2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
39 #include "transaction.h"
40 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "async-thread.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
48 #include "check-integrity.h"
49 #include "rcu-string.h"
50 #include "dev-replace.h"
54 #include <asm/cpufeature.h>
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
85 struct btrfs_fs_info *info;
88 struct list_head list;
89 struct btrfs_work work;
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
97 struct async_submit_bio {
100 struct list_head list;
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
105 unsigned long bio_flags;
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
111 struct btrfs_work work;
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
143 static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
160 { .id = 0, .name_stem = "tree" },
163 void __init btrfs_init_lockdep(void)
167 /* initialize lockdep class names */
168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
171 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 snprintf(ks->names[j], sizeof(ks->names[j]),
173 "btrfs-%s-%02d", ks->name_stem, j);
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
180 struct btrfs_lockdep_keyset *ks;
182 BUG_ON(level >= ARRAY_SIZE(ks->keys));
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 if (ks->id == objectid)
189 lockdep_set_class_and_name(&eb->lock,
190 &ks->keys[level], ks->names[level]);
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
199 static struct extent_map *btree_get_extent(struct inode *inode,
200 struct page *page, size_t pg_offset, u64 start, u64 len,
203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 struct extent_map *em;
207 read_lock(&em_tree->lock);
208 em = lookup_extent_mapping(em_tree, start, len);
211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212 read_unlock(&em_tree->lock);
215 read_unlock(&em_tree->lock);
217 em = alloc_extent_map();
219 em = ERR_PTR(-ENOMEM);
224 em->block_len = (u64)-1;
226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
228 write_lock(&em_tree->lock);
229 ret = add_extent_mapping(em_tree, em, 0);
230 if (ret == -EEXIST) {
232 em = lookup_extent_mapping(em_tree, start, len);
239 write_unlock(&em_tree->lock);
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
247 return crc32c(seed, data, len);
250 void btrfs_csum_final(u32 crc, char *result)
252 put_unaligned_le32(~crc, result);
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
265 unsigned long cur_len;
266 unsigned long offset = BTRFS_CSUM_SIZE;
268 unsigned long map_start;
269 unsigned long map_len;
272 unsigned long inline_result;
274 len = buf->len - offset;
276 err = map_private_extent_buffer(buf, offset, 32,
277 &kaddr, &map_start, &map_len);
280 cur_len = min(len, map_len - (offset - map_start));
281 crc = btrfs_csum_data(kaddr + offset - map_start,
286 if (csum_size > sizeof(inline_result)) {
287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
291 result = (char *)&inline_result;
294 btrfs_csum_final(crc, result);
297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
300 memcpy(&found, result, csum_size);
302 read_extent_buffer(buf, &val, 0, csum_size);
303 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
304 "failed on %llu wanted %X found %X "
306 root->fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
313 write_extent_buffer(buf, result, 0, csum_size);
315 if (result != (char *)&inline_result)
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
330 struct extent_state *cached_state = NULL;
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
348 eb->start, parent_transid, btrfs_header_generation(eb));
350 clear_extent_buffer_uptodate(eb);
352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353 &cached_state, GFP_NOFS);
358 * Return 0 if the superblock checksum type matches the checksum value of that
359 * algorithm. Pass the raw disk superblock data.
361 static int btrfs_check_super_csum(char *raw_disk_sb)
363 struct btrfs_super_block *disk_sb =
364 (struct btrfs_super_block *)raw_disk_sb;
365 u16 csum_type = btrfs_super_csum_type(disk_sb);
368 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
370 const int csum_size = sizeof(crc);
371 char result[csum_size];
374 * The super_block structure does not span the whole
375 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376 * is filled with zeros and is included in the checkum.
378 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380 btrfs_csum_final(crc, result);
382 if (memcmp(raw_disk_sb, result, csum_size))
385 if (ret && btrfs_super_generation(disk_sb) < 10) {
386 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
391 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
392 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
401 * helper to read a given tree block, doing retries as required when
402 * the checksums don't match and we have alternate mirrors to try.
404 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
405 struct extent_buffer *eb,
406 u64 start, u64 parent_transid)
408 struct extent_io_tree *io_tree;
413 int failed_mirror = 0;
415 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
416 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418 ret = read_extent_buffer_pages(io_tree, eb, start,
420 btree_get_extent, mirror_num);
422 if (!verify_parent_transid(io_tree, eb,
430 * This buffer's crc is fine, but its contents are corrupted, so
431 * there is no reason to read the other copies, they won't be
434 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
437 num_copies = btrfs_num_copies(root->fs_info,
442 if (!failed_mirror) {
444 failed_mirror = eb->read_mirror;
448 if (mirror_num == failed_mirror)
451 if (mirror_num > num_copies)
455 if (failed && !ret && failed_mirror)
456 repair_eb_io_failure(root, eb, failed_mirror);
462 * checksum a dirty tree block before IO. This has extra checks to make sure
463 * we only fill in the checksum field in the first page of a multi-page block
466 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
468 struct extent_io_tree *tree;
469 u64 start = page_offset(page);
471 struct extent_buffer *eb;
473 tree = &BTRFS_I(page->mapping->host)->io_tree;
475 eb = (struct extent_buffer *)page->private;
476 if (page != eb->pages[0])
478 found_start = btrfs_header_bytenr(eb);
479 if (found_start != start) {
483 if (!PageUptodate(page)) {
487 csum_tree_block(root, eb, 0);
491 static int check_tree_block_fsid(struct btrfs_root *root,
492 struct extent_buffer *eb)
494 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
495 u8 fsid[BTRFS_UUID_SIZE];
498 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
500 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
504 fs_devices = fs_devices->seed;
509 #define CORRUPT(reason, eb, root, slot) \
510 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
511 "root=%llu, slot=%d\n", reason, \
512 btrfs_header_bytenr(eb), root->objectid, slot)
514 static noinline int check_leaf(struct btrfs_root *root,
515 struct extent_buffer *leaf)
517 struct btrfs_key key;
518 struct btrfs_key leaf_key;
519 u32 nritems = btrfs_header_nritems(leaf);
525 /* Check the 0 item */
526 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
527 BTRFS_LEAF_DATA_SIZE(root)) {
528 CORRUPT("invalid item offset size pair", leaf, root, 0);
533 * Check to make sure each items keys are in the correct order and their
534 * offsets make sense. We only have to loop through nritems-1 because
535 * we check the current slot against the next slot, which verifies the
536 * next slot's offset+size makes sense and that the current's slot
539 for (slot = 0; slot < nritems - 1; slot++) {
540 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
541 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
543 /* Make sure the keys are in the right order */
544 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
545 CORRUPT("bad key order", leaf, root, slot);
550 * Make sure the offset and ends are right, remember that the
551 * item data starts at the end of the leaf and grows towards the
554 if (btrfs_item_offset_nr(leaf, slot) !=
555 btrfs_item_end_nr(leaf, slot + 1)) {
556 CORRUPT("slot offset bad", leaf, root, slot);
561 * Check to make sure that we don't point outside of the leaf,
562 * just incase all the items are consistent to eachother, but
563 * all point outside of the leaf.
565 if (btrfs_item_end_nr(leaf, slot) >
566 BTRFS_LEAF_DATA_SIZE(root)) {
567 CORRUPT("slot end outside of leaf", leaf, root, slot);
575 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
576 u64 phy_offset, struct page *page,
577 u64 start, u64 end, int mirror)
579 struct extent_io_tree *tree;
582 struct extent_buffer *eb;
583 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
590 tree = &BTRFS_I(page->mapping->host)->io_tree;
591 eb = (struct extent_buffer *)page->private;
593 /* the pending IO might have been the only thing that kept this buffer
594 * in memory. Make sure we have a ref for all this other checks
596 extent_buffer_get(eb);
598 reads_done = atomic_dec_and_test(&eb->io_pages);
602 eb->read_mirror = mirror;
603 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
608 found_start = btrfs_header_bytenr(eb);
609 if (found_start != eb->start) {
610 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
612 found_start, eb->start);
616 if (check_tree_block_fsid(root, eb)) {
617 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
622 found_level = btrfs_header_level(eb);
623 if (found_level >= BTRFS_MAX_LEVEL) {
624 btrfs_info(root->fs_info, "bad tree block level %d\n",
625 (int)btrfs_header_level(eb));
630 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
633 ret = csum_tree_block(root, eb, 1);
640 * If this is a leaf block and it is corrupt, set the corrupt bit so
641 * that we don't try and read the other copies of this block, just
644 if (found_level == 0 && check_leaf(root, eb)) {
645 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
650 set_extent_buffer_uptodate(eb);
653 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
654 btree_readahead_hook(root, eb, eb->start, ret);
658 * our io error hook is going to dec the io pages
659 * again, we have to make sure it has something
662 atomic_inc(&eb->io_pages);
663 clear_extent_buffer_uptodate(eb);
665 free_extent_buffer(eb);
670 static int btree_io_failed_hook(struct page *page, int failed_mirror)
672 struct extent_buffer *eb;
673 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
675 eb = (struct extent_buffer *)page->private;
676 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
677 eb->read_mirror = failed_mirror;
678 atomic_dec(&eb->io_pages);
679 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
680 btree_readahead_hook(root, eb, eb->start, -EIO);
681 return -EIO; /* we fixed nothing */
684 static void end_workqueue_bio(struct bio *bio, int err)
686 struct end_io_wq *end_io_wq = bio->bi_private;
687 struct btrfs_fs_info *fs_info;
689 fs_info = end_io_wq->info;
690 end_io_wq->error = err;
691 end_io_wq->work.func = end_workqueue_fn;
692 end_io_wq->work.flags = 0;
694 if (bio->bi_rw & REQ_WRITE) {
695 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
696 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
698 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
699 btrfs_queue_worker(&fs_info->endio_freespace_worker,
701 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
702 btrfs_queue_worker(&fs_info->endio_raid56_workers,
705 btrfs_queue_worker(&fs_info->endio_write_workers,
708 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
709 btrfs_queue_worker(&fs_info->endio_raid56_workers,
711 else if (end_io_wq->metadata)
712 btrfs_queue_worker(&fs_info->endio_meta_workers,
715 btrfs_queue_worker(&fs_info->endio_workers,
721 * For the metadata arg you want
724 * 1 - if normal metadta
725 * 2 - if writing to the free space cache area
726 * 3 - raid parity work
728 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
731 struct end_io_wq *end_io_wq;
732 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
736 end_io_wq->private = bio->bi_private;
737 end_io_wq->end_io = bio->bi_end_io;
738 end_io_wq->info = info;
739 end_io_wq->error = 0;
740 end_io_wq->bio = bio;
741 end_io_wq->metadata = metadata;
743 bio->bi_private = end_io_wq;
744 bio->bi_end_io = end_workqueue_bio;
748 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
750 unsigned long limit = min_t(unsigned long,
751 info->workers.max_workers,
752 info->fs_devices->open_devices);
756 static void run_one_async_start(struct btrfs_work *work)
758 struct async_submit_bio *async;
761 async = container_of(work, struct async_submit_bio, work);
762 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
763 async->mirror_num, async->bio_flags,
769 static void run_one_async_done(struct btrfs_work *work)
771 struct btrfs_fs_info *fs_info;
772 struct async_submit_bio *async;
775 async = container_of(work, struct async_submit_bio, work);
776 fs_info = BTRFS_I(async->inode)->root->fs_info;
778 limit = btrfs_async_submit_limit(fs_info);
779 limit = limit * 2 / 3;
781 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
782 waitqueue_active(&fs_info->async_submit_wait))
783 wake_up(&fs_info->async_submit_wait);
785 /* If an error occured we just want to clean up the bio and move on */
787 bio_endio(async->bio, async->error);
791 async->submit_bio_done(async->inode, async->rw, async->bio,
792 async->mirror_num, async->bio_flags,
796 static void run_one_async_free(struct btrfs_work *work)
798 struct async_submit_bio *async;
800 async = container_of(work, struct async_submit_bio, work);
804 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
805 int rw, struct bio *bio, int mirror_num,
806 unsigned long bio_flags,
808 extent_submit_bio_hook_t *submit_bio_start,
809 extent_submit_bio_hook_t *submit_bio_done)
811 struct async_submit_bio *async;
813 async = kmalloc(sizeof(*async), GFP_NOFS);
817 async->inode = inode;
820 async->mirror_num = mirror_num;
821 async->submit_bio_start = submit_bio_start;
822 async->submit_bio_done = submit_bio_done;
824 async->work.func = run_one_async_start;
825 async->work.ordered_func = run_one_async_done;
826 async->work.ordered_free = run_one_async_free;
828 async->work.flags = 0;
829 async->bio_flags = bio_flags;
830 async->bio_offset = bio_offset;
834 atomic_inc(&fs_info->nr_async_submits);
837 btrfs_set_work_high_prio(&async->work);
839 btrfs_queue_worker(&fs_info->workers, &async->work);
841 while (atomic_read(&fs_info->async_submit_draining) &&
842 atomic_read(&fs_info->nr_async_submits)) {
843 wait_event(fs_info->async_submit_wait,
844 (atomic_read(&fs_info->nr_async_submits) == 0));
850 static int btree_csum_one_bio(struct bio *bio)
852 struct bio_vec *bvec = bio->bi_io_vec;
854 struct btrfs_root *root;
857 WARN_ON(bio->bi_vcnt <= 0);
858 while (bio_index < bio->bi_vcnt) {
859 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
860 ret = csum_dirty_buffer(root, bvec->bv_page);
869 static int __btree_submit_bio_start(struct inode *inode, int rw,
870 struct bio *bio, int mirror_num,
871 unsigned long bio_flags,
875 * when we're called for a write, we're already in the async
876 * submission context. Just jump into btrfs_map_bio
878 return btree_csum_one_bio(bio);
881 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
882 int mirror_num, unsigned long bio_flags,
888 * when we're called for a write, we're already in the async
889 * submission context. Just jump into btrfs_map_bio
891 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
897 static int check_async_write(struct inode *inode, unsigned long bio_flags)
899 if (bio_flags & EXTENT_BIO_TREE_LOG)
908 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
909 int mirror_num, unsigned long bio_flags,
912 int async = check_async_write(inode, bio_flags);
915 if (!(rw & REQ_WRITE)) {
917 * called for a read, do the setup so that checksum validation
918 * can happen in the async kernel threads
920 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
924 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
927 ret = btree_csum_one_bio(bio);
930 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
934 * kthread helpers are used to submit writes so that
935 * checksumming can happen in parallel across all CPUs
937 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
938 inode, rw, bio, mirror_num, 0,
940 __btree_submit_bio_start,
941 __btree_submit_bio_done);
951 #ifdef CONFIG_MIGRATION
952 static int btree_migratepage(struct address_space *mapping,
953 struct page *newpage, struct page *page,
954 enum migrate_mode mode)
957 * we can't safely write a btree page from here,
958 * we haven't done the locking hook
963 * Buffers may be managed in a filesystem specific way.
