1 // SPDX-License-Identifier: GPL-2.0-only
3 * fs/kernfs/file.c - kernfs file implementation
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
11 #include <linux/seq_file.h>
12 #include <linux/slab.h>
13 #include <linux/poll.h>
14 #include <linux/pagemap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/fsnotify.h>
18 #include "kernfs-internal.h"
21 * There's one kernfs_open_file for each open file and one kernfs_open_node
22 * for each kernfs_node with one or more open files.
24 * kernfs_node->attr.open points to kernfs_open_node. attr.open is
25 * protected by kernfs_open_node_lock.
27 * filp->private_data points to seq_file whose ->private points to
28 * kernfs_open_file. kernfs_open_files are chained at
29 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
31 static DEFINE_SPINLOCK(kernfs_open_node_lock);
32 static DEFINE_MUTEX(kernfs_open_file_mutex);
34 struct kernfs_open_node {
37 wait_queue_head_t poll;
38 struct list_head files; /* goes through kernfs_open_file.list */
42 * kernfs_notify() may be called from any context and bounces notifications
43 * through a work item. To minimize space overhead in kernfs_node, the
44 * pending queue is implemented as a singly linked list of kernfs_nodes.
45 * The list is terminated with the self pointer so that whether a
46 * kernfs_node is on the list or not can be determined by testing the next
49 #define KERNFS_NOTIFY_EOL ((void *)&kernfs_notify_list)
51 static DEFINE_SPINLOCK(kernfs_notify_lock);
52 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
54 static struct kernfs_open_file *kernfs_of(struct file *file)
56 return ((struct seq_file *)file->private_data)->private;
60 * Determine the kernfs_ops for the given kernfs_node. This function must
61 * be called while holding an active reference.
63 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
65 if (kn->flags & KERNFS_LOCKDEP)
66 lockdep_assert_held(kn);
71 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
72 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
73 * a seq_file iteration which is fully initialized with an active reference
74 * or an aborted kernfs_seq_start() due to get_active failure. The
75 * position pointer is the only context for each seq_file iteration and
76 * thus the stop condition should be encoded in it. As the return value is
77 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
78 * choice to indicate get_active failure.
80 * Unfortunately, this is complicated due to the optional custom seq_file
81 * operations which may return ERR_PTR(-ENODEV) too. kernfs_seq_stop()
82 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
83 * custom seq_file operations and thus can't decide whether put_active
84 * should be performed or not only on ERR_PTR(-ENODEV).
86 * This is worked around by factoring out the custom seq_stop() and
87 * put_active part into kernfs_seq_stop_active(), skipping it from
88 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
89 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
90 * that kernfs_seq_stop_active() is skipped only after get_active failure.
92 static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
94 struct kernfs_open_file *of = sf->private;
95 const struct kernfs_ops *ops = kernfs_ops(of->kn);
99 kernfs_put_active(of->kn);
102 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
104 struct kernfs_open_file *of = sf->private;
105 const struct kernfs_ops *ops;
108 * @of->mutex nests outside active ref and is primarily to ensure that
109 * the ops aren't called concurrently for the same open file.
111 mutex_lock(&of->mutex);
112 if (!kernfs_get_active(of->kn))
113 return ERR_PTR(-ENODEV);
115 ops = kernfs_ops(of->kn);
116 if (ops->seq_start) {
117 void *next = ops->seq_start(sf, ppos);
118 /* see the comment above kernfs_seq_stop_active() */
119 if (next == ERR_PTR(-ENODEV))
120 kernfs_seq_stop_active(sf, next);
124 * The same behavior and code as single_open(). Returns
125 * !NULL if pos is at the beginning; otherwise, NULL.
127 return NULL + !*ppos;
131 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
133 struct kernfs_open_file *of = sf->private;
134 const struct kernfs_ops *ops = kernfs_ops(of->kn);
137 void *next = ops->seq_next(sf, v, ppos);
138 /* see the comment above kernfs_seq_stop_active() */
139 if (next == ERR_PTR(-ENODEV))
140 kernfs_seq_stop_active(sf, next);
144 * The same behavior and code as single_open(), always
145 * terminate after the initial read.
