) {
219                 em = ERR_PTR(-ENOMEM);
220                 goto out;
221         }
222         em->start = 0;
223         em->len = (u64)-1;
224         em->block_len = (u64)-1;
225         em->block_start = 0;
226         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228         write_lock(&em_tree->lock);
229         ret = add_extent_mapping(em_tree, em, 0);
230         if (ret == -EEXIST) {
231                 free_extent_map(em);
232                 em = lookup_extent_mapping(em_tree, start, len);
233                 if (!em)
234                         em = ERR_PTR(-EIO);
235         } else if (ret) {
236                 free_extent_map(em);
237                 em = ERR_PTR(ret);
238         }
239         write_unlock(&em_tree->lock);
240
241 out:
242         return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247         return crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252         put_unaligned_le32(~crc, result);
253 }
254
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260                            int verify)
261 {
262         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263         char *result = NULL;
264         unsigned long len;
265         unsigned long cur_len;
266         unsigned long offset = BTRFS_CSUM_SIZE;
267         char *kaddr;
268         unsigned long map_start;
269         unsigned long map_len;
270         int err;
271         u32 crc = ~(u32)0;
272         unsigned long inline_result;
273
274         len = buf->len - offset;
275         while (len > 0) {
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (err)
279                         return 1;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crc = btrfs_csum_data(kaddr + offset - map_start,
282                                       crc, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         if (csum_size > sizeof(inline_result)) {
287                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288                 if (!result)
289                         return 1;
290         } else {
291                 result = (char *)&inline_result;
292         }
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
304                                        "failed on %llu wanted %X found %X "
305                                        "level %d\n",
306                                        root->fs_info->sb->s_id, buf->start,
307                                        val, found, btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        eb->start, parent_transid, btrfs_header_generation(eb));
349         ret = 1;
350         clear_extent_buffer_uptodate(eb);
351 out:
352         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353                              &cached_state, GFP_NOFS);
354         return ret;
355 }
356
357 /*
358  * Return 0 if the superblock checksum type matches the checksum value of that
359  * algorithm. Pass the raw disk superblock data.
360  */
361 static int btrfs_check_super_csum(char *raw_disk_sb)
362 {
363         struct btrfs_super_block *disk_sb =
364                 (struct btrfs_super_block *)raw_disk_sb;
365         u16 csum_type = btrfs_super_csum_type(disk_sb);
366         int ret = 0;
367
368         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369                 u32 crc = ~(u32)0;
370                 const int csum_size = sizeof(crc);
371                 char result[csum_size];
372
373                 /*
374                  * The super_block structure does not span the whole
375                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376                  * is filled with zeros and is included in the checkum.
377                  */
378                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380                 btrfs_csum_final(crc, result);
381
382                 if (memcmp(raw_disk_sb, result, csum_size))
383                         ret = 1;
384
385                 if (ret && btrfs_super_generation(disk_sb) < 10) {
386                         printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
387                         ret = 0;
388                 }
389         }
390
391         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
392                 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
393                                 csum_type);
394                 ret = 1;
395         }
396
397         return ret;
398 }
399
400 /*
401  * helper to read a given tree block, doing retries as required when
402  * the checksums don't match and we have alternate mirrors to try.
403  */
404 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
405                                           struct extent_buffer *eb,
406                                           u64 start, u64 parent_transid)
407 {
408         struct extent_io_tree *io_tree;
409         int failed = 0;
410         int ret;
411         int num_copies = 0;
412         int mirror_num = 0;
413         int failed_mirror = 0;
414
415         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
416         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
417         while (1) {
418                 ret = read_extent_buffer_pages(io_tree, eb, start,
419                                                WAIT_COMPLETE,
420                                                btree_get_extent, mirror_num);
421                 if (!ret) {
422                         if (!verify_parent_transid(io_tree, eb,
423                                                    parent_transid, 0))
424                                 break;
425                         else
426                                 ret = -EIO;
427                 }
428
429                 /*
430                  * This buffer's crc is fine, but its contents are corrupted, so
431                  * there is no reason to read the other copies, they won't be
432                  * any less wrong.
433                  */
434                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
435                         break;
436
437                 num_copies = btrfs_num_copies(root->fs_info,
438                                               eb->start, eb->len);
439                 if (num_copies == 1)
440                         break;
441
442                 if (!failed_mirror) {
443                         failed = 1;
444                         failed_mirror = eb->read_mirror;
445                 }
446
447                 mirror_num++;
448                 if (mirror_num == failed_mirror)
449                         mirror_num++;
450
451                 if (mirror_num > num_copies)
452                         break;
453         }
454
455         if (failed && !ret && failed_mirror)
456                 repair_eb_io_failure(root, eb, failed_mirror);
457
458         return ret;
459 }
460
461 /*
462  * checksum a dirty tree block before IO.  This has extra checks to make sure
463  * we only fill in the checksum field in the first page of a multi-page block
464  */
465
466 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
467 {
468         struct extent_io_tree *tree;
469         u64 start = page_offset(page);
470         u64 found_start;
471         struct extent_buffer *eb;
472
473         tree = &BTRFS_I(page->mapping->host)->io_tree;
474
475         eb = (struct extent_buffer *)page->private;
476         if (page != eb->pages[0])
477                 return 0;
478         found_start = btrfs_header_bytenr(eb);
479         if (found_start != start) {
480                 WARN_ON(1);
481                 return 0;
482         }
483         if (!PageUptodate(page)) {
484                 WARN_ON(1);
485                 return 0;
486         }
487         csum_tree_block(root, eb, 0);
488         return 0;
489 }
490
491 static int check_tree_block_fsid(struct btrfs_root *root,
492                                  struct extent_buffer *eb)
493 {
494         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
495         u8 fsid[BTRFS_UUID_SIZE];
496         int ret = 1;
497
498         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
499         while (fs_devices) {
500                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
501                         ret = 0;
502                         break;
503                 }
504                 fs_devices = fs_devices->seed;
505         }
506         return ret;
507 }
508
509 #define CORRUPT(reason, eb, root, slot)                         \
510         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
511                "root=%llu, slot=%d\n", reason,                  \
512                btrfs_header_bytenr(eb), root->objectid, slot)
513
514 static noinline int check_leaf(struct btrfs_root *root,
515                                struct extent_buffer *leaf)
516 {
517         struct btrfs_key key;
518         struct btrfs_key leaf_key;
519         u32 nritems = btrfs_header_nritems(leaf);
520         int slot;
521
522         if (nritems == 0)
523                 return 0;
524
525         /* Check the 0 item */
526         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
527             BTRFS_LEAF_DATA_SIZE(root)) {
528                 CORRUPT("invalid item offset size pair", leaf, root, 0);
529                 return -EIO;
530         }
531
532         /*
533          * Check to make sure each items keys are in the correct order and their
534          * offsets make sense.  We only have to loop through nritems-1 because
535          * we check the current slot against the next slot, which verifies the
536          * next slot's offset+size makes sense and that the current's slot
537          * offset is correct.
538          */
539         for (slot = 0; slot < nritems - 1; slot++) {
540                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
541                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
542
543                 /* Make sure the keys are in the right order */
544                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
545                         CORRUPT("bad key order", leaf, root, slot);
546                         return -EIO;
547                 }
548
549                 /*
550                  * Make sure the offset and ends are right, remember that the
551                  * item data starts at the end of the leaf and grows towards the
552                  * front.
553                  */
554                 if (btrfs_item_offset_nr(leaf, slot) !=
555                         btrfs_item_end_nr(leaf, slot + 1)) {
556                         CORRUPT("slot offset bad", leaf, root, slot);
557                         return -EIO;
558                 }
559
560                 /*
561                  * Check to make sure that we don't point outside of the leaf,
562                  * just incase all the items are consistent to eachother, but
563                  * all point outside of the leaf.
564                  */
565                 if (btrfs_item_end_nr(leaf, slot) >
566                     BTRFS_LEAF_DATA_SIZE(root)) {
567                         CORRUPT("slot end outside of leaf", leaf, root, slot);
568                         return -EIO;
569                 }
570         }
571
572         return 0;
573 }
574
575 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
576                                       u64 phy_offset, struct page *page,
577                                       u64 start, u64 end, int mirror)
578 {
579         struct extent_io_tree *tree;
580         u64 found_start;
581         int found_level;
582         struct extent_buffer *eb;
583         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
584         int ret = 0;
585         int reads_done;
586
587         if (!page->private)
588                 goto out;
589
590         tree = &BTRFS_I(page->mapping->host)->io_tree;
591         eb = (struct extent_buffer *)page->private;
592
593         /* the pending IO might have been the only thing that kept this buffer
594          * in memory.  Make sure we have a ref for all this other checks
595          */
596         extent_buffer_get(eb);
597
598         reads_done = atomic_dec_and_test(&eb->io_pages);
599         if (!reads_done)
600                 goto err;
601
602         eb->read_mirror = mirror;
603         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
604                 ret = -EIO;
605                 goto err;
606         }
607
608         found_start = btrfs_header_bytenr(eb);
609         if (found_start != eb->start) {
610                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
611                                "%llu %llu\n",
612                                found_start, eb->start);
613                 ret = -EIO;
614                 goto err;
615         }
616         if (check_tree_block_fsid(root, eb)) {
617                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
618                                eb->start);
619                 ret = -EIO;
620                 goto err;
621         }
622         found_level = btrfs_header_level(eb);
623         if (found_level >= BTRFS_MAX_LEVEL) {
624                 btrfs_info(root->fs_info, "bad tree block level %d\n",
625                            (int)btrfs_header_level(eb));
626                 ret = -EIO;
627                 goto err;
628         }
629
630         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
631                                        eb, found_level);
632
633         ret = csum_tree_block(root, eb, 1);
634         if (ret) {
635                 ret = -EIO;
636                 goto err;
637         }
638
639         /*
640          * If this is a leaf block and it is corrupt, set the corrupt bit so
641          * that we don't try and read the other copies of this block, just
642          * return -EIO.
643          */
644         if (found_level == 0 && check_leaf(root, eb)) {
645                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
646                 ret = -EIO;
647         }
648
649         if (!ret)
650                 set_extent_buffer_uptodate(eb);
651 err:
652         if (reads_done &&
653             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
654                 btree_readahead_hook(root, eb, eb->start, ret);
655
656         if (ret) {
657                 /*
658                  * our io error hook is going to dec the io pages
659                  * again, we have to make sure it has something
660                  * to decrement
661                  */
662                 atomic_inc(&eb->io_pages);
663                 clear_extent_buffer_uptodate(eb);
664         }
665         free_extent_buffer(eb);
666 out:
667         return ret;
668 }
669
670 static int btree_io_failed_hook(struct page *page, int failed_mirror)
671 {
672         struct extent_buffer *eb;
673         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
674
675         eb = (struct extent_buffer *)page->private;
676         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
677         eb->read_mirror = failed_mirror;
678         atomic_dec(&eb->io_pages);
679         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
680                 btree_readahead_hook(root, eb, eb->start, -EIO);
681         return -EIO;    /* we fixed nothing */
682 }
683
684 static void end_workqueue_bio(struct bio *bio, int err)
685 {
686         struct end_io_wq *end_io_wq = bio->bi_private;
687         struct btrfs_fs_info *fs_info;
688
689         fs_info = end_io_wq->info;
690         end_io_wq->error = err;
691         end_io_wq->work.func = end_workqueue_fn;
692         end_io_wq->work.flags = 0;
693
694         if (bio->bi_rw & REQ_WRITE) {
695                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
696                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
697                                            &end_io_wq->work);
698                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
699                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
700                                            &end_io_wq->work);
701                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
702                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
703                                            &end_io_wq->work);
704                 else
705                         btrfs_queue_worker(&fs_info->endio_write_workers,
706                                            &end_io_wq->work);
707         } else {
708                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
709                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
710                                            &end_io_wq->work);
711                 else if (end_io_wq->metadata)
712                         btrfs_queue_worker(&fs_info->endio_meta_workers,
713                                            &end_io_wq->work);
714                 else
715                         btrfs_queue_worker(&fs_info->endio_workers,
716                                            &end_io_wq->work);
717         }
718 }
719
720 /*
721  * For the metadata arg you want
722  *
723  * 0 - if data
724  * 1 - if normal metadta
725  * 2 - if writing to the free space cache area
726  * 3 - raid parity work
727  */
728 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
729                         int metadata)
730 {
731         struct end_io_wq *end_io_wq;
732         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
733         if (!end_io_wq)
734                 return -ENOMEM;
735
736         end_io_wq->private = bio->bi_private;
737         end_io_wq->end_io = bio->bi_end_io;
738         end_io_wq->info = info;
739         end_io_wq->error = 0;
740         end_io_wq->bio = bio;
741         end_io_wq->metadata = metadata;
742
743         bio->bi_private = end_io_wq;
744         bio->bi_end_io = end_workqueue_bio;
745         return 0;
746 }
747
748 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
749 {
750         unsigned long limit = min_t(unsigned long,
751                                     info->workers.max_workers,
752                                     info->fs_devices->open_devices);
753         return 256 * limit;
754 }
755
756 static void run_one_async_start(struct btrfs_work *work)
757 {
758         struct async_submit_bio *async;
759         int ret;
760
761         async = container_of(work, struct  async_submit_bio, work);
762         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
763                                       async->mirror_num, async->bio_flags,
764                                       async->bio_offset);
765         if (ret)
766                 async->error = ret;
767 }
768
769 static void run_one_async_done(struct btrfs_work *work)
770 {
771         struct btrfs_fs_info *fs_info;
772         struct async_submit_bio *async;
773         int limit;
774
775         async = container_of(work, struct  async_submit_bio, work);
776         fs_info = BTRFS_I(async->inode)->root->fs_info;
777
778         limit = btrfs_async_submit_limit(fs_info);
779         limit = limit * 2 / 3;
780
781         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
782             waitqueue_active(&fs_info->async_submit_wait))
783                 wake_up(&fs_info->async_submit_wait);
784
785         /* If an error occured we just want to clean up the bio and move on */
786         if (async->error) {
787                 bio_endio(async->bio, async->error);
788                 return;
789         }
790
791         async->submit_bio_done(async->inode, async->rw, async->bio,
792                                async->mirror_num, async->bio_flags,
793                                async->bio_offset);
794 }
795
796 static void run_one_async_free(struct btrfs_work *work)
797 {
798         struct async_submit_bio *async;
799
800         async = container_of(work, struct  async_submit_bio, work);
801         kfree(async);
802 }
803
804 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
805                         int rw, struct bio *bio, int mirror_num,
806                         unsigned long bio_flags,
807                         u64 bio_offset,
808                         extent_submit_bio_hook_t *submit_bio_start,
809                         extent_submit_bio_hook_t *submit_bio_done)
810 {
811         struct async_submit_bio *async;
812
813         async = kmalloc(sizeof(*async), GFP_NOFS);
814         if (!async)
815                 return -ENOMEM;
816
817         async->inode = inode;
818         async->rw = rw;
819         async->bio = bio;
820         async->mirror_num = mirror_num;
821         async->submit_bio_start = submit_bio_start;
822         async->submit_bio_done = submit_bio_done;
823
824         async->work.func = run_one_async_start;
825         async->work.ordered_func = run_one_async_done;
826         async->work.ordered_free = run_one_async_free;
827
828         async->work.flags = 0;
829         async->bio_flags = bio_flags;
830         async->bio_offset = bio_offset;
831
832         async->error = 0;
833
834         atomic_inc(&fs_info->nr_async_submits);
835
836         if (rw & REQ_SYNC)
837                 btrfs_set_work_high_prio(&async->work);
838
839         btrfs_queue_worker(&fs_info->workers, &async->work);
840
841         while (atomic_read(&fs_info->async_submit_draining) &&
842               atomic_read(&fs_info->nr_async_submits)) {
843                 wait_event(fs_info->async_submit_wait,
844                            (atomic_read(&fs_info->nr_async_submits) == 0));
845         }
846
847         return 0;
848 }
849
850 static int btree_csum_one_bio(struct bio *bio)
851 {
852         struct bio_vec *bvec = bio->bi_io_vec;
853         int bio_index = 0;
854         struct btrfs_root *root;
855         int ret = 0;
856
857         WARN_ON(bio->bi_vcnt <= 0);
858         while (bio_index < bio->bi_vcnt) {
859                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
860                 ret = csum_dirty_buffer(root, bvec->bv_page);
861                 if (ret)
862                         break;
863                 bio_index++;
864                 bvec++;
865         }
866         return ret;
867 }
868
869 static int __btree_submit_bio_start(struct inode *inode, int rw,
870                                     struct bio *bio, int mirror_num,
871                                     unsigned long bio_flags,
872                                     u64 bio_offset)
873 {
874         /*
875          * when we're called for a write, we're already in the async
876          * submission context.  Just jump into btrfs_map_bio
877          */
878         return btree_csum_one_bio(bio);
879 }
880
881 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
882                                  int mirror_num, unsigned long bio_flags,
883                                  u64 bio_offset)
884 {
885         int ret;
886
887         /*
888          * when we're called for a write, we're already in the async
889          * submission context.  Just jump into btrfs_map_bio
890          */
891         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
892         if (ret)
893                 bio_endio(bio, ret);
894         return ret;
895 }
896
897 static int check_async_write(struct inode *inode, unsigned long bio_flags)
898 {
899         if (bio_flags & EXTENT_BIO_TREE_LOG)
900                 return 0;
901 #ifdef CONFIG_X86
902         if (cpu_has_xmm4_2)
903                 return 0;
904 #endif
905         return 1;
906 }
907
908 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
909                                  int mirror_num, unsigned long bio_flags,
910                                  u64 bio_offset)
911 {
912         int async = check_async_write(inode, bio_flags);
913         int ret;
914
915         if (!(rw & REQ_WRITE)) {
916                 /*
917                  * called for a read, do the setup so that checksum validation
918                  * can happen in the async kernel threads
919                  */
920                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
921                                           bio, 1);
922                 if (ret)
923                         goto out_w_error;
924                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
925                                     mirror_num, 0);
926         } else if (!async) {
927                 ret = btree_csum_one_bio(bio);
928                 if (ret)
929                         goto out_w_error;
930                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
931                                     mirror_num, 0);
932         } else {
933                 /*
934                  * kthread helpers are used to submit writes so that
935                  * checksumming can happen in parallel across all CPUs
936                  */
937                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
938                                           inode, rw, bio, mirror_num, 0,
939                                           bio_offset,
940                                           __btree_submit_bio_start,
941                                           __btree_submit_bio_done);
942         }
943
944         if (ret) {
945 out_w_error:
946                 bio_endio(bio, ret);
947         }
948         return ret;
949 }
950
951 #ifdef CONFIG_MIGRATION
952 static int btree_migratepage(struct address_space *mapping,
953                         struct page *newpage, struct page *page,
954                         enum migrate_mode mode)
955 {
956         /*
957          * we can't safely write a btree page from here,
958          * we haven't done the locking hook
959          */
960         if (PageDirty(page))
961                 return -EAGAIN;
962         /*
963          * Buffers may be managed in a filesystem specific way.