964 * We must have no buffers or drop them.
966 if (page_has_private(page) &&
967 !try_to_release_page(page, GFP_KERNEL))
969 return migrate_page(mapping, newpage, page, mode);
974 static int btree_writepages(struct address_space *mapping,
975 struct writeback_control *wbc)
977 struct extent_io_tree *tree;
978 struct btrfs_fs_info *fs_info;
981 tree = &BTRFS_I(mapping->host)->io_tree;
982 if (wbc->sync_mode == WB_SYNC_NONE) {
984 if (wbc->for_kupdate)
987 fs_info = BTRFS_I(mapping->host)->root->fs_info;
988 /* this is a bit racy, but that's ok */
989 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
990 BTRFS_DIRTY_METADATA_THRESH);
994 return btree_write_cache_pages(mapping, wbc);
997 static int btree_readpage(struct file *file, struct page *page)
999 struct extent_io_tree *tree;
1000 tree = &BTRFS_I(page->mapping->host)->io_tree;
1001 return extent_read_full_page(tree, page, btree_get_extent, 0);
1004 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1006 if (PageWriteback(page) || PageDirty(page))
1009 return try_release_extent_buffer(page);
1012 static void btree_invalidatepage(struct page *page, unsigned int offset,
1013 unsigned int length)
1015 struct extent_io_tree *tree;
1016 tree = &BTRFS_I(page->mapping->host)->io_tree;
1017 extent_invalidatepage(tree, page, offset);
1018 btree_releasepage(page, GFP_NOFS);
1019 if (PagePrivate(page)) {
1020 printk(KERN_WARNING "btrfs warning page private not zero "
1021 "on page %llu\n", (unsigned long long)page_offset(page));
1022 ClearPagePrivate(page);
1023 set_page_private(page, 0);
1024 page_cache_release(page);
1028 static int btree_set_page_dirty(struct page *page)
1031 struct extent_buffer *eb;
1033 BUG_ON(!PagePrivate(page));
1034 eb = (struct extent_buffer *)page->private;
1036 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1037 BUG_ON(!atomic_read(&eb->refs));
1038 btrfs_assert_tree_locked(eb);
1040 return __set_page_dirty_nobuffers(page);
1043 static const struct address_space_operations btree_aops = {
1044 .readpage = btree_readpage,
1045 .writepages = btree_writepages,
1046 .releasepage = btree_releasepage,
1047 .invalidatepage = btree_invalidatepage,
1048 #ifdef CONFIG_MIGRATION
1049 .migratepage = btree_migratepage,
1051 .set_page_dirty = btree_set_page_dirty,
1054 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1057 struct extent_buffer *buf = NULL;
1058 struct inode *btree_inode = root->fs_info->btree_inode;
1061 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1064 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1065 buf, 0, WAIT_NONE, btree_get_extent, 0);
1066 free_extent_buffer(buf);
1070 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1071 int mirror_num, struct extent_buffer **eb)
1073 struct extent_buffer *buf = NULL;
1074 struct inode *btree_inode = root->fs_info->btree_inode;
1075 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1078 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1082 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1084 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1085 btree_get_extent, mirror_num);
1087 free_extent_buffer(buf);
1091 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1092 free_extent_buffer(buf);
1094 } else if (extent_buffer_uptodate(buf)) {
1097 free_extent_buffer(buf);
1102 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1103 u64 bytenr, u32 blocksize)
1105 struct inode *btree_inode = root->fs_info->btree_inode;
1106 struct extent_buffer *eb;
1107 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, bytenr);
1111 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1112 u64 bytenr, u32 blocksize)
1114 struct inode *btree_inode = root->fs_info->btree_inode;
1115 struct extent_buffer *eb;
1117 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1123 int btrfs_write_tree_block(struct extent_buffer *buf)
1125 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1126 buf->start + buf->len - 1);
1129 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1131 return filemap_fdatawait_range(buf->pages[0]->mapping,
1132 buf->start, buf->start + buf->len - 1);
1135 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1136 u32 blocksize, u64 parent_transid)
1138 struct extent_buffer *buf = NULL;
1141 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1145 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1147 free_extent_buffer(buf);
1154 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1155 struct extent_buffer *buf)
1157 struct btrfs_fs_info *fs_info = root->fs_info;
1159 if (btrfs_header_generation(buf) ==
1160 fs_info->running_transaction->transid) {
1161 btrfs_assert_tree_locked(buf);
1163 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1164 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1166 fs_info->dirty_metadata_batch);
1167 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1168 btrfs_set_lock_blocking(buf);
1169 clear_extent_buffer_dirty(buf);
1174 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1175 u32 stripesize, struct btrfs_root *root,
1176 struct btrfs_fs_info *fs_info,
1180 root->commit_root = NULL;
1181 root->sectorsize = sectorsize;
1182 root->nodesize = nodesize;
1183 root->leafsize = leafsize;
1184 root->stripesize = stripesize;
1186 root->track_dirty = 0;
1188 root->orphan_item_inserted = 0;
1189 root->orphan_cleanup_state = 0;
1191 root->objectid = objectid;
1192 root->last_trans = 0;
1193 root->highest_objectid = 0;
1194 root->nr_delalloc_inodes = 0;
1195 root->nr_ordered_extents = 0;
1197 root->inode_tree = RB_ROOT;
1198 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1199 root->block_rsv = NULL;
1200 root->orphan_block_rsv = NULL;
1202 INIT_LIST_HEAD(&root->dirty_list);
1203 INIT_LIST_HEAD(&root->root_list);
1204 INIT_LIST_HEAD(&root->delalloc_inodes);
1205 INIT_LIST_HEAD(&root->delalloc_root);
1206 INIT_LIST_HEAD(&root->ordered_extents);
1207 INIT_LIST_HEAD(&root->ordered_root);
1208 INIT_LIST_HEAD(&root->logged_list[0]);
1209 INIT_LIST_HEAD(&root->logged_list[1]);
1210 spin_lock_init(&root->orphan_lock);
1211 spin_lock_init(&root->inode_lock);
1212 spin_lock_init(&root->delalloc_lock);
1213 spin_lock_init(&root->ordered_extent_lock);
1214 spin_lock_init(&root->accounting_lock);
1215 spin_lock_init(&root->log_extents_lock[0]);
1216 spin_lock_init(&root->log_extents_lock[1]);
1217 mutex_init(&root->objectid_mutex);
1218 mutex_init(&root->log_mutex);
1219 init_waitqueue_head(&root->log_writer_wait);
1220 init_waitqueue_head(&root->log_commit_wait[0]);
1221 init_waitqueue_head(&root->log_commit_wait[1]);
1222 atomic_set(&root->log_commit[0], 0);
1223 atomic_set(&root->log_commit[1], 0);
1224 atomic_set(&root->log_writers, 0);
1225 atomic_set(&root->log_batch, 0);
1226 atomic_set(&root->orphan_inodes, 0);
1227 atomic_set(&root->refs, 1);
1228 root->log_transid = 0;
1229 root->last_log_commit = 0;
1231 extent_io_tree_init(&root->dirty_log_pages,
1232 fs_info->btree_inode->i_mapping);
1234 memset(&root->root_key, 0, sizeof(root->root_key));
1235 memset(&root->root_item, 0, sizeof(root->root_item));
1236 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1237 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1239 root->defrag_trans_start = fs_info->generation;
1241 root->defrag_trans_start = 0;
1242 init_completion(&root->kobj_unregister);
1243 root->defrag_running = 0;
1244 root->root_key.objectid = objectid;
1247 spin_lock_init(&root->root_item_lock);
1250 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1252 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1254 root->fs_info = fs_info;
1258 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1259 /* Should only be used by the testing infrastructure */
1260 struct btrfs_root *btrfs_alloc_dummy_root(void)
1262 struct btrfs_root *root;
1264 root = btrfs_alloc_root(NULL);
1266 return ERR_PTR(-ENOMEM);
1267 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1268 root->dummy_root = 1;
1274 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1275 struct btrfs_fs_info *fs_info,
1278 struct extent_buffer *leaf;
1279 struct btrfs_root *tree_root = fs_info->tree_root;
1280 struct btrfs_root *root;
1281 struct btrfs_key key;
1286 root = btrfs_alloc_root(fs_info);
1288 return ERR_PTR(-ENOMEM);
1290 __setup_root(tree_root->nodesize, tree_root->leafsize,
1291 tree_root->sectorsize, tree_root->stripesize,
1292 root, fs_info, objectid);
1293 root->root_key.objectid = objectid;
1294 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1295 root->root_key.offset = 0;
1297 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1298 0, objectid, NULL, 0, 0, 0);
1300 ret = PTR_ERR(leaf);
1305 bytenr = leaf->start;
1306 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1307 btrfs_set_header_bytenr(leaf, leaf->start);
1308 btrfs_set_header_generation(leaf, trans->transid);
1309 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1310 btrfs_set_header_owner(leaf, objectid);
1313 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1315 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1316 btrfs_header_chunk_tree_uuid(leaf),
1318 btrfs_mark_buffer_dirty(leaf);
1320 root->commit_root = btrfs_root_node(root);
1321 root->track_dirty = 1;
1324 root->root_item.flags = 0;
1325 root->root_item.byte_limit = 0;
1326 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1327 btrfs_set_root_generation(&root->root_item, trans->transid);
1328 btrfs_set_root_level(&root->root_item, 0);
1329 btrfs_set_root_refs(&root->root_item, 1);
1330 btrfs_set_root_used(&root->root_item, leaf->len);
1331 btrfs_set_root_last_snapshot(&root->root_item, 0);
1332 btrfs_set_root_dirid(&root->root_item, 0);
1334 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1335 root->root_item.drop_level = 0;
1337 key.objectid = objectid;
1338 key.type = BTRFS_ROOT_ITEM_KEY;
1340 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1344 btrfs_tree_unlock(leaf);
1350 btrfs_tree_unlock(leaf);
1351 free_extent_buffer(leaf);
1355 return ERR_PTR(ret);
1358 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1359 struct btrfs_fs_info *fs_info)
1361 struct btrfs_root *root;
1362 struct btrfs_root *tree_root = fs_info->tree_root;
1363 struct extent_buffer *leaf;
1365 root = btrfs_alloc_root(fs_info);
1367 return ERR_PTR(-ENOMEM);
1369 __setup_root(tree_root->nodesize, tree_root->leafsize,
1370 tree_root->sectorsize, tree_root->stripesize,
1371 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1373 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1374 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1375 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1377 * log trees do not get reference counted because they go away
1378 * before a real commit is actually done. They do store pointers
1379 * to file data extents, and those reference counts still get
1380 * updated (along with back refs to the log tree).
