1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/mutex.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60 #include <linux/srcu.h>
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
65 #include <linux/swapops.h>
66 #include <linux/balloon_compaction.h>
67 #include <linux/sched/sysctl.h>
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/vmscan.h>
76 /* How many pages shrink_list() should reclaim */
77 unsigned long nr_to_reclaim;
80 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
89 struct mem_cgroup *target_mem_cgroup;
92 * Scan pressure balancing between anon and file LRUs
94 unsigned long anon_cost;
95 unsigned long file_cost;
97 /* Can active folios be deactivated as part of reclaim? */
98 #define DEACTIVATE_ANON 1
99 #define DEACTIVATE_FILE 2
100 unsigned int may_deactivate:2;
101 unsigned int force_deactivate:1;
102 unsigned int skipped_deactivate:1;
104 /* Writepage batching in laptop mode; RECLAIM_WRITE */
105 unsigned int may_writepage:1;
107 /* Can mapped folios be reclaimed? */
108 unsigned int may_unmap:1;
110 /* Can folios be swapped as part of reclaim? */
111 unsigned int may_swap:1;
113 /* Proactive reclaim invoked by userspace through memory.reclaim */
114 unsigned int proactive:1;
117 * Cgroup memory below memory.low is protected as long as we
118 * don't threaten to OOM. If any cgroup is reclaimed at
119 * reduced force or passed over entirely due to its memory.low
120 * setting (memcg_low_skipped), and nothing is reclaimed as a
121 * result, then go back for one more cycle that reclaims the protected
122 * memory (memcg_low_reclaim) to avert OOM.
124 unsigned int memcg_low_reclaim:1;
125 unsigned int memcg_low_skipped:1;
127 unsigned int hibernation_mode:1;
129 /* One of the zones is ready for compaction */
130 unsigned int compaction_ready:1;
132 /* There is easily reclaimable cold cache in the current node */
133 unsigned int cache_trim_mode:1;
135 /* The file folios on the current node are dangerously low */
136 unsigned int file_is_tiny:1;
138 /* Always discard instead of demoting to lower tier memory */
139 unsigned int no_demotion:1;
141 /* Allocation order */
144 /* Scan (total_size >> priority) pages at once */
147 /* The highest zone to isolate folios for reclaim from */
150 /* This context's GFP mask */
153 /* Incremented by the number of inactive pages that were scanned */
154 unsigned long nr_scanned;
156 /* Number of pages freed so far during a call to shrink_zones() */
157 unsigned long nr_reclaimed;
161 unsigned int unqueued_dirty;
162 unsigned int congested;
163 unsigned int writeback;
164 unsigned int immediate;
165 unsigned int file_taken;
169 /* for recording the reclaimed slab by now */
170 struct reclaim_state reclaim_state;
173 #ifdef ARCH_HAS_PREFETCHW
174 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
176 if ((_folio)->lru.prev != _base) { \
177 struct folio *prev; \
179 prev = lru_to_folio(&(_folio->lru)); \
180 prefetchw(&prev->_field); \
184 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
188 * From 0 .. 200. Higher means more swappy.
190 int vm_swappiness = 60;
192 LIST_HEAD(shrinker_list);
193 DEFINE_MUTEX(shrinker_mutex);
194 DEFINE_SRCU(shrinker_srcu);
195 static atomic_t shrinker_srcu_generation = ATOMIC_INIT(0);
198 static int shrinker_nr_max;
200 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
201 static inline int shrinker_map_size(int nr_items)
203 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
206 static inline int shrinker_defer_size(int nr_items)
208 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
211 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
214 return srcu_dereference_check(memcg->nodeinfo[nid]->shrinker_info,
216 lockdep_is_held(&shrinker_mutex));
219 static struct shrinker_info *shrinker_info_srcu(struct mem_cgroup *memcg,
222 return srcu_dereference(memcg->nodeinfo[nid]->shrinker_info,
226 static void free_shrinker_info_rcu(struct rcu_head *head)
228 kvfree(container_of(head, struct shrinker_info, rcu));
231 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
232 int map_size, int defer_size,
233 int old_map_size, int old_defer_size,
236 struct shrinker_info *new, *old;
237 struct mem_cgroup_per_node *pn;
239 int size = map_size + defer_size;
242 pn = memcg->nodeinfo[nid];
243 old = shrinker_info_protected(memcg, nid);
244 /* Not yet online memcg */
248 /* Already expanded this shrinker_info */
249 if (new_nr_max <= old->map_nr_max)
252 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
256 new->nr_deferred = (atomic_long_t *)(new + 1);
257 new->map = (void *)new->nr_deferred + defer_size;
258 new->map_nr_max = new_nr_max;
260 /* map: set all old bits, clear all new bits */
261 memset(new->map, (int)0xff, old_map_size);
262 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
263 /* nr_deferred: copy old values, clear all new values */
264 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
265 memset((void *)new->nr_deferred + old_defer_size, 0,
266 defer_size - old_defer_size);
268 rcu_assign_pointer(pn->shrinker_info, new);
269 call_srcu(&shrinker_srcu, &old->rcu, free_shrinker_info_rcu);
275 void free_shrinker_info(struct mem_cgroup *memcg)
277 struct mem_cgroup_per_node *pn;
278 struct shrinker_info *info;
282 pn = memcg->nodeinfo[nid];
283 info = rcu_dereference_protected(pn->shrinker_info, true);
285 rcu_assign_pointer(pn->shrinker_info, NULL);
289 int alloc_shrinker_info(struct mem_cgroup *memcg)
291 struct shrinker_info *info;
292 int nid, size, ret = 0;
293 int map_size, defer_size = 0;
295 mutex_lock(&shrinker_mutex);
296 map_size = shrinker_map_size(shrinker_nr_max);
297 defer_size = shrinker_defer_size(shrinker_nr_max);
298 size = map_size + defer_size;
300 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
302 free_shrinker_info(memcg);
306 info->nr_deferred = (atomic_long_t *)(info + 1);
307 info->map = (void *)info->nr_deferred + defer_size;
308 info->map_nr_max = shrinker_nr_max;
309 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
311 mutex_unlock(&shrinker_mutex);
316 static int expand_shrinker_info(int new_id)
319 int new_nr_max = round_up(new_id + 1, BITS_PER_LONG);
320 int map_size, defer_size = 0;
321 int old_map_size, old_defer_size = 0;
322 struct mem_cgroup *memcg;
324 if (!root_mem_cgroup)
327 lockdep_assert_held(&shrinker_mutex);
329 map_size = shrinker_map_size(new_nr_max);
330 defer_size = shrinker_defer_size(new_nr_max);
331 old_map_size = shrinker_map_size(shrinker_nr_max);
332 old_defer_size = shrinker_defer_size(shrinker_nr_max);
334 memcg = mem_cgroup_iter(NULL, NULL, NULL);
336 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
337 old_map_size, old_defer_size,
340 mem_cgroup_iter_break(NULL, memcg);
343 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
346 shrinker_nr_max = new_nr_max;
351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
353 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
354 struct shrinker_info *info;
357 srcu_idx = srcu_read_lock(&shrinker_srcu);
358 info = shrinker_info_srcu(memcg, nid);
359 if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
360 /* Pairs with smp mb in shrink_slab() */
361 smp_mb__before_atomic();
362 set_bit(shrinker_id, info->map);
364 srcu_read_unlock(&shrinker_srcu, srcu_idx);
368 static DEFINE_IDR(shrinker_idr);
370 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
372 int id, ret = -ENOMEM;
374 if (mem_cgroup_disabled())
377 mutex_lock(&shrinker_mutex);
378 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
382 if (id >= shrinker_nr_max) {
383 if (expand_shrinker_info(id)) {
384 idr_remove(&shrinker_idr, id);
391 mutex_unlock(&shrinker_mutex);
395 static void unregister_memcg_shrinker(struct shrinker *shrinker)
397 int id = shrinker->id;
401 lockdep_assert_held(&shrinker_mutex);
403 idr_remove(&shrinker_idr, id);
406 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
407 struct mem_cgroup *memcg)
409 struct shrinker_info *info;
411 info = shrinker_info_srcu(memcg, nid);
412 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
415 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
416 struct mem_cgroup *memcg)
418 struct shrinker_info *info;
420 info = shrinker_info_srcu(memcg, nid);
421 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
424 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
428 struct mem_cgroup *parent;
429 struct shrinker_info *child_info, *parent_info;
431 parent = parent_mem_cgroup(memcg);
433 parent = root_mem_cgroup;
435 /* Prevent from concurrent shrinker_info expand */
436 mutex_lock(&shrinker_mutex);
438 child_info = shrinker_info_protected(memcg, nid);
439 parent_info = shrinker_info_protected(parent, nid);
440 for (i = 0; i < child_info->map_nr_max; i++) {
441 nr = atomic_long_read(&child_info->nr_deferred[i]);
442 atomic_long_add(nr, &parent_info->nr_deferred[i]);
445 mutex_unlock(&shrinker_mutex);
448 static bool cgroup_reclaim(struct scan_control *sc)
450 return sc->target_mem_cgroup;
453 static bool global_reclaim(struct scan_control *sc)
455 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
459 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
460 * @sc: scan_control in question
462 * The normal page dirty throttling mechanism in balance_dirty_pages() is
463 * completely broken with the legacy memcg and direct stalling in
464 * shrink_folio_list() is used for throttling instead, which lacks all the
465 * niceties such as fairness, adaptive pausing, bandwidth proportional
466 * allocation and configurability.
468 * This function tests whether the vmscan currently in progress can assume
469 * that the normal dirty throttling mechanism is operational.
471 static bool writeback_throttling_sane(struct scan_control *sc)
473 if (!cgroup_reclaim(sc))
475 #ifdef CONFIG_CGROUP_WRITEBACK
476 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
482 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
487 static void unregister_memcg_shrinker(struct shrinker *shrinker)
491 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
492 struct mem_cgroup *memcg)
497 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
498 struct mem_cgroup *memcg)
503 static bool cgroup_reclaim(struct scan_control *sc)
508 static bool global_reclaim(struct scan_control *sc)
513 static bool writeback_throttling_sane(struct scan_control *sc)
519 static void set_task_reclaim_state(struct task_struct *task,
520 struct reclaim_state *rs)
522 /* Check for an overwrite */
523 WARN_ON_ONCE(rs && task->reclaim_state);
525 /* Check for the nulling of an already-nulled member */
526 WARN_ON_ONCE(!rs && !task->reclaim_state);
528 task->reclaim_state = rs;
532 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
533 * scan_control->nr_reclaimed.
535 static void flush_reclaim_state(struct scan_control *sc)
538 * Currently, reclaim_state->reclaimed includes three types of pages
539 * freed outside of vmscan:
541 * (2) Clean file pages from pruned inodes (on highmem systems).
542 * (3) XFS freed buffer pages.
544 * For all of these cases, we cannot universally link the pages to a
545 * single memcg. For example, a memcg-aware shrinker can free one object
546 * charged to the target memcg, causing an entire page to be freed.
547 * If we count the entire page as reclaimed from the memcg, we end up
548 * overestimating the reclaimed amount (potentially under-reclaiming).
550 * Only count such pages for global reclaim to prevent under-reclaiming
551 * from the target memcg; preventing unnecessary retries during memcg
552 * charging and false positives from proactive reclaim.
554 * For uncommon cases where the freed pages were actually mostly
555 * charged to the target memcg, we end up underestimating the reclaimed
556 * amount. This should be fine. The freed pages will be uncharged
557 * anyway, even if they are not counted here properly, and we will be
558 * able to make forward progress in charging (which is usually in a
561 * We can go one step further, and report the uncharged objcg pages in
562 * memcg reclaim, to make reporting more accurate and reduce
563 * underestimation, but it's probably not worth the complexity for now.
565 if (current->reclaim_state && global_reclaim(sc)) {
566 sc->nr_reclaimed += current->reclaim_state->reclaimed;
567 current->reclaim_state->reclaimed = 0;
571 static long xchg_nr_deferred(struct shrinker *shrinker,
572 struct shrink_control *sc)
576 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
580 (shrinker->flags & SHRINKER_MEMCG_AWARE))
581 return xchg_nr_deferred_memcg(nid, shrinker,
584 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
588 static long add_nr_deferred(long nr, struct shrinker *shrinker,
589 struct shrink_control *sc)
593 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
597 (shrinker->flags & SHRINKER_MEMCG_AWARE))
598 return add_nr_deferred_memcg(nr, nid, shrinker,
601 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
604 static bool can_demote(int nid, struct scan_control *sc)
606 if (!numa_demotion_enabled)
608 if (sc && sc->no_demotion)
610 if (next_demotion_node(nid) == NUMA_NO_NODE)
616 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
618 struct scan_control *sc)
622 * For non-memcg reclaim, is there
623 * space in any swap device?
625 if (get_nr_swap_pages() > 0)
628 /* Is the memcg below its swap limit? */
629 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
634 * The page can not be swapped.
636 * Can it be reclaimed from this node via demotion?
638 return can_demote(nid, sc);
642 * This misses isolated folios which are not accounted for to save counters.
643 * As the data only determines if reclaim or compaction continues, it is
644 * not expected that isolated folios will be a dominating factor.
646 unsigned long zone_reclaimable_pages(struct zone *zone)
650 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
651 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
652 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
653 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
654 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
660 * lruvec_lru_size - Returns the number of pages on the given LRU list.
661 * @lruvec: lru vector
663 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
665 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
668 unsigned long size = 0;
671 for (zid = 0; zid <= zone_idx; zid++) {
672 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
674 if (!managed_zone(zone))
677 if (!mem_cgroup_disabled())
678 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
680 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
686 * Add a shrinker callback to be called from the vm.
688 static int __prealloc_shrinker(struct shrinker *shrinker)
693 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
694 err = prealloc_memcg_shrinker(shrinker);
698 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
701 size = sizeof(*shrinker->nr_deferred);
702 if (shrinker->flags & SHRINKER_NUMA_AWARE)
705 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
706 if (!shrinker->nr_deferred)
712 #ifdef CONFIG_SHRINKER_DEBUG
713 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
719 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
724 err = __prealloc_shrinker(shrinker);
726 kfree_const(shrinker->name);
727 shrinker->name = NULL;
733 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
735 return __prealloc_shrinker(shrinker);
739 void free_prealloced_shrinker(struct shrinker *shrinker)
741 #ifdef CONFIG_SHRINKER_DEBUG
742 kfree_const(shrinker->name);
743 shrinker->name = NULL;
745 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
746 mutex_lock(&shrinker_mutex);
747 unregister_memcg_shrinker(shrinker);
748 mutex_unlock(&shrinker_mutex);
752 kfree(shrinker->nr_deferred);
753 shrinker->nr_deferred = NULL;
756 void register_shrinker_prepared(struct shrinker *shrinker)
758 mutex_lock(&shrinker_mutex);
759 list_add_tail_rcu(&shrinker->list, &shrinker_list);
760 shrinker->flags |= SHRINKER_REGISTERED;
761 shrinker_debugfs_add(shrinker);
762 mutex_unlock(&shrinker_mutex);
765 static int __register_shrinker(struct shrinker *shrinker)
767 int err = __prealloc_shrinker(shrinker);
771 register_shrinker_prepared(shrinker);
775 #ifdef CONFIG_SHRINKER_DEBUG
776 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
782 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
787 err = __register_shrinker(shrinker);
789 kfree_const(shrinker->name);
790 shrinker->name = NULL;
795 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
797 return __register_shrinker(shrinker);
800 EXPORT_SYMBOL(register_shrinker);
805 void unregister_shrinker(struct shrinker *shrinker)
807 struct dentry *debugfs_entry;
809 if (!(shrinker->flags & SHRINKER_REGISTERED))
812 mutex_lock(&shrinker_mutex);
813 list_del_rcu(&shrinker->list);
814 shrinker->flags &= ~SHRINKER_REGISTERED;
815 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
816 unregister_memcg_shrinker(shrinker);
817 debugfs_entry = shrinker_debugfs_remove(shrinker);
818 mutex_unlock(&shrinker_mutex);
820 atomic_inc(&shrinker_srcu_generation);
821 synchronize_srcu(&shrinker_srcu);
823 debugfs_remove_recursive(debugfs_entry);
825 kfree(shrinker->nr_deferred);
826 shrinker->nr_deferred = NULL;
828 EXPORT_SYMBOL(unregister_shrinker);
831 * synchronize_shrinkers - Wait for all running shrinkers to complete.
833 * This is useful to guarantee that all shrinker invocations have seen an
834 * update, before freeing memory.
836 void synchronize_shrinkers(void)
838 atomic_inc(&shrinker_srcu_generation);
839 synchronize_srcu(&shrinker_srcu);
841 EXPORT_SYMBOL(synchronize_shrinkers);
843 #define SHRINK_BATCH 128
845 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
846 struct shrinker *shrinker, int priority)
848 unsigned long freed = 0;
849 unsigned long long delta;
854 long batch_size = shrinker->batch ? shrinker->batch
856 long scanned = 0, next_deferred;
858 freeable = shrinker->count_objects(shrinker, shrinkctl);
859 if (freeable == 0 || freeable == SHRINK_EMPTY)
863 * copy the current shrinker scan count into a local variable
864 * and zero it so that other concurrent shrinker invocations
865 * don't also do this scanning work.
867 nr = xchg_nr_deferred(shrinker, shrinkctl);
869 if (shrinker->seeks) {
870 delta = freeable >> priority;
872 do_div(delta, shrinker->seeks);
875 * These objects don't require any IO to create. Trim
876 * them aggressively under memory pressure to keep
877 * them from causing refetches in the IO caches.
879 delta = freeable / 2;
882 total_scan = nr >> priority;
884 total_scan = min(total_scan, (2 * freeable));
886 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
887 freeable, delta, total_scan, priority);
890 * Normally, we should not scan less than batch_size objects in one
891 * pass to avoid too frequent shrinker calls, but if the slab has less
892 * than batch_size objects in total and we are really tight on memory,
893 * we will try to reclaim all available objects, otherwise we can end
894 * up failing allocations although there are plenty of reclaimable
895 * objects spread over several slabs with usage less than the
898 * We detect the "tight on memory" situations by looking at the total
899 * number of objects we want to scan (total_scan). If it is greater
900 * than the total number of objects on slab (freeable), we must be
901 * scanning at high prio and therefore should try to reclaim as much as
904 while (total_scan >= batch_size ||
905 total_scan >= freeable) {
907 unsigned long nr_to_scan = min(batch_size, total_scan);
909 shrinkctl->nr_to_scan = nr_to_scan;
910 shrinkctl->nr_scanned = nr_to_scan;
911 ret = shrinker->scan_objects(shrinker, shrinkctl);
912 if (ret == SHRINK_STOP)
916 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
917 total_scan -= shrinkctl->nr_scanned;
918 scanned += shrinkctl->nr_scanned;
924 * The deferred work is increased by any new work (delta) that wasn't
925 * done, decreased by old deferred work that was done now.
927 * And it is capped to two times of the freeable items.
929 next_deferred = max_t(long, (nr + delta - scanned), 0);
930 next_deferred = min(next_deferred, (2 * freeable));
933 * move the unused scan count back into the shrinker in a
934 * manner that handles concurrent updates.
936 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
938 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
943 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
944 struct mem_cgroup *memcg, int priority)
946 struct shrinker_info *info;
947 unsigned long ret, freed = 0;
948 int srcu_idx, generation;
951 if (!mem_cgroup_online(memcg))
955 srcu_idx = srcu_read_lock(&shrinker_srcu);
956 info = shrinker_info_srcu(memcg, nid);
960 generation = atomic_read(&shrinker_srcu_generation);
961 for_each_set_bit_from(i, info->map, info->map_nr_max) {
962 struct shrink_control sc = {
963 .gfp_mask = gfp_mask,
967 struct shrinker *shrinker;
969 shrinker = idr_find(&shrinker_idr, i);
970 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
972 clear_bit(i, info->map);
976 /* Call non-slab shrinkers even though kmem is disabled */
977 if (!memcg_kmem_online() &&
978 !(shrinker->flags & SHRINKER_NONSLAB))
981 ret = do_shrink_slab(&sc, shrinker, priority);
982 if (ret == SHRINK_EMPTY) {
983 clear_bit(i, info->map);
985 * After the shrinker reported that it had no objects to
986 * free, but before we cleared the corresponding bit in
987 * the memcg shrinker map, a new object might have been
988 * added. To make sure, we have the bit set in this
989 * case, we invoke the shrinker one more time and reset
990 * the bit if it reports that it is not empty anymore.
991 * The memory barrier here pairs with the barrier in
992 * set_shrinker_bit():
994 * list_lru_add() shrink_slab_memcg()
995 * list_add_tail() clear_bit()
997 * set_bit() do_shrink_slab()
999 smp_mb__after_atomic();
1000 ret = do_shrink_slab(&sc, shrinker, priority);
1001 if (ret == SHRINK_EMPTY)
1004 set_shrinker_bit(memcg, nid, i);
1007 if (atomic_read(&shrinker_srcu_generation) != generation) {
1008 srcu_read_unlock(&shrinker_srcu, srcu_idx);
1014 srcu_read_unlock(&shrinker_srcu, srcu_idx);
1017 #else /* CONFIG_MEMCG */
1018 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
1019 struct mem_cgroup *memcg, int priority)
1023 #endif /* CONFIG_MEMCG */
1026 * shrink_slab - shrink slab caches
1027 * @gfp_mask: allocation context
1028 * @nid: node whose slab caches to target
1029 * @memcg: memory cgroup whose slab caches to target
1030 * @priority: the reclaim priority
1032 * Call the shrink functions to age shrinkable caches.
1034 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
1035 * unaware shrinkers will receive a node id of 0 instead.
1037 * @memcg specifies the memory cgroup to target. Unaware shrinkers
1038 * are called only if it is the root cgroup.
1040 * @priority is sc->priority, we take the number of objects and >> by priority
1041 * in order to get the scan target.
1043 * Returns the number of reclaimed slab objects.
