1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
11 #include "dm-uevent.h"
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/signal.h>
19 #include <linux/blkpg.h>
20 #include <linux/bio.h>
21 #include <linux/mempool.h>
22 #include <linux/dax.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/uio.h>
26 #include <linux/hdreg.h>
27 #include <linux/delay.h>
28 #include <linux/wait.h>
30 #include <linux/refcount.h>
31 #include <linux/part_stat.h>
32 #include <linux/blk-crypto.h>
33 #include <linux/blk-crypto-profile.h>
35 #define DM_MSG_PREFIX "core"
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46 * dm_io into one list, and reuse bio->bi_private as the list head. Before
47 * ending this fs bio, we will recover its ->bi_private.
49 #define REQ_DM_POLL_LIST REQ_DRV
51 static const char *_name = DM_NAME;
53 static unsigned int major;
54 static unsigned int _major;
56 static DEFINE_IDR(_minor_idr);
58 static DEFINE_SPINLOCK(_minor_lock);
60 static void do_deferred_remove(struct work_struct *w);
62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
64 static struct workqueue_struct *deferred_remove_workqueue;
66 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
69 void dm_issue_global_event(void)
71 atomic_inc(&dm_global_event_nr);
72 wake_up(&dm_global_eventq);
75 DEFINE_STATIC_KEY_FALSE(stats_enabled);
76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
80 * One of these is allocated (on-stack) per original bio.
87 unsigned int sector_count;
88 bool is_abnormal_io:1;
89 bool submit_as_polled:1;
92 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
94 return container_of(clone, struct dm_target_io, clone);
97 void *dm_per_bio_data(struct bio *bio, size_t data_size)
99 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
103 EXPORT_SYMBOL_GPL(dm_per_bio_data);
105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
107 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
109 if (io->magic == DM_IO_MAGIC)
110 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111 BUG_ON(io->magic != DM_TIO_MAGIC);
112 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
118 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
122 #define MINOR_ALLOCED ((void *)-1)
124 #define DM_NUMA_NODE NUMA_NO_NODE
125 static int dm_numa_node = DM_NUMA_NODE;
127 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
128 static int swap_bios = DEFAULT_SWAP_BIOS;
129 static int get_swap_bios(void)
131 int latch = READ_ONCE(swap_bios);
133 if (unlikely(latch <= 0))
134 latch = DEFAULT_SWAP_BIOS;
138 struct table_device {
139 struct list_head list;
141 struct dm_dev dm_dev;
145 * Bio-based DM's mempools' reserved IOs set by the user.
147 #define RESERVED_BIO_BASED_IOS 16
148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 int param = READ_ONCE(*module_param);
153 int modified_param = 0;
154 bool modified = true;
157 modified_param = min;
158 else if (param > max)
159 modified_param = max;
164 (void)cmpxchg(module_param, param, modified_param);
165 param = modified_param;
171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
173 unsigned int param = READ_ONCE(*module_param);
174 unsigned int modified_param = 0;
177 modified_param = def;
178 else if (param > max)
179 modified_param = max;
181 if (modified_param) {
182 (void)cmpxchg(module_param, param, modified_param);
183 param = modified_param;
189 unsigned int dm_get_reserved_bio_based_ios(void)
191 return __dm_get_module_param(&reserved_bio_based_ios,
192 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
196 static unsigned int dm_get_numa_node(void)
198 return __dm_get_module_param_int(&dm_numa_node,
199 DM_NUMA_NODE, num_online_nodes() - 1);
202 static int __init local_init(void)
206 r = dm_uevent_init();
210 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
211 if (!deferred_remove_workqueue) {
213 goto out_uevent_exit;
217 r = register_blkdev(_major, _name);
219 goto out_free_workqueue;
227 destroy_workqueue(deferred_remove_workqueue);
234 static void local_exit(void)
236 destroy_workqueue(deferred_remove_workqueue);
238 unregister_blkdev(_major, _name);
243 DMINFO("cleaned up");
246 static int (*_inits[])(void) __initdata = {
257 static void (*_exits[])(void) = {
268 static int __init dm_init(void)
270 const int count = ARRAY_SIZE(_inits);
273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275 " Duplicate IMA measurements will not be recorded in the IMA log.");
278 for (i = 0; i < count; i++) {
292 static void __exit dm_exit(void)
294 int i = ARRAY_SIZE(_exits);
300 * Should be empty by this point.
302 idr_destroy(&_minor_idr);
306 * Block device functions
308 int dm_deleting_md(struct mapped_device *md)
310 return test_bit(DMF_DELETING, &md->flags);
313 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
315 struct mapped_device *md;
317 spin_lock(&_minor_lock);
319 md = disk->private_data;
323 if (test_bit(DMF_FREEING, &md->flags) ||
324 dm_deleting_md(md)) {
330 atomic_inc(&md->open_count);
332 spin_unlock(&_minor_lock);
334 return md ? 0 : -ENXIO;
337 static void dm_blk_close(struct gendisk *disk)
339 struct mapped_device *md;
341 spin_lock(&_minor_lock);
343 md = disk->private_data;
347 if (atomic_dec_and_test(&md->open_count) &&
348 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349 queue_work(deferred_remove_workqueue, &deferred_remove_work);
353 spin_unlock(&_minor_lock);
356 int dm_open_count(struct mapped_device *md)
358 return atomic_read(&md->open_count);
362 * Guarantees nothing is using the device before it's deleted.
364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
368 spin_lock(&_minor_lock);
370 if (dm_open_count(md)) {
373 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
377 set_bit(DMF_DELETING, &md->flags);
379 spin_unlock(&_minor_lock);
384 int dm_cancel_deferred_remove(struct mapped_device *md)
388 spin_lock(&_minor_lock);
390 if (test_bit(DMF_DELETING, &md->flags))
393 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
395 spin_unlock(&_minor_lock);
400 static void do_deferred_remove(struct work_struct *w)
402 dm_deferred_remove();
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 struct mapped_device *md = bdev->bd_disk->private_data;
409 return dm_get_geometry(md, geo);
412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413 struct block_device **bdev)
415 struct dm_target *ti;
416 struct dm_table *map;
421 map = dm_get_live_table(md, srcu_idx);
422 if (!map || !dm_table_get_size(map))
425 /* We only support devices that have a single target */
426 if (map->num_targets != 1)
429 ti = dm_table_get_target(map, 0);
430 if (!ti->type->prepare_ioctl)
433 if (dm_suspended_md(md))
436 r = ti->type->prepare_ioctl(ti, bdev);
437 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438 dm_put_live_table(md, *srcu_idx);
446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
448 dm_put_live_table(md, srcu_idx);
451 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
452 unsigned int cmd, unsigned long arg)
454 struct mapped_device *md = bdev->bd_disk->private_data;
457 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
463 * Target determined this ioctl is being issued against a
464 * subset of the parent bdev; require extra privileges.
466 if (!capable(CAP_SYS_RAWIO)) {
468 "%s: sending ioctl %x to DM device without required privilege.",
475 if (!bdev->bd_disk->fops->ioctl)
478 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
480 dm_unprepare_ioctl(md, srcu_idx);
484 u64 dm_start_time_ns_from_clone(struct bio *bio)
486 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
490 static inline bool bio_is_flush_with_data(struct bio *bio)
492 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
495 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
498 * If REQ_PREFLUSH set, don't account payload, it will be
499 * submitted (and accounted) after this flush completes.
501 if (bio_is_flush_with_data(bio))
503 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
505 return bio_sectors(bio);
508 static void dm_io_acct(struct dm_io *io, bool end)
510 struct bio *bio = io->orig_bio;
512 if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
514 bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
518 dm_io_sectors(io, bio),
522 if (static_branch_unlikely(&stats_enabled) &&
523 unlikely(dm_stats_used(&io->md->stats))) {
526 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
527 sector = bio_end_sector(bio) - io->sector_offset;
529 sector = bio->bi_iter.bi_sector;
531 dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
532 sector, dm_io_sectors(io, bio),
533 end, io->start_time, &io->stats_aux);
537 static void __dm_start_io_acct(struct dm_io *io)
539 dm_io_acct(io, false);
542 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
545 * Ensure IO accounting is only ever started once.
