1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
29 #include <trace/events/f2fs.h>
31 #define NUM_PREALLOC_POST_READ_CTXS 128
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
40 int __init f2fs_init_bioset(void)
42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS))
48 void f2fs_destroy_bioset(void)
50 bioset_exit(&f2fs_bioset);
53 static bool __is_cp_guaranteed(struct page *page)
55 struct address_space *mapping = page->mapping;
57 struct f2fs_sb_info *sbi;
62 inode = mapping->host;
63 sbi = F2FS_I_SB(inode);
65 if (inode->i_ino == F2FS_META_INO(sbi) ||
66 inode->i_ino == F2FS_NODE_INO(sbi) ||
67 S_ISDIR(inode->i_mode))
70 if (f2fs_is_compressed_page(page))
72 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
73 page_private_gcing(page))
78 static enum count_type __read_io_type(struct page *page)
80 struct address_space *mapping = page_file_mapping(page);
83 struct inode *inode = mapping->host;
84 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
86 if (inode->i_ino == F2FS_META_INO(sbi))
89 if (inode->i_ino == F2FS_NODE_INO(sbi))
95 /* postprocessing steps for read bios */
96 enum bio_post_read_step {
97 #ifdef CONFIG_FS_ENCRYPTION
98 STEP_DECRYPT = 1 << 0,
100 STEP_DECRYPT = 0, /* compile out the decryption-related code */
102 #ifdef CONFIG_F2FS_FS_COMPRESSION
103 STEP_DECOMPRESS = 1 << 1,
105 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
107 #ifdef CONFIG_FS_VERITY
108 STEP_VERITY = 1 << 2,
110 STEP_VERITY = 0, /* compile out the verity-related code */
114 struct bio_post_read_ctx {
116 struct f2fs_sb_info *sbi;
117 struct work_struct work;
118 unsigned int enabled_steps;
122 static void f2fs_finish_read_bio(struct bio *bio)
125 struct bvec_iter_all iter_all;
128 * Update and unlock the bio's pagecache pages, and put the
129 * decompression context for any compressed pages.
131 bio_for_each_segment_all(bv, bio, iter_all) {
132 struct page *page = bv->bv_page;
134 if (f2fs_is_compressed_page(page)) {
136 f2fs_end_read_compressed_page(page, true, 0);
137 f2fs_put_page_dic(page);
141 /* PG_error was set if decryption or verity failed. */
142 if (bio->bi_status || PageError(page)) {
143 ClearPageUptodate(page);
144 /* will re-read again later */
145 ClearPageError(page);
147 SetPageUptodate(page);
149 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
154 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
158 static void f2fs_verify_bio(struct work_struct *work)
160 struct bio_post_read_ctx *ctx =
161 container_of(work, struct bio_post_read_ctx, work);
162 struct bio *bio = ctx->bio;
163 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
166 * fsverity_verify_bio() may call readahead() again, and while verity
167 * will be disabled for this, decryption and/or decompression may still
168 * be needed, resulting in another bio_post_read_ctx being allocated.
169 * So to prevent deadlocks we need to release the current ctx to the
170 * mempool first. This assumes that verity is the last post-read step.
172 mempool_free(ctx, bio_post_read_ctx_pool);
173 bio->bi_private = NULL;
176 * Verify the bio's pages with fs-verity. Exclude compressed pages,
177 * as those were handled separately by f2fs_end_read_compressed_page().
179 if (may_have_compressed_pages) {
181 struct bvec_iter_all iter_all;
183 bio_for_each_segment_all(bv, bio, iter_all) {
184 struct page *page = bv->bv_page;
186 if (!f2fs_is_compressed_page(page) &&
187 !PageError(page) && !fsverity_verify_page(page))
191 fsverity_verify_bio(bio);
194 f2fs_finish_read_bio(bio);
198 * If the bio's data needs to be verified with fs-verity, then enqueue the
199 * verity work for the bio. Otherwise finish the bio now.
201 * Note that to avoid deadlocks, the verity work can't be done on the
202 * decryption/decompression workqueue. This is because verifying the data pages
203 * can involve reading verity metadata pages from the file, and these verity
204 * metadata pages may be encrypted and/or compressed.
206 static void f2fs_verify_and_finish_bio(struct bio *bio)
208 struct bio_post_read_ctx *ctx = bio->bi_private;
210 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
211 INIT_WORK(&ctx->work, f2fs_verify_bio);
212 fsverity_enqueue_verify_work(&ctx->work);
214 f2fs_finish_read_bio(bio);
219 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
220 * remaining page was read by @ctx->bio.
222 * Note that a bio may span clusters (even a mix of compressed and uncompressed
223 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
224 * that the bio includes at least one compressed page. The actual decompression
225 * is done on a per-cluster basis, not a per-bio basis.
227 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
230 struct bvec_iter_all iter_all;
231 bool all_compressed = true;
232 block_t blkaddr = ctx->fs_blkaddr;
234 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
235 struct page *page = bv->bv_page;
237 /* PG_error was set if decryption failed. */
238 if (f2fs_is_compressed_page(page))
239 f2fs_end_read_compressed_page(page, PageError(page),
242 all_compressed = false;
248 * Optimization: if all the bio's pages are compressed, then scheduling
249 * the per-bio verity work is unnecessary, as verity will be fully
250 * handled at the compression cluster level.
253 ctx->enabled_steps &= ~STEP_VERITY;
256 static void f2fs_post_read_work(struct work_struct *work)
258 struct bio_post_read_ctx *ctx =
259 container_of(work, struct bio_post_read_ctx, work);
261 if (ctx->enabled_steps & STEP_DECRYPT)
262 fscrypt_decrypt_bio(ctx->bio);
264 if (ctx->enabled_steps & STEP_DECOMPRESS)
265 f2fs_handle_step_decompress(ctx);
267 f2fs_verify_and_finish_bio(ctx->bio);
270 static void f2fs_read_end_io(struct bio *bio)
272 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
273 struct bio_post_read_ctx *ctx;
275 iostat_update_and_unbind_ctx(bio, 0);
276 ctx = bio->bi_private;
278 if (time_to_inject(sbi, FAULT_READ_IO)) {
279 f2fs_show_injection_info(sbi, FAULT_READ_IO);
280 bio->bi_status = BLK_STS_IOERR;
283 if (bio->bi_status) {
284 f2fs_finish_read_bio(bio);
288 if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
289 INIT_WORK(&ctx->work, f2fs_post_read_work);
290 queue_work(ctx->sbi->post_read_wq, &ctx->work);
292 f2fs_verify_and_finish_bio(bio);
296 static void f2fs_write_end_io(struct bio *bio)
298 struct f2fs_sb_info *sbi;
299 struct bio_vec *bvec;
300 struct bvec_iter_all iter_all;
302 iostat_update_and_unbind_ctx(bio, 1);
303 sbi = bio->bi_private;
305 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
306 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
307 bio->bi_status = BLK_STS_IOERR;
310 bio_for_each_segment_all(bvec, bio, iter_all) {
311 struct page *page = bvec->bv_page;
312 enum count_type type = WB_DATA_TYPE(page);
314 if (page_private_dummy(page)) {
315 clear_page_private_dummy(page);
317 mempool_free(page, sbi->write_io_dummy);
319 if (unlikely(bio->bi_status))
320 f2fs_stop_checkpoint(sbi, true);
324 fscrypt_finalize_bounce_page(&page);
326 #ifdef CONFIG_F2FS_FS_COMPRESSION
327 if (f2fs_is_compressed_page(page)) {
328 f2fs_compress_write_end_io(bio, page);
333 if (unlikely(bio->bi_status)) {
334 mapping_set_error(page->mapping, -EIO);
335 if (type == F2FS_WB_CP_DATA)
336 f2fs_stop_checkpoint(sbi, true);
339 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
340 page->index != nid_of_node(page));
342 dec_page_count(sbi, type);
343 if (f2fs_in_warm_node_list(sbi, page))
344 f2fs_del_fsync_node_entry(sbi, page);
345 clear_page_private_gcing(page);
346 end_page_writeback(page);
348 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
349 wq_has_sleeper(&sbi->cp_wait))
350 wake_up(&sbi->cp_wait);
355 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
356 block_t blk_addr, sector_t *sector)
358 struct block_device *bdev = sbi->sb->s_bdev;
361 if (f2fs_is_multi_device(sbi)) {
362 for (i = 0; i < sbi->s_ndevs; i++) {
363 if (FDEV(i).start_blk <= blk_addr &&
364 FDEV(i).end_blk >= blk_addr) {
365 blk_addr -= FDEV(i).start_blk;
373 *sector = SECTOR_FROM_BLOCK(blk_addr);
377 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
381 if (!f2fs_is_multi_device(sbi))
384 for (i = 0; i < sbi->s_ndevs; i++)
385 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
390 static unsigned int f2fs_io_flags(struct f2fs_io_info *fio)
392 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
393 unsigned int fua_flag, meta_flag, io_flag;
394 unsigned int op_flags = 0;
396 if (fio->op != REQ_OP_WRITE)
398 if (fio->type == DATA)
399 io_flag = fio->sbi->data_io_flag;
400 else if (fio->type == NODE)
401 io_flag = fio->sbi->node_io_flag;
405 fua_flag = io_flag & temp_mask;
406 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
409 * data/node io flag bits per temp:
410 * REQ_META | REQ_FUA |
411 * 5 | 4 | 3 | 2 | 1 | 0 |
412 * Cold | Warm | Hot | Cold | Warm | Hot |
414 if ((1 << fio->temp) & meta_flag)
415 op_flags |= REQ_META;
416 if ((1 << fio->temp) & fua_flag)
421 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
423 struct f2fs_sb_info *sbi = fio->sbi;
424 struct block_device *bdev;
428 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
429 bio = bio_alloc_bioset(bdev, npages,
430 fio->op | fio->op_flags | f2fs_io_flags(fio),
431 GFP_NOIO, &f2fs_bioset);
432 bio->bi_iter.bi_sector = sector;
433 if (is_read_io(fio->op)) {
434 bio->bi_end_io = f2fs_read_end_io;
435 bio->bi_private = NULL;
437 bio->bi_end_io = f2fs_write_end_io;
438 bio->bi_private = sbi;
440 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
443 wbc_init_bio(fio->io_wbc, bio);
448 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
450 const struct f2fs_io_info *fio,
454 * The f2fs garbage collector sets ->encrypted_page when it wants to
455 * read/write raw data without encryption.
457 if (!fio || !fio->encrypted_page)
458 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
461 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
463 const struct f2fs_io_info *fio)
466 * The f2fs garbage collector sets ->encrypted_page when it wants to
467 * read/write raw data without encryption.
