1 /* SPDX-License-Identifier: GPL-2.0
3 * IO cost model based controller.
7 * Copyright (C) 2019 Facebook
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * paramters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
54 * 2-1. Vtime Distribution
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
64 * A0 (w:100) A1 (w:100)
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
71 * upto 1 (HWEIGHT_WHOLE).
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO iff doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
84 * 2-2. Vrate Adjustment
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, soley depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
125 * 2-3. Work Conservation
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The ouput looks like the following.
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include "blk-rq-qos.h"
183 #include "blk-stat.h"
186 #ifdef CONFIG_TRACEPOINTS
188 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
189 #define TRACE_IOCG_PATH_LEN 1024
190 static DEFINE_SPINLOCK(trace_iocg_path_lock);
191 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
193 #define TRACE_IOCG_PATH(type, iocg, ...) \
195 unsigned long flags; \
196 if (trace_iocost_##type##_enabled()) { \
197 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
198 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
199 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
200 trace_iocost_##type(iocg, trace_iocg_path, \
202 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
206 #else /* CONFIG_TRACE_POINTS */
207 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
208 #endif /* CONFIG_TRACE_POINTS */
213 /* timer period is calculated from latency requirements, bound it */
214 MIN_PERIOD = USEC_PER_MSEC,
215 MAX_PERIOD = USEC_PER_SEC,
218 * A cgroup's vtime can run 50% behind the device vtime, which
219 * serves as its IO credit buffer. Surplus weight adjustment is
220 * immediately canceled if the vtime margin runs below 10%.
223 INUSE_MARGIN_PCT = 10,
225 /* Have some play in waitq timer operations */
226 WAITQ_TIMER_MARGIN_PCT = 5,
229 * vtime can wrap well within a reasonable uptime when vrate is
230 * consistently raised. Don't trust recorded cgroup vtime if the
231 * period counter indicates that it's older than 5mins.
233 VTIME_VALID_DUR = 300 * USEC_PER_SEC,
236 * Remember the past three non-zero usages and use the max for
237 * surplus calculation. Three slots guarantee that we remember one
238 * full period usage from the last active stretch even after
239 * partial deactivation and re-activation periods. Don't start
240 * giving away weight before collecting two data points to prevent
241 * hweight adjustments based on one partial activation period.
244 MIN_VALID_USAGES = 2,
246 /* 1/64k is granular enough and can easily be handled w/ u32 */
247 HWEIGHT_WHOLE = 1 << 16,
250 * As vtime is used to calculate the cost of each IO, it needs to
251 * be fairly high precision. For example, it should be able to
252 * represent the cost of a single page worth of discard with
253 * suffificient accuracy. At the same time, it should be able to
254 * represent reasonably long enough durations to be useful and
255 * convenient during operation.
257 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
258 * granularity and days of wrap-around time even at extreme vrates.
260 VTIME_PER_SEC_SHIFT = 37,
261 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
262 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
263 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC,
265 /* bound vrate adjustments within two orders of magnitude */
266 VRATE_MIN_PPM = 10000, /* 1% */
267 VRATE_MAX_PPM = 100000000, /* 10000% */
269 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
270 VRATE_CLAMP_ADJ_PCT = 4,
272 /* if IOs end up waiting for requests, issue less */
273 RQ_WAIT_BUSY_PCT = 5,
275 /* unbusy hysterisis */
278 /* don't let cmds which take a very long time pin lagging for too long */
279 MAX_LAGGING_PERIODS = 10,
282 * If usage% * 1.25 + 2% is lower than hweight% by more than 3%,
283 * donate the surplus.
285 SURPLUS_SCALE_PCT = 125, /* * 125% */
286 SURPLUS_SCALE_ABS = HWEIGHT_WHOLE / 50, /* + 2% */
287 SURPLUS_MIN_ADJ_DELTA = HWEIGHT_WHOLE / 33, /* 3% */
289 /* switch iff the conditions are met for longer than this */
290 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
293 * Count IO size in 4k pages. The 12bit shift helps keeping
294 * size-proportional components of cost calculation in closer
295 * numbers of digits to per-IO cost components.
298 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
299 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
301 /* if apart further than 16M, consider randio for linear model */
302 LCOEF_RANDIO_PAGES = 4096,
311 /* io.cost.qos controls including per-dev enable of the whole controller */
318 /* io.cost.qos params */
329 /* io.cost.model controls */
336 /* builtin linear cost model coefficients */
368 u32 qos[NR_QOS_PARAMS];
369 u64 i_lcoefs[NR_I_LCOEFS];
370 u64 lcoefs[NR_LCOEFS];
371 u32 too_fast_vrate_pct;
372 u32 too_slow_vrate_pct;
382 struct ioc_pcpu_stat {
383 struct ioc_missed missed[2];
395 struct ioc_params params;
402 struct timer_list timer;
403 struct list_head active_iocgs; /* active cgroups */
404 struct ioc_pcpu_stat __percpu *pcpu_stat;
406 enum ioc_running running;
407 atomic64_t vtime_rate;
409 seqcount_spinlock_t period_seqcount;
410 u32 period_at; /* wallclock starttime */
411 u64 period_at_vtime; /* vtime starttime */
413 atomic64_t cur_period; /* inc'd each period */
414 int busy_level; /* saturation history */
416 u64 inuse_margin_vtime;
417 bool weights_updated;
418 atomic_t hweight_gen; /* for lazy hweights */
420 u64 autop_too_fast_at;
421 u64 autop_too_slow_at;
423 bool user_qos_params:1;
424 bool user_cost_model:1;
427 /* per device-cgroup pair */
429 struct blkg_policy_data pd;
433 * A iocg can get its weight from two sources - an explicit
434 * per-device-cgroup configuration or the default weight of the
435 * cgroup. `cfg_weight` is the explicit per-device-cgroup
436 * configuration. `weight` is the effective considering both
439 * When an idle cgroup becomes active its `active` goes from 0 to
440 * `weight`. `inuse` is the surplus adjusted active weight.
441 * `active` and `inuse` are used to calculate `hweight_active` and
444 * `last_inuse` remembers `inuse` while an iocg is idle to persist
445 * surplus adjustments.
453 sector_t cursor; /* to detect randio */
456 * `vtime` is this iocg's vtime cursor which progresses as IOs are
457 * issued. If lagging behind device vtime, the delta represents
458 * the currently available IO budget. If runnning ahead, the
461 * `vtime_done` is the same but progressed on completion rather
462 * than issue. The delta behind `vtime` represents the cost of
463 * currently in-flight IOs.
465 * `last_vtime` is used to remember `vtime` at the end of the last
466 * period to calculate utilization.
469 atomic64_t done_vtime;
474 * The period this iocg was last active in. Used for deactivation
475 * and invalidating `vtime`.