1384 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1385 BTRFS_TREE_LOG_OBJECTID, NULL,
1389 return ERR_CAST(leaf);
1392 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1393 btrfs_set_header_bytenr(leaf, leaf->start);
1394 btrfs_set_header_generation(leaf, trans->transid);
1395 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1396 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1399 write_extent_buffer(root->node, root->fs_info->fsid,
1400 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1401 btrfs_mark_buffer_dirty(root->node);
1402 btrfs_tree_unlock(root->node);
1406 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1407 struct btrfs_fs_info *fs_info)
1409 struct btrfs_root *log_root;
1411 log_root = alloc_log_tree(trans, fs_info);
1412 if (IS_ERR(log_root))
1413 return PTR_ERR(log_root);
1414 WARN_ON(fs_info->log_root_tree);
1415 fs_info->log_root_tree = log_root;
1419 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1420 struct btrfs_root *root)
1422 struct btrfs_root *log_root;
1423 struct btrfs_inode_item *inode_item;
1425 log_root = alloc_log_tree(trans, root->fs_info);
1426 if (IS_ERR(log_root))
1427 return PTR_ERR(log_root);
1429 log_root->last_trans = trans->transid;
1430 log_root->root_key.offset = root->root_key.objectid;
1432 inode_item = &log_root->root_item.inode;
1433 btrfs_set_stack_inode_generation(inode_item, 1);
1434 btrfs_set_stack_inode_size(inode_item, 3);
1435 btrfs_set_stack_inode_nlink(inode_item, 1);
1436 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1437 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1439 btrfs_set_root_node(&log_root->root_item, log_root->node);
1441 WARN_ON(root->log_root);
1442 root->log_root = log_root;
1443 root->log_transid = 0;
1444 root->last_log_commit = 0;
1448 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1449 struct btrfs_key *key)
1451 struct btrfs_root *root;
1452 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1453 struct btrfs_path *path;
1458 path = btrfs_alloc_path();
1460 return ERR_PTR(-ENOMEM);
1462 root = btrfs_alloc_root(fs_info);
1468 __setup_root(tree_root->nodesize, tree_root->leafsize,
1469 tree_root->sectorsize, tree_root->stripesize,
1470 root, fs_info, key->objectid);
1472 ret = btrfs_find_root(tree_root, key, path,
1473 &root->root_item, &root->root_key);
1480 generation = btrfs_root_generation(&root->root_item);
1481 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1482 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1483 blocksize, generation);
1487 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1491 root->commit_root = btrfs_root_node(root);
1493 btrfs_free_path(path);
1497 free_extent_buffer(root->node);
1501 root = ERR_PTR(ret);
1505 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1506 struct btrfs_key *location)
1508 struct btrfs_root *root;
1510 root = btrfs_read_tree_root(tree_root, location);
1514 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1516 btrfs_check_and_init_root_item(&root->root_item);
1522 int btrfs_init_fs_root(struct btrfs_root *root)
1526 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1527 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1529 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1534 btrfs_init_free_ino_ctl(root);
1535 mutex_init(&root->fs_commit_mutex);
1536 spin_lock_init(&root->cache_lock);
1537 init_waitqueue_head(&root->cache_wait);
1539 ret = get_anon_bdev(&root->anon_dev);
1544 kfree(root->free_ino_ctl);
1545 kfree(root->free_ino_pinned);
1549 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1552 struct btrfs_root *root;
1554 spin_lock(&fs_info->fs_roots_radix_lock);
1555 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1556 (unsigned long)root_id);
1557 spin_unlock(&fs_info->fs_roots_radix_lock);
1561 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1562 struct btrfs_root *root)
1566 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1570 spin_lock(&fs_info->fs_roots_radix_lock);
1571 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1572 (unsigned long)root->root_key.objectid,
1576 spin_unlock(&fs_info->fs_roots_radix_lock);
1577 radix_tree_preload_end();
1582 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1583 struct btrfs_key *location,
1586 struct btrfs_root *root;
1589 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1590 return fs_info->tree_root;
1591 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1592 return fs_info->extent_root;
1593 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1594 return fs_info->chunk_root;
1595 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1596 return fs_info->dev_root;
1597 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1598 return fs_info->csum_root;
1599 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1600 return fs_info->quota_root ? fs_info->quota_root :
1602 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1603 return fs_info->uuid_root ? fs_info->uuid_root :
1606 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1608 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1609 return ERR_PTR(-ENOENT);
1613 root = btrfs_read_fs_root(fs_info->tree_root, location);
1617 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1622 ret = btrfs_init_fs_root(root);
1626 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1630 root->orphan_item_inserted = 1;
1632 ret = btrfs_insert_fs_root(fs_info, root);
1634 if (ret == -EEXIST) {
1643 return ERR_PTR(ret);
1646 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1648 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1650 struct btrfs_device *device;
1651 struct backing_dev_info *bdi;
1654 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1657 bdi = blk_get_backing_dev_info(device->bdev);
1658 if (bdi && bdi_congested(bdi, bdi_bits)) {
1668 * If this fails, caller must call bdi_destroy() to get rid of the
1671 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1675 bdi->capabilities = BDI_CAP_MAP_COPY;
1676 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1680 bdi->ra_pages = default_backing_dev_info.ra_pages;
1681 bdi->congested_fn = btrfs_congested_fn;
1682 bdi->congested_data = info;
1687 * called by the kthread helper functions to finally call the bio end_io
1688 * functions. This is where read checksum verification actually happens
1690 static void end_workqueue_fn(struct btrfs_work *work)
1693 struct end_io_wq *end_io_wq;
1694 struct btrfs_fs_info *fs_info;
1697 end_io_wq = container_of(work, struct end_io_wq, work);
1698 bio = end_io_wq->bio;
1699 fs_info = end_io_wq->info;
1701 error = end_io_wq->error;
1702 bio->bi_private = end_io_wq->private;
1703 bio->bi_end_io = end_io_wq->end_io;
1705 bio_endio(bio, error);
1708 static int cleaner_kthread(void *arg)
1710 struct btrfs_root *root = arg;
1716 /* Make the cleaner go to sleep early. */
1717 if (btrfs_need_cleaner_sleep(root))
1720 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1724 * Avoid the problem that we change the status of the fs
1725 * during the above check and trylock.
1727 if (btrfs_need_cleaner_sleep(root)) {
1728 mutex_unlock(&root->fs_info->cleaner_mutex);
1732 btrfs_run_delayed_iputs(root);
1733 again = btrfs_clean_one_deleted_snapshot(root);
1734 mutex_unlock(&root->fs_info->cleaner_mutex);
1737 * The defragger has dealt with the R/O remount and umount,
1738 * needn't do anything special here.
1740 btrfs_run_defrag_inodes(root->fs_info);
1742 if (!try_to_freeze() && !again) {
1743 set_current_state(TASK_INTERRUPTIBLE);
1744 if (!kthread_should_stop())
1746 __set_current_state(TASK_RUNNING);
1748 } while (!kthread_should_stop());
1752 static int transaction_kthread(void *arg)
1754 struct btrfs_root *root = arg;
1755 struct btrfs_trans_handle *trans;
1756 struct btrfs_transaction *cur;
1759 unsigned long delay;
1763 cannot_commit = false;
1764 delay = HZ * root->fs_info->commit_interval;
1765 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1767 spin_lock(&root->fs_info->trans_lock);
1768 cur = root->fs_info->running_transaction;
1770 spin_unlock(&root->fs_info->trans_lock);
1774 now = get_seconds();
1775 if (cur->state < TRANS_STATE_BLOCKED &&
1776 (now < cur->start_time ||
1777 now - cur->start_time < root->fs_info->commit_interval)) {
1778 spin_unlock(&root->fs_info->trans_lock);
1782 transid = cur->transid;
1783 spin_unlock(&root->fs_info->trans_lock);
1785 /* If the file system is aborted, this will always fail. */
1786 trans = btrfs_attach_transaction(root);
1787 if (IS_ERR(trans)) {
1788 if (PTR_ERR(trans) != -ENOENT)
1789 cannot_commit = true;
1792 if (transid == trans->transid) {
1793 btrfs_commit_transaction(trans, root);
1795 btrfs_end_transaction(trans, root);
1798 wake_up_process(root->fs_info->cleaner_kthread);
1799 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1801 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1802 &root->fs_info->fs_state)))
1803 btrfs_cleanup_transaction(root);
1804 if (!try_to_freeze()) {
1805 set_current_state(TASK_INTERRUPTIBLE);
1806 if (!kthread_should_stop() &&
1807 (!btrfs_transaction_blocked(root->fs_info) ||
1809 schedule_timeout(delay);
1810 __set_current_state(TASK_RUNNING);
1812 } while (!kthread_should_stop());
1817 * this will find the highest generation in the array of
1818 * root backups. The index of the highest array is returned,
1819 * or -1 if we can't find anything.
1821 * We check to make sure the array is valid by comparing the
1822 * generation of the latest root in the array with the generation
1823 * in the super block. If they don't match we pitch it.
1825 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1828 int newest_index = -1;
1829 struct btrfs_root_backup *root_backup;
1832 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1833 root_backup = info->super_copy->super_roots + i;
1834 cur = btrfs_backup_tree_root_gen(root_backup);
1835 if (cur == newest_gen)
1839 /* check to see if we actually wrapped around */
1840 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1841 root_backup = info->super_copy->super_roots;
1842 cur = btrfs_backup_tree_root_gen(root_backup);
1843 if (cur == newest_gen)
1846 return newest_index;
1851 * find the oldest backup so we know where to store new entries
1852 * in the backup array. This will set the backup_root_index
1853 * field in the fs_info struct
1855 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1858 int newest_index = -1;
1860 newest_index = find_newest_super_backup(info, newest_gen);
1861 /* if there was garbage in there, just move along */
1862 if (newest_index == -1) {
1863 info->backup_root_index = 0;
1865 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1870 * copy all the root pointers into the super backup array.