1045 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
1046 struct mem_cgroup *memcg,
1049 unsigned long ret, freed = 0;
1050 struct shrinker *shrinker;
1051 int srcu_idx, generation;
1054 * The root memcg might be allocated even though memcg is disabled
1055 * via "cgroup_disable=memory" boot parameter. This could make
1056 * mem_cgroup_is_root() return false, then just run memcg slab
1057 * shrink, but skip global shrink. This may result in premature
1060 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
1061 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
1063 srcu_idx = srcu_read_lock(&shrinker_srcu);
1065 generation = atomic_read(&shrinker_srcu_generation);
1066 list_for_each_entry_srcu(shrinker, &shrinker_list, list,
1067 srcu_read_lock_held(&shrinker_srcu)) {
1068 struct shrink_control sc = {
1069 .gfp_mask = gfp_mask,
1074 ret = do_shrink_slab(&sc, shrinker, priority);
1075 if (ret == SHRINK_EMPTY)
1079 if (atomic_read(&shrinker_srcu_generation) != generation) {
1080 freed = freed ? : 1;
1085 srcu_read_unlock(&shrinker_srcu, srcu_idx);
1090 static unsigned long drop_slab_node(int nid)
1092 unsigned long freed = 0;
1093 struct mem_cgroup *memcg = NULL;
1095 memcg = mem_cgroup_iter(NULL, NULL, NULL);
1097 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1098 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1103 void drop_slab(void)
1107 unsigned long freed;
1111 for_each_online_node(nid) {
1112 if (fatal_signal_pending(current))
1115 freed += drop_slab_node(nid);
1117 } while ((freed >> shift++) > 1);
1120 static int reclaimer_offset(void)
1122 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1123 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1124 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1125 PGSCAN_DIRECT - PGSCAN_KSWAPD);
1126 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1127 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1128 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1129 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1131 if (current_is_kswapd())
1133 if (current_is_khugepaged())
1134 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1135 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1138 static inline int is_page_cache_freeable(struct folio *folio)
1141 * A freeable page cache folio is referenced only by the caller
1142 * that isolated the folio, the page cache and optional filesystem
1143 * private data at folio->private.
1145 return folio_ref_count(folio) - folio_test_private(folio) ==
1146 1 + folio_nr_pages(folio);
1150 * We detected a synchronous write error writing a folio out. Probably
1151 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1152 * fsync(), msync() or close().
1154 * The tricky part is that after writepage we cannot touch the mapping: nothing
1155 * prevents it from being freed up. But we have a ref on the folio and once
1156 * that folio is locked, the mapping is pinned.
1158 * We're allowed to run sleeping folio_lock() here because we know the caller has
1161 static void handle_write_error(struct address_space *mapping,
1162 struct folio *folio, int error)
1165 if (folio_mapping(folio) == mapping)
1166 mapping_set_error(mapping, error);
1167 folio_unlock(folio);
1170 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1172 int reclaimable = 0, write_pending = 0;
1176 * If kswapd is disabled, reschedule if necessary but do not
1177 * throttle as the system is likely near OOM.
1179 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1183 * If there are a lot of dirty/writeback folios then do not
1184 * throttle as throttling will occur when the folios cycle
1185 * towards the end of the LRU if still under writeback.
1187 for (i = 0; i < MAX_NR_ZONES; i++) {
1188 struct zone *zone = pgdat->node_zones + i;
1190 if (!managed_zone(zone))
1193 reclaimable += zone_reclaimable_pages(zone);
1194 write_pending += zone_page_state_snapshot(zone,
1195 NR_ZONE_WRITE_PENDING);
1197 if (2 * write_pending <= reclaimable)
1203 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1205 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1210 * Do not throttle IO workers, kthreads other than kswapd or
1211 * workqueues. They may be required for reclaim to make
1212 * forward progress (e.g. journalling workqueues or kthreads).
1214 if (!current_is_kswapd() &&
1215 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1221 * These figures are pulled out of thin air.
1222 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1223 * parallel reclaimers which is a short-lived event so the timeout is
1224 * short. Failing to make progress or waiting on writeback are
1225 * potentially long-lived events so use a longer timeout. This is shaky
1226 * logic as a failure to make progress could be due to anything from
1227 * writeback to a slow device to excessive referenced folios at the tail
1228 * of the inactive LRU.
1231 case VMSCAN_THROTTLE_WRITEBACK:
1234 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1235 WRITE_ONCE(pgdat->nr_reclaim_start,
1236 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1240 case VMSCAN_THROTTLE_CONGESTED:
1242 case VMSCAN_THROTTLE_NOPROGRESS:
1243 if (skip_throttle_noprogress(pgdat)) {
1251 case VMSCAN_THROTTLE_ISOLATED:
1260 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1261 ret = schedule_timeout(timeout);
1262 finish_wait(wqh, &wait);
1264 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1265 atomic_dec(&pgdat->nr_writeback_throttled);
1267 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1268 jiffies_to_usecs(timeout - ret),
1273 * Account for folios written if tasks are throttled waiting on dirty
1274 * folios to clean. If enough folios have been cleaned since throttling
1275 * started then wakeup the throttled tasks.
1277 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1280 unsigned long nr_written;
1282 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1285 * This is an inaccurate read as the per-cpu deltas may not
1286 * be synchronised. However, given that the system is
1287 * writeback throttled, it is not worth taking the penalty
1288 * of getting an accurate count. At worst, the throttle
1289 * timeout guarantees forward progress.
1291 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1292 READ_ONCE(pgdat->nr_reclaim_start);
1294 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1295 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1298 /* possible outcome of pageout() */
1300 /* failed to write folio out, folio is locked */
1302 /* move folio to the active list, folio is locked */
1304 /* folio has been sent to the disk successfully, folio is unlocked */
1306 /* folio is clean and locked */
1311 * pageout is called by shrink_folio_list() for each dirty folio.
1312 * Calls ->writepage().
1314 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1315 struct swap_iocb **plug)
1318 * If the folio is dirty, only perform writeback if that write
1319 * will be non-blocking. To prevent this allocation from being
1320 * stalled by pagecache activity. But note that there may be
1321 * stalls if we need to run get_block(). We could test
1322 * PagePrivate for that.
1324 * If this process is currently in __generic_file_write_iter() against
1325 * this folio's queue, we can perform writeback even if that
1328 * If the folio is swapcache, write it back even if that would
1329 * block, for some throttling. This happens by accident, because
1330 * swap_backing_dev_info is bust: it doesn't reflect the
1331 * congestion state of the swapdevs. Easy to fix, if needed.
1333 if (!is_page_cache_freeable(folio))
1337 * Some data journaling orphaned folios can have
1338 * folio->mapping == NULL while being dirty with clean buffers.
1340 if (folio_test_private(folio)) {
1341 if (try_to_free_buffers(folio)) {
1342 folio_clear_dirty(folio);
1343 pr_info("%s: orphaned folio\n", __func__);
1349 if (mapping->a_ops->writepage == NULL)
1350 return PAGE_ACTIVATE;
1352 if (folio_clear_dirty_for_io(folio)) {
1354 struct writeback_control wbc = {
1355 .sync_mode = WB_SYNC_NONE,
1356 .nr_to_write = SWAP_CLUSTER_MAX,
1358 .range_end = LLONG_MAX,
1363 folio_set_reclaim(folio);
1364 res = mapping->a_ops->writepage(&folio->page, &wbc);
1366 handle_write_error(mapping, folio, res);
1367 if (res == AOP_WRITEPAGE_ACTIVATE) {
1368 folio_clear_reclaim(folio);
1369 return PAGE_ACTIVATE;
1372 if (!folio_test_writeback(folio)) {
1373 /* synchronous write or broken a_ops? */
1374 folio_clear_reclaim(folio);
1376 trace_mm_vmscan_write_folio(folio);
1377 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1378 return PAGE_SUCCESS;
1385 * Same as remove_mapping, but if the folio is removed from the mapping, it
1386 * gets returned with a refcount of 0.
1388 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1389 bool reclaimed, struct mem_cgroup *target_memcg)
1392 void *shadow = NULL;
1394 BUG_ON(!folio_test_locked(folio));
1395 BUG_ON(mapping != folio_mapping(folio));
1397 if (!folio_test_swapcache(folio))
1398 spin_lock(&mapping->host->i_lock);
1399 xa_lock_irq(&mapping->i_pages);
1401 * The non racy check for a busy folio.
1403 * Must be careful with the order of the tests. When someone has
1404 * a ref to the folio, it may be possible that they dirty it then
1405 * drop the reference. So if the dirty flag is tested before the
1406 * refcount here, then the following race may occur:
1408 * get_user_pages(&page);
1409 * [user mapping goes away]
1411 * !folio_test_dirty(folio) [good]
1412 * folio_set_dirty(folio);
1414 * !refcount(folio) [good, discard it]
1416 * [oops, our write_to data is lost]
1418 * Reversing the order of the tests ensures such a situation cannot
1419 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1420 * load is not satisfied before that of folio->_refcount.
1422 * Note that if the dirty flag is always set via folio_mark_dirty,
1423 * and thus under the i_pages lock, then this ordering is not required.
1425 refcount = 1 + folio_nr_pages(folio);
1426 if (!folio_ref_freeze(folio, refcount))
1428 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1429 if (unlikely(folio_test_dirty(folio))) {
1430 folio_ref_unfreeze(folio, refcount);
1434 if (folio_test_swapcache(folio)) {
1435 swp_entry_t swap = folio_swap_entry(folio);
1437 if (reclaimed && !mapping_exiting(mapping))
1438 shadow = workingset_eviction(folio, target_memcg);
1439 __delete_from_swap_cache(folio, swap, shadow);
1440 mem_cgroup_swapout(folio, swap);
1441 xa_unlock_irq(&mapping->i_pages);
1442 put_swap_folio(folio, swap);
1444 void (*free_folio)(struct folio *);
1446 free_folio = mapping->a_ops->free_folio;
1448 * Remember a shadow entry for reclaimed file cache in
1449 * order to detect refaults, thus thrashing, later on.
1451 * But don't store shadows in an address space that is
1452 * already exiting. This is not just an optimization,
1453 * inode reclaim needs to empty out the radix tree or
1454 * the nodes are lost. Don't plant shadows behind its
1457 * We also don't store shadows for DAX mappings because the
1458 * only page cache folios found in these are zero pages
1459 * covering holes, and because we don't want to mix DAX
1460 * exceptional entries and shadow exceptional entries in the
1461 * same address_space.
1463 if (reclaimed && folio_is_file_lru(folio) &&
1464 !mapping_exiting(mapping) && !dax_mapping(mapping))
1465 shadow = workingset_eviction(folio, target_memcg);
1466 __filemap_remove_folio(folio, shadow);
1467 xa_unlock_irq(&mapping->i_pages);
1468 if (mapping_shrinkable(mapping))
1469 inode_add_lru(mapping->host);
1470 spin_unlock(&mapping->host->i_lock);
1479 xa_unlock_irq(&mapping->i_pages);
1480 if (!folio_test_swapcache(folio))
1481 spin_unlock(&mapping->host->i_lock);
1486 * remove_mapping() - Attempt to remove a folio from its mapping.
1487 * @mapping: The address space.
1488 * @folio: The folio to remove.
1490 * If the folio is dirty, under writeback or if someone else has a ref
1491 * on it, removal will fail.
1492 * Return: The number of pages removed from the mapping. 0 if the folio
1493 * could not be removed.
1494 * Context: The caller should have a single refcount on the folio and
1497 long remove_mapping(struct address_space *mapping, struct folio *folio)
1499 if (__remove_mapping(mapping, folio, false, NULL)) {
1501 * Unfreezing the refcount with 1 effectively
1502 * drops the pagecache ref for us without requiring another
1505 folio_ref_unfreeze(folio, 1);
1506 return folio_nr_pages(folio);
1512 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1513 * @folio: Folio to be returned to an LRU list.
1515 * Add previously isolated @folio to appropriate LRU list.
1516 * The folio may still be unevictable for other reasons.
1518 * Context: lru_lock must not be held, interrupts must be enabled.
1520 void folio_putback_lru(struct folio *folio)
1522 folio_add_lru(folio);
1523 folio_put(folio); /* drop ref from isolate */
1526 enum folio_references {
1528 FOLIOREF_RECLAIM_CLEAN,
1533 static enum folio_references folio_check_references(struct folio *folio,
1534 struct scan_control *sc)
1536 int referenced_ptes, referenced_folio;
1537 unsigned long vm_flags;
1539 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1541 referenced_folio = folio_test_clear_referenced(folio);
1544 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1545 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1547 if (vm_flags & VM_LOCKED)
1548 return FOLIOREF_ACTIVATE;
1550 /* rmap lock contention: rotate */
1551 if (referenced_ptes == -1)
1552 return FOLIOREF_KEEP;
1554 if (referenced_ptes) {
1556 * All mapped folios start out with page table
1557 * references from the instantiating fault, so we need
1558 * to look twice if a mapped file/anon folio is used more
1561 * Mark it and spare it for another trip around the
1562 * inactive list. Another page table reference will
1563 * lead to its activation.
1565 * Note: the mark is set for activated folios as well
1566 * so that recently deactivated but used folios are
1567 * quickly recovered.
1569 folio_set_referenced(folio);
1571 if (referenced_folio || referenced_ptes > 1)
1572 return FOLIOREF_ACTIVATE;
1575 * Activate file-backed executable folios after first usage.
1577 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1578 return FOLIOREF_ACTIVATE;
1580 return FOLIOREF_KEEP;
1583 /* Reclaim if clean, defer dirty folios to writeback */
1584 if (referenced_folio && folio_is_file_lru(folio))
1585 return FOLIOREF_RECLAIM_CLEAN;
1587 return FOLIOREF_RECLAIM;
1590 /* Check if a folio is dirty or under writeback */
1591 static void folio_check_dirty_writeback(struct folio *folio,
1592 bool *dirty, bool *writeback)
1594 struct address_space *mapping;
1597 * Anonymous folios are not handled by flushers and must be written
1598 * from reclaim context. Do not stall reclaim based on them.
1599 * MADV_FREE anonymous folios are put into inactive file list too.
1600 * They could be mistakenly treated as file lru. So further anon
1603 if (!folio_is_file_lru(folio) ||
1604 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1610 /* By default assume that the folio flags are accurate */
1611 *dirty = folio_test_dirty(folio);
1612 *writeback = folio_test_writeback(folio);
1614 /* Verify dirty/writeback state if the filesystem supports it */
1615 if (!folio_test_private(folio))
1618 mapping = folio_mapping(folio);
1619 if (mapping && mapping->a_ops->is_dirty_writeback)
1620 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1623 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1625 struct page *target_page;
1626 nodemask_t *allowed_mask;
1627 struct migration_target_control *mtc;
1629 mtc = (struct migration_target_control *)private;
1631 allowed_mask = mtc->nmask;
1633 * make sure we allocate from the target node first also trying to
1634 * demote or reclaim pages from the target node via kswapd if we are
1635 * low on free memory on target node. If we don't do this and if
1636 * we have free memory on the slower(lower) memtier, we would start
1637 * allocating pages from slower(lower) memory tiers without even forcing
1638 * a demotion of cold pages from the target memtier. This can result
1639 * in the kernel placing hot pages in slower(lower) memory tiers.
1642 mtc->gfp_mask |= __GFP_THISNODE;
1643 target_page = alloc_migration_target(page, (unsigned long)mtc);
1647 mtc->gfp_mask &= ~__GFP_THISNODE;
1648 mtc->nmask = allowed_mask;
1650 return alloc_migration_target(page, (unsigned long)mtc);
1654 * Take folios on @demote_folios and attempt to demote them to another node.
1655 * Folios which are not demoted are left on @demote_folios.
1657 static unsigned int demote_folio_list(struct list_head *demote_folios,
1658 struct pglist_data *pgdat)
1660 int target_nid = next_demotion_node(pgdat->node_id);
1661 unsigned int nr_succeeded;
1662 nodemask_t allowed_mask;
1664 struct migration_target_control mtc = {
1666 * Allocate from 'node', or fail quickly and quietly.
1667 * When this happens, 'page' will likely just be discarded
1668 * instead of migrated.
1670 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1671 __GFP_NOMEMALLOC | GFP_NOWAIT,
1673 .nmask = &allowed_mask
1676 if (list_empty(demote_folios))
1679 if (target_nid == NUMA_NO_NODE)
1682 node_get_allowed_targets(pgdat, &allowed_mask);
1684 /* Demotion ignores all cpuset and mempolicy settings */
1685 migrate_pages(demote_folios, alloc_demote_page, NULL,
1686 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1689 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1691 return nr_succeeded;
1694 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1696 if (gfp_mask & __GFP_FS)
1698 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1701 * We can "enter_fs" for swap-cache with only __GFP_IO
1702 * providing this isn't SWP_FS_OPS.
1703 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1704 * but that will never affect SWP_FS_OPS, so the data_race
1707 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1711 * shrink_folio_list() returns the number of reclaimed pages
1713 static unsigned int shrink_folio_list(struct list_head *folio_list,
1714 struct pglist_data *pgdat, struct scan_control *sc,
1715 struct reclaim_stat *stat, bool ignore_references)
1717 LIST_HEAD(ret_folios);
1718 LIST_HEAD(free_folios);
1719 LIST_HEAD(demote_folios);
1720 unsigned int nr_reclaimed = 0;
1721 unsigned int pgactivate = 0;
1722 bool do_demote_pass;
1723 struct swap_iocb *plug = NULL;
1725 memset(stat, 0, sizeof(*stat));
1727 do_demote_pass = can_demote(pgdat->node_id, sc);
1730 while (!list_empty(folio_list)) {
1731 struct address_space *mapping;
1732 struct folio *folio;
1733 enum folio_references references = FOLIOREF_RECLAIM;
1734 bool dirty, writeback;
1735 unsigned int nr_pages;
1739 folio = lru_to_folio(folio_list);
1740 list_del(&folio->lru);
1742 if (!folio_trylock(folio))
1745 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1747 nr_pages = folio_nr_pages(folio);
1749 /* Account the number of base pages */
1750 sc->nr_scanned += nr_pages;
1752 if (unlikely(!folio_evictable(folio)))
1753 goto activate_locked;
1755 if (!sc->may_unmap && folio_mapped(folio))
1758 /* folio_update_gen() tried to promote this page? */
1759 if (lru_gen_enabled() && !ignore_references &&
1760 folio_mapped(folio) && folio_test_referenced(folio))
1764 * The number of dirty pages determines if a node is marked
1765 * reclaim_congested. kswapd will stall and start writing
1766 * folios if the tail of the LRU is all dirty unqueued folios.
1768 folio_check_dirty_writeback(folio, &dirty, &writeback);
1769 if (dirty || writeback)
1770 stat->nr_dirty += nr_pages;
1772 if (dirty && !writeback)
1773 stat->nr_unqueued_dirty += nr_pages;
1776 * Treat this folio as congested if folios are cycling
1777 * through the LRU so quickly that the folios marked
1778 * for immediate reclaim are making it to the end of
1779 * the LRU a second time.
1781 if (writeback && folio_test_reclaim(folio))
1782 stat->nr_congested += nr_pages;
1785 * If a folio at the tail of the LRU is under writeback, there
1786 * are three cases to consider.
1788 * 1) If reclaim is encountering an excessive number
1789 * of folios under writeback and this folio has both
1790 * the writeback and reclaim flags set, then it
1791 * indicates that folios are being queued for I/O but
1792 * are being recycled through the LRU before the I/O
1793 * can complete. Waiting on the folio itself risks an
1794 * indefinite stall if it is impossible to writeback
1795 * the folio due to I/O error or disconnected storage
1796 * so instead note that the LRU is being scanned too
1797 * quickly and the caller can stall after the folio
1798 * list has been processed.
1800 * 2) Global or new memcg reclaim encounters a folio that is
1801 * not marked for immediate reclaim, or the caller does not
1802 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1803 * not to fs). In this case mark the folio for immediate
1804 * reclaim and continue scanning.
1806 * Require may_enter_fs() because we would wait on fs, which
1807 * may not have submitted I/O yet. And the loop driver might
1808 * enter reclaim, and deadlock if it waits on a folio for
1809 * which it is needed to do the write (loop masks off
1810 * __GFP_IO|__GFP_FS for this reason); but more thought
1811 * would probably show more reasons.
1813 * 3) Legacy memcg encounters a folio that already has the
1814 * reclaim flag set. memcg does not have any dirty folio
1815 * throttling so we could easily OOM just because too many
1816 * folios are in writeback and there is nothing else to
1817 * reclaim. Wait for the writeback to complete.
1819 * In cases 1) and 2) we activate the folios to get them out of
1820 * the way while we continue scanning for clean folios on the
1821 * inactive list and refilling from the active list. The
1822 * observation here is that waiting for disk writes is more
1823 * expensive than potentially causing reloads down the line.
1824 * Since they're marked for immediate reclaim, they won't put
1825 * memory pressure on the cache working set any longer than it
1826 * takes to write them to disk.
1828 if (folio_test_writeback(folio)) {
1830 if (current_is_kswapd() &&
1831 folio_test_reclaim(folio) &&
1832 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1833 stat->nr_immediate += nr_pages;
1834 goto activate_locked;
1837 } else if (writeback_throttling_sane(sc) ||
1838 !folio_test_reclaim(folio) ||
1839 !may_enter_fs(folio, sc->gfp_mask)) {
1841 * This is slightly racy -
1842 * folio_end_writeback() might have
1843 * just cleared the reclaim flag, then
1844 * setting the reclaim flag here ends up
1845 * interpreted as the readahead flag - but
1846 * that does not matter enough to care.
1847 * What we do want is for this folio to
1848 * have the reclaim flag set next time
1849 * memcg reclaim reaches the tests above,
1850 * so it will then wait for writeback to
1851 * avoid OOM; and it's also appropriate
1852 * in global reclaim.
1854 folio_set_reclaim(folio);
1855 stat->nr_writeback += nr_pages;
1856 goto activate_locked;
1860 folio_unlock(folio);
1861 folio_wait_writeback(folio);
1862 /* then go back and try same folio again */
1863 list_add_tail(&folio->lru, folio_list);
1868 if (!ignore_references)
1869 references = folio_check_references(folio, sc);
1871 switch (references) {
1872 case FOLIOREF_ACTIVATE:
1873 goto activate_locked;
1875 stat->nr_ref_keep += nr_pages;
1877 case FOLIOREF_RECLAIM:
1878 case FOLIOREF_RECLAIM_CLEAN:
1879 ; /* try to reclaim the folio below */
1883 * Before reclaiming the folio, try to relocate
1884 * its contents to another node.
1886 if (do_demote_pass &&
1887 (thp_migration_supported() || !folio_test_large(folio))) {
1888 list_add(&folio->lru, &demote_folios);
1889 folio_unlock(folio);
1894 * Anonymous process memory has backing store?
1895 * Try to allocate it some swap space here.