547 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
550 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
551 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
552 dm_io_set_flag(io, DM_IO_ACCOUNTED);
555 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
556 spin_lock_irqsave(&io->lock, flags);
557 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
558 spin_unlock_irqrestore(&io->lock, flags);
561 dm_io_set_flag(io, DM_IO_ACCOUNTED);
562 spin_unlock_irqrestore(&io->lock, flags);
565 __dm_start_io_acct(io);
568 static void dm_end_io_acct(struct dm_io *io)
570 dm_io_acct(io, true);
573 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
576 struct dm_target_io *tio;
579 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
580 tio = clone_to_tio(clone);
582 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
585 io = container_of(tio, struct dm_io, tio);
586 io->magic = DM_IO_MAGIC;
587 io->status = BLK_STS_OK;
589 /* one ref is for submission, the other is for completion */
590 atomic_set(&io->io_count, 2);
591 this_cpu_inc(*md->pending_io);
594 spin_lock_init(&io->lock);
595 io->start_time = jiffies;
597 if (blk_queue_io_stat(md->queue))
598 dm_io_set_flag(io, DM_IO_BLK_STAT);
600 if (static_branch_unlikely(&stats_enabled) &&
601 unlikely(dm_stats_used(&md->stats)))
602 dm_stats_record_start(&md->stats, &io->stats_aux);
607 static void free_io(struct dm_io *io)
609 bio_put(&io->tio.clone);
612 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
613 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
615 struct mapped_device *md = ci->io->md;
616 struct dm_target_io *tio;
619 if (!ci->io->tio.io) {
620 /* the dm_target_io embedded in ci->io is available */
622 /* alloc_io() already initialized embedded clone */
625 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
630 /* REQ_DM_POLL_LIST shouldn't be inherited */
631 clone->bi_opf &= ~REQ_DM_POLL_LIST;
633 tio = clone_to_tio(clone);
634 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
637 tio->magic = DM_TIO_MAGIC;
640 tio->target_bio_nr = target_bio_nr;
644 /* Set default bdev, but target must bio_set_dev() before issuing IO */
645 clone->bi_bdev = md->disk->part0;
646 if (unlikely(ti->needs_bio_set_dev))
647 bio_set_dev(clone, md->disk->part0);
650 clone->bi_iter.bi_size = to_bytes(*len);
651 if (bio_integrity(clone))
652 bio_integrity_trim(clone);
658 static void free_tio(struct bio *clone)
660 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
666 * Add the bio to the list of deferred io.
668 static void queue_io(struct mapped_device *md, struct bio *bio)
672 spin_lock_irqsave(&md->deferred_lock, flags);
673 bio_list_add(&md->deferred, bio);
674 spin_unlock_irqrestore(&md->deferred_lock, flags);
675 queue_work(md->wq, &md->work);
679 * Everyone (including functions in this file), should use this
680 * function to access the md->map field, and make sure they call
681 * dm_put_live_table() when finished.
683 struct dm_table *dm_get_live_table(struct mapped_device *md,
684 int *srcu_idx) __acquires(md->io_barrier)
686 *srcu_idx = srcu_read_lock(&md->io_barrier);
688 return srcu_dereference(md->map, &md->io_barrier);
691 void dm_put_live_table(struct mapped_device *md,
692 int srcu_idx) __releases(md->io_barrier)
694 srcu_read_unlock(&md->io_barrier, srcu_idx);
697 void dm_sync_table(struct mapped_device *md)
699 synchronize_srcu(&md->io_barrier);
700 synchronize_rcu_expedited();
704 * A fast alternative to dm_get_live_table/dm_put_live_table.
705 * The caller must not block between these two functions.
707 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
710 return rcu_dereference(md->map);
713 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
718 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
719 int *srcu_idx, blk_opf_t bio_opf)
721 if (bio_opf & REQ_NOWAIT)
722 return dm_get_live_table_fast(md);
724 return dm_get_live_table(md, srcu_idx);
727 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
730 if (bio_opf & REQ_NOWAIT)
731 dm_put_live_table_fast(md);
733 dm_put_live_table(md, srcu_idx);
736 static char *_dm_claim_ptr = "I belong to device-mapper";
739 * Open a table device so we can use it as a map destination.
741 static struct table_device *open_table_device(struct mapped_device *md,
742 dev_t dev, blk_mode_t mode)
744 struct table_device *td;
745 struct block_device *bdev;
749 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
751 return ERR_PTR(-ENOMEM);
752 refcount_set(&td->count, 1);
754 bdev = blkdev_get_by_dev(dev, mode, _dm_claim_ptr, NULL);
761 * We can be called before the dm disk is added. In that case we can't
762 * register the holder relation here. It will be done once add_disk was
765 if (md->disk->slave_dir) {
766 r = bd_link_disk_holder(bdev, md->disk);
771 td->dm_dev.mode = mode;
772 td->dm_dev.bdev = bdev;
773 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
774 format_dev_t(td->dm_dev.name, dev);
775 list_add(&td->list, &md->table_devices);
779 blkdev_put(bdev, _dm_claim_ptr);
786 * Close a table device that we've been using.
788 static void close_table_device(struct table_device *td, struct mapped_device *md)
790 if (md->disk->slave_dir)
791 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
792 blkdev_put(td->dm_dev.bdev, _dm_claim_ptr);
793 put_dax(td->dm_dev.dax_dev);
798 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
801 struct table_device *td;
803 list_for_each_entry(td, l, list)
804 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
810 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
811 struct dm_dev **result)
813 struct table_device *td;
815 mutex_lock(&md->table_devices_lock);
816 td = find_table_device(&md->table_devices, dev, mode);
818 td = open_table_device(md, dev, mode);
820 mutex_unlock(&md->table_devices_lock);
824 refcount_inc(&td->count);
826 mutex_unlock(&md->table_devices_lock);
828 *result = &td->dm_dev;
832 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
834 struct table_device *td = container_of(d, struct table_device, dm_dev);
836 mutex_lock(&md->table_devices_lock);
837 if (refcount_dec_and_test(&td->count))
838 close_table_device(td, md);
839 mutex_unlock(&md->table_devices_lock);
843 * Get the geometry associated with a dm device
845 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
853 * Set the geometry of a device.
855 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
857 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
859 if (geo->start > sz) {
860 DMERR("Start sector is beyond the geometry limits.");
869 static int __noflush_suspending(struct mapped_device *md)
871 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
874 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
876 struct mapped_device *md = io->md;
879 struct dm_io *next = md->requeue_list;
881 md->requeue_list = io;
884 bio_list_add_head(&md->deferred, io->orig_bio);
888 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
891 queue_work(md->wq, &md->requeue_work);
893 queue_work(md->wq, &md->work);
897 * Return true if the dm_io's original bio is requeued.
898 * io->status is updated with error if requeue disallowed.
900 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
902 struct bio *bio = io->orig_bio;
903 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
904 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
905 (bio->bi_opf & REQ_POLLED));
906 struct mapped_device *md = io->md;
907 bool requeued = false;
909 if (handle_requeue || handle_polled_eagain) {
912 if (bio->bi_opf & REQ_POLLED) {
914 * Upper layer won't help us poll split bio
915 * (io->orig_bio may only reflect a subset of the
916 * pre-split original) so clear REQ_POLLED.
918 bio_clear_polled(bio);
922 * Target requested pushing back the I/O or
923 * polled IO hit BLK_STS_AGAIN.
925 spin_lock_irqsave(&md->deferred_lock, flags);
926 if ((__noflush_suspending(md) &&
927 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
928 handle_polled_eagain || first_stage) {
929 dm_requeue_add_io(io, first_stage);
933 * noflush suspend was interrupted or this is
934 * a write to a zoned target.
936 io->status = BLK_STS_IOERR;
938 spin_unlock_irqrestore(&md->deferred_lock, flags);
942 dm_kick_requeue(md, first_stage);
947 static void __dm_io_complete(struct dm_io *io, bool first_stage)
949 struct bio *bio = io->orig_bio;
950 struct mapped_device *md = io->md;
951 blk_status_t io_error;
954 requeued = dm_handle_requeue(io, first_stage);
955 if (requeued && first_stage)
958 io_error = io->status;
959 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
961 else if (!io_error) {
963 * Must handle target that DM_MAPIO_SUBMITTED only to
964 * then bio_endio() rather than dm_submit_bio_remap()
966 __dm_start_io_acct(io);
971 this_cpu_dec(*md->pending_io);
973 /* nudge anyone waiting on suspend queue */
974 if (unlikely(wq_has_sleeper(&md->wait)))
977 /* Return early if the original bio was requeued */
981 if (bio_is_flush_with_data(bio)) {
983 * Preflush done for flush with data, reissue
984 * without REQ_PREFLUSH.
