]> Git Repo - linux.git/blob - fs/f2fs/data.c
bpf, xdp: Maintain info on attached XDP BPF programs in net_device
[linux.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
29
30 #define NUM_PREALLOC_POST_READ_CTXS     128
31
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36
37 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
38
39 int __init f2fs_init_bioset(void)
40 {
41         if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42                                         0, BIOSET_NEED_BVECS))
43                 return -ENOMEM;
44         return 0;
45 }
46
47 void f2fs_destroy_bioset(void)
48 {
49         bioset_exit(&f2fs_bioset);
50 }
51
52 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
53                                                 unsigned int nr_iovecs)
54 {
55         return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
56 }
57
58 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio)
59 {
60         if (noio) {
61                 /* No failure on bio allocation */
62                 return __f2fs_bio_alloc(GFP_NOIO, npages);
63         }
64
65         if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
66                 f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
67                 return NULL;
68         }
69
70         return __f2fs_bio_alloc(GFP_KERNEL, npages);
71 }
72
73 static bool __is_cp_guaranteed(struct page *page)
74 {
75         struct address_space *mapping = page->mapping;
76         struct inode *inode;
77         struct f2fs_sb_info *sbi;
78
79         if (!mapping)
80                 return false;
81
82         if (f2fs_is_compressed_page(page))
83                 return false;
84
85         inode = mapping->host;
86         sbi = F2FS_I_SB(inode);
87
88         if (inode->i_ino == F2FS_META_INO(sbi) ||
89                         inode->i_ino ==  F2FS_NODE_INO(sbi) ||
90                         S_ISDIR(inode->i_mode) ||
91                         (S_ISREG(inode->i_mode) &&
92                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
93                         is_cold_data(page))
94                 return true;
95         return false;
96 }
97
98 static enum count_type __read_io_type(struct page *page)
99 {
100         struct address_space *mapping = page_file_mapping(page);
101
102         if (mapping) {
103                 struct inode *inode = mapping->host;
104                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
105
106                 if (inode->i_ino == F2FS_META_INO(sbi))
107                         return F2FS_RD_META;
108
109                 if (inode->i_ino == F2FS_NODE_INO(sbi))
110                         return F2FS_RD_NODE;
111         }
112         return F2FS_RD_DATA;
113 }
114
115 /* postprocessing steps for read bios */
116 enum bio_post_read_step {
117         STEP_DECRYPT,
118         STEP_DECOMPRESS_NOWQ,           /* handle normal cluster data inplace */
119         STEP_DECOMPRESS,                /* handle compressed cluster data in workqueue */
120         STEP_VERITY,
121 };
122
123 struct bio_post_read_ctx {
124         struct bio *bio;
125         struct f2fs_sb_info *sbi;
126         struct work_struct work;
127         unsigned int enabled_steps;
128 };
129
130 static void __read_end_io(struct bio *bio, bool compr, bool verity)
131 {
132         struct page *page;
133         struct bio_vec *bv;
134         struct bvec_iter_all iter_all;
135
136         bio_for_each_segment_all(bv, bio, iter_all) {
137                 page = bv->bv_page;
138
139 #ifdef CONFIG_F2FS_FS_COMPRESSION
140                 if (compr && f2fs_is_compressed_page(page)) {
141                         f2fs_decompress_pages(bio, page, verity);
142                         continue;
143                 }
144                 if (verity)
145                         continue;
146 #endif
147
148                 /* PG_error was set if any post_read step failed */
149                 if (bio->bi_status || PageError(page)) {
150                         ClearPageUptodate(page);
151                         /* will re-read again later */
152                         ClearPageError(page);
153                 } else {
154                         SetPageUptodate(page);
155                 }
156                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
157                 unlock_page(page);
158         }
159 }
160
161 static void f2fs_release_read_bio(struct bio *bio);
162 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
163 {
164         if (!compr)
165                 __read_end_io(bio, false, verity);
166         f2fs_release_read_bio(bio);
167 }
168
169 static void f2fs_decompress_bio(struct bio *bio, bool verity)
170 {
171         __read_end_io(bio, true, verity);
172 }
173
174 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
175
176 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
177 {
178         fscrypt_decrypt_bio(ctx->bio);
179 }
180
181 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
182 {
183         f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
184 }
185
186 #ifdef CONFIG_F2FS_FS_COMPRESSION
187 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
188 {
189         f2fs_decompress_end_io(rpages, cluster_size, false, true);
190 }
191
192 static void f2fs_verify_bio(struct bio *bio)
193 {
194         struct bio_vec *bv;
195         struct bvec_iter_all iter_all;
196
197         bio_for_each_segment_all(bv, bio, iter_all) {
198                 struct page *page = bv->bv_page;
199                 struct decompress_io_ctx *dic;
200
201                 dic = (struct decompress_io_ctx *)page_private(page);
202
203                 if (dic) {
204                         if (refcount_dec_not_one(&dic->ref))
205                                 continue;
206                         f2fs_verify_pages(dic->rpages,
207                                                 dic->cluster_size);
208                         f2fs_free_dic(dic);
209                         continue;
210                 }
211
212                 if (bio->bi_status || PageError(page))
213                         goto clear_uptodate;
214
215                 if (fsverity_verify_page(page)) {
216                         SetPageUptodate(page);
217                         goto unlock;
218                 }
219 clear_uptodate:
220                 ClearPageUptodate(page);
221                 ClearPageError(page);
222 unlock:
223                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
224                 unlock_page(page);
225         }
226 }
227 #endif
228
229 static void f2fs_verity_work(struct work_struct *work)
230 {
231         struct bio_post_read_ctx *ctx =
232                 container_of(work, struct bio_post_read_ctx, work);
233         struct bio *bio = ctx->bio;
234 #ifdef CONFIG_F2FS_FS_COMPRESSION
235         unsigned int enabled_steps = ctx->enabled_steps;
236 #endif
237
238         /*
239          * fsverity_verify_bio() may call readpages() again, and while verity
240          * will be disabled for this, decryption may still be needed, resulting
241          * in another bio_post_read_ctx being allocated.  So to prevent
242          * deadlocks we need to release the current ctx to the mempool first.
243          * This assumes that verity is the last post-read step.
244          */
245         mempool_free(ctx, bio_post_read_ctx_pool);
246         bio->bi_private = NULL;
247
248 #ifdef CONFIG_F2FS_FS_COMPRESSION
249         /* previous step is decompression */
250         if (enabled_steps & (1 << STEP_DECOMPRESS)) {
251                 f2fs_verify_bio(bio);
252                 f2fs_release_read_bio(bio);
253                 return;
254         }
255 #endif
256
257         fsverity_verify_bio(bio);
258         __f2fs_read_end_io(bio, false, false);
259 }
260
261 static void f2fs_post_read_work(struct work_struct *work)
262 {
263         struct bio_post_read_ctx *ctx =
264                 container_of(work, struct bio_post_read_ctx, work);
265
266         if (ctx->enabled_steps & (1 << STEP_DECRYPT))
267                 f2fs_decrypt_work(ctx);
268
269         if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
270                 f2fs_decompress_work(ctx);
271
272         if (ctx->enabled_steps & (1 << STEP_VERITY)) {
273                 INIT_WORK(&ctx->work, f2fs_verity_work);
274                 fsverity_enqueue_verify_work(&ctx->work);
275                 return;
276         }
277
278         __f2fs_read_end_io(ctx->bio,
279                 ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
280 }
281
282 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
283                                                 struct work_struct *work)
284 {
285         queue_work(sbi->post_read_wq, work);
286 }
287
288 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
289 {
290         /*
291          * We use different work queues for decryption and for verity because
292          * verity may require reading metadata pages that need decryption, and
293          * we shouldn't recurse to the same workqueue.
294          */
295
296         if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
297                 ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
298                 INIT_WORK(&ctx->work, f2fs_post_read_work);
299                 f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
300                 return;
301         }
302
303         if (ctx->enabled_steps & (1 << STEP_VERITY)) {
304                 INIT_WORK(&ctx->work, f2fs_verity_work);
305                 fsverity_enqueue_verify_work(&ctx->work);
306                 return;
307         }
308
309         __f2fs_read_end_io(ctx->bio, false, false);
310 }
311
312 static bool f2fs_bio_post_read_required(struct bio *bio)
313 {
314         return bio->bi_private;
315 }
316
317 static void f2fs_read_end_io(struct bio *bio)
318 {
319         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
320
321         if (time_to_inject(sbi, FAULT_READ_IO)) {
322                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
323                 bio->bi_status = BLK_STS_IOERR;
324         }
325
326         if (f2fs_bio_post_read_required(bio)) {
327                 struct bio_post_read_ctx *ctx = bio->bi_private;
328
329                 bio_post_read_processing(ctx);
330                 return;
331         }
332
333         __f2fs_read_end_io(bio, false, false);
334 }
335
336 static void f2fs_write_end_io(struct bio *bio)
337 {
338         struct f2fs_sb_info *sbi = bio->bi_private;
339         struct bio_vec *bvec;
340         struct bvec_iter_all iter_all;
341
342         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
343                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
344                 bio->bi_status = BLK_STS_IOERR;
345         }
346
347         bio_for_each_segment_all(bvec, bio, iter_all) {
348                 struct page *page = bvec->bv_page;
349                 enum count_type type = WB_DATA_TYPE(page);
350
351                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
352                         set_page_private(page, (unsigned long)NULL);
353                         ClearPagePrivate(page);
354                         unlock_page(page);
355                         mempool_free(page, sbi->write_io_dummy);
356
357                         if (unlikely(bio->bi_status))
358                                 f2fs_stop_checkpoint(sbi, true);
359                         continue;
360                 }
361
362                 fscrypt_finalize_bounce_page(&page);
363
364 #ifdef CONFIG_F2FS_FS_COMPRESSION
365                 if (f2fs_is_compressed_page(page)) {
366                         f2fs_compress_write_end_io(bio, page);
367                         continue;
368                 }
369 #endif
370
371                 if (unlikely(bio->bi_status)) {
372                         mapping_set_error(page->mapping, -EIO);
373                         if (type == F2FS_WB_CP_DATA)
374                                 f2fs_stop_checkpoint(sbi, true);
375                 }
376
377                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
378                                         page->index != nid_of_node(page));
379
380                 dec_page_count(sbi, type);
381                 if (f2fs_in_warm_node_list(sbi, page))
382                         f2fs_del_fsync_node_entry(sbi, page);
383                 clear_cold_data(page);
384                 end_page_writeback(page);
385         }
386         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
387                                 wq_has_sleeper(&sbi->cp_wait))
388                 wake_up(&sbi->cp_wait);
389
390         bio_put(bio);
391 }
392
393 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
394                                 block_t blk_addr, struct bio *bio)
395 {
396         struct block_device *bdev = sbi->sb->s_bdev;
397         int i;
398
399         if (f2fs_is_multi_device(sbi)) {
400                 for (i = 0; i < sbi->s_ndevs; i++) {
401                         if (FDEV(i).start_blk <= blk_addr &&
402                             FDEV(i).end_blk >= blk_addr) {
403                                 blk_addr -= FDEV(i).start_blk;
404                                 bdev = FDEV(i).bdev;
405                                 break;
406                         }
407                 }
408         }
409         if (bio) {
410                 bio_set_dev(bio, bdev);
411                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
412         }
413         return bdev;
414 }
415
416 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
417 {
418         int i;
419
420         if (!f2fs_is_multi_device(sbi))
421                 return 0;
422
423         for (i = 0; i < sbi->s_ndevs; i++)
424                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
425                         return i;
426         return 0;
427 }
428
429 /*
430  * Return true, if pre_bio's bdev is same as its target device.
431  */
432 static bool __same_bdev(struct f2fs_sb_info *sbi,
433                                 block_t blk_addr, struct bio *bio)
434 {
435         struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
436         return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
437 }
438
439 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
440 {
441         struct f2fs_sb_info *sbi = fio->sbi;
442         struct bio *bio;
443
444         bio = f2fs_bio_alloc(sbi, npages, true);
445
446         f2fs_target_device(sbi, fio->new_blkaddr, bio);
447         if (is_read_io(fio->op)) {
448                 bio->bi_end_io = f2fs_read_end_io;
449                 bio->bi_private = NULL;
450         } else {
451                 bio->bi_end_io = f2fs_write_end_io;
452                 bio->bi_private = sbi;
453                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
454                                                 fio->type, fio->temp);
455         }
456         if (fio->io_wbc)
457                 wbc_init_bio(fio->io_wbc, bio);
458
459         return bio;
460 }
461
462 static inline void __submit_bio(struct f2fs_sb_info *sbi,
463                                 struct bio *bio, enum page_type type)
464 {
465         if (!is_read_io(bio_op(bio))) {
466                 unsigned int start;
467
468                 if (type != DATA && type != NODE)
469                         goto submit_io;
470
471                 if (f2fs_lfs_mode(sbi) && current->plug)
472                         blk_finish_plug(current->plug);
473
474                 if (F2FS_IO_ALIGNED(sbi))
475                         goto submit_io;
476
477                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
478                 start %= F2FS_IO_SIZE(sbi);
479
480                 if (start == 0)
481                         goto submit_io;
482
483                 /* fill dummy pages */
484                 for (; start < F2FS_IO_SIZE(sbi); start++) {
485                         struct page *page =
486                                 mempool_alloc(sbi->write_io_dummy,
487                                               GFP_NOIO | __GFP_NOFAIL);
488                         f2fs_bug_on(sbi, !page);
489
490                         zero_user_segment(page, 0, PAGE_SIZE);
491                         SetPagePrivate(page);
492                         set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
493                         lock_page(page);
494                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
495                                 f2fs_bug_on(sbi, 1);
496                 }
497                 /*
498                  * In the NODE case, we lose next block address chain. So, we
499                  * need to do checkpoint in f2fs_sync_file.