964          * We must have no buffers or drop them.
965          */
966         if (page_has_private(page) &&
967             !try_to_release_page(page, GFP_KERNEL))
968                 return -EAGAIN;
969         return migrate_page(mapping, newpage, page, mode);
970 }
971 #endif
972
973
974 static int btree_writepages(struct address_space *mapping,
975                             struct writeback_control *wbc)
976 {
977         struct extent_io_tree *tree;
978         struct btrfs_fs_info *fs_info;
979         int ret;
980
981         tree = &BTRFS_I(mapping->host)->io_tree;
982         if (wbc->sync_mode == WB_SYNC_NONE) {
983
984                 if (wbc->for_kupdate)
985                         return 0;
986
987                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
988                 /* this is a bit racy, but that's ok */
989                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
990                                              BTRFS_DIRTY_METADATA_THRESH);
991                 if (ret < 0)
992                         return 0;
993         }
994         return btree_write_cache_pages(mapping, wbc);
995 }
996
997 static int btree_readpage(struct file *file, struct page *page)
998 {
999         struct extent_io_tree *tree;
1000         tree = &BTRFS_I(page->mapping->host)->io_tree;
1001         return extent_read_full_page(tree, page, btree_get_extent, 0);
1002 }
1003
1004 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1005 {
1006         if (PageWriteback(page) || PageDirty(page))
1007                 return 0;
1008
1009         return try_release_extent_buffer(page);
1010 }
1011
1012 static void btree_invalidatepage(struct page *page, unsigned int offset,
1013                                  unsigned int length)
1014 {
1015         struct extent_io_tree *tree;
1016         tree = &BTRFS_I(page->mapping->host)->io_tree;
1017         extent_invalidatepage(tree, page, offset);
1018         btree_releasepage(page, GFP_NOFS);
1019         if (PagePrivate(page)) {
1020                 printk(KERN_WARNING "btrfs warning page private not zero "
1021                        "on page %llu\n", (unsigned long long)page_offset(page));
1022                 ClearPagePrivate(page);
1023                 set_page_private(page, 0);
1024                 page_cache_release(page);
1025         }
1026 }
1027
1028 static int btree_set_page_dirty(struct page *page)
1029 {
1030 #ifdef DEBUG
1031         struct extent_buffer *eb;
1032
1033         BUG_ON(!PagePrivate(page));
1034         eb = (struct extent_buffer *)page->private;
1035         BUG_ON(!eb);
1036         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1037         BUG_ON(!atomic_read(&eb->refs));
1038         btrfs_assert_tree_locked(eb);
1039 #endif
1040         return __set_page_dirty_nobuffers(page);
1041 }
1042
1043 static const struct address_space_operations btree_aops = {
1044         .readpage       = btree_readpage,
1045         .writepages     = btree_writepages,
1046         .releasepage    = btree_releasepage,
1047         .invalidatepage = btree_invalidatepage,
1048 #ifdef CONFIG_MIGRATION
1049         .migratepage    = btree_migratepage,
1050 #endif
1051         .set_page_dirty = btree_set_page_dirty,
1052 };
1053
1054 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1055                          u64 parent_transid)
1056 {
1057         struct extent_buffer *buf = NULL;
1058         struct inode *btree_inode = root->fs_info->btree_inode;
1059         int ret = 0;
1060
1061         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1062         if (!buf)
1063                 return 0;
1064         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1065                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1066         free_extent_buffer(buf);
1067         return ret;
1068 }
1069
1070 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1071                          int mirror_num, struct extent_buffer **eb)
1072 {
1073         struct extent_buffer *buf = NULL;
1074         struct inode *btree_inode = root->fs_info->btree_inode;
1075         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1076         int ret;
1077
1078         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1079         if (!buf)
1080                 return 0;
1081
1082         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1083
1084         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1085                                        btree_get_extent, mirror_num);
1086         if (ret) {
1087                 free_extent_buffer(buf);
1088                 return ret;
1089         }
1090
1091         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1092                 free_extent_buffer(buf);
1093                 return -EIO;
1094         } else if (extent_buffer_uptodate(buf)) {
1095                 *eb = buf;
1096         } else {
1097                 free_extent_buffer(buf);
1098         }
1099         return 0;
1100 }
1101
1102 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1103                                             u64 bytenr, u32 blocksize)
1104 {
1105         struct inode *btree_inode = root->fs_info->btree_inode;
1106         struct extent_buffer *eb;
1107         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, bytenr);
1108         return eb;
1109 }
1110
1111 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1112                                                  u64 bytenr, u32 blocksize)
1113 {
1114         struct inode *btree_inode = root->fs_info->btree_inode;
1115         struct extent_buffer *eb;
1116
1117         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1118                                  bytenr, blocksize);
1119         return eb;
1120 }
1121
1122
1123 int btrfs_write_tree_block(struct extent_buffer *buf)
1124 {
1125         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1126                                         buf->start + buf->len - 1);
1127 }
1128
1129 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1130 {
1131         return filemap_fdatawait_range(buf->pages[0]->mapping,
1132                                        buf->start, buf->start + buf->len - 1);
1133 }
1134
1135 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1136                                       u32 blocksize, u64 parent_transid)
1137 {
1138         struct extent_buffer *buf = NULL;
1139         int ret;
1140
1141         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1142         if (!buf)
1143                 return NULL;
1144
1145         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1146         if (ret) {
1147                 free_extent_buffer(buf);
1148                 return NULL;
1149         }
1150         return buf;
1151
1152 }
1153
1154 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1155                       struct extent_buffer *buf)
1156 {
1157         struct btrfs_fs_info *fs_info = root->fs_info;
1158
1159         if (btrfs_header_generation(buf) ==
1160             fs_info->running_transaction->transid) {
1161                 btrfs_assert_tree_locked(buf);
1162
1163                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1164                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1165                                              -buf->len,
1166                                              fs_info->dirty_metadata_batch);
1167                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1168                         btrfs_set_lock_blocking(buf);
1169                         clear_extent_buffer_dirty(buf);
1170                 }
1171         }
1172 }
1173
1174 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1175                          u32 stripesize, struct btrfs_root *root,
1176                          struct btrfs_fs_info *fs_info,
1177                          u64 objectid)
1178 {
1179         root->node = NULL;
1180         root->commit_root = NULL;
1181         root->sectorsize = sectorsize;
1182         root->nodesize = nodesize;
1183         root->leafsize = leafsize;
1184         root->stripesize = stripesize;
1185         root->ref_cows = 0;
1186         root->track_dirty = 0;
1187         root->in_radix = 0;
1188         root->orphan_item_inserted = 0;
1189         root->orphan_cleanup_state = 0;
1190
1191         root->objectid = objectid;
1192         root->last_trans = 0;
1193         root->highest_objectid = 0;
1194         root->nr_delalloc_inodes = 0;
1195         root->nr_ordered_extents = 0;
1196         root->name = NULL;
1197         root->inode_tree = RB_ROOT;
1198         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1199         root->block_rsv = NULL;
1200         root->orphan_block_rsv = NULL;
1201
1202         INIT_LIST_HEAD(&root->dirty_list);
1203         INIT_LIST_HEAD(&root->root_list);
1204         INIT_LIST_HEAD(&root->delalloc_inodes);
1205         INIT_LIST_HEAD(&root->delalloc_root);
1206         INIT_LIST_HEAD(&root->ordered_extents);
1207         INIT_LIST_HEAD(&root->ordered_root);
1208         INIT_LIST_HEAD(&root->logged_list[0]);
1209         INIT_LIST_HEAD(&root->logged_list[1]);
1210         spin_lock_init(&root->orphan_lock);
1211         spin_lock_init(&root->inode_lock);
1212         spin_lock_init(&root->delalloc_lock);
1213         spin_lock_init(&root->ordered_extent_lock);
1214         spin_lock_init(&root->accounting_lock);
1215         spin_lock_init(&root->log_extents_lock[0]);
1216         spin_lock_init(&root->log_extents_lock[1]);
1217         mutex_init(&root->objectid_mutex);
1218         mutex_init(&root->log_mutex);
1219         init_waitqueue_head(&root->log_writer_wait);
1220         init_waitqueue_head(&root->log_commit_wait[0]);
1221         init_waitqueue_head(&root->log_commit_wait[1]);
1222         atomic_set(&root->log_commit[0], 0);
1223         atomic_set(&root->log_commit[1], 0);
1224         atomic_set(&root->log_writers, 0);
1225         atomic_set(&root->log_batch, 0);
1226         atomic_set(&root->orphan_inodes, 0);
1227         atomic_set(&root->refs, 1);
1228         root->log_transid = 0;
1229         root->last_log_commit = 0;
1230         if (fs_info)
1231                 extent_io_tree_init(&root->dirty_log_pages,
1232                                      fs_info->btree_inode->i_mapping);
1233
1234         memset(&root->root_key, 0, sizeof(root->root_key));
1235         memset(&root->root_item, 0, sizeof(root->root_item));
1236         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1237         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1238         if (fs_info)
1239                 root->defrag_trans_start = fs_info->generation;
1240         else
1241                 root->defrag_trans_start = 0;
1242         init_completion(&root->kobj_unregister);
1243         root->defrag_running = 0;
1244         root->root_key.objectid = objectid;
1245         root->anon_dev = 0;
1246
1247         spin_lock_init(&root->root_item_lock);
1248 }
1249
1250 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1251 {
1252         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1253         if (root)
1254                 root->fs_info = fs_info;
1255         return root;
1256 }
1257
1258 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1259 /* Should only be used by the testing infrastructure */
1260 struct btrfs_root *btrfs_alloc_dummy_root(void)
1261 {
1262         struct btrfs_root *root;
1263
1264         root = btrfs_alloc_root(NULL);
1265         if (!root)
1266                 return ERR_PTR(-ENOMEM);
1267         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1268         root->dummy_root = 1;
1269
1270         return root;
1271 }
1272 #endif
1273
1274 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1275                                      struct btrfs_fs_info *fs_info,
1276                                      u64 objectid)
1277 {
1278         struct extent_buffer *leaf;
1279         struct btrfs_root *tree_root = fs_info->tree_root;
1280         struct btrfs_root *root;
1281         struct btrfs_key key;
1282         int ret = 0;
1283         u64 bytenr;
1284         uuid_le uuid;
1285
1286         root = btrfs_alloc_root(fs_info);
1287         if (!root)
1288                 return ERR_PTR(-ENOMEM);
1289
1290         __setup_root(tree_root->nodesize, tree_root->leafsize,
1291                      tree_root->sectorsize, tree_root->stripesize,
1292                      root, fs_info, objectid);
1293         root->root_key.objectid = objectid;
1294         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1295         root->root_key.offset = 0;
1296
1297         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1298                                       0, objectid, NULL, 0, 0, 0);
1299         if (IS_ERR(leaf)) {
1300                 ret = PTR_ERR(leaf);
1301                 leaf = NULL;
1302                 goto fail;
1303         }
1304
1305         bytenr = leaf->start;
1306         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1307         btrfs_set_header_bytenr(leaf, leaf->start);
1308         btrfs_set_header_generation(leaf, trans->transid);
1309         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1310         btrfs_set_header_owner(leaf, objectid);
1311         root->node = leaf;
1312
1313         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1314                             BTRFS_FSID_SIZE);
1315         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1316                             btrfs_header_chunk_tree_uuid(leaf),
1317                             BTRFS_UUID_SIZE);
1318         btrfs_mark_buffer_dirty(leaf);
1319
1320         root->commit_root = btrfs_root_node(root);
1321         root->track_dirty = 1;
1322
1323
1324         root->root_item.flags = 0;
1325         root->root_item.byte_limit = 0;
1326         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1327         btrfs_set_root_generation(&root->root_item, trans->transid);
1328         btrfs_set_root_level(&root->root_item, 0);
1329         btrfs_set_root_refs(&root->root_item, 1);
1330         btrfs_set_root_used(&root->root_item, leaf->len);
1331         btrfs_set_root_last_snapshot(&root->root_item, 0);
1332         btrfs_set_root_dirid(&root->root_item, 0);
1333         uuid_le_gen(&uuid);
1334         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1335         root->root_item.drop_level = 0;
1336
1337         key.objectid = objectid;
1338         key.type = BTRFS_ROOT_ITEM_KEY;
1339         key.offset = 0;
1340         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1341         if (ret)
1342                 goto fail;
1343
1344         btrfs_tree_unlock(leaf);
1345
1346         return root;
1347
1348 fail:
1349         if (leaf) {
1350                 btrfs_tree_unlock(leaf);
1351                 free_extent_buffer(leaf);
1352         }
1353         kfree(root);
1354
1355         return ERR_PTR(ret);
1356 }
1357
1358 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1359                                          struct btrfs_fs_info *fs_info)
1360 {
1361         struct btrfs_root *root;
1362         struct btrfs_root *tree_root = fs_info->tree_root;
1363         struct extent_buffer *leaf;
1364
1365         root = btrfs_alloc_root(fs_info);
1366         if (!root)
1367                 return ERR_PTR(-ENOMEM);
1368
1369         __setup_root(tree_root->nodesize, tree_root->leafsize,
1370                      tree_root->sectorsize, tree_root->stripesize,
1371                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1372
1373         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1374         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1375         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1376         /*
1377          * log trees do not get reference counted because they go away
1378          * before a real commit is actually done.  They do store pointers
1379          * to file data extents, and those reference counts still get
1380          * updated (along with back refs to the log tree).