1871 * this will bump the backup pointer by one when it is
1874 static void backup_super_roots(struct btrfs_fs_info *info)
1877 struct btrfs_root_backup *root_backup;
1880 next_backup = info->backup_root_index;
1881 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1882 BTRFS_NUM_BACKUP_ROOTS;
1885 * just overwrite the last backup if we're at the same generation
1886 * this happens only at umount
1888 root_backup = info->super_for_commit->super_roots + last_backup;
1889 if (btrfs_backup_tree_root_gen(root_backup) ==
1890 btrfs_header_generation(info->tree_root->node))
1891 next_backup = last_backup;
1893 root_backup = info->super_for_commit->super_roots + next_backup;
1896 * make sure all of our padding and empty slots get zero filled
1897 * regardless of which ones we use today
1899 memset(root_backup, 0, sizeof(*root_backup));
1901 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1903 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1904 btrfs_set_backup_tree_root_gen(root_backup,
1905 btrfs_header_generation(info->tree_root->node));
1907 btrfs_set_backup_tree_root_level(root_backup,
1908 btrfs_header_level(info->tree_root->node));
1910 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1911 btrfs_set_backup_chunk_root_gen(root_backup,
1912 btrfs_header_generation(info->chunk_root->node));
1913 btrfs_set_backup_chunk_root_level(root_backup,
1914 btrfs_header_level(info->chunk_root->node));
1916 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1917 btrfs_set_backup_extent_root_gen(root_backup,
1918 btrfs_header_generation(info->extent_root->node));
1919 btrfs_set_backup_extent_root_level(root_backup,
1920 btrfs_header_level(info->extent_root->node));
1923 * we might commit during log recovery, which happens before we set
1924 * the fs_root. Make sure it is valid before we fill it in.
1926 if (info->fs_root && info->fs_root->node) {
1927 btrfs_set_backup_fs_root(root_backup,
1928 info->fs_root->node->start);
1929 btrfs_set_backup_fs_root_gen(root_backup,
1930 btrfs_header_generation(info->fs_root->node));
1931 btrfs_set_backup_fs_root_level(root_backup,
1932 btrfs_header_level(info->fs_root->node));
1935 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1936 btrfs_set_backup_dev_root_gen(root_backup,
1937 btrfs_header_generation(info->dev_root->node));
1938 btrfs_set_backup_dev_root_level(root_backup,
1939 btrfs_header_level(info->dev_root->node));
1941 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1942 btrfs_set_backup_csum_root_gen(root_backup,
1943 btrfs_header_generation(info->csum_root->node));
1944 btrfs_set_backup_csum_root_level(root_backup,
1945 btrfs_header_level(info->csum_root->node));
1947 btrfs_set_backup_total_bytes(root_backup,
1948 btrfs_super_total_bytes(info->super_copy));
1949 btrfs_set_backup_bytes_used(root_backup,
1950 btrfs_super_bytes_used(info->super_copy));
1951 btrfs_set_backup_num_devices(root_backup,
1952 btrfs_super_num_devices(info->super_copy));
1955 * if we don't copy this out to the super_copy, it won't get remembered
1956 * for the next commit
1958 memcpy(&info->super_copy->super_roots,
1959 &info->super_for_commit->super_roots,
1960 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1964 * this copies info out of the root backup array and back into
1965 * the in-memory super block. It is meant to help iterate through
1966 * the array, so you send it the number of backups you've already
1967 * tried and the last backup index you used.
1969 * this returns -1 when it has tried all the backups
1971 static noinline int next_root_backup(struct btrfs_fs_info *info,
1972 struct btrfs_super_block *super,
1973 int *num_backups_tried, int *backup_index)
1975 struct btrfs_root_backup *root_backup;
1976 int newest = *backup_index;
1978 if (*num_backups_tried == 0) {
1979 u64 gen = btrfs_super_generation(super);
1981 newest = find_newest_super_backup(info, gen);
1985 *backup_index = newest;
1986 *num_backups_tried = 1;
1987 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1988 /* we've tried all the backups, all done */
1991 /* jump to the next oldest backup */
1992 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1993 BTRFS_NUM_BACKUP_ROOTS;
1994 *backup_index = newest;
1995 *num_backups_tried += 1;
1997 root_backup = super->super_roots + newest;
1999 btrfs_set_super_generation(super,
2000 btrfs_backup_tree_root_gen(root_backup));
2001 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2002 btrfs_set_super_root_level(super,
2003 btrfs_backup_tree_root_level(root_backup));
2004 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2007 * fixme: the total bytes and num_devices need to match or we should
2010 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2011 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2015 /* helper to cleanup workers */
2016 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2018 btrfs_stop_workers(&fs_info->generic_worker);
2019 btrfs_stop_workers(&fs_info->fixup_workers);
2020 btrfs_stop_workers(&fs_info->delalloc_workers);
2021 btrfs_stop_workers(&fs_info->workers);
2022 btrfs_stop_workers(&fs_info->endio_workers);
2023 btrfs_stop_workers(&fs_info->endio_meta_workers);
2024 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2025 btrfs_stop_workers(&fs_info->rmw_workers);
2026 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2027 btrfs_stop_workers(&fs_info->endio_write_workers);
2028 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2029 btrfs_stop_workers(&fs_info->submit_workers);
2030 btrfs_stop_workers(&fs_info->delayed_workers);
2031 btrfs_stop_workers(&fs_info->caching_workers);
2032 btrfs_stop_workers(&fs_info->readahead_workers);
2033 btrfs_stop_workers(&fs_info->flush_workers);
2034 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2037 /* helper to cleanup tree roots */
2038 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2040 free_extent_buffer(info->tree_root->node);
2041 free_extent_buffer(info->tree_root->commit_root);
2042 info->tree_root->node = NULL;
2043 info->tree_root->commit_root = NULL;
2045 if (info->dev_root) {
2046 free_extent_buffer(info->dev_root->node);
2047 free_extent_buffer(info->dev_root->commit_root);
2048 info->dev_root->node = NULL;
2049 info->dev_root->commit_root = NULL;
2051 if (info->extent_root) {
2052 free_extent_buffer(info->extent_root->node);
2053 free_extent_buffer(info->extent_root->commit_root);
2054 info->extent_root->node = NULL;
2055 info->extent_root->commit_root = NULL;
2057 if (info->csum_root) {
2058 free_extent_buffer(info->csum_root->node);
2059 free_extent_buffer(info->csum_root->commit_root);
2060 info->csum_root->node = NULL;
2061 info->csum_root->commit_root = NULL;
2063 if (info->quota_root) {
2064 free_extent_buffer(info->quota_root->node);
2065 free_extent_buffer(info->quota_root->commit_root);
2066 info->quota_root->node = NULL;
2067 info->quota_root->commit_root = NULL;
2069 if (info->uuid_root) {
2070 free_extent_buffer(info->uuid_root->node);
2071 free_extent_buffer(info->uuid_root->commit_root);
2072 info->uuid_root->node = NULL;
2073 info->uuid_root->commit_root = NULL;
2076 free_extent_buffer(info->chunk_root->node);
2077 free_extent_buffer(info->chunk_root->commit_root);
2078 info->chunk_root->node = NULL;
2079 info->chunk_root->commit_root = NULL;
2083 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2086 struct btrfs_root *gang[8];
2089 while (!list_empty(&fs_info->dead_roots)) {
2090 gang[0] = list_entry(fs_info->dead_roots.next,
2091 struct btrfs_root, root_list);
2092 list_del(&gang[0]->root_list);
2094 if (gang[0]->in_radix) {
2095 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2097 free_extent_buffer(gang[0]->node);
2098 free_extent_buffer(gang[0]->commit_root);
2099 btrfs_put_fs_root(gang[0]);
2104 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2109 for (i = 0; i < ret; i++)
2110 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2114 int open_ctree(struct super_block *sb,
2115 struct btrfs_fs_devices *fs_devices,
2125 struct btrfs_key location;
2126 struct buffer_head *bh;
2127 struct btrfs_super_block *disk_super;
2128 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2129 struct btrfs_root *tree_root;
2130 struct btrfs_root *extent_root;
2131 struct btrfs_root *csum_root;
2132 struct btrfs_root *chunk_root;
2133 struct btrfs_root *dev_root;
2134 struct btrfs_root *quota_root;
2135 struct btrfs_root *uuid_root;
2136 struct btrfs_root *log_tree_root;
2139 int num_backups_tried = 0;
2140 int backup_index = 0;
2141 bool create_uuid_tree;
2142 bool check_uuid_tree;
2144 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2145 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2146 if (!tree_root || !chunk_root) {
2151 ret = init_srcu_struct(&fs_info->subvol_srcu);
2157 ret = setup_bdi(fs_info, &fs_info->bdi);
2163 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2168 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2169 (1 + ilog2(nr_cpu_ids));
2171 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2174 goto fail_dirty_metadata_bytes;
2177 fs_info->btree_inode = new_inode(sb);
2178 if (!fs_info->btree_inode) {
2180 goto fail_delalloc_bytes;
2183 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2185 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2186 INIT_LIST_HEAD(&fs_info->trans_list);
2187 INIT_LIST_HEAD(&fs_info->dead_roots);
2188 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2189 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2190 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2191 spin_lock_init(&fs_info->delalloc_root_lock);
2192 spin_lock_init(&fs_info->trans_lock);
2193 spin_lock_init(&fs_info->fs_roots_radix_lock);
2194 spin_lock_init(&fs_info->delayed_iput_lock);
2195 spin_lock_init(&fs_info->defrag_inodes_lock);
2196 spin_lock_init(&fs_info->free_chunk_lock);
2197 spin_lock_init(&fs_info->tree_mod_seq_lock);
2198 spin_lock_init(&fs_info->super_lock);
2199 rwlock_init(&fs_info->tree_mod_log_lock);
2200 mutex_init(&fs_info->reloc_mutex);
2201 seqlock_init(&fs_info->profiles_lock);
2203 init_completion(&fs_info->kobj_unregister);
2204 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2205 INIT_LIST_HEAD(&fs_info->space_info);
2206 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2207 btrfs_mapping_init(&fs_info->mapping_tree);
2208 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2209 BTRFS_BLOCK_RSV_GLOBAL);
2210 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2211 BTRFS_BLOCK_RSV_DELALLOC);
2212 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2213 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2214 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2215 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2216 BTRFS_BLOCK_RSV_DELOPS);
2217 atomic_set(&fs_info->nr_async_submits, 0);
2218 atomic_set(&fs_info->async_delalloc_pages, 0);
2219 atomic_set(&fs_info->async_submit_draining, 0);
2220 atomic_set(&fs_info->nr_async_bios, 0);
2221 atomic_set(&fs_info->defrag_running, 0);
2222 atomic64_set(&fs_info->tree_mod_seq, 0);
2224 fs_info->max_inline = 8192 * 1024;
2225 fs_info->metadata_ratio = 0;
2226 fs_info->defrag_inodes = RB_ROOT;
2227 fs_info->free_chunk_space = 0;
2228 fs_info->tree_mod_log = RB_ROOT;
2229 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2231 /* readahead state */
2232 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2233 spin_lock_init(&fs_info->reada_lock);
2235 fs_info->thread_pool_size = min_t(unsigned long,
2236 num_online_cpus() + 2, 8);
2238 INIT_LIST_HEAD(&fs_info->ordered_roots);
2239 spin_lock_init(&fs_info->ordered_root_lock);
2240 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2242 if (!fs_info->delayed_root) {
2246 btrfs_init_delayed_root(fs_info->delayed_root);
2248 mutex_init(&fs_info->scrub_lock);
2249 atomic_set(&fs_info->scrubs_running, 0);
2250 atomic_set(&fs_info->scrub_pause_req, 0);
2251 atomic_set(&fs_info->scrubs_paused, 0);
2252 atomic_set(&fs_info->scrub_cancel_req, 0);
2253 init_waitqueue_head(&fs_info->scrub_pause_wait);
2254 init_rwsem(&fs_info->scrub_super_lock);
2255 fs_info->scrub_workers_refcnt = 0;
2256 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2257 fs_info->check_integrity_print_mask = 0;
2260 spin_lock_init(&fs_info->balance_lock);
2261 mutex_init(&fs_info->balance_mutex);
2262 atomic_set(&fs_info->balance_running, 0);
2263 atomic_set(&fs_info->balance_pause_req, 0);
2264 atomic_set(&fs_info->balance_cancel_req, 0);
2265 fs_info->balance_ctl = NULL;
2266 init_waitqueue_head(&fs_info->balance_wait_q);
2268 sb->s_blocksize = 4096;
2269 sb->s_blocksize_bits = blksize_bits(4096);
2270 sb->s_bdi = &fs_info->bdi;
2272 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2273 set_nlink(fs_info->btree_inode, 1);
2275 * we set the i_size on the btree inode to the max possible int.