152 static void kernfs_seq_stop(struct seq_file *sf, void *v)
154 struct kernfs_open_file *of = sf->private;
156 if (v != ERR_PTR(-ENODEV))
157 kernfs_seq_stop_active(sf, v);
158 mutex_unlock(&of->mutex);
161 static int kernfs_seq_show(struct seq_file *sf, void *v)
163 struct kernfs_open_file *of = sf->private;
165 of->event = atomic_read(&of->kn->attr.open->event);
167 return of->kn->attr.ops->seq_show(sf, v);
170 static const struct seq_operations kernfs_seq_ops = {
171 .start = kernfs_seq_start,
172 .next = kernfs_seq_next,
173 .stop = kernfs_seq_stop,
174 .show = kernfs_seq_show,
178 * As reading a bin file can have side-effects, the exact offset and bytes
179 * specified in read(2) call should be passed to the read callback making
180 * it difficult to use seq_file. Implement simplistic custom buffering for
183 static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
184 char __user *user_buf, size_t count,
187 ssize_t len = min_t(size_t, count, PAGE_SIZE);
188 const struct kernfs_ops *ops;
191 buf = of->prealloc_buf;
193 mutex_lock(&of->prealloc_mutex);
195 buf = kmalloc(len, GFP_KERNEL);
200 * @of->mutex nests outside active ref and is used both to ensure that
201 * the ops aren't called concurrently for the same open file.
203 mutex_lock(&of->mutex);
204 if (!kernfs_get_active(of->kn)) {
206 mutex_unlock(&of->mutex);
210 of->event = atomic_read(&of->kn->attr.open->event);
211 ops = kernfs_ops(of->kn);
213 len = ops->read(of, buf, len, *ppos);
217 kernfs_put_active(of->kn);
218 mutex_unlock(&of->mutex);
223 if (copy_to_user(user_buf, buf, len)) {
231 if (buf == of->prealloc_buf)
232 mutex_unlock(&of->prealloc_mutex);
239 * kernfs_fop_read - kernfs vfs read callback
240 * @file: file pointer
241 * @user_buf: data to write
242 * @count: number of bytes
243 * @ppos: starting offset
245 static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
246 size_t count, loff_t *ppos)
248 struct kernfs_open_file *of = kernfs_of(file);
250 if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
251 return seq_read(file, user_buf, count, ppos);
253 return kernfs_file_direct_read(of, user_buf, count, ppos);
257 * kernfs_fop_write - kernfs vfs write callback
258 * @file: file pointer
259 * @user_buf: data to write
260 * @count: number of bytes
261 * @ppos: starting offset
263 * Copy data in from userland and pass it to the matching kernfs write
266 * There is no easy way for us to know if userspace is only doing a partial
267 * write, so we don't support them. We expect the entire buffer to come on
268 * the first write. Hint: if you're writing a value, first read the file,
269 * modify only the the value you're changing, then write entire buffer
272 static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
273 size_t count, loff_t *ppos)
275 struct kernfs_open_file *of = kernfs_of(file);
276 const struct kernfs_ops *ops;
280 if (of->atomic_write_len) {
282 if (len > of->atomic_write_len)
285 len = min_t(size_t, count, PAGE_SIZE);
288 buf = of->prealloc_buf;
290 mutex_lock(&of->prealloc_mutex);
292 buf = kmalloc(len + 1, GFP_KERNEL);
296 if (copy_from_user(buf, user_buf, len)) {
300 buf[len] = '\0'; /* guarantee string termination */
303 * @of->mutex nests outside active ref and is used both to ensure that
304 * the ops aren't called concurrently for the same open file.