1381          */
1382         root->ref_cows = 0;
1383
1384         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1385                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1386                                       0, 0, 0);
1387         if (IS_ERR(leaf)) {
1388                 kfree(root);
1389                 return ERR_CAST(leaf);
1390         }
1391
1392         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1393         btrfs_set_header_bytenr(leaf, leaf->start);
1394         btrfs_set_header_generation(leaf, trans->transid);
1395         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1396         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1397         root->node = leaf;
1398
1399         write_extent_buffer(root->node, root->fs_info->fsid,
1400                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1401         btrfs_mark_buffer_dirty(root->node);
1402         btrfs_tree_unlock(root->node);
1403         return root;
1404 }
1405
1406 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1407                              struct btrfs_fs_info *fs_info)
1408 {
1409         struct btrfs_root *log_root;
1410
1411         log_root = alloc_log_tree(trans, fs_info);
1412         if (IS_ERR(log_root))
1413                 return PTR_ERR(log_root);
1414         WARN_ON(fs_info->log_root_tree);
1415         fs_info->log_root_tree = log_root;
1416         return 0;
1417 }
1418
1419 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1420                        struct btrfs_root *root)
1421 {
1422         struct btrfs_root *log_root;
1423         struct btrfs_inode_item *inode_item;
1424
1425         log_root = alloc_log_tree(trans, root->fs_info);
1426         if (IS_ERR(log_root))
1427                 return PTR_ERR(log_root);
1428
1429         log_root->last_trans = trans->transid;
1430         log_root->root_key.offset = root->root_key.objectid;
1431
1432         inode_item = &log_root->root_item.inode;
1433         btrfs_set_stack_inode_generation(inode_item, 1);
1434         btrfs_set_stack_inode_size(inode_item, 3);
1435         btrfs_set_stack_inode_nlink(inode_item, 1);
1436         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1437         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1438
1439         btrfs_set_root_node(&log_root->root_item, log_root->node);
1440
1441         WARN_ON(root->log_root);
1442         root->log_root = log_root;
1443         root->log_transid = 0;
1444         root->last_log_commit = 0;
1445         return 0;
1446 }
1447
1448 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1449                                                struct btrfs_key *key)
1450 {
1451         struct btrfs_root *root;
1452         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1453         struct btrfs_path *path;
1454         u64 generation;
1455         u32 blocksize;
1456         int ret;
1457
1458         path = btrfs_alloc_path();
1459         if (!path)
1460                 return ERR_PTR(-ENOMEM);
1461
1462         root = btrfs_alloc_root(fs_info);
1463         if (!root) {
1464                 ret = -ENOMEM;
1465                 goto alloc_fail;
1466         }
1467
1468         __setup_root(tree_root->nodesize, tree_root->leafsize,
1469                      tree_root->sectorsize, tree_root->stripesize,
1470                      root, fs_info, key->objectid);
1471
1472         ret = btrfs_find_root(tree_root, key, path,
1473                               &root->root_item, &root->root_key);
1474         if (ret) {
1475                 if (ret > 0)
1476                         ret = -ENOENT;
1477                 goto find_fail;
1478         }
1479
1480         generation = btrfs_root_generation(&root->root_item);
1481         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1482         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1483                                      blocksize, generation);
1484         if (!root->node) {
1485                 ret = -ENOMEM;
1486                 goto find_fail;
1487         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1488                 ret = -EIO;
1489                 goto read_fail;
1490         }
1491         root->commit_root = btrfs_root_node(root);
1492 out:
1493         btrfs_free_path(path);
1494         return root;
1495
1496 read_fail:
1497         free_extent_buffer(root->node);
1498 find_fail:
1499         kfree(root);
1500 alloc_fail:
1501         root = ERR_PTR(ret);
1502         goto out;
1503 }
1504
1505 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1506                                       struct btrfs_key *location)
1507 {
1508         struct btrfs_root *root;
1509
1510         root = btrfs_read_tree_root(tree_root, location);
1511         if (IS_ERR(root))
1512                 return root;
1513
1514         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1515                 root->ref_cows = 1;
1516                 btrfs_check_and_init_root_item(&root->root_item);
1517         }
1518
1519         return root;
1520 }
1521
1522 int btrfs_init_fs_root(struct btrfs_root *root)
1523 {
1524         int ret;
1525
1526         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1527         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1528                                         GFP_NOFS);
1529         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1530                 ret = -ENOMEM;
1531                 goto fail;
1532         }
1533
1534         btrfs_init_free_ino_ctl(root);
1535         mutex_init(&root->fs_commit_mutex);
1536         spin_lock_init(&root->cache_lock);
1537         init_waitqueue_head(&root->cache_wait);
1538
1539         ret = get_anon_bdev(&root->anon_dev);
1540         if (ret)
1541                 goto fail;
1542         return 0;
1543 fail:
1544         kfree(root->free_ino_ctl);
1545         kfree(root->free_ino_pinned);
1546         return ret;
1547 }
1548
1549 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1550                                                u64 root_id)
1551 {
1552         struct btrfs_root *root;
1553
1554         spin_lock(&fs_info->fs_roots_radix_lock);
1555         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1556                                  (unsigned long)root_id);
1557         spin_unlock(&fs_info->fs_roots_radix_lock);
1558         return root;
1559 }
1560
1561 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1562                          struct btrfs_root *root)
1563 {
1564         int ret;
1565
1566         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1567         if (ret)
1568                 return ret;
1569
1570         spin_lock(&fs_info->fs_roots_radix_lock);
1571         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1572                                 (unsigned long)root->root_key.objectid,
1573                                 root);
1574         if (ret == 0)
1575                 root->in_radix = 1;
1576         spin_unlock(&fs_info->fs_roots_radix_lock);
1577         radix_tree_preload_end();
1578
1579         return ret;
1580 }
1581
1582 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1583                                      struct btrfs_key *location,
1584                                      bool check_ref)
1585 {
1586         struct btrfs_root *root;
1587         int ret;
1588
1589         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1590                 return fs_info->tree_root;
1591         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1592                 return fs_info->extent_root;
1593         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1594                 return fs_info->chunk_root;
1595         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1596                 return fs_info->dev_root;
1597         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1598                 return fs_info->csum_root;
1599         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1600                 return fs_info->quota_root ? fs_info->quota_root :
1601                                              ERR_PTR(-ENOENT);
1602         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1603                 return fs_info->uuid_root ? fs_info->uuid_root :
1604                                             ERR_PTR(-ENOENT);
1605 again:
1606         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1607         if (root) {
1608                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1609                         return ERR_PTR(-ENOENT);
1610                 return root;
1611         }
1612
1613         root = btrfs_read_fs_root(fs_info->tree_root, location);
1614         if (IS_ERR(root))
1615                 return root;
1616
1617         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1618                 ret = -ENOENT;
1619                 goto fail;
1620         }
1621
1622         ret = btrfs_init_fs_root(root);
1623         if (ret)
1624                 goto fail;
1625
1626         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1627         if (ret < 0)
1628                 goto fail;
1629         if (ret == 0)
1630                 root->orphan_item_inserted = 1;
1631
1632         ret = btrfs_insert_fs_root(fs_info, root);
1633         if (ret) {
1634                 if (ret == -EEXIST) {
1635                         free_fs_root(root);
1636                         goto again;
1637                 }
1638                 goto fail;
1639         }
1640         return root;
1641 fail:
1642         free_fs_root(root);
1643         return ERR_PTR(ret);
1644 }
1645
1646 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1647 {
1648         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1649         int ret = 0;
1650         struct btrfs_device *device;
1651         struct backing_dev_info *bdi;
1652
1653         rcu_read_lock();
1654         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1655                 if (!device->bdev)
1656                         continue;
1657                 bdi = blk_get_backing_dev_info(device->bdev);
1658                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1659                         ret = 1;
1660                         break;
1661                 }
1662         }
1663         rcu_read_unlock();
1664         return ret;
1665 }
1666
1667 /*
1668  * If this fails, caller must call bdi_destroy() to get rid of the
1669  * bdi again.
1670  */
1671 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1672 {
1673         int err;
1674
1675         bdi->capabilities = BDI_CAP_MAP_COPY;
1676         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1677         if (err)
1678                 return err;
1679
1680         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1681         bdi->congested_fn       = btrfs_congested_fn;
1682         bdi->congested_data     = info;
1683         return 0;
1684 }
1685
1686 /*
1687  * called by the kthread helper functions to finally call the bio end_io
1688  * functions.  This is where read checksum verification actually happens
1689  */
1690 static void end_workqueue_fn(struct btrfs_work *work)
1691 {
1692         struct bio *bio;
1693         struct end_io_wq *end_io_wq;
1694         struct btrfs_fs_info *fs_info;
1695         int error;
1696
1697         end_io_wq = container_of(work, struct end_io_wq, work);
1698         bio = end_io_wq->bio;
1699         fs_info = end_io_wq->info;
1700
1701         error = end_io_wq->error;
1702         bio->bi_private = end_io_wq->private;
1703         bio->bi_end_io = end_io_wq->end_io;
1704         kfree(end_io_wq);
1705         bio_endio(bio, error);
1706 }
1707
1708 static int cleaner_kthread(void *arg)
1709 {
1710         struct btrfs_root *root = arg;
1711         int again;
1712
1713         do {
1714                 again = 0;
1715
1716                 /* Make the cleaner go to sleep early. */
1717                 if (btrfs_need_cleaner_sleep(root))
1718                         goto sleep;
1719
1720                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1721                         goto sleep;
1722
1723                 /*
1724                  * Avoid the problem that we change the status of the fs
1725                  * during the above check and trylock.
1726                  */
1727                 if (btrfs_need_cleaner_sleep(root)) {
1728                         mutex_unlock(&root->fs_info->cleaner_mutex);
1729                         goto sleep;
1730                 }
1731
1732                 btrfs_run_delayed_iputs(root);
1733                 again = btrfs_clean_one_deleted_snapshot(root);
1734                 mutex_unlock(&root->fs_info->cleaner_mutex);
1735
1736                 /*
1737                  * The defragger has dealt with the R/O remount and umount,
1738                  * needn't do anything special here.
1739                  */
1740                 btrfs_run_defrag_inodes(root->fs_info);
1741 sleep:
1742                 if (!try_to_freeze() && !again) {
1743                         set_current_state(TASK_INTERRUPTIBLE);
1744                         if (!kthread_should_stop())
1745                                 schedule();
1746                         __set_current_state(TASK_RUNNING);
1747                 }
1748         } while (!kthread_should_stop());
1749         return 0;
1750 }
1751
1752 static int transaction_kthread(void *arg)
1753 {
1754         struct btrfs_root *root = arg;
1755         struct btrfs_trans_handle *trans;
1756         struct btrfs_transaction *cur;
1757         u64 transid;
1758         unsigned long now;
1759         unsigned long delay;
1760         bool cannot_commit;
1761
1762         do {
1763                 cannot_commit = false;
1764                 delay = HZ * root->fs_info->commit_interval;
1765                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1766
1767                 spin_lock(&root->fs_info->trans_lock);
1768                 cur = root->fs_info->running_transaction;
1769                 if (!cur) {
1770                         spin_unlock(&root->fs_info->trans_lock);
1771                         goto sleep;
1772                 }
1773
1774                 now = get_seconds();
1775                 if (cur->state < TRANS_STATE_BLOCKED &&
1776                     (now < cur->start_time ||
1777                      now - cur->start_time < root->fs_info->commit_interval)) {
1778                         spin_unlock(&root->fs_info->trans_lock);
1779                         delay = HZ * 5;
1780                         goto sleep;
1781                 }
1782                 transid = cur->transid;
1783                 spin_unlock(&root->fs_info->trans_lock);
1784
1785                 /* If the file system is aborted, this will always fail. */
1786                 trans = btrfs_attach_transaction(root);
1787                 if (IS_ERR(trans)) {
1788                         if (PTR_ERR(trans) != -ENOENT)
1789                                 cannot_commit = true;
1790                         goto sleep;
1791                 }
1792                 if (transid == trans->transid) {
1793                         btrfs_commit_transaction(trans, root);
1794                 } else {
1795                         btrfs_end_transaction(trans, root);
1796                 }
1797 sleep:
1798                 wake_up_process(root->fs_info->cleaner_kthread);
1799                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1800
1801                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1802                                       &root->fs_info->fs_state)))
1803                         btrfs_cleanup_transaction(root);
1804                 if (!try_to_freeze()) {
1805                         set_current_state(TASK_INTERRUPTIBLE);
1806                         if (!kthread_should_stop() &&
1807                             (!btrfs_transaction_blocked(root->fs_info) ||
1808                              cannot_commit))
1809                                 schedule_timeout(delay);
1810                         __set_current_state(TASK_RUNNING);
1811                 }
1812         } while (!kthread_should_stop());
1813         return 0;
1814 }
1815
1816 /*
1817  * this will find the highest generation in the array of
1818  * root backups.  The index of the highest array is returned,
1819  * or -1 if we can't find anything.