986 bio->bi_opf &= ~REQ_PREFLUSH;
989 /* done with normal IO or empty flush */
991 bio->bi_status = io_error;
996 static void dm_wq_requeue_work(struct work_struct *work)
998 struct mapped_device *md = container_of(work, struct mapped_device,
1000 unsigned long flags;
1003 /* reuse deferred lock to simplify dm_handle_requeue */
1004 spin_lock_irqsave(&md->deferred_lock, flags);
1005 io = md->requeue_list;
1006 md->requeue_list = NULL;
1007 spin_unlock_irqrestore(&md->deferred_lock, flags);
1010 struct dm_io *next = io->next;
1012 dm_io_rewind(io, &md->disk->bio_split);
1015 __dm_io_complete(io, false);
1022 * Two staged requeue:
1024 * 1) io->orig_bio points to the real original bio, and the part mapped to
1025 * this io must be requeued, instead of other parts of the original bio.
1027 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1029 static void dm_io_complete(struct dm_io *io)
1034 * Only dm_io that has been split needs two stage requeue, otherwise
1035 * we may run into long bio clone chain during suspend and OOM could
1038 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1039 * also aren't handled via the first stage requeue.
1041 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1042 first_requeue = true;
1044 first_requeue = false;
1046 __dm_io_complete(io, first_requeue);
1050 * Decrements the number of outstanding ios that a bio has been
1051 * cloned into, completing the original io if necc.
1053 static inline void __dm_io_dec_pending(struct dm_io *io)
1055 if (atomic_dec_and_test(&io->io_count))
1059 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1061 unsigned long flags;
1063 /* Push-back supersedes any I/O errors */
1064 spin_lock_irqsave(&io->lock, flags);
1065 if (!(io->status == BLK_STS_DM_REQUEUE &&
1066 __noflush_suspending(io->md))) {
1069 spin_unlock_irqrestore(&io->lock, flags);
1072 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1074 if (unlikely(error))
1075 dm_io_set_error(io, error);
1077 __dm_io_dec_pending(io);
1081 * The queue_limits are only valid as long as you have a reference
1082 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1084 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1086 return &md->queue->limits;
1089 void disable_discard(struct mapped_device *md)
1091 struct queue_limits *limits = dm_get_queue_limits(md);
1093 /* device doesn't really support DISCARD, disable it */
1094 limits->max_discard_sectors = 0;
1097 void disable_write_zeroes(struct mapped_device *md)
1099 struct queue_limits *limits = dm_get_queue_limits(md);
1101 /* device doesn't really support WRITE ZEROES, disable it */
1102 limits->max_write_zeroes_sectors = 0;
1105 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1107 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1110 static void clone_endio(struct bio *bio)
1112 blk_status_t error = bio->bi_status;
1113 struct dm_target_io *tio = clone_to_tio(bio);
1114 struct dm_target *ti = tio->ti;
1115 dm_endio_fn endio = ti->type->end_io;
1116 struct dm_io *io = tio->io;
1117 struct mapped_device *md = io->md;
1119 if (unlikely(error == BLK_STS_TARGET)) {
1120 if (bio_op(bio) == REQ_OP_DISCARD &&
1121 !bdev_max_discard_sectors(bio->bi_bdev))
1122 disable_discard(md);
1123 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1124 !bdev_write_zeroes_sectors(bio->bi_bdev))
1125 disable_write_zeroes(md);
1128 if (static_branch_unlikely(&zoned_enabled) &&
1129 unlikely(bdev_is_zoned(bio->bi_bdev)))
1130 dm_zone_endio(io, bio);
1133 int r = endio(ti, bio, &error);
1136 case DM_ENDIO_REQUEUE:
1137 if (static_branch_unlikely(&zoned_enabled)) {
1139 * Requeuing writes to a sequential zone of a zoned
1140 * target will break the sequential write pattern:
1143 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1144 error = BLK_STS_IOERR;
1146 error = BLK_STS_DM_REQUEUE;
1148 error = BLK_STS_DM_REQUEUE;
1152 case DM_ENDIO_INCOMPLETE:
1153 /* The target will handle the io */
1156 DMCRIT("unimplemented target endio return value: %d", r);
1161 if (static_branch_unlikely(&swap_bios_enabled) &&
1162 unlikely(swap_bios_limit(ti, bio)))
1163 up(&md->swap_bios_semaphore);
1166 dm_io_dec_pending(io, error);
1170 * Return maximum size of I/O possible at the supplied sector up to the current
1173 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1174 sector_t target_offset)
1176 return ti->len - target_offset;
1179 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1180 unsigned int max_granularity,
1181 unsigned int max_sectors)
1183 sector_t target_offset = dm_target_offset(ti, sector);
1184 sector_t len = max_io_len_target_boundary(ti, target_offset);
1187 * Does the target need to split IO even further?
1188 * - varied (per target) IO splitting is a tenet of DM; this
1189 * explains why stacked chunk_sectors based splitting via
1190 * bio_split_to_limits() isn't possible here.
1192 if (!max_granularity)
1194 return min_t(sector_t, len,
1195 min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1196 blk_chunk_sectors_left(target_offset, max_granularity)));
1199 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1201 return __max_io_len(ti, sector, ti->max_io_len, 0);
1204 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1206 if (len > UINT_MAX) {
1207 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1208 (unsigned long long)len, UINT_MAX);
1209 ti->error = "Maximum size of target IO is too large";
1213 ti->max_io_len = (uint32_t) len;
1217 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1219 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1220 sector_t sector, int *srcu_idx)
1221 __acquires(md->io_barrier)
1223 struct dm_table *map;
1224 struct dm_target *ti;
1226 map = dm_get_live_table(md, srcu_idx);
1230 ti = dm_table_find_target(map, sector);
1237 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1238 long nr_pages, enum dax_access_mode mode, void **kaddr,
1241 struct mapped_device *md = dax_get_private(dax_dev);
1242 sector_t sector = pgoff * PAGE_SECTORS;
1243 struct dm_target *ti;
1244 long len, ret = -EIO;
1247 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1251 if (!ti->type->direct_access)
1253 len = max_io_len(ti, sector) / PAGE_SECTORS;
1256 nr_pages = min(len, nr_pages);
1257 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1260 dm_put_live_table(md, srcu_idx);
1265 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1268 struct mapped_device *md = dax_get_private(dax_dev);
1269 sector_t sector = pgoff * PAGE_SECTORS;
1270 struct dm_target *ti;
1274 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1278 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1280 * ->zero_page_range() is mandatory dax operation. If we are
1281 * here, something is wrong.
1285 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1287 dm_put_live_table(md, srcu_idx);
1292 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1293 void *addr, size_t bytes, struct iov_iter *i)
1295 struct mapped_device *md = dax_get_private(dax_dev);
1296 sector_t sector = pgoff * PAGE_SECTORS;
1297 struct dm_target *ti;
1301 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1302 if (!ti || !ti->type->dax_recovery_write)
1305 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1307 dm_put_live_table(md, srcu_idx);
1312 * A target may call dm_accept_partial_bio only from the map routine. It is
1313 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1314 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1315 * __send_duplicate_bios().
1317 * dm_accept_partial_bio informs the dm that the target only wants to process
1318 * additional n_sectors sectors of the bio and the rest of the data should be
1319 * sent in a next bio.
1321 * A diagram that explains the arithmetics:
1322 * +--------------------+---------------+-------+
1324 * +--------------------+---------------+-------+
1326 * <-------------- *tio->len_ptr --------------->
1327 * <----- bio_sectors ----->
1330 * Region 1 was already iterated over with bio_advance or similar function.
1331 * (it may be empty if the target doesn't use bio_advance)
1332 * Region 2 is the remaining bio size that the target wants to process.
1333 * (it may be empty if region 1 is non-empty, although there is no reason
1335 * The target requires that region 3 is to be sent in the next bio.
1337 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1338 * the partially processed part (the sum of regions 1+2) must be the same for all
1339 * copies of the bio.
1341 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1343 struct dm_target_io *tio = clone_to_tio(bio);
1344 struct dm_io *io = tio->io;
1345 unsigned int bio_sectors = bio_sectors(bio);
1347 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1348 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1349 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1350 BUG_ON(bio_sectors > *tio->len_ptr);
1351 BUG_ON(n_sectors > bio_sectors);
1353 *tio->len_ptr -= bio_sectors - n_sectors;
1354 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1357 * __split_and_process_bio() may have already saved mapped part
1358 * for accounting but it is being reduced so update accordingly.
1360 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1361 io->sectors = n_sectors;
1362 io->sector_offset = bio_sectors(io->orig_bio);
1364 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1367 * @clone: clone bio that DM core passed to target's .map function
1368 * @tgt_clone: clone of @clone bio that target needs submitted
1370 * Targets should use this interface to submit bios they take
1371 * ownership of when returning DM_MAPIO_SUBMITTED.