500                  */
501                 if (type == NODE)
502                         set_sbi_flag(sbi, SBI_NEED_CP);
503         }
504 submit_io:
505         if (is_read_io(bio_op(bio)))
506                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
507         else
508                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
509         submit_bio(bio);
510 }
511
512 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
513                                 struct bio *bio, enum page_type type)
514 {
515         __submit_bio(sbi, bio, type);
516 }
517
518 static void __attach_io_flag(struct f2fs_io_info *fio)
519 {
520         struct f2fs_sb_info *sbi = fio->sbi;
521         unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
522         unsigned int io_flag, fua_flag, meta_flag;
523
524         if (fio->type == DATA)
525                 io_flag = sbi->data_io_flag;
526         else if (fio->type == NODE)
527                 io_flag = sbi->node_io_flag;
528         else
529                 return;
530
531         fua_flag = io_flag & temp_mask;
532         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
533
534         /*
535          * data/node io flag bits per temp:
536          *      REQ_META     |      REQ_FUA      |
537          *    5 |    4 |   3 |    2 |    1 |   0 |
538          * Cold | Warm | Hot | Cold | Warm | Hot |
539          */
540         if ((1 << fio->temp) & meta_flag)
541                 fio->op_flags |= REQ_META;
542         if ((1 << fio->temp) & fua_flag)
543                 fio->op_flags |= REQ_FUA;
544 }
545
546 static void __submit_merged_bio(struct f2fs_bio_info *io)
547 {
548         struct f2fs_io_info *fio = &io->fio;
549
550         if (!io->bio)
551                 return;
552
553         __attach_io_flag(fio);
554         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
555
556         if (is_read_io(fio->op))
557                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
558         else
559                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
560
561         __submit_bio(io->sbi, io->bio, fio->type);
562         io->bio = NULL;
563 }
564
565 static bool __has_merged_page(struct bio *bio, struct inode *inode,
566                                                 struct page *page, nid_t ino)
567 {
568         struct bio_vec *bvec;
569         struct bvec_iter_all iter_all;
570
571         if (!bio)
572                 return false;
573
574         if (!inode && !page && !ino)
575                 return true;
576
577         bio_for_each_segment_all(bvec, bio, iter_all) {
578                 struct page *target = bvec->bv_page;
579
580                 if (fscrypt_is_bounce_page(target)) {
581                         target = fscrypt_pagecache_page(target);
582                         if (IS_ERR(target))
583                                 continue;
584                 }
585                 if (f2fs_is_compressed_page(target)) {
586                         target = f2fs_compress_control_page(target);
587                         if (IS_ERR(target))
588                                 continue;
589                 }
590
591                 if (inode && inode == target->mapping->host)
592                         return true;
593                 if (page && page == target)
594                         return true;
595                 if (ino && ino == ino_of_node(target))
596                         return true;
597         }
598
599         return false;
600 }
601
602 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
603                                 enum page_type type, enum temp_type temp)
604 {
605         enum page_type btype = PAGE_TYPE_OF_BIO(type);
606         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
607
608         down_write(&io->io_rwsem);
609
610         /* change META to META_FLUSH in the checkpoint procedure */
611         if (type >= META_FLUSH) {
612                 io->fio.type = META_FLUSH;
613                 io->fio.op = REQ_OP_WRITE;
614                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
615                 if (!test_opt(sbi, NOBARRIER))
616                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
617         }
618         __submit_merged_bio(io);
619         up_write(&io->io_rwsem);
620 }
621
622 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
623                                 struct inode *inode, struct page *page,
624                                 nid_t ino, enum page_type type, bool force)
625 {
626         enum temp_type temp;
627         bool ret = true;
628
629         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
630                 if (!force)     {
631                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
632                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
633
634                         down_read(&io->io_rwsem);
635                         ret = __has_merged_page(io->bio, inode, page, ino);
636                         up_read(&io->io_rwsem);
637                 }
638                 if (ret)
639                         __f2fs_submit_merged_write(sbi, type, temp);
640
641                 /* TODO: use HOT temp only for meta pages now. */
642                 if (type >= META)
643                         break;
644         }
645 }
646
647 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
648 {
649         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
650 }
651
652 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
653                                 struct inode *inode, struct page *page,
654                                 nid_t ino, enum page_type type)
655 {
656         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
657 }
658
659 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
660 {
661         f2fs_submit_merged_write(sbi, DATA);
662         f2fs_submit_merged_write(sbi, NODE);
663         f2fs_submit_merged_write(sbi, META);
664 }
665
666 /*
667  * Fill the locked page with data located in the block address.
668  * A caller needs to unlock the page on failure.
669  */
670 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
671 {
672         struct bio *bio;
673         struct page *page = fio->encrypted_page ?
674                         fio->encrypted_page : fio->page;
675
676         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
677                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
678                         META_GENERIC : DATA_GENERIC_ENHANCE)))
679                 return -EFSCORRUPTED;
680
681         trace_f2fs_submit_page_bio(page, fio);
682         f2fs_trace_ios(fio, 0);
683
684         /* Allocate a new bio */
685         bio = __bio_alloc(fio, 1);
686
687         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
688                 bio_put(bio);
689                 return -EFAULT;
690         }
691
692         if (fio->io_wbc && !is_read_io(fio->op))
693                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
694
695         __attach_io_flag(fio);
696         bio_set_op_attrs(bio, fio->op, fio->op_flags);
697
698         inc_page_count(fio->sbi, is_read_io(fio->op) ?
699                         __read_io_type(page): WB_DATA_TYPE(fio->page));
700
701         __submit_bio(fio->sbi, bio, fio->type);
702         return 0;
703 }
704
705 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
706                                 block_t last_blkaddr, block_t cur_blkaddr)
707 {
708         if (last_blkaddr + 1 != cur_blkaddr)
709                 return false;
710         return __same_bdev(sbi, cur_blkaddr, bio);
711 }
712
713 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
714                                                 struct f2fs_io_info *fio)
715 {
716         if (io->fio.op != fio->op)
717                 return false;
718         return io->fio.op_flags == fio->op_flags;
719 }
720
721 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
722                                         struct f2fs_bio_info *io,
723                                         struct f2fs_io_info *fio,
724                                         block_t last_blkaddr,
725                                         block_t cur_blkaddr)
726 {
727         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
728                 unsigned int filled_blocks =
729                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
730                 unsigned int io_size = F2FS_IO_SIZE(sbi);
731                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
732
733                 /* IOs in bio is aligned and left space of vectors is not enough */
734                 if (!(filled_blocks % io_size) && left_vecs < io_size)
735                         return false;
736         }
737         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
738                 return false;
739         return io_type_is_mergeable(io, fio);
740 }
741
742 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
743                                 struct page *page, enum temp_type temp)
744 {
745         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
746         struct bio_entry *be;
747
748         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
749         be->bio = bio;
750         bio_get(bio);
751
752         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
753                 f2fs_bug_on(sbi, 1);
754
755         down_write(&io->bio_list_lock);
756         list_add_tail(&be->list, &io->bio_list);
757         up_write(&io->bio_list_lock);
758 }
759
760 static void del_bio_entry(struct bio_entry *be)
761 {
762         list_del(&be->list);
763         kmem_cache_free(bio_entry_slab, be);
764 }
765
766 static int add_ipu_page(struct f2fs_sb_info *sbi, struct bio **bio,
767                                                         struct page *page)
768 {
769         enum temp_type temp;
770         bool found = false;
771         int ret = -EAGAIN;
772
773         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
774                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
775                 struct list_head *head = &io->bio_list;
776                 struct bio_entry *be;
777
778                 down_write(&io->bio_list_lock);
779                 list_for_each_entry(be, head, list) {
780                         if (be->bio != *bio)
781                                 continue;
782
783                         found = true;
784
785                         if (bio_add_page(*bio, page, PAGE_SIZE, 0) ==
786                                                         PAGE_SIZE) {
787                                 ret = 0;
788                                 break;
789                         }
790
791                         /* bio is full */
792                         del_bio_entry(be);
793                         __submit_bio(sbi, *bio, DATA);
794                         break;
795                 }
796                 up_write(&io->bio_list_lock);
797         }
798
799         if (ret) {
800                 bio_put(*bio);
801                 *bio = NULL;
802         }
803
804         return ret;
805 }
806
807 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
808                                         struct bio **bio, struct page *page)
809 {
810         enum temp_type temp;
811         bool found = false;
812         struct bio *target = bio ? *bio : NULL;
813
814         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
815                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
816                 struct list_head *head = &io->bio_list;
817                 struct bio_entry *be;
818
819                 if (list_empty(head))
820                         continue;
821
822                 down_read(&io->bio_list_lock);
823                 list_for_each_entry(be, head, list) {
824                         if (target)
825                                 found = (target == be->bio);
826                         else
827                                 found = __has_merged_page(be->bio, NULL,
828                                                                 page, 0);
829                         if (found)
830                                 break;
831                 }
832                 up_read(&io->bio_list_lock);
833
834                 if (!found)
835                         continue;
836
837                 found = false;
838
839                 down_write(&io->bio_list_lock);
840                 list_for_each_entry(be, head, list) {
841                         if (target)
842                                 found = (target == be->bio);
843                         else
844                                 found = __has_merged_page(be->bio, NULL,
845                                                                 page, 0);
846                         if (found) {
847                                 target = be->bio;
848                                 del_bio_entry(be);
849                                 break;
850                         }
851                 }
852                 up_write(&io->bio_list_lock);
853         }
854
855         if (found)
856                 __submit_bio(sbi, target, DATA);
857         if (bio && *bio) {
858                 bio_put(*bio);
859                 *bio = NULL;
860         }
861 }
862
863 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
864 {
865         struct bio *bio = *fio->bio;
866         struct page *page = fio->encrypted_page ?
867                         fio->encrypted_page : fio->page;
868
869         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
870                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
871                 return -EFSCORRUPTED;
872
873         trace_f2fs_submit_page_bio(page, fio);
874         f2fs_trace_ios(fio, 0);
875
876         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
877                                                 fio->new_blkaddr))
878                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
879 alloc_new:
880         if (!bio) {
881                 bio = __bio_alloc(fio, BIO_MAX_PAGES);
882                 __attach_io_flag(fio);
883                 bio_set_op_attrs(bio, fio->op, fio->op_flags);
884
885                 add_bio_entry(fio->sbi, bio, page, fio->temp);
886         } else {
887                 if (add_ipu_page(fio->sbi, &bio, page))
888                         goto alloc_new;
889         }
890
891         if (fio->io_wbc)
892                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
893
894         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
895
896         *fio->last_block = fio->new_blkaddr;
897         *fio->bio = bio;
898
899         return 0;
900 }
901
902 void f2fs_submit_page_write(struct f2fs_io_info *fio)
903 {
904         struct f2fs_sb_info *sbi = fio->sbi;
905         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
906         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
907         struct page *bio_page;
908
909         f2fs_bug_on(sbi, is_read_io(fio->op));
910
911         down_write(&io->io_rwsem);
912 next:
913         if (fio->in_list) {
914                 spin_lock(&io->io_lock);
915                 if (list_empty(&io->io_list)) {
916                         spin_unlock(&io->io_lock);
917                         goto out;
918                 }
919                 fio = list_first_entry(&io->io_list,
920                                                 struct f2fs_io_info, list);
921                 list_del(&fio->list);
922                 spin_unlock(&io->io_lock);
923         }
924
925         verify_fio_blkaddr(fio);
926
927         if (fio->encrypted_page)
928                 bio_page = fio->encrypted_page;
929         else if (fio->compressed_page)
930                 bio_page = fio->compressed_page;
931         else
932                 bio_page = fio->page;
933
934         /* set submitted = true as a return value */
935         fio->submitted = true;
936
937         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
938
939         if (io->bio && !io_is_mergeable(sbi, io->bio, io, fio,
940                         io->last_block_in_bio, fio->new_blkaddr))
941                 __submit_merged_bio(io);
942 alloc_new:
943         if (io->bio == NULL) {
944                 if (F2FS_IO_ALIGNED(sbi) &&
945                                 (fio->type == DATA || fio->type == NODE) &&
946                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
947                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
948                         fio->retry = true;
949                         goto skip;
950                 }
951                 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
952                 io->fio = *fio;
953         }
954
955         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
956                 __submit_merged_bio(io);
957                 goto alloc_new;
958         }
959
960         if (fio->io_wbc)
961                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
962
963         io->last_block_in_bio = fio->new_blkaddr;
964         f2fs_trace_ios(fio, 0);
965
966         trace_f2fs_submit_page_write(fio->page, fio);
967 skip:
968         if (fio->in_list)
969                 goto next;
970 out:
971         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