1820  *
1821  * We check to make sure the array is valid by comparing the
1822  * generation of the latest  root in the array with the generation
1823  * in the super block.  If they don't match we pitch it.
1824  */
1825 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1826 {
1827         u64 cur;
1828         int newest_index = -1;
1829         struct btrfs_root_backup *root_backup;
1830         int i;
1831
1832         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1833                 root_backup = info->super_copy->super_roots + i;
1834                 cur = btrfs_backup_tree_root_gen(root_backup);
1835                 if (cur == newest_gen)
1836                         newest_index = i;
1837         }
1838
1839         /* check to see if we actually wrapped around */
1840         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1841                 root_backup = info->super_copy->super_roots;
1842                 cur = btrfs_backup_tree_root_gen(root_backup);
1843                 if (cur == newest_gen)
1844                         newest_index = 0;
1845         }
1846         return newest_index;
1847 }
1848
1849
1850 /*
1851  * find the oldest backup so we know where to store new entries
1852  * in the backup array.  This will set the backup_root_index
1853  * field in the fs_info struct
1854  */
1855 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1856                                      u64 newest_gen)
1857 {
1858         int newest_index = -1;
1859
1860         newest_index = find_newest_super_backup(info, newest_gen);
1861         /* if there was garbage in there, just move along */
1862         if (newest_index == -1) {
1863                 info->backup_root_index = 0;
1864         } else {
1865                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1866         }
1867 }
1868
1869 /*
1870  * copy all the root pointers into the super backup array.
1871  * this will bump the backup pointer by one when it is
1872  * done
1873  */
1874 static void backup_super_roots(struct btrfs_fs_info *info)
1875 {
1876         int next_backup;
1877         struct btrfs_root_backup *root_backup;
1878         int last_backup;
1879
1880         next_backup = info->backup_root_index;
1881         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1882                 BTRFS_NUM_BACKUP_ROOTS;
1883
1884         /*
1885          * just overwrite the last backup if we're at the same generation
1886          * this happens only at umount
1887          */
1888         root_backup = info->super_for_commit->super_roots + last_backup;
1889         if (btrfs_backup_tree_root_gen(root_backup) ==
1890             btrfs_header_generation(info->tree_root->node))
1891                 next_backup = last_backup;
1892
1893         root_backup = info->super_for_commit->super_roots + next_backup;
1894
1895         /*
1896          * make sure all of our padding and empty slots get zero filled
1897          * regardless of which ones we use today
1898          */
1899         memset(root_backup, 0, sizeof(*root_backup));
1900
1901         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1902
1903         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1904         btrfs_set_backup_tree_root_gen(root_backup,
1905                                btrfs_header_generation(info->tree_root->node));
1906
1907         btrfs_set_backup_tree_root_level(root_backup,
1908                                btrfs_header_level(info->tree_root->node));
1909
1910         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1911         btrfs_set_backup_chunk_root_gen(root_backup,
1912                                btrfs_header_generation(info->chunk_root->node));
1913         btrfs_set_backup_chunk_root_level(root_backup,
1914                                btrfs_header_level(info->chunk_root->node));
1915
1916         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1917         btrfs_set_backup_extent_root_gen(root_backup,
1918                                btrfs_header_generation(info->extent_root->node));
1919         btrfs_set_backup_extent_root_level(root_backup,
1920                                btrfs_header_level(info->extent_root->node));
1921
1922         /*
1923          * we might commit during log recovery, which happens before we set
1924          * the fs_root.  Make sure it is valid before we fill it in.
1925          */
1926         if (info->fs_root && info->fs_root->node) {
1927                 btrfs_set_backup_fs_root(root_backup,
1928                                          info->fs_root->node->start);
1929                 btrfs_set_backup_fs_root_gen(root_backup,
1930                                btrfs_header_generation(info->fs_root->node));
1931                 btrfs_set_backup_fs_root_level(root_backup,
1932                                btrfs_header_level(info->fs_root->node));
1933         }
1934
1935         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1936         btrfs_set_backup_dev_root_gen(root_backup,
1937                                btrfs_header_generation(info->dev_root->node));
1938         btrfs_set_backup_dev_root_level(root_backup,
1939                                        btrfs_header_level(info->dev_root->node));
1940
1941         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1942         btrfs_set_backup_csum_root_gen(root_backup,
1943                                btrfs_header_generation(info->csum_root->node));
1944         btrfs_set_backup_csum_root_level(root_backup,
1945                                btrfs_header_level(info->csum_root->node));
1946
1947         btrfs_set_backup_total_bytes(root_backup,
1948                              btrfs_super_total_bytes(info->super_copy));
1949         btrfs_set_backup_bytes_used(root_backup,
1950                              btrfs_super_bytes_used(info->super_copy));
1951         btrfs_set_backup_num_devices(root_backup,
1952                              btrfs_super_num_devices(info->super_copy));
1953
1954         /*
1955          * if we don't copy this out to the super_copy, it won't get remembered
1956          * for the next commit
1957          */
1958         memcpy(&info->super_copy->super_roots,
1959                &info->super_for_commit->super_roots,
1960                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1961 }
1962
1963 /*
1964  * this copies info out of the root backup array and back into
1965  * the in-memory super block.  It is meant to help iterate through
1966  * the array, so you send it the number of backups you've already
1967  * tried and the last backup index you used.
1968  *
1969  * this returns -1 when it has tried all the backups
1970  */
1971 static noinline int next_root_backup(struct btrfs_fs_info *info,
1972                                      struct btrfs_super_block *super,
1973                                      int *num_backups_tried, int *backup_index)
1974 {
1975         struct btrfs_root_backup *root_backup;
1976         int newest = *backup_index;
1977
1978         if (*num_backups_tried == 0) {
1979                 u64 gen = btrfs_super_generation(super);
1980
1981                 newest = find_newest_super_backup(info, gen);
1982                 if (newest == -1)
1983                         return -1;
1984
1985                 *backup_index = newest;
1986                 *num_backups_tried = 1;
1987         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1988                 /* we've tried all the backups, all done */
1989                 return -1;
1990         } else {
1991                 /* jump to the next oldest backup */
1992                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1993                         BTRFS_NUM_BACKUP_ROOTS;
1994                 *backup_index = newest;
1995                 *num_backups_tried += 1;
1996         }
1997         root_backup = super->super_roots + newest;
1998
1999         btrfs_set_super_generation(super,
2000                                    btrfs_backup_tree_root_gen(root_backup));
2001         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2002         btrfs_set_super_root_level(super,
2003                                    btrfs_backup_tree_root_level(root_backup));
2004         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2005
2006         /*
2007          * fixme: the total bytes and num_devices need to match or we should
2008          * need a fsck
2009          */
2010         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2011         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2012         return 0;
2013 }
2014
2015 /* helper to cleanup workers */
2016 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2017 {
2018         btrfs_stop_workers(&fs_info->generic_worker);
2019         btrfs_stop_workers(&fs_info->fixup_workers);
2020         btrfs_stop_workers(&fs_info->delalloc_workers);
2021         btrfs_stop_workers(&fs_info->workers);
2022         btrfs_stop_workers(&fs_info->endio_workers);
2023         btrfs_stop_workers(&fs_info->endio_meta_workers);
2024         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2025         btrfs_stop_workers(&fs_info->rmw_workers);
2026         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2027         btrfs_stop_workers(&fs_info->endio_write_workers);
2028         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2029         btrfs_stop_workers(&fs_info->submit_workers);
2030         btrfs_stop_workers(&fs_info->delayed_workers);
2031         btrfs_stop_workers(&fs_info->caching_workers);
2032         btrfs_stop_workers(&fs_info->readahead_workers);
2033         btrfs_stop_workers(&fs_info->flush_workers);
2034         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2035 }
2036
2037 /* helper to cleanup tree roots */
2038 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2039 {
2040         free_extent_buffer(info->tree_root->node);
2041         free_extent_buffer(info->tree_root->commit_root);
2042         info->tree_root->node = NULL;
2043         info->tree_root->commit_root = NULL;
2044
2045         if (info->dev_root) {
2046                 free_extent_buffer(info->dev_root->node);
2047                 free_extent_buffer(info->dev_root->commit_root);
2048                 info->dev_root->node = NULL;
2049                 info->dev_root->commit_root = NULL;
2050         }
2051         if (info->extent_root) {
2052                 free_extent_buffer(info->extent_root->node);
2053                 free_extent_buffer(info->extent_root->commit_root);
2054                 info->extent_root->node = NULL;
2055                 info->extent_root->commit_root = NULL;
2056         }
2057         if (info->csum_root) {
2058                 free_extent_buffer(info->csum_root->node);
2059                 free_extent_buffer(info->csum_root->commit_root);
2060                 info->csum_root->node = NULL;
2061                 info->csum_root->commit_root = NULL;
2062         }
2063         if (info->quota_root) {
2064                 free_extent_buffer(info->quota_root->node);
2065                 free_extent_buffer(info->quota_root->commit_root);
2066                 info->quota_root->node = NULL;
2067                 info->quota_root->commit_root = NULL;
2068         }
2069         if (info->uuid_root) {
2070                 free_extent_buffer(info->uuid_root->node);
2071                 free_extent_buffer(info->uuid_root->commit_root);
2072                 info->uuid_root->node = NULL;
2073                 info->uuid_root->commit_root = NULL;
2074         }
2075         if (chunk_root) {
2076                 free_extent_buffer(info->chunk_root->node);
2077                 free_extent_buffer(info->chunk_root->commit_root);
2078                 info->chunk_root->node = NULL;
2079                 info->chunk_root->commit_root = NULL;
2080         }
2081 }
2082
2083 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2084 {
2085         int ret;
2086         struct btrfs_root *gang[8];
2087         int i;
2088
2089         while (!list_empty(&fs_info->dead_roots)) {
2090                 gang[0] = list_entry(fs_info->dead_roots.next,
2091                                      struct btrfs_root, root_list);
2092                 list_del(&gang[0]->root_list);
2093
2094                 if (gang[0]->in_radix) {
2095                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2096                 } else {
2097                         free_extent_buffer(gang[0]->node);
2098                         free_extent_buffer(gang[0]->commit_root);
2099                         btrfs_put_fs_root(gang[0]);
2100                 }
2101         }
2102
2103         while (1) {
2104                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2105                                              (void **)gang, 0,
2106                                              ARRAY_SIZE(gang));
2107                 if (!ret)
2108                         break;
2109                 for (i = 0; i < ret; i++)
2110                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2111         }
2112 }
2113
2114 int open_ctree(struct super_block *sb,
2115                struct btrfs_fs_devices *fs_devices,
2116                char *options)
2117 {
2118         u32 sectorsize;
2119         u32 nodesize;
2120         u32 leafsize;
2121         u32 blocksize;
2122         u32 stripesize;
2123         u64 generation;
2124         u64 features;
2125         struct btrfs_key location;
2126         struct buffer_head *bh;
2127         struct btrfs_super_block *disk_super;
2128         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2129         struct btrfs_root *tree_root;
2130         struct btrfs_root *extent_root;
2131         struct btrfs_root *csum_root;
2132         struct btrfs_root *chunk_root;
2133         struct btrfs_root *dev_root;
2134         struct btrfs_root *quota_root;
2135         struct btrfs_root *uuid_root;
2136         struct btrfs_root *log_tree_root;
2137         int ret;
2138         int err = -EINVAL;
2139         int num_backups_tried = 0;
2140         int backup_index = 0;
2141         bool create_uuid_tree;
2142         bool check_uuid_tree;
2143
2144         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2145         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2146         if (!tree_root || !chunk_root) {
2147                 err = -ENOMEM;
2148                 goto fail;
2149         }
2150
2151         ret = init_srcu_struct(&fs_info->subvol_srcu);
2152         if (ret) {
2153                 err = ret;
2154                 goto fail;
2155         }
2156
2157         ret = setup_bdi(fs_info, &fs_info->bdi);
2158         if (ret) {
2159                 err = ret;
2160                 goto fail_srcu;
2161         }
2162
2163         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2164         if (ret) {
2165                 err = ret;
2166                 goto fail_bdi;
2167         }
2168         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2169                                         (1 + ilog2(nr_cpu_ids));
2170
2171         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2172         if (ret) {
2173                 err = ret;
2174                 goto fail_dirty_metadata_bytes;
2175         }
2176
2177         fs_info->btree_inode = new_inode(sb);
2178         if (!fs_info->btree_inode) {
2179                 err = -ENOMEM;
2180                 goto fail_delalloc_bytes;
2181         }
2182
2183         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2184
2185         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2186         INIT_LIST_HEAD(&fs_info->trans_list);
2187         INIT_LIST_HEAD(&fs_info->dead_roots);
2188         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2189         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2190         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2191         spin_lock_init(&fs_info->delalloc_root_lock);
2192         spin_lock_init(&fs_info->trans_lock);
2193         spin_lock_init(&fs_info->fs_roots_radix_lock);
2194         spin_lock_init(&fs_info->delayed_iput_lock);
2195         spin_lock_init(&fs_info->defrag_inodes_lock);
2196         spin_lock_init(&fs_info->free_chunk_lock);
2197         spin_lock_init(&fs_info->tree_mod_seq_lock);
2198         spin_lock_init(&fs_info->super_lock);
2199         rwlock_init(&fs_info->tree_mod_log_lock);
2200         mutex_init(&fs_info->reloc_mutex);
2201         seqlock_init(&fs_info->profiles_lock);
2202
2203         init_completion(&fs_info->kobj_unregister);
2204         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2205         INIT_LIST_HEAD(&fs_info->space_info);
2206         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2207         btrfs_mapping_init(&fs_info->mapping_tree);
2208         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2209                              BTRFS_BLOCK_RSV_GLOBAL);
2210         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2211                              BTRFS_BLOCK_RSV_DELALLOC);
2212         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2213         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2214         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2215         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2216                              BTRFS_BLOCK_RSV_DELOPS);
2217         atomic_set(&fs_info->nr_async_submits, 0);
2218         atomic_set(&fs_info->async_delalloc_pages, 0);
2219         atomic_set(&fs_info->async_submit_draining, 0);
2220         atomic_set(&fs_info->nr_async_bios, 0);
2221         atomic_set(&fs_info->defrag_running, 0);
2222         atomic64_set(&fs_info->tree_mod_seq, 0);
2223         fs_info->sb = sb;
2224         fs_info->max_inline = 8192 * 1024;
2225         fs_info->metadata_ratio = 0;
2226         fs_info->defrag_inodes = RB_ROOT;
2227         fs_info->free_chunk_space = 0;
2228         fs_info->tree_mod_log = RB_ROOT;
2229         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2230
2231         /* readahead state */
2232         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2233         spin_lock_init(&fs_info->reada_lock);
2234
2235         fs_info->thread_pool_size = min_t(unsigned long,
2236                                           num_online_cpus() + 2, 8);
2237
2238         INIT_LIST_HEAD(&fs_info->ordered_roots);
2239         spin_lock_init(&fs_info->ordered_root_lock);
2240         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2241                                         GFP_NOFS);
2242         if (!fs_info->delayed_root) {
2243                 err = -ENOMEM;
2244                 goto fail_iput;
2245         }
2246         btrfs_init_delayed_root(fs_info->delayed_root);
2247
2248         mutex_init(&fs_info->scrub_lock);
2249         atomic_set(&fs_info->scrubs_running, 0);
2250         atomic_set(&fs_info->scrub_pause_req, 0);
2251         atomic_set(&fs_info->scrubs_paused, 0);
2252         atomic_set(&fs_info->scrub_cancel_req, 0);
2253         init_waitqueue_head(&fs_info->scrub_pause_wait);
2254         init_rwsem(&fs_info->scrub_super_lock);
2255         fs_info->scrub_workers_refcnt = 0;
2256 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2257         fs_info->check_integrity_print_mask = 0;
2258 #endif
2259
2260         spin_lock_init(&fs_info->balance_lock);
2261         mutex_init(&fs_info->balance_mutex);
2262         atomic_set(&fs_info->balance_running, 0);
2263         atomic_set(&fs_info->balance_pause_req, 0);
2264         atomic_set(&fs_info->balance_cancel_req, 0);
2265         fs_info->balance_ctl = NULL;
2266         init_waitqueue_head(&fs_info->balance_wait_q);
2267
2268         sb->s_blocksize = 4096;
2269         sb->s_blocksize_bits = blksize_bits(4096);
2270         sb->s_bdi = &fs_info->bdi;
2271
2272         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2273         set_nlink(fs_info->btree_inode, 1);
2274         /*
2275          * we set the i_size on the btree inode to the max possible int.