2276 * the real end of the address space is determined by all of
2277 * the devices in the system
2279 fs_info->btree_inode->i_size = OFFSET_MAX;
2280 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2281 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2283 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2284 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2285 fs_info->btree_inode->i_mapping);
2286 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2287 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2289 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2291 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2292 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2293 sizeof(struct btrfs_key));
2294 set_bit(BTRFS_INODE_DUMMY,
2295 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2296 btrfs_insert_inode_hash(fs_info->btree_inode);
2298 spin_lock_init(&fs_info->block_group_cache_lock);
2299 fs_info->block_group_cache_tree = RB_ROOT;
2300 fs_info->first_logical_byte = (u64)-1;
2302 extent_io_tree_init(&fs_info->freed_extents[0],
2303 fs_info->btree_inode->i_mapping);
2304 extent_io_tree_init(&fs_info->freed_extents[1],
2305 fs_info->btree_inode->i_mapping);
2306 fs_info->pinned_extents = &fs_info->freed_extents[0];
2307 fs_info->do_barriers = 1;
2310 mutex_init(&fs_info->ordered_operations_mutex);
2311 mutex_init(&fs_info->ordered_extent_flush_mutex);
2312 mutex_init(&fs_info->tree_log_mutex);
2313 mutex_init(&fs_info->chunk_mutex);
2314 mutex_init(&fs_info->transaction_kthread_mutex);
2315 mutex_init(&fs_info->cleaner_mutex);
2316 mutex_init(&fs_info->volume_mutex);
2317 init_rwsem(&fs_info->extent_commit_sem);
2318 init_rwsem(&fs_info->cleanup_work_sem);
2319 init_rwsem(&fs_info->subvol_sem);
2320 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2321 fs_info->dev_replace.lock_owner = 0;
2322 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2323 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2324 mutex_init(&fs_info->dev_replace.lock_management_lock);
2325 mutex_init(&fs_info->dev_replace.lock);
2327 spin_lock_init(&fs_info->qgroup_lock);
2328 mutex_init(&fs_info->qgroup_ioctl_lock);
2329 fs_info->qgroup_tree = RB_ROOT;
2330 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2331 fs_info->qgroup_seq = 1;
2332 fs_info->quota_enabled = 0;
2333 fs_info->pending_quota_state = 0;
2334 fs_info->qgroup_ulist = NULL;
2335 mutex_init(&fs_info->qgroup_rescan_lock);
2337 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2338 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2340 init_waitqueue_head(&fs_info->transaction_throttle);
2341 init_waitqueue_head(&fs_info->transaction_wait);
2342 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2343 init_waitqueue_head(&fs_info->async_submit_wait);
2345 ret = btrfs_alloc_stripe_hash_table(fs_info);
2351 __setup_root(4096, 4096, 4096, 4096, tree_root,
2352 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2354 invalidate_bdev(fs_devices->latest_bdev);
2357 * Read super block and check the signature bytes only
2359 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2366 * We want to check superblock checksum, the type is stored inside.
2367 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2369 if (btrfs_check_super_csum(bh->b_data)) {
2370 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2376 * super_copy is zeroed at allocation time and we never touch the
2377 * following bytes up to INFO_SIZE, the checksum is calculated from
2378 * the whole block of INFO_SIZE
2380 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2381 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2382 sizeof(*fs_info->super_for_commit));
2385 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2387 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2389 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2394 disk_super = fs_info->super_copy;
2395 if (!btrfs_super_root(disk_super))
2398 /* check FS state, whether FS is broken. */
2399 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2400 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2403 * run through our array of backup supers and setup
2404 * our ring pointer to the oldest one
2406 generation = btrfs_super_generation(disk_super);
2407 find_oldest_super_backup(fs_info, generation);
2410 * In the long term, we'll store the compression type in the super
2411 * block, and it'll be used for per file compression control.
2413 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2415 ret = btrfs_parse_options(tree_root, options);
2421 features = btrfs_super_incompat_flags(disk_super) &
2422 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2424 printk(KERN_ERR "BTRFS: couldn't mount because of "
2425 "unsupported optional features (%Lx).\n",
2431 if (btrfs_super_leafsize(disk_super) !=
2432 btrfs_super_nodesize(disk_super)) {
2433 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2434 "blocksizes don't match. node %d leaf %d\n",
2435 btrfs_super_nodesize(disk_super),
2436 btrfs_super_leafsize(disk_super));
2440 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2441 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2442 "blocksize (%d) was too large\n",
2443 btrfs_super_leafsize(disk_super));
2448 features = btrfs_super_incompat_flags(disk_super);
2449 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2450 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2451 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2453 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2454 printk(KERN_ERR "btrfs: has skinny extents\n");
2457 * flag our filesystem as having big metadata blocks if
2458 * they are bigger than the page size
2460 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2461 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2462 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2463 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2466 nodesize = btrfs_super_nodesize(disk_super);
2467 leafsize = btrfs_super_leafsize(disk_super);
2468 sectorsize = btrfs_super_sectorsize(disk_super);
2469 stripesize = btrfs_super_stripesize(disk_super);
2470 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2471 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2474 * mixed block groups end up with duplicate but slightly offset
2475 * extent buffers for the same range. It leads to corruptions
2477 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2478 (sectorsize != leafsize)) {
2479 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2480 "are not allowed for mixed block groups on %s\n",
2486 * Needn't use the lock because there is no other task which will
2489 btrfs_set_super_incompat_flags(disk_super, features);
2491 features = btrfs_super_compat_ro_flags(disk_super) &
2492 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2493 if (!(sb->s_flags & MS_RDONLY) && features) {
2494 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2495 "unsupported option features (%Lx).\n",
2501 btrfs_init_workers(&fs_info->generic_worker,
2502 "genwork", 1, NULL);
2504 btrfs_init_workers(&fs_info->workers, "worker",
2505 fs_info->thread_pool_size,
2506 &fs_info->generic_worker);
2508 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2509 fs_info->thread_pool_size, NULL);
2511 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2512 fs_info->thread_pool_size, NULL);
2514 btrfs_init_workers(&fs_info->submit_workers, "submit",
2515 min_t(u64, fs_devices->num_devices,
2516 fs_info->thread_pool_size), NULL);
2518 btrfs_init_workers(&fs_info->caching_workers, "cache",
2519 fs_info->thread_pool_size, NULL);
2521 /* a higher idle thresh on the submit workers makes it much more
2522 * likely that bios will be send down in a sane order to the
2525 fs_info->submit_workers.idle_thresh = 64;
2527 fs_info->workers.idle_thresh = 16;
2528 fs_info->workers.ordered = 1;
2530 fs_info->delalloc_workers.idle_thresh = 2;
2531 fs_info->delalloc_workers.ordered = 1;
2533 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2534 &fs_info->generic_worker);
2535 btrfs_init_workers(&fs_info->endio_workers, "endio",
2536 fs_info->thread_pool_size,
2537 &fs_info->generic_worker);
2538 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2539 fs_info->thread_pool_size,
2540 &fs_info->generic_worker);
2541 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2542 "endio-meta-write", fs_info->thread_pool_size,
2543 &fs_info->generic_worker);
2544 btrfs_init_workers(&fs_info->endio_raid56_workers,
2545 "endio-raid56", fs_info->thread_pool_size,
2546 &fs_info->generic_worker);
2547 btrfs_init_workers(&fs_info->rmw_workers,
2548 "rmw", fs_info->thread_pool_size,
2549 &fs_info->generic_worker);
2550 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2551 fs_info->thread_pool_size,
2552 &fs_info->generic_worker);
2553 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2554 1, &fs_info->generic_worker);
2555 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2556 fs_info->thread_pool_size,
2557 &fs_info->generic_worker);
2558 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2559 fs_info->thread_pool_size,
2560 &fs_info->generic_worker);
2561 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2562 &fs_info->generic_worker);
2565 * endios are largely parallel and should have a very
2568 fs_info->endio_workers.idle_thresh = 4;
2569 fs_info->endio_meta_workers.idle_thresh = 4;
2570 fs_info->endio_raid56_workers.idle_thresh = 4;
2571 fs_info->rmw_workers.idle_thresh = 2;
2573 fs_info->endio_write_workers.idle_thresh = 2;
2574 fs_info->endio_meta_write_workers.idle_thresh = 2;
2575 fs_info->readahead_workers.idle_thresh = 2;
2578 * btrfs_start_workers can really only fail because of ENOMEM so just
2579 * return -ENOMEM if any of these fail.