1896 * Lazyfree folio could be freed directly
1898 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1899 if (!folio_test_swapcache(folio)) {
1900 if (!(sc->gfp_mask & __GFP_IO))
1902 if (folio_maybe_dma_pinned(folio))
1904 if (folio_test_large(folio)) {
1905 /* cannot split folio, skip it */
1906 if (!can_split_folio(folio, NULL))
1907 goto activate_locked;
1909 * Split folios without a PMD map right
1910 * away. Chances are some or all of the
1911 * tail pages can be freed without IO.
1913 if (!folio_entire_mapcount(folio) &&
1914 split_folio_to_list(folio,
1916 goto activate_locked;
1918 if (!add_to_swap(folio)) {
1919 if (!folio_test_large(folio))
1920 goto activate_locked_split;
1921 /* Fallback to swap normal pages */
1922 if (split_folio_to_list(folio,
1924 goto activate_locked;
1925 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1926 count_vm_event(THP_SWPOUT_FALLBACK);
1928 if (!add_to_swap(folio))
1929 goto activate_locked_split;
1932 } else if (folio_test_swapbacked(folio) &&
1933 folio_test_large(folio)) {
1934 /* Split shmem folio */
1935 if (split_folio_to_list(folio, folio_list))
1940 * If the folio was split above, the tail pages will make
1941 * their own pass through this function and be accounted
1944 if ((nr_pages > 1) && !folio_test_large(folio)) {
1945 sc->nr_scanned -= (nr_pages - 1);
1950 * The folio is mapped into the page tables of one or more
1951 * processes. Try to unmap it here.
1953 if (folio_mapped(folio)) {
1954 enum ttu_flags flags = TTU_BATCH_FLUSH;
1955 bool was_swapbacked = folio_test_swapbacked(folio);
1957 if (folio_test_pmd_mappable(folio))
1958 flags |= TTU_SPLIT_HUGE_PMD;
1960 try_to_unmap(folio, flags);
1961 if (folio_mapped(folio)) {
1962 stat->nr_unmap_fail += nr_pages;
1963 if (!was_swapbacked &&
1964 folio_test_swapbacked(folio))
1965 stat->nr_lazyfree_fail += nr_pages;
1966 goto activate_locked;
1970 mapping = folio_mapping(folio);
1971 if (folio_test_dirty(folio)) {
1973 * Only kswapd can writeback filesystem folios
1974 * to avoid risk of stack overflow. But avoid
1975 * injecting inefficient single-folio I/O into
1976 * flusher writeback as much as possible: only
1977 * write folios when we've encountered many
1978 * dirty folios, and when we've already scanned
1979 * the rest of the LRU for clean folios and see
1980 * the same dirty folios again (with the reclaim
1983 if (folio_is_file_lru(folio) &&
1984 (!current_is_kswapd() ||
1985 !folio_test_reclaim(folio) ||
1986 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1988 * Immediately reclaim when written back.
1989 * Similar in principle to folio_deactivate()
1990 * except we already have the folio isolated
1991 * and know it's dirty
1993 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1995 folio_set_reclaim(folio);
1997 goto activate_locked;
2000 if (references == FOLIOREF_RECLAIM_CLEAN)
2002 if (!may_enter_fs(folio, sc->gfp_mask))
2004 if (!sc->may_writepage)
2008 * Folio is dirty. Flush the TLB if a writable entry
2009 * potentially exists to avoid CPU writes after I/O
2010 * starts and then write it out here.
2012 try_to_unmap_flush_dirty();
2013 switch (pageout(folio, mapping, &plug)) {
2017 goto activate_locked;
2019 stat->nr_pageout += nr_pages;
2021 if (folio_test_writeback(folio))
2023 if (folio_test_dirty(folio))
2027 * A synchronous write - probably a ramdisk. Go
2028 * ahead and try to reclaim the folio.
2030 if (!folio_trylock(folio))
2032 if (folio_test_dirty(folio) ||
2033 folio_test_writeback(folio))
2035 mapping = folio_mapping(folio);
2038 ; /* try to free the folio below */
2043 * If the folio has buffers, try to free the buffer
2044 * mappings associated with this folio. If we succeed
2045 * we try to free the folio as well.
2047 * We do this even if the folio is dirty.
2048 * filemap_release_folio() does not perform I/O, but it
2049 * is possible for a folio to have the dirty flag set,
2050 * but it is actually clean (all its buffers are clean).
2051 * This happens if the buffers were written out directly,
2052 * with submit_bh(). ext3 will do this, as well as
2053 * the blockdev mapping. filemap_release_folio() will
2054 * discover that cleanness and will drop the buffers
2055 * and mark the folio clean - it can be freed.
2057 * Rarely, folios can have buffers and no ->mapping.
2058 * These are the folios which were not successfully
2059 * invalidated in truncate_cleanup_folio(). We try to
2060 * drop those buffers here and if that worked, and the
2061 * folio is no longer mapped into process address space
2062 * (refcount == 1) it can be freed. Otherwise, leave
2063 * the folio on the LRU so it is swappable.
2065 if (folio_has_private(folio)) {
2066 if (!filemap_release_folio(folio, sc->gfp_mask))
2067 goto activate_locked;
2068 if (!mapping && folio_ref_count(folio) == 1) {
2069 folio_unlock(folio);
2070 if (folio_put_testzero(folio))
2074 * rare race with speculative reference.
2075 * the speculative reference will free
2076 * this folio shortly, so we may
2077 * increment nr_reclaimed here (and
2078 * leave it off the LRU).
2080 nr_reclaimed += nr_pages;
2086 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2087 /* follow __remove_mapping for reference */
2088 if (!folio_ref_freeze(folio, 1))
2091 * The folio has only one reference left, which is
2092 * from the isolation. After the caller puts the
2093 * folio back on the lru and drops the reference, the
2094 * folio will be freed anyway. It doesn't matter
2095 * which lru it goes on. So we don't bother checking
2096 * the dirty flag here.
2098 count_vm_events(PGLAZYFREED, nr_pages);
2099 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2100 } else if (!mapping || !__remove_mapping(mapping, folio, true,
2101 sc->target_mem_cgroup))
2104 folio_unlock(folio);
2107 * Folio may get swapped out as a whole, need to account
2110 nr_reclaimed += nr_pages;
2113 * Is there need to periodically free_folio_list? It would
2114 * appear not as the counts should be low
2116 if (unlikely(folio_test_large(folio)))
2117 destroy_large_folio(folio);
2119 list_add(&folio->lru, &free_folios);
2122 activate_locked_split:
2124 * The tail pages that are failed to add into swap cache
2125 * reach here. Fixup nr_scanned and nr_pages.
2128 sc->nr_scanned -= (nr_pages - 1);
2132 /* Not a candidate for swapping, so reclaim swap space. */
2133 if (folio_test_swapcache(folio) &&
2134 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2135 folio_free_swap(folio);
2136 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2137 if (!folio_test_mlocked(folio)) {
2138 int type = folio_is_file_lru(folio);
2139 folio_set_active(folio);
2140 stat->nr_activate[type] += nr_pages;
2141 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2144 folio_unlock(folio);
2146 list_add(&folio->lru, &ret_folios);
2147 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2148 folio_test_unevictable(folio), folio);
2150 /* 'folio_list' is always empty here */
2152 /* Migrate folios selected for demotion */
2153 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2154 /* Folios that could not be demoted are still in @demote_folios */
2155 if (!list_empty(&demote_folios)) {
2156 /* Folios which weren't demoted go back on @folio_list */
2157 list_splice_init(&demote_folios, folio_list);
2160 * goto retry to reclaim the undemoted folios in folio_list if
2163 * Reclaiming directly from top tier nodes is not often desired
2164 * due to it breaking the LRU ordering: in general memory
2165 * should be reclaimed from lower tier nodes and demoted from
2168 * However, disabling reclaim from top tier nodes entirely
2169 * would cause ooms in edge scenarios where lower tier memory
2170 * is unreclaimable for whatever reason, eg memory being
2171 * mlocked or too hot to reclaim. We can disable reclaim
2172 * from top tier nodes in proactive reclaim though as that is
2173 * not real memory pressure.
2175 if (!sc->proactive) {
2176 do_demote_pass = false;
2181 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2183 mem_cgroup_uncharge_list(&free_folios);
2184 try_to_unmap_flush();
2185 free_unref_page_list(&free_folios);
2187 list_splice(&ret_folios, folio_list);
2188 count_vm_events(PGACTIVATE, pgactivate);
2191 swap_write_unplug(plug);
2192 return nr_reclaimed;
2195 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2196 struct list_head *folio_list)
2198 struct scan_control sc = {
2199 .gfp_mask = GFP_KERNEL,
2202 struct reclaim_stat stat;
2203 unsigned int nr_reclaimed;
2204 struct folio *folio, *next;
2205 LIST_HEAD(clean_folios);
2206 unsigned int noreclaim_flag;
2208 list_for_each_entry_safe(folio, next, folio_list, lru) {
2209 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2210 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2211 !folio_test_unevictable(folio)) {
2212 folio_clear_active(folio);
2213 list_move(&folio->lru, &clean_folios);
2218 * We should be safe here since we are only dealing with file pages and
2219 * we are not kswapd and therefore cannot write dirty file pages. But
2220 * call memalloc_noreclaim_save() anyway, just in case these conditions
2221 * change in the future.
2223 noreclaim_flag = memalloc_noreclaim_save();
2224 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2226 memalloc_noreclaim_restore(noreclaim_flag);
2228 list_splice(&clean_folios, folio_list);
2229 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2230 -(long)nr_reclaimed);
2232 * Since lazyfree pages are isolated from file LRU from the beginning,
2233 * they will rotate back to anonymous LRU in the end if it failed to
2234 * discard so isolated count will be mismatched.
2235 * Compensate the isolated count for both LRU lists.
2237 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2238 stat.nr_lazyfree_fail);
2239 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2240 -(long)stat.nr_lazyfree_fail);
2241 return nr_reclaimed;
2245 * Update LRU sizes after isolating pages. The LRU size updates must
2246 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2248 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2249 enum lru_list lru, unsigned long *nr_zone_taken)
2253 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2254 if (!nr_zone_taken[zid])
2257 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2263 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2265 * lruvec->lru_lock is heavily contended. Some of the functions that
2266 * shrink the lists perform better by taking out a batch of pages
2267 * and working on them outside the LRU lock.
2269 * For pagecache intensive workloads, this function is the hottest
2270 * spot in the kernel (apart from copy_*_user functions).
2272 * Lru_lock must be held before calling this function.
2274 * @nr_to_scan: The number of eligible pages to look through on the list.
2275 * @lruvec: The LRU vector to pull pages from.
2276 * @dst: The temp list to put pages on to.
2277 * @nr_scanned: The number of pages that were scanned.
2278 * @sc: The scan_control struct for this reclaim session
2279 * @lru: LRU list id for isolating
2281 * returns how many pages were moved onto *@dst.
2283 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2284 struct lruvec *lruvec, struct list_head *dst,
2285 unsigned long *nr_scanned, struct scan_control *sc,
2288 struct list_head *src = &lruvec->lists[lru];
2289 unsigned long nr_taken = 0;
2290 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2291 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2292 unsigned long skipped = 0;
2293 unsigned long scan, total_scan, nr_pages;
2294 LIST_HEAD(folios_skipped);
2298 while (scan < nr_to_scan && !list_empty(src)) {
2299 struct list_head *move_to = src;
2300 struct folio *folio;
2302 folio = lru_to_folio(src);
2303 prefetchw_prev_lru_folio(folio, src, flags);
2305 nr_pages = folio_nr_pages(folio);
2306 total_scan += nr_pages;
2308 if (folio_zonenum(folio) > sc->reclaim_idx) {
2309 nr_skipped[folio_zonenum(folio)] += nr_pages;
2310 move_to = &folios_skipped;
2315 * Do not count skipped folios because that makes the function
2316 * return with no isolated folios if the LRU mostly contains
2317 * ineligible folios. This causes the VM to not reclaim any
2318 * folios, triggering a premature OOM.
2319 * Account all pages in a folio.
2323 if (!folio_test_lru(folio))
2325 if (!sc->may_unmap && folio_mapped(folio))
2329 * Be careful not to clear the lru flag until after we're
2330 * sure the folio is not being freed elsewhere -- the
2331 * folio release code relies on it.
2333 if (unlikely(!folio_try_get(folio)))
2336 if (!folio_test_clear_lru(folio)) {
2337 /* Another thread is already isolating this folio */
2342 nr_taken += nr_pages;
2343 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2346 list_move(&folio->lru, move_to);
2350 * Splice any skipped folios to the start of the LRU list. Note that
2351 * this disrupts the LRU order when reclaiming for lower zones but
2352 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2353 * scanning would soon rescan the same folios to skip and waste lots
2356 if (!list_empty(&folios_skipped)) {
2359 list_splice(&folios_skipped, src);
2360 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2361 if (!nr_skipped[zid])
2364 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2365 skipped += nr_skipped[zid];
2368 *nr_scanned = total_scan;
2369 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2370 total_scan, skipped, nr_taken,
2371 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2372 update_lru_sizes(lruvec, lru, nr_zone_taken);
2377 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2378 * @folio: Folio to isolate from its LRU list.
2380 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2381 * corresponding to whatever LRU list the folio was on.
2383 * The folio will have its LRU flag cleared. If it was found on the
2384 * active list, it will have the Active flag set. If it was found on the
2385 * unevictable list, it will have the Unevictable flag set. These flags
2386 * may need to be cleared by the caller before letting the page go.
2390 * (1) Must be called with an elevated refcount on the folio. This is a
2391 * fundamental difference from isolate_lru_folios() (which is called
2392 * without a stable reference).
2393 * (2) The lru_lock must not be held.
2394 * (3) Interrupts must be enabled.
2396 * Return: true if the folio was removed from an LRU list.
2397 * false if the folio was not on an LRU list.
2399 bool folio_isolate_lru(struct folio *folio)
2403 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2405 if (folio_test_clear_lru(folio)) {
2406 struct lruvec *lruvec;
2409 lruvec = folio_lruvec_lock_irq(folio);
2410 lruvec_del_folio(lruvec, folio);
2411 unlock_page_lruvec_irq(lruvec);
2419 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2420 * then get rescheduled. When there are massive number of tasks doing page
2421 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2422 * the LRU list will go small and be scanned faster than necessary, leading to
2423 * unnecessary swapping, thrashing and OOM.
2425 static int too_many_isolated(struct pglist_data *pgdat, int file,
2426 struct scan_control *sc)
2428 unsigned long inactive, isolated;
2431 if (current_is_kswapd())
2434 if (!writeback_throttling_sane(sc))
2438 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2439 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2441 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2442 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2446 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2447 * won't get blocked by normal direct-reclaimers, forming a circular
2450 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2453 too_many = isolated > inactive;
2455 /* Wake up tasks throttled due to too_many_isolated. */
2457 wake_throttle_isolated(pgdat);
2463 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2464 * On return, @list is reused as a list of folios to be freed by the caller.
2466 * Returns the number of pages moved to the given lruvec.
2468 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2469 struct list_head *list)
2471 int nr_pages, nr_moved = 0;
2472 LIST_HEAD(folios_to_free);
2474 while (!list_empty(list)) {
2475 struct folio *folio = lru_to_folio(list);
2477 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2478 list_del(&folio->lru);
2479 if (unlikely(!folio_evictable(folio))) {
2480 spin_unlock_irq(&lruvec->lru_lock);
2481 folio_putback_lru(folio);
2482 spin_lock_irq(&lruvec->lru_lock);
2487 * The folio_set_lru needs to be kept here for list integrity.
2489 * #0 move_folios_to_lru #1 release_pages
2490 * if (!folio_put_testzero())
2491 * if (folio_put_testzero())
2492 * !lru //skip lru_lock
2494 * list_add(&folio->lru,)
2495 * list_add(&folio->lru,)
2497 folio_set_lru(folio);
2499 if (unlikely(folio_put_testzero(folio))) {
2500 __folio_clear_lru_flags(folio);
2502 if (unlikely(folio_test_large(folio))) {
2503 spin_unlock_irq(&lruvec->lru_lock);
2504 destroy_large_folio(folio);
2505 spin_lock_irq(&lruvec->lru_lock);
2507 list_add(&folio->lru, &folios_to_free);
2513 * All pages were isolated from the same lruvec (and isolation
2514 * inhibits memcg migration).
2516 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2517 lruvec_add_folio(lruvec, folio);
2518 nr_pages = folio_nr_pages(folio);
2519 nr_moved += nr_pages;
2520 if (folio_test_active(folio))
2521 workingset_age_nonresident(lruvec, nr_pages);
2525 * To save our caller's stack, now use input list for pages to free.
2527 list_splice(&folios_to_free, list);
2533 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2534 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2535 * we should not throttle. Otherwise it is safe to do so.
2537 static int current_may_throttle(void)
2539 return !(current->flags & PF_LOCAL_THROTTLE);
2543 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2544 * of reclaimed pages
2546 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2547 struct lruvec *lruvec, struct scan_control *sc,
2550 LIST_HEAD(folio_list);
2551 unsigned long nr_scanned;
2552 unsigned int nr_reclaimed = 0;
2553 unsigned long nr_taken;
2554 struct reclaim_stat stat;
2555 bool file = is_file_lru(lru);
2556 enum vm_event_item item;
2557 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2558 bool stalled = false;
2560 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2564 /* wait a bit for the reclaimer. */
2566 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2568 /* We are about to die and free our memory. Return now. */
2569 if (fatal_signal_pending(current))
2570 return SWAP_CLUSTER_MAX;
2575 spin_lock_irq(&lruvec->lru_lock);
2577 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2578 &nr_scanned, sc, lru);
2580 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2581 item = PGSCAN_KSWAPD + reclaimer_offset();
2582 if (!cgroup_reclaim(sc))
2583 __count_vm_events(item, nr_scanned);
2584 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2585 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2587 spin_unlock_irq(&lruvec->lru_lock);
2592 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2594 spin_lock_irq(&lruvec->lru_lock);
2595 move_folios_to_lru(lruvec, &folio_list);
2597 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2598 item = PGSTEAL_KSWAPD + reclaimer_offset();
2599 if (!cgroup_reclaim(sc))
2600 __count_vm_events(item, nr_reclaimed);
2601 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2602 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2603 spin_unlock_irq(&lruvec->lru_lock);
2605 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2606 mem_cgroup_uncharge_list(&folio_list);
2607 free_unref_page_list(&folio_list);
2610 * If dirty folios are scanned that are not queued for IO, it
2611 * implies that flushers are not doing their job. This can
2612 * happen when memory pressure pushes dirty folios to the end of
2613 * the LRU before the dirty limits are breached and the dirty
2614 * data has expired. It can also happen when the proportion of
2615 * dirty folios grows not through writes but through memory
2616 * pressure reclaiming all the clean cache. And in some cases,
2617 * the flushers simply cannot keep up with the allocation
2618 * rate. Nudge the flusher threads in case they are asleep.
2620 if (stat.nr_unqueued_dirty == nr_taken) {
2621 wakeup_flusher_threads(WB_REASON_VMSCAN);
2623 * For cgroupv1 dirty throttling is achieved by waking up
2624 * the kernel flusher here and later waiting on folios
2625 * which are in writeback to finish (see shrink_folio_list()).
2627 * Flusher may not be able to issue writeback quickly
2628 * enough for cgroupv1 writeback throttling to work
2629 * on a large system.
2631 if (!writeback_throttling_sane(sc))
2632 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2635 sc->nr.dirty += stat.nr_dirty;
2636 sc->nr.congested += stat.nr_congested;
2637 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2638 sc->nr.writeback += stat.nr_writeback;
2639 sc->nr.immediate += stat.nr_immediate;
2640 sc->nr.taken += nr_taken;
2642 sc->nr.file_taken += nr_taken;
2644 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2645 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2646 return nr_reclaimed;
2650 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2652 * We move them the other way if the folio is referenced by one or more
2655 * If the folios are mostly unmapped, the processing is fast and it is
2656 * appropriate to hold lru_lock across the whole operation. But if
2657 * the folios are mapped, the processing is slow (folio_referenced()), so
2658 * we should drop lru_lock around each folio. It's impossible to balance
2659 * this, so instead we remove the folios from the LRU while processing them.
2660 * It is safe to rely on the active flag against the non-LRU folios in here
2661 * because nobody will play with that bit on a non-LRU folio.
2663 * The downside is that we have to touch folio->_refcount against each folio.
2664 * But we had to alter folio->flags anyway.
2666 static void shrink_active_list(unsigned long nr_to_scan,
2667 struct lruvec *lruvec,
2668 struct scan_control *sc,
2671 unsigned long nr_taken;
2672 unsigned long nr_scanned;
2673 unsigned long vm_flags;
2674 LIST_HEAD(l_hold); /* The folios which were snipped off */
2675 LIST_HEAD(l_active);
2676 LIST_HEAD(l_inactive);
2677 unsigned nr_deactivate, nr_activate;
2678 unsigned nr_rotated = 0;
2679 int file = is_file_lru(lru);
2680 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2684 spin_lock_irq(&lruvec->lru_lock);
2686 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2687 &nr_scanned, sc, lru);
2689 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2691 if (!cgroup_reclaim(sc))
2692 __count_vm_events(PGREFILL, nr_scanned);
2693 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2695 spin_unlock_irq(&lruvec->lru_lock);
2697 while (!list_empty(&l_hold)) {
2698 struct folio *folio;
2701 folio = lru_to_folio(&l_hold);
2702 list_del(&folio->lru);
2704 if (unlikely(!folio_evictable(folio))) {
2705 folio_putback_lru(folio);
2709 if (unlikely(buffer_heads_over_limit)) {
2710 if (folio_test_private(folio) && folio_trylock(folio)) {
2711 if (folio_test_private(folio))
2712 filemap_release_folio(folio, 0);
2713 folio_unlock(folio);
2717 /* Referenced or rmap lock contention: rotate */
2718 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2721 * Identify referenced, file-backed active folios and
2722 * give them one more trip around the active list. So
2723 * that executable code get better chances to stay in
2724 * memory under moderate memory pressure. Anon folios
2725 * are not likely to be evicted by use-once streaming
2726 * IO, plus JVM can create lots of anon VM_EXEC folios,
2727 * so we ignore them here.
2729 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2730 nr_rotated += folio_nr_pages(folio);
2731 list_add(&folio->lru, &l_active);
2736 folio_clear_active(folio); /* we are de-activating */
2737 folio_set_workingset(folio);
2738 list_add(&folio->lru, &l_inactive);
2742 * Move folios back to the lru list.