972                                 !f2fs_is_checkpoint_ready(sbi))
973                 __submit_merged_bio(io);
974         up_write(&io->io_rwsem);
975 }
976
977 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
978 {
979         return fsverity_active(inode) &&
980                idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
981 }
982
983 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
984                                       unsigned nr_pages, unsigned op_flag,
985                                       pgoff_t first_idx, bool for_write)
986 {
987         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
988         struct bio *bio;
989         struct bio_post_read_ctx *ctx;
990         unsigned int post_read_steps = 0;
991
992         bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES),
993                                                                 for_write);
994         if (!bio)
995                 return ERR_PTR(-ENOMEM);
996         f2fs_target_device(sbi, blkaddr, bio);
997         bio->bi_end_io = f2fs_read_end_io;
998         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
999
1000         if (f2fs_encrypted_file(inode))
1001                 post_read_steps |= 1 << STEP_DECRYPT;
1002         if (f2fs_compressed_file(inode))
1003                 post_read_steps |= 1 << STEP_DECOMPRESS_NOWQ;
1004         if (f2fs_need_verity(inode, first_idx))
1005                 post_read_steps |= 1 << STEP_VERITY;
1006
1007         if (post_read_steps) {
1008                 /* Due to the mempool, this never fails. */
1009                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1010                 ctx->bio = bio;
1011                 ctx->sbi = sbi;
1012                 ctx->enabled_steps = post_read_steps;
1013                 bio->bi_private = ctx;
1014         }
1015
1016         return bio;
1017 }
1018
1019 static void f2fs_release_read_bio(struct bio *bio)
1020 {
1021         if (bio->bi_private)
1022                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1023         bio_put(bio);
1024 }
1025
1026 /* This can handle encryption stuffs */
1027 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1028                                                 block_t blkaddr, bool for_write)
1029 {
1030         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1031         struct bio *bio;
1032
1033         bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index, for_write);
1034         if (IS_ERR(bio))
1035                 return PTR_ERR(bio);
1036
1037         /* wait for GCed page writeback via META_MAPPING */
1038         f2fs_wait_on_block_writeback(inode, blkaddr);
1039
1040         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1041                 bio_put(bio);
1042                 return -EFAULT;
1043         }
1044         ClearPageError(page);
1045         inc_page_count(sbi, F2FS_RD_DATA);
1046         f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1047         __submit_bio(sbi, bio, DATA);
1048         return 0;
1049 }
1050
1051 static void __set_data_blkaddr(struct dnode_of_data *dn)
1052 {
1053         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1054         __le32 *addr_array;
1055         int base = 0;
1056
1057         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1058                 base = get_extra_isize(dn->inode);
1059
1060         /* Get physical address of data block */
1061         addr_array = blkaddr_in_node(rn);
1062         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1063 }
1064
1065 /*
1066  * Lock ordering for the change of data block address:
1067  * ->data_page
1068  *  ->node_page
1069  *    update block addresses in the node page
1070  */
1071 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1072 {
1073         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1074         __set_data_blkaddr(dn);
1075         if (set_page_dirty(dn->node_page))
1076                 dn->node_changed = true;
1077 }
1078
1079 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1080 {
1081         dn->data_blkaddr = blkaddr;
1082         f2fs_set_data_blkaddr(dn);
1083         f2fs_update_extent_cache(dn);
1084 }
1085
1086 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1087 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1088 {
1089         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1090         int err;
1091
1092         if (!count)
1093                 return 0;
1094
1095         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1096                 return -EPERM;
1097         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1098                 return err;
1099
1100         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1101                                                 dn->ofs_in_node, count);
1102
1103         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1104
1105         for (; count > 0; dn->ofs_in_node++) {
1106                 block_t blkaddr = f2fs_data_blkaddr(dn);
1107                 if (blkaddr == NULL_ADDR) {
1108                         dn->data_blkaddr = NEW_ADDR;
1109                         __set_data_blkaddr(dn);
1110                         count--;
1111                 }
1112         }
1113
1114         if (set_page_dirty(dn->node_page))
1115                 dn->node_changed = true;
1116         return 0;
1117 }
1118
1119 /* Should keep dn->ofs_in_node unchanged */
1120 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1121 {
1122         unsigned int ofs_in_node = dn->ofs_in_node;
1123         int ret;
1124
1125         ret = f2fs_reserve_new_blocks(dn, 1);
1126         dn->ofs_in_node = ofs_in_node;
1127         return ret;
1128 }
1129
1130 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1131 {
1132         bool need_put = dn->inode_page ? false : true;
1133         int err;
1134
1135         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1136         if (err)
1137                 return err;
1138
1139         if (dn->data_blkaddr == NULL_ADDR)
1140                 err = f2fs_reserve_new_block(dn);
1141         if (err || need_put)
1142                 f2fs_put_dnode(dn);
1143         return err;
1144 }
1145
1146 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1147 {
1148         struct extent_info ei  = {0,0,0};
1149         struct inode *inode = dn->inode;
1150
1151         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1152                 dn->data_blkaddr = ei.blk + index - ei.fofs;
1153                 return 0;
1154         }
1155
1156         return f2fs_reserve_block(dn, index);
1157 }
1158
1159 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1160                                                 int op_flags, bool for_write)
1161 {
1162         struct address_space *mapping = inode->i_mapping;
1163         struct dnode_of_data dn;
1164         struct page *page;
1165         struct extent_info ei = {0,0,0};
1166         int err;
1167
1168         page = f2fs_grab_cache_page(mapping, index, for_write);
1169         if (!page)
1170                 return ERR_PTR(-ENOMEM);
1171
1172         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1173                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1174                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1175                                                 DATA_GENERIC_ENHANCE_READ)) {
1176                         err = -EFSCORRUPTED;
1177                         goto put_err;
1178                 }
1179                 goto got_it;
1180         }
1181
1182         set_new_dnode(&dn, inode, NULL, NULL, 0);
1183         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1184         if (err)
1185                 goto put_err;
1186         f2fs_put_dnode(&dn);
1187
1188         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1189                 err = -ENOENT;
1190                 goto put_err;
1191         }
1192         if (dn.data_blkaddr != NEW_ADDR &&
1193                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1194                                                 dn.data_blkaddr,
1195                                                 DATA_GENERIC_ENHANCE)) {
1196                 err = -EFSCORRUPTED;
1197                 goto put_err;
1198         }
1199 got_it:
1200         if (PageUptodate(page)) {
1201                 unlock_page(page);
1202                 return page;
1203         }
1204
1205         /*
1206          * A new dentry page is allocated but not able to be written, since its
1207          * new inode page couldn't be allocated due to -ENOSPC.
1208          * In such the case, its blkaddr can be remained as NEW_ADDR.
1209          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1210          * f2fs_init_inode_metadata.
1211          */
1212         if (dn.data_blkaddr == NEW_ADDR) {
1213                 zero_user_segment(page, 0, PAGE_SIZE);
1214                 if (!PageUptodate(page))
1215                         SetPageUptodate(page);
1216                 unlock_page(page);
1217                 return page;
1218         }
1219
1220         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, for_write);
1221         if (err)
1222                 goto put_err;
1223         return page;
1224
1225 put_err:
1226         f2fs_put_page(page, 1);
1227         return ERR_PTR(err);
1228 }
1229
1230 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1231 {
1232         struct address_space *mapping = inode->i_mapping;
1233         struct page *page;
1234
1235         page = find_get_page(mapping, index);
1236         if (page && PageUptodate(page))
1237                 return page;
1238         f2fs_put_page(page, 0);
1239
1240         page = f2fs_get_read_data_page(inode, index, 0, false);
1241         if (IS_ERR(page))
1242                 return page;
1243
1244         if (PageUptodate(page))
1245                 return page;
1246
1247         wait_on_page_locked(page);
1248         if (unlikely(!PageUptodate(page))) {
1249                 f2fs_put_page(page, 0);
1250                 return ERR_PTR(-EIO);
1251         }
1252         return page;
1253 }
1254
1255 /*
1256  * If it tries to access a hole, return an error.
1257  * Because, the callers, functions in dir.c and GC, should be able to know
1258  * whether this page exists or not.
1259  */
1260 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1261                                                         bool for_write)
1262 {
1263         struct address_space *mapping = inode->i_mapping;
1264         struct page *page;
1265 repeat:
1266         page = f2fs_get_read_data_page(inode, index, 0, for_write);
1267         if (IS_ERR(page))
1268                 return page;
1269
1270         /* wait for read completion */
1271         lock_page(page);
1272         if (unlikely(page->mapping != mapping)) {
1273                 f2fs_put_page(page, 1);
1274                 goto repeat;
1275         }
1276         if (unlikely(!PageUptodate(page))) {
1277                 f2fs_put_page(page, 1);
1278                 return ERR_PTR(-EIO);
1279         }
1280         return page;
1281 }
1282
1283 /*
1284  * Caller ensures that this data page is never allocated.
1285  * A new zero-filled data page is allocated in the page cache.
1286  *
1287  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1288  * f2fs_unlock_op().
1289  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1290  * ipage should be released by this function.
1291  */
1292 struct page *f2fs_get_new_data_page(struct inode *inode,
1293                 struct page *ipage, pgoff_t index, bool new_i_size)
1294 {
1295         struct address_space *mapping = inode->i_mapping;
1296         struct page *page;
1297         struct dnode_of_data dn;
1298         int err;
1299
1300         page = f2fs_grab_cache_page(mapping, index, true);
1301         if (!page) {
1302                 /*
1303                  * before exiting, we should make sure ipage will be released
1304                  * if any error occur.
1305                  */
1306                 f2fs_put_page(ipage, 1);
1307                 return ERR_PTR(-ENOMEM);
1308         }
1309
1310         set_new_dnode(&dn, inode, ipage, NULL, 0);
1311         err = f2fs_reserve_block(&dn, index);
1312         if (err) {
1313                 f2fs_put_page(page, 1);
1314                 return ERR_PTR(err);
1315         }
1316         if (!ipage)
1317                 f2fs_put_dnode(&dn);
1318
1319         if (PageUptodate(page))
1320                 goto got_it;
1321
1322         if (dn.data_blkaddr == NEW_ADDR) {
1323                 zero_user_segment(page, 0, PAGE_SIZE);
1324                 if (!PageUptodate(page))
1325                         SetPageUptodate(page);
1326         } else {
1327                 f2fs_put_page(page, 1);
1328
1329                 /* if ipage exists, blkaddr should be NEW_ADDR */
1330                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1331                 page = f2fs_get_lock_data_page(inode, index, true);
1332                 if (IS_ERR(page))
1333                         return page;
1334         }
1335 got_it:
1336         if (new_i_size && i_size_read(inode) <
1337                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1338                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1339         return page;
1340 }
1341
1342 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1343 {
1344         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1345         struct f2fs_summary sum;
1346         struct node_info ni;
1347         block_t old_blkaddr;
1348         blkcnt_t count = 1;
1349         int err;
1350
1351         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1352                 return -EPERM;
1353
1354         err = f2fs_get_node_info(sbi, dn->nid, &ni);
1355         if (err)
1356                 return err;
1357
1358         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1359         if (dn->data_blkaddr != NULL_ADDR)
1360                 goto alloc;
1361
1362         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1363                 return err;
1364
1365 alloc:
1366         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1367         old_blkaddr = dn->data_blkaddr;
1368         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1369                                         &sum, seg_type, NULL, false);
1370         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1371                 invalidate_mapping_pages(META_MAPPING(sbi),
1372                                         old_blkaddr, old_blkaddr);
1373         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1374
1375         /*
1376          * i_size will be updated by direct_IO. Otherwise, we'll get stale
1377          * data from unwritten block via dio_read.
1378          */
1379         return 0;
1380 }
1381
1382 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1383 {
1384         struct inode *inode = file_inode(iocb->ki_filp);
1385         struct f2fs_map_blocks map;
1386         int flag;
1387         int err = 0;
1388         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1389
1390         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1391         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1392         if (map.m_len > map.m_lblk)
1393                 map.m_len -= map.m_lblk;
1394         else
1395                 map.m_len = 0;
1396
1397         map.m_next_pgofs = NULL;
1398         map.m_next_extent = NULL;
1399         map.m_seg_type = NO_CHECK_TYPE;
1400         map.m_may_create = true;
1401
1402         if (direct_io) {
1403                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1404                 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1405                                         F2FS_GET_BLOCK_PRE_AIO :
1406                                         F2FS_GET_BLOCK_PRE_DIO;
1407                 goto map_blocks;
1408         }
1409         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1410                 err = f2fs_convert_inline_inode(inode);
1411                 if (err)
1412                         return err;
1413         }
1414         if (f2fs_has_inline_data(inode))
1415                 return err;
1416
1417         flag = F2FS_GET_BLOCK_PRE_AIO;
1418
1419 map_blocks:
1420         err = f2fs_map_blocks(inode, &map, 1, flag);
1421         if (map.m_len > 0 && err == -ENOSPC) {
1422                 if (!direct_io)
1423                         set_inode_flag(inode, FI_NO_PREALLOC);
1424                 err = 0;
1425         }
1426         return err;
1427 }
1428
1429 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1430 {
1431         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1432                 if (lock)
1433                         down_read(&sbi->node_change);
1434                 else
1435                         up_read(&sbi->node_change);
1436         } else {
1437                 if (lock)
1438                         f2fs_lock_op(sbi);
1439                 else
1440                         f2fs_unlock_op(sbi);
1441         }
1442 }
1443
1444 /*
1445  * f2fs_map_blocks() tries to find or build mapping relationship which
1446  * maps continuous logical blocks to physical blocks, and return such
1447  * info via f2fs_map_blocks structure.