469 if (fio && fio->encrypted_page)
470 return !bio_has_crypt_ctx(bio);
472 return fscrypt_mergeable_bio(bio, inode, next_idx);
475 static inline void __submit_bio(struct f2fs_sb_info *sbi,
476 struct bio *bio, enum page_type type)
478 if (!is_read_io(bio_op(bio))) {
481 if (type != DATA && type != NODE)
484 if (f2fs_lfs_mode(sbi) && current->plug)
485 blk_finish_plug(current->plug);
487 if (!F2FS_IO_ALIGNED(sbi))
490 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
491 start %= F2FS_IO_SIZE(sbi);
496 /* fill dummy pages */
497 for (; start < F2FS_IO_SIZE(sbi); start++) {
499 mempool_alloc(sbi->write_io_dummy,
500 GFP_NOIO | __GFP_NOFAIL);
501 f2fs_bug_on(sbi, !page);
505 zero_user_segment(page, 0, PAGE_SIZE);
506 set_page_private_dummy(page);
508 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
512 * In the NODE case, we lose next block address chain. So, we
513 * need to do checkpoint in f2fs_sync_file.
516 set_sbi_flag(sbi, SBI_NEED_CP);
519 if (is_read_io(bio_op(bio)))
520 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
522 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
524 iostat_update_submit_ctx(bio, type);
528 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
529 struct bio *bio, enum page_type type)
531 __submit_bio(sbi, bio, type);
534 static void __submit_merged_bio(struct f2fs_bio_info *io)
536 struct f2fs_io_info *fio = &io->fio;
541 if (is_read_io(fio->op))
542 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
544 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
546 __submit_bio(io->sbi, io->bio, fio->type);
550 static bool __has_merged_page(struct bio *bio, struct inode *inode,
551 struct page *page, nid_t ino)
553 struct bio_vec *bvec;
554 struct bvec_iter_all iter_all;
559 if (!inode && !page && !ino)
562 bio_for_each_segment_all(bvec, bio, iter_all) {
563 struct page *target = bvec->bv_page;
565 if (fscrypt_is_bounce_page(target)) {
566 target = fscrypt_pagecache_page(target);
570 if (f2fs_is_compressed_page(target)) {
571 target = f2fs_compress_control_page(target);
576 if (inode && inode == target->mapping->host)
578 if (page && page == target)
580 if (ino && ino == ino_of_node(target))
587 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
591 for (i = 0; i < NR_PAGE_TYPE; i++) {
592 int n = (i == META) ? 1 : NR_TEMP_TYPE;
595 sbi->write_io[i] = f2fs_kmalloc(sbi,
596 array_size(n, sizeof(struct f2fs_bio_info)),
598 if (!sbi->write_io[i])
601 for (j = HOT; j < n; j++) {
602 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
603 sbi->write_io[i][j].sbi = sbi;
604 sbi->write_io[i][j].bio = NULL;
605 spin_lock_init(&sbi->write_io[i][j].io_lock);
606 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
607 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
608 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
615 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
616 enum page_type type, enum temp_type temp)
618 enum page_type btype = PAGE_TYPE_OF_BIO(type);
619 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
621 f2fs_down_write(&io->io_rwsem);
623 /* change META to META_FLUSH in the checkpoint procedure */
624 if (type >= META_FLUSH) {
625 io->fio.type = META_FLUSH;
626 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
627 if (!test_opt(sbi, NOBARRIER))
628 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
630 __submit_merged_bio(io);
631 f2fs_up_write(&io->io_rwsem);
634 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
635 struct inode *inode, struct page *page,
636 nid_t ino, enum page_type type, bool force)
641 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
643 enum page_type btype = PAGE_TYPE_OF_BIO(type);
644 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
646 f2fs_down_read(&io->io_rwsem);
647 ret = __has_merged_page(io->bio, inode, page, ino);
648 f2fs_up_read(&io->io_rwsem);
651 __f2fs_submit_merged_write(sbi, type, temp);
653 /* TODO: use HOT temp only for meta pages now. */
659 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
661 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
664 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
665 struct inode *inode, struct page *page,
666 nid_t ino, enum page_type type)
668 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
671 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
673 f2fs_submit_merged_write(sbi, DATA);
674 f2fs_submit_merged_write(sbi, NODE);
675 f2fs_submit_merged_write(sbi, META);
679 * Fill the locked page with data located in the block address.
680 * A caller needs to unlock the page on failure.
682 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
685 struct page *page = fio->encrypted_page ?
686 fio->encrypted_page : fio->page;
688 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
689 fio->is_por ? META_POR : (__is_meta_io(fio) ?
690 META_GENERIC : DATA_GENERIC_ENHANCE)))
691 return -EFSCORRUPTED;
693 trace_f2fs_submit_page_bio(page, fio);
695 /* Allocate a new bio */
696 bio = __bio_alloc(fio, 1);
698 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
699 fio->page->index, fio, GFP_NOIO);
701 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
706 if (fio->io_wbc && !is_read_io(fio->op))
707 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
709 inc_page_count(fio->sbi, is_read_io(fio->op) ?
710 __read_io_type(page): WB_DATA_TYPE(fio->page));
712 __submit_bio(fio->sbi, bio, fio->type);
716 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
717 block_t last_blkaddr, block_t cur_blkaddr)
719 if (unlikely(sbi->max_io_bytes &&
720 bio->bi_iter.bi_size >= sbi->max_io_bytes))
722 if (last_blkaddr + 1 != cur_blkaddr)
724 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
727 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
728 struct f2fs_io_info *fio)
730 if (io->fio.op != fio->op)
732 return io->fio.op_flags == fio->op_flags;
735 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
736 struct f2fs_bio_info *io,
737 struct f2fs_io_info *fio,
738 block_t last_blkaddr,
741 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
742 unsigned int filled_blocks =
743 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
744 unsigned int io_size = F2FS_IO_SIZE(sbi);
745 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
747 /* IOs in bio is aligned and left space of vectors is not enough */
748 if (!(filled_blocks % io_size) && left_vecs < io_size)
751 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
753 return io_type_is_mergeable(io, fio);
756 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
757 struct page *page, enum temp_type temp)
759 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
760 struct bio_entry *be;
762 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
766 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
769 f2fs_down_write(&io->bio_list_lock);
770 list_add_tail(&be->list, &io->bio_list);
771 f2fs_up_write(&io->bio_list_lock);
774 static void del_bio_entry(struct bio_entry *be)
777 kmem_cache_free(bio_entry_slab, be);
780 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
783 struct f2fs_sb_info *sbi = fio->sbi;
788 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
789 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
790 struct list_head *head = &io->bio_list;
791 struct bio_entry *be;
793 f2fs_down_write(&io->bio_list_lock);
794 list_for_each_entry(be, head, list) {
800 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
803 if (f2fs_crypt_mergeable_bio(*bio,
804 fio->page->mapping->host,
805 fio->page->index, fio) &&
806 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
812 /* page can't be merged into bio; submit the bio */
814 __submit_bio(sbi, *bio, DATA);
817 f2fs_up_write(&io->bio_list_lock);
828 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
829 struct bio **bio, struct page *page)
833 struct bio *target = bio ? *bio : NULL;
835 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
836 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
837 struct list_head *head = &io->bio_list;
838 struct bio_entry *be;
840 if (list_empty(head))
843 f2fs_down_read(&io->bio_list_lock);
844 list_for_each_entry(be, head, list) {
846 found = (target == be->bio);
848 found = __has_merged_page(be->bio, NULL,
853 f2fs_up_read(&io->bio_list_lock);
860 f2fs_down_write(&io->bio_list_lock);
861 list_for_each_entry(be, head, list) {
863 found = (target == be->bio);
865 found = __has_merged_page(be->bio, NULL,
873 f2fs_up_write(&io->bio_list_lock);
877 __submit_bio(sbi, target, DATA);
884 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
886 struct bio *bio = *fio->bio;
887 struct page *page = fio->encrypted_page ?
888 fio->encrypted_page : fio->page;
890 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
891 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
892 return -EFSCORRUPTED;
894 trace_f2fs_submit_page_bio(page, fio);
896 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
898 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
901 bio = __bio_alloc(fio, BIO_MAX_VECS);
902 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
903 fio->page->index, fio, GFP_NOIO);
905 add_bio_entry(fio->sbi, bio, page, fio->temp);
907 if (add_ipu_page(fio, &bio, page))
912 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
914 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
916 *fio->last_block = fio->new_blkaddr;
922 void f2fs_submit_page_write(struct f2fs_io_info *fio)
924 struct f2fs_sb_info *sbi = fio->sbi;
925 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
926 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
927 struct page *bio_page;
929 f2fs_bug_on(sbi, is_read_io(fio->op));
931 f2fs_down_write(&io->io_rwsem);
934 spin_lock(&io->io_lock);
935 if (list_empty(&io->io_list)) {
936 spin_unlock(&io->io_lock);
939 fio = list_first_entry(&io->io_list,
940 struct f2fs_io_info, list);
941 list_del(&fio->list);
942 spin_unlock(&io->io_lock);
945 verify_fio_blkaddr(fio);
947 if (fio->encrypted_page)
948 bio_page = fio->encrypted_page;
949 else if (fio->compressed_page)
950 bio_page = fio->compressed_page;
952 bio_page = fio->page;
954 /* set submitted = true as a return value */
955 fio->submitted = true;
957 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
960 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
962 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
963 bio_page->index, fio)))
964 __submit_merged_bio(io);
966 if (io->bio == NULL) {
967 if (F2FS_IO_ALIGNED(sbi) &&
968 (fio->type == DATA || fio->type == NODE) &&
969 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
970 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
974 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
975 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
976 bio_page->index, fio, GFP_NOIO);
980 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
981 __submit_merged_bio(io);
986 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
988 io->last_block_in_bio = fio->new_blkaddr;
990 trace_f2fs_submit_page_write(fio->page, fio);
995 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
996 !f2fs_is_checkpoint_ready(sbi))
997 __submit_merged_bio(io);
998 f2fs_up_write(&io->io_rwsem);
1001 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1002 unsigned nr_pages, unsigned op_flag,
1003 pgoff_t first_idx, bool for_write)
1005 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007 struct bio_post_read_ctx *ctx = NULL;
1008 unsigned int post_read_steps = 0;
1010 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1012 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1013 REQ_OP_READ | op_flag,
1014 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1016 return ERR_PTR(-ENOMEM);
1017 bio->bi_iter.bi_sector = sector;
1018 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1019 bio->bi_end_io = f2fs_read_end_io;
1021 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1022 post_read_steps |= STEP_DECRYPT;
1024 if (f2fs_need_verity(inode, first_idx))
1025 post_read_steps |= STEP_VERITY;
1028 * STEP_DECOMPRESS is handled specially, since a compressed file might
1029 * contain both compressed and uncompressed clusters. We'll allocate a
1030 * bio_post_read_ctx if the file is compressed, but the caller is
1031 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1034 if (post_read_steps || f2fs_compressed_file(inode)) {
1035 /* Due to the mempool, this never fails. */
1036 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1039 ctx->enabled_steps = post_read_steps;
1040 ctx->fs_blkaddr = blkaddr;
1041 bio->bi_private = ctx;
1043 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1048 /* This can handle encryption stuffs */
1049 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1050 block_t blkaddr, int op_flags, bool for_write)
1052 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1055 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1056 page->index, for_write);
1058 return PTR_ERR(bio);
1060 /* wait for GCed page writeback via META_MAPPING */
1061 f2fs_wait_on_block_writeback(inode, blkaddr);
1063 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1067 ClearPageError(page);
1068 inc_page_count(sbi, F2FS_RD_DATA);
1069 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1070 __submit_bio(sbi, bio, DATA);
1074 static void __set_data_blkaddr(struct dnode_of_data *dn)
1076 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1080 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1081 base = get_extra_isize(dn->inode);
1083 /* Get physical address of data block */
1084 addr_array = blkaddr_in_node(rn);
1085 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1089 * Lock ordering for the change of data block address:
1092 * update block addresses in the node page
1094 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1096 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1097 __set_data_blkaddr(dn);
1098 if (set_page_dirty(dn->node_page))
1099 dn->node_changed = true;
1102 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1104 dn->data_blkaddr = blkaddr;
1105 f2fs_set_data_blkaddr(dn);
1106 f2fs_update_extent_cache(dn);
1109 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1110 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1112 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1118 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1120 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1123 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1124 dn->ofs_in_node, count);
1126 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1128 for (; count > 0; dn->ofs_in_node++) {
1129 block_t blkaddr = f2fs_data_blkaddr(dn);
1131 if (blkaddr == NULL_ADDR) {
1132 dn->data_blkaddr = NEW_ADDR;
1133 __set_data_blkaddr(dn);
1138 if (set_page_dirty(dn->node_page))
1139 dn->node_changed = true;
1143 /* Should keep dn->ofs_in_node unchanged */
1144 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1146 unsigned int ofs_in_node = dn->ofs_in_node;
1149 ret = f2fs_reserve_new_blocks(dn, 1);
1150 dn->ofs_in_node = ofs_in_node;
1154 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1156 bool need_put = dn->inode_page ? false : true;
1159 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1163 if (dn->data_blkaddr == NULL_ADDR)
1164 err = f2fs_reserve_new_block(dn);
1165 if (err || need_put)
1170 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1172 struct extent_info ei = {0, };
1173 struct inode *inode = dn->inode;
1175 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1176 dn->data_blkaddr = ei.blk + index - ei.fofs;
1180 return f2fs_reserve_block(dn, index);
1183 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1184 int op_flags, bool for_write)
1186 struct address_space *mapping = inode->i_mapping;
1187 struct dnode_of_data dn;
1189 struct extent_info ei = {0, };
1192 page = f2fs_grab_cache_page(mapping, index, for_write);
1194 return ERR_PTR(-ENOMEM);
1196 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1197 dn.data_blkaddr = ei.blk + index - ei.fofs;
1198 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1199 DATA_GENERIC_ENHANCE_READ)) {
1200 err = -EFSCORRUPTED;
1206 set_new_dnode(&dn, inode, NULL, NULL, 0);
1207 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1210 f2fs_put_dnode(&dn);
1212 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1216 if (dn.data_blkaddr != NEW_ADDR &&
1217 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1219 DATA_GENERIC_ENHANCE)) {
1220 err = -EFSCORRUPTED;
1224 if (PageUptodate(page)) {
1230 * A new dentry page is allocated but not able to be written, since its
1231 * new inode page couldn't be allocated due to -ENOSPC.