2581 ret = btrfs_start_workers(&fs_info->workers);
2582 ret |= btrfs_start_workers(&fs_info->generic_worker);
2583 ret |= btrfs_start_workers(&fs_info->submit_workers);
2584 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2585 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2586 ret |= btrfs_start_workers(&fs_info->endio_workers);
2587 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2588 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2589 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2590 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2591 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2592 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2593 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2594 ret |= btrfs_start_workers(&fs_info->caching_workers);
2595 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2596 ret |= btrfs_start_workers(&fs_info->flush_workers);
2597 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2600 goto fail_sb_buffer;
2603 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2604 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2605 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2607 tree_root->nodesize = nodesize;
2608 tree_root->leafsize = leafsize;
2609 tree_root->sectorsize = sectorsize;
2610 tree_root->stripesize = stripesize;
2612 sb->s_blocksize = sectorsize;
2613 sb->s_blocksize_bits = blksize_bits(sectorsize);
2615 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2616 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2617 goto fail_sb_buffer;
2620 if (sectorsize != PAGE_SIZE) {
2621 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2622 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2623 goto fail_sb_buffer;
2626 mutex_lock(&fs_info->chunk_mutex);
2627 ret = btrfs_read_sys_array(tree_root);
2628 mutex_unlock(&fs_info->chunk_mutex);
2630 printk(KERN_WARNING "btrfs: failed to read the system "
2631 "array on %s\n", sb->s_id);
2632 goto fail_sb_buffer;
2635 blocksize = btrfs_level_size(tree_root,
2636 btrfs_super_chunk_root_level(disk_super));
2637 generation = btrfs_super_chunk_root_generation(disk_super);
2639 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2640 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2642 chunk_root->node = read_tree_block(chunk_root,
2643 btrfs_super_chunk_root(disk_super),
2644 blocksize, generation);
2645 if (!chunk_root->node ||
2646 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2647 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2649 goto fail_tree_roots;
2651 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2652 chunk_root->commit_root = btrfs_root_node(chunk_root);
2654 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2655 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2657 ret = btrfs_read_chunk_tree(chunk_root);
2659 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2661 goto fail_tree_roots;
2665 * keep the device that is marked to be the target device for the
2666 * dev_replace procedure
2668 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2670 if (!fs_devices->latest_bdev) {
2671 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2673 goto fail_tree_roots;
2677 blocksize = btrfs_level_size(tree_root,
2678 btrfs_super_root_level(disk_super));
2679 generation = btrfs_super_generation(disk_super);
2681 tree_root->node = read_tree_block(tree_root,
2682 btrfs_super_root(disk_super),
2683 blocksize, generation);
2684 if (!tree_root->node ||
2685 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2686 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2689 goto recovery_tree_root;
2692 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2693 tree_root->commit_root = btrfs_root_node(tree_root);
2694 btrfs_set_root_refs(&tree_root->root_item, 1);
2696 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2697 location.type = BTRFS_ROOT_ITEM_KEY;
2698 location.offset = 0;
2700 extent_root = btrfs_read_tree_root(tree_root, &location);
2701 if (IS_ERR(extent_root)) {
2702 ret = PTR_ERR(extent_root);
2703 goto recovery_tree_root;
2705 extent_root->track_dirty = 1;
2706 fs_info->extent_root = extent_root;
2708 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2709 dev_root = btrfs_read_tree_root(tree_root, &location);
2710 if (IS_ERR(dev_root)) {
2711 ret = PTR_ERR(dev_root);
2712 goto recovery_tree_root;
2714 dev_root->track_dirty = 1;
2715 fs_info->dev_root = dev_root;
2716 btrfs_init_devices_late(fs_info);
2718 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2719 csum_root = btrfs_read_tree_root(tree_root, &location);
2720 if (IS_ERR(csum_root)) {
2721 ret = PTR_ERR(csum_root);
2722 goto recovery_tree_root;
2724 csum_root->track_dirty = 1;
2725 fs_info->csum_root = csum_root;
2727 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2728 quota_root = btrfs_read_tree_root(tree_root, &location);
2729 if (!IS_ERR(quota_root)) {
2730 quota_root->track_dirty = 1;
2731 fs_info->quota_enabled = 1;
2732 fs_info->pending_quota_state = 1;
2733 fs_info->quota_root = quota_root;
2736 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2737 uuid_root = btrfs_read_tree_root(tree_root, &location);
2738 if (IS_ERR(uuid_root)) {
2739 ret = PTR_ERR(uuid_root);
2741 goto recovery_tree_root;
2742 create_uuid_tree = true;
2743 check_uuid_tree = false;
2745 uuid_root->track_dirty = 1;
2746 fs_info->uuid_root = uuid_root;
2747 create_uuid_tree = false;
2749 generation != btrfs_super_uuid_tree_generation(disk_super);
2752 fs_info->generation = generation;
2753 fs_info->last_trans_committed = generation;
2755 ret = btrfs_recover_balance(fs_info);
2757 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2758 goto fail_block_groups;
2761 ret = btrfs_init_dev_stats(fs_info);
2763 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2765 goto fail_block_groups;
2768 ret = btrfs_init_dev_replace(fs_info);
2770 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2771 goto fail_block_groups;
2774 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2776 ret = btrfs_init_space_info(fs_info);
2778 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2779 goto fail_block_groups;
2782 ret = btrfs_read_block_groups(extent_root);
2784 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2785 goto fail_block_groups;
2787 fs_info->num_tolerated_disk_barrier_failures =
2788 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2789 if (fs_info->fs_devices->missing_devices >
2790 fs_info->num_tolerated_disk_barrier_failures &&
2791 !(sb->s_flags & MS_RDONLY)) {
2793 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2794 goto fail_block_groups;
2797 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2799 if (IS_ERR(fs_info->cleaner_kthread))
2800 goto fail_block_groups;
2802 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2804 "btrfs-transaction");
2805 if (IS_ERR(fs_info->transaction_kthread))
2808 if (!btrfs_test_opt(tree_root, SSD) &&
2809 !btrfs_test_opt(tree_root, NOSSD) &&
2810 !fs_info->fs_devices->rotating) {
2811 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2813 btrfs_set_opt(fs_info->mount_opt, SSD);
2816 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2817 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2818 ret = btrfsic_mount(tree_root, fs_devices,
2819 btrfs_test_opt(tree_root,
2820 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2822 fs_info->check_integrity_print_mask);
2824 printk(KERN_WARNING "btrfs: failed to initialize"
2825 " integrity check module %s\n", sb->s_id);
2828 ret = btrfs_read_qgroup_config(fs_info);
2830 goto fail_trans_kthread;
2832 /* do not make disk changes in broken FS */
2833 if (btrfs_super_log_root(disk_super) != 0) {
2834 u64 bytenr = btrfs_super_log_root(disk_super);
2836 if (fs_devices->rw_devices == 0) {
2837 printk(KERN_WARNING "Btrfs log replay required "
2843 btrfs_level_size(tree_root,
2844 btrfs_super_log_root_level(disk_super));
2846 log_tree_root = btrfs_alloc_root(fs_info);
2847 if (!log_tree_root) {
2852 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2853 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2855 log_tree_root->node = read_tree_block(tree_root, bytenr,
2858 if (!log_tree_root->node ||
2859 !extent_buffer_uptodate(log_tree_root->node)) {
2860 printk(KERN_ERR "btrfs: failed to read log tree\n");
2861 free_extent_buffer(log_tree_root->node);
2862 kfree(log_tree_root);
2863 goto fail_trans_kthread;
2865 /* returns with log_tree_root freed on success */
2866 ret = btrfs_recover_log_trees(log_tree_root);
2868 btrfs_error(tree_root->fs_info, ret,
2869 "Failed to recover log tree");
2870 free_extent_buffer(log_tree_root->node);
2871 kfree(log_tree_root);
2872 goto fail_trans_kthread;
2875 if (sb->s_flags & MS_RDONLY) {
2876 ret = btrfs_commit_super(tree_root);
2878 goto fail_trans_kthread;
2882 ret = btrfs_find_orphan_roots(tree_root);
2884 goto fail_trans_kthread;
2886 if (!(sb->s_flags & MS_RDONLY)) {
2887 ret = btrfs_cleanup_fs_roots(fs_info);
2889 goto fail_trans_kthread;
2891 ret = btrfs_recover_relocation(tree_root);
2894 "btrfs: failed to recover relocation\n");
2900 location.objectid = BTRFS_FS_TREE_OBJECTID;
2901 location.type = BTRFS_ROOT_ITEM_KEY;
2902 location.offset = 0;
2904 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2905 if (IS_ERR(fs_info->fs_root)) {
2906 err = PTR_ERR(fs_info->fs_root);
2910 if (sb->s_flags & MS_RDONLY)
2913 down_read(&fs_info->cleanup_work_sem);
2914 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2915 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2916 up_read(&fs_info->cleanup_work_sem);
2917 close_ctree(tree_root);
2920 up_read(&fs_info->cleanup_work_sem);
2922 ret = btrfs_resume_balance_async(fs_info);
2924 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2925 close_ctree(tree_root);
2929 ret = btrfs_resume_dev_replace_async(fs_info);
2931 pr_warn("btrfs: failed to resume dev_replace\n");
2932 close_ctree(tree_root);
2936 btrfs_qgroup_rescan_resume(fs_info);
2938 if (create_uuid_tree) {
2939 pr_info("btrfs: creating UUID tree\n");
2940 ret = btrfs_create_uuid_tree(fs_info);
2942 pr_warn("btrfs: failed to create the UUID tree %d\n",
2944 close_ctree(tree_root);
2947 } else if (check_uuid_tree ||
2948 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2949 pr_info("btrfs: checking UUID tree\n");
2950 ret = btrfs_check_uuid_tree(fs_info);
2952 pr_warn("btrfs: failed to check the UUID tree %d\n",
2954 close_ctree(tree_root);
2958 fs_info->update_uuid_tree_gen = 1;
2964 btrfs_free_qgroup_config(fs_info);
2966 kthread_stop(fs_info->transaction_kthread);
2967 btrfs_cleanup_transaction(fs_info->tree_root);
2968 del_fs_roots(fs_info);
2970 kthread_stop(fs_info->cleaner_kthread);
2973 * make sure we're done with the btree inode before we stop our
2976 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2979 btrfs_put_block_group_cache(fs_info);
2980 btrfs_free_block_groups(fs_info);
2983 free_root_pointers(fs_info, 1);
2984 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2987 btrfs_stop_all_workers(fs_info);
2990 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2992 iput(fs_info->btree_inode);
2993 fail_delalloc_bytes:
2994 percpu_counter_destroy(&fs_info->delalloc_bytes);
2995 fail_dirty_metadata_bytes:
2996 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2998 bdi_destroy(&fs_info->bdi);
3000 cleanup_srcu_struct(&fs_info->subvol_srcu);
3002 btrfs_free_stripe_hash_table(fs_info);
3003 btrfs_close_devices(fs_info->fs_devices);
3007 if (!btrfs_test_opt(tree_root, RECOVERY))
3008 goto fail_tree_roots;
3010 free_root_pointers(fs_info, 0);
3012 /* don't use the log in recovery mode, it won't be valid */
3013 btrfs_set_super_log_root(disk_super, 0);
3015 /* we can't trust the free space cache either */
3016 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3018 ret = next_root_backup(fs_info, fs_info->super_copy,
3019 &num_backups_tried, &backup_index);
3021 goto fail_block_groups;
3022 goto retry_root_backup;
3025 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3028 set_buffer_uptodate(bh);
3030 struct btrfs_device *device = (struct btrfs_device *)
3033 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
3034 "I/O error on %s\n",
3035 rcu_str_deref(device->name));
3036 /* note, we dont' set_buffer_write_io_error because we have
3037 * our own ways of dealing with the IO errors
3039 clear_buffer_uptodate(bh);
3040 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3046 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3048 struct buffer_head *bh;
3049 struct buffer_head *latest = NULL;
3050 struct btrfs_super_block *super;
3055 /* we would like to check all the supers, but that would make
3056 * a btrfs mount succeed after a mkfs from a different FS.
3057 * So, we need to add a special mount option to scan for
3058 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3060 for (i = 0; i < 1; i++) {
3061 bytenr = btrfs_sb_offset(i);
3062 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3063 i_size_read(bdev->bd_inode))
3065 bh = __bread(bdev, bytenr / 4096,
3066 BTRFS_SUPER_INFO_SIZE);
3070 super = (struct btrfs_super_block *)bh->b_data;
3071 if (btrfs_super_bytenr(super) != bytenr ||
3072 btrfs_super_magic(super) != BTRFS_MAGIC) {
3077 if (!latest || btrfs_super_generation(super) > transid) {
3080 transid = btrfs_super_generation(super);
3089 * this should be called twice, once with wait == 0 and
3090 * once with wait == 1. When wait == 0 is done, all the buffer heads
3091 * we write are pinned.
3093 * They are released when wait == 1 is done.
3094 * max_mirrors must be the same for both runs, and it indicates how
3095 * many supers on this one device should be written.
3097 * max_mirrors == 0 means to write them all.