2276          * the real end of the address space is determined by all of
2277          * the devices in the system
2278          */
2279         fs_info->btree_inode->i_size = OFFSET_MAX;
2280         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2281         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2282
2283         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2284         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2285                              fs_info->btree_inode->i_mapping);
2286         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2287         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2288
2289         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2290
2291         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2292         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2293                sizeof(struct btrfs_key));
2294         set_bit(BTRFS_INODE_DUMMY,
2295                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2296         btrfs_insert_inode_hash(fs_info->btree_inode);
2297
2298         spin_lock_init(&fs_info->block_group_cache_lock);
2299         fs_info->block_group_cache_tree = RB_ROOT;
2300         fs_info->first_logical_byte = (u64)-1;
2301
2302         extent_io_tree_init(&fs_info->freed_extents[0],
2303                              fs_info->btree_inode->i_mapping);
2304         extent_io_tree_init(&fs_info->freed_extents[1],
2305                              fs_info->btree_inode->i_mapping);
2306         fs_info->pinned_extents = &fs_info->freed_extents[0];
2307         fs_info->do_barriers = 1;
2308
2309
2310         mutex_init(&fs_info->ordered_operations_mutex);
2311         mutex_init(&fs_info->ordered_extent_flush_mutex);
2312         mutex_init(&fs_info->tree_log_mutex);
2313         mutex_init(&fs_info->chunk_mutex);
2314         mutex_init(&fs_info->transaction_kthread_mutex);
2315         mutex_init(&fs_info->cleaner_mutex);
2316         mutex_init(&fs_info->volume_mutex);
2317         init_rwsem(&fs_info->extent_commit_sem);
2318         init_rwsem(&fs_info->cleanup_work_sem);
2319         init_rwsem(&fs_info->subvol_sem);
2320         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2321         fs_info->dev_replace.lock_owner = 0;
2322         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2323         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2324         mutex_init(&fs_info->dev_replace.lock_management_lock);
2325         mutex_init(&fs_info->dev_replace.lock);
2326
2327         spin_lock_init(&fs_info->qgroup_lock);
2328         mutex_init(&fs_info->qgroup_ioctl_lock);
2329         fs_info->qgroup_tree = RB_ROOT;
2330         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2331         fs_info->qgroup_seq = 1;
2332         fs_info->quota_enabled = 0;
2333         fs_info->pending_quota_state = 0;
2334         fs_info->qgroup_ulist = NULL;
2335         mutex_init(&fs_info->qgroup_rescan_lock);
2336
2337         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2338         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2339
2340         init_waitqueue_head(&fs_info->transaction_throttle);
2341         init_waitqueue_head(&fs_info->transaction_wait);
2342         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2343         init_waitqueue_head(&fs_info->async_submit_wait);
2344
2345         ret = btrfs_alloc_stripe_hash_table(fs_info);
2346         if (ret) {
2347                 err = ret;
2348                 goto fail_alloc;
2349         }
2350
2351         __setup_root(4096, 4096, 4096, 4096, tree_root,
2352                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2353
2354         invalidate_bdev(fs_devices->latest_bdev);
2355
2356         /*
2357          * Read super block and check the signature bytes only
2358          */
2359         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2360         if (!bh) {
2361                 err = -EINVAL;
2362                 goto fail_alloc;
2363         }
2364
2365         /*
2366          * We want to check superblock checksum, the type is stored inside.
2367          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2368          */
2369         if (btrfs_check_super_csum(bh->b_data)) {
2370                 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2371                 err = -EINVAL;
2372                 goto fail_alloc;
2373         }
2374
2375         /*
2376          * super_copy is zeroed at allocation time and we never touch the
2377          * following bytes up to INFO_SIZE, the checksum is calculated from
2378          * the whole block of INFO_SIZE
2379          */
2380         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2381         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2382                sizeof(*fs_info->super_for_commit));
2383         brelse(bh);
2384
2385         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2386
2387         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2388         if (ret) {
2389                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2390                 err = -EINVAL;
2391                 goto fail_alloc;
2392         }
2393
2394         disk_super = fs_info->super_copy;
2395         if (!btrfs_super_root(disk_super))
2396                 goto fail_alloc;
2397
2398         /* check FS state, whether FS is broken. */
2399         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2400                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2401
2402         /*
2403          * run through our array of backup supers and setup
2404          * our ring pointer to the oldest one
2405          */
2406         generation = btrfs_super_generation(disk_super);
2407         find_oldest_super_backup(fs_info, generation);
2408
2409         /*
2410          * In the long term, we'll store the compression type in the super
2411          * block, and it'll be used for per file compression control.
2412          */
2413         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2414
2415         ret = btrfs_parse_options(tree_root, options);
2416         if (ret) {
2417                 err = ret;
2418                 goto fail_alloc;
2419         }
2420
2421         features = btrfs_super_incompat_flags(disk_super) &
2422                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2423         if (features) {
2424                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2425                        "unsupported optional features (%Lx).\n",
2426                        features);
2427                 err = -EINVAL;
2428                 goto fail_alloc;
2429         }
2430
2431         if (btrfs_super_leafsize(disk_super) !=
2432             btrfs_super_nodesize(disk_super)) {
2433                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2434                        "blocksizes don't match.  node %d leaf %d\n",
2435                        btrfs_super_nodesize(disk_super),
2436                        btrfs_super_leafsize(disk_super));
2437                 err = -EINVAL;
2438                 goto fail_alloc;
2439         }
2440         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2441                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2442                        "blocksize (%d) was too large\n",
2443                        btrfs_super_leafsize(disk_super));
2444                 err = -EINVAL;
2445                 goto fail_alloc;
2446         }
2447
2448         features = btrfs_super_incompat_flags(disk_super);
2449         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2450         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2451                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2452
2453         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2454                 printk(KERN_ERR "btrfs: has skinny extents\n");
2455
2456         /*
2457          * flag our filesystem as having big metadata blocks if
2458          * they are bigger than the page size
2459          */
2460         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2461                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2462                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2463                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2464         }
2465
2466         nodesize = btrfs_super_nodesize(disk_super);
2467         leafsize = btrfs_super_leafsize(disk_super);
2468         sectorsize = btrfs_super_sectorsize(disk_super);
2469         stripesize = btrfs_super_stripesize(disk_super);
2470         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2471         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2472
2473         /*
2474          * mixed block groups end up with duplicate but slightly offset
2475          * extent buffers for the same range.  It leads to corruptions
2476          */
2477         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2478             (sectorsize != leafsize)) {
2479                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2480                                 "are not allowed for mixed block groups on %s\n",
2481                                 sb->s_id);
2482                 goto fail_alloc;
2483         }
2484
2485         /*
2486          * Needn't use the lock because there is no other task which will
2487          * update the flag.
2488          */
2489         btrfs_set_super_incompat_flags(disk_super, features);
2490
2491         features = btrfs_super_compat_ro_flags(disk_super) &
2492                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2493         if (!(sb->s_flags & MS_RDONLY) && features) {
2494                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2495                        "unsupported option features (%Lx).\n",
2496                        features);
2497                 err = -EINVAL;
2498                 goto fail_alloc;
2499         }
2500
2501         btrfs_init_workers(&fs_info->generic_worker,
2502                            "genwork", 1, NULL);
2503
2504         btrfs_init_workers(&fs_info->workers, "worker",
2505                            fs_info->thread_pool_size,
2506                            &fs_info->generic_worker);
2507
2508         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2509                            fs_info->thread_pool_size, NULL);
2510
2511         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2512                            fs_info->thread_pool_size, NULL);
2513
2514         btrfs_init_workers(&fs_info->submit_workers, "submit",
2515                            min_t(u64, fs_devices->num_devices,
2516                            fs_info->thread_pool_size), NULL);
2517
2518         btrfs_init_workers(&fs_info->caching_workers, "cache",
2519                            fs_info->thread_pool_size, NULL);
2520
2521         /* a higher idle thresh on the submit workers makes it much more
2522          * likely that bios will be send down in a sane order to the
2523          * devices
2524          */
2525         fs_info->submit_workers.idle_thresh = 64;
2526
2527         fs_info->workers.idle_thresh = 16;
2528         fs_info->workers.ordered = 1;
2529
2530         fs_info->delalloc_workers.idle_thresh = 2;
2531         fs_info->delalloc_workers.ordered = 1;
2532
2533         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2534                            &fs_info->generic_worker);
2535         btrfs_init_workers(&fs_info->endio_workers, "endio",
2536                            fs_info->thread_pool_size,
2537                            &fs_info->generic_worker);
2538         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2539                            fs_info->thread_pool_size,
2540                            &fs_info->generic_worker);
2541         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2542                            "endio-meta-write", fs_info->thread_pool_size,
2543                            &fs_info->generic_worker);
2544         btrfs_init_workers(&fs_info->endio_raid56_workers,
2545                            "endio-raid56", fs_info->thread_pool_size,
2546                            &fs_info->generic_worker);
2547         btrfs_init_workers(&fs_info->rmw_workers,
2548                            "rmw", fs_info->thread_pool_size,
2549                            &fs_info->generic_worker);
2550         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2551                            fs_info->thread_pool_size,
2552                            &fs_info->generic_worker);
2553         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2554                            1, &fs_info->generic_worker);
2555         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2556                            fs_info->thread_pool_size,
2557                            &fs_info->generic_worker);
2558         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2559                            fs_info->thread_pool_size,
2560                            &fs_info->generic_worker);
2561         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2562                            &fs_info->generic_worker);
2563
2564         /*
2565          * endios are largely parallel and should have a very
2566          * low idle thresh
2567          */
2568         fs_info->endio_workers.idle_thresh = 4;
2569         fs_info->endio_meta_workers.idle_thresh = 4;
2570         fs_info->endio_raid56_workers.idle_thresh = 4;
2571         fs_info->rmw_workers.idle_thresh = 2;
2572
2573         fs_info->endio_write_workers.idle_thresh = 2;
2574         fs_info->endio_meta_write_workers.idle_thresh = 2;
2575         fs_info->readahead_workers.idle_thresh = 2;
2576
2577         /*
2578          * btrfs_start_workers can really only fail because of ENOMEM so just
2579          * return -ENOMEM if any of these fail.