1232 * In such the case, its blkaddr can be remained as NEW_ADDR.
1233 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1234 * f2fs_init_inode_metadata.
1236 if (dn.data_blkaddr == NEW_ADDR) {
1237 zero_user_segment(page, 0, PAGE_SIZE);
1238 if (!PageUptodate(page))
1239 SetPageUptodate(page);
1244 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1245 op_flags, for_write);
1251 f2fs_put_page(page, 1);
1252 return ERR_PTR(err);
1255 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1257 struct address_space *mapping = inode->i_mapping;
1260 page = find_get_page(mapping, index);
1261 if (page && PageUptodate(page))
1263 f2fs_put_page(page, 0);
1265 page = f2fs_get_read_data_page(inode, index, 0, false);
1269 if (PageUptodate(page))
1272 wait_on_page_locked(page);
1273 if (unlikely(!PageUptodate(page))) {
1274 f2fs_put_page(page, 0);
1275 return ERR_PTR(-EIO);
1281 * If it tries to access a hole, return an error.
1282 * Because, the callers, functions in dir.c and GC, should be able to know
1283 * whether this page exists or not.
1285 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1288 struct address_space *mapping = inode->i_mapping;
1291 page = f2fs_get_read_data_page(inode, index, 0, for_write);
1295 /* wait for read completion */
1297 if (unlikely(page->mapping != mapping)) {
1298 f2fs_put_page(page, 1);
1301 if (unlikely(!PageUptodate(page))) {
1302 f2fs_put_page(page, 1);
1303 return ERR_PTR(-EIO);
1309 * Caller ensures that this data page is never allocated.
1310 * A new zero-filled data page is allocated in the page cache.
1312 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1314 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1315 * ipage should be released by this function.
1317 struct page *f2fs_get_new_data_page(struct inode *inode,
1318 struct page *ipage, pgoff_t index, bool new_i_size)
1320 struct address_space *mapping = inode->i_mapping;
1322 struct dnode_of_data dn;
1325 page = f2fs_grab_cache_page(mapping, index, true);
1328 * before exiting, we should make sure ipage will be released
1329 * if any error occur.
1331 f2fs_put_page(ipage, 1);
1332 return ERR_PTR(-ENOMEM);
1335 set_new_dnode(&dn, inode, ipage, NULL, 0);
1336 err = f2fs_reserve_block(&dn, index);
1338 f2fs_put_page(page, 1);
1339 return ERR_PTR(err);
1342 f2fs_put_dnode(&dn);
1344 if (PageUptodate(page))
1347 if (dn.data_blkaddr == NEW_ADDR) {
1348 zero_user_segment(page, 0, PAGE_SIZE);
1349 if (!PageUptodate(page))
1350 SetPageUptodate(page);
1352 f2fs_put_page(page, 1);
1354 /* if ipage exists, blkaddr should be NEW_ADDR */
1355 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1356 page = f2fs_get_lock_data_page(inode, index, true);
1361 if (new_i_size && i_size_read(inode) <
1362 ((loff_t)(index + 1) << PAGE_SHIFT))
1363 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1367 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1369 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1370 struct f2fs_summary sum;
1371 struct node_info ni;
1372 block_t old_blkaddr;
1376 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1379 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1383 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1384 if (dn->data_blkaddr != NULL_ADDR)
1387 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1391 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1392 old_blkaddr = dn->data_blkaddr;
1393 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1394 &sum, seg_type, NULL);
1395 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1396 invalidate_mapping_pages(META_MAPPING(sbi),
1397 old_blkaddr, old_blkaddr);
1398 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1400 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1404 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1406 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1408 f2fs_down_read(&sbi->node_change);
1410 f2fs_up_read(&sbi->node_change);
1415 f2fs_unlock_op(sbi);
1420 * f2fs_map_blocks() tries to find or build mapping relationship which
1421 * maps continuous logical blocks to physical blocks, and return such
1422 * info via f2fs_map_blocks structure.
1424 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1425 int create, int flag)
1427 unsigned int maxblocks = map->m_len;
1428 struct dnode_of_data dn;
1429 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1430 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1431 pgoff_t pgofs, end_offset, end;
1432 int err = 0, ofs = 1;
1433 unsigned int ofs_in_node, last_ofs_in_node;
1435 struct extent_info ei = {0, };
1437 unsigned int start_pgofs;
1443 map->m_bdev = inode->i_sb->s_bdev;
1444 map->m_multidev_dio =
1445 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1450 /* it only supports block size == page size */
1451 pgofs = (pgoff_t)map->m_lblk;
1452 end = pgofs + maxblocks;
1454 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1455 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1459 map->m_pblk = ei.blk + pgofs - ei.fofs;
1460 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1461 map->m_flags = F2FS_MAP_MAPPED;
1462 if (map->m_next_extent)
1463 *map->m_next_extent = pgofs + map->m_len;
1465 /* for hardware encryption, but to avoid potential issue in future */
1466 if (flag == F2FS_GET_BLOCK_DIO)
1467 f2fs_wait_on_block_writeback_range(inode,
1468 map->m_pblk, map->m_len);
1470 if (map->m_multidev_dio) {
1471 block_t blk_addr = map->m_pblk;
1473 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1475 map->m_bdev = FDEV(bidx).bdev;
1476 map->m_pblk -= FDEV(bidx).start_blk;
1477 map->m_len = min(map->m_len,
1478 FDEV(bidx).end_blk + 1 - map->m_pblk);
1480 if (map->m_may_create)
1481 f2fs_update_device_state(sbi, inode->i_ino,
1482 blk_addr, map->m_len);
1488 if (map->m_may_create)
1489 f2fs_do_map_lock(sbi, flag, true);
1491 /* When reading holes, we need its node page */
1492 set_new_dnode(&dn, inode, NULL, NULL, 0);
1493 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1495 if (flag == F2FS_GET_BLOCK_BMAP)
1498 if (err == -ENOENT) {
1500 * There is one exceptional case that read_node_page()
1501 * may return -ENOENT due to filesystem has been
1502 * shutdown or cp_error, so force to convert error
1503 * number to EIO for such case.