2744 spin_lock_irq(&lruvec->lru_lock);
2746 nr_activate = move_folios_to_lru(lruvec, &l_active);
2747 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2748 /* Keep all free folios in l_active list */
2749 list_splice(&l_inactive, &l_active);
2751 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2752 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2754 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2755 spin_unlock_irq(&lruvec->lru_lock);
2758 lru_note_cost(lruvec, file, 0, nr_rotated);
2759 mem_cgroup_uncharge_list(&l_active);
2760 free_unref_page_list(&l_active);
2761 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2762 nr_deactivate, nr_rotated, sc->priority, file);
2765 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2766 struct pglist_data *pgdat)
2768 struct reclaim_stat dummy_stat;
2769 unsigned int nr_reclaimed;
2770 struct folio *folio;
2771 struct scan_control sc = {
2772 .gfp_mask = GFP_KERNEL,
2779 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2780 while (!list_empty(folio_list)) {
2781 folio = lru_to_folio(folio_list);
2782 list_del(&folio->lru);
2783 folio_putback_lru(folio);
2786 return nr_reclaimed;
2789 unsigned long reclaim_pages(struct list_head *folio_list)
2792 unsigned int nr_reclaimed = 0;
2793 LIST_HEAD(node_folio_list);
2794 unsigned int noreclaim_flag;
2796 if (list_empty(folio_list))
2797 return nr_reclaimed;
2799 noreclaim_flag = memalloc_noreclaim_save();
2801 nid = folio_nid(lru_to_folio(folio_list));
2803 struct folio *folio = lru_to_folio(folio_list);
2805 if (nid == folio_nid(folio)) {
2806 folio_clear_active(folio);
2807 list_move(&folio->lru, &node_folio_list);
2811 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2812 nid = folio_nid(lru_to_folio(folio_list));
2813 } while (!list_empty(folio_list));
2815 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2817 memalloc_noreclaim_restore(noreclaim_flag);
2819 return nr_reclaimed;
2822 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2823 struct lruvec *lruvec, struct scan_control *sc)
2825 if (is_active_lru(lru)) {
2826 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2827 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2829 sc->skipped_deactivate = 1;
2833 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2837 * The inactive anon list should be small enough that the VM never has
2838 * to do too much work.
2840 * The inactive file list should be small enough to leave most memory
2841 * to the established workingset on the scan-resistant active list,
2842 * but large enough to avoid thrashing the aggregate readahead window.
2844 * Both inactive lists should also be large enough that each inactive
2845 * folio has a chance to be referenced again before it is reclaimed.
2847 * If that fails and refaulting is observed, the inactive list grows.
2849 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2850 * on this LRU, maintained by the pageout code. An inactive_ratio
2851 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2854 * memory ratio inactive
2855 * -------------------------------------
2864 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2866 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2867 unsigned long inactive, active;
2868 unsigned long inactive_ratio;
2871 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2872 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2874 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2876 inactive_ratio = int_sqrt(10 * gb);
2880 return inactive * inactive_ratio < active;
2890 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2893 struct lruvec *target_lruvec;
2895 if (lru_gen_enabled())
2898 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2901 * Flush the memory cgroup stats, so that we read accurate per-memcg
2902 * lruvec stats for heuristics.
2904 mem_cgroup_flush_stats();
2907 * Determine the scan balance between anon and file LRUs.
2909 spin_lock_irq(&target_lruvec->lru_lock);
2910 sc->anon_cost = target_lruvec->anon_cost;
2911 sc->file_cost = target_lruvec->file_cost;
2912 spin_unlock_irq(&target_lruvec->lru_lock);
2915 * Target desirable inactive:active list ratios for the anon
2916 * and file LRU lists.
2918 if (!sc->force_deactivate) {
2919 unsigned long refaults;
2922 * When refaults are being observed, it means a new
2923 * workingset is being established. Deactivate to get
2924 * rid of any stale active pages quickly.
2926 refaults = lruvec_page_state(target_lruvec,
2927 WORKINGSET_ACTIVATE_ANON);
2928 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2929 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2930 sc->may_deactivate |= DEACTIVATE_ANON;
2932 sc->may_deactivate &= ~DEACTIVATE_ANON;
2934 refaults = lruvec_page_state(target_lruvec,
2935 WORKINGSET_ACTIVATE_FILE);
2936 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2937 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2938 sc->may_deactivate |= DEACTIVATE_FILE;
2940 sc->may_deactivate &= ~DEACTIVATE_FILE;
2942 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2945 * If we have plenty of inactive file pages that aren't
2946 * thrashing, try to reclaim those first before touching
2949 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2950 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2951 sc->cache_trim_mode = 1;
2953 sc->cache_trim_mode = 0;
2956 * Prevent the reclaimer from falling into the cache trap: as
2957 * cache pages start out inactive, every cache fault will tip
2958 * the scan balance towards the file LRU. And as the file LRU
2959 * shrinks, so does the window for rotation from references.
2960 * This means we have a runaway feedback loop where a tiny
2961 * thrashing file LRU becomes infinitely more attractive than
2962 * anon pages. Try to detect this based on file LRU size.
2964 if (!cgroup_reclaim(sc)) {
2965 unsigned long total_high_wmark = 0;
2966 unsigned long free, anon;
2969 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2970 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2971 node_page_state(pgdat, NR_INACTIVE_FILE);
2973 for (z = 0; z < MAX_NR_ZONES; z++) {
2974 struct zone *zone = &pgdat->node_zones[z];
2976 if (!managed_zone(zone))
2979 total_high_wmark += high_wmark_pages(zone);
2983 * Consider anon: if that's low too, this isn't a
2984 * runaway file reclaim problem, but rather just
2985 * extreme pressure. Reclaim as per usual then.
2987 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2990 file + free <= total_high_wmark &&
2991 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2992 anon >> sc->priority;
2997 * Determine how aggressively the anon and file LRU lists should be
3000 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
3001 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
3003 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
3006 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3007 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3008 unsigned long anon_cost, file_cost, total_cost;
3009 int swappiness = mem_cgroup_swappiness(memcg);
3010 u64 fraction[ANON_AND_FILE];
3011 u64 denominator = 0; /* gcc */
3012 enum scan_balance scan_balance;
3013 unsigned long ap, fp;
3016 /* If we have no swap space, do not bother scanning anon folios. */
3017 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
3018 scan_balance = SCAN_FILE;
3023 * Global reclaim will swap to prevent OOM even with no
3024 * swappiness, but memcg users want to use this knob to
3025 * disable swapping for individual groups completely when
3026 * using the memory controller's swap limit feature would be
3029 if (cgroup_reclaim(sc) && !swappiness) {
3030 scan_balance = SCAN_FILE;
3035 * Do not apply any pressure balancing cleverness when the
3036 * system is close to OOM, scan both anon and file equally
3037 * (unless the swappiness setting disagrees with swapping).
3039 if (!sc->priority && swappiness) {
3040 scan_balance = SCAN_EQUAL;
3045 * If the system is almost out of file pages, force-scan anon.
3047 if (sc->file_is_tiny) {
3048 scan_balance = SCAN_ANON;
3053 * If there is enough inactive page cache, we do not reclaim
3054 * anything from the anonymous working right now.
3056 if (sc->cache_trim_mode) {
3057 scan_balance = SCAN_FILE;
3061 scan_balance = SCAN_FRACT;
3063 * Calculate the pressure balance between anon and file pages.
3065 * The amount of pressure we put on each LRU is inversely
3066 * proportional to the cost of reclaiming each list, as
3067 * determined by the share of pages that are refaulting, times
3068 * the relative IO cost of bringing back a swapped out
3069 * anonymous page vs reloading a filesystem page (swappiness).
3071 * Although we limit that influence to ensure no list gets
3072 * left behind completely: at least a third of the pressure is
3073 * applied, before swappiness.
3075 * With swappiness at 100, anon and file have equal IO cost.
3077 total_cost = sc->anon_cost + sc->file_cost;
3078 anon_cost = total_cost + sc->anon_cost;
3079 file_cost = total_cost + sc->file_cost;
3080 total_cost = anon_cost + file_cost;
3082 ap = swappiness * (total_cost + 1);
3083 ap /= anon_cost + 1;
3085 fp = (200 - swappiness) * (total_cost + 1);
3086 fp /= file_cost + 1;
3090 denominator = ap + fp;
3092 for_each_evictable_lru(lru) {
3093 int file = is_file_lru(lru);
3094 unsigned long lruvec_size;
3095 unsigned long low, min;
3098 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3099 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3104 * Scale a cgroup's reclaim pressure by proportioning
3105 * its current usage to its memory.low or memory.min
3108 * This is important, as otherwise scanning aggression
3109 * becomes extremely binary -- from nothing as we
3110 * approach the memory protection threshold, to totally
3111 * nominal as we exceed it. This results in requiring
3112 * setting extremely liberal protection thresholds. It
3113 * also means we simply get no protection at all if we
3114 * set it too low, which is not ideal.
3116 * If there is any protection in place, we reduce scan
3117 * pressure by how much of the total memory used is
3118 * within protection thresholds.
3120 * There is one special case: in the first reclaim pass,
3121 * we skip over all groups that are within their low
3122 * protection. If that fails to reclaim enough pages to
3123 * satisfy the reclaim goal, we come back and override
3124 * the best-effort low protection. However, we still
3125 * ideally want to honor how well-behaved groups are in
3126 * that case instead of simply punishing them all
3127 * equally. As such, we reclaim them based on how much
3128 * memory they are using, reducing the scan pressure
3129 * again by how much of the total memory used is under
3132 unsigned long cgroup_size = mem_cgroup_size(memcg);
3133 unsigned long protection;
3135 /* memory.low scaling, make sure we retry before OOM */
3136 if (!sc->memcg_low_reclaim && low > min) {
3138 sc->memcg_low_skipped = 1;
3143 /* Avoid TOCTOU with earlier protection check */
3144 cgroup_size = max(cgroup_size, protection);
3146 scan = lruvec_size - lruvec_size * protection /
3150 * Minimally target SWAP_CLUSTER_MAX pages to keep
3151 * reclaim moving forwards, avoiding decrementing
3152 * sc->priority further than desirable.
3154 scan = max(scan, SWAP_CLUSTER_MAX);
3159 scan >>= sc->priority;
3162 * If the cgroup's already been deleted, make sure to
3163 * scrape out the remaining cache.
3165 if (!scan && !mem_cgroup_online(memcg))
3166 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3168 switch (scan_balance) {
3170 /* Scan lists relative to size */
3174 * Scan types proportional to swappiness and
3175 * their relative recent reclaim efficiency.
3176 * Make sure we don't miss the last page on
3177 * the offlined memory cgroups because of a
3180 scan = mem_cgroup_online(memcg) ?
3181 div64_u64(scan * fraction[file], denominator) :
3182 DIV64_U64_ROUND_UP(scan * fraction[file],
3187 /* Scan one type exclusively */
3188 if ((scan_balance == SCAN_FILE) != file)
3192 /* Look ma, no brain */
3201 * Anonymous LRU management is a waste if there is
3202 * ultimately no way to reclaim the memory.
3204 static bool can_age_anon_pages(struct pglist_data *pgdat,
3205 struct scan_control *sc)
3207 /* Aging the anon LRU is valuable if swap is present: */
3208 if (total_swap_pages > 0)
3211 /* Also valuable if anon pages can be demoted: */
3212 return can_demote(pgdat->node_id, sc);
3215 #ifdef CONFIG_LRU_GEN
3217 #ifdef CONFIG_LRU_GEN_ENABLED
3218 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3219 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
3221 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3222 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
3225 /******************************************************************************
3227 ******************************************************************************/
3229 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
3231 #define DEFINE_MAX_SEQ(lruvec) \
3232 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3234 #define DEFINE_MIN_SEQ(lruvec) \
3235 unsigned long min_seq[ANON_AND_FILE] = { \
3236 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
3237 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
3240 #define for_each_gen_type_zone(gen, type, zone) \
3241 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
3242 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
3243 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3245 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
3246 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
3248 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3250 struct pglist_data *pgdat = NODE_DATA(nid);
3254 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3256 /* see the comment in mem_cgroup_lruvec() */
3258 lruvec->pgdat = pgdat;
3263 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3265 return &pgdat->__lruvec;
3268 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3270 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3271 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3276 if (!can_demote(pgdat->node_id, sc) &&
3277 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3280 return mem_cgroup_swappiness(memcg);
3283 static int get_nr_gens(struct lruvec *lruvec, int type)
3285 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3288 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3290 /* see the comment on lru_gen_folio */
3291 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3292 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3293 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3296 /******************************************************************************
3298 ******************************************************************************/
3301 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3302 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3303 * bits in a bitmap, k is the number of hash functions and n is the number of
3306 * Page table walkers use one of the two filters to reduce their search space.
3307 * To get rid of non-leaf entries that no longer have enough leaf entries, the
3308 * aging uses the double-buffering technique to flip to the other filter each
3309 * time it produces a new generation. For non-leaf entries that have enough
3310 * leaf entries, the aging carries them over to the next generation in
3311 * walk_pmd_range(); the eviction also report them when walking the rmap
3312 * in lru_gen_look_around().
3314 * For future optimizations:
3315 * 1. It's not necessary to keep both filters all the time. The spare one can be
3316 * freed after the RCU grace period and reallocated if needed again.
3317 * 2. And when reallocating, it's worth scaling its size according to the number
3318 * of inserted entries in the other filter, to reduce the memory overhead on
3319 * small systems and false positives on large systems.
3320 * 3. Jenkins' hash function is an alternative to Knuth's.
3322 #define BLOOM_FILTER_SHIFT 15
3324 static inline int filter_gen_from_seq(unsigned long seq)
3326 return seq % NR_BLOOM_FILTERS;
3329 static void get_item_key(void *item, int *key)
3331 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3333 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3335 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3336 key[1] = hash >> BLOOM_FILTER_SHIFT;
3339 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3342 unsigned long *filter;
3343 int gen = filter_gen_from_seq(seq);
3345 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3349 get_item_key(item, key);
3351 return test_bit(key[0], filter) && test_bit(key[1], filter);
3354 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3357 unsigned long *filter;
3358 int gen = filter_gen_from_seq(seq);
3360 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3364 get_item_key(item, key);
3366 if (!test_bit(key[0], filter))
3367 set_bit(key[0], filter);
3368 if (!test_bit(key[1], filter))
3369 set_bit(key[1], filter);
3372 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3374 unsigned long *filter;
3375 int gen = filter_gen_from_seq(seq);
3377 filter = lruvec->mm_state.filters[gen];
3379 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3383 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3384 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3385 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3388 /******************************************************************************
3390 ******************************************************************************/
3392 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3394 static struct lru_gen_mm_list mm_list = {
3395 .fifo = LIST_HEAD_INIT(mm_list.fifo),
3396 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3401 return &memcg->mm_list;
3403 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3408 void lru_gen_add_mm(struct mm_struct *mm)
3411 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3412 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3414 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3416 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3417 mm->lru_gen.memcg = memcg;
3419 spin_lock(&mm_list->lock);
3421 for_each_node_state(nid, N_MEMORY) {
3422 struct lruvec *lruvec = get_lruvec(memcg, nid);
3424 /* the first addition since the last iteration */
3425 if (lruvec->mm_state.tail == &mm_list->fifo)
3426 lruvec->mm_state.tail = &mm->lru_gen.list;
3429 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3431 spin_unlock(&mm_list->lock);
3434 void lru_gen_del_mm(struct mm_struct *mm)
3437 struct lru_gen_mm_list *mm_list;
3438 struct mem_cgroup *memcg = NULL;
3440 if (list_empty(&mm->lru_gen.list))
3444 memcg = mm->lru_gen.memcg;
3446 mm_list = get_mm_list(memcg);
3448 spin_lock(&mm_list->lock);
3450 for_each_node(nid) {
3451 struct lruvec *lruvec = get_lruvec(memcg, nid);
3453 /* where the current iteration continues after */
3454 if (lruvec->mm_state.head == &mm->lru_gen.list)
3455 lruvec->mm_state.head = lruvec->mm_state.head->prev;
3457 /* where the last iteration ended before */
3458 if (lruvec->mm_state.tail == &mm->lru_gen.list)
3459 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3462 list_del_init(&mm->lru_gen.list);
3464 spin_unlock(&mm_list->lock);
3467 mem_cgroup_put(mm->lru_gen.memcg);
3468 mm->lru_gen.memcg = NULL;
3473 void lru_gen_migrate_mm(struct mm_struct *mm)
3475 struct mem_cgroup *memcg;
3476 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3478 VM_WARN_ON_ONCE(task->mm != mm);
3479 lockdep_assert_held(&task->alloc_lock);
3481 /* for mm_update_next_owner() */
3482 if (mem_cgroup_disabled())
3485 /* migration can happen before addition */
3486 if (!mm->lru_gen.memcg)
3490 memcg = mem_cgroup_from_task(task);
3492 if (memcg == mm->lru_gen.memcg)
3495 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3502 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3507 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3510 hist = lru_hist_from_seq(walk->max_seq);
3512 for (i = 0; i < NR_MM_STATS; i++) {
3513 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3514 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3515 walk->mm_stats[i] = 0;
3519 if (NR_HIST_GENS > 1 && last) {
3520 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3522 for (i = 0; i < NR_MM_STATS; i++)
3523 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3527 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3530 unsigned long size = 0;
3531 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3532 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3534 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3537 clear_bit(key, &mm->lru_gen.bitmap);
3539 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3540 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3541 get_mm_counter(mm, MM_ANONPAGES) +
3542 get_mm_counter(mm, MM_SHMEMPAGES);
3545 if (size < MIN_LRU_BATCH)
3548 return !mmget_not_zero(mm);
3551 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3552 struct mm_struct **iter)
3556 struct mm_struct *mm = NULL;
3557 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3558 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3559 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3562 * mm_state->seq is incremented after each iteration of mm_list. There
3563 * are three interesting cases for this page table walker:
3564 * 1. It tries to start a new iteration with a stale max_seq: there is
3565 * nothing left to do.
3566 * 2. It started the next iteration: it needs to reset the Bloom filter
3567 * so that a fresh set of PTE tables can be recorded.
3568 * 3. It ended the current iteration: it needs to reset the mm stats
3569 * counters and tell its caller to increment max_seq.
3571 spin_lock(&mm_list->lock);
3573 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3575 if (walk->max_seq <= mm_state->seq)
3578 if (!mm_state->head)
3579 mm_state->head = &mm_list->fifo;
3581 if (mm_state->head == &mm_list->fifo)
3585 mm_state->head = mm_state->head->next;
3586 if (mm_state->head == &mm_list->fifo) {
3587 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3592 /* force scan for those added after the last iteration */
3593 if (!mm_state->tail || mm_state->tail == mm_state->head) {
3594 mm_state->tail = mm_state->head->next;
3595 walk->force_scan = true;
3598 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3599 if (should_skip_mm(mm, walk))
3604 reset_mm_stats(lruvec, walk, last);
3606 spin_unlock(&mm_list->lock);
3609 reset_bloom_filter(lruvec, walk->max_seq + 1);
3619 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3621 bool success = false;
3622 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3623 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3624 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3626 spin_lock(&mm_list->lock);
3628 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3630 if (max_seq > mm_state->seq) {
3631 mm_state->head = NULL;
3632 mm_state->tail = NULL;
3633 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3634 reset_mm_stats(lruvec, NULL, true);
3638 spin_unlock(&mm_list->lock);
3643 /******************************************************************************
3645 ******************************************************************************/
3648 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3650 * The P term is refaulted/(evicted+protected) from a tier in the generation
3651 * currently being evicted; the I term is the exponential moving average of the
3652 * P term over the generations previously evicted, using the smoothing factor
3653 * 1/2; the D term isn't supported.
3655 * The setpoint (SP) is always the first tier of one type; the process variable
3656 * (PV) is either any tier of the other type or any other tier of the same
3659 * The error is the difference between the SP and the PV; the correction is to
3660 * turn off protection when SP>PV or turn on protection when SP<PV.
3662 * For future optimizations:
3663 * 1. The D term may discount the other two terms over time so that long-lived
3664 * generations can resist stale information.
3667 unsigned long refaulted;
3668 unsigned long total;
3672 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3673 struct ctrl_pos *pos)
3675 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3676 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3678 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3679 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3680 pos->total = lrugen->avg_total[type][tier] +
3681 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3683 pos->total += lrugen->protected[hist][type][tier - 1];
3687 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3690 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3691 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3692 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3694 lockdep_assert_held(&lruvec->lru_lock);
3696 if (!carryover && !clear)
3699 hist = lru_hist_from_seq(seq);
3701 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3705 sum = lrugen->avg_refaulted[type][tier] +
3706 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3707 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3709 sum = lrugen->avg_total[type][tier] +
3710 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3712 sum += lrugen->protected[hist][type][tier - 1];
3713 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3717 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3718 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3720 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3725 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3728 * Return true if the PV has a limited number of refaults or a lower
3729 * refaulted/total than the SP.
3731 return pv->refaulted < MIN_LRU_BATCH ||
3732 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3733 (sp->refaulted + 1) * pv->total * pv->gain;
3736 /******************************************************************************
3738 ******************************************************************************/
3740 /* promote pages accessed through page tables */
3741 static int folio_update_gen(struct folio *folio, int gen)
3743 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3745 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3746 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3749 /* lru_gen_del_folio() has isolated this page? */
3750 if (!(old_flags & LRU_GEN_MASK)) {
3751 /* for shrink_folio_list() */
3752 new_flags = old_flags | BIT(PG_referenced);
3756 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3757 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3758 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3760 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3763 /* protect pages accessed multiple times through file descriptors */
3764 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3766 int type = folio_is_file_lru(folio);
3767 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3768 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3769 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3771 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3774 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3775 /* folio_update_gen() has promoted this page? */
3776 if (new_gen >= 0 && new_gen != old_gen)
3779 new_gen = (old_gen + 1) % MAX_NR_GENS;
3781 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3782 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3783 /* for folio_end_writeback() */
3785 new_flags |= BIT(PG_reclaim);
3786 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3788 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3793 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3794 int old_gen, int new_gen)
3796 int type = folio_is_file_lru(folio);
3797 int zone = folio_zonenum(folio);
3798 int delta = folio_nr_pages(folio);
3800 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3801 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3805 walk->nr_pages[old_gen][type][zone] -= delta;
3806 walk->nr_pages[new_gen][type][zone] += delta;
3809 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3811 int gen, type, zone;
3812 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3816 for_each_gen_type_zone(gen, type, zone) {
3817 enum lru_list lru = type * LRU_INACTIVE_FILE;
3818 int delta = walk->nr_pages[gen][type][zone];
3823 walk->nr_pages[gen][type][zone] = 0;
3824 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3825 lrugen->nr_pages[gen][type][zone] + delta);
3827 if (lru_gen_is_active(lruvec, gen))
3829 __update_lru_size(lruvec, lru, zone, delta);
3833 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3835 struct address_space *mapping;
3836 struct vm_area_struct *vma = args->vma;
3837 struct lru_gen_mm_walk *walk = args->private;
3839 if (!vma_is_accessible(vma))
3842 if (is_vm_hugetlb_page(vma))
3845 if (!vma_has_recency(vma))
3848 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3851 if (vma == get_gate_vma(vma->vm_mm))
3854 if (vma_is_anonymous(vma))
3855 return !walk->can_swap;
3857 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3860 mapping = vma->vm_file->f_mapping;
3861 if (mapping_unevictable(mapping))
3864 if (shmem_mapping(mapping))
3865 return !walk->can_swap;
3867 /* to exclude special mappings like dax, etc. */
3868 return !mapping->a_ops->read_folio;
3872 * Some userspace memory allocators map many single-page VMAs. Instead of
3873 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3874 * table to reduce zigzags and improve cache performance.