1373 * Target should also enable ti->accounts_remapped_io
1375 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1377 struct dm_target_io *tio = clone_to_tio(clone);
1378 struct dm_io *io = tio->io;
1380 /* establish bio that will get submitted */
1385 * Account io->origin_bio to DM dev on behalf of target
1386 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1388 dm_start_io_acct(io, clone);
1390 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1392 submit_bio_noacct(tgt_clone);
1394 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1396 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1398 mutex_lock(&md->swap_bios_lock);
1399 while (latch < md->swap_bios) {
1401 down(&md->swap_bios_semaphore);
1404 while (latch > md->swap_bios) {
1406 up(&md->swap_bios_semaphore);
1409 mutex_unlock(&md->swap_bios_lock);
1412 static void __map_bio(struct bio *clone)
1414 struct dm_target_io *tio = clone_to_tio(clone);
1415 struct dm_target *ti = tio->ti;
1416 struct dm_io *io = tio->io;
1417 struct mapped_device *md = io->md;
1420 clone->bi_end_io = clone_endio;
1425 tio->old_sector = clone->bi_iter.bi_sector;
1427 if (static_branch_unlikely(&swap_bios_enabled) &&
1428 unlikely(swap_bios_limit(ti, clone))) {
1429 int latch = get_swap_bios();
1431 if (unlikely(latch != md->swap_bios))
1432 __set_swap_bios_limit(md, latch);
1433 down(&md->swap_bios_semaphore);
1436 if (static_branch_unlikely(&zoned_enabled)) {
1438 * Check if the IO needs a special mapping due to zone append
1439 * emulation on zoned target. In this case, dm_zone_map_bio()
1440 * calls the target map operation.
1442 if (unlikely(dm_emulate_zone_append(md)))
1443 r = dm_zone_map_bio(tio);
1445 r = ti->type->map(ti, clone);
1447 r = ti->type->map(ti, clone);
1450 case DM_MAPIO_SUBMITTED:
1451 /* target has assumed ownership of this io */
1452 if (!ti->accounts_remapped_io)
1453 dm_start_io_acct(io, clone);
1455 case DM_MAPIO_REMAPPED:
1456 dm_submit_bio_remap(clone, NULL);
1459 case DM_MAPIO_REQUEUE:
1460 if (static_branch_unlikely(&swap_bios_enabled) &&
1461 unlikely(swap_bios_limit(ti, clone)))
1462 up(&md->swap_bios_semaphore);
1464 if (r == DM_MAPIO_KILL)
1465 dm_io_dec_pending(io, BLK_STS_IOERR);
1467 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1470 DMCRIT("unimplemented target map return value: %d", r);
1475 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1477 struct dm_io *io = ci->io;
1479 if (ci->sector_count > len) {
1481 * Split needed, save the mapped part for accounting.
1482 * NOTE: dm_accept_partial_bio() will update accordingly.
1484 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1486 io->sector_offset = bio_sectors(ci->bio);
1490 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1491 struct dm_target *ti, unsigned int num_bios,
1497 for (try = 0; try < 2; try++) {
1501 mutex_lock(&ci->io->md->table_devices_lock);
1502 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1503 bio = alloc_tio(ci, ti, bio_nr, len,
1504 try ? GFP_NOIO : GFP_NOWAIT);
1508 bio_list_add(blist, bio);
1511 mutex_unlock(&ci->io->md->table_devices_lock);
1512 if (bio_nr == num_bios)
1515 while ((bio = bio_list_pop(blist)))
1520 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1521 unsigned int num_bios, unsigned int *len)
1523 struct bio_list blist = BIO_EMPTY_LIST;
1525 unsigned int ret = 0;
1532 setup_split_accounting(ci, *len);
1533 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1539 setup_split_accounting(ci, *len);
1540 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1541 alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1542 while ((clone = bio_list_pop(&blist))) {
1543 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1553 static void __send_empty_flush(struct clone_info *ci)
1555 struct dm_table *t = ci->map;
1556 struct bio flush_bio;
1559 * Use an on-stack bio for this, it's safe since we don't
1560 * need to reference it after submit. It's just used as
1561 * the basis for the clone(s).
1563 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1564 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1566 ci->bio = &flush_bio;
1567 ci->sector_count = 0;
1568 ci->io->tio.clone.bi_iter.bi_size = 0;
1570 for (unsigned int i = 0; i < t->num_targets; i++) {
1572 struct dm_target *ti = dm_table_get_target(t, i);
1574 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1575 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1576 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1580 * alloc_io() takes one extra reference for submission, so the
1581 * reference won't reach 0 without the following subtraction
1583 atomic_sub(1, &ci->io->io_count);
1585 bio_uninit(ci->bio);
1588 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1589 unsigned int num_bios,
1590 unsigned int max_granularity,
1591 unsigned int max_sectors)
1593 unsigned int len, bios;
1595 len = min_t(sector_t, ci->sector_count,
1596 __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1598 atomic_add(num_bios, &ci->io->io_count);
1599 bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1601 * alloc_io() takes one extra reference for submission, so the
1602 * reference won't reach 0 without the following (+1) subtraction
1604 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1607 ci->sector_count -= len;
1610 static bool is_abnormal_io(struct bio *bio)
1612 enum req_op op = bio_op(bio);
1614 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1616 case REQ_OP_DISCARD:
1617 case REQ_OP_SECURE_ERASE:
1618 case REQ_OP_WRITE_ZEROES:
1628 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1629 struct dm_target *ti)
1631 unsigned int num_bios = 0;
1632 unsigned int max_granularity = 0;
1633 unsigned int max_sectors = 0;
1634 struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1636 switch (bio_op(ci->bio)) {
1637 case REQ_OP_DISCARD:
1638 num_bios = ti->num_discard_bios;
1639 max_sectors = limits->max_discard_sectors;
1640 if (ti->max_discard_granularity)
1641 max_granularity = max_sectors;
1643 case REQ_OP_SECURE_ERASE:
1644 num_bios = ti->num_secure_erase_bios;
1645 max_sectors = limits->max_secure_erase_sectors;
1646 if (ti->max_secure_erase_granularity)
1647 max_granularity = max_sectors;
1649 case REQ_OP_WRITE_ZEROES:
1650 num_bios = ti->num_write_zeroes_bios;
1651 max_sectors = limits->max_write_zeroes_sectors;
1652 if (ti->max_write_zeroes_granularity)
1653 max_granularity = max_sectors;
1660 * Even though the device advertised support for this type of
1661 * request, that does not mean every target supports it, and
1662 * reconfiguration might also have changed that since the
1663 * check was performed.
1665 if (unlikely(!num_bios))
1666 return BLK_STS_NOTSUPP;
1668 __send_changing_extent_only(ci, ti, num_bios,
1669 max_granularity, max_sectors);
1674 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1675 * associated with this bio, and this bio's bi_private needs to be
1676 * stored in dm_io->data before the reuse.
1678 * bio->bi_private is owned by fs or upper layer, so block layer won't
1679 * touch it after splitting. Meantime it won't be changed by anyone after
1680 * bio is submitted. So this reuse is safe.
1682 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1684 return (struct dm_io **)&bio->bi_private;
1687 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1689 struct dm_io **head = dm_poll_list_head(bio);
1691 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1692 bio->bi_opf |= REQ_DM_POLL_LIST;
1694 * Save .bi_private into dm_io, so that we can reuse
1695 * .bi_private as dm_io list head for storing dm_io list
1697 io->data = bio->bi_private;
1699 /* tell block layer to poll for completion */
1700 bio->bi_cookie = ~BLK_QC_T_NONE;
1705 * bio recursed due to split, reuse original poll list,
1706 * and save bio->bi_private too.
1708 io->data = (*head)->data;
1716 * Select the correct strategy for processing a non-flush bio.
1718 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1721 struct dm_target *ti;
1724 ti = dm_table_find_target(ci->map, ci->sector);
1726 return BLK_STS_IOERR;
1728 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1729 unlikely(!dm_target_supports_nowait(ti->type)))
1730 return BLK_STS_NOTSUPP;
1732 if (unlikely(ci->is_abnormal_io))
1733 return __process_abnormal_io(ci, ti);
1736 * Only support bio polling for normal IO, and the target io is
1737 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1739 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1741 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1742 setup_split_accounting(ci, len);
1743 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1747 ci->sector_count -= len;
1752 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1753 struct dm_table *map, struct bio *bio, bool is_abnormal)
1756 ci->io = alloc_io(md, bio);
1758 ci->is_abnormal_io = is_abnormal;
1759 ci->submit_as_polled = false;
1760 ci->sector = bio->bi_iter.bi_sector;
1761 ci->sector_count = bio_sectors(bio);
1763 /* Shouldn't happen but sector_count was being set to 0 so... */
1764 if (static_branch_unlikely(&zoned_enabled) &&
1765 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1766 ci->sector_count = 0;
1770 * Entry point to split a bio into clones and submit them to the targets.