2580          */
2581         ret = btrfs_start_workers(&fs_info->workers);
2582         ret |= btrfs_start_workers(&fs_info->generic_worker);
2583         ret |= btrfs_start_workers(&fs_info->submit_workers);
2584         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2585         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2586         ret |= btrfs_start_workers(&fs_info->endio_workers);
2587         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2588         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2589         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2590         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2591         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2592         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2593         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2594         ret |= btrfs_start_workers(&fs_info->caching_workers);
2595         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2596         ret |= btrfs_start_workers(&fs_info->flush_workers);
2597         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2598         if (ret) {
2599                 err = -ENOMEM;
2600                 goto fail_sb_buffer;
2601         }
2602
2603         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2604         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2605                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2606
2607         tree_root->nodesize = nodesize;
2608         tree_root->leafsize = leafsize;
2609         tree_root->sectorsize = sectorsize;
2610         tree_root->stripesize = stripesize;
2611
2612         sb->s_blocksize = sectorsize;
2613         sb->s_blocksize_bits = blksize_bits(sectorsize);
2614
2615         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2616                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2617                 goto fail_sb_buffer;
2618         }
2619
2620         if (sectorsize != PAGE_SIZE) {
2621                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2622                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2623                 goto fail_sb_buffer;
2624         }
2625
2626         mutex_lock(&fs_info->chunk_mutex);
2627         ret = btrfs_read_sys_array(tree_root);
2628         mutex_unlock(&fs_info->chunk_mutex);
2629         if (ret) {
2630                 printk(KERN_WARNING "btrfs: failed to read the system "
2631                        "array on %s\n", sb->s_id);
2632                 goto fail_sb_buffer;
2633         }
2634
2635         blocksize = btrfs_level_size(tree_root,
2636                                      btrfs_super_chunk_root_level(disk_super));
2637         generation = btrfs_super_chunk_root_generation(disk_super);
2638
2639         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2640                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2641
2642         chunk_root->node = read_tree_block(chunk_root,
2643                                            btrfs_super_chunk_root(disk_super),
2644                                            blocksize, generation);
2645         if (!chunk_root->node ||
2646             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2647                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2648                        sb->s_id);
2649                 goto fail_tree_roots;
2650         }
2651         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2652         chunk_root->commit_root = btrfs_root_node(chunk_root);
2653
2654         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2655            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2656
2657         ret = btrfs_read_chunk_tree(chunk_root);
2658         if (ret) {
2659                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2660                        sb->s_id);
2661                 goto fail_tree_roots;
2662         }
2663
2664         /*
2665          * keep the device that is marked to be the target device for the
2666          * dev_replace procedure
2667          */
2668         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2669
2670         if (!fs_devices->latest_bdev) {
2671                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2672                        sb->s_id);
2673                 goto fail_tree_roots;
2674         }
2675
2676 retry_root_backup:
2677         blocksize = btrfs_level_size(tree_root,
2678                                      btrfs_super_root_level(disk_super));
2679         generation = btrfs_super_generation(disk_super);
2680
2681         tree_root->node = read_tree_block(tree_root,
2682                                           btrfs_super_root(disk_super),
2683                                           blocksize, generation);
2684         if (!tree_root->node ||
2685             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2686                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2687                        sb->s_id);
2688
2689                 goto recovery_tree_root;
2690         }
2691
2692         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2693         tree_root->commit_root = btrfs_root_node(tree_root);
2694         btrfs_set_root_refs(&tree_root->root_item, 1);
2695
2696         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2697         location.type = BTRFS_ROOT_ITEM_KEY;
2698         location.offset = 0;
2699
2700         extent_root = btrfs_read_tree_root(tree_root, &location);
2701         if (IS_ERR(extent_root)) {
2702                 ret = PTR_ERR(extent_root);
2703                 goto recovery_tree_root;
2704         }
2705         extent_root->track_dirty = 1;
2706         fs_info->extent_root = extent_root;
2707
2708         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2709         dev_root = btrfs_read_tree_root(tree_root, &location);
2710         if (IS_ERR(dev_root)) {
2711                 ret = PTR_ERR(dev_root);
2712                 goto recovery_tree_root;
2713         }
2714         dev_root->track_dirty = 1;
2715         fs_info->dev_root = dev_root;
2716         btrfs_init_devices_late(fs_info);
2717
2718         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2719         csum_root = btrfs_read_tree_root(tree_root, &location);
2720         if (IS_ERR(csum_root)) {
2721                 ret = PTR_ERR(csum_root);
2722                 goto recovery_tree_root;
2723         }
2724         csum_root->track_dirty = 1;
2725         fs_info->csum_root = csum_root;
2726
2727         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2728         quota_root = btrfs_read_tree_root(tree_root, &location);
2729         if (!IS_ERR(quota_root)) {
2730                 quota_root->track_dirty = 1;
2731                 fs_info->quota_enabled = 1;
2732                 fs_info->pending_quota_state = 1;
2733                 fs_info->quota_root = quota_root;
2734         }
2735
2736         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2737         uuid_root = btrfs_read_tree_root(tree_root, &location);
2738         if (IS_ERR(uuid_root)) {
2739                 ret = PTR_ERR(uuid_root);
2740                 if (ret != -ENOENT)
2741                         goto recovery_tree_root;
2742                 create_uuid_tree = true;
2743                 check_uuid_tree = false;
2744         } else {
2745                 uuid_root->track_dirty = 1;
2746                 fs_info->uuid_root = uuid_root;
2747                 create_uuid_tree = false;
2748                 check_uuid_tree =
2749                     generation != btrfs_super_uuid_tree_generation(disk_super);
2750         }
2751
2752         fs_info->generation = generation;
2753         fs_info->last_trans_committed = generation;
2754
2755         ret = btrfs_recover_balance(fs_info);
2756         if (ret) {
2757                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2758                 goto fail_block_groups;
2759         }
2760
2761         ret = btrfs_init_dev_stats(fs_info);
2762         if (ret) {
2763                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2764                        ret);
2765                 goto fail_block_groups;
2766         }
2767
2768         ret = btrfs_init_dev_replace(fs_info);
2769         if (ret) {
2770                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2771                 goto fail_block_groups;
2772         }
2773
2774         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2775
2776         ret = btrfs_init_space_info(fs_info);
2777         if (ret) {
2778                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2779                 goto fail_block_groups;
2780         }
2781
2782         ret = btrfs_read_block_groups(extent_root);
2783         if (ret) {
2784                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2785                 goto fail_block_groups;
2786         }
2787         fs_info->num_tolerated_disk_barrier_failures =
2788                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2789         if (fs_info->fs_devices->missing_devices >
2790              fs_info->num_tolerated_disk_barrier_failures &&
2791             !(sb->s_flags & MS_RDONLY)) {
2792                 printk(KERN_WARNING
2793                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2794                 goto fail_block_groups;
2795         }
2796
2797         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2798                                                "btrfs-cleaner");
2799         if (IS_ERR(fs_info->cleaner_kthread))
2800                 goto fail_block_groups;
2801
2802         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2803                                                    tree_root,
2804                                                    "btrfs-transaction");
2805         if (IS_ERR(fs_info->transaction_kthread))
2806                 goto fail_cleaner;
2807
2808         if (!btrfs_test_opt(tree_root, SSD) &&
2809             !btrfs_test_opt(tree_root, NOSSD) &&
2810             !fs_info->fs_devices->rotating) {
2811                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2812                        "mode\n");
2813                 btrfs_set_opt(fs_info->mount_opt, SSD);
2814         }
2815
2816 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2817         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2818                 ret = btrfsic_mount(tree_root, fs_devices,
2819                                     btrfs_test_opt(tree_root,
2820                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2821                                     1 : 0,
2822                                     fs_info->check_integrity_print_mask);
2823                 if (ret)
2824                         printk(KERN_WARNING "btrfs: failed to initialize"
2825                                " integrity check module %s\n", sb->s_id);
2826         }
2827 #endif
2828         ret = btrfs_read_qgroup_config(fs_info);
2829         if (ret)
2830                 goto fail_trans_kthread;
2831
2832         /* do not make disk changes in broken FS */
2833         if (btrfs_super_log_root(disk_super) != 0) {
2834                 u64 bytenr = btrfs_super_log_root(disk_super);
2835
2836                 if (fs_devices->rw_devices == 0) {
2837                         printk(KERN_WARNING "Btrfs log replay required "
2838                                "on RO media\n");
2839                         err = -EIO;
2840                         goto fail_qgroup;
2841                 }
2842                 blocksize =
2843                      btrfs_level_size(tree_root,
2844                                       btrfs_super_log_root_level(disk_super));
2845
2846                 log_tree_root = btrfs_alloc_root(fs_info);
2847                 if (!log_tree_root) {
2848                         err = -ENOMEM;
2849                         goto fail_qgroup;
2850                 }
2851
2852                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2853                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2854
2855                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2856                                                       blocksize,
2857                                                       generation + 1);
2858                 if (!log_tree_root->node ||
2859                     !extent_buffer_uptodate(log_tree_root->node)) {
2860                         printk(KERN_ERR "btrfs: failed to read log tree\n");
2861                         free_extent_buffer(log_tree_root->node);
2862                         kfree(log_tree_root);
2863                         goto fail_trans_kthread;
2864                 }
2865                 /* returns with log_tree_root freed on success */
2866                 ret = btrfs_recover_log_trees(log_tree_root);
2867                 if (ret) {
2868                         btrfs_error(tree_root->fs_info, ret,
2869                                     "Failed to recover log tree");
2870                         free_extent_buffer(log_tree_root->node);
2871                         kfree(log_tree_root);
2872                         goto fail_trans_kthread;
2873                 }
2874
2875                 if (sb->s_flags & MS_RDONLY) {
2876                         ret = btrfs_commit_super(tree_root);
2877                         if (ret)
2878                                 goto fail_trans_kthread;
2879                 }
2880         }
2881
2882         ret = btrfs_find_orphan_roots(tree_root);
2883         if (ret)
2884                 goto fail_trans_kthread;
2885
2886         if (!(sb->s_flags & MS_RDONLY)) {
2887                 ret = btrfs_cleanup_fs_roots(fs_info);
2888                 if (ret)
2889                         goto fail_trans_kthread;
2890
2891                 ret = btrfs_recover_relocation(tree_root);
2892                 if (ret < 0) {
2893                         printk(KERN_WARNING
2894                                "btrfs: failed to recover relocation\n");
2895                         err = -EINVAL;
2896                         goto fail_qgroup;
2897                 }
2898         }
2899
2900         location.objectid = BTRFS_FS_TREE_OBJECTID;
2901         location.type = BTRFS_ROOT_ITEM_KEY;
2902         location.offset = 0;
2903
2904         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2905         if (IS_ERR(fs_info->fs_root)) {
2906                 err = PTR_ERR(fs_info->fs_root);
2907                 goto fail_qgroup;
2908         }
2909
2910         if (sb->s_flags & MS_RDONLY)
2911                 return 0;
2912
2913         down_read(&fs_info->cleanup_work_sem);
2914         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2915             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2916                 up_read(&fs_info->cleanup_work_sem);
2917                 close_ctree(tree_root);
2918                 return ret;
2919         }
2920         up_read(&fs_info->cleanup_work_sem);
2921
2922         ret = btrfs_resume_balance_async(fs_info);
2923         if (ret) {
2924                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2925                 close_ctree(tree_root);
2926                 return ret;
2927         }
2928
2929         ret = btrfs_resume_dev_replace_async(fs_info);
2930         if (ret) {
2931                 pr_warn("btrfs: failed to resume dev_replace\n");
2932                 close_ctree(tree_root);
2933                 return ret;
2934         }
2935
2936         btrfs_qgroup_rescan_resume(fs_info);
2937
2938         if (create_uuid_tree) {
2939                 pr_info("btrfs: creating UUID tree\n");
2940                 ret = btrfs_create_uuid_tree(fs_info);
2941                 if (ret) {
2942                         pr_warn("btrfs: failed to create the UUID tree %d\n",
2943                                 ret);
2944                         close_ctree(tree_root);
2945                         return ret;
2946                 }
2947         } else if (check_uuid_tree ||
2948                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2949                 pr_info("btrfs: checking UUID tree\n");
2950                 ret = btrfs_check_uuid_tree(fs_info);
2951                 if (ret) {
2952                         pr_warn("btrfs: failed to check the UUID tree %d\n",
2953                                 ret);
2954                         close_ctree(tree_root);
2955                         return ret;
2956                 }
2957         } else {
2958                 fs_info->update_uuid_tree_gen = 1;
2959         }
2960
2961         return 0;
2962
2963 fail_qgroup:
2964         btrfs_free_qgroup_config(fs_info);
2965 fail_trans_kthread:
2966         kthread_stop(fs_info->transaction_kthread);
2967         btrfs_cleanup_transaction(fs_info->tree_root);
2968         del_fs_roots(fs_info);
2969 fail_cleaner:
2970         kthread_stop(fs_info->cleaner_kthread);
2971
2972         /*
2973          * make sure we're done with the btree inode before we stop our
2974          * kthreads
2975          */
2976         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2977
2978 fail_block_groups:
2979         btrfs_put_block_group_cache(fs_info);
2980         btrfs_free_block_groups(fs_info);
2981
2982 fail_tree_roots:
2983         free_root_pointers(fs_info, 1);
2984         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2985
2986 fail_sb_buffer:
2987         btrfs_stop_all_workers(fs_info);
2988 fail_alloc:
2989 fail_iput:
2990         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2991
2992         iput(fs_info->btree_inode);
2993 fail_delalloc_bytes:
2994         percpu_counter_destroy(&fs_info->delalloc_bytes);
2995 fail_dirty_metadata_bytes:
2996         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2997 fail_bdi:
2998         bdi_destroy(&fs_info->bdi);
2999 fail_srcu:
3000         cleanup_srcu_struct(&fs_info->subvol_srcu);
3001 fail:
3002         btrfs_free_stripe_hash_table(fs_info);
3003         btrfs_close_devices(fs_info->fs_devices);
3004         return err;
3005
3006 recovery_tree_root:
3007         if (!btrfs_test_opt(tree_root, RECOVERY))
3008                 goto fail_tree_roots;
3009
3010         free_root_pointers(fs_info, 0);
3011
3012         /* don't use the log in recovery mode, it won't be valid */
3013         btrfs_set_super_log_root(disk_super, 0);
3014
3015         /* we can't trust the free space cache either */
3016         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3017
3018         ret = next_root_backup(fs_info, fs_info->super_copy,
3019                                &num_backups_tried, &backup_index);
3020         if (ret == -1)
3021                 goto fail_block_groups;
3022         goto retry_root_backup;
3023 }
3024
3025 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3026 {
3027         if (uptodate) {
3028                 set_buffer_uptodate(bh);
3029         } else {
3030                 struct btrfs_device *device = (struct btrfs_device *)
3031                         bh->b_private;
3032
3033                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
3034                                           "I/O error on %s\n",
3035                                           rcu_str_deref(device->name));
3036                 /* note, we dont' set_buffer_write_io_error because we have
3037                  * our own ways of dealing with the IO errors
3038                  */
3039                 clear_buffer_uptodate(bh);
3040                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3041         }
3042         unlock_buffer(bh);
3043         put_bh(bh);
3044 }
3045
3046 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3047 {
3048         struct buffer_head *bh;
3049         struct buffer_head *latest = NULL;
3050         struct btrfs_super_block *super;
3051         int i;
3052         u64 transid = 0;
3053         u64 bytenr;
3054
3055         /* we would like to check all the supers, but that would make
3056          * a btrfs mount succeed after a mkfs from a different FS.
3057          * So, we need to add a special mount option to scan for
3058          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3059          */
3060         for (i = 0; i < 1; i++) {
3061                 bytenr = btrfs_sb_offset(i);
3062                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3063                                         i_size_read(bdev->bd_inode))
3064                         break;
3065                 bh = __bread(bdev, bytenr / 4096,
3066                                         BTRFS_SUPER_INFO_SIZE);
3067                 if (!bh)
3068                         continue;
3069
3070                 super = (struct btrfs_super_block *)bh->b_data;
3071                 if (btrfs_super_bytenr(super) != bytenr ||
3072                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3073                         brelse(bh);
3074                         continue;
3075                 }
3076
3077                 if (!latest || btrfs_super_generation(super) > transid) {
3078                         brelse(latest);
3079                         latest = bh;
3080                         transid = btrfs_super_generation(super);
3081                 } else {
3082                         brelse(bh);
3083                 }
3084         }
3085         return latest;
3086 }
3087
3088 /*
3089  * this should be called twice, once with wait == 0 and
3090  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3091  * we write are pinned.
3092  *
3093  * They are released when wait == 1 is done.
3094  * max_mirrors must be the same for both runs, and it indicates how
3095  * many supers on this one device should be written.
3096  *
3097  * max_mirrors == 0 means to write them all.
3098  */
3099 static int write_dev_supers(struct btrfs_device *device,
3100                             struct btrfs_super_block *sb,
3101                             int do_barriers, int wait, int max_mirrors)
3102 {
3103         struct buffer_head *bh;
3104         int i;
3105         int ret;
3106         int errors = 0;
3107         u32 crc;
3108         u64 bytenr;
3109
3110         if (max_mirrors == 0)
3111                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3112
3113         for (i = 0; i < max_mirrors; i++) {
3114                 bytenr = btrfs_sb_offset(i);
3115                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3116                         break;
3117
3118                 if (wait) {
3119                         bh = __find_get_block(device->bdev, bytenr / 4096,
3120                                               BTRFS_SUPER_INFO_SIZE);
3121                         if (!bh) {
3122                                 errors++;
3123                                 continue;
3124                         }
3125                         wait_on_buffer(bh);
3126                         if (!buffer_uptodate(bh))
3127                                 errors++;
3128
3129                         /* drop our reference */
3130                         brelse(bh);
3131
3132                         /* drop the reference from the wait == 0 run */
3133                         brelse(bh);
3134                         continue;
3135                 } else {
3136                         btrfs_set_super_bytenr(sb, bytenr);
3137
3138                         crc = ~(u32)0;
3139                         crc = btrfs_csum_data((char *)sb +
3140                                               BTRFS_CSUM_SIZE, crc,
3141                                               BTRFS_SUPER_INFO_SIZE -
3142                                               BTRFS_CSUM_SIZE);
3143                         btrfs_csum_final(crc, sb->csum);
3144
3145                         /*
3146                          * one reference for us, and we leave it for the
3147                          * caller
3148                          */
3149                         bh = __getblk(device->bdev, bytenr / 4096,
3150                                       BTRFS_SUPER_INFO_SIZE);
3151                         if (!bh) {
3152                                 printk(KERN_ERR "btrfs: couldn't get super "
3153                                        "buffer head for bytenr %Lu\n", bytenr);
3154                                 errors++;
3155                                 continue;
3156                         }
3157
3158                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3159
3160                         /* one reference for submit_bh */
3161                         get_bh(bh);
3162
3163                         set_buffer_uptodate(bh);
3164                         lock_buffer(bh);
3165                         bh->b_end_io = btrfs_end_buffer_write_sync;
3166                         bh->b_private = device;
3167                 }
3168
3169                 /*
3170                  * we fua the first super.  The others we allow
3171                  * to go down lazy.