306 mutex_lock(&of->mutex);
307 if (!kernfs_get_active(of->kn)) {
308 mutex_unlock(&of->mutex);
313 ops = kernfs_ops(of->kn);
315 len = ops->write(of, buf, len, *ppos);
319 kernfs_put_active(of->kn);
320 mutex_unlock(&of->mutex);
326 if (buf == of->prealloc_buf)
327 mutex_unlock(&of->prealloc_mutex);
333 static void kernfs_vma_open(struct vm_area_struct *vma)
335 struct file *file = vma->vm_file;
336 struct kernfs_open_file *of = kernfs_of(file);
341 if (!kernfs_get_active(of->kn))
344 if (of->vm_ops->open)
345 of->vm_ops->open(vma);
347 kernfs_put_active(of->kn);
350 static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
352 struct file *file = vmf->vma->vm_file;
353 struct kernfs_open_file *of = kernfs_of(file);
357 return VM_FAULT_SIGBUS;
359 if (!kernfs_get_active(of->kn))
360 return VM_FAULT_SIGBUS;
362 ret = VM_FAULT_SIGBUS;
363 if (of->vm_ops->fault)
364 ret = of->vm_ops->fault(vmf);
366 kernfs_put_active(of->kn);
370 static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
372 struct file *file = vmf->vma->vm_file;
373 struct kernfs_open_file *of = kernfs_of(file);
377 return VM_FAULT_SIGBUS;
379 if (!kernfs_get_active(of->kn))
380 return VM_FAULT_SIGBUS;
383 if (of->vm_ops->page_mkwrite)
384 ret = of->vm_ops->page_mkwrite(vmf);
386 file_update_time(file);
388 kernfs_put_active(of->kn);
392 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
393 void *buf, int len, int write)
395 struct file *file = vma->vm_file;
396 struct kernfs_open_file *of = kernfs_of(file);
402 if (!kernfs_get_active(of->kn))
406 if (of->vm_ops->access)
407 ret = of->vm_ops->access(vma, addr, buf, len, write);
409 kernfs_put_active(of->kn);
414 static int kernfs_vma_set_policy(struct vm_area_struct *vma,
415 struct mempolicy *new)
417 struct file *file = vma->vm_file;
418 struct kernfs_open_file *of = kernfs_of(file);
424 if (!kernfs_get_active(of->kn))
428 if (of->vm_ops->set_policy)
429 ret = of->vm_ops->set_policy(vma, new);
431 kernfs_put_active(of->kn);
435 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
438 struct file *file = vma->vm_file;
439 struct kernfs_open_file *of = kernfs_of(file);
440 struct mempolicy *pol;
443 return vma->vm_policy;
445 if (!kernfs_get_active(of->kn))
446 return vma->vm_policy;
448 pol = vma->vm_policy;
449 if (of->vm_ops->get_policy)
450 pol = of->vm_ops->get_policy(vma, addr);
452 kernfs_put_active(of->kn);
458 static const struct vm_operations_struct kernfs_vm_ops = {
459 .open = kernfs_vma_open,
460 .fault = kernfs_vma_fault,
461 .page_mkwrite = kernfs_vma_page_mkwrite,
462 .access = kernfs_vma_access,
464 .set_policy = kernfs_vma_set_policy,
465 .get_policy = kernfs_vma_get_policy,
469 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
471 struct kernfs_open_file *of = kernfs_of(file);
472 const struct kernfs_ops *ops;
476 * mmap path and of->mutex are prone to triggering spurious lockdep
477 * warnings and we don't want to add spurious locking dependency
478 * between the two. Check whether mmap is actually implemented
479 * without grabbing @of->mutex by testing HAS_MMAP flag. See the
480 * comment in kernfs_file_open() for more details.
482 if (!(of->kn->flags & KERNFS_HAS_MMAP))
485 mutex_lock(&of->mutex);
488 if (!kernfs_get_active(of->kn))
491 ops = kernfs_ops(of->kn);
492 rc = ops->mmap(of, vma);
497 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
498 * to satisfy versions of X which crash if the mmap fails: that
499 * substitutes a new vm_file, and we don't then want bin_vm_ops.
501 if (vma->vm_file != file)
505 if (of->mmapped && of->vm_ops != vma->vm_ops)
509 * It is not possible to successfully wrap close.
510 * So error if someone is trying to use close.
513 if (vma->vm_ops && vma->vm_ops->close)
518 of->vm_ops = vma->vm_ops;
519 vma->vm_ops = &kernfs_vm_ops;
521 kernfs_put_active(of->kn);
523 mutex_unlock(&of->mutex);
529 * kernfs_get_open_node - get or create kernfs_open_node
530 * @kn: target kernfs_node
531 * @of: kernfs_open_file for this instance of open
533 * If @kn->attr.open exists, increment its reference count; otherwise,
534 * create one. @of is chained to the files list.