1772 static void dm_split_and_process_bio(struct mapped_device *md,
1773 struct dm_table *map, struct bio *bio)
1775 struct clone_info ci;
1777 blk_status_t error = BLK_STS_OK;
1780 is_abnormal = is_abnormal_io(bio);
1781 if (unlikely(is_abnormal)) {
1783 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1784 * otherwise associated queue_limits won't be imposed.
1786 bio = bio_split_to_limits(bio);
1791 init_clone_info(&ci, md, map, bio, is_abnormal);
1794 if (bio->bi_opf & REQ_PREFLUSH) {
1795 __send_empty_flush(&ci);
1796 /* dm_io_complete submits any data associated with flush */
1800 error = __split_and_process_bio(&ci);
1801 if (error || !ci.sector_count)
1804 * Remainder must be passed to submit_bio_noacct() so it gets handled
1805 * *after* bios already submitted have been completely processed.
1807 bio_trim(bio, io->sectors, ci.sector_count);
1808 trace_block_split(bio, bio->bi_iter.bi_sector);
1809 bio_inc_remaining(bio);
1810 submit_bio_noacct(bio);
1813 * Drop the extra reference count for non-POLLED bio, and hold one
1814 * reference for POLLED bio, which will be released in dm_poll_bio
1816 * Add every dm_io instance into the dm_io list head which is stored
1817 * in bio->bi_private, so that dm_poll_bio can poll them all.
1819 if (error || !ci.submit_as_polled) {
1821 * In case of submission failure, the extra reference for
1822 * submitting io isn't consumed yet
1825 atomic_dec(&io->io_count);
1826 dm_io_dec_pending(io, error);
1828 dm_queue_poll_io(bio, io);
1831 static void dm_submit_bio(struct bio *bio)
1833 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1835 struct dm_table *map;
1836 blk_opf_t bio_opf = bio->bi_opf;
1838 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1840 /* If suspended, or map not yet available, queue this IO for later */
1841 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1843 if (bio->bi_opf & REQ_NOWAIT)
1844 bio_wouldblock_error(bio);
1845 else if (bio->bi_opf & REQ_RAHEAD)
1852 dm_split_and_process_bio(md, map, bio);
1854 dm_put_live_table_bio(md, srcu_idx, bio_opf);
1857 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1860 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1862 /* don't poll if the mapped io is done */
1863 if (atomic_read(&io->io_count) > 1)
1864 bio_poll(&io->tio.clone, iob, flags);
1866 /* bio_poll holds the last reference */
1867 return atomic_read(&io->io_count) == 1;
1870 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1873 struct dm_io **head = dm_poll_list_head(bio);
1874 struct dm_io *list = *head;
1875 struct dm_io *tmp = NULL;
1876 struct dm_io *curr, *next;
1878 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1879 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1882 WARN_ON_ONCE(!list);
1885 * Restore .bi_private before possibly completing dm_io.
1887 * bio_poll() is only possible once @bio has been completely
1888 * submitted via submit_bio_noacct()'s depth-first submission.
1889 * So there is no dm_queue_poll_io() race associated with
1890 * clearing REQ_DM_POLL_LIST here.
1892 bio->bi_opf &= ~REQ_DM_POLL_LIST;
1893 bio->bi_private = list->data;
1895 for (curr = list, next = curr->next; curr; curr = next, next =
1896 curr ? curr->next : NULL) {
1897 if (dm_poll_dm_io(curr, iob, flags)) {
1899 * clone_endio() has already occurred, so no
1900 * error handling is needed here.
1902 __dm_io_dec_pending(curr);
1911 bio->bi_opf |= REQ_DM_POLL_LIST;
1912 /* Reset bio->bi_private to dm_io list head */
1920 *---------------------------------------------------------------
1921 * An IDR is used to keep track of allocated minor numbers.
1922 *---------------------------------------------------------------
1924 static void free_minor(int minor)
1926 spin_lock(&_minor_lock);
1927 idr_remove(&_minor_idr, minor);
1928 spin_unlock(&_minor_lock);
1932 * See if the device with a specific minor # is free.
1934 static int specific_minor(int minor)
1938 if (minor >= (1 << MINORBITS))
1941 idr_preload(GFP_KERNEL);
1942 spin_lock(&_minor_lock);
1944 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1946 spin_unlock(&_minor_lock);
1949 return r == -ENOSPC ? -EBUSY : r;
1953 static int next_free_minor(int *minor)
1957 idr_preload(GFP_KERNEL);
1958 spin_lock(&_minor_lock);
1960 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1962 spin_unlock(&_minor_lock);
1970 static const struct block_device_operations dm_blk_dops;
1971 static const struct block_device_operations dm_rq_blk_dops;
1972 static const struct dax_operations dm_dax_ops;
1974 static void dm_wq_work(struct work_struct *work);
1976 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1977 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1979 dm_destroy_crypto_profile(q->crypto_profile);
1982 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1984 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1987 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1989 static void cleanup_mapped_device(struct mapped_device *md)
1992 destroy_workqueue(md->wq);
1993 dm_free_md_mempools(md->mempools);
1996 dax_remove_host(md->disk);
1997 kill_dax(md->dax_dev);
1998 put_dax(md->dax_dev);
2002 dm_cleanup_zoned_dev(md);
2004 spin_lock(&_minor_lock);
2005 md->disk->private_data = NULL;
2006 spin_unlock(&_minor_lock);
2007 if (dm_get_md_type(md) != DM_TYPE_NONE) {
2008 struct table_device *td;
2011 list_for_each_entry(td, &md->table_devices, list) {
2012 bd_unlink_disk_holder(td->dm_dev.bdev,
2017 * Hold lock to make sure del_gendisk() won't concurrent
2018 * with open/close_table_device().
2020 mutex_lock(&md->table_devices_lock);
2021 del_gendisk(md->disk);
2022 mutex_unlock(&md->table_devices_lock);
2024 dm_queue_destroy_crypto_profile(md->queue);
2028 if (md->pending_io) {
2029 free_percpu(md->pending_io);
2030 md->pending_io = NULL;
2033 cleanup_srcu_struct(&md->io_barrier);
2035 mutex_destroy(&md->suspend_lock);
2036 mutex_destroy(&md->type_lock);
2037 mutex_destroy(&md->table_devices_lock);
2038 mutex_destroy(&md->swap_bios_lock);
2040 dm_mq_cleanup_mapped_device(md);
2044 * Allocate and initialise a blank device with a given minor.
2046 static struct mapped_device *alloc_dev(int minor)
2048 int r, numa_node_id = dm_get_numa_node();
2049 struct mapped_device *md;
2052 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2054 DMERR("unable to allocate device, out of memory.");
2058 if (!try_module_get(THIS_MODULE))
2059 goto bad_module_get;
2061 /* get a minor number for the dev */
2062 if (minor == DM_ANY_MINOR)
2063 r = next_free_minor(&minor);
2065 r = specific_minor(minor);
2069 r = init_srcu_struct(&md->io_barrier);
2071 goto bad_io_barrier;
2073 md->numa_node_id = numa_node_id;
2074 md->init_tio_pdu = false;
2075 md->type = DM_TYPE_NONE;
2076 mutex_init(&md->suspend_lock);
2077 mutex_init(&md->type_lock);
2078 mutex_init(&md->table_devices_lock);
2079 spin_lock_init(&md->deferred_lock);
2080 atomic_set(&md->holders, 1);
2081 atomic_set(&md->open_count, 0);
2082 atomic_set(&md->event_nr, 0);
2083 atomic_set(&md->uevent_seq, 0);
2084 INIT_LIST_HEAD(&md->uevent_list);
2085 INIT_LIST_HEAD(&md->table_devices);
2086 spin_lock_init(&md->uevent_lock);
2089 * default to bio-based until DM table is loaded and md->type
2090 * established. If request-based table is loaded: blk-mq will
2091 * override accordingly.