1448  */
1449 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1450                                                 int create, int flag)
1451 {
1452         unsigned int maxblocks = map->m_len;
1453         struct dnode_of_data dn;
1454         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1455         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1456         pgoff_t pgofs, end_offset, end;
1457         int err = 0, ofs = 1;
1458         unsigned int ofs_in_node, last_ofs_in_node;
1459         blkcnt_t prealloc;
1460         struct extent_info ei = {0,0,0};
1461         block_t blkaddr;
1462         unsigned int start_pgofs;
1463
1464         if (!maxblocks)
1465                 return 0;
1466
1467         map->m_len = 0;
1468         map->m_flags = 0;
1469
1470         /* it only supports block size == page size */
1471         pgofs = (pgoff_t)map->m_lblk;
1472         end = pgofs + maxblocks;
1473
1474         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1475                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1476                                                         map->m_may_create)
1477                         goto next_dnode;
1478
1479                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1480                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1481                 map->m_flags = F2FS_MAP_MAPPED;
1482                 if (map->m_next_extent)
1483                         *map->m_next_extent = pgofs + map->m_len;
1484
1485                 /* for hardware encryption, but to avoid potential issue in future */
1486                 if (flag == F2FS_GET_BLOCK_DIO)
1487                         f2fs_wait_on_block_writeback_range(inode,
1488                                                 map->m_pblk, map->m_len);
1489                 goto out;
1490         }
1491
1492 next_dnode:
1493         if (map->m_may_create)
1494                 __do_map_lock(sbi, flag, true);
1495
1496         /* When reading holes, we need its node page */
1497         set_new_dnode(&dn, inode, NULL, NULL, 0);
1498         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1499         if (err) {
1500                 if (flag == F2FS_GET_BLOCK_BMAP)
1501                         map->m_pblk = 0;
1502                 if (err == -ENOENT) {
1503                         err = 0;
1504                         if (map->m_next_pgofs)
1505                                 *map->m_next_pgofs =
1506                                         f2fs_get_next_page_offset(&dn, pgofs);
1507                         if (map->m_next_extent)
1508                                 *map->m_next_extent =
1509                                         f2fs_get_next_page_offset(&dn, pgofs);
1510                 }
1511                 goto unlock_out;
1512         }
1513
1514         start_pgofs = pgofs;
1515         prealloc = 0;
1516         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1517         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1518
1519 next_block:
1520         blkaddr = f2fs_data_blkaddr(&dn);
1521
1522         if (__is_valid_data_blkaddr(blkaddr) &&
1523                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1524                 err = -EFSCORRUPTED;
1525                 goto sync_out;
1526         }
1527
1528         if (__is_valid_data_blkaddr(blkaddr)) {
1529                 /* use out-place-update for driect IO under LFS mode */
1530                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1531                                                         map->m_may_create) {
1532                         err = __allocate_data_block(&dn, map->m_seg_type);
1533                         if (err)
1534                                 goto sync_out;
1535                         blkaddr = dn.data_blkaddr;
1536                         set_inode_flag(inode, FI_APPEND_WRITE);
1537                 }
1538         } else {
1539                 if (create) {
1540                         if (unlikely(f2fs_cp_error(sbi))) {
1541                                 err = -EIO;
1542                                 goto sync_out;
1543                         }
1544                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1545                                 if (blkaddr == NULL_ADDR) {
1546                                         prealloc++;
1547                                         last_ofs_in_node = dn.ofs_in_node;
1548                                 }
1549                         } else {
1550                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1551                                         flag != F2FS_GET_BLOCK_DIO);
1552                                 err = __allocate_data_block(&dn,
1553                                                         map->m_seg_type);
1554                                 if (!err)
1555                                         set_inode_flag(inode, FI_APPEND_WRITE);
1556                         }
1557                         if (err)
1558                                 goto sync_out;
1559                         map->m_flags |= F2FS_MAP_NEW;
1560                         blkaddr = dn.data_blkaddr;
1561                 } else {
1562                         if (flag == F2FS_GET_BLOCK_BMAP) {
1563                                 map->m_pblk = 0;
1564                                 goto sync_out;
1565                         }
1566                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1567                                 goto sync_out;
1568                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1569                                                 blkaddr == NULL_ADDR) {
1570                                 if (map->m_next_pgofs)
1571                                         *map->m_next_pgofs = pgofs + 1;
1572                                 goto sync_out;
1573                         }
1574                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1575                                 /* for defragment case */
1576                                 if (map->m_next_pgofs)
1577                                         *map->m_next_pgofs = pgofs + 1;
1578                                 goto sync_out;
1579                         }
1580                 }
1581         }
1582
1583         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1584                 goto skip;
1585
1586         if (map->m_len == 0) {
1587                 /* preallocated unwritten block should be mapped for fiemap. */
1588                 if (blkaddr == NEW_ADDR)
1589                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1590                 map->m_flags |= F2FS_MAP_MAPPED;
1591
1592                 map->m_pblk = blkaddr;
1593                 map->m_len = 1;
1594         } else if ((map->m_pblk != NEW_ADDR &&
1595                         blkaddr == (map->m_pblk + ofs)) ||
1596                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1597                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1598                 ofs++;
1599                 map->m_len++;
1600         } else {
1601                 goto sync_out;
1602         }
1603
1604 skip:
1605         dn.ofs_in_node++;
1606         pgofs++;
1607
1608         /* preallocate blocks in batch for one dnode page */
1609         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1610                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1611
1612                 dn.ofs_in_node = ofs_in_node;
1613                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1614                 if (err)
1615                         goto sync_out;
1616
1617                 map->m_len += dn.ofs_in_node - ofs_in_node;
1618                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1619                         err = -ENOSPC;
1620                         goto sync_out;
1621                 }
1622                 dn.ofs_in_node = end_offset;
1623         }
1624
1625         if (pgofs >= end)
1626                 goto sync_out;
1627         else if (dn.ofs_in_node < end_offset)
1628                 goto next_block;
1629
1630         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1631                 if (map->m_flags & F2FS_MAP_MAPPED) {
1632                         unsigned int ofs = start_pgofs - map->m_lblk;
1633
1634                         f2fs_update_extent_cache_range(&dn,
1635                                 start_pgofs, map->m_pblk + ofs,
1636                                 map->m_len - ofs);
1637                 }
1638         }
1639
1640         f2fs_put_dnode(&dn);
1641
1642         if (map->m_may_create) {
1643                 __do_map_lock(sbi, flag, false);
1644                 f2fs_balance_fs(sbi, dn.node_changed);
1645         }
1646         goto next_dnode;
1647
1648 sync_out:
1649
1650         /* for hardware encryption, but to avoid potential issue in future */
1651         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1652                 f2fs_wait_on_block_writeback_range(inode,
1653                                                 map->m_pblk, map->m_len);
1654
1655         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1656                 if (map->m_flags & F2FS_MAP_MAPPED) {
1657                         unsigned int ofs = start_pgofs - map->m_lblk;
1658
1659                         f2fs_update_extent_cache_range(&dn,
1660                                 start_pgofs, map->m_pblk + ofs,
1661                                 map->m_len - ofs);
1662                 }
1663                 if (map->m_next_extent)
1664                         *map->m_next_extent = pgofs + 1;
1665         }
1666         f2fs_put_dnode(&dn);
1667 unlock_out:
1668         if (map->m_may_create) {
1669                 __do_map_lock(sbi, flag, false);
1670                 f2fs_balance_fs(sbi, dn.node_changed);
1671         }
1672 out:
1673         trace_f2fs_map_blocks(inode, map, err);
1674         return err;
1675 }
1676
1677 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1678 {
1679         struct f2fs_map_blocks map;
1680         block_t last_lblk;
1681         int err;
1682
1683         if (pos + len > i_size_read(inode))
1684                 return false;
1685
1686         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1687         map.m_next_pgofs = NULL;
1688         map.m_next_extent = NULL;
1689         map.m_seg_type = NO_CHECK_TYPE;
1690         map.m_may_create = false;
1691         last_lblk = F2FS_BLK_ALIGN(pos + len);
1692
1693         while (map.m_lblk < last_lblk) {
1694                 map.m_len = last_lblk - map.m_lblk;
1695                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1696                 if (err || map.m_len == 0)
1697                         return false;
1698                 map.m_lblk += map.m_len;
1699         }
1700         return true;
1701 }
1702
1703 static int __get_data_block(struct inode *inode, sector_t iblock,
1704                         struct buffer_head *bh, int create, int flag,
1705                         pgoff_t *next_pgofs, int seg_type, bool may_write)
1706 {
1707         struct f2fs_map_blocks map;
1708         int err;
1709
1710         map.m_lblk = iblock;
1711         map.m_len = bh->b_size >> inode->i_blkbits;
1712         map.m_next_pgofs = next_pgofs;
1713         map.m_next_extent = NULL;
1714         map.m_seg_type = seg_type;
1715         map.m_may_create = may_write;
1716
1717         err = f2fs_map_blocks(inode, &map, create, flag);
1718         if (!err) {
1719                 map_bh(bh, inode->i_sb, map.m_pblk);
1720                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1721                 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1722         }
1723         return err;
1724 }
1725
1726 static int get_data_block(struct inode *inode, sector_t iblock,
1727                         struct buffer_head *bh_result, int create, int flag,
1728                         pgoff_t *next_pgofs)
1729 {
1730         return __get_data_block(inode, iblock, bh_result, create,
1731                                                         flag, next_pgofs,
1732                                                         NO_CHECK_TYPE, create);
1733 }
1734
1735 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1736                         struct buffer_head *bh_result, int create)
1737 {
1738         return __get_data_block(inode, iblock, bh_result, create,
1739                                 F2FS_GET_BLOCK_DIO, NULL,
1740                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1741                                 IS_SWAPFILE(inode) ? false : true);
1742 }
1743
1744 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1745                         struct buffer_head *bh_result, int create)
1746 {
1747         return __get_data_block(inode, iblock, bh_result, create,
1748                                 F2FS_GET_BLOCK_DIO, NULL,
1749                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1750                                 false);
1751 }
1752
1753 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1754                         struct buffer_head *bh_result, int create)
1755 {
1756         /* Block number less than F2FS MAX BLOCKS */
1757         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1758                 return -EFBIG;
1759
1760         return __get_data_block(inode, iblock, bh_result, create,
1761                                                 F2FS_GET_BLOCK_BMAP, NULL,
1762                                                 NO_CHECK_TYPE, create);
1763 }
1764
1765 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1766 {
1767         return (offset >> inode->i_blkbits);
1768 }
1769
1770 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1771 {
1772         return (blk << inode->i_blkbits);
1773 }
1774
1775 static int f2fs_xattr_fiemap(struct inode *inode,
1776                                 struct fiemap_extent_info *fieinfo)
1777 {
1778         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1779         struct page *page;
1780         struct node_info ni;
1781         __u64 phys = 0, len;
1782         __u32 flags;
1783         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1784         int err = 0;
1785
1786         if (f2fs_has_inline_xattr(inode)) {
1787                 int offset;
1788
1789                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1790                                                 inode->i_ino, false);
1791                 if (!page)
1792                         return -ENOMEM;
1793
1794                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1795                 if (err) {
1796                         f2fs_put_page(page, 1);
1797                         return err;
1798                 }
1799
1800                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1801                 offset = offsetof(struct f2fs_inode, i_addr) +
1802                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1803                                         get_inline_xattr_addrs(inode));
1804
1805                 phys += offset;
1806                 len = inline_xattr_size(inode);
1807
1808                 f2fs_put_page(page, 1);
1809
1810                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1811
1812                 if (!xnid)
1813                         flags |= FIEMAP_EXTENT_LAST;
1814
1815                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1816                 if (err || err == 1)
1817                         return err;
1818         }
1819
1820         if (xnid) {
1821                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1822                 if (!page)
1823                         return -ENOMEM;
1824
1825                 err = f2fs_get_node_info(sbi, xnid, &ni);
1826                 if (err) {
1827                         f2fs_put_page(page, 1);
1828                         return err;
1829                 }
1830
1831                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1832                 len = inode->i_sb->s_blocksize;
1833
1834                 f2fs_put_page(page, 1);
1835
1836                 flags = FIEMAP_EXTENT_LAST;
1837         }
1838
1839         if (phys)
1840                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1841
1842         return (err < 0 ? err : 0);
1843 }
1844
1845 static loff_t max_inode_blocks(struct inode *inode)
1846 {
1847         loff_t result = ADDRS_PER_INODE(inode);
1848         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1849
1850         /* two direct node blocks */
1851         result += (leaf_count * 2);
1852
1853         /* two indirect node blocks */
1854         leaf_count *= NIDS_PER_BLOCK;
1855         result += (leaf_count * 2);
1856
1857         /* one double indirect node block */
1858         leaf_count *= NIDS_PER_BLOCK;
1859         result += leaf_count;
1860
1861         return result;
1862 }
1863
1864 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1865                 u64 start, u64 len)
1866 {
1867         struct buffer_head map_bh;
1868         sector_t start_blk, last_blk;
1869         pgoff_t next_pgofs;
1870         u64 logical = 0, phys = 0, size = 0;
1871         u32 flags = 0;
1872         int ret = 0;
1873         bool compr_cluster = false;
1874         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1875
1876         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1877                 ret = f2fs_precache_extents(inode);
1878                 if (ret)
1879                         return ret;
1880         }
1881
1882         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1883         if (ret)
1884                 return ret;
1885
1886         inode_lock(inode);
1887
1888         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1889                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1890                 goto out;
1891         }
1892
1893         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1894                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1895                 if (ret != -EAGAIN)
1896                         goto out;
1897         }
1898
1899         if (logical_to_blk(inode, len) == 0)
1900                 len = blk_to_logical(inode, 1);
1901
1902         start_blk = logical_to_blk(inode, start);
1903         last_blk = logical_to_blk(inode, start + len - 1);
1904
1905 next:
1906         memset(&map_bh, 0, sizeof(struct buffer_head));
1907         map_bh.b_size = len;
1908
1909         if (compr_cluster)
1910                 map_bh.b_size = blk_to_logical(inode, cluster_size - 1);
1911
1912         ret = get_data_block(inode, start_blk, &map_bh, 0,
1913                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1914         if (ret)
1915                 goto out;
1916
1917         /* HOLE */
1918         if (!buffer_mapped(&map_bh)) {
1919                 start_blk = next_pgofs;
1920
1921                 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1922                                                 max_inode_blocks(inode)))
1923                         goto prep_next;
1924
1925                 flags |= FIEMAP_EXTENT_LAST;
1926         }
1927
1928         if (size) {
1929                 if (IS_ENCRYPTED(inode))
1930                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1931
1932                 ret = fiemap_fill_next_extent(fieinfo, logical,
1933                                 phys, size, flags);
1934                 if (ret)
1935                         goto out;
1936                 size = 0;
1937         }
1938
1939         if (start_blk > last_blk)
1940                 goto out;
1941
1942         if (compr_cluster) {
1943                 compr_cluster = false;
1944
1945
1946                 logical = blk_to_logical(inode, start_blk - 1);
1947                 phys = blk_to_logical(inode, map_bh.b_blocknr);
1948                 size = blk_to_logical(inode, cluster_size);
1949
1950                 flags |= FIEMAP_EXTENT_ENCODED;
1951
1952                 start_blk += cluster_size - 1;
1953
1954                 if (start_blk > last_blk)
1955                         goto out;
1956
1957                 goto prep_next;
1958         }
1959
1960         if (map_bh.b_blocknr == COMPRESS_ADDR) {
1961                 compr_cluster = true;
1962                 start_blk++;
1963                 goto prep_next;
1964         }
1965
1966         logical = blk_to_logical(inode, start_blk);
1967         phys = blk_to_logical(inode, map_bh.b_blocknr);
1968         size = map_bh.b_size;
1969         flags = 0;
1970         if (buffer_unwritten(&map_bh))
1971                 flags = FIEMAP_EXTENT_UNWRITTEN;
1972
1973         start_blk += logical_to_blk(inode, size);
1974
1975 prep_next:
1976         cond_resched();
1977         if (fatal_signal_pending(current))
1978                 ret = -EINTR;
1979         else
1980                 goto next;
1981 out:
1982         if (ret == 1)
1983                 ret = 0;
1984
1985         inode_unlock(inode);
1986         return ret;
1987 }
1988
1989 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1990 {
1991         if (IS_ENABLED(CONFIG_FS_VERITY) &&
1992             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1993                 return inode->i_sb->s_maxbytes;
1994
1995         return i_size_read(inode);
1996 }
1997
1998 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1999                                         unsigned nr_pages,
2000                                         struct f2fs_map_blocks *map,
2001                                         struct bio **bio_ret,
2002                                         sector_t *last_block_in_bio,
2003                                         bool is_readahead)
2004 {
2005         struct bio *bio = *bio_ret;
2006         const unsigned blkbits = inode->i_blkbits;
2007         const unsigned blocksize = 1 << blkbits;
2008         sector_t block_in_file;
2009         sector_t last_block;
2010         sector_t last_block_in_file;
2011         sector_t block_nr;
2012         int ret = 0;
2013
2014         block_in_file = (sector_t)page_index(page);
2015         last_block = block_in_file + nr_pages;
2016         last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
2017                                                         blkbits;
2018         if (last_block > last_block_in_file)
2019                 last_block = last_block_in_file;
2020
2021         /* just zeroing out page which is beyond EOF */
2022         if (block_in_file >= last_block)
2023                 goto zero_out;
2024         /*
2025          * Map blocks using the previous result first.