1505 if (map->m_may_create &&
1506 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1507 f2fs_cp_error(sbi))) {
1513 if (map->m_next_pgofs)
1514 *map->m_next_pgofs =
1515 f2fs_get_next_page_offset(&dn, pgofs);
1516 if (map->m_next_extent)
1517 *map->m_next_extent =
1518 f2fs_get_next_page_offset(&dn, pgofs);
1523 start_pgofs = pgofs;
1525 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1526 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1529 blkaddr = f2fs_data_blkaddr(&dn);
1531 if (__is_valid_data_blkaddr(blkaddr) &&
1532 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1533 err = -EFSCORRUPTED;
1537 if (__is_valid_data_blkaddr(blkaddr)) {
1538 /* use out-place-update for driect IO under LFS mode */
1539 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1540 map->m_may_create) {
1541 err = __allocate_data_block(&dn, map->m_seg_type);
1544 blkaddr = dn.data_blkaddr;
1545 set_inode_flag(inode, FI_APPEND_WRITE);
1549 if (unlikely(f2fs_cp_error(sbi))) {
1553 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1554 if (blkaddr == NULL_ADDR) {
1556 last_ofs_in_node = dn.ofs_in_node;
1559 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1560 flag != F2FS_GET_BLOCK_DIO);
1561 err = __allocate_data_block(&dn,
1564 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1565 file_need_truncate(inode);
1566 set_inode_flag(inode, FI_APPEND_WRITE);
1571 map->m_flags |= F2FS_MAP_NEW;
1572 blkaddr = dn.data_blkaddr;
1574 if (f2fs_compressed_file(inode) &&
1575 f2fs_sanity_check_cluster(&dn) &&
1576 (flag != F2FS_GET_BLOCK_FIEMAP ||
1577 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1578 err = -EFSCORRUPTED;
1581 if (flag == F2FS_GET_BLOCK_BMAP) {
1585 if (flag == F2FS_GET_BLOCK_PRECACHE)
1587 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1588 blkaddr == NULL_ADDR) {
1589 if (map->m_next_pgofs)
1590 *map->m_next_pgofs = pgofs + 1;
1593 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1594 /* for defragment case */
1595 if (map->m_next_pgofs)
1596 *map->m_next_pgofs = pgofs + 1;
1602 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1605 if (map->m_multidev_dio)
1606 bidx = f2fs_target_device_index(sbi, blkaddr);
1608 if (map->m_len == 0) {
1609 /* preallocated unwritten block should be mapped for fiemap. */
1610 if (blkaddr == NEW_ADDR)
1611 map->m_flags |= F2FS_MAP_UNWRITTEN;
1612 map->m_flags |= F2FS_MAP_MAPPED;
1614 map->m_pblk = blkaddr;
1617 if (map->m_multidev_dio)
1618 map->m_bdev = FDEV(bidx).bdev;
1619 } else if ((map->m_pblk != NEW_ADDR &&
1620 blkaddr == (map->m_pblk + ofs)) ||
1621 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1622 flag == F2FS_GET_BLOCK_PRE_DIO) {
1623 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1635 /* preallocate blocks in batch for one dnode page */
1636 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1637 (pgofs == end || dn.ofs_in_node == end_offset)) {
1639 dn.ofs_in_node = ofs_in_node;
1640 err = f2fs_reserve_new_blocks(&dn, prealloc);
1644 map->m_len += dn.ofs_in_node - ofs_in_node;
1645 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1649 dn.ofs_in_node = end_offset;
1654 else if (dn.ofs_in_node < end_offset)
1657 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1658 if (map->m_flags & F2FS_MAP_MAPPED) {
1659 unsigned int ofs = start_pgofs - map->m_lblk;
1661 f2fs_update_extent_cache_range(&dn,
1662 start_pgofs, map->m_pblk + ofs,
1667 f2fs_put_dnode(&dn);
1669 if (map->m_may_create) {
1670 f2fs_do_map_lock(sbi, flag, false);
1671 f2fs_balance_fs(sbi, dn.node_changed);
1677 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1679 * for hardware encryption, but to avoid potential issue
1682 f2fs_wait_on_block_writeback_range(inode,
1683 map->m_pblk, map->m_len);
1684 invalidate_mapping_pages(META_MAPPING(sbi),
1685 map->m_pblk, map->m_pblk);
1687 if (map->m_multidev_dio) {
1688 block_t blk_addr = map->m_pblk;
1690 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1692 map->m_bdev = FDEV(bidx).bdev;
1693 map->m_pblk -= FDEV(bidx).start_blk;
1695 if (map->m_may_create)
1696 f2fs_update_device_state(sbi, inode->i_ino,
1697 blk_addr, map->m_len);
1699 f2fs_bug_on(sbi, blk_addr + map->m_len >
1700 FDEV(bidx).end_blk + 1);
1704 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1705 if (map->m_flags & F2FS_MAP_MAPPED) {
1706 unsigned int ofs = start_pgofs - map->m_lblk;
1708 f2fs_update_extent_cache_range(&dn,
1709 start_pgofs, map->m_pblk + ofs,
1712 if (map->m_next_extent)
1713 *map->m_next_extent = pgofs + 1;
1715 f2fs_put_dnode(&dn);
1717 if (map->m_may_create) {
1718 f2fs_do_map_lock(sbi, flag, false);
1719 f2fs_balance_fs(sbi, dn.node_changed);
1722 trace_f2fs_map_blocks(inode, map, create, flag, err);
1726 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1728 struct f2fs_map_blocks map;
1732 if (pos + len > i_size_read(inode))
1735 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1736 map.m_next_pgofs = NULL;
1737 map.m_next_extent = NULL;
1738 map.m_seg_type = NO_CHECK_TYPE;
1739 map.m_may_create = false;
1740 last_lblk = F2FS_BLK_ALIGN(pos + len);
1742 while (map.m_lblk < last_lblk) {
1743 map.m_len = last_lblk - map.m_lblk;
1744 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1745 if (err || map.m_len == 0)
1747 map.m_lblk += map.m_len;
1752 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1754 return (bytes >> inode->i_blkbits);
1757 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1759 return (blks << inode->i_blkbits);
1762 static int f2fs_xattr_fiemap(struct inode *inode,
1763 struct fiemap_extent_info *fieinfo)
1765 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1767 struct node_info ni;
1768 __u64 phys = 0, len;
1770 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1773 if (f2fs_has_inline_xattr(inode)) {
1776 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1777 inode->i_ino, false);
1781 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1783 f2fs_put_page(page, 1);
1787 phys = blks_to_bytes(inode, ni.blk_addr);
1788 offset = offsetof(struct f2fs_inode, i_addr) +
1789 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1790 get_inline_xattr_addrs(inode));
1793 len = inline_xattr_size(inode);
1795 f2fs_put_page(page, 1);
1797 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1800 flags |= FIEMAP_EXTENT_LAST;
1802 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1803 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1804 if (err || err == 1)
1809 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1813 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1815 f2fs_put_page(page, 1);
1819 phys = blks_to_bytes(inode, ni.blk_addr);
1820 len = inode->i_sb->s_blocksize;
1822 f2fs_put_page(page, 1);
1824 flags = FIEMAP_EXTENT_LAST;
1828 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1829 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1832 return (err < 0 ? err : 0);
1835 static loff_t max_inode_blocks(struct inode *inode)
1837 loff_t result = ADDRS_PER_INODE(inode);
1838 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1840 /* two direct node blocks */
1841 result += (leaf_count * 2);
1843 /* two indirect node blocks */
1844 leaf_count *= NIDS_PER_BLOCK;
1845 result += (leaf_count * 2);
1847 /* one double indirect node block */
1848 leaf_count *= NIDS_PER_BLOCK;
1849 result += leaf_count;
1854 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1857 struct f2fs_map_blocks map;
1858 sector_t start_blk, last_blk;
1860 u64 logical = 0, phys = 0, size = 0;
1863 bool compr_cluster = false, compr_appended;
1864 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1865 unsigned int count_in_cluster = 0;
1868 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1869 ret = f2fs_precache_extents(inode);
1874 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1880 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1881 if (start > maxbytes) {
1886 if (len > maxbytes || (maxbytes - len) < start)
1887 len = maxbytes - start;
1889 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1890 ret = f2fs_xattr_fiemap(inode, fieinfo);
1894 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1895 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1900 if (bytes_to_blks(inode, len) == 0)
1901 len = blks_to_bytes(inode, 1);
1903 start_blk = bytes_to_blks(inode, start);
1904 last_blk = bytes_to_blks(inode, start + len - 1);
1907 memset(&map, 0, sizeof(map));
1908 map.m_lblk = start_blk;
1909 map.m_len = bytes_to_blks(inode, len);
1910 map.m_next_pgofs = &next_pgofs;
1911 map.m_seg_type = NO_CHECK_TYPE;
1913 if (compr_cluster) {
1915 map.m_len = cluster_size - count_in_cluster;
1918 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1923 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1924 start_blk = next_pgofs;
1926 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1927 max_inode_blocks(inode)))
1930 flags |= FIEMAP_EXTENT_LAST;
1933 compr_appended = false;
1934 /* In a case of compressed cluster, append this to the last extent */
1935 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1936 !(map.m_flags & F2FS_MAP_FLAGS))) {
1937 compr_appended = true;
1942 flags |= FIEMAP_EXTENT_MERGED;
1943 if (IS_ENCRYPTED(inode))
1944 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1946 ret = fiemap_fill_next_extent(fieinfo, logical,
1948 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1954 if (start_blk > last_blk)
1958 if (map.m_pblk == COMPRESS_ADDR) {
1959 compr_cluster = true;
1960 count_in_cluster = 1;
1961 } else if (compr_appended) {
1962 unsigned int appended_blks = cluster_size -
1963 count_in_cluster + 1;
1964 size += blks_to_bytes(inode, appended_blks);
1965 start_blk += appended_blks;
1966 compr_cluster = false;
1968 logical = blks_to_bytes(inode, start_blk);
1969 phys = __is_valid_data_blkaddr(map.m_pblk) ?
1970 blks_to_bytes(inode, map.m_pblk) : 0;
1971 size = blks_to_bytes(inode, map.m_len);
1974 if (compr_cluster) {
1975 flags = FIEMAP_EXTENT_ENCODED;
1976 count_in_cluster += map.m_len;
1977 if (count_in_cluster == cluster_size) {
1978 compr_cluster = false;
1979 size += blks_to_bytes(inode, 1);
1981 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
1982 flags = FIEMAP_EXTENT_UNWRITTEN;
1985 start_blk += bytes_to_blks(inode, size);
1990 if (fatal_signal_pending(current))
1998 inode_unlock(inode);
2002 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2004 if (IS_ENABLED(CONFIG_FS_VERITY) &&
2005 (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2006 return inode->i_sb->s_maxbytes;
2008 return i_size_read(inode);
2011 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2013 struct f2fs_map_blocks *map,
2014 struct bio **bio_ret,
2015 sector_t *last_block_in_bio,
2018 struct bio *bio = *bio_ret;
2019 const unsigned blocksize = blks_to_bytes(inode, 1);
2020 sector_t block_in_file;
2021 sector_t last_block;
2022 sector_t last_block_in_file;
2026 block_in_file = (sector_t)page_index(page);
2027 last_block = block_in_file + nr_pages;
2028 last_block_in_file = bytes_to_blks(inode,
2029 f2fs_readpage_limit(inode) + blocksize - 1);
2030 if (last_block > last_block_in_file)
2031 last_block = last_block_in_file;
2033 /* just zeroing out page which is beyond EOF */
2034 if (block_in_file >= last_block)
2037 * Map blocks using the previous result first.
2039 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2040 block_in_file > map->m_lblk &&
2041 block_in_file < (map->m_lblk + map->m_len))
2045 * Then do more f2fs_map_blocks() calls until we are
2046 * done with this page.
2048 map->m_lblk = block_in_file;
2049 map->m_len = last_block - block_in_file;
2051 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2055 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2056 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2057 SetPageMappedToDisk(page);
2059 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2060 DATA_GENERIC_ENHANCE_READ)) {
2061 ret = -EFSCORRUPTED;
2066 zero_user_segment(page, 0, PAGE_SIZE);
2067 if (f2fs_need_verity(inode, page->index) &&
2068 !fsverity_verify_page(page)) {
2072 if (!PageUptodate(page))
2073 SetPageUptodate(page);
2079 * This page will go to BIO. Do we need to send this
2082 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2083 *last_block_in_bio, block_nr) ||
2084 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2086 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2090 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2091 is_readahead ? REQ_RAHEAD : 0, page->index,
2101 * If the page is under writeback, we need to wait for
2102 * its completion to see the correct decrypted data.