477 atomic64_t active_period;
478 struct list_head active_list;
480 /* see __propagate_active_weight() and current_hweight() for details */
481 u64 child_active_sum;
488 struct wait_queue_head waitq;
489 struct hrtimer waitq_timer;
490 struct hrtimer delay_timer;
492 /* usage is recorded as fractions of HWEIGHT_WHOLE */
494 u32 usages[NR_USAGE_SLOTS];
496 /* this iocg's depth in the hierarchy and ancestors including self */
498 struct ioc_gq *ancestors[];
503 struct blkcg_policy_data cpd;
504 unsigned int dfl_weight;
515 struct wait_queue_entry wait;
521 struct iocg_wake_ctx {
527 static const struct ioc_params autop[] = {
530 [QOS_RLAT] = 250000, /* 250ms */
532 [QOS_MIN] = VRATE_MIN_PPM,
533 [QOS_MAX] = VRATE_MAX_PPM,
536 [I_LCOEF_RBPS] = 174019176,
537 [I_LCOEF_RSEQIOPS] = 41708,
538 [I_LCOEF_RRANDIOPS] = 370,
539 [I_LCOEF_WBPS] = 178075866,
540 [I_LCOEF_WSEQIOPS] = 42705,
541 [I_LCOEF_WRANDIOPS] = 378,
546 [QOS_RLAT] = 25000, /* 25ms */
548 [QOS_MIN] = VRATE_MIN_PPM,
549 [QOS_MAX] = VRATE_MAX_PPM,
552 [I_LCOEF_RBPS] = 245855193,
553 [I_LCOEF_RSEQIOPS] = 61575,
554 [I_LCOEF_RRANDIOPS] = 6946,
555 [I_LCOEF_WBPS] = 141365009,
556 [I_LCOEF_WSEQIOPS] = 33716,
557 [I_LCOEF_WRANDIOPS] = 26796,
562 [QOS_RLAT] = 25000, /* 25ms */
564 [QOS_MIN] = VRATE_MIN_PPM,
565 [QOS_MAX] = VRATE_MAX_PPM,
568 [I_LCOEF_RBPS] = 488636629,
569 [I_LCOEF_RSEQIOPS] = 8932,
570 [I_LCOEF_RRANDIOPS] = 8518,
571 [I_LCOEF_WBPS] = 427891549,
572 [I_LCOEF_WSEQIOPS] = 28755,
573 [I_LCOEF_WRANDIOPS] = 21940,
575 .too_fast_vrate_pct = 500,
579 [QOS_RLAT] = 5000, /* 5ms */
581 [QOS_MIN] = VRATE_MIN_PPM,
582 [QOS_MAX] = VRATE_MAX_PPM,
585 [I_LCOEF_RBPS] = 3102524156LLU,
586 [I_LCOEF_RSEQIOPS] = 724816,
587 [I_LCOEF_RRANDIOPS] = 778122,
588 [I_LCOEF_WBPS] = 1742780862LLU,
589 [I_LCOEF_WSEQIOPS] = 425702,
590 [I_LCOEF_WRANDIOPS] = 443193,
592 .too_slow_vrate_pct = 10,
597 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
598 * vtime credit shortage and down on device saturation.
600 static u32 vrate_adj_pct[] =
602 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
603 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
604 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
606 static struct blkcg_policy blkcg_policy_iocost;
608 /* accessors and helpers */
609 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
611 return container_of(rqos, struct ioc, rqos);
614 static struct ioc *q_to_ioc(struct request_queue *q)
616 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
619 static const char *q_name(struct request_queue *q)
621 if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
622 return kobject_name(q->kobj.parent);
627 static const char __maybe_unused *ioc_name(struct ioc *ioc)
629 return q_name(ioc->rqos.q);
632 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
634 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
637 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
639 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
642 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
644 return pd_to_blkg(&iocg->pd);
647 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
649 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
650 struct ioc_cgrp, cpd);
654 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
655 * weight, the more expensive each IO. Must round up.
657 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
659 return DIV64_U64_ROUND_UP(abs_cost * HWEIGHT_WHOLE, hw_inuse);
663 * The inverse of abs_cost_to_cost(). Must round up.
665 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
667 return DIV64_U64_ROUND_UP(cost * hw_inuse, HWEIGHT_WHOLE);
670 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, u64 cost)
672 bio->bi_iocost_cost = cost;
673 atomic64_add(cost, &iocg->vtime);
676 #define CREATE_TRACE_POINTS
677 #include <trace/events/iocost.h>
679 /* latency Qos params changed, update period_us and all the dependent params */
680 static void ioc_refresh_period_us(struct ioc *ioc)
682 u32 ppm, lat, multi, period_us;
684 lockdep_assert_held(&ioc->lock);
686 /* pick the higher latency target */
687 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
688 ppm = ioc->params.qos[QOS_RPPM];
689 lat = ioc->params.qos[QOS_RLAT];
691 ppm = ioc->params.qos[QOS_WPPM];
692 lat = ioc->params.qos[QOS_WLAT];
696 * We want the period to be long enough to contain a healthy number
697 * of IOs while short enough for granular control. Define it as a
698 * multiple of the latency target. Ideally, the multiplier should
699 * be scaled according to the percentile so that it would nominally
700 * contain a certain number of requests. Let's be simpler and
701 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
704 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
707 period_us = multi * lat;
708 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
710 /* calculate dependent params */
711 ioc->period_us = period_us;
712 ioc->margin_us = period_us * MARGIN_PCT / 100;
713 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
714 period_us * VTIME_PER_USEC * INUSE_MARGIN_PCT, 100);
717 static int ioc_autop_idx(struct ioc *ioc)
719 int idx = ioc->autop_idx;
720 const struct ioc_params *p = &autop[idx];
725 if (!blk_queue_nonrot(ioc->rqos.q))
728 /* handle SATA SSDs w/ broken NCQ */
729 if (blk_queue_depth(ioc->rqos.q) == 1)
730 return AUTOP_SSD_QD1;
732 /* use one of the normal ssd sets */
733 if (idx < AUTOP_SSD_DFL)
734 return AUTOP_SSD_DFL;
736 /* if user is overriding anything, maintain what was there */
737 if (ioc->user_qos_params || ioc->user_cost_model)
740 /* step up/down based on the vrate */
741 vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100,
743 now_ns = ktime_get_ns();
745 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
746 if (!ioc->autop_too_fast_at)
747 ioc->autop_too_fast_at = now_ns;
748 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
751 ioc->autop_too_fast_at = 0;
754 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
755 if (!ioc->autop_too_slow_at)
756 ioc->autop_too_slow_at = now_ns;
757 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
760 ioc->autop_too_slow_at = 0;
767 * Take the followings as input
769 * @bps maximum sequential throughput
770 * @seqiops maximum sequential 4k iops
771 * @randiops maximum random 4k iops
773 * and calculate the linear model cost coefficients.
775 * *@page per-page cost 1s / (@bps / 4096)
776 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
777 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
779 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
780 u64 *page, u64 *seqio, u64 *randio)
784 *page = *seqio = *randio = 0;
787 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
788 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
791 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
797 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
803 static void ioc_refresh_lcoefs(struct ioc *ioc)
805 u64 *u = ioc->params.i_lcoefs;
806 u64 *c = ioc->params.lcoefs;
808 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
809 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
810 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
811 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
814 static bool ioc_refresh_params(struct ioc *ioc, bool force)
816 const struct ioc_params *p;
819 lockdep_assert_held(&ioc->lock);
821 idx = ioc_autop_idx(ioc);
824 if (idx == ioc->autop_idx && !force)
827 if (idx != ioc->autop_idx)
828 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
830 ioc->autop_idx = idx;
831 ioc->autop_too_fast_at = 0;
832 ioc->autop_too_slow_at = 0;
834 if (!ioc->user_qos_params)
835 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
836 if (!ioc->user_cost_model)
837 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
839 ioc_refresh_period_us(ioc);
840 ioc_refresh_lcoefs(ioc);
842 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
843 VTIME_PER_USEC, MILLION);
844 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
845 VTIME_PER_USEC, MILLION);
850 /* take a snapshot of the current [v]time and vrate */
851 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
855 now->now_ns = ktime_get();
856 now->now = ktime_to_us(now->now_ns);
857 now->vrate = atomic64_read(&ioc->vtime_rate);
860 * The current vtime is
862 * vtime at period start + (wallclock time since the start) * vrate
864 * As a consistent snapshot of `period_at_vtime` and `period_at` is
865 * needed, they're seqcount protected.