2026          */
2027         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2028                         block_in_file > map->m_lblk &&
2029                         block_in_file < (map->m_lblk + map->m_len))
2030                 goto got_it;
2031
2032         /*
2033          * Then do more f2fs_map_blocks() calls until we are
2034          * done with this page.
2035          */
2036         map->m_lblk = block_in_file;
2037         map->m_len = last_block - block_in_file;
2038
2039         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2040         if (ret)
2041                 goto out;
2042 got_it:
2043         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2044                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2045                 SetPageMappedToDisk(page);
2046
2047                 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2048                                         !cleancache_get_page(page))) {
2049                         SetPageUptodate(page);
2050                         goto confused;
2051                 }
2052
2053                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2054                                                 DATA_GENERIC_ENHANCE_READ)) {
2055                         ret = -EFSCORRUPTED;
2056                         goto out;
2057                 }
2058         } else {
2059 zero_out:
2060                 zero_user_segment(page, 0, PAGE_SIZE);
2061                 if (f2fs_need_verity(inode, page->index) &&
2062                     !fsverity_verify_page(page)) {
2063                         ret = -EIO;
2064                         goto out;
2065                 }
2066                 if (!PageUptodate(page))
2067                         SetPageUptodate(page);
2068                 unlock_page(page);
2069                 goto out;
2070         }
2071
2072         /*
2073          * This page will go to BIO.  Do we need to send this
2074          * BIO off first?
2075          */
2076         if (bio && !page_is_mergeable(F2FS_I_SB(inode), bio,
2077                                 *last_block_in_bio, block_nr)) {
2078 submit_and_realloc:
2079                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2080                 bio = NULL;
2081         }
2082         if (bio == NULL) {
2083                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2084                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2085                                 false);
2086                 if (IS_ERR(bio)) {
2087                         ret = PTR_ERR(bio);
2088                         bio = NULL;
2089                         goto out;
2090                 }
2091         }
2092
2093         /*
2094          * If the page is under writeback, we need to wait for
2095          * its completion to see the correct decrypted data.
2096          */
2097         f2fs_wait_on_block_writeback(inode, block_nr);
2098
2099         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2100                 goto submit_and_realloc;
2101
2102         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2103         f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2104         ClearPageError(page);
2105         *last_block_in_bio = block_nr;
2106         goto out;
2107 confused:
2108         if (bio) {
2109                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2110                 bio = NULL;
2111         }
2112         unlock_page(page);
2113 out:
2114         *bio_ret = bio;
2115         return ret;
2116 }
2117
2118 #ifdef CONFIG_F2FS_FS_COMPRESSION
2119 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2120                                 unsigned nr_pages, sector_t *last_block_in_bio,
2121                                 bool is_readahead, bool for_write)
2122 {
2123         struct dnode_of_data dn;
2124         struct inode *inode = cc->inode;
2125         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2126         struct bio *bio = *bio_ret;
2127         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2128         sector_t last_block_in_file;
2129         const unsigned blkbits = inode->i_blkbits;
2130         const unsigned blocksize = 1 << blkbits;
2131         struct decompress_io_ctx *dic = NULL;
2132         int i;
2133         int ret = 0;
2134
2135         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2136
2137         last_block_in_file = (f2fs_readpage_limit(inode) +
2138                                         blocksize - 1) >> blkbits;
2139
2140         /* get rid of pages beyond EOF */
2141         for (i = 0; i < cc->cluster_size; i++) {
2142                 struct page *page = cc->rpages[i];
2143
2144                 if (!page)
2145                         continue;
2146                 if ((sector_t)page->index >= last_block_in_file) {
2147                         zero_user_segment(page, 0, PAGE_SIZE);
2148                         if (!PageUptodate(page))
2149                                 SetPageUptodate(page);
2150                 } else if (!PageUptodate(page)) {
2151                         continue;
2152                 }
2153                 unlock_page(page);
2154                 cc->rpages[i] = NULL;
2155                 cc->nr_rpages--;
2156         }
2157
2158         /* we are done since all pages are beyond EOF */
2159         if (f2fs_cluster_is_empty(cc))
2160                 goto out;
2161
2162         set_new_dnode(&dn, inode, NULL, NULL, 0);
2163         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2164         if (ret)
2165                 goto out;
2166
2167         /* cluster was overwritten as normal cluster */
2168         if (dn.data_blkaddr != COMPRESS_ADDR)
2169                 goto out;
2170
2171         for (i = 1; i < cc->cluster_size; i++) {
2172                 block_t blkaddr;
2173
2174                 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2175                                                 dn.ofs_in_node + i);
2176
2177                 if (!__is_valid_data_blkaddr(blkaddr))
2178                         break;
2179
2180                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2181                         ret = -EFAULT;
2182                         goto out_put_dnode;
2183                 }
2184                 cc->nr_cpages++;
2185         }
2186
2187         /* nothing to decompress */
2188         if (cc->nr_cpages == 0) {
2189                 ret = 0;
2190                 goto out_put_dnode;
2191         }
2192
2193         dic = f2fs_alloc_dic(cc);
2194         if (IS_ERR(dic)) {
2195                 ret = PTR_ERR(dic);
2196                 goto out_put_dnode;
2197         }
2198
2199         for (i = 0; i < dic->nr_cpages; i++) {
2200                 struct page *page = dic->cpages[i];
2201                 block_t blkaddr;
2202                 struct bio_post_read_ctx *ctx;
2203
2204                 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2205                                                 dn.ofs_in_node + i + 1);
2206
2207                 if (bio && !page_is_mergeable(sbi, bio,
2208                                         *last_block_in_bio, blkaddr)) {
2209 submit_and_realloc:
2210                         __submit_bio(sbi, bio, DATA);
2211                         bio = NULL;
2212                 }
2213
2214                 if (!bio) {
2215                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2216                                         is_readahead ? REQ_RAHEAD : 0,
2217                                         page->index, for_write);
2218                         if (IS_ERR(bio)) {
2219                                 ret = PTR_ERR(bio);
2220                                 dic->failed = true;
2221                                 if (refcount_sub_and_test(dic->nr_cpages - i,
2222                                                         &dic->ref)) {
2223                                         f2fs_decompress_end_io(dic->rpages,
2224                                                         cc->cluster_size, true,
2225                                                         false);
2226                                         f2fs_free_dic(dic);
2227                                 }
2228                                 f2fs_put_dnode(&dn);
2229                                 *bio_ret = NULL;
2230                                 return ret;
2231                         }
2232                 }
2233
2234                 f2fs_wait_on_block_writeback(inode, blkaddr);
2235
2236                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2237                         goto submit_and_realloc;
2238
2239                 /* tag STEP_DECOMPRESS to handle IO in wq */
2240                 ctx = bio->bi_private;
2241                 if (!(ctx->enabled_steps & (1 << STEP_DECOMPRESS)))
2242                         ctx->enabled_steps |= 1 << STEP_DECOMPRESS;
2243
2244                 inc_page_count(sbi, F2FS_RD_DATA);
2245                 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2246                 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2247                 ClearPageError(page);
2248                 *last_block_in_bio = blkaddr;
2249         }
2250
2251         f2fs_put_dnode(&dn);
2252
2253         *bio_ret = bio;
2254         return 0;
2255
2256 out_put_dnode:
2257         f2fs_put_dnode(&dn);
2258 out:
2259         f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
2260         *bio_ret = bio;
2261         return ret;
2262 }
2263 #endif
2264
2265 /*
2266  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2267  * Major change was from block_size == page_size in f2fs by default.
2268  *
2269  * Note that the aops->readpages() function is ONLY used for read-ahead. If
2270  * this function ever deviates from doing just read-ahead, it should either
2271  * use ->readpage() or do the necessary surgery to decouple ->readpages()
2272  * from read-ahead.
2273  */
2274 static int f2fs_mpage_readpages(struct inode *inode,
2275                 struct readahead_control *rac, struct page *page)
2276 {
2277         struct bio *bio = NULL;
2278         sector_t last_block_in_bio = 0;
2279         struct f2fs_map_blocks map;
2280 #ifdef CONFIG_F2FS_FS_COMPRESSION
2281         struct compress_ctx cc = {
2282                 .inode = inode,
2283                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2284                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2285                 .cluster_idx = NULL_CLUSTER,
2286                 .rpages = NULL,
2287                 .cpages = NULL,
2288                 .nr_rpages = 0,
2289                 .nr_cpages = 0,
2290         };
2291 #endif
2292         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2293         unsigned max_nr_pages = nr_pages;
2294         int ret = 0;
2295
2296         map.m_pblk = 0;
2297         map.m_lblk = 0;
2298         map.m_len = 0;
2299         map.m_flags = 0;
2300         map.m_next_pgofs = NULL;
2301         map.m_next_extent = NULL;
2302         map.m_seg_type = NO_CHECK_TYPE;
2303         map.m_may_create = false;
2304
2305         for (; nr_pages; nr_pages--) {
2306                 if (rac) {
2307                         page = readahead_page(rac);
2308                         prefetchw(&page->flags);
2309                 }
2310
2311 #ifdef CONFIG_F2FS_FS_COMPRESSION
2312                 if (f2fs_compressed_file(inode)) {
2313                         /* there are remained comressed pages, submit them */
2314                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2315                                 ret = f2fs_read_multi_pages(&cc, &bio,
2316                                                         max_nr_pages,
2317                                                         &last_block_in_bio,
2318                                                         rac != NULL, false);
2319                                 f2fs_destroy_compress_ctx(&cc);
2320                                 if (ret)
2321                                         goto set_error_page;
2322                         }
2323                         ret = f2fs_is_compressed_cluster(inode, page->index);
2324                         if (ret < 0)
2325                                 goto set_error_page;
2326                         else if (!ret)
2327                                 goto read_single_page;
2328
2329                         ret = f2fs_init_compress_ctx(&cc);
2330                         if (ret)
2331                                 goto set_error_page;
2332
2333                         f2fs_compress_ctx_add_page(&cc, page);
2334
2335                         goto next_page;
2336                 }
2337 read_single_page:
2338 #endif
2339
2340                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2341                                         &bio, &last_block_in_bio, rac);
2342                 if (ret) {
2343 #ifdef CONFIG_F2FS_FS_COMPRESSION
2344 set_error_page:
2345 #endif
2346                         SetPageError(page);
2347                         zero_user_segment(page, 0, PAGE_SIZE);
2348                         unlock_page(page);
2349                 }
2350 #ifdef CONFIG_F2FS_FS_COMPRESSION
2351 next_page:
2352 #endif
2353                 if (rac)
2354                         put_page(page);
2355
2356 #ifdef CONFIG_F2FS_FS_COMPRESSION
2357                 if (f2fs_compressed_file(inode)) {
2358                         /* last page */
2359                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2360                                 ret = f2fs_read_multi_pages(&cc, &bio,
2361                                                         max_nr_pages,
2362                                                         &last_block_in_bio,
2363                                                         rac != NULL, false);
2364                                 f2fs_destroy_compress_ctx(&cc);
2365                         }
2366                 }
2367 #endif
2368         }
2369         if (bio)
2370                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2371         return ret;
2372 }
2373
2374 static int f2fs_read_data_page(struct file *file, struct page *page)
2375 {
2376         struct inode *inode = page_file_mapping(page)->host;
2377         int ret = -EAGAIN;
2378
2379         trace_f2fs_readpage(page, DATA);
2380
2381         if (!f2fs_is_compress_backend_ready(inode)) {
2382                 unlock_page(page);
2383                 return -EOPNOTSUPP;
2384         }
2385
2386         /* If the file has inline data, try to read it directly */
2387         if (f2fs_has_inline_data(inode))
2388                 ret = f2fs_read_inline_data(inode, page);
2389         if (ret == -EAGAIN)
2390                 ret = f2fs_mpage_readpages(inode, NULL, page);
2391         return ret;
2392 }
2393
2394 static void f2fs_readahead(struct readahead_control *rac)
2395 {
2396         struct inode *inode = rac->mapping->host;
2397
2398         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2399
2400         if (!f2fs_is_compress_backend_ready(inode))
2401                 return;
2402
2403         /* If the file has inline data, skip readpages */
2404         if (f2fs_has_inline_data(inode))
2405                 return;
2406
2407         f2fs_mpage_readpages(inode, rac, NULL);
2408 }
2409
2410 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2411 {
2412         struct inode *inode = fio->page->mapping->host;
2413         struct page *mpage, *page;
2414         gfp_t gfp_flags = GFP_NOFS;
2415
2416         if (!f2fs_encrypted_file(inode))
2417                 return 0;
2418
2419         page = fio->compressed_page ? fio->compressed_page : fio->page;
2420
2421         /* wait for GCed page writeback via META_MAPPING */
2422         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2423
2424 retry_encrypt:
2425         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2426                                         PAGE_SIZE, 0, gfp_flags);
2427         if (IS_ERR(fio->encrypted_page)) {
2428                 /* flush pending IOs and wait for a while in the ENOMEM case */
2429                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2430                         f2fs_flush_merged_writes(fio->sbi);
2431                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2432                         gfp_flags |= __GFP_NOFAIL;
2433                         goto retry_encrypt;
2434                 }
2435                 return PTR_ERR(fio->encrypted_page);
2436         }
2437
2438         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2439         if (mpage) {
2440                 if (PageUptodate(mpage))
2441                         memcpy(page_address(mpage),
2442                                 page_address(fio->encrypted_page), PAGE_SIZE);
2443                 f2fs_put_page(mpage, 1);
2444         }
2445         return 0;
2446 }
2447
2448 static inline bool check_inplace_update_policy(struct inode *inode,
2449                                 struct f2fs_io_info *fio)
2450 {
2451         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2452         unsigned int policy = SM_I(sbi)->ipu_policy;
2453
2454         if (policy & (0x1 << F2FS_IPU_FORCE))
2455                 return true;
2456         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2457                 return true;
2458         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2459                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2460                 return true;
2461         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2462                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2463                 return true;
2464
2465         /*
2466          * IPU for rewrite async pages
2467          */
2468         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2469                         fio && fio->op == REQ_OP_WRITE &&
2470                         !(fio->op_flags & REQ_SYNC) &&
2471                         !IS_ENCRYPTED(inode))
2472                 return true;
2473
2474         /* this is only set during fdatasync */
2475         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2476                         is_inode_flag_set(inode, FI_NEED_IPU))
2477                 return true;
2478
2479         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2480                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2481                 return true;
2482
2483         return false;
2484 }
2485
2486 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2487 {
2488         if (f2fs_is_pinned_file(inode))
2489                 return true;
2490
2491         /* if this is cold file, we should overwrite to avoid fragmentation */
2492         if (file_is_cold(inode))
2493                 return true;
2494
2495         return check_inplace_update_policy(inode, fio);
2496 }
2497
2498 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2499 {
2500         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2501
2502         if (f2fs_lfs_mode(sbi))
2503                 return true;
2504         if (S_ISDIR(inode->i_mode))
2505                 return true;
2506         if (IS_NOQUOTA(inode))
2507                 return true;
2508         if (f2fs_is_atomic_file(inode))
2509                 return true;
2510         if (fio) {
2511                 if (is_cold_data(fio->page))
2512                         return true;
2513                 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2514                         return true;
2515                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2516                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2517                         return true;
2518         }
2519         return false;
2520 }
2521
2522 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2523 {
2524         struct inode *inode = fio->page->mapping->host;
2525
2526         if (f2fs_should_update_outplace(inode, fio))
2527                 return false;
2528
2529         return f2fs_should_update_inplace(inode, fio);
2530 }
2531
2532 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2533 {
2534         struct page *page = fio->page;
2535         struct inode *inode = page->mapping->host;
2536         struct dnode_of_data dn;
2537         struct extent_info ei = {0,0,0};
2538         struct node_info ni;
2539         bool ipu_force = false;
2540         int err = 0;
2541
2542         set_new_dnode(&dn, inode, NULL, NULL, 0);
2543         if (need_inplace_update(fio) &&
2544                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2545                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2546
2547                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2548                                                 DATA_GENERIC_ENHANCE))
2549                         return -EFSCORRUPTED;
2550
2551                 ipu_force = true;
2552                 fio->need_lock = LOCK_DONE;
2553                 goto got_it;
2554         }
2555
2556         /* Deadlock due to between page->lock and f2fs_lock_op */
2557         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2558                 return -EAGAIN;
2559
2560         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2561         if (err)
2562                 goto out;
2563
2564         fio->old_blkaddr = dn.data_blkaddr;
2565
2566         /* This page is already truncated */
2567         if (fio->old_blkaddr == NULL_ADDR) {
2568                 ClearPageUptodate(page);
2569                 clear_cold_data(page);
2570                 goto out_writepage;
2571         }
2572 got_it:
2573         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2574                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2575                                                 DATA_GENERIC_ENHANCE)) {
2576                 err = -EFSCORRUPTED;
2577                 goto out_writepage;
2578         }
2579         /*
2580          * If current allocation needs SSR,
2581          * it had better in-place writes for updated data.
2582          */
2583         if (ipu_force ||
2584                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2585                                         need_inplace_update(fio))) {
2586                 err = f2fs_encrypt_one_page(fio);
2587                 if (err)
2588                         goto out_writepage;
2589
2590                 set_page_writeback(page);
2591                 ClearPageError(page);
2592                 f2fs_put_dnode(&dn);
2593                 if (fio->need_lock == LOCK_REQ)
2594                         f2fs_unlock_op(fio->sbi);
2595                 err = f2fs_inplace_write_data(fio);
2596                 if (err) {
2597                         if (f2fs_encrypted_file(inode))
2598                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2599                         if (PageWriteback(page))
2600                                 end_page_writeback(page);
2601                 } else {
2602                         set_inode_flag(inode, FI_UPDATE_WRITE);
2603                 }
2604                 trace_f2fs_do_write_data_page(fio->page, IPU);
2605                 return err;
2606         }
2607
2608         if (fio->need_lock == LOCK_RETRY) {
2609                 if (!f2fs_trylock_op(fio->sbi)) {
2610                         err = -EAGAIN;
2611                         goto out_writepage;
2612                 }
2613                 fio->need_lock = LOCK_REQ;
2614         }
2615
2616         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2617         if (err)
2618                 goto out_writepage;
2619
2620         fio->version = ni.version;
2621
2622         err = f2fs_encrypt_one_page(fio);
2623         if (err)
2624                 goto out_writepage;
2625
2626         set_page_writeback(page);
2627         ClearPageError(page);
2628
2629         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2630                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2631
2632         /* LFS mode write path */
2633         f2fs_outplace_write_data(&dn, fio);
2634         trace_f2fs_do_write_data_page(page, OPU);
2635         set_inode_flag(inode, FI_APPEND_WRITE);
2636         if (page->index == 0)
2637                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2638 out_writepage:
2639         f2fs_put_dnode(&dn);
2640 out:
2641         if (fio->need_lock == LOCK_REQ)
2642                 f2fs_unlock_op(fio->sbi);
2643         return err;
2644 }
2645
2646 int f2fs_write_single_data_page(struct page *page, int *submitted,
2647                                 struct bio **bio,
2648                                 sector_t *last_block,
2649                                 struct writeback_control *wbc,
2650                                 enum iostat_type io_type,
2651                                 int compr_blocks)
2652 {
2653         struct inode *inode = page->mapping->host;
2654         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2655         loff_t i_size = i_size_read(inode);
2656         const pgoff_t end_index = ((unsigned long long)i_size)
2657                                                         >> PAGE_SHIFT;
2658         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2659         unsigned offset = 0;
2660         bool need_balance_fs = false;
2661         int err = 0;
2662         struct f2fs_io_info fio = {
2663                 .sbi = sbi,
2664                 .ino = inode->i_ino,
2665                 .type = DATA,
2666                 .op = REQ_OP_WRITE,
2667                 .op_flags = wbc_to_write_flags(wbc),
2668                 .old_blkaddr = NULL_ADDR,
2669                 .page = page,
2670                 .encrypted_page = NULL,
2671                 .submitted = false,
2672                 .compr_blocks = compr_blocks,
2673                 .need_lock = LOCK_RETRY,
2674                 .io_type = io_type,
2675                 .io_wbc = wbc,
2676                 .bio = bio,
2677                 .last_block = last_block,
2678         };
2679
2680         trace_f2fs_writepage(page, DATA);
2681
2682         /* we should bypass data pages to proceed the kworkder jobs */
2683         if (unlikely(f2fs_cp_error(sbi))) {
2684                 mapping_set_error(page->mapping, -EIO);
2685                 /*
2686                  * don't drop any dirty dentry pages for keeping lastest
2687                  * directory structure.
2688                  */
2689                 if (S_ISDIR(inode->i_mode))
2690                         goto redirty_out;
2691                 goto out;
2692         }
2693
2694         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2695                 goto redirty_out;
2696
2697         if (page->index < end_index ||
2698                         f2fs_verity_in_progress(inode) ||
2699                         compr_blocks)
2700                 goto write;
2701
2702         /*
2703          * If the offset is out-of-range of file size,
2704          * this page does not have to be written to disk.
2705          */
2706         offset = i_size & (PAGE_SIZE - 1);
2707         if ((page->index >= end_index + 1) || !offset)
2708                 goto out;
2709
2710         zero_user_segment(page, offset, PAGE_SIZE);
2711 write:
2712         if (f2fs_is_drop_cache(inode))
2713                 goto out;
2714         /* we should not write 0'th page having journal header */
2715         if (f2fs_is_volatile_file(inode) && (!page->index ||
2716                         (!wbc->for_reclaim &&
2717                         f2fs_available_free_memory(sbi, BASE_CHECK))))
2718                 goto redirty_out;
2719
2720         /* Dentry/quota blocks are controlled by checkpoint */
2721         if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2722                 fio.need_lock = LOCK_DONE;
2723                 err = f2fs_do_write_data_page(&fio);
2724                 goto done;
2725         }
2726
2727         if (!wbc->for_reclaim)
2728                 need_balance_fs = true;
2729         else if (has_not_enough_free_secs(sbi, 0, 0))
2730                 goto redirty_out;
2731         else
2732                 set_inode_flag(inode, FI_HOT_DATA);
2733
2734         err = -EAGAIN;
2735         if (f2fs_has_inline_data(inode)) {
2736                 err = f2fs_write_inline_data(inode, page);
2737                 if (!err)
2738                         goto out;
2739         }
2740
2741         if (err == -EAGAIN) {
2742                 err = f2fs_do_write_data_page(&fio);
2743                 if (err == -EAGAIN) {
2744                         fio.need_lock = LOCK_REQ;
2745                         err = f2fs_do_write_data_page(&fio);
2746                 }
2747         }
2748
2749         if (err) {
2750                 file_set_keep_isize(inode);
2751         } else {
2752                 spin_lock(&F2FS_I(inode)->i_size_lock);
2753                 if (F2FS_I(inode)->last_disk_size < psize)
2754                         F2FS_I(inode)->last_disk_size = psize;
2755                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2756         }
2757
2758 done:
2759         if (err && err != -ENOENT)
2760                 goto redirty_out;
2761
2762 out:
2763         inode_dec_dirty_pages(inode);
2764         if (err) {
2765                 ClearPageUptodate(page);
2766                 clear_cold_data(page);
2767         }
2768
2769         if (wbc->for_reclaim) {
2770                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2771                 clear_inode_flag(inode, FI_HOT_DATA);
2772                 f2fs_remove_dirty_inode(inode);
2773                 submitted = NULL;
2774         }
2775         unlock_page(page);
2776         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2777                                         !F2FS_I(inode)->cp_task)
2778                 f2fs_balance_fs(sbi, need_balance_fs);
2779
2780         if (unlikely(f2fs_cp_error(sbi))) {
2781                 f2fs_submit_merged_write(sbi, DATA);
2782                 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2783                 submitted = NULL;
2784         }
2785
2786         if (submitted)
2787                 *submitted = fio.submitted ? 1 : 0;
2788
2789         return 0;
2790
2791 redirty_out:
2792         redirty_page_for_writepage(wbc, page);
2793         /*
2794          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2795          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2796          * file_write_and_wait_range() will see EIO error, which is critical
2797          * to return value of fsync() followed by atomic_write failure to user.
2798          */
2799         if (!err || wbc->for_reclaim)
2800                 return AOP_WRITEPAGE_ACTIVATE;
2801         unlock_page(page);
2802         return err;
2803 }
2804
2805 static int f2fs_write_data_page(struct page *page,
2806                                         struct writeback_control *wbc)
2807 {
2808 #ifdef CONFIG_F2FS_FS_COMPRESSION
2809         struct inode *inode = page->mapping->host;
2810
2811         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2812                 goto out;
2813
2814         if (f2fs_compressed_file(inode)) {
2815                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2816                         redirty_page_for_writepage(wbc, page);
2817                         return AOP_WRITEPAGE_ACTIVATE;
2818                 }
2819         }
2820 out:
2821 #endif
2822
2823         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2824                                                 wbc, FS_DATA_IO, 0);
2825 }
2826
2827 /*
2828  * This function was copied from write_cche_pages from mm/page-writeback.c.
2829  * The major change is making write step of cold data page separately from
2830  * warm/hot data page.