3876 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3877 unsigned long *vm_start, unsigned long *vm_end)
3879 unsigned long start = round_up(*vm_end, size);
3880 unsigned long end = (start | ~mask) + 1;
3881 VMA_ITERATOR(vmi, args->mm, start);
3883 VM_WARN_ON_ONCE(mask & size);
3884 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3886 for_each_vma(vmi, args->vma) {
3887 if (end && end <= args->vma->vm_start)
3890 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3893 *vm_start = max(start, args->vma->vm_start);
3894 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3902 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3904 unsigned long pfn = pte_pfn(pte);
3906 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3908 if (!pte_present(pte) || is_zero_pfn(pfn))
3911 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3914 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3920 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3921 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3923 unsigned long pfn = pmd_pfn(pmd);
3925 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3927 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3930 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3933 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3940 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3941 struct pglist_data *pgdat, bool can_swap)
3943 struct folio *folio;
3945 /* try to avoid unnecessary memory loads */
3946 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3949 folio = pfn_folio(pfn);
3950 if (folio_nid(folio) != pgdat->node_id)
3953 if (folio_memcg_rcu(folio) != memcg)
3956 /* file VMAs can contain anon pages from COW */
3957 if (!folio_is_file_lru(folio) && !can_swap)
3963 static bool suitable_to_scan(int total, int young)
3965 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3967 /* suitable if the average number of young PTEs per cacheline is >=1 */
3968 return young * n >= total;
3971 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3972 struct mm_walk *args)
3980 struct lru_gen_mm_walk *walk = args->private;
3981 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3982 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3983 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3985 VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3987 ptl = pte_lockptr(args->mm, pmd);
3988 if (!spin_trylock(ptl))
3991 arch_enter_lazy_mmu_mode();
3993 pte = pte_offset_map(pmd, start & PMD_MASK);
3995 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3997 struct folio *folio;
4000 walk->mm_stats[MM_LEAF_TOTAL]++;
4002 pfn = get_pte_pfn(pte[i], args->vma, addr);
4006 if (!pte_young(pte[i])) {
4007 walk->mm_stats[MM_LEAF_OLD]++;
4011 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4015 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
4016 VM_WARN_ON_ONCE(true);
4019 walk->mm_stats[MM_LEAF_YOUNG]++;
4021 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4022 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4023 !folio_test_swapcache(folio)))
4024 folio_mark_dirty(folio);
4026 old_gen = folio_update_gen(folio, new_gen);
4027 if (old_gen >= 0 && old_gen != new_gen)
4028 update_batch_size(walk, folio, old_gen, new_gen);
4031 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
4036 arch_leave_lazy_mmu_mode();
4039 return suitable_to_scan(total, young);
4042 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
4043 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4044 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4049 struct lru_gen_mm_walk *walk = args->private;
4050 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4051 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4052 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4054 VM_WARN_ON_ONCE(pud_leaf(*pud));
4056 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4059 bitmap_zero(bitmap, MIN_LRU_BATCH);
4063 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4064 if (i && i <= MIN_LRU_BATCH) {
4065 __set_bit(i - 1, bitmap);
4069 pmd = pmd_offset(pud, *first);
4071 ptl = pmd_lockptr(args->mm, pmd);
4072 if (!spin_trylock(ptl))
4075 arch_enter_lazy_mmu_mode();
4079 struct folio *folio;
4081 /* don't round down the first address */
4082 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4084 pfn = get_pmd_pfn(pmd[i], vma, addr);
4088 if (!pmd_trans_huge(pmd[i])) {
4089 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
4090 pmdp_test_and_clear_young(vma, addr, pmd + i);
4094 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4098 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4101 walk->mm_stats[MM_LEAF_YOUNG]++;
4103 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4104 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4105 !folio_test_swapcache(folio)))
4106 folio_mark_dirty(folio);
4108 old_gen = folio_update_gen(folio, new_gen);
4109 if (old_gen >= 0 && old_gen != new_gen)
4110 update_batch_size(walk, folio, old_gen, new_gen);
4112 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4113 } while (i <= MIN_LRU_BATCH);
4115 arch_leave_lazy_mmu_mode();
4121 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4122 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4127 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4128 struct mm_walk *args)
4134 struct vm_area_struct *vma;
4135 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)];
4136 unsigned long first = -1;
4137 struct lru_gen_mm_walk *walk = args->private;
4139 VM_WARN_ON_ONCE(pud_leaf(*pud));
4142 * Finish an entire PMD in two passes: the first only reaches to PTE
4143 * tables to avoid taking the PMD lock; the second, if necessary, takes
4144 * the PMD lock to clear the accessed bit in PMD entries.
4146 pmd = pmd_offset(pud, start & PUD_MASK);
4148 /* walk_pte_range() may call get_next_vma() */
4150 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4151 pmd_t val = pmdp_get_lockless(pmd + i);
4153 next = pmd_addr_end(addr, end);
4155 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4156 walk->mm_stats[MM_LEAF_TOTAL]++;
4160 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4161 if (pmd_trans_huge(val)) {
4162 unsigned long pfn = pmd_pfn(val);
4163 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4165 walk->mm_stats[MM_LEAF_TOTAL]++;
4167 if (!pmd_young(val)) {
4168 walk->mm_stats[MM_LEAF_OLD]++;
4172 /* try to avoid unnecessary memory loads */
4173 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4176 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4180 walk->mm_stats[MM_NONLEAF_TOTAL]++;
4182 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4183 if (!pmd_young(val))
4186 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4189 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4192 walk->mm_stats[MM_NONLEAF_FOUND]++;
4194 if (!walk_pte_range(&val, addr, next, args))
4197 walk->mm_stats[MM_NONLEAF_ADDED]++;
4199 /* carry over to the next generation */
4200 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4203 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4205 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4209 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4210 struct mm_walk *args)
4216 struct lru_gen_mm_walk *walk = args->private;
4218 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4220 pud = pud_offset(p4d, start & P4D_MASK);
4222 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4223 pud_t val = READ_ONCE(pud[i]);
4225 next = pud_addr_end(addr, end);
4227 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4230 walk_pmd_range(&val, addr, next, args);
4232 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4233 end = (addr | ~PUD_MASK) + 1;
4238 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4241 end = round_up(end, P4D_SIZE);
4243 if (!end || !args->vma)
4246 walk->next_addr = max(end, args->vma->vm_start);
4251 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4253 static const struct mm_walk_ops mm_walk_ops = {
4254 .test_walk = should_skip_vma,
4255 .p4d_entry = walk_pud_range,
4259 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4261 walk->next_addr = FIRST_USER_ADDRESS;
4264 DEFINE_MAX_SEQ(lruvec);
4268 /* another thread might have called inc_max_seq() */
4269 if (walk->max_seq != max_seq)
4272 /* folio_update_gen() requires stable folio_memcg() */
4273 if (!mem_cgroup_trylock_pages(memcg))
4276 /* the caller might be holding the lock for write */
4277 if (mmap_read_trylock(mm)) {
4278 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4280 mmap_read_unlock(mm);
4283 mem_cgroup_unlock_pages();
4285 if (walk->batched) {
4286 spin_lock_irq(&lruvec->lru_lock);
4287 reset_batch_size(lruvec, walk);
4288 spin_unlock_irq(&lruvec->lru_lock);
4292 } while (err == -EAGAIN);
4295 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4297 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4299 if (pgdat && current_is_kswapd()) {
4300 VM_WARN_ON_ONCE(walk);
4302 walk = &pgdat->mm_walk;
4303 } else if (!walk && force_alloc) {
4304 VM_WARN_ON_ONCE(current_is_kswapd());
4306 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4309 current->reclaim_state->mm_walk = walk;
4314 static void clear_mm_walk(void)
4316 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4318 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4319 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4321 current->reclaim_state->mm_walk = NULL;
4323 if (!current_is_kswapd())
4327 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4330 int remaining = MAX_LRU_BATCH;
4331 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4332 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4334 if (type == LRU_GEN_ANON && !can_swap)
4337 /* prevent cold/hot inversion if force_scan is true */
4338 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4339 struct list_head *head = &lrugen->folios[old_gen][type][zone];
4341 while (!list_empty(head)) {
4342 struct folio *folio = lru_to_folio(head);
4344 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4345 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4346 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4347 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4349 new_gen = folio_inc_gen(lruvec, folio, false);
4350 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4357 reset_ctrl_pos(lruvec, type, true);
4358 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4363 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4365 int gen, type, zone;
4366 bool success = false;
4367 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4368 DEFINE_MIN_SEQ(lruvec);
4370 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4372 /* find the oldest populated generation */
4373 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4374 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4375 gen = lru_gen_from_seq(min_seq[type]);
4377 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4378 if (!list_empty(&lrugen->folios[gen][type][zone]))
4388 /* see the comment on lru_gen_folio */
4390 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4391 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4394 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4395 if (min_seq[type] == lrugen->min_seq[type])
4398 reset_ctrl_pos(lruvec, type, true);
4399 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4406 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4410 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4412 spin_lock_irq(&lruvec->lru_lock);
4414 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4416 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4417 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4420 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4422 while (!inc_min_seq(lruvec, type, can_swap)) {
4423 spin_unlock_irq(&lruvec->lru_lock);
4425 spin_lock_irq(&lruvec->lru_lock);
4430 * Update the active/inactive LRU sizes for compatibility. Both sides of
4431 * the current max_seq need to be covered, since max_seq+1 can overlap
4432 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4433 * overlap, cold/hot inversion happens.
4435 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4436 next = lru_gen_from_seq(lrugen->max_seq + 1);
4438 for (type = 0; type < ANON_AND_FILE; type++) {
4439 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4440 enum lru_list lru = type * LRU_INACTIVE_FILE;
4441 long delta = lrugen->nr_pages[prev][type][zone] -
4442 lrugen->nr_pages[next][type][zone];
4447 __update_lru_size(lruvec, lru, zone, delta);
4448 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4452 for (type = 0; type < ANON_AND_FILE; type++)
4453 reset_ctrl_pos(lruvec, type, false);
4455 WRITE_ONCE(lrugen->timestamps[next], jiffies);
4456 /* make sure preceding modifications appear */
4457 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4459 spin_unlock_irq(&lruvec->lru_lock);
4462 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4463 struct scan_control *sc, bool can_swap, bool force_scan)
4466 struct lru_gen_mm_walk *walk;
4467 struct mm_struct *mm = NULL;
4468 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4470 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4472 /* see the comment in iterate_mm_list() */
4473 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4479 * If the hardware doesn't automatically set the accessed bit, fallback
4480 * to lru_gen_look_around(), which only clears the accessed bit in a
4481 * handful of PTEs. Spreading the work out over a period of time usually
4482 * is less efficient, but it avoids bursty page faults.
4484 if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) {
4485 success = iterate_mm_list_nowalk(lruvec, max_seq);
4489 walk = set_mm_walk(NULL, true);
4491 success = iterate_mm_list_nowalk(lruvec, max_seq);
4495 walk->lruvec = lruvec;
4496 walk->max_seq = max_seq;
4497 walk->can_swap = can_swap;
4498 walk->force_scan = force_scan;
4501 success = iterate_mm_list(lruvec, walk, &mm);
4503 walk_mm(lruvec, mm, walk);
4507 inc_max_seq(lruvec, can_swap, force_scan);
4512 /******************************************************************************
4513 * working set protection
4514 ******************************************************************************/
4516 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4518 int gen, type, zone;
4519 unsigned long total = 0;
4520 bool can_swap = get_swappiness(lruvec, sc);
4521 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4522 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4523 DEFINE_MAX_SEQ(lruvec);
4524 DEFINE_MIN_SEQ(lruvec);
4526 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4529 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4530 gen = lru_gen_from_seq(seq);
4532 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4533 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4537 /* whether the size is big enough to be helpful */
4538 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4541 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4542 unsigned long min_ttl)
4545 unsigned long birth;
4546 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4547 DEFINE_MIN_SEQ(lruvec);
4549 /* see the comment on lru_gen_folio */
4550 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4551 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4553 if (time_is_after_jiffies(birth + min_ttl))
4556 if (!lruvec_is_sizable(lruvec, sc))
4559 mem_cgroup_calculate_protection(NULL, memcg);
4561 return !mem_cgroup_below_min(NULL, memcg);
4564 /* to protect the working set of the last N jiffies */
4565 static unsigned long lru_gen_min_ttl __read_mostly;
4567 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4569 struct mem_cgroup *memcg;
4570 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4572 VM_WARN_ON_ONCE(!current_is_kswapd());
4574 /* check the order to exclude compaction-induced reclaim */
4575 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4578 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4580 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4582 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4583 mem_cgroup_iter_break(NULL, memcg);
4588 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4591 * The main goal is to OOM kill if every generation from all memcgs is
4592 * younger than min_ttl. However, another possibility is all memcgs are
4593 * either too small or below min.
4595 if (mutex_trylock(&oom_lock)) {
4596 struct oom_control oc = {
4597 .gfp_mask = sc->gfp_mask,
4602 mutex_unlock(&oom_lock);
4606 /******************************************************************************
4607 * rmap/PT walk feedback
4608 ******************************************************************************/
4611 * This function exploits spatial locality when shrink_folio_list() walks the
4612 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4613 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4614 * the PTE table to the Bloom filter. This forms a feedback loop between the
4615 * eviction and the aging.
4617 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4620 unsigned long start;
4622 struct lru_gen_mm_walk *walk;
4624 pte_t *pte = pvmw->pte;
4625 unsigned long addr = pvmw->address;
4626 struct folio *folio = pfn_folio(pvmw->pfn);
4627 struct mem_cgroup *memcg = folio_memcg(folio);
4628 struct pglist_data *pgdat = folio_pgdat(folio);
4629 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4630 DEFINE_MAX_SEQ(lruvec);
4631 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4633 lockdep_assert_held(pvmw->ptl);
4634 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4636 if (spin_is_contended(pvmw->ptl))
4639 /* avoid taking the LRU lock under the PTL when possible */
4640 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4642 start = max(addr & PMD_MASK, pvmw->vma->vm_start);
4643 end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4645 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4646 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4647 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4648 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4649 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4651 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4652 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4656 /* folio_update_gen() requires stable folio_memcg() */
4657 if (!mem_cgroup_trylock_pages(memcg))
4660 arch_enter_lazy_mmu_mode();
4662 pte -= (addr - start) / PAGE_SIZE;
4664 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4667 pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4671 if (!pte_young(pte[i]))
4674 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4678 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4679 VM_WARN_ON_ONCE(true);
4683 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4684 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4685 !folio_test_swapcache(folio)))
4686 folio_mark_dirty(folio);
4689 old_gen = folio_update_gen(folio, new_gen);
4690 if (old_gen >= 0 && old_gen != new_gen)
4691 update_batch_size(walk, folio, old_gen, new_gen);
4696 old_gen = folio_lru_gen(folio);
4698 folio_set_referenced(folio);
4699 else if (old_gen != new_gen)
4700 folio_activate(folio);
4703 arch_leave_lazy_mmu_mode();
4704 mem_cgroup_unlock_pages();
4706 /* feedback from rmap walkers to page table walkers */
4707 if (suitable_to_scan(i, young))
4708 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4711 /******************************************************************************
4713 ******************************************************************************/
4715 /* see the comment on MEMCG_NR_GENS */
4726 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4728 return READ_ONCE(lruvec->lrugen.seg);
4731 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4735 int bin = get_random_u32_below(MEMCG_NR_BINS);
4736 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4738 spin_lock(&pgdat->memcg_lru.lock);
4740 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4743 new = old = lruvec->lrugen.gen;
4745 /* see the comment on MEMCG_NR_GENS */
4746 if (op == MEMCG_LRU_HEAD)
4747 seg = MEMCG_LRU_HEAD;
4748 else if (op == MEMCG_LRU_TAIL)
4749 seg = MEMCG_LRU_TAIL;
4750 else if (op == MEMCG_LRU_OLD)
4751 new = get_memcg_gen(pgdat->memcg_lru.seq);
4752 else if (op == MEMCG_LRU_YOUNG)
4753 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4755 VM_WARN_ON_ONCE(true);
4757 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4759 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4760 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4762 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4764 pgdat->memcg_lru.nr_memcgs[old]--;
4765 pgdat->memcg_lru.nr_memcgs[new]++;
4767 lruvec->lrugen.gen = new;
4768 WRITE_ONCE(lruvec->lrugen.seg, seg);
4770 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4771 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4773 spin_unlock(&pgdat->memcg_lru.lock);
4776 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4780 int bin = get_random_u32_below(MEMCG_NR_BINS);
4782 for_each_node(nid) {
4783 struct pglist_data *pgdat = NODE_DATA(nid);
4784 struct lruvec *lruvec = get_lruvec(memcg, nid);
4786 spin_lock(&pgdat->memcg_lru.lock);
4788 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4790 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4792 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4793 pgdat->memcg_lru.nr_memcgs[gen]++;
4795 lruvec->lrugen.gen = gen;
4797 spin_unlock(&pgdat->memcg_lru.lock);
4801 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4805 for_each_node(nid) {
4806 struct lruvec *lruvec = get_lruvec(memcg, nid);
4808 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4812 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4817 for_each_node(nid) {
4818 struct pglist_data *pgdat = NODE_DATA(nid);
4819 struct lruvec *lruvec = get_lruvec(memcg, nid);
4821 spin_lock(&pgdat->memcg_lru.lock);
4823 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4825 gen = lruvec->lrugen.gen;
4827 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4828 pgdat->memcg_lru.nr_memcgs[gen]--;
4830 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4831 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4833 spin_unlock(&pgdat->memcg_lru.lock);
4837 void lru_gen_soft_reclaim(struct lruvec *lruvec)
4839 /* see the comment on MEMCG_NR_GENS */
4840 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4841 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4844 #else /* !CONFIG_MEMCG */
4846 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4853 /******************************************************************************
4855 ******************************************************************************/
4857 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4860 int gen = folio_lru_gen(folio);
4861 int type = folio_is_file_lru(folio);
4862 int zone = folio_zonenum(folio);
4863 int delta = folio_nr_pages(folio);
4864 int refs = folio_lru_refs(folio);
4865 int tier = lru_tier_from_refs(refs);
4866 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4868 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4871 if (!folio_evictable(folio)) {
4872 success = lru_gen_del_folio(lruvec, folio, true);
4873 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4874 folio_set_unevictable(folio);
4875 lruvec_add_folio(lruvec, folio);
4876 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4880 /* dirty lazyfree */
4881 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4882 success = lru_gen_del_folio(lruvec, folio, true);
4883 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4884 folio_set_swapbacked(folio);
4885 lruvec_add_folio_tail(lruvec, folio);
4890 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4891 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4896 if (tier > tier_idx) {
4897 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4899 gen = folio_inc_gen(lruvec, folio, false);
4900 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4902 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4903 lrugen->protected[hist][type][tier - 1] + delta);
4904 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4908 /* waiting for writeback */
4909 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4910 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4911 gen = folio_inc_gen(lruvec, folio, true);
4912 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4919 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4923 /* swapping inhibited */
4924 if (!(sc->gfp_mask & __GFP_IO) &&
4925 (folio_test_dirty(folio) ||
4926 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4929 /* raced with release_pages() */
4930 if (!folio_try_get(folio))
4933 /* raced with another isolation */
4934 if (!folio_test_clear_lru(folio)) {
4939 /* see the comment on MAX_NR_TIERS */
4940 if (!folio_test_referenced(folio))
4941 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4943 /* for shrink_folio_list() */
4944 folio_clear_reclaim(folio);
4945 folio_clear_referenced(folio);
4947 success = lru_gen_del_folio(lruvec, folio, true);
4948 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4953 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4954 int type, int tier, struct list_head *list)
4957 enum vm_event_item item;
4961 int remaining = MAX_LRU_BATCH;
4962 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4963 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4965 VM_WARN_ON_ONCE(!list_empty(list));
4967 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4970 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4972 for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4975 struct list_head *head = &lrugen->folios[gen][type][zone];
4977 while (!list_empty(head)) {
4978 struct folio *folio = lru_to_folio(head);
4979 int delta = folio_nr_pages(folio);
4981 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4982 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4983 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4984 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4988 if (sort_folio(lruvec, folio, tier))
4990 else if (isolate_folio(lruvec, folio, sc)) {
4991 list_add(&folio->lru, list);
4994 list_move(&folio->lru, &moved);
4998 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
5003 list_splice(&moved, head);
5004 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
5007 if (!remaining || isolated >= MIN_LRU_BATCH)
5011 item = PGSCAN_KSWAPD + reclaimer_offset();
5012 if (!cgroup_reclaim(sc)) {
5013 __count_vm_events(item, isolated);
5014 __count_vm_events(PGREFILL, sorted);
5016 __count_memcg_events(memcg, item, isolated);
5017 __count_memcg_events(memcg, PGREFILL, sorted);
5018 __count_vm_events(PGSCAN_ANON + type, isolated);
5021 * There might not be eligible folios due to reclaim_idx. Check the
5022 * remaining to prevent livelock if it's not making progress.
5024 return isolated || !remaining ? scanned : 0;
5027 static int get_tier_idx(struct lruvec *lruvec, int type)
5030 struct ctrl_pos sp, pv;
5033 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5034 * This value is chosen because any other tier would have at least twice
5035 * as many refaults as the first tier.