3172                  */
3173                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3174                 if (ret)
3175                         errors++;
3176         }
3177         return errors < i ? 0 : -1;
3178 }
3179
3180 /*
3181  * endio for the write_dev_flush, this will wake anyone waiting
3182  * for the barrier when it is done
3183  */
3184 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3185 {
3186         if (err) {
3187                 if (err == -EOPNOTSUPP)
3188                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3189                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3190         }
3191         if (bio->bi_private)
3192                 complete(bio->bi_private);
3193         bio_put(bio);
3194 }
3195
3196 /*
3197  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3198  * sent down.  With wait == 1, it waits for the previous flush.
3199  *
3200  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3201  * capable
3202  */
3203 static int write_dev_flush(struct btrfs_device *device, int wait)
3204 {
3205         struct bio *bio;
3206         int ret = 0;
3207
3208         if (device->nobarriers)
3209                 return 0;
3210
3211         if (wait) {
3212                 bio = device->flush_bio;
3213                 if (!bio)
3214                         return 0;
3215
3216                 wait_for_completion(&device->flush_wait);
3217
3218                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3219                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3220                                       rcu_str_deref(device->name));
3221                         device->nobarriers = 1;
3222                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3223                         ret = -EIO;
3224                         btrfs_dev_stat_inc_and_print(device,
3225                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3226                 }
3227
3228                 /* drop the reference from the wait == 0 run */
3229                 bio_put(bio);
3230                 device->flush_bio = NULL;
3231
3232                 return ret;
3233         }
3234
3235         /*
3236          * one reference for us, and we leave it for the
3237          * caller
3238          */
3239         device->flush_bio = NULL;
3240         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3241         if (!bio)
3242                 return -ENOMEM;
3243
3244         bio->bi_end_io = btrfs_end_empty_barrier;
3245         bio->bi_bdev = device->bdev;
3246         init_completion(&device->flush_wait);
3247         bio->bi_private = &device->flush_wait;
3248         device->flush_bio = bio;
3249
3250         bio_get(bio);
3251         btrfsic_submit_bio(WRITE_FLUSH, bio);
3252
3253         return 0;
3254 }
3255
3256 /*
3257  * send an empty flush down to each device in parallel,
3258  * then wait for them
3259  */
3260 static int barrier_all_devices(struct btrfs_fs_info *info)
3261 {
3262         struct list_head *head;
3263         struct btrfs_device *dev;
3264         int errors_send = 0;
3265         int errors_wait = 0;
3266         int ret;
3267
3268         /* send down all the barriers */
3269         head = &info->fs_devices->devices;
3270         list_for_each_entry_rcu(dev, head, dev_list) {
3271                 if (!dev->bdev) {
3272                         errors_send++;
3273                         continue;
3274                 }
3275                 if (!dev->in_fs_metadata || !dev->writeable)
3276                         continue;
3277
3278                 ret = write_dev_flush(dev, 0);
3279                 if (ret)
3280                         errors_send++;
3281         }
3282
3283         /* wait for all the barriers */
3284         list_for_each_entry_rcu(dev, head, dev_list) {
3285                 if (!dev->bdev) {
3286                         errors_wait++;
3287                         continue;
3288                 }
3289                 if (!dev->in_fs_metadata || !dev->writeable)
3290                         continue;
3291
3292                 ret = write_dev_flush(dev, 1);
3293                 if (ret)
3294                         errors_wait++;
3295         }
3296         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3297             errors_wait > info->num_tolerated_disk_barrier_failures)
3298                 return -EIO;
3299         return 0;
3300 }
3301
3302 int btrfs_calc_num_tolerated_disk_barrier_failures(
3303         struct btrfs_fs_info *fs_info)
3304 {
3305         struct btrfs_ioctl_space_info space;
3306         struct btrfs_space_info *sinfo;
3307         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3308                        BTRFS_BLOCK_GROUP_SYSTEM,
3309                        BTRFS_BLOCK_GROUP_METADATA,
3310                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3311         int num_types = 4;
3312         int i;
3313         int c;
3314         int num_tolerated_disk_barrier_failures =
3315                 (int)fs_info->fs_devices->num_devices;
3316
3317         for (i = 0; i < num_types; i++) {
3318                 struct btrfs_space_info *tmp;
3319
3320                 sinfo = NULL;
3321                 rcu_read_lock();
3322                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3323                         if (tmp->flags == types[i]) {
3324                                 sinfo = tmp;
3325                                 break;
3326                         }
3327                 }
3328                 rcu_read_unlock();
3329
3330                 if (!sinfo)
3331                         continue;
3332
3333                 down_read(&sinfo->groups_sem);
3334                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3335                         if (!list_empty(&sinfo->block_groups[c])) {
3336                                 u64 flags;
3337
3338                                 btrfs_get_block_group_info(
3339                                         &sinfo->block_groups[c], &space);
3340                                 if (space.total_bytes == 0 ||
3341                                     space.used_bytes == 0)
3342                                         continue;
3343                                 flags = space.flags;
3344                                 /*
3345                                  * return
3346                                  * 0: if dup, single or RAID0 is configured for
3347                                  *    any of metadata, system or data, else
3348                                  * 1: if RAID5 is configured, or if RAID1 or
3349                                  *    RAID10 is configured and only two mirrors
3350                                  *    are used, else
3351                                  * 2: if RAID6 is configured, else
3352                                  * num_mirrors - 1: if RAID1 or RAID10 is
3353                                  *                  configured and more than
3354                                  *                  2 mirrors are used.
3355                                  */
3356                                 if (num_tolerated_disk_barrier_failures > 0 &&
3357                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3358                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3359                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3360                                       == 0)))
3361                                         num_tolerated_disk_barrier_failures = 0;
3362                                 else if (num_tolerated_disk_barrier_failures > 1) {
3363                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3364                                             BTRFS_BLOCK_GROUP_RAID5 |
3365                                             BTRFS_BLOCK_GROUP_RAID10)) {
3366                                                 num_tolerated_disk_barrier_failures = 1;
3367                                         } else if (flags &
3368                                                    BTRFS_BLOCK_GROUP_RAID6) {
3369                                                 num_tolerated_disk_barrier_failures = 2;
3370                                         }
3371                                 }
3372                         }
3373                 }
3374                 up_read(&sinfo->groups_sem);
3375         }
3376
3377         return num_tolerated_disk_barrier_failures;
3378 }
3379
3380 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3381 {
3382         struct list_head *head;
3383         struct btrfs_device *dev;
3384         struct btrfs_super_block *sb;
3385         struct btrfs_dev_item *dev_item;
3386         int ret;
3387         int do_barriers;
3388         int max_errors;
3389         int total_errors = 0;
3390         u64 flags;
3391
3392         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3393         backup_super_roots(root->fs_info);
3394
3395         sb = root->fs_info->super_for_commit;
3396         dev_item = &sb->dev_item;
3397
3398         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3399         head = &root->fs_info->fs_devices->devices;
3400         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3401
3402         if (do_barriers) {
3403                 ret = barrier_all_devices(root->fs_info);
3404                 if (ret) {
3405                         mutex_unlock(
3406                                 &root->fs_info->fs_devices->device_list_mutex);
3407                         btrfs_error(root->fs_info, ret,
3408                                     "errors while submitting device barriers.");
3409                         return ret;
3410                 }
3411         }
3412
3413         list_for_each_entry_rcu(dev, head, dev_list) {
3414                 if (!dev->bdev) {
3415                         total_errors++;
3416                         continue;
3417                 }
3418                 if (!dev->in_fs_metadata || !dev->writeable)
3419                         continue;
3420
3421                 btrfs_set_stack_device_generation(dev_item, 0);
3422                 btrfs_set_stack_device_type(dev_item, dev->type);
3423                 btrfs_set_stack_device_id(dev_item, dev->devid);
3424                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3425                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3426                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3427                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3428                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3429                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3430                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3431
3432                 flags = btrfs_super_flags(sb);
3433                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3434
3435                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3436                 if (ret)
3437                         total_errors++;
3438         }
3439         if (total_errors > max_errors) {
3440                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3441                        total_errors);
3442                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3443
3444                 /* FUA is masked off if unsupported and can't be the reason */
3445                 btrfs_error(root->fs_info, -EIO,
3446                             "%d errors while writing supers", total_errors);
3447                 return -EIO;
3448         }
3449
3450         total_errors = 0;
3451         list_for_each_entry_rcu(dev, head, dev_list) {
3452                 if (!dev->bdev)
3453                         continue;
3454                 if (!dev->in_fs_metadata || !dev->writeable)
3455                         continue;
3456
3457                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3458                 if (ret)
3459                         total_errors++;
3460         }
3461         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3462         if (total_errors > max_errors) {
3463                 btrfs_error(root->fs_info, -EIO,
3464                             "%d errors while writing supers", total_errors);
3465                 return -EIO;
3466         }
3467         return 0;
3468 }
3469
3470 int write_ctree_super(struct btrfs_trans_handle *trans,
3471                       struct btrfs_root *root, int max_mirrors)
3472 {
3473         int ret;
3474
3475         ret = write_all_supers(root, max_mirrors);
3476         return ret;
3477 }
3478
3479 /* Drop a fs root from the radix tree and free it. */
3480 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3481                                   struct btrfs_root *root)
3482 {
3483         spin_lock(&fs_info->fs_roots_radix_lock);
3484         radix_tree_delete(&fs_info->fs_roots_radix,
3485                           (unsigned long)root->root_key.objectid);
3486         spin_unlock(&fs_info->fs_roots_radix_lock);
3487
3488         if (btrfs_root_refs(&root->root_item) == 0)
3489                 synchronize_srcu(&fs_info->subvol_srcu);
3490
3491         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3492                 btrfs_free_log(NULL, root);
3493                 btrfs_free_log_root_tree(NULL, fs_info);
3494         }
3495
3496         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3497         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3498         free_fs_root(root);
3499 }
3500
3501 static void free_fs_root(struct btrfs_root *root)
3502 {
3503         iput(root->cache_inode);
3504         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3505         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3506         root->orphan_block_rsv = NULL;
3507         if (root->anon_dev)
3508                 free_anon_bdev(root->anon_dev);
3509         free_extent_buffer(root->node);
3510         free_extent_buffer(root->commit_root);
3511         kfree(root->free_ino_ctl);
3512         kfree(root->free_ino_pinned);
3513         kfree(root->name);
3514         btrfs_put_fs_root(root);
3515 }
3516
3517 void btrfs_free_fs_root(struct btrfs_root *root)
3518 {
3519         free_fs_root(root);
3520 }
3521
3522 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3523 {
3524         u64 root_objectid = 0;
3525         struct btrfs_root *gang[8];
3526         int i;
3527         int ret;
3528
3529         while (1) {
3530                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3531                                              (void **)gang, root_objectid,
3532                                              ARRAY_SIZE(gang));
3533                 if (!ret)
3534                         break;
3535
3536                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3537                 for (i = 0; i < ret; i++) {
3538                         int err;
3539
3540                         root_objectid = gang[i]->root_key.objectid;
3541                         err = btrfs_orphan_cleanup(gang[i]);
3542                         if (err)
3543                                 return err;
3544                 }
3545                 root_objectid++;
3546         }
3547         return 0;
3548 }
3549
3550 int btrfs_commit_super(struct btrfs_root *root)
3551 {
3552         struct btrfs_trans_handle *trans;
3553         int ret;
3554
3555         mutex_lock(&root->fs_info->cleaner_mutex);
3556         btrfs_run_delayed_iputs(root);
3557         mutex_unlock(&root->fs_info->cleaner_mutex);
3558         wake_up_process(root->fs_info->cleaner_kthread);
3559
3560         /* wait until ongoing cleanup work done */
3561         down_write(&root->fs_info->cleanup_work_sem);
3562         up_write(&root->fs_info->cleanup_work_sem);
3563
3564         trans = btrfs_join_transaction(root);
3565         if (IS_ERR(trans))
3566                 return PTR_ERR(trans);
3567         ret = btrfs_commit_transaction(trans, root);
3568         if (ret)
3569                 return ret;
3570         /* run commit again to drop the original snapshot */
3571         trans = btrfs_join_transaction(root);
3572         if (IS_ERR(trans))
3573                 return PTR_ERR(trans);
3574         ret = btrfs_commit_transaction(trans, root);
3575         if (ret)
3576                 return ret;
3577         ret = btrfs_write_and_wait_transaction(NULL, root);
3578         if (ret) {
3579                 btrfs_error(root->fs_info, ret,
3580                             "Failed to sync btree inode to disk.");
3581                 return ret;
3582         }
3583
3584         ret = write_ctree_super(NULL, root, 0);
3585         return ret;
3586 }
3587
3588 int close_ctree(struct btrfs_root *root)
3589 {
3590         struct btrfs_fs_info *fs_info = root->fs_info;
3591         int ret;
3592
3593         fs_info->closing = 1;
3594         smp_mb();
3595
3596         /* wait for the uuid_scan task to finish */
3597         down(&fs_info->uuid_tree_rescan_sem);
3598         /* avoid complains from lockdep et al., set sem back to initial state */
3599         up(&fs_info->uuid_tree_rescan_sem);
3600
3601         /* pause restriper - we want to resume on mount */
3602         btrfs_pause_balance(fs_info);
3603
3604         btrfs_dev_replace_suspend_for_unmount(fs_info);
3605
3606         btrfs_scrub_cancel(fs_info);
3607
3608         /* wait for any defraggers to finish */
3609         wait_event(fs_info->transaction_wait,
3610                    (atomic_read(&fs_info->defrag_running) == 0));
3611
3612         /* clear out the rbtree of defraggable inodes */
3613         btrfs_cleanup_defrag_inodes(fs_info);
3614
3615         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3616                 ret = btrfs_commit_super(root);
3617                 if (ret)
3618                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3619         }
3620
3621         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3622                 btrfs_error_commit_super(root);
3623
3624         btrfs_put_block_group_cache(fs_info);
3625
3626         kthread_stop(fs_info->transaction_kthread);
3627         kthread_stop(fs_info->cleaner_kthread);
3628
3629         fs_info->closing = 2;
3630         smp_mb();
3631
3632         btrfs_free_qgroup_config(root->fs_info);
3633
3634         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3635                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3636                        percpu_counter_sum(&fs_info->delalloc_bytes));
3637         }
3638
3639         del_fs_roots(fs_info);
3640
3641         btrfs_free_block_groups(fs_info);
3642
3643         btrfs_stop_all_workers(fs_info);
3644
3645         free_root_pointers(fs_info, 1);
3646
3647         iput(fs_info->btree_inode);
3648
3649 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3650         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3651                 btrfsic_unmount(root, fs_info->fs_devices);
3652 #endif
3653
3654         btrfs_close_devices(fs_info->fs_devices);
3655         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3656
3657         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3658         percpu_counter_destroy(&fs_info->delalloc_bytes);
3659         bdi_destroy(&fs_info->bdi);
3660         cleanup_srcu_struct(&fs_info->subvol_srcu);
3661
3662         btrfs_free_stripe_hash_table(fs_info);
3663
3664         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3665         root->orphan_block_rsv = NULL;
3666
3667         return 0;
3668 }
3669
3670 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3671                           int atomic)
3672 {
3673         int ret;
3674         struct inode *btree_inode = buf->pages[0]->mapping->host;
3675
3676         ret = extent_buffer_uptodate(buf);
3677         if (!ret)
3678                 return ret;
3679
3680         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3681                                     parent_transid, atomic);
3682         if (ret == -EAGAIN)
3683                 return ret;
3684         return !ret;
3685 }
3686
3687 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3688 {
3689         return set_extent_buffer_uptodate(buf);
3690 }
3691
3692 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3693 {
3694         struct btrfs_root *root;
3695         u64 transid = btrfs_header_generation(buf);
3696         int was_dirty;
3697
3698 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3699         /*
3700          * This is a fast path so only do this check if we have sanity tests
3701          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3702          * outside of the sanity tests.