2831  */
2832 static int f2fs_write_cache_pages(struct address_space *mapping,
2833                                         struct writeback_control *wbc,
2834                                         enum iostat_type io_type)
2835 {
2836         int ret = 0;
2837         int done = 0, retry = 0;
2838         struct pagevec pvec;
2839         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2840         struct bio *bio = NULL;
2841         sector_t last_block;
2842 #ifdef CONFIG_F2FS_FS_COMPRESSION
2843         struct inode *inode = mapping->host;
2844         struct compress_ctx cc = {
2845                 .inode = inode,
2846                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2847                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2848                 .cluster_idx = NULL_CLUSTER,
2849                 .rpages = NULL,
2850                 .nr_rpages = 0,
2851                 .cpages = NULL,
2852                 .rbuf = NULL,
2853                 .cbuf = NULL,
2854                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2855                 .private = NULL,
2856         };
2857 #endif
2858         int nr_pages;
2859         pgoff_t uninitialized_var(writeback_index);
2860         pgoff_t index;
2861         pgoff_t end;            /* Inclusive */
2862         pgoff_t done_index;
2863         int range_whole = 0;
2864         xa_mark_t tag;
2865         int nwritten = 0;
2866         int submitted = 0;
2867         int i;
2868
2869         pagevec_init(&pvec);
2870
2871         if (get_dirty_pages(mapping->host) <=
2872                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2873                 set_inode_flag(mapping->host, FI_HOT_DATA);
2874         else
2875                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2876
2877         if (wbc->range_cyclic) {
2878                 writeback_index = mapping->writeback_index; /* prev offset */
2879                 index = writeback_index;
2880                 end = -1;
2881         } else {
2882                 index = wbc->range_start >> PAGE_SHIFT;
2883                 end = wbc->range_end >> PAGE_SHIFT;
2884                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2885                         range_whole = 1;
2886         }
2887         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2888                 tag = PAGECACHE_TAG_TOWRITE;
2889         else
2890                 tag = PAGECACHE_TAG_DIRTY;
2891 retry:
2892         retry = 0;
2893         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2894                 tag_pages_for_writeback(mapping, index, end);
2895         done_index = index;
2896         while (!done && !retry && (index <= end)) {
2897                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2898                                 tag);
2899                 if (nr_pages == 0)
2900                         break;
2901
2902                 for (i = 0; i < nr_pages; i++) {
2903                         struct page *page = pvec.pages[i];
2904                         bool need_readd;
2905 readd:
2906                         need_readd = false;
2907 #ifdef CONFIG_F2FS_FS_COMPRESSION
2908                         if (f2fs_compressed_file(inode)) {
2909                                 ret = f2fs_init_compress_ctx(&cc);
2910                                 if (ret) {
2911                                         done = 1;
2912                                         break;
2913                                 }
2914
2915                                 if (!f2fs_cluster_can_merge_page(&cc,
2916                                                                 page->index)) {
2917                                         ret = f2fs_write_multi_pages(&cc,
2918                                                 &submitted, wbc, io_type);
2919                                         if (!ret)
2920                                                 need_readd = true;
2921                                         goto result;
2922                                 }
2923
2924                                 if (unlikely(f2fs_cp_error(sbi)))
2925                                         goto lock_page;
2926
2927                                 if (f2fs_cluster_is_empty(&cc)) {
2928                                         void *fsdata = NULL;
2929                                         struct page *pagep;
2930                                         int ret2;
2931
2932                                         ret2 = f2fs_prepare_compress_overwrite(
2933                                                         inode, &pagep,
2934                                                         page->index, &fsdata);
2935                                         if (ret2 < 0) {
2936                                                 ret = ret2;
2937                                                 done = 1;
2938                                                 break;
2939                                         } else if (ret2 &&
2940                                                 !f2fs_compress_write_end(inode,
2941                                                                 fsdata, page->index,
2942                                                                 1)) {
2943                                                 retry = 1;
2944                                                 break;
2945                                         }
2946                                 } else {
2947                                         goto lock_page;
2948                                 }
2949                         }
2950 #endif
2951                         /* give a priority to WB_SYNC threads */
2952                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2953                                         wbc->sync_mode == WB_SYNC_NONE) {
2954                                 done = 1;
2955                                 break;
2956                         }
2957 #ifdef CONFIG_F2FS_FS_COMPRESSION
2958 lock_page:
2959 #endif
2960                         done_index = page->index;
2961 retry_write:
2962                         lock_page(page);
2963
2964                         if (unlikely(page->mapping != mapping)) {
2965 continue_unlock:
2966                                 unlock_page(page);
2967                                 continue;
2968                         }
2969
2970                         if (!PageDirty(page)) {
2971                                 /* someone wrote it for us */
2972                                 goto continue_unlock;
2973                         }
2974
2975                         if (PageWriteback(page)) {
2976                                 if (wbc->sync_mode != WB_SYNC_NONE)
2977                                         f2fs_wait_on_page_writeback(page,
2978                                                         DATA, true, true);
2979                                 else
2980                                         goto continue_unlock;
2981                         }
2982
2983                         if (!clear_page_dirty_for_io(page))
2984                                 goto continue_unlock;
2985
2986 #ifdef CONFIG_F2FS_FS_COMPRESSION
2987                         if (f2fs_compressed_file(inode)) {
2988                                 get_page(page);
2989                                 f2fs_compress_ctx_add_page(&cc, page);
2990                                 continue;
2991                         }
2992 #endif
2993                         ret = f2fs_write_single_data_page(page, &submitted,
2994                                         &bio, &last_block, wbc, io_type, 0);
2995                         if (ret == AOP_WRITEPAGE_ACTIVATE)
2996                                 unlock_page(page);
2997 #ifdef CONFIG_F2FS_FS_COMPRESSION
2998 result:
2999 #endif
3000                         nwritten += submitted;
3001                         wbc->nr_to_write -= submitted;
3002
3003                         if (unlikely(ret)) {
3004                                 /*
3005                                  * keep nr_to_write, since vfs uses this to
3006                                  * get # of written pages.
3007                                  */
3008                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3009                                         ret = 0;
3010                                         goto next;
3011                                 } else if (ret == -EAGAIN) {
3012                                         ret = 0;
3013                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3014                                                 cond_resched();
3015                                                 congestion_wait(BLK_RW_ASYNC,
3016                                                         DEFAULT_IO_TIMEOUT);
3017                                                 goto retry_write;
3018                                         }
3019                                         goto next;
3020                                 }
3021                                 done_index = page->index + 1;
3022                                 done = 1;
3023                                 break;
3024                         }
3025
3026                         if (wbc->nr_to_write <= 0 &&
3027                                         wbc->sync_mode == WB_SYNC_NONE) {
3028                                 done = 1;
3029                                 break;
3030                         }
3031 next:
3032                         if (need_readd)
3033                                 goto readd;
3034                 }
3035                 pagevec_release(&pvec);
3036                 cond_resched();
3037         }
3038 #ifdef CONFIG_F2FS_FS_COMPRESSION
3039         /* flush remained pages in compress cluster */
3040         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3041                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3042                 nwritten += submitted;
3043                 wbc->nr_to_write -= submitted;
3044                 if (ret) {
3045                         done = 1;
3046                         retry = 0;
3047                 }
3048         }
3049 #endif
3050         if (retry) {
3051                 index = 0;
3052                 end = -1;
3053                 goto retry;
3054         }
3055         if (wbc->range_cyclic && !done)
3056                 done_index = 0;
3057         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3058                 mapping->writeback_index = done_index;
3059
3060         if (nwritten)
3061                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3062                                                                 NULL, 0, DATA);
3063         /* submit cached bio of IPU write */
3064         if (bio)
3065                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3066
3067         return ret;
3068 }
3069
3070 static inline bool __should_serialize_io(struct inode *inode,
3071                                         struct writeback_control *wbc)
3072 {
3073         /* to avoid deadlock in path of data flush */
3074         if (F2FS_I(inode)->cp_task)
3075                 return false;
3076
3077         if (!S_ISREG(inode->i_mode))
3078                 return false;
3079         if (IS_NOQUOTA(inode))
3080                 return false;
3081
3082         if (f2fs_compressed_file(inode))
3083                 return true;
3084         if (wbc->sync_mode != WB_SYNC_ALL)
3085                 return true;
3086         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3087                 return true;
3088         return false;
3089 }
3090
3091 static int __f2fs_write_data_pages(struct address_space *mapping,
3092                                                 struct writeback_control *wbc,
3093                                                 enum iostat_type io_type)
3094 {
3095         struct inode *inode = mapping->host;
3096         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3097         struct blk_plug plug;
3098         int ret;
3099         bool locked = false;
3100
3101         /* deal with chardevs and other special file */
3102         if (!mapping->a_ops->writepage)
3103                 return 0;
3104
3105         /* skip writing if there is no dirty page in this inode */
3106         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3107                 return 0;
3108
3109         /* during POR, we don't need to trigger writepage at all. */
3110         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3111                 goto skip_write;
3112
3113         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3114                         wbc->sync_mode == WB_SYNC_NONE &&
3115                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3116                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3117                 goto skip_write;
3118
3119         /* skip writing during file defragment */
3120         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3121                 goto skip_write;
3122
3123         trace_f2fs_writepages(mapping->host, wbc, DATA);
3124
3125         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3126         if (wbc->sync_mode == WB_SYNC_ALL)
3127                 atomic_inc(&sbi->wb_sync_req[DATA]);
3128         else if (atomic_read(&sbi->wb_sync_req[DATA]))
3129                 goto skip_write;
3130
3131         if (__should_serialize_io(inode, wbc)) {
3132                 mutex_lock(&sbi->writepages);
3133                 locked = true;
3134         }
3135
3136         blk_start_plug(&plug);
3137         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3138         blk_finish_plug(&plug);
3139
3140         if (locked)
3141                 mutex_unlock(&sbi->writepages);
3142
3143         if (wbc->sync_mode == WB_SYNC_ALL)
3144                 atomic_dec(&sbi->wb_sync_req[DATA]);
3145         /*
3146          * if some pages were truncated, we cannot guarantee its mapping->host
3147          * to detect pending bios.
3148          */
3149
3150         f2fs_remove_dirty_inode(inode);
3151         return ret;
3152
3153 skip_write:
3154         wbc->pages_skipped += get_dirty_pages(inode);
3155         trace_f2fs_writepages(mapping->host, wbc, DATA);
3156         return 0;
3157 }
3158
3159 static int f2fs_write_data_pages(struct address_space *mapping,
3160                             struct writeback_control *wbc)
3161 {
3162         struct inode *inode = mapping->host;
3163
3164         return __f2fs_write_data_pages(mapping, wbc,
3165                         F2FS_I(inode)->cp_task == current ?
3166                         FS_CP_DATA_IO : FS_DATA_IO);
3167 }
3168
3169 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3170 {
3171         struct inode *inode = mapping->host;
3172         loff_t i_size = i_size_read(inode);
3173
3174         if (IS_NOQUOTA(inode))
3175                 return;
3176
3177         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3178         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3179                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3180                 down_write(&F2FS_I(inode)->i_mmap_sem);
3181
3182                 truncate_pagecache(inode, i_size);
3183                 f2fs_truncate_blocks(inode, i_size, true);
3184
3185                 up_write(&F2FS_I(inode)->i_mmap_sem);
3186                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3187         }
3188 }
3189
3190 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3191                         struct page *page, loff_t pos, unsigned len,
3192                         block_t *blk_addr, bool *node_changed)
3193 {
3194         struct inode *inode = page->mapping->host;
3195         pgoff_t index = page->index;
3196         struct dnode_of_data dn;
3197         struct page *ipage;
3198         bool locked = false;
3199         struct extent_info ei = {0,0,0};
3200         int err = 0;
3201         int flag;
3202
3203         /*
3204          * we already allocated all the blocks, so we don't need to get
3205          * the block addresses when there is no need to fill the page.
3206          */
3207         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3208             !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3209             !f2fs_verity_in_progress(inode))
3210                 return 0;
3211
3212         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3213         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3214                 flag = F2FS_GET_BLOCK_DEFAULT;
3215         else
3216                 flag = F2FS_GET_BLOCK_PRE_AIO;
3217
3218         if (f2fs_has_inline_data(inode) ||
3219                         (pos & PAGE_MASK) >= i_size_read(inode)) {
3220                 __do_map_lock(sbi, flag, true);
3221                 locked = true;
3222         }
3223
3224 restart:
3225         /* check inline_data */
3226         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3227         if (IS_ERR(ipage)) {
3228                 err = PTR_ERR(ipage);
3229                 goto unlock_out;
3230         }
3231
3232         set_new_dnode(&dn, inode, ipage, ipage, 0);
3233
3234         if (f2fs_has_inline_data(inode)) {
3235                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3236                         f2fs_do_read_inline_data(page, ipage);
3237                         set_inode_flag(inode, FI_DATA_EXIST);
3238                         if (inode->i_nlink)
3239                                 set_inline_node(ipage);
3240                 } else {
3241                         err = f2fs_convert_inline_page(&dn, page);
3242                         if (err)
3243                                 goto out;
3244                         if (dn.data_blkaddr == NULL_ADDR)
3245                                 err = f2fs_get_block(&dn, index);
3246                 }
3247         } else if (locked) {
3248                 err = f2fs_get_block(&dn, index);
3249         } else {
3250                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3251                         dn.data_blkaddr = ei.blk + index - ei.fofs;
3252                 } else {
3253                         /* hole case */
3254                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3255                         if (err || dn.data_blkaddr == NULL_ADDR) {
3256                                 f2fs_put_dnode(&dn);
3257                                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3258                                                                 true);
3259                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3260                                 locked = true;
3261                                 goto restart;
3262                         }
3263                 }
3264         }
3265
3266         /* convert_inline_page can make node_changed */
3267         *blk_addr = dn.data_blkaddr;
3268         *node_changed = dn.node_changed;
3269 out:
3270         f2fs_put_dnode(&dn);
3271 unlock_out:
3272         if (locked)
3273                 __do_map_lock(sbi, flag, false);
3274         return err;
3275 }
3276
3277 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3278                 loff_t pos, unsigned len, unsigned flags,
3279                 struct page **pagep, void **fsdata)
3280 {
3281         struct inode *inode = mapping->host;
3282         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3283         struct page *page = NULL;
3284         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3285         bool need_balance = false, drop_atomic = false;
3286         block_t blkaddr = NULL_ADDR;
3287         int err = 0;
3288
3289         trace_f2fs_write_begin(inode, pos, len, flags);
3290
3291         if (!f2fs_is_checkpoint_ready(sbi)) {
3292                 err = -ENOSPC;
3293                 goto fail;
3294         }
3295
3296         if ((f2fs_is_atomic_file(inode) &&
3297                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3298                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3299                 err = -ENOMEM;
3300                 drop_atomic = true;
3301                 goto fail;
3302         }
3303
3304         /*
3305          * We should check this at this moment to avoid deadlock on inode page
3306          * and #0 page. The locking rule for inline_data conversion should be:
3307          * lock_page(page #0) -> lock_page(inode_page)
3308          */
3309         if (index != 0) {
3310                 err = f2fs_convert_inline_inode(inode);
3311                 if (err)
3312                         goto fail;
3313         }
3314
3315 #ifdef CONFIG_F2FS_FS_COMPRESSION
3316         if (f2fs_compressed_file(inode)) {
3317                 int ret;
3318
3319                 *fsdata = NULL;
3320
3321                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3322                                                         index, fsdata);
3323                 if (ret < 0) {
3324                         err = ret;
3325                         goto fail;
3326                 } else if (ret) {
3327                         return 0;
3328                 }
3329         }
3330 #endif
3331
3332 repeat:
3333         /*
3334          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3335          * wait_for_stable_page. Will wait that below with our IO control.