5037 read_ctrl_pos(lruvec, type, 0, 1, &sp);
5038 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5039 read_ctrl_pos(lruvec, type, tier, 2, &pv);
5040 if (!positive_ctrl_err(&sp, &pv))
5047 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5050 struct ctrl_pos sp, pv;
5051 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5054 * Compare the first tier of anon with that of file to determine which
5055 * type to scan. Also need to compare other tiers of the selected type
5056 * with the first tier of the other type to determine the last tier (of
5057 * the selected type) to evict.
5059 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5060 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5061 type = positive_ctrl_err(&sp, &pv);
5063 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5064 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5065 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5066 if (!positive_ctrl_err(&sp, &pv))
5070 *tier_idx = tier - 1;
5075 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5076 int *type_scanned, struct list_head *list)
5082 DEFINE_MIN_SEQ(lruvec);
5085 * Try to make the obvious choice first. When anon and file are both
5086 * available from the same generation, interpret swappiness 1 as file
5087 * first and 200 as anon first.
5090 type = LRU_GEN_FILE;
5091 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5092 type = LRU_GEN_ANON;
5093 else if (swappiness == 1)
5094 type = LRU_GEN_FILE;
5095 else if (swappiness == 200)
5096 type = LRU_GEN_ANON;
5098 type = get_type_to_scan(lruvec, swappiness, &tier);
5100 for (i = !swappiness; i < ANON_AND_FILE; i++) {
5102 tier = get_tier_idx(lruvec, type);
5104 scanned = scan_folios(lruvec, sc, type, tier, list);
5112 *type_scanned = type;
5117 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5124 struct folio *folio;
5126 enum vm_event_item item;
5127 struct reclaim_stat stat;
5128 struct lru_gen_mm_walk *walk;
5129 bool skip_retry = false;
5130 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5131 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5133 spin_lock_irq(&lruvec->lru_lock);
5135 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5137 scanned += try_to_inc_min_seq(lruvec, swappiness);
5139 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5142 spin_unlock_irq(&lruvec->lru_lock);
5144 if (list_empty(&list))
5147 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5148 sc->nr_reclaimed += reclaimed;
5150 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5151 if (!folio_evictable(folio)) {
5152 list_del(&folio->lru);
5153 folio_putback_lru(folio);
5157 if (folio_test_reclaim(folio) &&
5158 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5159 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5160 if (folio_test_workingset(folio))
5161 folio_set_referenced(folio);
5165 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5166 folio_mapped(folio) || folio_test_locked(folio) ||
5167 folio_test_dirty(folio) || folio_test_writeback(folio)) {
5168 /* don't add rejected folios to the oldest generation */
5169 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5174 /* retry folios that may have missed folio_rotate_reclaimable() */
5175 list_move(&folio->lru, &clean);
5176 sc->nr_scanned -= folio_nr_pages(folio);
5179 spin_lock_irq(&lruvec->lru_lock);
5181 move_folios_to_lru(lruvec, &list);
5183 walk = current->reclaim_state->mm_walk;
5184 if (walk && walk->batched)
5185 reset_batch_size(lruvec, walk);
5187 item = PGSTEAL_KSWAPD + reclaimer_offset();
5188 if (!cgroup_reclaim(sc))
5189 __count_vm_events(item, reclaimed);
5190 __count_memcg_events(memcg, item, reclaimed);
5191 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
5193 spin_unlock_irq(&lruvec->lru_lock);
5195 mem_cgroup_uncharge_list(&list);
5196 free_unref_page_list(&list);
5198 INIT_LIST_HEAD(&list);
5199 list_splice_init(&clean, &list);
5201 if (!list_empty(&list)) {
5209 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5210 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5212 int gen, type, zone;
5213 unsigned long old = 0;
5214 unsigned long young = 0;
5215 unsigned long total = 0;
5216 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5217 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5218 DEFINE_MIN_SEQ(lruvec);
5220 /* whether this lruvec is completely out of cold folios */
5221 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5226 for (type = !can_swap; type < ANON_AND_FILE; type++) {
5229 for (seq = min_seq[type]; seq <= max_seq; seq++) {
5230 unsigned long size = 0;
5232 gen = lru_gen_from_seq(seq);
5234 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5235 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5240 else if (seq + MIN_NR_GENS == max_seq)
5245 /* try to scrape all its memory if this memcg was deleted */
5246 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
5249 * The aging tries to be lazy to reduce the overhead, while the eviction
5250 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5251 * ideal number of generations is MIN_NR_GENS+1.
5253 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5257 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5258 * of the total number of pages for each generation. A reasonable range
5259 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5260 * aging cares about the upper bound of hot pages, while the eviction
5261 * cares about the lower bound of cold pages.
5263 if (young * MIN_NR_GENS > total)
5265 if (old * (MIN_NR_GENS + 2) < total)
5272 * For future optimizations:
5273 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5276 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5278 unsigned long nr_to_scan;
5279 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5280 DEFINE_MAX_SEQ(lruvec);
5282 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5285 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5288 /* skip the aging path at the default priority */
5289 if (sc->priority == DEF_PRIORITY)
5292 /* skip this lruvec as it's low on cold folios */
5293 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5296 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
5298 /* don't abort memcg reclaim to ensure fairness */
5299 if (!global_reclaim(sc))
5302 return max(sc->nr_to_reclaim, compact_gap(sc->order));
5305 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5308 unsigned long scanned = 0;
5309 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5310 int swappiness = get_swappiness(lruvec, sc);
5312 /* clean file folios are more likely to exist */
5313 if (swappiness && !(sc->gfp_mask & __GFP_IO))
5319 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5320 if (nr_to_scan <= 0)
5323 delta = evict_folios(lruvec, sc, swappiness);
5328 if (scanned >= nr_to_scan)
5331 if (sc->nr_reclaimed >= nr_to_reclaim)
5337 /* whether try_to_inc_max_seq() was successful */
5338 return nr_to_scan < 0;
5341 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5344 unsigned long scanned = sc->nr_scanned;
5345 unsigned long reclaimed = sc->nr_reclaimed;
5346 int seg = lru_gen_memcg_seg(lruvec);
5347 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5348 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5350 /* see the comment on MEMCG_NR_GENS */
5351 if (!lruvec_is_sizable(lruvec, sc))
5352 return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5354 mem_cgroup_calculate_protection(NULL, memcg);
5356 if (mem_cgroup_below_min(NULL, memcg))
5357 return MEMCG_LRU_YOUNG;
5359 if (mem_cgroup_below_low(NULL, memcg)) {
5360 /* see the comment on MEMCG_NR_GENS */
5361 if (seg != MEMCG_LRU_TAIL)
5362 return MEMCG_LRU_TAIL;
5364 memcg_memory_event(memcg, MEMCG_LOW);
5367 success = try_to_shrink_lruvec(lruvec, sc);
5369 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5372 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5373 sc->nr_reclaimed - reclaimed);
5375 flush_reclaim_state(sc);
5377 return success ? MEMCG_LRU_YOUNG : 0;
5382 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5388 struct lruvec *lruvec;
5389 struct lru_gen_folio *lrugen;
5390 struct mem_cgroup *memcg;
5391 const struct hlist_nulls_node *pos;
5392 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5394 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5398 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5402 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5404 lru_gen_rotate_memcg(lruvec, op);
5406 mem_cgroup_put(memcg);
5408 lruvec = container_of(lrugen, struct lruvec, lrugen);
5409 memcg = lruvec_memcg(lruvec);
5411 if (!mem_cgroup_tryget(memcg)) {
5419 op = shrink_one(lruvec, sc);
5423 if (sc->nr_reclaimed >= nr_to_reclaim)
5430 lru_gen_rotate_memcg(lruvec, op);
5432 mem_cgroup_put(memcg);
5434 if (sc->nr_reclaimed >= nr_to_reclaim)
5437 /* restart if raced with lru_gen_rotate_memcg() */
5438 if (gen != get_nulls_value(pos))
5441 /* try the rest of the bins of the current generation */
5442 bin = get_memcg_bin(bin + 1);
5443 if (bin != first_bin)
5447 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5449 struct blk_plug plug;
5451 VM_WARN_ON_ONCE(global_reclaim(sc));
5452 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5456 blk_start_plug(&plug);
5458 set_mm_walk(NULL, sc->proactive);
5460 if (try_to_shrink_lruvec(lruvec, sc))
5461 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5465 blk_finish_plug(&plug);
5468 #else /* !CONFIG_MEMCG */
5470 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5475 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5482 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5485 unsigned long reclaimable;
5486 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5488 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5491 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
5492 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
5493 * estimated reclaimed_to_scanned_ratio = inactive / total.
5495 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5496 if (get_swappiness(lruvec, sc))
5497 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5499 reclaimable /= MEMCG_NR_GENS;
5501 /* round down reclaimable and round up sc->nr_to_reclaim */
5502 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5504 sc->priority = clamp(priority, 0, DEF_PRIORITY);
5507 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5509 struct blk_plug plug;
5510 unsigned long reclaimed = sc->nr_reclaimed;
5512 VM_WARN_ON_ONCE(!global_reclaim(sc));
5515 * Unmapped clean folios are already prioritized. Scanning for more of
5516 * them is likely futile and can cause high reclaim latency when there
5517 * is a large number of memcgs.
5519 if (!sc->may_writepage || !sc->may_unmap)
5524 blk_start_plug(&plug);
5526 set_mm_walk(pgdat, sc->proactive);
5528 set_initial_priority(pgdat, sc);
5530 if (current_is_kswapd())
5531 sc->nr_reclaimed = 0;
5533 if (mem_cgroup_disabled())
5534 shrink_one(&pgdat->__lruvec, sc);
5536 shrink_many(pgdat, sc);
5538 if (current_is_kswapd())
5539 sc->nr_reclaimed += reclaimed;
5543 blk_finish_plug(&plug);
5545 /* kswapd should never fail */
5546 pgdat->kswapd_failures = 0;
5549 /******************************************************************************
5551 ******************************************************************************/
5553 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5555 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5557 if (lrugen->enabled) {
5560 for_each_evictable_lru(lru) {
5561 if (!list_empty(&lruvec->lists[lru]))
5565 int gen, type, zone;
5567 for_each_gen_type_zone(gen, type, zone) {
5568 if (!list_empty(&lrugen->folios[gen][type][zone]))
5576 static bool fill_evictable(struct lruvec *lruvec)
5579 int remaining = MAX_LRU_BATCH;
5581 for_each_evictable_lru(lru) {
5582 int type = is_file_lru(lru);
5583 bool active = is_active_lru(lru);
5584 struct list_head *head = &lruvec->lists[lru];
5586 while (!list_empty(head)) {
5588 struct folio *folio = lru_to_folio(head);
5590 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5591 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5592 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5593 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5595 lruvec_del_folio(lruvec, folio);
5596 success = lru_gen_add_folio(lruvec, folio, false);
5597 VM_WARN_ON_ONCE(!success);
5607 static bool drain_evictable(struct lruvec *lruvec)
5609 int gen, type, zone;
5610 int remaining = MAX_LRU_BATCH;
5612 for_each_gen_type_zone(gen, type, zone) {
5613 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5615 while (!list_empty(head)) {
5617 struct folio *folio = lru_to_folio(head);
5619 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5620 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5621 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5622 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5624 success = lru_gen_del_folio(lruvec, folio, false);
5625 VM_WARN_ON_ONCE(!success);
5626 lruvec_add_folio(lruvec, folio);
5636 static void lru_gen_change_state(bool enabled)
5638 static DEFINE_MUTEX(state_mutex);
5640 struct mem_cgroup *memcg;
5645 mutex_lock(&state_mutex);
5647 if (enabled == lru_gen_enabled())
5651 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5653 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5655 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5659 for_each_node(nid) {
5660 struct lruvec *lruvec = get_lruvec(memcg, nid);
5662 spin_lock_irq(&lruvec->lru_lock);
5664 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5665 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5667 lruvec->lrugen.enabled = enabled;
5669 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5670 spin_unlock_irq(&lruvec->lru_lock);
5672 spin_lock_irq(&lruvec->lru_lock);
5675 spin_unlock_irq(&lruvec->lru_lock);
5679 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5681 mutex_unlock(&state_mutex);
5687 /******************************************************************************
5689 ******************************************************************************/
5691 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5693 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5696 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5697 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5698 const char *buf, size_t len)
5702 if (kstrtouint(buf, 0, &msecs))
5705 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5710 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5712 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5714 unsigned int caps = 0;
5716 if (get_cap(LRU_GEN_CORE))
5717 caps |= BIT(LRU_GEN_CORE);
5719 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5720 caps |= BIT(LRU_GEN_MM_WALK);
5722 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5723 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5725 return sysfs_emit(buf, "0x%04x\n", caps);
5728 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5729 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5730 const char *buf, size_t len)
5735 if (tolower(*buf) == 'n')
5737 else if (tolower(*buf) == 'y')
5739 else if (kstrtouint(buf, 0, &caps))
5742 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5743 bool enabled = caps & BIT(i);
5745 if (i == LRU_GEN_CORE)
5746 lru_gen_change_state(enabled);
5748 static_branch_enable(&lru_gen_caps[i]);
5750 static_branch_disable(&lru_gen_caps[i]);
5756 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5758 static struct attribute *lru_gen_attrs[] = {
5759 &lru_gen_min_ttl_attr.attr,
5760 &lru_gen_enabled_attr.attr,
5764 static const struct attribute_group lru_gen_attr_group = {
5766 .attrs = lru_gen_attrs,
5769 /******************************************************************************
5771 ******************************************************************************/
5773 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5775 struct mem_cgroup *memcg;
5776 loff_t nr_to_skip = *pos;
5778 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5780 return ERR_PTR(-ENOMEM);
5782 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5786 for_each_node_state(nid, N_MEMORY) {
5788 return get_lruvec(memcg, nid);
5790 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5795 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5797 if (!IS_ERR_OR_NULL(v))
5798 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5804 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5806 int nid = lruvec_pgdat(v)->node_id;
5807 struct mem_cgroup *memcg = lruvec_memcg(v);
5811 nid = next_memory_node(nid);
5812 if (nid == MAX_NUMNODES) {
5813 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5817 nid = first_memory_node;
5820 return get_lruvec(memcg, nid);
5823 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5824 unsigned long max_seq, unsigned long *min_seq,
5829 int hist = lru_hist_from_seq(seq);
5830 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5832 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5833 seq_printf(m, " %10d", tier);
5834 for (type = 0; type < ANON_AND_FILE; type++) {
5835 const char *s = " ";
5836 unsigned long n[3] = {};
5838 if (seq == max_seq) {
5840 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5841 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5842 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5844 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5845 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5847 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5850 for (i = 0; i < 3; i++)
5851 seq_printf(m, " %10lu%c", n[i], s[i]);
5857 for (i = 0; i < NR_MM_STATS; i++) {
5858 const char *s = " ";
5859 unsigned long n = 0;
5861 if (seq == max_seq && NR_HIST_GENS == 1) {
5863 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5864 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5866 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5869 seq_printf(m, " %10lu%c", n, s[i]);
5874 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5875 static int lru_gen_seq_show(struct seq_file *m, void *v)
5878 bool full = !debugfs_real_fops(m->file)->write;
5879 struct lruvec *lruvec = v;
5880 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5881 int nid = lruvec_pgdat(lruvec)->node_id;
5882 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5883 DEFINE_MAX_SEQ(lruvec);
5884 DEFINE_MIN_SEQ(lruvec);
5886 if (nid == first_memory_node) {
5887 const char *path = memcg ? m->private : "";
5891 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5893 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5896 seq_printf(m, " node %5d\n", nid);
5899 seq = min_seq[LRU_GEN_ANON];
5900 else if (max_seq >= MAX_NR_GENS)
5901 seq = max_seq - MAX_NR_GENS + 1;
5905 for (; seq <= max_seq; seq++) {
5907 int gen = lru_gen_from_seq(seq);
5908 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5910 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5912 for (type = 0; type < ANON_AND_FILE; type++) {
5913 unsigned long size = 0;
5914 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5916 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5917 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5919 seq_printf(m, " %10lu%c", size, mark);
5925 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5931 static const struct seq_operations lru_gen_seq_ops = {
5932 .start = lru_gen_seq_start,
5933 .stop = lru_gen_seq_stop,
5934 .next = lru_gen_seq_next,
5935 .show = lru_gen_seq_show,
5938 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5939 bool can_swap, bool force_scan)
5941 DEFINE_MAX_SEQ(lruvec);
5942 DEFINE_MIN_SEQ(lruvec);
5950 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5953 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5958 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5959 int swappiness, unsigned long nr_to_reclaim)
5961 DEFINE_MAX_SEQ(lruvec);
5963 if (seq + MIN_NR_GENS > max_seq)
5966 sc->nr_reclaimed = 0;
5968 while (!signal_pending(current)) {
5969 DEFINE_MIN_SEQ(lruvec);
5971 if (seq < min_seq[!swappiness])
5974 if (sc->nr_reclaimed >= nr_to_reclaim)
5977 if (!evict_folios(lruvec, sc, swappiness))
5986 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5987 struct scan_control *sc, int swappiness, unsigned long opt)
5989 struct lruvec *lruvec;
5991 struct mem_cgroup *memcg = NULL;
5993 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5996 if (!mem_cgroup_disabled()) {
5999 memcg = mem_cgroup_from_id(memcg_id);
6000 if (!mem_cgroup_tryget(memcg))
6009 if (memcg_id != mem_cgroup_id(memcg))
6012 lruvec = get_lruvec(memcg, nid);
6015 swappiness = get_swappiness(lruvec, sc);
6016 else if (swappiness > 200)
6021 err = run_aging(lruvec, seq, sc, swappiness, opt);
6024 err = run_eviction(lruvec, seq, sc, swappiness, opt);
6028 mem_cgroup_put(memcg);
6033 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
6034 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6035 size_t len, loff_t *pos)
6040 struct blk_plug plug;
6042 struct scan_control sc = {
6043 .may_writepage = true,
6046 .reclaim_idx = MAX_NR_ZONES - 1,
6047 .gfp_mask = GFP_KERNEL,
6050 buf = kvmalloc(len + 1, GFP_KERNEL);
6054 if (copy_from_user(buf, src, len)) {
6059 set_task_reclaim_state(current, &sc.reclaim_state);
6060 flags = memalloc_noreclaim_save();
6061 blk_start_plug(&plug);
6062 if (!set_mm_walk(NULL, true)) {
6070 while ((cur = strsep(&next, ",;\n"))) {
6074 unsigned int memcg_id;
6077 unsigned int swappiness = -1;
6078 unsigned long opt = -1;
6080 cur = skip_spaces(cur);
6084 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6085 &seq, &end, &swappiness, &end, &opt, &end);
6086 if (n < 4 || cur[end]) {
6091 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6097 blk_finish_plug(&plug);
6098 memalloc_noreclaim_restore(flags);
6099 set_task_reclaim_state(current, NULL);
6106 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6108 return seq_open(file, &lru_gen_seq_ops);
6111 static const struct file_operations lru_gen_rw_fops = {
6112 .open = lru_gen_seq_open,
6114 .write = lru_gen_seq_write,
6115 .llseek = seq_lseek,
6116 .release = seq_release,
6119 static const struct file_operations lru_gen_ro_fops = {
6120 .open = lru_gen_seq_open,
6122 .llseek = seq_lseek,
6123 .release = seq_release,
6126 /******************************************************************************
6128 ******************************************************************************/
6130 void lru_gen_init_lruvec(struct lruvec *lruvec)
6133 int gen, type, zone;
6134 struct lru_gen_folio *lrugen = &lruvec->lrugen;
6136 lrugen->max_seq = MIN_NR_GENS + 1;
6137 lrugen->enabled = lru_gen_enabled();
6139 for (i = 0; i <= MIN_NR_GENS + 1; i++)
6140 lrugen->timestamps[i] = jiffies;
6142 for_each_gen_type_zone(gen, type, zone)
6143 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6145 lruvec->mm_state.seq = MIN_NR_GENS;
6150 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6154 spin_lock_init(&pgdat->memcg_lru.lock);
6156 for (i = 0; i < MEMCG_NR_GENS; i++) {
6157 for (j = 0; j < MEMCG_NR_BINS; j++)
6158 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6162 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6164 INIT_LIST_HEAD(&memcg->mm_list.fifo);
6165 spin_lock_init(&memcg->mm_list.lock);
6168 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6173 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6175 for_each_node(nid) {
6176 struct lruvec *lruvec = get_lruvec(memcg, nid);
6178 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6179 sizeof(lruvec->lrugen.nr_pages)));
6181 lruvec->lrugen.list.next = LIST_POISON1;
6183 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6184 bitmap_free(lruvec->mm_state.filters[i]);
6185 lruvec->mm_state.filters[i] = NULL;
6190 #endif /* CONFIG_MEMCG */
6192 static int __init init_lru_gen(void)
6194 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6195 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6197 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6198 pr_err("lru_gen: failed to create sysfs group\n");
6200 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6201 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6205 late_initcall(init_lru_gen);
6207 #else /* !CONFIG_LRU_GEN */
6209 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6213 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6217 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6221 #endif /* CONFIG_LRU_GEN */
6223 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6225 unsigned long nr[NR_LRU_LISTS];
6226 unsigned long targets[NR_LRU_LISTS];
6227 unsigned long nr_to_scan;
6229 unsigned long nr_reclaimed = 0;
6230 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6231 bool proportional_reclaim;
6232 struct blk_plug plug;
6234 if (lru_gen_enabled() && !global_reclaim(sc)) {
6235 lru_gen_shrink_lruvec(lruvec, sc);
6239 get_scan_count(lruvec, sc, nr);
6241 /* Record the original scan target for proportional adjustments later */
6242 memcpy(targets, nr, sizeof(nr));
6245 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6246 * event that can occur when there is little memory pressure e.g.
6247 * multiple streaming readers/writers. Hence, we do not abort scanning
6248 * when the requested number of pages are reclaimed when scanning at
6249 * DEF_PRIORITY on the assumption that the fact we are direct
6250 * reclaiming implies that kswapd is not keeping up and it is best to
6251 * do a batch of work at once. For memcg reclaim one check is made to
6252 * abort proportional reclaim if either the file or anon lru has already
6253 * dropped to zero at the first pass.