868 seq = read_seqcount_begin(&ioc->period_seqcount);
869 now->vnow = ioc->period_at_vtime +
870 (now->now - ioc->period_at) * now->vrate;
871 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
874 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
876 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
878 write_seqcount_begin(&ioc->period_seqcount);
879 ioc->period_at = now->now;
880 ioc->period_at_vtime = now->vnow;
881 write_seqcount_end(&ioc->period_seqcount);
883 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
884 add_timer(&ioc->timer);
888 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
889 * weight sums and propagate upwards accordingly.
891 static void __propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
893 struct ioc *ioc = iocg->ioc;
896 lockdep_assert_held(&ioc->lock);
898 inuse = min(active, inuse);
900 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
901 struct ioc_gq *parent = iocg->ancestors[lvl];
902 struct ioc_gq *child = iocg->ancestors[lvl + 1];
903 u32 parent_active = 0, parent_inuse = 0;
905 /* update the level sums */
906 parent->child_active_sum += (s32)(active - child->active);
907 parent->child_inuse_sum += (s32)(inuse - child->inuse);
908 /* apply the udpates */
909 child->active = active;
910 child->inuse = inuse;
913 * The delta between inuse and active sums indicates that
914 * that much of weight is being given away. Parent's inuse
915 * and active should reflect the ratio.
917 if (parent->child_active_sum) {
918 parent_active = parent->weight;
919 parent_inuse = DIV64_U64_ROUND_UP(
920 parent_active * parent->child_inuse_sum,
921 parent->child_active_sum);
924 /* do we need to keep walking up? */
925 if (parent_active == parent->active &&
926 parent_inuse == parent->inuse)
929 active = parent_active;
930 inuse = parent_inuse;
933 ioc->weights_updated = true;
936 static void commit_active_weights(struct ioc *ioc)
938 lockdep_assert_held(&ioc->lock);
940 if (ioc->weights_updated) {
941 /* paired with rmb in current_hweight(), see there */
943 atomic_inc(&ioc->hweight_gen);
944 ioc->weights_updated = false;
948 static void propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
950 __propagate_active_weight(iocg, active, inuse);
951 commit_active_weights(iocg->ioc);
954 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
956 struct ioc *ioc = iocg->ioc;
961 /* hot path - if uptodate, use cached */
962 ioc_gen = atomic_read(&ioc->hweight_gen);
963 if (ioc_gen == iocg->hweight_gen)
967 * Paired with wmb in commit_active_weights(). If we saw the
968 * updated hweight_gen, all the weight updates from
969 * __propagate_active_weight() are visible too.
971 * We can race with weight updates during calculation and get it
972 * wrong. However, hweight_gen would have changed and a future
973 * reader will recalculate and we're guaranteed to discard the
978 hwa = hwi = HWEIGHT_WHOLE;
979 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
980 struct ioc_gq *parent = iocg->ancestors[lvl];
981 struct ioc_gq *child = iocg->ancestors[lvl + 1];
982 u32 active_sum = READ_ONCE(parent->child_active_sum);
983 u32 inuse_sum = READ_ONCE(parent->child_inuse_sum);
984 u32 active = READ_ONCE(child->active);
985 u32 inuse = READ_ONCE(child->inuse);
987 /* we can race with deactivations and either may read as zero */
988 if (!active_sum || !inuse_sum)
991 active_sum = max(active, active_sum);
992 hwa = hwa * active / active_sum; /* max 16bits * 10000 */
994 inuse_sum = max(inuse, inuse_sum);
995 hwi = hwi * inuse / inuse_sum; /* max 16bits * 10000 */
998 iocg->hweight_active = max_t(u32, hwa, 1);
999 iocg->hweight_inuse = max_t(u32, hwi, 1);
1000 iocg->hweight_gen = ioc_gen;
1003 *hw_activep = iocg->hweight_active;
1005 *hw_inusep = iocg->hweight_inuse;
1008 static void weight_updated(struct ioc_gq *iocg)
1010 struct ioc *ioc = iocg->ioc;
1011 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1012 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1015 lockdep_assert_held(&ioc->lock);
1017 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1018 if (weight != iocg->weight && iocg->active)
1019 propagate_active_weight(iocg, weight,
1020 DIV64_U64_ROUND_UP(iocg->inuse * weight, iocg->weight));
1021 iocg->weight = weight;
1024 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1026 struct ioc *ioc = iocg->ioc;
1027 u64 last_period, cur_period, max_period_delta;
1028 u64 vtime, vmargin, vmin;
1032 * If seem to be already active, just update the stamp to tell the
1033 * timer that we're still active. We don't mind occassional races.
1035 if (!list_empty(&iocg->active_list)) {
1037 cur_period = atomic64_read(&ioc->cur_period);
1038 if (atomic64_read(&iocg->active_period) != cur_period)
1039 atomic64_set(&iocg->active_period, cur_period);
1043 /* racy check on internal node IOs, treat as root level IOs */
1044 if (iocg->child_active_sum)
1047 spin_lock_irq(&ioc->lock);
1052 cur_period = atomic64_read(&ioc->cur_period);
1053 last_period = atomic64_read(&iocg->active_period);
1054 atomic64_set(&iocg->active_period, cur_period);
1056 /* already activated or breaking leaf-only constraint? */
1057 if (!list_empty(&iocg->active_list))
1058 goto succeed_unlock;
1059 for (i = iocg->level - 1; i > 0; i--)
1060 if (!list_empty(&iocg->ancestors[i]->active_list))
1063 if (iocg->child_active_sum)
1067 * vtime may wrap when vrate is raised substantially due to
1068 * underestimated IO costs. Look at the period and ignore its
1069 * vtime if the iocg has been idle for too long. Also, cap the
1070 * budget it can start with to the margin.
1072 max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us);
1073 vtime = atomic64_read(&iocg->vtime);
1074 vmargin = ioc->margin_us * now->vrate;
1075 vmin = now->vnow - vmargin;
1077 if (last_period + max_period_delta < cur_period ||
1078 time_before64(vtime, vmin)) {
1079 atomic64_add(vmin - vtime, &iocg->vtime);
1080 atomic64_add(vmin - vtime, &iocg->done_vtime);
1085 * Activate, propagate weight and start period timer if not
1086 * running. Reset hweight_gen to avoid accidental match from
1089 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1090 list_add(&iocg->active_list, &ioc->active_iocgs);
1091 propagate_active_weight(iocg, iocg->weight,
1092 iocg->last_inuse ?: iocg->weight);
1094 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1095 last_period, cur_period, vtime);
1097 iocg->last_vtime = vtime;
1099 if (ioc->running == IOC_IDLE) {
1100 ioc->running = IOC_RUNNING;
1101 ioc_start_period(ioc, now);
1105 spin_unlock_irq(&ioc->lock);
1109 spin_unlock_irq(&ioc->lock);
1113 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1114 int flags, void *key)
1116 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1117 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1118 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1120 ctx->vbudget -= cost;
1122 if (ctx->vbudget < 0)
1125 iocg_commit_bio(ctx->iocg, wait->bio, cost);
1128 * autoremove_wake_function() removes the wait entry only when it
1129 * actually changed the task state. We want the wait always
1130 * removed. Remove explicitly and use default_wake_function().