537 * Kernel thread context (may sleep).
540 * 0 on success, -errno on failure.
542 static int kernfs_get_open_node(struct kernfs_node *kn,
543 struct kernfs_open_file *of)
545 struct kernfs_open_node *on, *new_on = NULL;
548 mutex_lock(&kernfs_open_file_mutex);
549 spin_lock_irq(&kernfs_open_node_lock);
551 if (!kn->attr.open && new_on) {
552 kn->attr.open = new_on;
558 atomic_inc(&on->refcnt);
559 list_add_tail(&of->list, &on->files);
562 spin_unlock_irq(&kernfs_open_node_lock);
563 mutex_unlock(&kernfs_open_file_mutex);
570 /* not there, initialize a new one and retry */
571 new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
575 atomic_set(&new_on->refcnt, 0);
576 atomic_set(&new_on->event, 1);
577 init_waitqueue_head(&new_on->poll);
578 INIT_LIST_HEAD(&new_on->files);
583 * kernfs_put_open_node - put kernfs_open_node
584 * @kn: target kernfs_nodet
585 * @of: associated kernfs_open_file
587 * Put @kn->attr.open and unlink @of from the files list. If
588 * reference count reaches zero, disassociate and free it.
593 static void kernfs_put_open_node(struct kernfs_node *kn,
594 struct kernfs_open_file *of)
596 struct kernfs_open_node *on = kn->attr.open;
599 mutex_lock(&kernfs_open_file_mutex);
600 spin_lock_irqsave(&kernfs_open_node_lock, flags);
605 if (atomic_dec_and_test(&on->refcnt))
606 kn->attr.open = NULL;
610 spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
611 mutex_unlock(&kernfs_open_file_mutex);
616 static int kernfs_fop_open(struct inode *inode, struct file *file)
618 struct kernfs_node *kn = inode->i_private;
619 struct kernfs_root *root = kernfs_root(kn);
620 const struct kernfs_ops *ops;
621 struct kernfs_open_file *of;
622 bool has_read, has_write, has_mmap;
625 if (!kernfs_get_active(kn))
628 ops = kernfs_ops(kn);
630 has_read = ops->seq_show || ops->read || ops->mmap;
631 has_write = ops->write || ops->mmap;
632 has_mmap = ops->mmap;
634 /* see the flag definition for details */
635 if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
636 if ((file->f_mode & FMODE_WRITE) &&
637 (!(inode->i_mode & S_IWUGO) || !has_write))
640 if ((file->f_mode & FMODE_READ) &&
641 (!(inode->i_mode & S_IRUGO) || !has_read))
645 /* allocate a kernfs_open_file for the file */
647 of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
652 * The following is done to give a different lockdep key to
653 * @of->mutex for files which implement mmap. This is a rather
654 * crude way to avoid false positive lockdep warning around
655 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
656 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
657 * which mm->mmap_lock nests, while holding @of->mutex. As each
658 * open file has a separate mutex, it's okay as long as those don't
659 * happen on the same file. At this point, we can't easily give
660 * each file a separate locking class. Let's differentiate on
661 * whether the file has mmap or not for now.
663 * Both paths of the branch look the same. They're supposed to
664 * look that way and give @of->mutex different static lockdep keys.
667 mutex_init(&of->mutex);
669 mutex_init(&of->mutex);
675 * Write path needs to atomic_write_len outside active reference.
676 * Cache it in open_file. See kernfs_fop_write() for details.
678 of->atomic_write_len = ops->atomic_write_len;
682 * ->seq_show is incompatible with ->prealloc,
683 * as seq_read does its own allocation.
684 * ->read must be used instead.
686 if (ops->prealloc && ops->seq_show)
689 int len = of->atomic_write_len ?: PAGE_SIZE;
690 of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
692 if (!of->prealloc_buf)
694 mutex_init(&of->prealloc_mutex);
698 * Always instantiate seq_file even if read access doesn't use
699 * seq_file or is not requested. This unifies private data access
700 * and readable regular files are the vast majority anyway.