2104 f2fs_wait_on_block_writeback(inode, block_nr);
2106 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2107 goto submit_and_realloc;
2109 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2110 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2111 ClearPageError(page);
2112 *last_block_in_bio = block_nr;
2119 #ifdef CONFIG_F2FS_FS_COMPRESSION
2120 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2121 unsigned nr_pages, sector_t *last_block_in_bio,
2122 bool is_readahead, bool for_write)
2124 struct dnode_of_data dn;
2125 struct inode *inode = cc->inode;
2126 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2127 struct bio *bio = *bio_ret;
2128 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2129 sector_t last_block_in_file;
2130 const unsigned blocksize = blks_to_bytes(inode, 1);
2131 struct decompress_io_ctx *dic = NULL;
2132 struct extent_info ei = {0, };
2133 bool from_dnode = true;
2137 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2139 last_block_in_file = bytes_to_blks(inode,
2140 f2fs_readpage_limit(inode) + blocksize - 1);
2142 /* get rid of pages beyond EOF */
2143 for (i = 0; i < cc->cluster_size; i++) {
2144 struct page *page = cc->rpages[i];
2148 if ((sector_t)page->index >= last_block_in_file) {
2149 zero_user_segment(page, 0, PAGE_SIZE);
2150 if (!PageUptodate(page))
2151 SetPageUptodate(page);
2152 } else if (!PageUptodate(page)) {
2158 cc->rpages[i] = NULL;
2162 /* we are done since all pages are beyond EOF */
2163 if (f2fs_cluster_is_empty(cc))
2166 if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2170 goto skip_reading_dnode;
2172 set_new_dnode(&dn, inode, NULL, NULL, 0);
2173 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2177 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2180 for (i = 1; i < cc->cluster_size; i++) {
2183 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2184 dn.ofs_in_node + i) :
2187 if (!__is_valid_data_blkaddr(blkaddr))
2190 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2196 if (!from_dnode && i >= ei.c_len)
2200 /* nothing to decompress */
2201 if (cc->nr_cpages == 0) {
2206 dic = f2fs_alloc_dic(cc);
2212 for (i = 0; i < cc->nr_cpages; i++) {
2213 struct page *page = dic->cpages[i];
2215 struct bio_post_read_ctx *ctx;
2217 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2218 dn.ofs_in_node + i + 1) :
2221 f2fs_wait_on_block_writeback(inode, blkaddr);
2223 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2224 if (atomic_dec_and_test(&dic->remaining_pages))
2225 f2fs_decompress_cluster(dic);
2229 if (bio && (!page_is_mergeable(sbi, bio,
2230 *last_block_in_bio, blkaddr) ||
2231 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2233 __submit_bio(sbi, bio, DATA);
2238 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2239 is_readahead ? REQ_RAHEAD : 0,
2240 page->index, for_write);
2243 f2fs_decompress_end_io(dic, ret);
2244 f2fs_put_dnode(&dn);
2250 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2251 goto submit_and_realloc;
2253 ctx = get_post_read_ctx(bio);
2254 ctx->enabled_steps |= STEP_DECOMPRESS;
2255 refcount_inc(&dic->refcnt);
2257 inc_page_count(sbi, F2FS_RD_DATA);
2258 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2259 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2260 ClearPageError(page);
2261 *last_block_in_bio = blkaddr;
2265 f2fs_put_dnode(&dn);
2272 f2fs_put_dnode(&dn);
2274 for (i = 0; i < cc->cluster_size; i++) {
2275 if (cc->rpages[i]) {
2276 ClearPageUptodate(cc->rpages[i]);
2277 ClearPageError(cc->rpages[i]);
2278 unlock_page(cc->rpages[i]);
2287 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2288 * Major change was from block_size == page_size in f2fs by default.
2290 static int f2fs_mpage_readpages(struct inode *inode,
2291 struct readahead_control *rac, struct page *page)
2293 struct bio *bio = NULL;
2294 sector_t last_block_in_bio = 0;
2295 struct f2fs_map_blocks map;
2296 #ifdef CONFIG_F2FS_FS_COMPRESSION
2297 struct compress_ctx cc = {
2299 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2300 .cluster_size = F2FS_I(inode)->i_cluster_size,
2301 .cluster_idx = NULL_CLUSTER,
2307 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2309 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2310 unsigned max_nr_pages = nr_pages;
2317 map.m_next_pgofs = NULL;
2318 map.m_next_extent = NULL;
2319 map.m_seg_type = NO_CHECK_TYPE;
2320 map.m_may_create = false;
2322 for (; nr_pages; nr_pages--) {
2324 page = readahead_page(rac);
2325 prefetchw(&page->flags);
2328 #ifdef CONFIG_F2FS_FS_COMPRESSION
2329 if (f2fs_compressed_file(inode)) {
2330 /* there are remained comressed pages, submit them */
2331 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2332 ret = f2fs_read_multi_pages(&cc, &bio,
2335 rac != NULL, false);
2336 f2fs_destroy_compress_ctx(&cc, false);
2338 goto set_error_page;
2340 if (cc.cluster_idx == NULL_CLUSTER) {
2341 if (nc_cluster_idx ==
2342 page->index >> cc.log_cluster_size) {
2343 goto read_single_page;
2346 ret = f2fs_is_compressed_cluster(inode, page->index);
2348 goto set_error_page;
2351 page->index >> cc.log_cluster_size;
2352 goto read_single_page;
2355 nc_cluster_idx = NULL_CLUSTER;
2357 ret = f2fs_init_compress_ctx(&cc);
2359 goto set_error_page;
2361 f2fs_compress_ctx_add_page(&cc, page);
2368 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2369 &bio, &last_block_in_bio, rac);
2371 #ifdef CONFIG_F2FS_FS_COMPRESSION
2375 zero_user_segment(page, 0, PAGE_SIZE);
2378 #ifdef CONFIG_F2FS_FS_COMPRESSION
2384 #ifdef CONFIG_F2FS_FS_COMPRESSION
2385 if (f2fs_compressed_file(inode)) {
2387 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2388 ret = f2fs_read_multi_pages(&cc, &bio,
2391 rac != NULL, false);
2392 f2fs_destroy_compress_ctx(&cc, false);
2398 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2402 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2404 struct page *page = &folio->page;
2405 struct inode *inode = page_file_mapping(page)->host;
2408 trace_f2fs_readpage(page, DATA);
2410 if (!f2fs_is_compress_backend_ready(inode)) {
2415 /* If the file has inline data, try to read it directly */
2416 if (f2fs_has_inline_data(inode))
2417 ret = f2fs_read_inline_data(inode, page);
2419 ret = f2fs_mpage_readpages(inode, NULL, page);
2423 static void f2fs_readahead(struct readahead_control *rac)
2425 struct inode *inode = rac->mapping->host;
2427 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2429 if (!f2fs_is_compress_backend_ready(inode))
2432 /* If the file has inline data, skip readahead */
2433 if (f2fs_has_inline_data(inode))
2436 f2fs_mpage_readpages(inode, rac, NULL);
2439 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2441 struct inode *inode = fio->page->mapping->host;
2442 struct page *mpage, *page;
2443 gfp_t gfp_flags = GFP_NOFS;
2445 if (!f2fs_encrypted_file(inode))
2448 page = fio->compressed_page ? fio->compressed_page : fio->page;
2450 /* wait for GCed page writeback via META_MAPPING */
2451 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2453 if (fscrypt_inode_uses_inline_crypto(inode))
2457 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2458 PAGE_SIZE, 0, gfp_flags);
2459 if (IS_ERR(fio->encrypted_page)) {
2460 /* flush pending IOs and wait for a while in the ENOMEM case */
2461 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2462 f2fs_flush_merged_writes(fio->sbi);
2463 memalloc_retry_wait(GFP_NOFS);
2464 gfp_flags |= __GFP_NOFAIL;
2467 return PTR_ERR(fio->encrypted_page);
2470 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2472 if (PageUptodate(mpage))
2473 memcpy(page_address(mpage),
2474 page_address(fio->encrypted_page), PAGE_SIZE);
2475 f2fs_put_page(mpage, 1);
2480 static inline bool check_inplace_update_policy(struct inode *inode,
2481 struct f2fs_io_info *fio)
2483 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2484 unsigned int policy = SM_I(sbi)->ipu_policy;
2486 if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2487 is_inode_flag_set(inode, FI_OPU_WRITE))
2489 if (policy & (0x1 << F2FS_IPU_FORCE))
2491 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2493 if (policy & (0x1 << F2FS_IPU_UTIL) &&
2494 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2496 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2497 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2501 * IPU for rewrite async pages
2503 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2504 fio && fio->op == REQ_OP_WRITE &&
2505 !(fio->op_flags & REQ_SYNC) &&
2506 !IS_ENCRYPTED(inode))
2509 /* this is only set during fdatasync */
2510 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2511 is_inode_flag_set(inode, FI_NEED_IPU))
2514 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2515 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2521 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2523 /* swap file is migrating in aligned write mode */
2524 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2527 if (f2fs_is_pinned_file(inode))
2530 /* if this is cold file, we should overwrite to avoid fragmentation */
2531 if (file_is_cold(inode))
2534 return check_inplace_update_policy(inode, fio);
2537 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2539 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2541 /* The below cases were checked when setting it. */
2542 if (f2fs_is_pinned_file(inode))
2544 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2546 if (f2fs_lfs_mode(sbi))
2548 if (S_ISDIR(inode->i_mode))
2550 if (IS_NOQUOTA(inode))
2552 if (f2fs_is_atomic_file(inode))
2555 /* swap file is migrating in aligned write mode */
2556 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2559 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2563 if (page_private_gcing(fio->page))
2565 if (page_private_dummy(fio->page))
2567 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2568 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2574 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2576 struct inode *inode = fio->page->mapping->host;
2578 if (f2fs_should_update_outplace(inode, fio))
2581 return f2fs_should_update_inplace(inode, fio);
2584 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2586 struct page *page = fio->page;
2587 struct inode *inode = page->mapping->host;
2588 struct dnode_of_data dn;
2589 struct extent_info ei = {0, };
2590 struct node_info ni;
2591 bool ipu_force = false;
2594 /* Use COW inode to make dnode_of_data for atomic write */
2595 if (f2fs_is_atomic_file(inode))
2596 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2598 set_new_dnode(&dn, inode, NULL, NULL, 0);
2600 if (need_inplace_update(fio) &&
2601 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2602 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2604 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2605 DATA_GENERIC_ENHANCE))
2606 return -EFSCORRUPTED;
2609 fio->need_lock = LOCK_DONE;
2613 /* Deadlock due to between page->lock and f2fs_lock_op */
2614 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2617 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2621 fio->old_blkaddr = dn.data_blkaddr;
2623 /* This page is already truncated */
2624 if (fio->old_blkaddr == NULL_ADDR) {
2625 ClearPageUptodate(page);
2626 clear_page_private_gcing(page);
2630 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2631 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2632 DATA_GENERIC_ENHANCE)) {
2633 err = -EFSCORRUPTED;
2638 * If current allocation needs SSR,
2639 * it had better in-place writes for updated data.