1132 list_del_init(&wq_entry->entry);
1133 wait->committed = true;
1135 default_wake_function(wq_entry, mode, flags, key);
1139 static void iocg_kick_waitq(struct ioc_gq *iocg, struct ioc_now *now)
1141 struct ioc *ioc = iocg->ioc;
1142 struct iocg_wake_ctx ctx = { .iocg = iocg };
1143 u64 margin_ns = (u64)(ioc->period_us *
1144 WAITQ_TIMER_MARGIN_PCT / 100) * NSEC_PER_USEC;
1145 u64 vdebt, vshortage, expires, oexpires;
1149 lockdep_assert_held(&iocg->waitq.lock);
1151 current_hweight(iocg, NULL, &hw_inuse);
1152 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1155 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hw_inuse);
1156 if (vdebt && vbudget > 0) {
1157 u64 delta = min_t(u64, vbudget, vdebt);
1158 u64 abs_delta = min(cost_to_abs_cost(delta, hw_inuse),
1161 atomic64_add(delta, &iocg->vtime);
1162 atomic64_add(delta, &iocg->done_vtime);
1163 iocg->abs_vdebt -= abs_delta;
1167 * Wake up the ones which are due and see how much vtime we'll need
1170 ctx.hw_inuse = hw_inuse;
1171 ctx.vbudget = vbudget - vdebt;
1172 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1173 if (!waitqueue_active(&iocg->waitq))
1175 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1178 /* determine next wakeup, add a quarter margin to guarantee chunking */
1179 vshortage = -ctx.vbudget;
1180 expires = now->now_ns +
1181 DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC;
1182 expires += margin_ns / 4;
1184 /* if already active and close enough, don't bother */
1185 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1186 if (hrtimer_is_queued(&iocg->waitq_timer) &&
1187 abs(oexpires - expires) <= margin_ns / 4)
1190 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1191 margin_ns / 4, HRTIMER_MODE_ABS);
1194 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1196 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1198 unsigned long flags;
1200 ioc_now(iocg->ioc, &now);
1202 spin_lock_irqsave(&iocg->waitq.lock, flags);
1203 iocg_kick_waitq(iocg, &now);
1204 spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1206 return HRTIMER_NORESTART;
1209 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1211 struct ioc *ioc = iocg->ioc;
1212 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1213 u64 vtime = atomic64_read(&iocg->vtime);
1214 u64 vmargin = ioc->margin_us * now->vrate;
1215 u64 margin_ns = ioc->margin_us * NSEC_PER_USEC;
1216 u64 delta_ns, expires, oexpires;
1219 lockdep_assert_held(&iocg->waitq.lock);
1221 /* debt-adjust vtime */
1222 current_hweight(iocg, NULL, &hw_inuse);
1223 vtime += abs_cost_to_cost(iocg->abs_vdebt, hw_inuse);
1226 * Clear or maintain depending on the overage. Non-zero vdebt is what
1227 * guarantees that @iocg is online and future iocg_kick_delay() will
1228 * clear use_delay. Don't leave it on when there's no vdebt.
1230 if (!iocg->abs_vdebt || time_before_eq64(vtime, now->vnow)) {
1231 blkcg_clear_delay(blkg);
1234 if (!atomic_read(&blkg->use_delay) &&
1235 time_before_eq64(vtime, now->vnow + vmargin))
1239 delta_ns = DIV64_U64_ROUND_UP(vtime - now->vnow,
1240 now->vrate) * NSEC_PER_USEC;
1241 blkcg_set_delay(blkg, delta_ns);
1242 expires = now->now_ns + delta_ns;
1244 /* if already active and close enough, don't bother */
1245 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer));
1246 if (hrtimer_is_queued(&iocg->delay_timer) &&
1247 abs(oexpires - expires) <= margin_ns / 4)
1250 hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires),
1251 margin_ns / 4, HRTIMER_MODE_ABS);
1255 static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer)
1257 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer);
1259 unsigned long flags;
1261 spin_lock_irqsave(&iocg->waitq.lock, flags);
1262 ioc_now(iocg->ioc, &now);
1263 iocg_kick_delay(iocg, &now);
1264 spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1266 return HRTIMER_NORESTART;
1269 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1271 u32 nr_met[2] = { };
1272 u32 nr_missed[2] = { };
1276 for_each_online_cpu(cpu) {
1277 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1278 u64 this_rq_wait_ns;
1280 for (rw = READ; rw <= WRITE; rw++) {
1281 u32 this_met = READ_ONCE(stat->missed[rw].nr_met);
1282 u32 this_missed = READ_ONCE(stat->missed[rw].nr_missed);
1284 nr_met[rw] += this_met - stat->missed[rw].last_met;
1285 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1286 stat->missed[rw].last_met = this_met;
1287 stat->missed[rw].last_missed = this_missed;
1290 this_rq_wait_ns = READ_ONCE(stat->rq_wait_ns);
1291 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1292 stat->last_rq_wait_ns = this_rq_wait_ns;
1295 for (rw = READ; rw <= WRITE; rw++) {
1296 if (nr_met[rw] + nr_missed[rw])
1298 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1299 nr_met[rw] + nr_missed[rw]);
1301 missed_ppm_ar[rw] = 0;
1304 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1305 ioc->period_us * NSEC_PER_USEC);
1308 /* was iocg idle this period? */
1309 static bool iocg_is_idle(struct ioc_gq *iocg)
1311 struct ioc *ioc = iocg->ioc;
1313 /* did something get issued this period? */
1314 if (atomic64_read(&iocg->active_period) ==
1315 atomic64_read(&ioc->cur_period))
1318 /* is something in flight? */
1319 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1325 /* returns usage with margin added if surplus is large enough */
1326 static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse)
1329 usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100);
1330 usage += SURPLUS_SCALE_ABS;
1332 /* don't bother if the surplus is too small */
1333 if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse)
1339 static void ioc_timer_fn(struct timer_list *timer)
1341 struct ioc *ioc = container_of(timer, struct ioc, timer);
1342 struct ioc_gq *iocg, *tiocg;
1344 int nr_surpluses = 0, nr_shortages = 0, nr_lagging = 0;
1345 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
1346 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
1347 u32 missed_ppm[2], rq_wait_pct;
1349 int prev_busy_level, i;
1351 /* how were the latencies during the period? */
1352 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
1354 /* take care of active iocgs */
1355 spin_lock_irq(&ioc->lock);
1359 period_vtime = now.vnow - ioc->period_at_vtime;
1360 if (WARN_ON_ONCE(!period_vtime)) {
1361 spin_unlock_irq(&ioc->lock);
1366 * Waiters determine the sleep durations based on the vrate they
1367 * saw at the time of sleep. If vrate has increased, some waiters
1368 * could be sleeping for too long. Wake up tardy waiters which
1369 * should have woken up in the last period and expire idle iocgs.