703 error = seq_open(file, &kernfs_seq_ops);
705 error = seq_open(file, NULL);
709 of->seq_file = file->private_data;
710 of->seq_file->private = of;
712 /* seq_file clears PWRITE unconditionally, restore it if WRITE */
713 if (file->f_mode & FMODE_WRITE)
714 file->f_mode |= FMODE_PWRITE;
716 /* make sure we have open node struct */
717 error = kernfs_get_open_node(kn, of);
719 goto err_seq_release;
722 /* nobody has access to @of yet, skip @of->mutex */
723 error = ops->open(of);
728 /* open succeeded, put active references */
729 kernfs_put_active(kn);
733 kernfs_put_open_node(kn, of);
735 seq_release(inode, file);
737 kfree(of->prealloc_buf);
740 kernfs_put_active(kn);
744 /* used from release/drain to ensure that ->release() is called exactly once */
745 static void kernfs_release_file(struct kernfs_node *kn,
746 struct kernfs_open_file *of)
749 * @of is guaranteed to have no other file operations in flight and
750 * we just want to synchronize release and drain paths.
751 * @kernfs_open_file_mutex is enough. @of->mutex can't be used
752 * here because drain path may be called from places which can
753 * cause circular dependency.
755 lockdep_assert_held(&kernfs_open_file_mutex);
759 * A file is never detached without being released and we
760 * need to be able to release files which are deactivated
761 * and being drained. Don't use kernfs_ops().
763 kn->attr.ops->release(of);
768 static int kernfs_fop_release(struct inode *inode, struct file *filp)
770 struct kernfs_node *kn = inode->i_private;
771 struct kernfs_open_file *of = kernfs_of(filp);
773 if (kn->flags & KERNFS_HAS_RELEASE) {
774 mutex_lock(&kernfs_open_file_mutex);
775 kernfs_release_file(kn, of);
776 mutex_unlock(&kernfs_open_file_mutex);
779 kernfs_put_open_node(kn, of);
780 seq_release(inode, filp);
781 kfree(of->prealloc_buf);
787 void kernfs_drain_open_files(struct kernfs_node *kn)
789 struct kernfs_open_node *on;
790 struct kernfs_open_file *of;
792 if (!(kn->flags & (KERNFS_HAS_MMAP | KERNFS_HAS_RELEASE)))
795 spin_lock_irq(&kernfs_open_node_lock);
798 atomic_inc(&on->refcnt);
799 spin_unlock_irq(&kernfs_open_node_lock);
803 mutex_lock(&kernfs_open_file_mutex);
805 list_for_each_entry(of, &on->files, list) {
806 struct inode *inode = file_inode(of->file);
808 if (kn->flags & KERNFS_HAS_MMAP)
809 unmap_mapping_range(inode->i_mapping, 0, 0, 1);
811 if (kn->flags & KERNFS_HAS_RELEASE)
812 kernfs_release_file(kn, of);
815 mutex_unlock(&kernfs_open_file_mutex);
817 kernfs_put_open_node(kn, NULL);
821 * Kernfs attribute files are pollable. The idea is that you read
822 * the content and then you use 'poll' or 'select' to wait for
823 * the content to change. When the content changes (assuming the
824 * manager for the kobject supports notification), poll will
825 * return EPOLLERR|EPOLLPRI, and select will return the fd whether
826 * it is waiting for read, write, or exceptions.
827 * Once poll/select indicates that the value has changed, you
828 * need to close and re-open the file, or seek to 0 and read again.
829 * Reminder: this only works for attributes which actively support
830 * it, and it is not possible to test an attribute from userspace
831 * to see if it supports poll (Neither 'poll' nor 'select' return
832 * an appropriate error code). When in doubt, set a suitable timeout value.