2642 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2643 need_inplace_update(fio))) {
2644 err = f2fs_encrypt_one_page(fio);
2648 set_page_writeback(page);
2649 ClearPageError(page);
2650 f2fs_put_dnode(&dn);
2651 if (fio->need_lock == LOCK_REQ)
2652 f2fs_unlock_op(fio->sbi);
2653 err = f2fs_inplace_write_data(fio);
2655 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2656 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2657 if (PageWriteback(page))
2658 end_page_writeback(page);
2660 set_inode_flag(inode, FI_UPDATE_WRITE);
2662 trace_f2fs_do_write_data_page(fio->page, IPU);
2666 if (fio->need_lock == LOCK_RETRY) {
2667 if (!f2fs_trylock_op(fio->sbi)) {
2671 fio->need_lock = LOCK_REQ;
2674 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2678 fio->version = ni.version;
2680 err = f2fs_encrypt_one_page(fio);
2684 set_page_writeback(page);
2685 ClearPageError(page);
2687 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2688 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2690 /* LFS mode write path */
2691 f2fs_outplace_write_data(&dn, fio);
2692 trace_f2fs_do_write_data_page(page, OPU);
2693 set_inode_flag(inode, FI_APPEND_WRITE);
2694 if (page->index == 0)
2695 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2697 f2fs_put_dnode(&dn);
2699 if (fio->need_lock == LOCK_REQ)
2700 f2fs_unlock_op(fio->sbi);
2704 int f2fs_write_single_data_page(struct page *page, int *submitted,
2706 sector_t *last_block,
2707 struct writeback_control *wbc,
2708 enum iostat_type io_type,
2712 struct inode *inode = page->mapping->host;
2713 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2714 loff_t i_size = i_size_read(inode);
2715 const pgoff_t end_index = ((unsigned long long)i_size)
2717 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2718 unsigned offset = 0;
2719 bool need_balance_fs = false;
2721 struct f2fs_io_info fio = {
2723 .ino = inode->i_ino,
2726 .op_flags = wbc_to_write_flags(wbc),
2727 .old_blkaddr = NULL_ADDR,
2729 .encrypted_page = NULL,
2731 .compr_blocks = compr_blocks,
2732 .need_lock = LOCK_RETRY,
2736 .last_block = last_block,
2739 trace_f2fs_writepage(page, DATA);
2741 /* we should bypass data pages to proceed the kworkder jobs */
2742 if (unlikely(f2fs_cp_error(sbi))) {
2743 mapping_set_error(page->mapping, -EIO);
2745 * don't drop any dirty dentry pages for keeping lastest
2746 * directory structure.
2748 if (S_ISDIR(inode->i_mode))
2753 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2756 if (page->index < end_index ||
2757 f2fs_verity_in_progress(inode) ||
2762 * If the offset is out-of-range of file size,
2763 * this page does not have to be written to disk.
2765 offset = i_size & (PAGE_SIZE - 1);
2766 if ((page->index >= end_index + 1) || !offset)
2769 zero_user_segment(page, offset, PAGE_SIZE);
2771 if (f2fs_is_drop_cache(inode))
2774 /* Dentry/quota blocks are controlled by checkpoint */
2775 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2777 * We need to wait for node_write to avoid block allocation during
2778 * checkpoint. This can only happen to quota writes which can cause
2779 * the below discard race condition.
2781 if (IS_NOQUOTA(inode))
2782 f2fs_down_read(&sbi->node_write);
2784 fio.need_lock = LOCK_DONE;
2785 err = f2fs_do_write_data_page(&fio);
2787 if (IS_NOQUOTA(inode))
2788 f2fs_up_read(&sbi->node_write);
2793 if (!wbc->for_reclaim)
2794 need_balance_fs = true;
2795 else if (has_not_enough_free_secs(sbi, 0, 0))
2798 set_inode_flag(inode, FI_HOT_DATA);
2801 if (f2fs_has_inline_data(inode)) {
2802 err = f2fs_write_inline_data(inode, page);
2807 if (err == -EAGAIN) {
2808 err = f2fs_do_write_data_page(&fio);
2809 if (err == -EAGAIN) {
2810 fio.need_lock = LOCK_REQ;
2811 err = f2fs_do_write_data_page(&fio);
2816 file_set_keep_isize(inode);
2818 spin_lock(&F2FS_I(inode)->i_size_lock);
2819 if (F2FS_I(inode)->last_disk_size < psize)
2820 F2FS_I(inode)->last_disk_size = psize;
2821 spin_unlock(&F2FS_I(inode)->i_size_lock);
2825 if (err && err != -ENOENT)
2829 inode_dec_dirty_pages(inode);
2831 ClearPageUptodate(page);
2832 clear_page_private_gcing(page);
2835 if (wbc->for_reclaim) {
2836 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2837 clear_inode_flag(inode, FI_HOT_DATA);
2838 f2fs_remove_dirty_inode(inode);
2842 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2843 !F2FS_I(inode)->cp_task && allow_balance)
2844 f2fs_balance_fs(sbi, need_balance_fs);
2846 if (unlikely(f2fs_cp_error(sbi))) {
2847 f2fs_submit_merged_write(sbi, DATA);
2848 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2853 *submitted = fio.submitted ? 1 : 0;
2858 redirty_page_for_writepage(wbc, page);
2860 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2861 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2862 * file_write_and_wait_range() will see EIO error, which is critical
2863 * to return value of fsync() followed by atomic_write failure to user.
2865 if (!err || wbc->for_reclaim)
2866 return AOP_WRITEPAGE_ACTIVATE;
2871 static int f2fs_write_data_page(struct page *page,
2872 struct writeback_control *wbc)
2874 #ifdef CONFIG_F2FS_FS_COMPRESSION
2875 struct inode *inode = page->mapping->host;
2877 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2880 if (f2fs_compressed_file(inode)) {
2881 if (f2fs_is_compressed_cluster(inode, page->index)) {
2882 redirty_page_for_writepage(wbc, page);
2883 return AOP_WRITEPAGE_ACTIVATE;
2889 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2890 wbc, FS_DATA_IO, 0, true);
2894 * This function was copied from write_cche_pages from mm/page-writeback.c.
2895 * The major change is making write step of cold data page separately from
2896 * warm/hot data page.
2898 static int f2fs_write_cache_pages(struct address_space *mapping,
2899 struct writeback_control *wbc,
2900 enum iostat_type io_type)
2903 int done = 0, retry = 0;
2904 struct pagevec pvec;
2905 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2906 struct bio *bio = NULL;
2907 sector_t last_block;
2908 #ifdef CONFIG_F2FS_FS_COMPRESSION
2909 struct inode *inode = mapping->host;
2910 struct compress_ctx cc = {
2912 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2913 .cluster_size = F2FS_I(inode)->i_cluster_size,
2914 .cluster_idx = NULL_CLUSTER,
2918 .valid_nr_cpages = 0,
2921 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2927 pgoff_t end; /* Inclusive */
2929 int range_whole = 0;
2935 pagevec_init(&pvec);
2937 if (get_dirty_pages(mapping->host) <=
2938 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2939 set_inode_flag(mapping->host, FI_HOT_DATA);
2941 clear_inode_flag(mapping->host, FI_HOT_DATA);
2943 if (wbc->range_cyclic) {
2944 index = mapping->writeback_index; /* prev offset */
2947 index = wbc->range_start >> PAGE_SHIFT;
2948 end = wbc->range_end >> PAGE_SHIFT;
2949 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2952 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2953 tag = PAGECACHE_TAG_TOWRITE;
2955 tag = PAGECACHE_TAG_DIRTY;
2958 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2959 tag_pages_for_writeback(mapping, index, end);
2961 while (!done && !retry && (index <= end)) {
2962 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2967 for (i = 0; i < nr_pages; i++) {
2968 struct page *page = pvec.pages[i];
2972 #ifdef CONFIG_F2FS_FS_COMPRESSION
2973 if (f2fs_compressed_file(inode)) {
2974 void *fsdata = NULL;
2978 ret = f2fs_init_compress_ctx(&cc);
2984 if (!f2fs_cluster_can_merge_page(&cc,
2986 ret = f2fs_write_multi_pages(&cc,
2987 &submitted, wbc, io_type);
2993 if (unlikely(f2fs_cp_error(sbi)))
2996 if (!f2fs_cluster_is_empty(&cc))
2999 ret2 = f2fs_prepare_compress_overwrite(
3001 page->index, &fsdata);
3007 (!f2fs_compress_write_end(inode,
3008 fsdata, page->index, 1) ||
3009 !f2fs_all_cluster_page_loaded(&cc,
3010 &pvec, i, nr_pages))) {
3016 /* give a priority to WB_SYNC threads */
3017 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3018 wbc->sync_mode == WB_SYNC_NONE) {
3022 #ifdef CONFIG_F2FS_FS_COMPRESSION
3025 done_index = page->index;
3029 if (unlikely(page->mapping != mapping)) {
3035 if (!PageDirty(page)) {
3036 /* someone wrote it for us */
3037 goto continue_unlock;
3040 if (PageWriteback(page)) {
3041 if (wbc->sync_mode != WB_SYNC_NONE)
3042 f2fs_wait_on_page_writeback(page,
3045 goto continue_unlock;
3048 if (!clear_page_dirty_for_io(page))
3049 goto continue_unlock;
3051 #ifdef CONFIG_F2FS_FS_COMPRESSION
3052 if (f2fs_compressed_file(inode)) {
3054 f2fs_compress_ctx_add_page(&cc, page);
3058 ret = f2fs_write_single_data_page(page, &submitted,
3059 &bio, &last_block, wbc, io_type,
3061 if (ret == AOP_WRITEPAGE_ACTIVATE)
3063 #ifdef CONFIG_F2FS_FS_COMPRESSION
3066 nwritten += submitted;
3067 wbc->nr_to_write -= submitted;
3069 if (unlikely(ret)) {
3071 * keep nr_to_write, since vfs uses this to
3072 * get # of written pages.
3074 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3077 } else if (ret == -EAGAIN) {
3079 if (wbc->sync_mode == WB_SYNC_ALL) {
3080 f2fs_io_schedule_timeout(
3081 DEFAULT_IO_TIMEOUT);
3086 done_index = page->index + 1;
3091 if (wbc->nr_to_write <= 0 &&
3092 wbc->sync_mode == WB_SYNC_NONE) {
3100 pagevec_release(&pvec);
3103 #ifdef CONFIG_F2FS_FS_COMPRESSION
3104 /* flush remained pages in compress cluster */
3105 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3106 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3107 nwritten += submitted;
3108 wbc->nr_to_write -= submitted;
3114 if (f2fs_compressed_file(inode))
3115 f2fs_destroy_compress_ctx(&cc, false);
3122 if (wbc->range_cyclic && !done)
3124 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3125 mapping->writeback_index = done_index;
3128 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3130 /* submit cached bio of IPU write */
3132 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3137 static inline bool __should_serialize_io(struct inode *inode,
3138 struct writeback_control *wbc)
3140 /* to avoid deadlock in path of data flush */
3141 if (F2FS_I(inode)->cp_task)
3144 if (!S_ISREG(inode->i_mode))
3146 if (IS_NOQUOTA(inode))
3149 if (f2fs_need_compress_data(inode))
3151 if (wbc->sync_mode != WB_SYNC_ALL)
3153 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3158 static int __f2fs_write_data_pages(struct address_space *mapping,
3159 struct writeback_control *wbc,
3160 enum iostat_type io_type)
3162 struct inode *inode = mapping->host;
3163 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3164 struct blk_plug plug;
3166 bool locked = false;
3168 /* deal with chardevs and other special file */
3169 if (!mapping->a_ops->writepage)
3172 /* skip writing if there is no dirty page in this inode */
3173 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3176 /* during POR, we don't need to trigger writepage at all. */
3177 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3180 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3181 wbc->sync_mode == WB_SYNC_NONE &&
3182 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3183 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3186 /* skip writing in file defragment preparing stage */
3187 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3190 trace_f2fs_writepages(mapping->host, wbc, DATA);
3192 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3193 if (wbc->sync_mode == WB_SYNC_ALL)
3194 atomic_inc(&sbi->wb_sync_req[DATA]);
3195 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3196 /* to avoid potential deadlock */
3198 blk_finish_plug(current->plug);
3202 if (__should_serialize_io(inode, wbc)) {
3203 mutex_lock(&sbi->writepages);
3207 blk_start_plug(&plug);
3208 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3209 blk_finish_plug(&plug);
3212 mutex_unlock(&sbi->writepages);
3214 if (wbc->sync_mode == WB_SYNC_ALL)
3215 atomic_dec(&sbi->wb_sync_req[DATA]);
3217 * if some pages were truncated, we cannot guarantee its mapping->host
3218 * to detect pending bios.