1371 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
1372 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
1373 !iocg_is_idle(iocg))
1376 spin_lock(&iocg->waitq.lock);
1378 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt) {
1379 /* might be oversleeping vtime / hweight changes, kick */
1380 iocg_kick_waitq(iocg, &now);
1381 iocg_kick_delay(iocg, &now);
1382 } else if (iocg_is_idle(iocg)) {
1383 /* no waiter and idle, deactivate */
1384 iocg->last_inuse = iocg->inuse;
1385 __propagate_active_weight(iocg, 0, 0);
1386 list_del_init(&iocg->active_list);
1389 spin_unlock(&iocg->waitq.lock);
1391 commit_active_weights(ioc);
1393 /* calc usages and see whether some weights need to be moved around */
1394 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1395 u64 vdone, vtime, vusage, vmargin, vmin;
1396 u32 hw_active, hw_inuse, usage;
1399 * Collect unused and wind vtime closer to vnow to prevent
1400 * iocgs from accumulating a large amount of budget.
1402 vdone = atomic64_read(&iocg->done_vtime);
1403 vtime = atomic64_read(&iocg->vtime);
1404 current_hweight(iocg, &hw_active, &hw_inuse);
1407 * Latency QoS detection doesn't account for IOs which are
1408 * in-flight for longer than a period. Detect them by
1409 * comparing vdone against period start. If lagging behind
1410 * IOs from past periods, don't increase vrate.
1412 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
1413 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
1414 time_after64(vtime, vdone) &&
1415 time_after64(vtime, now.vnow -
1416 MAX_LAGGING_PERIODS * period_vtime) &&
1417 time_before64(vdone, now.vnow - period_vtime))
1420 if (waitqueue_active(&iocg->waitq))
1421 vusage = now.vnow - iocg->last_vtime;
1422 else if (time_before64(iocg->last_vtime, vtime))
1423 vusage = vtime - iocg->last_vtime;
1427 iocg->last_vtime += vusage;
1429 * Factor in in-flight vtime into vusage to avoid
1430 * high-latency completions appearing as idle. This should
1431 * be done after the above ->last_time adjustment.
1433 vusage = max(vusage, vtime - vdone);
1435 /* calculate hweight based usage ratio and record */
1437 usage = DIV64_U64_ROUND_UP(vusage * hw_inuse,
1439 iocg->usage_idx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS;
1440 iocg->usages[iocg->usage_idx] = usage;
1445 /* see whether there's surplus vtime */
1446 vmargin = ioc->margin_us * now.vrate;
1447 vmin = now.vnow - vmargin;
1449 iocg->has_surplus = false;
1451 if (!waitqueue_active(&iocg->waitq) &&
1452 time_before64(vtime, vmin)) {
1453 u64 delta = vmin - vtime;
1455 /* throw away surplus vtime */
1456 atomic64_add(delta, &iocg->vtime);
1457 atomic64_add(delta, &iocg->done_vtime);
1458 iocg->last_vtime += delta;
1459 /* if usage is sufficiently low, maybe it can donate */
1460 if (surplus_adjusted_hweight_inuse(usage, hw_inuse)) {
1461 iocg->has_surplus = true;
1464 } else if (hw_inuse < hw_active) {
1465 u32 new_hwi, new_inuse;
1467 /* was donating but might need to take back some */
1468 if (waitqueue_active(&iocg->waitq)) {
1469 new_hwi = hw_active;
1471 new_hwi = max(hw_inuse,
1472 usage * SURPLUS_SCALE_PCT / 100 +
1476 new_inuse = div64_u64((u64)iocg->inuse * new_hwi,
1478 new_inuse = clamp_t(u32, new_inuse, 1, iocg->active);
1480 if (new_inuse > iocg->inuse) {
1481 TRACE_IOCG_PATH(inuse_takeback, iocg, &now,
1482 iocg->inuse, new_inuse,
1484 __propagate_active_weight(iocg, iocg->weight,
1488 /* genuninely out of vtime */
1493 if (!nr_shortages || !nr_surpluses)
1494 goto skip_surplus_transfers;
1496 /* there are both shortages and surpluses, transfer surpluses */
1497 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1498 u32 usage, hw_active, hw_inuse, new_hwi, new_inuse;
1501 if (!iocg->has_surplus)
1504 /* base the decision on max historical usage */
1505 for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) {
1506 if (iocg->usages[i]) {
1507 usage = max(usage, iocg->usages[i]);
1511 if (nr_valid < MIN_VALID_USAGES)
1514 current_hweight(iocg, &hw_active, &hw_inuse);
1515 new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse);
1519 new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi,
1521 if (new_inuse < iocg->inuse) {
1522 TRACE_IOCG_PATH(inuse_giveaway, iocg, &now,
1523 iocg->inuse, new_inuse,
1525 __propagate_active_weight(iocg, iocg->weight, new_inuse);
1528 skip_surplus_transfers:
1529 commit_active_weights(ioc);
1532 * If q is getting clogged or we're missing too much, we're issuing
1533 * too much IO and should lower vtime rate. If we're not missing
1534 * and experiencing shortages but not surpluses, we're too stingy
1535 * and should increase vtime rate.
1537 prev_busy_level = ioc->busy_level;
1538 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
1539 missed_ppm[READ] > ppm_rthr ||
1540 missed_ppm[WRITE] > ppm_wthr) {
1541 /* clearly missing QoS targets, slow down vrate */
1542 ioc->busy_level = max(ioc->busy_level, 0);
1544 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
1545 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
1546 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
1547 /* QoS targets are being met with >25% margin */
1550 * We're throttling while the device has spare
1551 * capacity. If vrate was being slowed down, stop.
1553 ioc->busy_level = min(ioc->busy_level, 0);
1556 * If there are IOs spanning multiple periods, wait
1557 * them out before pushing the device harder. If
1558 * there are surpluses, let redistribution work it
1561 if (!nr_lagging && !nr_surpluses)
1565 * Nobody is being throttled and the users aren't
1566 * issuing enough IOs to saturate the device. We
1567 * simply don't know how close the device is to
1568 * saturation. Coast.
1570 ioc->busy_level = 0;
1573 /* inside the hysterisis margin, we're good */
1574 ioc->busy_level = 0;
1577 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
1579 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
1580 u64 vrate = atomic64_read(&ioc->vtime_rate);
1581 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
1583 /* rq_wait signal is always reliable, ignore user vrate_min */
1584 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
1585 vrate_min = VRATE_MIN;
1588 * If vrate is out of bounds, apply clamp gradually as the
1589 * bounds can change abruptly. Otherwise, apply busy_level
1592 if (vrate < vrate_min) {
1593 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
1595 vrate = min(vrate, vrate_min);
1596 } else if (vrate > vrate_max) {
1597 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
1599 vrate = max(vrate, vrate_max);
1601 int idx = min_t(int, abs(ioc->busy_level),
1602 ARRAY_SIZE(vrate_adj_pct) - 1);
1603 u32 adj_pct = vrate_adj_pct[idx];
1605 if (ioc->busy_level > 0)
1606 adj_pct = 100 - adj_pct;
1608 adj_pct = 100 + adj_pct;
1610 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1611 vrate_min, vrate_max);
1614 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1615 nr_lagging, nr_shortages,
1618 atomic64_set(&ioc->vtime_rate, vrate);
1619 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
1620 ioc->period_us * vrate * INUSE_MARGIN_PCT, 100);
1621 } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
1622 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
1623 missed_ppm, rq_wait_pct, nr_lagging,
1624 nr_shortages, nr_surpluses);
1627 ioc_refresh_params(ioc, false);
1630 * This period is done. Move onto the next one. If nothing's
1631 * going on with the device, stop the timer.