834 __poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
836 struct kernfs_node *kn = kernfs_dentry_node(of->file->f_path.dentry);
837 struct kernfs_open_node *on = kn->attr.open;
839 poll_wait(of->file, &on->poll, wait);
841 if (of->event != atomic_read(&on->event))
842 return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
844 return DEFAULT_POLLMASK;
847 static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
849 struct kernfs_open_file *of = kernfs_of(filp);
850 struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
853 if (!kernfs_get_active(kn))
854 return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
856 if (kn->attr.ops->poll)
857 ret = kn->attr.ops->poll(of, wait);
859 ret = kernfs_generic_poll(of, wait);
861 kernfs_put_active(kn);
865 static void kernfs_notify_workfn(struct work_struct *work)
867 struct kernfs_node *kn;
868 struct kernfs_super_info *info;
870 /* pop one off the notify_list */
871 spin_lock_irq(&kernfs_notify_lock);
872 kn = kernfs_notify_list;
873 if (kn == KERNFS_NOTIFY_EOL) {
874 spin_unlock_irq(&kernfs_notify_lock);
877 kernfs_notify_list = kn->attr.notify_next;
878 kn->attr.notify_next = NULL;
879 spin_unlock_irq(&kernfs_notify_lock);
882 mutex_lock(&kernfs_mutex);
884 list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
885 struct kernfs_node *parent;
890 * We want fsnotify_modify() on @kn but as the
891 * modifications aren't originating from userland don't
892 * have the matching @file available. Look up the inodes
893 * and generate the events manually.
895 inode = ilookup(info->sb, kernfs_ino(kn));
899 name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
900 parent = kernfs_get_parent(kn);
902 struct inode *p_inode;
904 p_inode = ilookup(info->sb, kernfs_ino(parent));
906 fsnotify(p_inode, FS_MODIFY | FS_EVENT_ON_CHILD,
907 inode, FSNOTIFY_EVENT_INODE, &name, 0);
914 fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE,
919 mutex_unlock(&kernfs_mutex);
925 * kernfs_notify - notify a kernfs file
926 * @kn: file to notify
928 * Notify @kn such that poll(2) on @kn wakes up. Maybe be called from any
931 void kernfs_notify(struct kernfs_node *kn)
933 static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
935 struct kernfs_open_node *on;
937 if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
940 /* kick poll immediately */
941 spin_lock_irqsave(&kernfs_open_node_lock, flags);
944 atomic_inc(&on->event);
945 wake_up_interruptible(&on->poll);
947 spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
949 /* schedule work to kick fsnotify */
950 spin_lock_irqsave(&kernfs_notify_lock, flags);
951 if (!kn->attr.notify_next) {
953 kn->attr.notify_next = kernfs_notify_list;
954 kernfs_notify_list = kn;
955 schedule_work(&kernfs_notify_work);
957 spin_unlock_irqrestore(&kernfs_notify_lock, flags);
959 EXPORT_SYMBOL_GPL(kernfs_notify);
961 const struct file_operations kernfs_file_fops = {
962 .read = kernfs_fop_read,
963 .write = kernfs_fop_write,
964 .llseek = generic_file_llseek,
965 .mmap = kernfs_fop_mmap,
966 .open = kernfs_fop_open,
967 .release = kernfs_fop_release,
968 .poll = kernfs_fop_poll,
973 * __kernfs_create_file - kernfs internal function to create a file
974 * @parent: directory to create the file in
975 * @name: name of the file
976 * @mode: mode of the file
977 * @uid: uid of the file
978 * @gid: gid of the file
979 * @size: size of the file
980 * @ops: kernfs operations for the file
981 * @priv: private data for the file
982 * @ns: optional namespace tag of the file
983 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
985 * Returns the created node on success, ERR_PTR() value on error.
987 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
989 umode_t mode, kuid_t uid, kgid_t gid,
991 const struct kernfs_ops *ops,
992 void *priv, const void *ns,
993 struct lock_class_key *key)
995 struct kernfs_node *kn;
1001 kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
1004 return ERR_PTR(-ENOMEM);
1007 kn->attr.size = size;
1011 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1013 lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
1014 kn->flags |= KERNFS_LOCKDEP;
1019 * kn->attr.ops is accesible only while holding active ref. We
1020 * need to know whether some ops are implemented outside active
1021 * ref. Cache their existence in flags.
1024 kn->flags |= KERNFS_HAS_SEQ_SHOW;
1026 kn->flags |= KERNFS_HAS_MMAP;
1028 kn->flags |= KERNFS_HAS_RELEASE;
1030 rc = kernfs_add_one(kn);