2093 md->disk = blk_alloc_disk(md->numa_node_id);
2096 md->queue = md->disk->queue;
2098 init_waitqueue_head(&md->wait);
2099 INIT_WORK(&md->work, dm_wq_work);
2100 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2101 init_waitqueue_head(&md->eventq);
2102 init_completion(&md->kobj_holder.completion);
2104 md->requeue_list = NULL;
2105 md->swap_bios = get_swap_bios();
2106 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2107 mutex_init(&md->swap_bios_lock);
2109 md->disk->major = _major;
2110 md->disk->first_minor = minor;
2111 md->disk->minors = 1;
2112 md->disk->flags |= GENHD_FL_NO_PART;
2113 md->disk->fops = &dm_blk_dops;
2114 md->disk->private_data = md;
2115 sprintf(md->disk->disk_name, "dm-%d", minor);
2117 if (IS_ENABLED(CONFIG_FS_DAX)) {
2118 md->dax_dev = alloc_dax(md, &dm_dax_ops);
2119 if (IS_ERR(md->dax_dev)) {
2123 set_dax_nocache(md->dax_dev);
2124 set_dax_nomc(md->dax_dev);
2125 if (dax_add_host(md->dax_dev, md->disk))
2129 format_dev_t(md->name, MKDEV(_major, minor));
2131 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2135 md->pending_io = alloc_percpu(unsigned long);
2136 if (!md->pending_io)
2139 r = dm_stats_init(&md->stats);
2143 /* Populate the mapping, nobody knows we exist yet */
2144 spin_lock(&_minor_lock);
2145 old_md = idr_replace(&_minor_idr, md, minor);
2146 spin_unlock(&_minor_lock);
2148 BUG_ON(old_md != MINOR_ALLOCED);
2153 cleanup_mapped_device(md);
2157 module_put(THIS_MODULE);
2163 static void unlock_fs(struct mapped_device *md);
2165 static void free_dev(struct mapped_device *md)
2167 int minor = MINOR(disk_devt(md->disk));
2171 cleanup_mapped_device(md);
2173 WARN_ON_ONCE(!list_empty(&md->table_devices));
2174 dm_stats_cleanup(&md->stats);
2177 module_put(THIS_MODULE);
2182 * Bind a table to the device.
2184 static void event_callback(void *context)
2186 unsigned long flags;
2188 struct mapped_device *md = context;
2190 spin_lock_irqsave(&md->uevent_lock, flags);
2191 list_splice_init(&md->uevent_list, &uevents);
2192 spin_unlock_irqrestore(&md->uevent_lock, flags);
2194 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2196 atomic_inc(&md->event_nr);
2197 wake_up(&md->eventq);
2198 dm_issue_global_event();
2202 * Returns old map, which caller must destroy.
2204 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2205 struct queue_limits *limits)
2207 struct dm_table *old_map;
2211 lockdep_assert_held(&md->suspend_lock);
2213 size = dm_table_get_size(t);
2216 * Wipe any geometry if the size of the table changed.
2218 if (size != dm_get_size(md))
2219 memset(&md->geometry, 0, sizeof(md->geometry));
2221 set_capacity(md->disk, size);
2223 dm_table_event_callback(t, event_callback, md);
2225 if (dm_table_request_based(t)) {
2227 * Leverage the fact that request-based DM targets are
2228 * immutable singletons - used to optimize dm_mq_queue_rq.
2230 md->immutable_target = dm_table_get_immutable_target(t);
2233 * There is no need to reload with request-based dm because the
2234 * size of front_pad doesn't change.
2236 * Note for future: If you are to reload bioset, prep-ed
2237 * requests in the queue may refer to bio from the old bioset,
2238 * so you must walk through the queue to unprep.
2240 if (!md->mempools) {
2241 md->mempools = t->mempools;
2246 * The md may already have mempools that need changing.
2247 * If so, reload bioset because front_pad may have changed
2248 * because a different table was loaded.
2250 dm_free_md_mempools(md->mempools);
2251 md->mempools = t->mempools;
2255 ret = dm_table_set_restrictions(t, md->queue, limits);
2257 old_map = ERR_PTR(ret);
2261 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2262 rcu_assign_pointer(md->map, (void *)t);
2263 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2272 * Returns unbound table for the caller to free.
2274 static struct dm_table *__unbind(struct mapped_device *md)
2276 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2281 dm_table_event_callback(map, NULL, NULL);
2282 RCU_INIT_POINTER(md->map, NULL);
2289 * Constructor for a new device.
2291 int dm_create(int minor, struct mapped_device **result)
2293 struct mapped_device *md;
2295 md = alloc_dev(minor);
2299 dm_ima_reset_data(md);
2306 * Functions to manage md->type.
2307 * All are required to hold md->type_lock.
2309 void dm_lock_md_type(struct mapped_device *md)
2311 mutex_lock(&md->type_lock);
2314 void dm_unlock_md_type(struct mapped_device *md)
2316 mutex_unlock(&md->type_lock);
2319 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2321 BUG_ON(!mutex_is_locked(&md->type_lock));
2325 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2330 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2332 return md->immutable_target_type;
2336 * Setup the DM device's queue based on md's type
2338 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2340 enum dm_queue_mode type = dm_table_get_type(t);
2341 struct queue_limits limits;
2342 struct table_device *td;
2346 case DM_TYPE_REQUEST_BASED:
2347 md->disk->fops = &dm_rq_blk_dops;
2348 r = dm_mq_init_request_queue(md, t);
2350 DMERR("Cannot initialize queue for request-based dm mapped device");
2354 case DM_TYPE_BIO_BASED:
2355 case DM_TYPE_DAX_BIO_BASED:
2356 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2363 r = dm_calculate_queue_limits(t, &limits);
2365 DMERR("Cannot calculate initial queue limits");
2368 r = dm_table_set_restrictions(t, md->queue, &limits);
2373 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2374 * with open_table_device() and close_table_device().
2376 mutex_lock(&md->table_devices_lock);
2377 r = add_disk(md->disk);
2378 mutex_unlock(&md->table_devices_lock);
2383 * Register the holder relationship for devices added before the disk
2386 list_for_each_entry(td, &md->table_devices, list) {
2387 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2389 goto out_undo_holders;
2392 r = dm_sysfs_init(md);
2394 goto out_undo_holders;
2400 list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2401 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2402 mutex_lock(&md->table_devices_lock);
2403 del_gendisk(md->disk);
2404 mutex_unlock(&md->table_devices_lock);
2408 struct mapped_device *dm_get_md(dev_t dev)
2410 struct mapped_device *md;
2411 unsigned int minor = MINOR(dev);
2413 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2416 spin_lock(&_minor_lock);
2418 md = idr_find(&_minor_idr, minor);
2419 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2420 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2426 spin_unlock(&_minor_lock);
2430 EXPORT_SYMBOL_GPL(dm_get_md);
2432 void *dm_get_mdptr(struct mapped_device *md)
2434 return md->interface_ptr;
2437 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2439 md->interface_ptr = ptr;
2442 void dm_get(struct mapped_device *md)
2444 atomic_inc(&md->holders);
2445 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2448 int dm_hold(struct mapped_device *md)
2450 spin_lock(&_minor_lock);
2451 if (test_bit(DMF_FREEING, &md->flags)) {
2452 spin_unlock(&_minor_lock);
2456 spin_unlock(&_minor_lock);
2459 EXPORT_SYMBOL_GPL(dm_hold);
2461 const char *dm_device_name(struct mapped_device *md)
2465 EXPORT_SYMBOL_GPL(dm_device_name);
2467 static void __dm_destroy(struct mapped_device *md, bool wait)
2469 struct dm_table *map;
2474 spin_lock(&_minor_lock);
2475 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2476 set_bit(DMF_FREEING, &md->flags);
2477 spin_unlock(&_minor_lock);
2479 blk_mark_disk_dead(md->disk);
2482 * Take suspend_lock so that presuspend and postsuspend methods
2483 * do not race with internal suspend.
2485 mutex_lock(&md->suspend_lock);
2486 map = dm_get_live_table(md, &srcu_idx);
2487 if (!dm_suspended_md(md)) {
2488 dm_table_presuspend_targets(map);
2489 set_bit(DMF_SUSPENDED, &md->flags);
2490 set_bit(DMF_POST_SUSPENDING, &md->flags);
2491 dm_table_postsuspend_targets(map);
2493 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2494 dm_put_live_table(md, srcu_idx);
2495 mutex_unlock(&md->suspend_lock);
2498 * Rare, but there may be I/O requests still going to complete,
2499 * for example. Wait for all references to disappear.
2500 * No one should increment the reference count of the mapped_device,
2501 * after the mapped_device state becomes DMF_FREEING.