3221 f2fs_remove_dirty_inode(inode);
3225 wbc->pages_skipped += get_dirty_pages(inode);
3226 trace_f2fs_writepages(mapping->host, wbc, DATA);
3230 static int f2fs_write_data_pages(struct address_space *mapping,
3231 struct writeback_control *wbc)
3233 struct inode *inode = mapping->host;
3235 return __f2fs_write_data_pages(mapping, wbc,
3236 F2FS_I(inode)->cp_task == current ?
3237 FS_CP_DATA_IO : FS_DATA_IO);
3240 void f2fs_write_failed(struct inode *inode, loff_t to)
3242 loff_t i_size = i_size_read(inode);
3244 if (IS_NOQUOTA(inode))
3247 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3248 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3249 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3250 filemap_invalidate_lock(inode->i_mapping);
3252 truncate_pagecache(inode, i_size);
3253 f2fs_truncate_blocks(inode, i_size, true);
3255 filemap_invalidate_unlock(inode->i_mapping);
3256 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3260 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3261 struct page *page, loff_t pos, unsigned len,
3262 block_t *blk_addr, bool *node_changed)
3264 struct inode *inode = page->mapping->host;
3265 pgoff_t index = page->index;
3266 struct dnode_of_data dn;
3268 bool locked = false;
3269 struct extent_info ei = {0, };
3274 * If a whole page is being written and we already preallocated all the
3275 * blocks, then there is no need to get a block address now.
3277 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3280 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3281 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3282 flag = F2FS_GET_BLOCK_DEFAULT;
3284 flag = F2FS_GET_BLOCK_PRE_AIO;
3286 if (f2fs_has_inline_data(inode) ||
3287 (pos & PAGE_MASK) >= i_size_read(inode)) {
3288 f2fs_do_map_lock(sbi, flag, true);
3293 /* check inline_data */
3294 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3295 if (IS_ERR(ipage)) {
3296 err = PTR_ERR(ipage);
3300 set_new_dnode(&dn, inode, ipage, ipage, 0);
3302 if (f2fs_has_inline_data(inode)) {
3303 if (pos + len <= MAX_INLINE_DATA(inode)) {
3304 f2fs_do_read_inline_data(page, ipage);
3305 set_inode_flag(inode, FI_DATA_EXIST);
3307 set_page_private_inline(ipage);
3309 err = f2fs_convert_inline_page(&dn, page);
3312 if (dn.data_blkaddr == NULL_ADDR)
3313 err = f2fs_get_block(&dn, index);
3315 } else if (locked) {
3316 err = f2fs_get_block(&dn, index);
3318 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3319 dn.data_blkaddr = ei.blk + index - ei.fofs;
3322 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3323 if (err || dn.data_blkaddr == NULL_ADDR) {
3324 f2fs_put_dnode(&dn);
3325 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3327 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3334 /* convert_inline_page can make node_changed */
3335 *blk_addr = dn.data_blkaddr;
3336 *node_changed = dn.node_changed;
3338 f2fs_put_dnode(&dn);
3341 f2fs_do_map_lock(sbi, flag, false);
3345 static int __find_data_block(struct inode *inode, pgoff_t index,
3348 struct dnode_of_data dn;
3350 struct extent_info ei = {0, };
3353 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3355 return PTR_ERR(ipage);
3357 set_new_dnode(&dn, inode, ipage, ipage, 0);
3359 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3360 dn.data_blkaddr = ei.blk + index - ei.fofs;
3363 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3365 dn.data_blkaddr = NULL_ADDR;
3369 *blk_addr = dn.data_blkaddr;
3370 f2fs_put_dnode(&dn);
3374 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3375 block_t *blk_addr, bool *node_changed)
3377 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3378 struct dnode_of_data dn;
3382 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
3384 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3385 if (IS_ERR(ipage)) {
3386 err = PTR_ERR(ipage);
3389 set_new_dnode(&dn, inode, ipage, ipage, 0);
3391 err = f2fs_get_block(&dn, index);
3393 *blk_addr = dn.data_blkaddr;
3394 *node_changed = dn.node_changed;
3395 f2fs_put_dnode(&dn);
3398 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
3402 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3403 struct page *page, loff_t pos, unsigned int len,
3404 block_t *blk_addr, bool *node_changed)
3406 struct inode *inode = page->mapping->host;
3407 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3408 pgoff_t index = page->index;
3410 block_t ori_blk_addr;
3412 /* If pos is beyond the end of file, reserve a new block in COW inode */
3413 if ((pos & PAGE_MASK) >= i_size_read(inode))
3414 return __reserve_data_block(cow_inode, index, blk_addr,
3417 /* Look for the block in COW inode first */
3418 err = __find_data_block(cow_inode, index, blk_addr);
3421 else if (*blk_addr != NULL_ADDR)
3424 /* Look for the block in the original inode */
3425 err = __find_data_block(inode, index, &ori_blk_addr);
3429 /* Finally, we should reserve a new block in COW inode for the update */
3430 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3434 if (ori_blk_addr != NULL_ADDR)
3435 *blk_addr = ori_blk_addr;
3439 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3440 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3442 struct inode *inode = mapping->host;
3443 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3444 struct page *page = NULL;
3445 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3446 bool need_balance = false;
3447 block_t blkaddr = NULL_ADDR;
3450 trace_f2fs_write_begin(inode, pos, len);
3452 if (!f2fs_is_checkpoint_ready(sbi)) {
3458 * We should check this at this moment to avoid deadlock on inode page
3459 * and #0 page. The locking rule for inline_data conversion should be:
3460 * lock_page(page #0) -> lock_page(inode_page)
3463 err = f2fs_convert_inline_inode(inode);
3468 #ifdef CONFIG_F2FS_FS_COMPRESSION
3469 if (f2fs_compressed_file(inode)) {
3474 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3477 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3490 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3491 * wait_for_stable_page. Will wait that below with our IO control.
3493 page = f2fs_pagecache_get_page(mapping, index,
3494 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3500 /* TODO: cluster can be compressed due to race with .writepage */
3504 if (f2fs_is_atomic_file(inode))
3505 err = prepare_atomic_write_begin(sbi, page, pos, len,
3506 &blkaddr, &need_balance);
3508 err = prepare_write_begin(sbi, page, pos, len,
3509 &blkaddr, &need_balance);
3513 if (need_balance && !IS_NOQUOTA(inode) &&
3514 has_not_enough_free_secs(sbi, 0, 0)) {
3516 f2fs_balance_fs(sbi, true);
3518 if (page->mapping != mapping) {
3519 /* The page got truncated from under us */
3520 f2fs_put_page(page, 1);
3525 f2fs_wait_on_page_writeback(page, DATA, false, true);
3527 if (len == PAGE_SIZE || PageUptodate(page))
3530 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3531 !f2fs_verity_in_progress(inode)) {
3532 zero_user_segment(page, len, PAGE_SIZE);
3536 if (blkaddr == NEW_ADDR) {
3537 zero_user_segment(page, 0, PAGE_SIZE);
3538 SetPageUptodate(page);
3540 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3541 DATA_GENERIC_ENHANCE_READ)) {
3542 err = -EFSCORRUPTED;
3545 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3550 if (unlikely(page->mapping != mapping)) {
3551 f2fs_put_page(page, 1);
3554 if (unlikely(!PageUptodate(page))) {
3562 f2fs_put_page(page, 1);
3563 f2fs_write_failed(inode, pos + len);
3567 static int f2fs_write_end(struct file *file,
3568 struct address_space *mapping,
3569 loff_t pos, unsigned len, unsigned copied,
3570 struct page *page, void *fsdata)
3572 struct inode *inode = page->mapping->host;
3574 trace_f2fs_write_end(inode, pos, len, copied);
3577 * This should be come from len == PAGE_SIZE, and we expect copied
3578 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3579 * let generic_perform_write() try to copy data again through copied=0.