3703          */
3704         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3705                 return;
3706 #endif
3707         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3708         btrfs_assert_tree_locked(buf);
3709         if (transid != root->fs_info->generation)
3710                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3711                        "found %llu running %llu\n",
3712                         buf->start, transid, root->fs_info->generation);
3713         was_dirty = set_extent_buffer_dirty(buf);
3714         if (!was_dirty)
3715                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3716                                      buf->len,
3717                                      root->fs_info->dirty_metadata_batch);
3718 }
3719
3720 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3721                                         int flush_delayed)
3722 {
3723         /*
3724          * looks as though older kernels can get into trouble with
3725          * this code, they end up stuck in balance_dirty_pages forever
3726          */
3727         int ret;
3728
3729         if (current->flags & PF_MEMALLOC)
3730                 return;
3731
3732         if (flush_delayed)
3733                 btrfs_balance_delayed_items(root);
3734
3735         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3736                                      BTRFS_DIRTY_METADATA_THRESH);
3737         if (ret > 0) {
3738                 balance_dirty_pages_ratelimited(
3739                                    root->fs_info->btree_inode->i_mapping);
3740         }
3741         return;
3742 }
3743
3744 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3745 {
3746         __btrfs_btree_balance_dirty(root, 1);
3747 }
3748
3749 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3750 {
3751         __btrfs_btree_balance_dirty(root, 0);
3752 }
3753
3754 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3755 {
3756         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3757         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3758 }
3759
3760 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3761                               int read_only)
3762 {
3763         /*
3764          * Placeholder for checks
3765          */
3766         return 0;
3767 }
3768
3769 static void btrfs_error_commit_super(struct btrfs_root *root)
3770 {
3771         mutex_lock(&root->fs_info->cleaner_mutex);
3772         btrfs_run_delayed_iputs(root);
3773         mutex_unlock(&root->fs_info->cleaner_mutex);
3774
3775         down_write(&root->fs_info->cleanup_work_sem);
3776         up_write(&root->fs_info->cleanup_work_sem);
3777
3778         /* cleanup FS via transaction */
3779         btrfs_cleanup_transaction(root);
3780 }
3781
3782 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3783                                              struct btrfs_root *root)
3784 {
3785         struct btrfs_inode *btrfs_inode;
3786         struct list_head splice;
3787
3788         INIT_LIST_HEAD(&splice);
3789
3790         mutex_lock(&root->fs_info->ordered_operations_mutex);
3791         spin_lock(&root->fs_info->ordered_root_lock);
3792
3793         list_splice_init(&t->ordered_operations, &splice);
3794         while (!list_empty(&splice)) {
3795                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3796                                          ordered_operations);
3797
3798                 list_del_init(&btrfs_inode->ordered_operations);
3799                 spin_unlock(&root->fs_info->ordered_root_lock);
3800
3801                 btrfs_invalidate_inodes(btrfs_inode->root);
3802
3803                 spin_lock(&root->fs_info->ordered_root_lock);
3804         }
3805
3806         spin_unlock(&root->fs_info->ordered_root_lock);
3807         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3808 }
3809
3810 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3811 {
3812         struct btrfs_ordered_extent *ordered;
3813
3814         spin_lock(&root->ordered_extent_lock);
3815         /*
3816          * This will just short circuit the ordered completion stuff which will
3817          * make sure the ordered extent gets properly cleaned up.
3818          */
3819         list_for_each_entry(ordered, &root->ordered_extents,
3820                             root_extent_list)
3821                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3822         spin_unlock(&root->ordered_extent_lock);
3823 }
3824
3825 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3826 {
3827         struct btrfs_root *root;
3828         struct list_head splice;
3829
3830         INIT_LIST_HEAD(&splice);
3831
3832         spin_lock(&fs_info->ordered_root_lock);
3833         list_splice_init(&fs_info->ordered_roots, &splice);
3834         while (!list_empty(&splice)) {
3835                 root = list_first_entry(&splice, struct btrfs_root,
3836                                         ordered_root);
3837                 list_move_tail(&root->ordered_root,
3838                                &fs_info->ordered_roots);
3839
3840                 btrfs_destroy_ordered_extents(root);
3841
3842                 cond_resched_lock(&fs_info->ordered_root_lock);
3843         }
3844         spin_unlock(&fs_info->ordered_root_lock);
3845 }
3846
3847 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3848                                       struct btrfs_root *root)
3849 {
3850         struct rb_node *node;
3851         struct btrfs_delayed_ref_root *delayed_refs;
3852         struct btrfs_delayed_ref_node *ref;
3853         int ret = 0;
3854
3855         delayed_refs = &trans->delayed_refs;
3856
3857         spin_lock(&delayed_refs->lock);
3858         if (delayed_refs->num_entries == 0) {
3859                 spin_unlock(&delayed_refs->lock);
3860                 printk(KERN_INFO "delayed_refs has NO entry\n");
3861                 return ret;
3862         }
3863
3864         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3865                 struct btrfs_delayed_ref_head *head = NULL;
3866                 bool pin_bytes = false;
3867
3868                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3869                 atomic_set(&ref->refs, 1);
3870                 if (btrfs_delayed_ref_is_head(ref)) {
3871
3872                         head = btrfs_delayed_node_to_head(ref);
3873                         if (!mutex_trylock(&head->mutex)) {
3874                                 atomic_inc(&ref->refs);
3875                                 spin_unlock(&delayed_refs->lock);
3876
3877                                 /* Need to wait for the delayed ref to run */
3878                                 mutex_lock(&head->mutex);
3879                                 mutex_unlock(&head->mutex);
3880                                 btrfs_put_delayed_ref(ref);
3881
3882                                 spin_lock(&delayed_refs->lock);
3883                                 continue;
3884                         }
3885
3886                         if (head->must_insert_reserved)
3887                                 pin_bytes = true;
3888                         btrfs_free_delayed_extent_op(head->extent_op);
3889                         delayed_refs->num_heads--;
3890                         if (list_empty(&head->cluster))
3891                                 delayed_refs->num_heads_ready--;
3892                         list_del_init(&head->cluster);
3893                 }
3894
3895                 ref->in_tree = 0;
3896                 rb_erase(&ref->rb_node, &delayed_refs->root);
3897                 delayed_refs->num_entries--;
3898                 spin_unlock(&delayed_refs->lock);
3899                 if (head) {
3900                         if (pin_bytes)
3901                                 btrfs_pin_extent(root, ref->bytenr,
3902                                                  ref->num_bytes, 1);
3903                         mutex_unlock(&head->mutex);
3904                 }
3905                 btrfs_put_delayed_ref(ref);
3906
3907                 cond_resched();
3908                 spin_lock(&delayed_refs->lock);
3909         }
3910
3911         spin_unlock(&delayed_refs->lock);
3912
3913         return ret;
3914 }
3915
3916 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3917 {
3918         struct btrfs_inode *btrfs_inode;
3919         struct list_head splice;
3920
3921         INIT_LIST_HEAD(&splice);
3922
3923         spin_lock(&root->delalloc_lock);
3924         list_splice_init(&root->delalloc_inodes, &splice);
3925
3926         while (!list_empty(&splice)) {
3927                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3928                                                delalloc_inodes);
3929
3930                 list_del_init(&btrfs_inode->delalloc_inodes);
3931                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3932                           &btrfs_inode->runtime_flags);
3933                 spin_unlock(&root->delalloc_lock);
3934
3935                 btrfs_invalidate_inodes(btrfs_inode->root);
3936
3937                 spin_lock(&root->delalloc_lock);
3938         }
3939
3940         spin_unlock(&root->delalloc_lock);
3941 }
3942
3943 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3944 {
3945         struct btrfs_root *root;
3946         struct list_head splice;
3947
3948         INIT_LIST_HEAD(&splice);
3949
3950         spin_lock(&fs_info->delalloc_root_lock);
3951         list_splice_init(&fs_info->delalloc_roots, &splice);
3952         while (!list_empty(&splice)) {
3953                 root = list_first_entry(&splice, struct btrfs_root,
3954                                          delalloc_root);
3955                 list_del_init(&root->delalloc_root);
3956                 root = btrfs_grab_fs_root(root);
3957                 BUG_ON(!root);
3958                 spin_unlock(&fs_info->delalloc_root_lock);
3959
3960                 btrfs_destroy_delalloc_inodes(root);
3961                 btrfs_put_fs_root(root);
3962
3963                 spin_lock(&fs_info->delalloc_root_lock);
3964         }
3965         spin_unlock(&fs_info->delalloc_root_lock);
3966 }
3967
3968 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3969                                         struct extent_io_tree *dirty_pages,
3970                                         int mark)
3971 {
3972         int ret;
3973         struct extent_buffer *eb;
3974         u64 start = 0;
3975         u64 end;
3976
3977         while (1) {
3978                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3979                                             mark, NULL);
3980                 if (ret)
3981                         break;
3982
3983                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3984                 while (start <= end) {
3985                         eb = btrfs_find_tree_block(root, start,
3986                                                    root->leafsize);
3987                         start += root->leafsize;
3988                         if (!eb)
3989                                 continue;
3990                         wait_on_extent_buffer_writeback(eb);
3991
3992                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3993                                                &eb->bflags))
3994                                 clear_extent_buffer_dirty(eb);
3995                         free_extent_buffer_stale(eb);
3996                 }
3997         }
3998
3999         return ret;
4000 }
4001
4002 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4003                                        struct extent_io_tree *pinned_extents)
4004 {
4005         struct extent_io_tree *unpin;
4006         u64 start;
4007         u64 end;
4008         int ret;
4009         bool loop = true;
4010
4011         unpin = pinned_extents;
4012 again:
4013         while (1) {
4014                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4015                                             EXTENT_DIRTY, NULL);
4016                 if (ret)
4017                         break;
4018
4019                 /* opt_discard */
4020                 if (btrfs_test_opt(root, DISCARD))
4021                         ret = btrfs_error_discard_extent(root, start,
4022                                                          end + 1 - start,
4023                                                          NULL);
4024
4025                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4026                 btrfs_error_unpin_extent_range(root, start, end);
4027                 cond_resched();
4028         }
4029
4030         if (loop) {
4031                 if (unpin == &root->fs_info->freed_extents[0])
4032                         unpin = &root->fs_info->freed_extents[1];
4033                 else
4034                         unpin = &root->fs_info->freed_extents[0];
4035                 loop = false;
4036                 goto again;
4037         }
4038
4039         return 0;
4040 }
4041
4042 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4043                                    struct btrfs_root *root)
4044 {
4045         btrfs_destroy_ordered_operations(cur_trans, root);
4046
4047         btrfs_destroy_delayed_refs(cur_trans, root);
4048
4049         cur_trans->state = TRANS_STATE_COMMIT_START;
4050         wake_up(&root->fs_info->transaction_blocked_wait);
4051
4052         cur_trans->state = TRANS_STATE_UNBLOCKED;
4053         wake_up(&root->fs_info->transaction_wait);
4054
4055         btrfs_destroy_delayed_inodes(root);
4056         btrfs_assert_delayed_root_empty(root);
4057
4058         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4059                                      EXTENT_DIRTY);
4060         btrfs_destroy_pinned_extent(root,
4061                                     root->fs_info->pinned_extents);
4062
4063         cur_trans->state =TRANS_STATE_COMPLETED;
4064         wake_up(&cur_trans->commit_wait);
4065
4066         /*
4067         memset(cur_trans, 0, sizeof(*cur_trans));
4068         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4069         */
4070 }
4071
4072 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4073 {
4074         struct btrfs_transaction *t;
4075
4076         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4077
4078         spin_lock(&root->fs_info->trans_lock);
4079         while (!list_empty(&root->fs_info->trans_list)) {
4080                 t = list_first_entry(&root->fs_info->trans_list,
4081                                      struct btrfs_transaction, list);
4082                 if (t->state >= TRANS_STATE_COMMIT_START) {
4083                         atomic_inc(&t->use_count);
4084                         spin_unlock(&root->fs_info->trans_lock);
4085                         btrfs_wait_for_commit(root, t->transid);
4086                         btrfs_put_transaction(t);
4087                         spin_lock(&root->fs_info->trans_lock);
4088                         continue;
4089                 }
4090                 if (t == root->fs_info->running_transaction) {
4091                         t->state = TRANS_STATE_COMMIT_DOING;
4092                         spin_unlock(&root->fs_info->trans_lock);
4093                         /*
4094                          * We wait for 0 num_writers since we don't hold a trans
4095                          * handle open currently for this transaction.
4096                          */
4097                         wait_event(t->writer_wait,
4098                                    atomic_read(&t->num_writers) == 0);
4099                 } else {
4100                         spin_unlock(&root->fs_info->trans_lock);
4101                 }
4102                 btrfs_cleanup_one_transaction(t, root);
4103
4104                 spin_lock(&root->fs_info->trans_lock);
4105                 if (t == root->fs_info->running_transaction)
4106                         root->fs_info->running_transaction = NULL;
4107                 list_del_init(&t->list);
4108                 spin_unlock(&root->fs_info->trans_lock);
4109
4110                 btrfs_put_transaction(t);
4111                 trace_btrfs_transaction_commit(root);
4112                 spin_lock(&root->fs_info->trans_lock);
4113         }
4114         spin_unlock(&root->fs_info->trans_lock);
4115         btrfs_destroy_all_ordered_extents(root->fs_info);
4116         btrfs_destroy_delayed_inodes(root);
4117         btrfs_assert_delayed_root_empty(root);
4118         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4119         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4120         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4121
4122         return 0;
4123 }
4124
4125 static struct extent_io_ops btree_extent_io_ops = {
4126         .readpage_end_io_hook = btree_readpage_end_io_hook,
4127         .readpage_io_failed_hook = btree_io_failed_hook,
4128         .submit_bio_hook = btree_submit_bio_hook,
4129         /* note we're sharing with inode.c for the merge bio hook */
4130         .merge_bio_hook = btrfs_merge_bio_hook,
4131 };
This page took 0.256982 seconds and 4 git commands to generate.