3099 static int write_dev_supers(struct btrfs_device *device,
3100 struct btrfs_super_block *sb,
3101 int do_barriers, int wait, int max_mirrors)
3103 struct buffer_head *bh;
3110 if (max_mirrors == 0)
3111 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3113 for (i = 0; i < max_mirrors; i++) {
3114 bytenr = btrfs_sb_offset(i);
3115 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3119 bh = __find_get_block(device->bdev, bytenr / 4096,
3120 BTRFS_SUPER_INFO_SIZE);
3126 if (!buffer_uptodate(bh))
3129 /* drop our reference */
3132 /* drop the reference from the wait == 0 run */
3136 btrfs_set_super_bytenr(sb, bytenr);
3139 crc = btrfs_csum_data((char *)sb +
3140 BTRFS_CSUM_SIZE, crc,
3141 BTRFS_SUPER_INFO_SIZE -
3143 btrfs_csum_final(crc, sb->csum);
3146 * one reference for us, and we leave it for the
3149 bh = __getblk(device->bdev, bytenr / 4096,
3150 BTRFS_SUPER_INFO_SIZE);
3152 printk(KERN_ERR "btrfs: couldn't get super "
3153 "buffer head for bytenr %Lu\n", bytenr);
3158 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3160 /* one reference for submit_bh */
3163 set_buffer_uptodate(bh);
3165 bh->b_end_io = btrfs_end_buffer_write_sync;
3166 bh->b_private = device;
3170 * we fua the first super. The others we allow
3173 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3177 return errors < i ? 0 : -1;
3181 * endio for the write_dev_flush, this will wake anyone waiting
3182 * for the barrier when it is done
3184 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3187 if (err == -EOPNOTSUPP)
3188 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3189 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3191 if (bio->bi_private)
3192 complete(bio->bi_private);
3197 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3198 * sent down. With wait == 1, it waits for the previous flush.
3200 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3203 static int write_dev_flush(struct btrfs_device *device, int wait)
3208 if (device->nobarriers)
3212 bio = device->flush_bio;
3216 wait_for_completion(&device->flush_wait);
3218 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3219 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3220 rcu_str_deref(device->name));
3221 device->nobarriers = 1;
3222 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3224 btrfs_dev_stat_inc_and_print(device,
3225 BTRFS_DEV_STAT_FLUSH_ERRS);
3228 /* drop the reference from the wait == 0 run */
3230 device->flush_bio = NULL;
3236 * one reference for us, and we leave it for the
3239 device->flush_bio = NULL;
3240 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3244 bio->bi_end_io = btrfs_end_empty_barrier;
3245 bio->bi_bdev = device->bdev;
3246 init_completion(&device->flush_wait);
3247 bio->bi_private = &device->flush_wait;
3248 device->flush_bio = bio;
3251 btrfsic_submit_bio(WRITE_FLUSH, bio);
3257 * send an empty flush down to each device in parallel,
3258 * then wait for them
3260 static int barrier_all_devices(struct btrfs_fs_info *info)
3262 struct list_head *head;
3263 struct btrfs_device *dev;
3264 int errors_send = 0;
3265 int errors_wait = 0;
3268 /* send down all the barriers */
3269 head = &info->fs_devices->devices;
3270 list_for_each_entry_rcu(dev, head, dev_list) {
3275 if (!dev->in_fs_metadata || !dev->writeable)
3278 ret = write_dev_flush(dev, 0);
3283 /* wait for all the barriers */
3284 list_for_each_entry_rcu(dev, head, dev_list) {
3289 if (!dev->in_fs_metadata || !dev->writeable)
3292 ret = write_dev_flush(dev, 1);
3296 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3297 errors_wait > info->num_tolerated_disk_barrier_failures)
3302 int btrfs_calc_num_tolerated_disk_barrier_failures(
3303 struct btrfs_fs_info *fs_info)
3305 struct btrfs_ioctl_space_info space;
3306 struct btrfs_space_info *sinfo;
3307 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3308 BTRFS_BLOCK_GROUP_SYSTEM,
3309 BTRFS_BLOCK_GROUP_METADATA,
3310 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3314 int num_tolerated_disk_barrier_failures =
3315 (int)fs_info->fs_devices->num_devices;
3317 for (i = 0; i < num_types; i++) {
3318 struct btrfs_space_info *tmp;
3322 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3323 if (tmp->flags == types[i]) {
3333 down_read(&sinfo->groups_sem);
3334 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3335 if (!list_empty(&sinfo->block_groups[c])) {
3338 btrfs_get_block_group_info(
3339 &sinfo->block_groups[c], &space);
3340 if (space.total_bytes == 0 ||
3341 space.used_bytes == 0)
3343 flags = space.flags;
3346 * 0: if dup, single or RAID0 is configured for
3347 * any of metadata, system or data, else
3348 * 1: if RAID5 is configured, or if RAID1 or
3349 * RAID10 is configured and only two mirrors
3351 * 2: if RAID6 is configured, else
3352 * num_mirrors - 1: if RAID1 or RAID10 is
3353 * configured and more than
3354 * 2 mirrors are used.
3356 if (num_tolerated_disk_barrier_failures > 0 &&
3357 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3358 BTRFS_BLOCK_GROUP_RAID0)) ||
3359 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3361 num_tolerated_disk_barrier_failures = 0;
3362 else if (num_tolerated_disk_barrier_failures > 1) {
3363 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3364 BTRFS_BLOCK_GROUP_RAID5 |
3365 BTRFS_BLOCK_GROUP_RAID10)) {
3366 num_tolerated_disk_barrier_failures = 1;
3368 BTRFS_BLOCK_GROUP_RAID6) {
3369 num_tolerated_disk_barrier_failures = 2;
3374 up_read(&sinfo->groups_sem);
3377 return num_tolerated_disk_barrier_failures;
3380 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3382 struct list_head *head;
3383 struct btrfs_device *dev;
3384 struct btrfs_super_block *sb;
3385 struct btrfs_dev_item *dev_item;
3389 int total_errors = 0;
3392 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3393 backup_super_roots(root->fs_info);
3395 sb = root->fs_info->super_for_commit;
3396 dev_item = &sb->dev_item;
3398 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3399 head = &root->fs_info->fs_devices->devices;
3400 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3403 ret = barrier_all_devices(root->fs_info);
3406 &root->fs_info->fs_devices->device_list_mutex);
3407 btrfs_error(root->fs_info, ret,
3408 "errors while submitting device barriers.");
3413 list_for_each_entry_rcu(dev, head, dev_list) {
3418 if (!dev->in_fs_metadata || !dev->writeable)
3421 btrfs_set_stack_device_generation(dev_item, 0);
3422 btrfs_set_stack_device_type(dev_item, dev->type);
3423 btrfs_set_stack_device_id(dev_item, dev->devid);
3424 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3425 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3426 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3427 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3428 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3429 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3430 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3432 flags = btrfs_super_flags(sb);
3433 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3435 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3439 if (total_errors > max_errors) {
3440 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3442 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3444 /* FUA is masked off if unsupported and can't be the reason */
3445 btrfs_error(root->fs_info, -EIO,
3446 "%d errors while writing supers", total_errors);
3451 list_for_each_entry_rcu(dev, head, dev_list) {
3454 if (!dev->in_fs_metadata || !dev->writeable)
3457 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3461 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3462 if (total_errors > max_errors) {
3463 btrfs_error(root->fs_info, -EIO,
3464 "%d errors while writing supers", total_errors);
3470 int write_ctree_super(struct btrfs_trans_handle *trans,
3471 struct btrfs_root *root, int max_mirrors)
3475 ret = write_all_supers(root, max_mirrors);
3479 /* Drop a fs root from the radix tree and free it. */
3480 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3481 struct btrfs_root *root)
3483 spin_lock(&fs_info->fs_roots_radix_lock);
3484 radix_tree_delete(&fs_info->fs_roots_radix,
3485 (unsigned long)root->root_key.objectid);
3486 spin_unlock(&fs_info->fs_roots_radix_lock);
3488 if (btrfs_root_refs(&root->root_item) == 0)
3489 synchronize_srcu(&fs_info->subvol_srcu);
3491 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3492 btrfs_free_log(NULL, root);
3493 btrfs_free_log_root_tree(NULL, fs_info);
3496 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3497 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3501 static void free_fs_root(struct btrfs_root *root)
3503 iput(root->cache_inode);
3504 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3505 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3506 root->orphan_block_rsv = NULL;
3508 free_anon_bdev(root->anon_dev);
3509 free_extent_buffer(root->node);
3510 free_extent_buffer(root->commit_root);
3511 kfree(root->free_ino_ctl);
3512 kfree(root->free_ino_pinned);
3514 btrfs_put_fs_root(root);
3517 void btrfs_free_fs_root(struct btrfs_root *root)
3522 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3524 u64 root_objectid = 0;
3525 struct btrfs_root *gang[8];
3530 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3531 (void **)gang, root_objectid,
3536 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3537 for (i = 0; i < ret; i++) {
3540 root_objectid = gang[i]->root_key.objectid;
3541 err = btrfs_orphan_cleanup(gang[i]);
3550 int btrfs_commit_super(struct btrfs_root *root)
3552 struct btrfs_trans_handle *trans;
3555 mutex_lock(&root->fs_info->cleaner_mutex);
3556 btrfs_run_delayed_iputs(root);
3557 mutex_unlock(&root->fs_info->cleaner_mutex);
3558 wake_up_process(root->fs_info->cleaner_kthread);
3560 /* wait until ongoing cleanup work done */
3561 down_write(&root->fs_info->cleanup_work_sem);
3562 up_write(&root->fs_info->cleanup_work_sem);
3564 trans = btrfs_join_transaction(root);
3566 return PTR_ERR(trans);
3567 ret = btrfs_commit_transaction(trans, root);
3570 /* run commit again to drop the original snapshot */
3571 trans = btrfs_join_transaction(root);
3573 return PTR_ERR(trans);
3574 ret = btrfs_commit_transaction(trans, root);
3577 ret = btrfs_write_and_wait_transaction(NULL, root);
3579 btrfs_error(root->fs_info, ret,
3580 "Failed to sync btree inode to disk.");
3584 ret = write_ctree_super(NULL, root, 0);
3588 int close_ctree(struct btrfs_root *root)
3590 struct btrfs_fs_info *fs_info = root->fs_info;
3593 fs_info->closing = 1;
3596 /* wait for the uuid_scan task to finish */
3597 down(&fs_info->uuid_tree_rescan_sem);
3598 /* avoid complains from lockdep et al., set sem back to initial state */
3599 up(&fs_info->uuid_tree_rescan_sem);
3601 /* pause restriper - we want to resume on mount */
3602 btrfs_pause_balance(fs_info);
3604 btrfs_dev_replace_suspend_for_unmount(fs_info);
3606 btrfs_scrub_cancel(fs_info);
3608 /* wait for any defraggers to finish */
3609 wait_event(fs_info->transaction_wait,
3610 (atomic_read(&fs_info->defrag_running) == 0));
3612 /* clear out the rbtree of defraggable inodes */
3613 btrfs_cleanup_defrag_inodes(fs_info);
3615 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3616 ret = btrfs_commit_super(root);
3618 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3621 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3622 btrfs_error_commit_super(root);
3624 btrfs_put_block_group_cache(fs_info);
3626 kthread_stop(fs_info->transaction_kthread);
3627 kthread_stop(fs_info->cleaner_kthread);
3629 fs_info->closing = 2;
3632 btrfs_free_qgroup_config(root->fs_info);
3634 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3635 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3636 percpu_counter_sum(&fs_info->delalloc_bytes));
3639 del_fs_roots(fs_info);
3641 btrfs_free_block_groups(fs_info);
3643 btrfs_stop_all_workers(fs_info);
3645 free_root_pointers(fs_info, 1);
3647 iput(fs_info->btree_inode);
3649 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3650 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3651 btrfsic_unmount(root, fs_info->fs_devices);
3654 btrfs_close_devices(fs_info->fs_devices);
3655 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3657 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3658 percpu_counter_destroy(&fs_info->delalloc_bytes);
3659 bdi_destroy(&fs_info->bdi);
3660 cleanup_srcu_struct(&fs_info->subvol_srcu);
3662 btrfs_free_stripe_hash_table(fs_info);
3664 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3665 root->orphan_block_rsv = NULL;
3670 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3674 struct inode *btree_inode = buf->pages[0]->mapping->host;
3676 ret = extent_buffer_uptodate(buf);
3680 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3681 parent_transid, atomic);
3687 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3689 return set_extent_buffer_uptodate(buf);
3692 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3694 struct btrfs_root *root;
3695 u64 transid = btrfs_header_generation(buf);
3698 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3700 * This is a fast path so only do this check if we have sanity tests
3701 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3702 * outside of the sanity tests.