2504 while (atomic_read(&md->holders))
2506 else if (atomic_read(&md->holders))
2507 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2508 dm_device_name(md), atomic_read(&md->holders));
2510 dm_table_destroy(__unbind(md));
2514 void dm_destroy(struct mapped_device *md)
2516 __dm_destroy(md, true);
2519 void dm_destroy_immediate(struct mapped_device *md)
2521 __dm_destroy(md, false);
2524 void dm_put(struct mapped_device *md)
2526 atomic_dec(&md->holders);
2528 EXPORT_SYMBOL_GPL(dm_put);
2530 static bool dm_in_flight_bios(struct mapped_device *md)
2533 unsigned long sum = 0;
2535 for_each_possible_cpu(cpu)
2536 sum += *per_cpu_ptr(md->pending_io, cpu);
2541 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2547 prepare_to_wait(&md->wait, &wait, task_state);
2549 if (!dm_in_flight_bios(md))
2552 if (signal_pending_state(task_state, current)) {
2559 finish_wait(&md->wait, &wait);
2566 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2570 if (!queue_is_mq(md->queue))
2571 return dm_wait_for_bios_completion(md, task_state);
2574 if (!blk_mq_queue_inflight(md->queue))
2577 if (signal_pending_state(task_state, current)) {
2589 * Process the deferred bios
2591 static void dm_wq_work(struct work_struct *work)
2593 struct mapped_device *md = container_of(work, struct mapped_device, work);
2596 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2597 spin_lock_irq(&md->deferred_lock);
2598 bio = bio_list_pop(&md->deferred);
2599 spin_unlock_irq(&md->deferred_lock);
2604 submit_bio_noacct(bio);
2609 static void dm_queue_flush(struct mapped_device *md)
2611 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2612 smp_mb__after_atomic();
2613 queue_work(md->wq, &md->work);
2617 * Swap in a new table, returning the old one for the caller to destroy.
2619 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2621 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2622 struct queue_limits limits;
2625 mutex_lock(&md->suspend_lock);
2627 /* device must be suspended */
2628 if (!dm_suspended_md(md))
2632 * If the new table has no data devices, retain the existing limits.
2633 * This helps multipath with queue_if_no_path if all paths disappear,
2634 * then new I/O is queued based on these limits, and then some paths
2637 if (dm_table_has_no_data_devices(table)) {
2638 live_map = dm_get_live_table_fast(md);
2640 limits = md->queue->limits;
2641 dm_put_live_table_fast(md);
2645 r = dm_calculate_queue_limits(table, &limits);
2652 map = __bind(md, table, &limits);
2653 dm_issue_global_event();
2656 mutex_unlock(&md->suspend_lock);
2661 * Functions to lock and unlock any filesystem running on the
2664 static int lock_fs(struct mapped_device *md)
2668 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2670 r = freeze_bdev(md->disk->part0);
2672 set_bit(DMF_FROZEN, &md->flags);
2676 static void unlock_fs(struct mapped_device *md)
2678 if (!test_bit(DMF_FROZEN, &md->flags))
2680 thaw_bdev(md->disk->part0);
2681 clear_bit(DMF_FROZEN, &md->flags);
2685 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2686 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2687 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2689 * If __dm_suspend returns 0, the device is completely quiescent
2690 * now. There is no request-processing activity. All new requests
2691 * are being added to md->deferred list.
2693 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2694 unsigned int suspend_flags, unsigned int task_state,
2695 int dmf_suspended_flag)
2697 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2698 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2701 lockdep_assert_held(&md->suspend_lock);
2704 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2705 * This flag is cleared before dm_suspend returns.
2708 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2710 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2713 * This gets reverted if there's an error later and the targets
2714 * provide the .presuspend_undo hook.
2716 dm_table_presuspend_targets(map);
2719 * Flush I/O to the device.
2720 * Any I/O submitted after lock_fs() may not be flushed.
2721 * noflush takes precedence over do_lockfs.
2722 * (lock_fs() flushes I/Os and waits for them to complete.)
2724 if (!noflush && do_lockfs) {
2727 dm_table_presuspend_undo_targets(map);
2733 * Here we must make sure that no processes are submitting requests
2734 * to target drivers i.e. no one may be executing
2735 * dm_split_and_process_bio from dm_submit_bio.
2737 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2738 * we take the write lock. To prevent any process from reentering
2739 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2740 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2741 * flush_workqueue(md->wq).
2743 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2745 synchronize_srcu(&md->io_barrier);
2748 * Stop md->queue before flushing md->wq in case request-based
2749 * dm defers requests to md->wq from md->queue.
2751 if (dm_request_based(md))
2752 dm_stop_queue(md->queue);
2754 flush_workqueue(md->wq);
2757 * At this point no more requests are entering target request routines.
2758 * We call dm_wait_for_completion to wait for all existing requests
2761 r = dm_wait_for_completion(md, task_state);
2763 set_bit(dmf_suspended_flag, &md->flags);
2766 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2768 synchronize_srcu(&md->io_barrier);
2770 /* were we interrupted ? */
2774 if (dm_request_based(md))
2775 dm_start_queue(md->queue);
2778 dm_table_presuspend_undo_targets(map);
2779 /* pushback list is already flushed, so skip flush */
2786 * We need to be able to change a mapping table under a mounted
2787 * filesystem. For example we might want to move some data in
2788 * the background. Before the table can be swapped with
2789 * dm_bind_table, dm_suspend must be called to flush any in
2790 * flight bios and ensure that any further io gets deferred.
2793 * Suspend mechanism in request-based dm.
2795 * 1. Flush all I/Os by lock_fs() if needed.
2796 * 2. Stop dispatching any I/O by stopping the request_queue.
2797 * 3. Wait for all in-flight I/Os to be completed or requeued.
2799 * To abort suspend, start the request_queue.
2801 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2803 struct dm_table *map = NULL;
2807 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2809 if (dm_suspended_md(md)) {
2814 if (dm_suspended_internally_md(md)) {
2815 /* already internally suspended, wait for internal resume */
2816 mutex_unlock(&md->suspend_lock);
2817 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2823 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2825 /* avoid deadlock with fs/namespace.c:do_mount() */
2826 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2829 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2833 set_bit(DMF_POST_SUSPENDING, &md->flags);
2834 dm_table_postsuspend_targets(map);
2835 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2838 mutex_unlock(&md->suspend_lock);
2842 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2845 int r = dm_table_resume_targets(map);
2854 * Flushing deferred I/Os must be done after targets are resumed
2855 * so that mapping of targets can work correctly.
2856 * Request-based dm is queueing the deferred I/Os in its request_queue.
2858 if (dm_request_based(md))
2859 dm_start_queue(md->queue);
2866 int dm_resume(struct mapped_device *md)
2869 struct dm_table *map = NULL;
2873 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2875 if (!dm_suspended_md(md))
2878 if (dm_suspended_internally_md(md)) {
2879 /* already internally suspended, wait for internal resume */
2880 mutex_unlock(&md->suspend_lock);
2881 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2887 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2888 if (!map || !dm_table_get_size(map))
2891 r = __dm_resume(md, map);
2895 clear_bit(DMF_SUSPENDED, &md->flags);
2897 mutex_unlock(&md->suspend_lock);
2903 * Internal suspend/resume works like userspace-driven suspend. It waits
2904 * until all bios finish and prevents issuing new bios to the target drivers.
2905 * It may be used only from the kernel.
2908 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2910 struct dm_table *map = NULL;
2912 lockdep_assert_held(&md->suspend_lock);
2914 if (md->internal_suspend_count++)
2915 return; /* nested internal suspend */
2917 if (dm_suspended_md(md)) {
2918 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2919 return; /* nest suspend */
2922 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2925 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2926 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2927 * would require changing .presuspend to return an error -- avoid this
2928 * until there is a need for more elaborate variants of internal suspend.
2930 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2931 DMF_SUSPENDED_INTERNALLY);
2933 set_bit(DMF_POST_SUSPENDING, &md->flags);
2934 dm_table_postsuspend_targets(map);
2935 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2938 static void __dm_internal_resume(struct mapped_device *md)
2940 BUG_ON(!md->internal_suspend_count);
2942 if (--md->internal_suspend_count)
2943 return; /* resume from nested internal suspend */
2945 if (dm_suspended_md(md))
2946 goto done; /* resume from nested suspend */
2949 * NOTE: existing callers don't need to call dm_table_resume_targets
2950 * (which may fail -- so best to avoid it for now by passing NULL map)
2952 (void) __dm_resume(md, NULL);
2955 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2956 smp_mb__after_atomic();
2957 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2960 void dm_internal_suspend_noflush(struct mapped_device *md)
2962 mutex_lock(&md->suspend_lock);
2963 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2964 mutex_unlock(&md->suspend_lock);
2966 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2968 void dm_internal_resume(struct mapped_device *md)
2970 mutex_lock(&md->suspend_lock);
2971 __dm_internal_resume(md);
2972 mutex_unlock(&md->suspend_lock);
2974 EXPORT_SYMBOL_GPL(dm_internal_resume);
2977 * Fast variants of internal suspend/resume hold md->suspend_lock,
2978 * which prevents interaction with userspace-driven suspend.