6255 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6256 sc->priority == DEF_PRIORITY);
6258 blk_start_plug(&plug);
6259 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6260 nr[LRU_INACTIVE_FILE]) {
6261 unsigned long nr_anon, nr_file, percentage;
6262 unsigned long nr_scanned;
6264 for_each_evictable_lru(lru) {
6266 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6267 nr[lru] -= nr_to_scan;
6269 nr_reclaimed += shrink_list(lru, nr_to_scan,
6276 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6280 * For kswapd and memcg, reclaim at least the number of pages
6281 * requested. Ensure that the anon and file LRUs are scanned
6282 * proportionally what was requested by get_scan_count(). We
6283 * stop reclaiming one LRU and reduce the amount scanning
6284 * proportional to the original scan target.
6286 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6287 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6290 * It's just vindictive to attack the larger once the smaller
6291 * has gone to zero. And given the way we stop scanning the
6292 * smaller below, this makes sure that we only make one nudge
6293 * towards proportionality once we've got nr_to_reclaim.
6295 if (!nr_file || !nr_anon)
6298 if (nr_file > nr_anon) {
6299 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6300 targets[LRU_ACTIVE_ANON] + 1;
6302 percentage = nr_anon * 100 / scan_target;
6304 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6305 targets[LRU_ACTIVE_FILE] + 1;
6307 percentage = nr_file * 100 / scan_target;
6310 /* Stop scanning the smaller of the LRU */
6312 nr[lru + LRU_ACTIVE] = 0;
6315 * Recalculate the other LRU scan count based on its original
6316 * scan target and the percentage scanning already complete
6318 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6319 nr_scanned = targets[lru] - nr[lru];
6320 nr[lru] = targets[lru] * (100 - percentage) / 100;
6321 nr[lru] -= min(nr[lru], nr_scanned);
6324 nr_scanned = targets[lru] - nr[lru];
6325 nr[lru] = targets[lru] * (100 - percentage) / 100;
6326 nr[lru] -= min(nr[lru], nr_scanned);
6328 blk_finish_plug(&plug);
6329 sc->nr_reclaimed += nr_reclaimed;
6332 * Even if we did not try to evict anon pages at all, we want to
6333 * rebalance the anon lru active/inactive ratio.
6335 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6336 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6337 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6338 sc, LRU_ACTIVE_ANON);
6341 /* Use reclaim/compaction for costly allocs or under memory pressure */
6342 static bool in_reclaim_compaction(struct scan_control *sc)
6344 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6345 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6346 sc->priority < DEF_PRIORITY - 2))
6353 * Reclaim/compaction is used for high-order allocation requests. It reclaims
6354 * order-0 pages before compacting the zone. should_continue_reclaim() returns
6355 * true if more pages should be reclaimed such that when the page allocator
6356 * calls try_to_compact_pages() that it will have enough free pages to succeed.
6357 * It will give up earlier than that if there is difficulty reclaiming pages.
6359 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6360 unsigned long nr_reclaimed,
6361 struct scan_control *sc)
6363 unsigned long pages_for_compaction;
6364 unsigned long inactive_lru_pages;
6367 /* If not in reclaim/compaction mode, stop */
6368 if (!in_reclaim_compaction(sc))
6372 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6373 * number of pages that were scanned. This will return to the caller
6374 * with the risk reclaim/compaction and the resulting allocation attempt
6375 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6376 * allocations through requiring that the full LRU list has been scanned
6377 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6378 * scan, but that approximation was wrong, and there were corner cases
6379 * where always a non-zero amount of pages were scanned.
6384 /* If compaction would go ahead or the allocation would succeed, stop */
6385 for (z = 0; z <= sc->reclaim_idx; z++) {
6386 struct zone *zone = &pgdat->node_zones[z];
6387 if (!managed_zone(zone))
6390 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6391 case COMPACT_SUCCESS:
6392 case COMPACT_CONTINUE:
6395 /* check next zone */
6401 * If we have not reclaimed enough pages for compaction and the
6402 * inactive lists are large enough, continue reclaiming
6404 pages_for_compaction = compact_gap(sc->order);
6405 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6406 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6407 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6409 return inactive_lru_pages > pages_for_compaction;
6412 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6414 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6415 struct mem_cgroup *memcg;
6417 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6419 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6420 unsigned long reclaimed;
6421 unsigned long scanned;
6424 * This loop can become CPU-bound when target memcgs
6425 * aren't eligible for reclaim - either because they
6426 * don't have any reclaimable pages, or because their
6427 * memory is explicitly protected. Avoid soft lockups.
6431 mem_cgroup_calculate_protection(target_memcg, memcg);
6433 if (mem_cgroup_below_min(target_memcg, memcg)) {
6436 * If there is no reclaimable memory, OOM.
6439 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
6442 * Respect the protection only as long as
6443 * there is an unprotected supply
6444 * of reclaimable memory from other cgroups.
6446 if (!sc->memcg_low_reclaim) {
6447 sc->memcg_low_skipped = 1;
6450 memcg_memory_event(memcg, MEMCG_LOW);
6453 reclaimed = sc->nr_reclaimed;
6454 scanned = sc->nr_scanned;
6456 shrink_lruvec(lruvec, sc);
6458 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6461 /* Record the group's reclaim efficiency */
6463 vmpressure(sc->gfp_mask, memcg, false,
6464 sc->nr_scanned - scanned,
6465 sc->nr_reclaimed - reclaimed);
6467 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6470 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6472 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6473 struct lruvec *target_lruvec;
6474 bool reclaimable = false;
6476 if (lru_gen_enabled() && global_reclaim(sc)) {
6477 lru_gen_shrink_node(pgdat, sc);
6481 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6484 memset(&sc->nr, 0, sizeof(sc->nr));
6486 nr_reclaimed = sc->nr_reclaimed;
6487 nr_scanned = sc->nr_scanned;
6489 prepare_scan_count(pgdat, sc);
6491 shrink_node_memcgs(pgdat, sc);
6493 flush_reclaim_state(sc);
6495 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6497 /* Record the subtree's reclaim efficiency */
6499 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6500 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6502 if (nr_node_reclaimed)
6505 if (current_is_kswapd()) {
6507 * If reclaim is isolating dirty pages under writeback,
6508 * it implies that the long-lived page allocation rate
6509 * is exceeding the page laundering rate. Either the
6510 * global limits are not being effective at throttling
6511 * processes due to the page distribution throughout
6512 * zones or there is heavy usage of a slow backing
6513 * device. The only option is to throttle from reclaim
6514 * context which is not ideal as there is no guarantee
6515 * the dirtying process is throttled in the same way
6516 * balance_dirty_pages() manages.
6518 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6519 * count the number of pages under pages flagged for
6520 * immediate reclaim and stall if any are encountered
6521 * in the nr_immediate check below.
6523 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6524 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6526 /* Allow kswapd to start writing pages during reclaim.*/
6527 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6528 set_bit(PGDAT_DIRTY, &pgdat->flags);
6531 * If kswapd scans pages marked for immediate
6532 * reclaim and under writeback (nr_immediate), it
6533 * implies that pages are cycling through the LRU
6534 * faster than they are written so forcibly stall
6535 * until some pages complete writeback.
6537 if (sc->nr.immediate)
6538 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6542 * Tag a node/memcg as congested if all the dirty pages were marked
6543 * for writeback and immediate reclaim (counted in nr.congested).
6545 * Legacy memcg will stall in page writeback so avoid forcibly
6546 * stalling in reclaim_throttle().
6548 if ((current_is_kswapd() ||
6549 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6550 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6551 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6554 * Stall direct reclaim for IO completions if the lruvec is
6555 * node is congested. Allow kswapd to continue until it
6556 * starts encountering unqueued dirty pages or cycling through
6557 * the LRU too quickly.
6559 if (!current_is_kswapd() && current_may_throttle() &&
6560 !sc->hibernation_mode &&
6561 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6562 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6564 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6568 * Kswapd gives up on balancing particular nodes after too
6569 * many failures to reclaim anything from them and goes to
6570 * sleep. On reclaim progress, reset the failure counter. A
6571 * successful direct reclaim run will revive a dormant kswapd.
6574 pgdat->kswapd_failures = 0;
6578 * Returns true if compaction should go ahead for a costly-order request, or
6579 * the allocation would already succeed without compaction. Return false if we
6580 * should reclaim first.
6582 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6584 unsigned long watermark;
6585 enum compact_result suitable;
6587 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6588 if (suitable == COMPACT_SUCCESS)
6589 /* Allocation should succeed already. Don't reclaim. */
6591 if (suitable == COMPACT_SKIPPED)
6592 /* Compaction cannot yet proceed. Do reclaim. */
6596 * Compaction is already possible, but it takes time to run and there
6597 * are potentially other callers using the pages just freed. So proceed
6598 * with reclaim to make a buffer of free pages available to give
6599 * compaction a reasonable chance of completing and allocating the page.
6600 * Note that we won't actually reclaim the whole buffer in one attempt
6601 * as the target watermark in should_continue_reclaim() is lower. But if
6602 * we are already above the high+gap watermark, don't reclaim at all.
6604 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6606 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6609 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6612 * If reclaim is making progress greater than 12% efficiency then
6613 * wake all the NOPROGRESS throttled tasks.
6615 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6616 wait_queue_head_t *wqh;
6618 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6619 if (waitqueue_active(wqh))
6626 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6627 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6628 * under writeback and marked for immediate reclaim at the tail of the
6631 if (current_is_kswapd() || cgroup_reclaim(sc))
6634 /* Throttle if making no progress at high prioities. */
6635 if (sc->priority == 1 && !sc->nr_reclaimed)
6636 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6640 * This is the direct reclaim path, for page-allocating processes. We only
6641 * try to reclaim pages from zones which will satisfy the caller's allocation
6644 * If a zone is deemed to be full of pinned pages then just give it a light
6645 * scan then give up on it.
6647 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6651 unsigned long nr_soft_reclaimed;
6652 unsigned long nr_soft_scanned;
6654 pg_data_t *last_pgdat = NULL;
6655 pg_data_t *first_pgdat = NULL;
6658 * If the number of buffer_heads in the machine exceeds the maximum
6659 * allowed level, force direct reclaim to scan the highmem zone as
6660 * highmem pages could be pinning lowmem pages storing buffer_heads
6662 orig_mask = sc->gfp_mask;
6663 if (buffer_heads_over_limit) {
6664 sc->gfp_mask |= __GFP_HIGHMEM;
6665 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6668 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6669 sc->reclaim_idx, sc->nodemask) {
6671 * Take care memory controller reclaiming has small influence
6674 if (!cgroup_reclaim(sc)) {
6675 if (!cpuset_zone_allowed(zone,
6676 GFP_KERNEL | __GFP_HARDWALL))
6680 * If we already have plenty of memory free for
6681 * compaction in this zone, don't free any more.
6682 * Even though compaction is invoked for any
6683 * non-zero order, only frequent costly order
6684 * reclamation is disruptive enough to become a
6685 * noticeable problem, like transparent huge
6688 if (IS_ENABLED(CONFIG_COMPACTION) &&
6689 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6690 compaction_ready(zone, sc)) {
6691 sc->compaction_ready = true;
6696 * Shrink each node in the zonelist once. If the
6697 * zonelist is ordered by zone (not the default) then a
6698 * node may be shrunk multiple times but in that case
6699 * the user prefers lower zones being preserved.
6701 if (zone->zone_pgdat == last_pgdat)
6705 * This steals pages from memory cgroups over softlimit
6706 * and returns the number of reclaimed pages and
6707 * scanned pages. This works for global memory pressure
6708 * and balancing, not for a memcg's limit.
6710 nr_soft_scanned = 0;
6711 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6712 sc->order, sc->gfp_mask,
6714 sc->nr_reclaimed += nr_soft_reclaimed;
6715 sc->nr_scanned += nr_soft_scanned;
6716 /* need some check for avoid more shrink_zone() */
6720 first_pgdat = zone->zone_pgdat;
6722 /* See comment about same check for global reclaim above */
6723 if (zone->zone_pgdat == last_pgdat)
6725 last_pgdat = zone->zone_pgdat;
6726 shrink_node(zone->zone_pgdat, sc);
6730 consider_reclaim_throttle(first_pgdat, sc);
6733 * Restore to original mask to avoid the impact on the caller if we
6734 * promoted it to __GFP_HIGHMEM.
6736 sc->gfp_mask = orig_mask;
6739 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6741 struct lruvec *target_lruvec;
6742 unsigned long refaults;
6744 if (lru_gen_enabled())
6747 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6748 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6749 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6750 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6751 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6755 * This is the main entry point to direct page reclaim.
6757 * If a full scan of the inactive list fails to free enough memory then we
6758 * are "out of memory" and something needs to be killed.
6760 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6761 * high - the zone may be full of dirty or under-writeback pages, which this
6762 * caller can't do much about. We kick the writeback threads and take explicit
6763 * naps in the hope that some of these pages can be written. But if the
6764 * allocating task holds filesystem locks which prevent writeout this might not
6765 * work, and the allocation attempt will fail.
6767 * returns: 0, if no pages reclaimed
6768 * else, the number of pages reclaimed
6770 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6771 struct scan_control *sc)
6773 int initial_priority = sc->priority;
6774 pg_data_t *last_pgdat;
6778 delayacct_freepages_start();
6780 if (!cgroup_reclaim(sc))
6781 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6785 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6788 shrink_zones(zonelist, sc);
6790 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6793 if (sc->compaction_ready)
6797 * If we're getting trouble reclaiming, start doing
6798 * writepage even in laptop mode.
6800 if (sc->priority < DEF_PRIORITY - 2)
6801 sc->may_writepage = 1;
6802 } while (--sc->priority >= 0);
6805 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6807 if (zone->zone_pgdat == last_pgdat)
6809 last_pgdat = zone->zone_pgdat;
6811 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6813 if (cgroup_reclaim(sc)) {
6814 struct lruvec *lruvec;
6816 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6818 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6822 delayacct_freepages_end();
6824 if (sc->nr_reclaimed)
6825 return sc->nr_reclaimed;
6827 /* Aborted reclaim to try compaction? don't OOM, then */
6828 if (sc->compaction_ready)
6832 * We make inactive:active ratio decisions based on the node's
6833 * composition of memory, but a restrictive reclaim_idx or a
6834 * memory.low cgroup setting can exempt large amounts of
6835 * memory from reclaim. Neither of which are very common, so
6836 * instead of doing costly eligibility calculations of the
6837 * entire cgroup subtree up front, we assume the estimates are
6838 * good, and retry with forcible deactivation if that fails.
6840 if (sc->skipped_deactivate) {
6841 sc->priority = initial_priority;
6842 sc->force_deactivate = 1;
6843 sc->skipped_deactivate = 0;
6847 /* Untapped cgroup reserves? Don't OOM, retry. */
6848 if (sc->memcg_low_skipped) {
6849 sc->priority = initial_priority;
6850 sc->force_deactivate = 0;
6851 sc->memcg_low_reclaim = 1;
6852 sc->memcg_low_skipped = 0;
6859 static bool allow_direct_reclaim(pg_data_t *pgdat)
6862 unsigned long pfmemalloc_reserve = 0;
6863 unsigned long free_pages = 0;
6867 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6870 for (i = 0; i <= ZONE_NORMAL; i++) {
6871 zone = &pgdat->node_zones[i];
6872 if (!managed_zone(zone))
6875 if (!zone_reclaimable_pages(zone))
6878 pfmemalloc_reserve += min_wmark_pages(zone);
6879 free_pages += zone_page_state(zone, NR_FREE_PAGES);
6882 /* If there are no reserves (unexpected config) then do not throttle */
6883 if (!pfmemalloc_reserve)
6886 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6888 /* kswapd must be awake if processes are being throttled */
6889 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6890 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6891 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6893 wake_up_interruptible(&pgdat->kswapd_wait);
6900 * Throttle direct reclaimers if backing storage is backed by the network
6901 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6902 * depleted. kswapd will continue to make progress and wake the processes
6903 * when the low watermark is reached.
6905 * Returns true if a fatal signal was delivered during throttling. If this
6906 * happens, the page allocator should not consider triggering the OOM killer.
6908 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6909 nodemask_t *nodemask)
6913 pg_data_t *pgdat = NULL;
6916 * Kernel threads should not be throttled as they may be indirectly
6917 * responsible for cleaning pages necessary for reclaim to make forward
6918 * progress. kjournald for example may enter direct reclaim while
6919 * committing a transaction where throttling it could forcing other
6920 * processes to block on log_wait_commit().
6922 if (current->flags & PF_KTHREAD)
6926 * If a fatal signal is pending, this process should not throttle.
6927 * It should return quickly so it can exit and free its memory
6929 if (fatal_signal_pending(current))
6933 * Check if the pfmemalloc reserves are ok by finding the first node
6934 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6935 * GFP_KERNEL will be required for allocating network buffers when
6936 * swapping over the network so ZONE_HIGHMEM is unusable.
6938 * Throttling is based on the first usable node and throttled processes
6939 * wait on a queue until kswapd makes progress and wakes them. There
6940 * is an affinity then between processes waking up and where reclaim
6941 * progress has been made assuming the process wakes on the same node.
6942 * More importantly, processes running on remote nodes will not compete
6943 * for remote pfmemalloc reserves and processes on different nodes
6944 * should make reasonable progress.
6946 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6947 gfp_zone(gfp_mask), nodemask) {
6948 if (zone_idx(zone) > ZONE_NORMAL)
6951 /* Throttle based on the first usable node */
6952 pgdat = zone->zone_pgdat;
6953 if (allow_direct_reclaim(pgdat))
6958 /* If no zone was usable by the allocation flags then do not throttle */
6962 /* Account for the throttling */
6963 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6966 * If the caller cannot enter the filesystem, it's possible that it
6967 * is due to the caller holding an FS lock or performing a journal
6968 * transaction in the case of a filesystem like ext[3|4]. In this case,
6969 * it is not safe to block on pfmemalloc_wait as kswapd could be
6970 * blocked waiting on the same lock. Instead, throttle for up to a
6971 * second before continuing.
6973 if (!(gfp_mask & __GFP_FS))
6974 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6975 allow_direct_reclaim(pgdat), HZ);
6977 /* Throttle until kswapd wakes the process */
6978 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6979 allow_direct_reclaim(pgdat));
6981 if (fatal_signal_pending(current))
6988 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6989 gfp_t gfp_mask, nodemask_t *nodemask)
6991 unsigned long nr_reclaimed;
6992 struct scan_control sc = {
6993 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6994 .gfp_mask = current_gfp_context(gfp_mask),
6995 .reclaim_idx = gfp_zone(gfp_mask),
6997 .nodemask = nodemask,
6998 .priority = DEF_PRIORITY,
6999 .may_writepage = !laptop_mode,
7005 * scan_control uses s8 fields for order, priority, and reclaim_idx.
7006 * Confirm they are large enough for max values.
7008 BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
7009 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
7010 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
7013 * Do not enter reclaim if fatal signal was delivered while throttled.
7014 * 1 is returned so that the page allocator does not OOM kill at this
7017 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7020 set_task_reclaim_state(current, &sc.reclaim_state);
7021 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7023 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7025 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7026 set_task_reclaim_state(current, NULL);
7028 return nr_reclaimed;
7033 /* Only used by soft limit reclaim. Do not reuse for anything else. */
7034 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7035 gfp_t gfp_mask, bool noswap,
7037 unsigned long *nr_scanned)
7039 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7040 struct scan_control sc = {
7041 .nr_to_reclaim = SWAP_CLUSTER_MAX,
7042 .target_mem_cgroup = memcg,
7043 .may_writepage = !laptop_mode,
7045 .reclaim_idx = MAX_NR_ZONES - 1,
7046 .may_swap = !noswap,
7049 WARN_ON_ONCE(!current->reclaim_state);
7051 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7052 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7054 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7058 * NOTE: Although we can get the priority field, using it
7059 * here is not a good idea, since it limits the pages we can scan.
7060 * if we don't reclaim here, the shrink_node from balance_pgdat
7061 * will pick up pages from other mem cgroup's as well. We hack
7062 * the priority and make it zero.
7064 shrink_lruvec(lruvec, &sc);
7066 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7068 *nr_scanned = sc.nr_scanned;
7070 return sc.nr_reclaimed;
7073 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7074 unsigned long nr_pages,
7076 unsigned int reclaim_options)
7078 unsigned long nr_reclaimed;
7079 unsigned int noreclaim_flag;
7080 struct scan_control sc = {
7081 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7082 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7083 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7084 .reclaim_idx = MAX_NR_ZONES - 1,
7085 .target_mem_cgroup = memcg,
7086 .priority = DEF_PRIORITY,
7087 .may_writepage = !laptop_mode,
7089 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7090 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7093 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7094 * equal pressure on all the nodes. This is based on the assumption that
7095 * the reclaim does not bail out early.
7097 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7099 set_task_reclaim_state(current, &sc.reclaim_state);
7100 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7101 noreclaim_flag = memalloc_noreclaim_save();
7103 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7105 memalloc_noreclaim_restore(noreclaim_flag);
7106 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7107 set_task_reclaim_state(current, NULL);
7109 return nr_reclaimed;
7113 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7115 struct mem_cgroup *memcg;
7116 struct lruvec *lruvec;
7118 if (lru_gen_enabled()) {
7119 lru_gen_age_node(pgdat, sc);
7123 if (!can_age_anon_pages(pgdat, sc))
7126 lruvec = mem_cgroup_lruvec(NULL, pgdat);
7127 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7130 memcg = mem_cgroup_iter(NULL, NULL, NULL);
7132 lruvec = mem_cgroup_lruvec(memcg, pgdat);
7133 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7134 sc, LRU_ACTIVE_ANON);
7135 memcg = mem_cgroup_iter(NULL, memcg, NULL);
7139 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7145 * Check for watermark boosts top-down as the higher zones
7146 * are more likely to be boosted. Both watermarks and boosts
7147 * should not be checked at the same time as reclaim would
7148 * start prematurely when there is no boosting and a lower
7151 for (i = highest_zoneidx; i >= 0; i--) {
7152 zone = pgdat->node_zones + i;
7153 if (!managed_zone(zone))
7156 if (zone->watermark_boost)
7164 * Returns true if there is an eligible zone balanced for the request order
7165 * and highest_zoneidx
7167 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7170 unsigned long mark = -1;
7174 * Check watermarks bottom-up as lower zones are more likely to
7177 for (i = 0; i <= highest_zoneidx; i++) {
7178 zone = pgdat->node_zones + i;
7180 if (!managed_zone(zone))
7183 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7184 mark = wmark_pages(zone, WMARK_PROMO);
7186 mark = high_wmark_pages(zone);
7187 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7192 * If a node has no managed zone within highest_zoneidx, it does not
7193 * need balancing by definition. This can happen if a zone-restricted
7194 * allocation tries to wake a remote kswapd.