3704 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3707 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3708 btrfs_assert_tree_locked(buf);
3709 if (transid != root->fs_info->generation)
3710 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3711 "found %llu running %llu\n",
3712 buf->start, transid, root->fs_info->generation);
3713 was_dirty = set_extent_buffer_dirty(buf);
3715 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3717 root->fs_info->dirty_metadata_batch);
3720 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3724 * looks as though older kernels can get into trouble with
3725 * this code, they end up stuck in balance_dirty_pages forever
3729 if (current->flags & PF_MEMALLOC)
3733 btrfs_balance_delayed_items(root);
3735 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3736 BTRFS_DIRTY_METADATA_THRESH);
3738 balance_dirty_pages_ratelimited(
3739 root->fs_info->btree_inode->i_mapping);
3744 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3746 __btrfs_btree_balance_dirty(root, 1);
3749 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3751 __btrfs_btree_balance_dirty(root, 0);
3754 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3756 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3757 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3760 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3764 * Placeholder for checks
3769 static void btrfs_error_commit_super(struct btrfs_root *root)
3771 mutex_lock(&root->fs_info->cleaner_mutex);
3772 btrfs_run_delayed_iputs(root);
3773 mutex_unlock(&root->fs_info->cleaner_mutex);
3775 down_write(&root->fs_info->cleanup_work_sem);
3776 up_write(&root->fs_info->cleanup_work_sem);
3778 /* cleanup FS via transaction */
3779 btrfs_cleanup_transaction(root);
3782 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3783 struct btrfs_root *root)
3785 struct btrfs_inode *btrfs_inode;
3786 struct list_head splice;
3788 INIT_LIST_HEAD(&splice);
3790 mutex_lock(&root->fs_info->ordered_operations_mutex);
3791 spin_lock(&root->fs_info->ordered_root_lock);
3793 list_splice_init(&t->ordered_operations, &splice);
3794 while (!list_empty(&splice)) {
3795 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3796 ordered_operations);
3798 list_del_init(&btrfs_inode->ordered_operations);
3799 spin_unlock(&root->fs_info->ordered_root_lock);
3801 btrfs_invalidate_inodes(btrfs_inode->root);
3803 spin_lock(&root->fs_info->ordered_root_lock);
3806 spin_unlock(&root->fs_info->ordered_root_lock);
3807 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3810 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3812 struct btrfs_ordered_extent *ordered;
3814 spin_lock(&root->ordered_extent_lock);
3816 * This will just short circuit the ordered completion stuff which will
3817 * make sure the ordered extent gets properly cleaned up.
3819 list_for_each_entry(ordered, &root->ordered_extents,
3821 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3822 spin_unlock(&root->ordered_extent_lock);
3825 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3827 struct btrfs_root *root;
3828 struct list_head splice;
3830 INIT_LIST_HEAD(&splice);
3832 spin_lock(&fs_info->ordered_root_lock);
3833 list_splice_init(&fs_info->ordered_roots, &splice);
3834 while (!list_empty(&splice)) {
3835 root = list_first_entry(&splice, struct btrfs_root,
3837 list_move_tail(&root->ordered_root,
3838 &fs_info->ordered_roots);
3840 btrfs_destroy_ordered_extents(root);
3842 cond_resched_lock(&fs_info->ordered_root_lock);
3844 spin_unlock(&fs_info->ordered_root_lock);
3847 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3848 struct btrfs_root *root)
3850 struct rb_node *node;
3851 struct btrfs_delayed_ref_root *delayed_refs;
3852 struct btrfs_delayed_ref_node *ref;
3855 delayed_refs = &trans->delayed_refs;
3857 spin_lock(&delayed_refs->lock);
3858 if (delayed_refs->num_entries == 0) {
3859 spin_unlock(&delayed_refs->lock);
3860 printk(KERN_INFO "delayed_refs has NO entry\n");
3864 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3865 struct btrfs_delayed_ref_head *head = NULL;
3866 bool pin_bytes = false;
3868 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3869 atomic_set(&ref->refs, 1);
3870 if (btrfs_delayed_ref_is_head(ref)) {
3872 head = btrfs_delayed_node_to_head(ref);
3873 if (!mutex_trylock(&head->mutex)) {
3874 atomic_inc(&ref->refs);
3875 spin_unlock(&delayed_refs->lock);
3877 /* Need to wait for the delayed ref to run */
3878 mutex_lock(&head->mutex);
3879 mutex_unlock(&head->mutex);
3880 btrfs_put_delayed_ref(ref);
3882 spin_lock(&delayed_refs->lock);
3886 if (head->must_insert_reserved)
3888 btrfs_free_delayed_extent_op(head->extent_op);
3889 delayed_refs->num_heads--;
3890 if (list_empty(&head->cluster))
3891 delayed_refs->num_heads_ready--;
3892 list_del_init(&head->cluster);
3896 rb_erase(&ref->rb_node, &delayed_refs->root);
3897 delayed_refs->num_entries--;
3898 spin_unlock(&delayed_refs->lock);
3901 btrfs_pin_extent(root, ref->bytenr,
3903 mutex_unlock(&head->mutex);
3905 btrfs_put_delayed_ref(ref);
3908 spin_lock(&delayed_refs->lock);
3911 spin_unlock(&delayed_refs->lock);
3916 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3918 struct btrfs_inode *btrfs_inode;
3919 struct list_head splice;
3921 INIT_LIST_HEAD(&splice);
3923 spin_lock(&root->delalloc_lock);
3924 list_splice_init(&root->delalloc_inodes, &splice);
3926 while (!list_empty(&splice)) {
3927 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3930 list_del_init(&btrfs_inode->delalloc_inodes);
3931 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3932 &btrfs_inode->runtime_flags);
3933 spin_unlock(&root->delalloc_lock);
3935 btrfs_invalidate_inodes(btrfs_inode->root);
3937 spin_lock(&root->delalloc_lock);
3940 spin_unlock(&root->delalloc_lock);
3943 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3945 struct btrfs_root *root;
3946 struct list_head splice;
3948 INIT_LIST_HEAD(&splice);
3950 spin_lock(&fs_info->delalloc_root_lock);
3951 list_splice_init(&fs_info->delalloc_roots, &splice);
3952 while (!list_empty(&splice)) {
3953 root = list_first_entry(&splice, struct btrfs_root,
3955 list_del_init(&root->delalloc_root);
3956 root = btrfs_grab_fs_root(root);
3958 spin_unlock(&fs_info->delalloc_root_lock);
3960 btrfs_destroy_delalloc_inodes(root);
3961 btrfs_put_fs_root(root);
3963 spin_lock(&fs_info->delalloc_root_lock);
3965 spin_unlock(&fs_info->delalloc_root_lock);
3968 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3969 struct extent_io_tree *dirty_pages,
3973 struct extent_buffer *eb;
3978 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3983 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3984 while (start <= end) {
3985 eb = btrfs_find_tree_block(root, start,
3987 start += root->leafsize;
3990 wait_on_extent_buffer_writeback(eb);
3992 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3994 clear_extent_buffer_dirty(eb);
3995 free_extent_buffer_stale(eb);
4002 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4003 struct extent_io_tree *pinned_extents)
4005 struct extent_io_tree *unpin;
4011 unpin = pinned_extents;
4014 ret = find_first_extent_bit(unpin, 0, &start, &end,
4015 EXTENT_DIRTY, NULL);
4020 if (btrfs_test_opt(root, DISCARD))
4021 ret = btrfs_error_discard_extent(root, start,
4025 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4026 btrfs_error_unpin_extent_range(root, start, end);
4031 if (unpin == &root->fs_info->freed_extents[0])
4032 unpin = &root->fs_info->freed_extents[1];
4034 unpin = &root->fs_info->freed_extents[0];
4042 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4043 struct btrfs_root *root)
4045 btrfs_destroy_ordered_operations(cur_trans, root);
4047 btrfs_destroy_delayed_refs(cur_trans, root);
4049 cur_trans->state = TRANS_STATE_COMMIT_START;
4050 wake_up(&root->fs_info->transaction_blocked_wait);
4052 cur_trans->state = TRANS_STATE_UNBLOCKED;
4053 wake_up(&root->fs_info->transaction_wait);
4055 btrfs_destroy_delayed_inodes(root);
4056 btrfs_assert_delayed_root_empty(root);
4058 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4060 btrfs_destroy_pinned_extent(root,
4061 root->fs_info->pinned_extents);
4063 cur_trans->state =TRANS_STATE_COMPLETED;
4064 wake_up(&cur_trans->commit_wait);
4067 memset(cur_trans, 0, sizeof(*cur_trans));
4068 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4072 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4074 struct btrfs_transaction *t;
4076 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4078 spin_lock(&root->fs_info->trans_lock);
4079 while (!list_empty(&root->fs_info->trans_list)) {
4080 t = list_first_entry(&root->fs_info->trans_list,
4081 struct btrfs_transaction, list);
4082 if (t->state >= TRANS_STATE_COMMIT_START) {
4083 atomic_inc(&t->use_count);
4084 spin_unlock(&root->fs_info->trans_lock);
4085 btrfs_wait_for_commit(root, t->transid);
4086 btrfs_put_transaction(t);
4087 spin_lock(&root->fs_info->trans_lock);
4090 if (t == root->fs_info->running_transaction) {
4091 t->state = TRANS_STATE_COMMIT_DOING;
4092 spin_unlock(&root->fs_info->trans_lock);
4094 * We wait for 0 num_writers since we don't hold a trans
4095 * handle open currently for this transaction.
4097 wait_event(t->writer_wait,
4098 atomic_read(&t->num_writers) == 0);
4100 spin_unlock(&root->fs_info->trans_lock);
4102 btrfs_cleanup_one_transaction(t, root);
4104 spin_lock(&root->fs_info->trans_lock);
4105 if (t == root->fs_info->running_transaction)
4106 root->fs_info->running_transaction = NULL;
4107 list_del_init(&t->list);
4108 spin_unlock(&root->fs_info->trans_lock);
4110 btrfs_put_transaction(t);
4111 trace_btrfs_transaction_commit(root);
4112 spin_lock(&root->fs_info->trans_lock);
4114 spin_unlock(&root->fs_info->trans_lock);
4115 btrfs_destroy_all_ordered_extents(root->fs_info);
4116 btrfs_destroy_delayed_inodes(root);
4117 btrfs_assert_delayed_root_empty(root);
4118 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4119 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4120 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4125 static struct extent_io_ops btree_extent_io_ops = {
4126 .readpage_end_io_hook = btree_readpage_end_io_hook,
4127 .readpage_io_failed_hook = btree_io_failed_hook,
4128 .submit_bio_hook = btree_submit_bio_hook,
4129 /* note we're sharing with inode.c for the merge bio hook */
4130 .merge_bio_hook = btrfs_merge_bio_hook,