1633 atomic64_inc(&ioc->cur_period);
1635 if (ioc->running != IOC_STOP) {
1636 if (!list_empty(&ioc->active_iocgs)) {
1637 ioc_start_period(ioc, &now);
1639 ioc->busy_level = 0;
1640 ioc->running = IOC_IDLE;
1644 spin_unlock_irq(&ioc->lock);
1647 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
1648 bool is_merge, u64 *costp)
1650 struct ioc *ioc = iocg->ioc;
1651 u64 coef_seqio, coef_randio, coef_page;
1652 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
1656 switch (bio_op(bio)) {
1658 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
1659 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
1660 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
1663 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
1664 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
1665 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
1672 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
1673 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
1677 if (seek_pages > LCOEF_RANDIO_PAGES) {
1678 cost += coef_randio;
1683 cost += pages * coef_page;
1688 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
1692 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
1696 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
1699 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
1701 switch (req_op(rq)) {
1703 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
1706 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
1713 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
1717 calc_size_vtime_cost_builtin(rq, ioc, &cost);
1721 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
1723 struct blkcg_gq *blkg = bio->bi_blkg;
1724 struct ioc *ioc = rqos_to_ioc(rqos);
1725 struct ioc_gq *iocg = blkg_to_iocg(blkg);
1727 struct iocg_wait wait;
1728 u32 hw_active, hw_inuse;
1729 u64 abs_cost, cost, vtime;
1731 /* bypass IOs if disabled or for root cgroup */
1732 if (!ioc->enabled || !iocg->level)
1735 /* always activate so that even 0 cost IOs get protected to some level */
1736 if (!iocg_activate(iocg, &now))
1739 /* calculate the absolute vtime cost */
1740 abs_cost = calc_vtime_cost(bio, iocg, false);
1744 iocg->cursor = bio_end_sector(bio);
1746 vtime = atomic64_read(&iocg->vtime);
1747 current_hweight(iocg, &hw_active, &hw_inuse);
1749 if (hw_inuse < hw_active &&
1750 time_after_eq64(vtime + ioc->inuse_margin_vtime, now.vnow)) {
1751 TRACE_IOCG_PATH(inuse_reset, iocg, &now,
1752 iocg->inuse, iocg->weight, hw_inuse, hw_active);
1753 spin_lock_irq(&ioc->lock);
1754 propagate_active_weight(iocg, iocg->weight, iocg->weight);
1755 spin_unlock_irq(&ioc->lock);
1756 current_hweight(iocg, &hw_active, &hw_inuse);
1759 cost = abs_cost_to_cost(abs_cost, hw_inuse);
1762 * If no one's waiting and within budget, issue right away. The
1763 * tests are racy but the races aren't systemic - we only miss once
1764 * in a while which is fine.
1766 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
1767 time_before_eq64(vtime + cost, now.vnow)) {
1768 iocg_commit_bio(iocg, bio, cost);
1773 * We activated above but w/o any synchronization. Deactivation is
1774 * synchronized with waitq.lock and we won't get deactivated as long
1775 * as we're waiting or has debt, so we're good if we're activated
1776 * here. In the unlikely case that we aren't, just issue the IO.
1778 spin_lock_irq(&iocg->waitq.lock);
1780 if (unlikely(list_empty(&iocg->active_list))) {
1781 spin_unlock_irq(&iocg->waitq.lock);
1782 iocg_commit_bio(iocg, bio, cost);
1787 * We're over budget. If @bio has to be issued regardless, remember
1788 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
1789 * off the debt before waking more IOs.
1791 * This way, the debt is continuously paid off each period with the
1792 * actual budget available to the cgroup. If we just wound vtime, we
1793 * would incorrectly use the current hw_inuse for the entire amount
1794 * which, for example, can lead to the cgroup staying blocked for a
1795 * long time even with substantially raised hw_inuse.
1797 * An iocg with vdebt should stay online so that the timer can keep
1798 * deducting its vdebt and [de]activate use_delay mechanism
1799 * accordingly. We don't want to race against the timer trying to
1800 * clear them and leave @iocg inactive w/ dangling use_delay heavily
1801 * penalizing the cgroup and its descendants.
1803 if (bio_issue_as_root_blkg(bio) || fatal_signal_pending(current)) {
1804 iocg->abs_vdebt += abs_cost;
1805 if (iocg_kick_delay(iocg, &now))
1806 blkcg_schedule_throttle(rqos->q,
1807 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
1808 spin_unlock_irq(&iocg->waitq.lock);
1813 * Append self to the waitq and schedule the wakeup timer if we're
1814 * the first waiter. The timer duration is calculated based on the
1815 * current vrate. vtime and hweight changes can make it too short
1816 * or too long. Each wait entry records the absolute cost it's
1817 * waiting for to allow re-evaluation using a custom wait entry.
1819 * If too short, the timer simply reschedules itself. If too long,
1820 * the period timer will notice and trigger wakeups.
1822 * All waiters are on iocg->waitq and the wait states are
1823 * synchronized using waitq.lock.
1825 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
1826 wait.wait.private = current;
1828 wait.abs_cost = abs_cost;
1829 wait.committed = false; /* will be set true by waker */
1831 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
1832 iocg_kick_waitq(iocg, &now);
1834 spin_unlock_irq(&iocg->waitq.lock);
1837 set_current_state(TASK_UNINTERRUPTIBLE);
1843 /* waker already committed us, proceed */
1844 finish_wait(&iocg->waitq, &wait.wait);
1847 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
1850 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1851 struct ioc *ioc = iocg->ioc;
1852 sector_t bio_end = bio_end_sector(bio);
1856 unsigned long flags;
1858 /* bypass if disabled or for root cgroup */
1859 if (!ioc->enabled || !iocg->level)
1862 abs_cost = calc_vtime_cost(bio, iocg, true);
1867 current_hweight(iocg, NULL, &hw_inuse);
1868 cost = abs_cost_to_cost(abs_cost, hw_inuse);
1870 /* update cursor if backmerging into the request at the cursor */
1871 if (blk_rq_pos(rq) < bio_end &&
1872 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
1873 iocg->cursor = bio_end;
1876 * Charge if there's enough vtime budget and the existing request has
1879 if (rq->bio && rq->bio->bi_iocost_cost &&
1880 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
1881 iocg_commit_bio(iocg, bio, cost);
1886 * Otherwise, account it as debt if @iocg is online, which it should
1887 * be for the vast majority of cases. See debt handling in
1888 * ioc_rqos_throttle() for details.