3581 if (!PageUptodate(page)) {
3582 if (unlikely(copied != len))
3585 SetPageUptodate(page);
3588 #ifdef CONFIG_F2FS_FS_COMPRESSION
3589 /* overwrite compressed file */
3590 if (f2fs_compressed_file(inode) && fsdata) {
3591 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3592 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3594 if (pos + copied > i_size_read(inode) &&
3595 !f2fs_verity_in_progress(inode))
3596 f2fs_i_size_write(inode, pos + copied);
3604 set_page_dirty(page);
3606 if (pos + copied > i_size_read(inode) &&
3607 !f2fs_verity_in_progress(inode)) {
3608 f2fs_i_size_write(inode, pos + copied);
3609 if (f2fs_is_atomic_file(inode))
3610 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3614 f2fs_put_page(page, 1);
3615 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3619 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3621 struct inode *inode = folio->mapping->host;
3622 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3624 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3625 (offset || length != folio_size(folio)))
3628 if (folio_test_dirty(folio)) {
3629 if (inode->i_ino == F2FS_META_INO(sbi)) {
3630 dec_page_count(sbi, F2FS_DIRTY_META);
3631 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3632 dec_page_count(sbi, F2FS_DIRTY_NODES);
3634 inode_dec_dirty_pages(inode);
3635 f2fs_remove_dirty_inode(inode);
3639 clear_page_private_gcing(&folio->page);
3641 if (test_opt(sbi, COMPRESS_CACHE) &&
3642 inode->i_ino == F2FS_COMPRESS_INO(sbi))
3643 clear_page_private_data(&folio->page);
3645 folio_detach_private(folio);
3648 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3650 struct f2fs_sb_info *sbi;
3652 /* If this is dirty folio, keep private data */
3653 if (folio_test_dirty(folio))
3656 sbi = F2FS_M_SB(folio->mapping);
3657 if (test_opt(sbi, COMPRESS_CACHE)) {
3658 struct inode *inode = folio->mapping->host;
3660 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3661 clear_page_private_data(&folio->page);
3664 clear_page_private_gcing(&folio->page);
3666 folio_detach_private(folio);
3670 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3671 struct folio *folio)
3673 struct inode *inode = mapping->host;
3675 trace_f2fs_set_page_dirty(&folio->page, DATA);
3677 if (!folio_test_uptodate(folio))
3678 folio_mark_uptodate(folio);
3679 BUG_ON(folio_test_swapcache(folio));
3681 if (!folio_test_dirty(folio)) {
3682 filemap_dirty_folio(mapping, folio);
3683 f2fs_update_dirty_folio(inode, folio);
3690 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3692 #ifdef CONFIG_F2FS_FS_COMPRESSION
3693 struct dnode_of_data dn;
3694 sector_t start_idx, blknr = 0;
3697 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3699 set_new_dnode(&dn, inode, NULL, NULL, 0);
3700 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3704 if (dn.data_blkaddr != COMPRESS_ADDR) {
3705 dn.ofs_in_node += block - start_idx;
3706 blknr = f2fs_data_blkaddr(&dn);
3707 if (!__is_valid_data_blkaddr(blknr))
3711 f2fs_put_dnode(&dn);
3719 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3721 struct inode *inode = mapping->host;
3724 if (f2fs_has_inline_data(inode))
3727 /* make sure allocating whole blocks */
3728 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3729 filemap_write_and_wait(mapping);
3731 /* Block number less than F2FS MAX BLOCKS */
3732 if (unlikely(block >= max_file_blocks(inode)))
3735 if (f2fs_compressed_file(inode)) {
3736 blknr = f2fs_bmap_compress(inode, block);
3738 struct f2fs_map_blocks map;
3740 memset(&map, 0, sizeof(map));
3743 map.m_next_pgofs = NULL;
3744 map.m_seg_type = NO_CHECK_TYPE;
3746 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3750 trace_f2fs_bmap(inode, block, blknr);
3754 #ifdef CONFIG_MIGRATION
3755 #include <linux/migrate.h>
3757 int f2fs_migrate_page(struct address_space *mapping,
3758 struct page *newpage, struct page *page, enum migrate_mode mode)
3760 int rc, extra_count = 0;
3762 BUG_ON(PageWriteback(page));
3764 rc = migrate_page_move_mapping(mapping, newpage,
3766 if (rc != MIGRATEPAGE_SUCCESS)
3769 /* guarantee to start from no stale private field */
3770 set_page_private(newpage, 0);
3771 if (PagePrivate(page)) {
3772 set_page_private(newpage, page_private(page));
3773 SetPagePrivate(newpage);
3776 set_page_private(page, 0);
3777 ClearPagePrivate(page);
3781 if (mode != MIGRATE_SYNC_NO_COPY)
3782 migrate_page_copy(newpage, page);
3784 migrate_page_states(newpage, page);
3786 return MIGRATEPAGE_SUCCESS;
3791 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3792 unsigned int blkcnt)
3794 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3795 unsigned int blkofs;
3796 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3797 unsigned int secidx = start_blk / blk_per_sec;
3798 unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3801 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3802 filemap_invalidate_lock(inode->i_mapping);
3804 set_inode_flag(inode, FI_ALIGNED_WRITE);
3805 set_inode_flag(inode, FI_OPU_WRITE);
3807 for (; secidx < end_sec; secidx++) {
3808 f2fs_down_write(&sbi->pin_sem);
3811 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3812 f2fs_unlock_op(sbi);
3814 set_inode_flag(inode, FI_SKIP_WRITES);
3816 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3818 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3820 page = f2fs_get_lock_data_page(inode, blkidx, true);
3822 f2fs_up_write(&sbi->pin_sem);
3823 ret = PTR_ERR(page);
3827 set_page_dirty(page);
3828 f2fs_put_page(page, 1);
3831 clear_inode_flag(inode, FI_SKIP_WRITES);
3833 ret = filemap_fdatawrite(inode->i_mapping);
3835 f2fs_up_write(&sbi->pin_sem);
3842 clear_inode_flag(inode, FI_SKIP_WRITES);
3843 clear_inode_flag(inode, FI_OPU_WRITE);
3844 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3846 filemap_invalidate_unlock(inode->i_mapping);
3847 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3852 static int check_swap_activate(struct swap_info_struct *sis,
3853 struct file *swap_file, sector_t *span)
3855 struct address_space *mapping = swap_file->f_mapping;
3856 struct inode *inode = mapping->host;
3857 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3858 sector_t cur_lblock;
3859 sector_t last_lblock;
3861 sector_t lowest_pblock = -1;
3862 sector_t highest_pblock = 0;
3864 unsigned long nr_pblocks;
3865 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3866 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3867 unsigned int not_aligned = 0;
3871 * Map all the blocks into the extent list. This code doesn't try
3875 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3877 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3878 struct f2fs_map_blocks map;
3882 memset(&map, 0, sizeof(map));
3883 map.m_lblk = cur_lblock;
3884 map.m_len = last_lblock - cur_lblock;
3885 map.m_next_pgofs = NULL;
3886 map.m_next_extent = NULL;
3887 map.m_seg_type = NO_CHECK_TYPE;
3888 map.m_may_create = false;
3890 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3895 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3896 f2fs_err(sbi, "Swapfile has holes");
3901 pblock = map.m_pblk;
3902 nr_pblocks = map.m_len;
3904 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3905 nr_pblocks & sec_blks_mask) {
3908 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3909 if (cur_lblock + nr_pblocks > sis->max)
3910 nr_pblocks -= blks_per_sec;
3913 /* this extent is last one */
3914 nr_pblocks = map.m_len;
3915 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3919 ret = f2fs_migrate_blocks(inode, cur_lblock,
3926 if (cur_lblock + nr_pblocks >= sis->max)
3927 nr_pblocks = sis->max - cur_lblock;
3929 if (cur_lblock) { /* exclude the header page */
3930 if (pblock < lowest_pblock)
3931 lowest_pblock = pblock;
3932 if (pblock + nr_pblocks - 1 > highest_pblock)
3933 highest_pblock = pblock + nr_pblocks - 1;
3937 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3939 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3943 cur_lblock += nr_pblocks;
3946 *span = 1 + highest_pblock - lowest_pblock;
3947 if (cur_lblock == 0)
3948 cur_lblock = 1; /* force Empty message */
3949 sis->max = cur_lblock;
3950 sis->pages = cur_lblock - 1;
3951 sis->highest_bit = cur_lblock - 1;
3954 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3955 not_aligned, blks_per_sec * F2FS_BLKSIZE);
3959 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3962 struct inode *inode = file_inode(file);
3965 if (!S_ISREG(inode->i_mode))
3968 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3971 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
3972 f2fs_err(F2FS_I_SB(inode),
3973 "Swapfile not supported in LFS mode");
3977 ret = f2fs_convert_inline_inode(inode);
3981 if (!f2fs_disable_compressed_file(inode))
3984 f2fs_precache_extents(inode);
3986 ret = check_swap_activate(sis, file, span);
3990 set_inode_flag(inode, FI_PIN_FILE);
3991 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3995 static void f2fs_swap_deactivate(struct file *file)
3997 struct inode *inode = file_inode(file);
3999 clear_inode_flag(inode, FI_PIN_FILE);
4002 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4008 static void f2fs_swap_deactivate(struct file *file)
4013 const struct address_space_operations f2fs_dblock_aops = {
4014 .read_folio = f2fs_read_data_folio,
4015 .readahead = f2fs_readahead,
4016 .writepage = f2fs_write_data_page,
4017 .writepages = f2fs_write_data_pages,
4018 .write_begin = f2fs_write_begin,
4019 .write_end = f2fs_write_end,
4020 .dirty_folio = f2fs_dirty_data_folio,
4021 .invalidate_folio = f2fs_invalidate_folio,
4022 .release_folio = f2fs_release_folio,
4023 .direct_IO = noop_direct_IO,
4025 .swap_activate = f2fs_swap_activate,
4026 .swap_deactivate = f2fs_swap_deactivate,
4027 #ifdef CONFIG_MIGRATION
4028 .migratepage = f2fs_migrate_page,
4032 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4034 struct address_space *mapping = page_mapping(page);
4035 unsigned long flags;
4037 xa_lock_irqsave(&mapping->i_pages, flags);
4038 __xa_clear_mark(&mapping->i_pages, page_index(page),
4039 PAGECACHE_TAG_DIRTY);
4040 xa_unlock_irqrestore(&mapping->i_pages, flags);
4043 int __init f2fs_init_post_read_processing(void)
4045 bio_post_read_ctx_cache =
4046 kmem_cache_create("f2fs_bio_post_read_ctx",
4047 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4048 if (!bio_post_read_ctx_cache)
4050 bio_post_read_ctx_pool =
4051 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4052 bio_post_read_ctx_cache);
4053 if (!bio_post_read_ctx_pool)
4054 goto fail_free_cache;
4058 kmem_cache_destroy(bio_post_read_ctx_cache);
4063 void f2fs_destroy_post_read_processing(void)
4065 mempool_destroy(bio_post_read_ctx_pool);
4066 kmem_cache_destroy(bio_post_read_ctx_cache);
4069 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4071 if (!f2fs_sb_has_encrypt(sbi) &&
4072 !f2fs_sb_has_verity(sbi) &&
4073 !f2fs_sb_has_compression(sbi))
4076 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4077 WQ_UNBOUND | WQ_HIGHPRI,
4079 if (!sbi->post_read_wq)
4084 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4086 if (sbi->post_read_wq)
4087 destroy_workqueue(sbi->post_read_wq);
4090 int __init f2fs_init_bio_entry_cache(void)
4092 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4093 sizeof(struct bio_entry));
4094 if (!bio_entry_slab)
4099 void f2fs_destroy_bio_entry_cache(void)
4101 kmem_cache_destroy(bio_entry_slab);
4104 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4105 unsigned int flags, struct iomap *iomap,
4106 struct iomap *srcmap)
4108 struct f2fs_map_blocks map = {};
4109 pgoff_t next_pgofs = 0;
4112 map.m_lblk = bytes_to_blks(inode, offset);
4113 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4114 map.m_next_pgofs = &next_pgofs;
4115 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4116 if (flags & IOMAP_WRITE)
4117 map.m_may_create = true;
4119 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
4120 F2FS_GET_BLOCK_DIO);
4124 iomap->offset = blks_to_bytes(inode, map.m_lblk);
4127 * When inline encryption is enabled, sometimes I/O to an encrypted file
4128 * has to be broken up to guarantee DUN contiguity. Handle this by
4129 * limiting the length of the mapping returned.
4131 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4133 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
4134 iomap->length = blks_to_bytes(inode, map.m_len);
4135 if (map.m_flags & F2FS_MAP_MAPPED) {
4136 iomap->type = IOMAP_MAPPED;
4137 iomap->flags |= IOMAP_F_MERGED;
4139 iomap->type = IOMAP_UNWRITTEN;
4141 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
4144 iomap->bdev = map.m_bdev;
4145 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4147 iomap->length = blks_to_bytes(inode, next_pgofs) -
4149 iomap->type = IOMAP_HOLE;
4150 iomap->addr = IOMAP_NULL_ADDR;
4153 if (map.m_flags & F2FS_MAP_NEW)
4154 iomap->flags |= IOMAP_F_NEW;
4155 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4156 offset + length > i_size_read(inode))
4157 iomap->flags |= IOMAP_F_DIRTY;
4162 const struct iomap_ops f2fs_iomap_ops = {
4163 .iomap_begin = f2fs_iomap_begin,