2981 void dm_internal_suspend_fast(struct mapped_device *md)
2983 mutex_lock(&md->suspend_lock);
2984 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2987 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2988 synchronize_srcu(&md->io_barrier);
2989 flush_workqueue(md->wq);
2990 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2992 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2994 void dm_internal_resume_fast(struct mapped_device *md)
2996 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3002 mutex_unlock(&md->suspend_lock);
3004 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3007 *---------------------------------------------------------------
3008 * Event notification.
3009 *---------------------------------------------------------------
3011 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3012 unsigned int cookie, bool need_resize_uevent)
3015 unsigned int noio_flag;
3016 char udev_cookie[DM_COOKIE_LENGTH];
3017 char *envp[3] = { NULL, NULL, NULL };
3018 char **envpp = envp;
3020 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3021 DM_COOKIE_ENV_VAR_NAME, cookie);
3022 *envpp++ = udev_cookie;
3024 if (need_resize_uevent) {
3025 *envpp++ = "RESIZE=1";
3028 noio_flag = memalloc_noio_save();
3030 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3032 memalloc_noio_restore(noio_flag);
3037 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3039 return atomic_add_return(1, &md->uevent_seq);
3042 uint32_t dm_get_event_nr(struct mapped_device *md)
3044 return atomic_read(&md->event_nr);
3047 int dm_wait_event(struct mapped_device *md, int event_nr)
3049 return wait_event_interruptible(md->eventq,
3050 (event_nr != atomic_read(&md->event_nr)));
3053 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3055 unsigned long flags;
3057 spin_lock_irqsave(&md->uevent_lock, flags);
3058 list_add(elist, &md->uevent_list);
3059 spin_unlock_irqrestore(&md->uevent_lock, flags);
3063 * The gendisk is only valid as long as you have a reference
3066 struct gendisk *dm_disk(struct mapped_device *md)
3070 EXPORT_SYMBOL_GPL(dm_disk);
3072 struct kobject *dm_kobject(struct mapped_device *md)
3074 return &md->kobj_holder.kobj;
3077 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3079 struct mapped_device *md;
3081 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3083 spin_lock(&_minor_lock);
3084 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3090 spin_unlock(&_minor_lock);
3095 int dm_suspended_md(struct mapped_device *md)
3097 return test_bit(DMF_SUSPENDED, &md->flags);
3100 static int dm_post_suspending_md(struct mapped_device *md)
3102 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3105 int dm_suspended_internally_md(struct mapped_device *md)
3107 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3110 int dm_test_deferred_remove_flag(struct mapped_device *md)
3112 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3115 int dm_suspended(struct dm_target *ti)
3117 return dm_suspended_md(ti->table->md);
3119 EXPORT_SYMBOL_GPL(dm_suspended);
3121 int dm_post_suspending(struct dm_target *ti)
3123 return dm_post_suspending_md(ti->table->md);
3125 EXPORT_SYMBOL_GPL(dm_post_suspending);
3127 int dm_noflush_suspending(struct dm_target *ti)
3129 return __noflush_suspending(ti->table->md);
3131 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3133 void dm_free_md_mempools(struct dm_md_mempools *pools)
3138 bioset_exit(&pools->bs);
3139 bioset_exit(&pools->io_bs);
3152 struct pr_keys *read_keys;
3153 struct pr_held_reservation *rsv;
3156 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3159 struct mapped_device *md = bdev->bd_disk->private_data;
3160 struct dm_table *table;
3161 struct dm_target *ti;
3162 int ret = -ENOTTY, srcu_idx;
3164 table = dm_get_live_table(md, &srcu_idx);
3165 if (!table || !dm_table_get_size(table))
3168 /* We only support devices that have a single target */
3169 if (table->num_targets != 1)
3171 ti = dm_table_get_target(table, 0);
3173 if (dm_suspended_md(md)) {
3179 if (!ti->type->iterate_devices)
3182 ti->type->iterate_devices(ti, fn, pr);
3185 dm_put_live_table(md, srcu_idx);
3190 * For register / unregister we need to manually call out to every path.
3192 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3193 sector_t start, sector_t len, void *data)
3195 struct dm_pr *pr = data;
3196 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3199 if (!ops || !ops->pr_register) {
3200 pr->ret = -EOPNOTSUPP;
3204 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3217 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3229 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3231 /* Didn't even get to register a path */
3242 /* unregister all paths if we failed to register any path */
3243 pr.old_key = new_key;
3246 pr.fail_early = false;
3247 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3252 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3253 sector_t start, sector_t len, void *data)
3255 struct dm_pr *pr = data;
3256 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3258 if (!ops || !ops->pr_reserve) {
3259 pr->ret = -EOPNOTSUPP;
3263 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3270 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3277 .fail_early = false,
3282 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3290 * If there is a non-All Registrants type of reservation, the release must be
3291 * sent down the holding path. For the cases where there is no reservation or
3292 * the path is not the holder the device will also return success, so we must
3293 * try each path to make sure we got the correct path.
3295 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3296 sector_t start, sector_t len, void *data)
3298 struct dm_pr *pr = data;
3299 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3301 if (!ops || !ops->pr_release) {
3302 pr->ret = -EOPNOTSUPP;
3306 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3313 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3318 .fail_early = false,
3322 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3329 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3330 sector_t start, sector_t len, void *data)
3332 struct dm_pr *pr = data;
3333 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3335 if (!ops || !ops->pr_preempt) {
3336 pr->ret = -EOPNOTSUPP;
3340 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3348 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3349 enum pr_type type, bool abort)
3355 .fail_early = false,
3359 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3366 static int dm_pr_clear(struct block_device *bdev, u64 key)
3368 struct mapped_device *md = bdev->bd_disk->private_data;
3369 const struct pr_ops *ops;
3372 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3376 ops = bdev->bd_disk->fops->pr_ops;
3377 if (ops && ops->pr_clear)
3378 r = ops->pr_clear(bdev, key);
3382 dm_unprepare_ioctl(md, srcu_idx);
3386 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3387 sector_t start, sector_t len, void *data)
3389 struct dm_pr *pr = data;
3390 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3392 if (!ops || !ops->pr_read_keys) {
3393 pr->ret = -EOPNOTSUPP;
3397 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3404 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3411 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3418 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3419 sector_t start, sector_t len, void *data)
3421 struct dm_pr *pr = data;
3422 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3424 if (!ops || !ops->pr_read_reservation) {
3425 pr->ret = -EOPNOTSUPP;
3429 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3436 static int dm_pr_read_reservation(struct block_device *bdev,
3437 struct pr_held_reservation *rsv)
3444 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3451 static const struct pr_ops dm_pr_ops = {
3452 .pr_register = dm_pr_register,
3453 .pr_reserve = dm_pr_reserve,
3454 .pr_release = dm_pr_release,
3455 .pr_preempt = dm_pr_preempt,
3456 .pr_clear = dm_pr_clear,
3457 .pr_read_keys = dm_pr_read_keys,
3458 .pr_read_reservation = dm_pr_read_reservation,
3461 static const struct block_device_operations dm_blk_dops = {
3462 .submit_bio = dm_submit_bio,
3463 .poll_bio = dm_poll_bio,
3464 .open = dm_blk_open,
3465 .release = dm_blk_close,
3466 .ioctl = dm_blk_ioctl,
3467 .getgeo = dm_blk_getgeo,
3468 .report_zones = dm_blk_report_zones,
3469 .pr_ops = &dm_pr_ops,
3470 .owner = THIS_MODULE
3473 static const struct block_device_operations dm_rq_blk_dops = {
3474 .open = dm_blk_open,
3475 .release = dm_blk_close,
3476 .ioctl = dm_blk_ioctl,
3477 .getgeo = dm_blk_getgeo,
3478 .pr_ops = &dm_pr_ops,
3479 .owner = THIS_MODULE
3482 static const struct dax_operations dm_dax_ops = {
3483 .direct_access = dm_dax_direct_access,
3484 .zero_page_range = dm_dax_zero_page_range,
3485 .recovery_write = dm_dax_recovery_write,
3491 module_init(dm_init);
3492 module_exit(dm_exit);
3494 module_param(major, uint, 0);
3495 MODULE_PARM_DESC(major, "The major number of the device mapper");
3497 module_param(reserved_bio_based_ios, uint, 0644);
3498 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3500 module_param(dm_numa_node, int, 0644);
3501 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3503 module_param(swap_bios, int, 0644);
3504 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3506 MODULE_DESCRIPTION(DM_NAME " driver");
3508 MODULE_LICENSE("GPL");