1890 spin_lock_irqsave(&iocg->waitq.lock, flags);
1891 if (likely(!list_empty(&iocg->active_list))) {
1892 iocg->abs_vdebt += abs_cost;
1893 iocg_kick_delay(iocg, &now);
1895 iocg_commit_bio(iocg, bio, cost);
1897 spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1900 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
1902 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1904 if (iocg && bio->bi_iocost_cost)
1905 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
1908 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
1910 struct ioc *ioc = rqos_to_ioc(rqos);
1911 u64 on_q_ns, rq_wait_ns, size_nsec;
1914 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
1917 switch (req_op(rq) & REQ_OP_MASK) {
1930 on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
1931 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
1932 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
1934 if (on_q_ns <= size_nsec ||
1935 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
1936 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_met);
1938 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_missed);
1940 this_cpu_add(ioc->pcpu_stat->rq_wait_ns, rq_wait_ns);
1943 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
1945 struct ioc *ioc = rqos_to_ioc(rqos);
1947 spin_lock_irq(&ioc->lock);
1948 ioc_refresh_params(ioc, false);
1949 spin_unlock_irq(&ioc->lock);
1952 static void ioc_rqos_exit(struct rq_qos *rqos)
1954 struct ioc *ioc = rqos_to_ioc(rqos);
1956 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
1958 spin_lock_irq(&ioc->lock);
1959 ioc->running = IOC_STOP;
1960 spin_unlock_irq(&ioc->lock);
1962 del_timer_sync(&ioc->timer);
1963 free_percpu(ioc->pcpu_stat);
1967 static struct rq_qos_ops ioc_rqos_ops = {
1968 .throttle = ioc_rqos_throttle,
1969 .merge = ioc_rqos_merge,
1970 .done_bio = ioc_rqos_done_bio,
1971 .done = ioc_rqos_done,
1972 .queue_depth_changed = ioc_rqos_queue_depth_changed,
1973 .exit = ioc_rqos_exit,
1976 static int blk_iocost_init(struct request_queue *q)
1979 struct rq_qos *rqos;
1982 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1986 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
1987 if (!ioc->pcpu_stat) {
1993 rqos->id = RQ_QOS_COST;
1994 rqos->ops = &ioc_rqos_ops;
1997 spin_lock_init(&ioc->lock);
1998 timer_setup(&ioc->timer, ioc_timer_fn, 0);
1999 INIT_LIST_HEAD(&ioc->active_iocgs);
2001 ioc->running = IOC_IDLE;
2002 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2003 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2004 ioc->period_at = ktime_to_us(ktime_get());
2005 atomic64_set(&ioc->cur_period, 0);
2006 atomic_set(&ioc->hweight_gen, 0);
2008 spin_lock_irq(&ioc->lock);
2009 ioc->autop_idx = AUTOP_INVALID;
2010 ioc_refresh_params(ioc, true);
2011 spin_unlock_irq(&ioc->lock);
2013 rq_qos_add(q, rqos);
2014 ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2016 rq_qos_del(q, rqos);
2017 free_percpu(ioc->pcpu_stat);
2024 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2026 struct ioc_cgrp *iocc;
2028 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2032 iocc->dfl_weight = CGROUP_WEIGHT_DFL;
2036 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2038 kfree(container_of(cpd, struct ioc_cgrp, cpd));
2041 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2042 struct blkcg *blkcg)
2044 int levels = blkcg->css.cgroup->level + 1;
2045 struct ioc_gq *iocg;
2047 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2054 static void ioc_pd_init(struct blkg_policy_data *pd)
2056 struct ioc_gq *iocg = pd_to_iocg(pd);
2057 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2058 struct ioc *ioc = q_to_ioc(blkg->q);
2060 struct blkcg_gq *tblkg;
2061 unsigned long flags;
2066 atomic64_set(&iocg->vtime, now.vnow);
2067 atomic64_set(&iocg->done_vtime, now.vnow);
2068 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2069 INIT_LIST_HEAD(&iocg->active_list);
2070 iocg->hweight_active = HWEIGHT_WHOLE;
2071 iocg->hweight_inuse = HWEIGHT_WHOLE;
2073 init_waitqueue_head(&iocg->waitq);
2074 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2075 iocg->waitq_timer.function = iocg_waitq_timer_fn;
2076 hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2077 iocg->delay_timer.function = iocg_delay_timer_fn;
2079 iocg->level = blkg->blkcg->css.cgroup->level;
2081 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2082 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2083 iocg->ancestors[tiocg->level] = tiocg;
2086 spin_lock_irqsave(&ioc->lock, flags);
2087 weight_updated(iocg);
2088 spin_unlock_irqrestore(&ioc->lock, flags);
2091 static void ioc_pd_free(struct blkg_policy_data *pd)
2093 struct ioc_gq *iocg = pd_to_iocg(pd);
2094 struct ioc *ioc = iocg->ioc;
2097 spin_lock(&ioc->lock);
2098 if (!list_empty(&iocg->active_list)) {
2099 propagate_active_weight(iocg, 0, 0);
2100 list_del_init(&iocg->active_list);
2102 spin_unlock(&ioc->lock);
2104 hrtimer_cancel(&iocg->waitq_timer);
2105 hrtimer_cancel(&iocg->delay_timer);
2110 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2113 const char *dname = blkg_dev_name(pd->blkg);
2114 struct ioc_gq *iocg = pd_to_iocg(pd);
2116 if (dname && iocg->cfg_weight)
2117 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight);
2122 static int ioc_weight_show(struct seq_file *sf, void *v)
2124 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2125 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2127 seq_printf(sf, "default %u\n", iocc->dfl_weight);
2128 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
2129 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2133 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
2134 size_t nbytes, loff_t off)
2136 struct blkcg *blkcg = css_to_blkcg(of_css(of));
2137 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2138 struct blkg_conf_ctx ctx;
2139 struct ioc_gq *iocg;
2143 if (!strchr(buf, ':')) {
2144 struct blkcg_gq *blkg;
2146 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
2149 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2152 spin_lock(&blkcg->lock);
2153 iocc->dfl_weight = v;
2154 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
2155 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2158 spin_lock_irq(&iocg->ioc->lock);
2159 weight_updated(iocg);
2160 spin_unlock_irq(&iocg->ioc->lock);
2163 spin_unlock(&blkcg->lock);
2168 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
2172 iocg = blkg_to_iocg(ctx.blkg);
2174 if (!strncmp(ctx.body, "default", 7)) {
2177 if (!sscanf(ctx.body, "%u", &v))
2179 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2183 spin_lock(&iocg->ioc->lock);