7202 /* Clear pgdat state for congested, dirty or under writeback. */
7203 static void clear_pgdat_congested(pg_data_t *pgdat)
7205 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7207 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
7208 clear_bit(PGDAT_DIRTY, &pgdat->flags);
7209 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7213 * Prepare kswapd for sleeping. This verifies that there are no processes
7214 * waiting in throttle_direct_reclaim() and that watermarks have been met.
7216 * Returns true if kswapd is ready to sleep
7218 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7219 int highest_zoneidx)
7222 * The throttled processes are normally woken up in balance_pgdat() as
7223 * soon as allow_direct_reclaim() is true. But there is a potential
7224 * race between when kswapd checks the watermarks and a process gets
7225 * throttled. There is also a potential race if processes get
7226 * throttled, kswapd wakes, a large process exits thereby balancing the
7227 * zones, which causes kswapd to exit balance_pgdat() before reaching
7228 * the wake up checks. If kswapd is going to sleep, no process should
7229 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7230 * the wake up is premature, processes will wake kswapd and get
7231 * throttled again. The difference from wake ups in balance_pgdat() is
7232 * that here we are under prepare_to_wait().
7234 if (waitqueue_active(&pgdat->pfmemalloc_wait))
7235 wake_up_all(&pgdat->pfmemalloc_wait);
7237 /* Hopeless node, leave it to direct reclaim */
7238 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7241 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7242 clear_pgdat_congested(pgdat);
7250 * kswapd shrinks a node of pages that are at or below the highest usable
7251 * zone that is currently unbalanced.
7253 * Returns true if kswapd scanned at least the requested number of pages to
7254 * reclaim or if the lack of progress was due to pages under writeback.
7255 * This is used to determine if the scanning priority needs to be raised.
7257 static bool kswapd_shrink_node(pg_data_t *pgdat,
7258 struct scan_control *sc)
7263 /* Reclaim a number of pages proportional to the number of zones */
7264 sc->nr_to_reclaim = 0;
7265 for (z = 0; z <= sc->reclaim_idx; z++) {
7266 zone = pgdat->node_zones + z;
7267 if (!managed_zone(zone))
7270 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7274 * Historically care was taken to put equal pressure on all zones but
7275 * now pressure is applied based on node LRU order.
7277 shrink_node(pgdat, sc);
7280 * Fragmentation may mean that the system cannot be rebalanced for
7281 * high-order allocations. If twice the allocation size has been
7282 * reclaimed then recheck watermarks only at order-0 to prevent
7283 * excessive reclaim. Assume that a process requested a high-order
7284 * can direct reclaim/compact.
7286 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7289 return sc->nr_scanned >= sc->nr_to_reclaim;
7292 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7294 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7299 for (i = 0; i <= highest_zoneidx; i++) {
7300 zone = pgdat->node_zones + i;
7302 if (!managed_zone(zone))
7306 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7308 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7313 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7315 update_reclaim_active(pgdat, highest_zoneidx, true);
7319 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7321 update_reclaim_active(pgdat, highest_zoneidx, false);
7325 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7326 * that are eligible for use by the caller until at least one zone is
7329 * Returns the order kswapd finished reclaiming at.
7331 * kswapd scans the zones in the highmem->normal->dma direction. It skips
7332 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7333 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7334 * or lower is eligible for reclaim until at least one usable zone is
7337 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7340 unsigned long nr_soft_reclaimed;
7341 unsigned long nr_soft_scanned;
7342 unsigned long pflags;
7343 unsigned long nr_boost_reclaim;
7344 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7347 struct scan_control sc = {
7348 .gfp_mask = GFP_KERNEL,
7353 set_task_reclaim_state(current, &sc.reclaim_state);
7354 psi_memstall_enter(&pflags);
7355 __fs_reclaim_acquire(_THIS_IP_);
7357 count_vm_event(PAGEOUTRUN);
7360 * Account for the reclaim boost. Note that the zone boost is left in
7361 * place so that parallel allocations that are near the watermark will
7362 * stall or direct reclaim until kswapd is finished.
7364 nr_boost_reclaim = 0;
7365 for (i = 0; i <= highest_zoneidx; i++) {
7366 zone = pgdat->node_zones + i;
7367 if (!managed_zone(zone))
7370 nr_boost_reclaim += zone->watermark_boost;
7371 zone_boosts[i] = zone->watermark_boost;
7373 boosted = nr_boost_reclaim;
7376 set_reclaim_active(pgdat, highest_zoneidx);
7377 sc.priority = DEF_PRIORITY;
7379 unsigned long nr_reclaimed = sc.nr_reclaimed;
7380 bool raise_priority = true;
7384 sc.reclaim_idx = highest_zoneidx;
7387 * If the number of buffer_heads exceeds the maximum allowed
7388 * then consider reclaiming from all zones. This has a dual
7389 * purpose -- on 64-bit systems it is expected that
7390 * buffer_heads are stripped during active rotation. On 32-bit
7391 * systems, highmem pages can pin lowmem memory and shrinking
7392 * buffers can relieve lowmem pressure. Reclaim may still not
7393 * go ahead if all eligible zones for the original allocation
7394 * request are balanced to avoid excessive reclaim from kswapd.
7396 if (buffer_heads_over_limit) {
7397 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7398 zone = pgdat->node_zones + i;
7399 if (!managed_zone(zone))
7408 * If the pgdat is imbalanced then ignore boosting and preserve
7409 * the watermarks for a later time and restart. Note that the
7410 * zone watermarks will be still reset at the end of balancing
7411 * on the grounds that the normal reclaim should be enough to
7412 * re-evaluate if boosting is required when kswapd next wakes.
7414 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7415 if (!balanced && nr_boost_reclaim) {
7416 nr_boost_reclaim = 0;
7421 * If boosting is not active then only reclaim if there are no
7422 * eligible zones. Note that sc.reclaim_idx is not used as
7423 * buffer_heads_over_limit may have adjusted it.
7425 if (!nr_boost_reclaim && balanced)
7428 /* Limit the priority of boosting to avoid reclaim writeback */
7429 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7430 raise_priority = false;
7433 * Do not writeback or swap pages for boosted reclaim. The
7434 * intent is to relieve pressure not issue sub-optimal IO
7435 * from reclaim context. If no pages are reclaimed, the
7436 * reclaim will be aborted.
7438 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7439 sc.may_swap = !nr_boost_reclaim;
7442 * Do some background aging, to give pages a chance to be
7443 * referenced before reclaiming. All pages are rotated
7444 * regardless of classzone as this is about consistent aging.
7446 kswapd_age_node(pgdat, &sc);
7449 * If we're getting trouble reclaiming, start doing writepage
7450 * even in laptop mode.
7452 if (sc.priority < DEF_PRIORITY - 2)
7453 sc.may_writepage = 1;
7455 /* Call soft limit reclaim before calling shrink_node. */
7457 nr_soft_scanned = 0;
7458 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7459 sc.gfp_mask, &nr_soft_scanned);
7460 sc.nr_reclaimed += nr_soft_reclaimed;
7463 * There should be no need to raise the scanning priority if
7464 * enough pages are already being scanned that that high
7465 * watermark would be met at 100% efficiency.
7467 if (kswapd_shrink_node(pgdat, &sc))
7468 raise_priority = false;
7471 * If the low watermark is met there is no need for processes
7472 * to be throttled on pfmemalloc_wait as they should not be
7473 * able to safely make forward progress. Wake them
7475 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7476 allow_direct_reclaim(pgdat))
7477 wake_up_all(&pgdat->pfmemalloc_wait);
7479 /* Check if kswapd should be suspending */
7480 __fs_reclaim_release(_THIS_IP_);
7481 ret = try_to_freeze();
7482 __fs_reclaim_acquire(_THIS_IP_);
7483 if (ret || kthread_should_stop())
7487 * Raise priority if scanning rate is too low or there was no
7488 * progress in reclaiming pages
7490 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7491 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7494 * If reclaim made no progress for a boost, stop reclaim as
7495 * IO cannot be queued and it could be an infinite loop in
7496 * extreme circumstances.
7498 if (nr_boost_reclaim && !nr_reclaimed)
7501 if (raise_priority || !nr_reclaimed)
7503 } while (sc.priority >= 1);
7505 if (!sc.nr_reclaimed)
7506 pgdat->kswapd_failures++;
7509 clear_reclaim_active(pgdat, highest_zoneidx);
7511 /* If reclaim was boosted, account for the reclaim done in this pass */
7513 unsigned long flags;
7515 for (i = 0; i <= highest_zoneidx; i++) {
7516 if (!zone_boosts[i])
7519 /* Increments are under the zone lock */
7520 zone = pgdat->node_zones + i;
7521 spin_lock_irqsave(&zone->lock, flags);
7522 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7523 spin_unlock_irqrestore(&zone->lock, flags);
7527 * As there is now likely space, wakeup kcompact to defragment
7530 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7533 snapshot_refaults(NULL, pgdat);
7534 __fs_reclaim_release(_THIS_IP_);
7535 psi_memstall_leave(&pflags);
7536 set_task_reclaim_state(current, NULL);
7539 * Return the order kswapd stopped reclaiming at as
7540 * prepare_kswapd_sleep() takes it into account. If another caller
7541 * entered the allocator slow path while kswapd was awake, order will
7542 * remain at the higher level.
7548 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7549 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7550 * not a valid index then either kswapd runs for first time or kswapd couldn't
7551 * sleep after previous reclaim attempt (node is still unbalanced). In that
7552 * case return the zone index of the previous kswapd reclaim cycle.
7554 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7555 enum zone_type prev_highest_zoneidx)
7557 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7559 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7562 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7563 unsigned int highest_zoneidx)
7568 if (freezing(current) || kthread_should_stop())
7571 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7574 * Try to sleep for a short interval. Note that kcompactd will only be
7575 * woken if it is possible to sleep for a short interval. This is
7576 * deliberate on the assumption that if reclaim cannot keep an
7577 * eligible zone balanced that it's also unlikely that compaction will
7580 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7582 * Compaction records what page blocks it recently failed to
7583 * isolate pages from and skips them in the future scanning.
7584 * When kswapd is going to sleep, it is reasonable to assume
7585 * that pages and compaction may succeed so reset the cache.
7587 reset_isolation_suitable(pgdat);
7590 * We have freed the memory, now we should compact it to make
7591 * allocation of the requested order possible.
7593 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7595 remaining = schedule_timeout(HZ/10);
7598 * If woken prematurely then reset kswapd_highest_zoneidx and
7599 * order. The values will either be from a wakeup request or
7600 * the previous request that slept prematurely.
7603 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7604 kswapd_highest_zoneidx(pgdat,
7607 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7608 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7611 finish_wait(&pgdat->kswapd_wait, &wait);
7612 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7616 * After a short sleep, check if it was a premature sleep. If not, then
7617 * go fully to sleep until explicitly woken up.
7620 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7621 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7624 * vmstat counters are not perfectly accurate and the estimated
7625 * value for counters such as NR_FREE_PAGES can deviate from the
7626 * true value by nr_online_cpus * threshold. To avoid the zone
7627 * watermarks being breached while under pressure, we reduce the
7628 * per-cpu vmstat threshold while kswapd is awake and restore
7629 * them before going back to sleep.
7631 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7633 if (!kthread_should_stop())
7636 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7639 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7641 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7643 finish_wait(&pgdat->kswapd_wait, &wait);
7647 * The background pageout daemon, started as a kernel thread
7648 * from the init process.
7650 * This basically trickles out pages so that we have _some_
7651 * free memory available even if there is no other activity
7652 * that frees anything up. This is needed for things like routing
7653 * etc, where we otherwise might have all activity going on in
7654 * asynchronous contexts that cannot page things out.
7656 * If there are applications that are active memory-allocators
7657 * (most normal use), this basically shouldn't matter.
7659 static int kswapd(void *p)
7661 unsigned int alloc_order, reclaim_order;
7662 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7663 pg_data_t *pgdat = (pg_data_t *)p;
7664 struct task_struct *tsk = current;
7665 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7667 if (!cpumask_empty(cpumask))
7668 set_cpus_allowed_ptr(tsk, cpumask);
7671 * Tell the memory management that we're a "memory allocator",
7672 * and that if we need more memory we should get access to it
7673 * regardless (see "__alloc_pages()"). "kswapd" should
7674 * never get caught in the normal page freeing logic.
7676 * (Kswapd normally doesn't need memory anyway, but sometimes
7677 * you need a small amount of memory in order to be able to
7678 * page out something else, and this flag essentially protects
7679 * us from recursively trying to free more memory as we're
7680 * trying to free the first piece of memory in the first place).
7682 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7685 WRITE_ONCE(pgdat->kswapd_order, 0);
7686 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7687 atomic_set(&pgdat->nr_writeback_throttled, 0);
7691 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7692 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7696 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7699 /* Read the new order and highest_zoneidx */
7700 alloc_order = READ_ONCE(pgdat->kswapd_order);
7701 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7703 WRITE_ONCE(pgdat->kswapd_order, 0);
7704 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7706 ret = try_to_freeze();
7707 if (kthread_should_stop())
7711 * We can speed up thawing tasks if we don't call balance_pgdat
7712 * after returning from the refrigerator
7718 * Reclaim begins at the requested order but if a high-order
7719 * reclaim fails then kswapd falls back to reclaiming for
7720 * order-0. If that happens, kswapd will consider sleeping
7721 * for the order it finished reclaiming at (reclaim_order)
7722 * but kcompactd is woken to compact for the original
7723 * request (alloc_order).
7725 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7727 reclaim_order = balance_pgdat(pgdat, alloc_order,
7729 if (reclaim_order < alloc_order)
7730 goto kswapd_try_sleep;
7733 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7739 * A zone is low on free memory or too fragmented for high-order memory. If
7740 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7741 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7742 * has failed or is not needed, still wake up kcompactd if only compaction is
7745 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7746 enum zone_type highest_zoneidx)
7749 enum zone_type curr_idx;
7751 if (!managed_zone(zone))
7754 if (!cpuset_zone_allowed(zone, gfp_flags))
7757 pgdat = zone->zone_pgdat;
7758 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7760 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7761 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7763 if (READ_ONCE(pgdat->kswapd_order) < order)
7764 WRITE_ONCE(pgdat->kswapd_order, order);
7766 if (!waitqueue_active(&pgdat->kswapd_wait))
7769 /* Hopeless node, leave it to direct reclaim if possible */
7770 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7771 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7772 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7774 * There may be plenty of free memory available, but it's too
7775 * fragmented for high-order allocations. Wake up kcompactd
7776 * and rely on compaction_suitable() to determine if it's
7777 * needed. If it fails, it will defer subsequent attempts to
7778 * ratelimit its work.
7780 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7781 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7785 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7787 wake_up_interruptible(&pgdat->kswapd_wait);
7790 #ifdef CONFIG_HIBERNATION
7792 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7795 * Rather than trying to age LRUs the aim is to preserve the overall
7796 * LRU order by reclaiming preferentially
7797 * inactive > active > active referenced > active mapped
7799 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7801 struct scan_control sc = {
7802 .nr_to_reclaim = nr_to_reclaim,
7803 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7804 .reclaim_idx = MAX_NR_ZONES - 1,
7805 .priority = DEF_PRIORITY,
7809 .hibernation_mode = 1,
7811 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7812 unsigned long nr_reclaimed;
7813 unsigned int noreclaim_flag;
7815 fs_reclaim_acquire(sc.gfp_mask);
7816 noreclaim_flag = memalloc_noreclaim_save();
7817 set_task_reclaim_state(current, &sc.reclaim_state);
7819 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7821 set_task_reclaim_state(current, NULL);
7822 memalloc_noreclaim_restore(noreclaim_flag);
7823 fs_reclaim_release(sc.gfp_mask);
7825 return nr_reclaimed;
7827 #endif /* CONFIG_HIBERNATION */
7830 * This kswapd start function will be called by init and node-hot-add.
7832 void kswapd_run(int nid)
7834 pg_data_t *pgdat = NODE_DATA(nid);
7836 pgdat_kswapd_lock(pgdat);
7837 if (!pgdat->kswapd) {
7838 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7839 if (IS_ERR(pgdat->kswapd)) {
7840 /* failure at boot is fatal */
7841 BUG_ON(system_state < SYSTEM_RUNNING);
7842 pr_err("Failed to start kswapd on node %d\n", nid);
7843 pgdat->kswapd = NULL;
7846 pgdat_kswapd_unlock(pgdat);
7850 * Called by memory hotplug when all memory in a node is offlined. Caller must
7851 * be holding mem_hotplug_begin/done().
7853 void kswapd_stop(int nid)
7855 pg_data_t *pgdat = NODE_DATA(nid);
7856 struct task_struct *kswapd;
7858 pgdat_kswapd_lock(pgdat);
7859 kswapd = pgdat->kswapd;
7861 kthread_stop(kswapd);
7862 pgdat->kswapd = NULL;
7864 pgdat_kswapd_unlock(pgdat);
7867 static int __init kswapd_init(void)
7872 for_each_node_state(nid, N_MEMORY)
7877 module_init(kswapd_init)
7883 * If non-zero call node_reclaim when the number of free pages falls below
7886 int node_reclaim_mode __read_mostly;
7889 * Priority for NODE_RECLAIM. This determines the fraction of pages
7890 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7893 #define NODE_RECLAIM_PRIORITY 4
7896 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7899 int sysctl_min_unmapped_ratio = 1;
7902 * If the number of slab pages in a zone grows beyond this percentage then
7903 * slab reclaim needs to occur.
7905 int sysctl_min_slab_ratio = 5;
7907 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7909 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7910 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7911 node_page_state(pgdat, NR_ACTIVE_FILE);
7914 * It's possible for there to be more file mapped pages than
7915 * accounted for by the pages on the file LRU lists because
7916 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7918 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7921 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7922 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7924 unsigned long nr_pagecache_reclaimable;
7925 unsigned long delta = 0;
7928 * If RECLAIM_UNMAP is set, then all file pages are considered
7929 * potentially reclaimable. Otherwise, we have to worry about
7930 * pages like swapcache and node_unmapped_file_pages() provides
7933 if (node_reclaim_mode & RECLAIM_UNMAP)
7934 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7936 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7938 /* If we can't clean pages, remove dirty pages from consideration */
7939 if (!(node_reclaim_mode & RECLAIM_WRITE))
7940 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7942 /* Watch for any possible underflows due to delta */
7943 if (unlikely(delta > nr_pagecache_reclaimable))
7944 delta = nr_pagecache_reclaimable;
7946 return nr_pagecache_reclaimable - delta;
7950 * Try to free up some pages from this node through reclaim.
7952 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7954 /* Minimum pages needed in order to stay on node */
7955 const unsigned long nr_pages = 1 << order;
7956 struct task_struct *p = current;
7957 unsigned int noreclaim_flag;
7958 struct scan_control sc = {
7959 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7960 .gfp_mask = current_gfp_context(gfp_mask),
7962 .priority = NODE_RECLAIM_PRIORITY,
7963 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7964 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7966 .reclaim_idx = gfp_zone(gfp_mask),
7968 unsigned long pflags;
7970 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7974 psi_memstall_enter(&pflags);
7975 fs_reclaim_acquire(sc.gfp_mask);
7977 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7979 noreclaim_flag = memalloc_noreclaim_save();
7980 set_task_reclaim_state(p, &sc.reclaim_state);
7982 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7983 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7985 * Free memory by calling shrink node with increasing
7986 * priorities until we have enough memory freed.
7989 shrink_node(pgdat, &sc);
7990 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7993 set_task_reclaim_state(p, NULL);
7994 memalloc_noreclaim_restore(noreclaim_flag);
7995 fs_reclaim_release(sc.gfp_mask);
7996 psi_memstall_leave(&pflags);
7998 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
8000 return sc.nr_reclaimed >= nr_pages;
8003 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8008 * Node reclaim reclaims unmapped file backed pages and
8009 * slab pages if we are over the defined limits.
8011 * A small portion of unmapped file backed pages is needed for
8012 * file I/O otherwise pages read by file I/O will be immediately
8013 * thrown out if the node is overallocated. So we do not reclaim
8014 * if less than a specified percentage of the node is used by
8015 * unmapped file backed pages.
8017 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8018 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8019 pgdat->min_slab_pages)
8020 return NODE_RECLAIM_FULL;
8023 * Do not scan if the allocation should not be delayed.
8025 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8026 return NODE_RECLAIM_NOSCAN;
8029 * Only run node reclaim on the local node or on nodes that do not
8030 * have associated processors. This will favor the local processor
8031 * over remote processors and spread off node memory allocations
8032 * as wide as possible.
8034 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8035 return NODE_RECLAIM_NOSCAN;
8037 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8038 return NODE_RECLAIM_NOSCAN;
8040 ret = __node_reclaim(pgdat, gfp_mask, order);
8041 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8044 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8050 void check_move_unevictable_pages(struct pagevec *pvec)
8052 struct folio_batch fbatch;
8055 folio_batch_init(&fbatch);
8056 for (i = 0; i < pvec->nr; i++) {
8057 struct page *page = pvec->pages[i];
8059 if (PageTransTail(page))
8061 folio_batch_add(&fbatch, page_folio(page));
8063 check_move_unevictable_folios(&fbatch);
8065 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
8068 * check_move_unevictable_folios - Move evictable folios to appropriate zone
8070 * @fbatch: Batch of lru folios to check.
8072 * Checks folios for evictability, if an evictable folio is in the unevictable
8073 * lru list, moves it to the appropriate evictable lru list. This function
8074 * should be only used for lru folios.
8076 void check_move_unevictable_folios(struct folio_batch *fbatch)
8078 struct lruvec *lruvec = NULL;
8083 for (i = 0; i < fbatch->nr; i++) {
8084 struct folio *folio = fbatch->folios[i];
8085 int nr_pages = folio_nr_pages(folio);
8087 pgscanned += nr_pages;
8089 /* block memcg migration while the folio moves between lrus */
8090 if (!folio_test_clear_lru(folio))
8093 lruvec = folio_lruvec_relock_irq(folio, lruvec);
8094 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8095 lruvec_del_folio(lruvec, folio);
8096 folio_clear_unevictable(folio);
8097 lruvec_add_folio(lruvec, folio);
8098 pgrescued += nr_pages;
8100 folio_set_lru(folio);
8104 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8105 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8106 unlock_page_lruvec_irq(lruvec);
8107 } else if (pgscanned) {
8108 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8111 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);