2184 iocg->cfg_weight = v;
2185 weight_updated(iocg);
2186 spin_unlock(&iocg->ioc->lock);
2188 blkg_conf_finish(&ctx);
2192 blkg_conf_finish(&ctx);
2196 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2199 const char *dname = blkg_dev_name(pd->blkg);
2200 struct ioc *ioc = pd_to_iocg(pd)->ioc;
2205 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
2206 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
2207 ioc->params.qos[QOS_RPPM] / 10000,
2208 ioc->params.qos[QOS_RPPM] % 10000 / 100,
2209 ioc->params.qos[QOS_RLAT],
2210 ioc->params.qos[QOS_WPPM] / 10000,
2211 ioc->params.qos[QOS_WPPM] % 10000 / 100,
2212 ioc->params.qos[QOS_WLAT],
2213 ioc->params.qos[QOS_MIN] / 10000,
2214 ioc->params.qos[QOS_MIN] % 10000 / 100,
2215 ioc->params.qos[QOS_MAX] / 10000,
2216 ioc->params.qos[QOS_MAX] % 10000 / 100);
2220 static int ioc_qos_show(struct seq_file *sf, void *v)
2222 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2224 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
2225 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2229 static const match_table_t qos_ctrl_tokens = {
2230 { QOS_ENABLE, "enable=%u" },
2231 { QOS_CTRL, "ctrl=%s" },
2232 { NR_QOS_CTRL_PARAMS, NULL },
2235 static const match_table_t qos_tokens = {
2236 { QOS_RPPM, "rpct=%s" },
2237 { QOS_RLAT, "rlat=%u" },
2238 { QOS_WPPM, "wpct=%s" },
2239 { QOS_WLAT, "wlat=%u" },
2240 { QOS_MIN, "min=%s" },
2241 { QOS_MAX, "max=%s" },
2242 { NR_QOS_PARAMS, NULL },
2245 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
2246 size_t nbytes, loff_t off)
2248 struct gendisk *disk;
2250 u32 qos[NR_QOS_PARAMS];
2255 disk = blkcg_conf_get_disk(&input);
2257 return PTR_ERR(disk);
2259 ioc = q_to_ioc(disk->queue);
2261 ret = blk_iocost_init(disk->queue);
2264 ioc = q_to_ioc(disk->queue);
2267 spin_lock_irq(&ioc->lock);
2268 memcpy(qos, ioc->params.qos, sizeof(qos));
2269 enable = ioc->enabled;
2270 user = ioc->user_qos_params;
2271 spin_unlock_irq(&ioc->lock);
2273 while ((p = strsep(&input, " \t\n"))) {
2274 substring_t args[MAX_OPT_ARGS];
2282 switch (match_token(p, qos_ctrl_tokens, args)) {
2284 match_u64(&args[0], &v);
2288 match_strlcpy(buf, &args[0], sizeof(buf));
2289 if (!strcmp(buf, "auto"))
2291 else if (!strcmp(buf, "user"))
2298 tok = match_token(p, qos_tokens, args);
2302 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2305 if (cgroup_parse_float(buf, 2, &v))
2307 if (v < 0 || v > 10000)
2313 if (match_u64(&args[0], &v))
2319 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2322 if (cgroup_parse_float(buf, 2, &v))
2326 qos[tok] = clamp_t(s64, v * 100,
2327 VRATE_MIN_PPM, VRATE_MAX_PPM);
2335 if (qos[QOS_MIN] > qos[QOS_MAX])
2338 spin_lock_irq(&ioc->lock);
2341 blk_stat_enable_accounting(ioc->rqos.q);
2342 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2343 ioc->enabled = true;
2345 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2346 ioc->enabled = false;
2350 memcpy(ioc->params.qos, qos, sizeof(qos));
2351 ioc->user_qos_params = true;
2353 ioc->user_qos_params = false;
2356 ioc_refresh_params(ioc, true);
2357 spin_unlock_irq(&ioc->lock);
2359 put_disk_and_module(disk);
2364 put_disk_and_module(disk);
2368 static u64 ioc_cost_model_prfill(struct seq_file *sf,
2369 struct blkg_policy_data *pd, int off)
2371 const char *dname = blkg_dev_name(pd->blkg);
2372 struct ioc *ioc = pd_to_iocg(pd)->ioc;
2373 u64 *u = ioc->params.i_lcoefs;
2378 seq_printf(sf, "%s ctrl=%s model=linear "
2379 "rbps=%llu rseqiops=%llu rrandiops=%llu "
2380 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
2381 dname, ioc->user_cost_model ? "user" : "auto",
2382 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
2383 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
2387 static int ioc_cost_model_show(struct seq_file *sf, void *v)
2389 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2391 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
2392 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2396 static const match_table_t cost_ctrl_tokens = {
2397 { COST_CTRL, "ctrl=%s" },
2398 { COST_MODEL, "model=%s" },
2399 { NR_COST_CTRL_PARAMS, NULL },
2402 static const match_table_t i_lcoef_tokens = {
2403 { I_LCOEF_RBPS, "rbps=%u" },
2404 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
2405 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
2406 { I_LCOEF_WBPS, "wbps=%u" },
2407 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
2408 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
2409 { NR_I_LCOEFS, NULL },
2412 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
2413 size_t nbytes, loff_t off)
2415 struct gendisk *disk;
2422 disk = blkcg_conf_get_disk(&input);
2424 return PTR_ERR(disk);
2426 ioc = q_to_ioc(disk->queue);
2428 ret = blk_iocost_init(disk->queue);
2431 ioc = q_to_ioc(disk->queue);
2434 spin_lock_irq(&ioc->lock);
2435 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
2436 user = ioc->user_cost_model;
2437 spin_unlock_irq(&ioc->lock);
2439 while ((p = strsep(&input, " \t\n"))) {
2440 substring_t args[MAX_OPT_ARGS];
2448 switch (match_token(p, cost_ctrl_tokens, args)) {
2450 match_strlcpy(buf, &args[0], sizeof(buf));
2451 if (!strcmp(buf, "auto"))
2453 else if (!strcmp(buf, "user"))
2459 match_strlcpy(buf, &args[0], sizeof(buf));
2460 if (strcmp(buf, "linear"))
2465 tok = match_token(p, i_lcoef_tokens, args);
2466 if (tok == NR_I_LCOEFS)
2468 if (match_u64(&args[0], &v))
2474 spin_lock_irq(&ioc->lock);
2476 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
2477 ioc->user_cost_model = true;
2479 ioc->user_cost_model = false;
2481 ioc_refresh_params(ioc, true);
2482 spin_unlock_irq(&ioc->lock);
2484 put_disk_and_module(disk);
2490 put_disk_and_module(disk);
2494 static struct cftype ioc_files[] = {
2497 .flags = CFTYPE_NOT_ON_ROOT,
2498 .seq_show = ioc_weight_show,
2499 .write = ioc_weight_write,
2503 .flags = CFTYPE_ONLY_ON_ROOT,
2504 .seq_show = ioc_qos_show,
2505 .write = ioc_qos_write,
2508 .name = "cost.model",
2509 .flags = CFTYPE_ONLY_ON_ROOT,
2510 .seq_show = ioc_cost_model_show,
2511 .write = ioc_cost_model_write,
2516 static struct blkcg_policy blkcg_policy_iocost = {
2517 .dfl_cftypes = ioc_files,
2518 .cpd_alloc_fn = ioc_cpd_alloc,
2519 .cpd_free_fn = ioc_cpd_free,
2520 .pd_alloc_fn = ioc_pd_alloc,
2521 .pd_init_fn = ioc_pd_init,
2522 .pd_free_fn = ioc_pd_free,
2525 static int __init ioc_init(void)
2527 return blkcg_policy_register(&blkcg_policy_iocost);
2530 static void __exit ioc_exit(void)
2532 return blkcg_policy_unregister(&blkcg_policy_iocost);
2535 module_init(ioc_init);
2536 module_exit(ioc_exit);