3336          */
3337         page = f2fs_pagecache_get_page(mapping, index,
3338                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3339         if (!page) {
3340                 err = -ENOMEM;
3341                 goto fail;
3342         }
3343
3344         /* TODO: cluster can be compressed due to race with .writepage */
3345
3346         *pagep = page;
3347
3348         err = prepare_write_begin(sbi, page, pos, len,
3349                                         &blkaddr, &need_balance);
3350         if (err)
3351                 goto fail;
3352
3353         if (need_balance && !IS_NOQUOTA(inode) &&
3354                         has_not_enough_free_secs(sbi, 0, 0)) {
3355                 unlock_page(page);
3356                 f2fs_balance_fs(sbi, true);
3357                 lock_page(page);
3358                 if (page->mapping != mapping) {
3359                         /* The page got truncated from under us */
3360                         f2fs_put_page(page, 1);
3361                         goto repeat;
3362                 }
3363         }
3364
3365         f2fs_wait_on_page_writeback(page, DATA, false, true);
3366
3367         if (len == PAGE_SIZE || PageUptodate(page))
3368                 return 0;
3369
3370         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3371             !f2fs_verity_in_progress(inode)) {
3372                 zero_user_segment(page, len, PAGE_SIZE);
3373                 return 0;
3374         }
3375
3376         if (blkaddr == NEW_ADDR) {
3377                 zero_user_segment(page, 0, PAGE_SIZE);
3378                 SetPageUptodate(page);
3379         } else {
3380                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3381                                 DATA_GENERIC_ENHANCE_READ)) {
3382                         err = -EFSCORRUPTED;
3383                         goto fail;
3384                 }
3385                 err = f2fs_submit_page_read(inode, page, blkaddr, true);
3386                 if (err)
3387                         goto fail;
3388
3389                 lock_page(page);
3390                 if (unlikely(page->mapping != mapping)) {
3391                         f2fs_put_page(page, 1);
3392                         goto repeat;
3393                 }
3394                 if (unlikely(!PageUptodate(page))) {
3395                         err = -EIO;
3396                         goto fail;
3397                 }
3398         }
3399         return 0;
3400
3401 fail:
3402         f2fs_put_page(page, 1);
3403         f2fs_write_failed(mapping, pos + len);
3404         if (drop_atomic)
3405                 f2fs_drop_inmem_pages_all(sbi, false);
3406         return err;
3407 }
3408
3409 static int f2fs_write_end(struct file *file,
3410                         struct address_space *mapping,
3411                         loff_t pos, unsigned len, unsigned copied,
3412                         struct page *page, void *fsdata)
3413 {
3414         struct inode *inode = page->mapping->host;
3415
3416         trace_f2fs_write_end(inode, pos, len, copied);
3417
3418         /*
3419          * This should be come from len == PAGE_SIZE, and we expect copied
3420          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3421          * let generic_perform_write() try to copy data again through copied=0.
3422          */
3423         if (!PageUptodate(page)) {
3424                 if (unlikely(copied != len))
3425                         copied = 0;
3426                 else
3427                         SetPageUptodate(page);
3428         }
3429
3430 #ifdef CONFIG_F2FS_FS_COMPRESSION
3431         /* overwrite compressed file */
3432         if (f2fs_compressed_file(inode) && fsdata) {
3433                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3434                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3435                 return copied;
3436         }
3437 #endif
3438
3439         if (!copied)
3440                 goto unlock_out;
3441
3442         set_page_dirty(page);
3443
3444         if (pos + copied > i_size_read(inode) &&
3445             !f2fs_verity_in_progress(inode))
3446                 f2fs_i_size_write(inode, pos + copied);
3447 unlock_out:
3448         f2fs_put_page(page, 1);
3449         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3450         return copied;
3451 }
3452
3453 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3454                            loff_t offset)
3455 {
3456         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3457         unsigned blkbits = i_blkbits;
3458         unsigned blocksize_mask = (1 << blkbits) - 1;
3459         unsigned long align = offset | iov_iter_alignment(iter);
3460         struct block_device *bdev = inode->i_sb->s_bdev;
3461
3462         if (align & blocksize_mask) {
3463                 if (bdev)
3464                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
3465                 blocksize_mask = (1 << blkbits) - 1;
3466                 if (align & blocksize_mask)
3467                         return -EINVAL;
3468                 return 1;
3469         }
3470         return 0;
3471 }
3472
3473 static void f2fs_dio_end_io(struct bio *bio)
3474 {
3475         struct f2fs_private_dio *dio = bio->bi_private;
3476
3477         dec_page_count(F2FS_I_SB(dio->inode),
3478                         dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3479
3480         bio->bi_private = dio->orig_private;
3481         bio->bi_end_io = dio->orig_end_io;
3482
3483         kvfree(dio);
3484
3485         bio_endio(bio);
3486 }
3487
3488 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3489                                                         loff_t file_offset)
3490 {
3491         struct f2fs_private_dio *dio;
3492         bool write = (bio_op(bio) == REQ_OP_WRITE);
3493
3494         dio = f2fs_kzalloc(F2FS_I_SB(inode),
3495                         sizeof(struct f2fs_private_dio), GFP_NOFS);
3496         if (!dio)
3497                 goto out;
3498
3499         dio->inode = inode;
3500         dio->orig_end_io = bio->bi_end_io;
3501         dio->orig_private = bio->bi_private;
3502         dio->write = write;
3503
3504         bio->bi_end_io = f2fs_dio_end_io;
3505         bio->bi_private = dio;
3506
3507         inc_page_count(F2FS_I_SB(inode),
3508                         write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3509
3510         submit_bio(bio);
3511         return;
3512 out:
3513         bio->bi_status = BLK_STS_IOERR;
3514         bio_endio(bio);
3515 }
3516
3517 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3518 {
3519         struct address_space *mapping = iocb->ki_filp->f_mapping;
3520         struct inode *inode = mapping->host;
3521         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3522         struct f2fs_inode_info *fi = F2FS_I(inode);
3523         size_t count = iov_iter_count(iter);
3524         loff_t offset = iocb->ki_pos;
3525         int rw = iov_iter_rw(iter);
3526         int err;
3527         enum rw_hint hint = iocb->ki_hint;
3528         int whint_mode = F2FS_OPTION(sbi).whint_mode;
3529         bool do_opu;
3530
3531         err = check_direct_IO(inode, iter, offset);
3532         if (err)
3533                 return err < 0 ? err : 0;
3534
3535         if (f2fs_force_buffered_io(inode, iocb, iter))
3536                 return 0;
3537
3538         do_opu = allow_outplace_dio(inode, iocb, iter);
3539
3540         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3541
3542         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3543                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3544
3545         if (iocb->ki_flags & IOCB_NOWAIT) {
3546                 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3547                         iocb->ki_hint = hint;
3548                         err = -EAGAIN;
3549                         goto out;
3550                 }
3551                 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3552                         up_read(&fi->i_gc_rwsem[rw]);
3553                         iocb->ki_hint = hint;
3554                         err = -EAGAIN;
3555                         goto out;
3556                 }
3557         } else {
3558                 down_read(&fi->i_gc_rwsem[rw]);
3559                 if (do_opu)
3560                         down_read(&fi->i_gc_rwsem[READ]);
3561         }
3562
3563         err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3564                         iter, rw == WRITE ? get_data_block_dio_write :
3565                         get_data_block_dio, NULL, f2fs_dio_submit_bio,
3566                         rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3567                         DIO_SKIP_HOLES);
3568
3569         if (do_opu)
3570                 up_read(&fi->i_gc_rwsem[READ]);
3571
3572         up_read(&fi->i_gc_rwsem[rw]);
3573
3574         if (rw == WRITE) {
3575                 if (whint_mode == WHINT_MODE_OFF)
3576                         iocb->ki_hint = hint;
3577                 if (err > 0) {
3578                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3579                                                                         err);
3580                         if (!do_opu)
3581                                 set_inode_flag(inode, FI_UPDATE_WRITE);
3582                 } else if (err < 0) {
3583                         f2fs_write_failed(mapping, offset + count);
3584                 }
3585         } else {
3586                 if (err > 0)
3587                         f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3588         }
3589
3590 out:
3591         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3592
3593         return err;
3594 }
3595
3596 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3597                                                         unsigned int length)
3598 {
3599         struct inode *inode = page->mapping->host;
3600         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3601
3602         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3603                 (offset % PAGE_SIZE || length != PAGE_SIZE))
3604                 return;
3605
3606         if (PageDirty(page)) {
3607                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3608                         dec_page_count(sbi, F2FS_DIRTY_META);
3609                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3610                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3611                 } else {
3612                         inode_dec_dirty_pages(inode);
3613                         f2fs_remove_dirty_inode(inode);
3614                 }
3615         }
3616
3617         clear_cold_data(page);
3618
3619         if (IS_ATOMIC_WRITTEN_PAGE(page))
3620                 return f2fs_drop_inmem_page(inode, page);
3621
3622         f2fs_clear_page_private(page);
3623 }
3624
3625 int f2fs_release_page(struct page *page, gfp_t wait)
3626 {
3627         /* If this is dirty page, keep PagePrivate */
3628         if (PageDirty(page))
3629                 return 0;
3630
3631         /* This is atomic written page, keep Private */
3632         if (IS_ATOMIC_WRITTEN_PAGE(page))
3633                 return 0;
3634
3635         clear_cold_data(page);
3636         f2fs_clear_page_private(page);
3637         return 1;
3638 }
3639
3640 static int f2fs_set_data_page_dirty(struct page *page)
3641 {
3642         struct inode *inode = page_file_mapping(page)->host;
3643
3644         trace_f2fs_set_page_dirty(page, DATA);
3645
3646         if (!PageUptodate(page))
3647                 SetPageUptodate(page);
3648         if (PageSwapCache(page))
3649                 return __set_page_dirty_nobuffers(page);
3650
3651         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3652                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3653                         f2fs_register_inmem_page(inode, page);
3654                         return 1;
3655                 }
3656                 /*
3657                  * Previously, this page has been registered, we just
3658                  * return here.
3659                  */
3660                 return 0;
3661         }
3662
3663         if (!PageDirty(page)) {
3664                 __set_page_dirty_nobuffers(page);
3665                 f2fs_update_dirty_page(inode, page);
3666                 return 1;
3667         }
3668         return 0;
3669 }
3670
3671
3672 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3673 {
3674 #ifdef CONFIG_F2FS_FS_COMPRESSION
3675         struct dnode_of_data dn;
3676         sector_t start_idx, blknr = 0;
3677         int ret;
3678
3679         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3680
3681         set_new_dnode(&dn, inode, NULL, NULL, 0);
3682         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3683         if (ret)
3684                 return 0;
3685
3686         if (dn.data_blkaddr != COMPRESS_ADDR) {
3687                 dn.ofs_in_node += block - start_idx;
3688                 blknr = f2fs_data_blkaddr(&dn);
3689                 if (!__is_valid_data_blkaddr(blknr))
3690                         blknr = 0;
3691         }
3692
3693         f2fs_put_dnode(&dn);
3694
3695         return blknr;
3696 #else
3697         return -EOPNOTSUPP;
3698 #endif
3699 }
3700
3701
3702 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3703 {
3704         struct inode *inode = mapping->host;
3705
3706         if (f2fs_has_inline_data(inode))
3707                 return 0;
3708
3709         /* make sure allocating whole blocks */
3710         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3711                 filemap_write_and_wait(mapping);
3712
3713         if (f2fs_compressed_file(inode))
3714                 return f2fs_bmap_compress(inode, block);
3715
3716         return generic_block_bmap(mapping, block, get_data_block_bmap);
3717 }
3718
3719 #ifdef CONFIG_MIGRATION
3720 #include <linux/migrate.h>
3721
3722 int f2fs_migrate_page(struct address_space *mapping,
3723                 struct page *newpage, struct page *page, enum migrate_mode mode)
3724 {
3725         int rc, extra_count;
3726         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3727         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3728
3729         BUG_ON(PageWriteback(page));
3730
3731         /* migrating an atomic written page is safe with the inmem_lock hold */
3732         if (atomic_written) {
3733                 if (mode != MIGRATE_SYNC)
3734                         return -EBUSY;
3735                 if (!mutex_trylock(&fi->inmem_lock))
3736                         return -EAGAIN;
3737         }
3738
3739         /* one extra reference was held for atomic_write page */
3740         extra_count = atomic_written ? 1 : 0;
3741         rc = migrate_page_move_mapping(mapping, newpage,
3742                                 page, extra_count);
3743         if (rc != MIGRATEPAGE_SUCCESS) {
3744                 if (atomic_written)
3745                         mutex_unlock(&fi->inmem_lock);
3746                 return rc;
3747         }
3748
3749         if (atomic_written) {
3750                 struct inmem_pages *cur;
3751                 list_for_each_entry(cur, &fi->inmem_pages, list)
3752                         if (cur->page == page) {
3753                                 cur->page = newpage;
3754                                 break;
3755                         }
3756                 mutex_unlock(&fi->inmem_lock);
3757                 put_page(page);
3758                 get_page(newpage);
3759         }
3760
3761         if (PagePrivate(page)) {
3762                 f2fs_set_page_private(newpage, page_private(page));
3763                 f2fs_clear_page_private(page);
3764         }
3765
3766         if (mode != MIGRATE_SYNC_NO_COPY)
3767                 migrate_page_copy(newpage, page);
3768         else
3769                 migrate_page_states(newpage, page);
3770
3771         return MIGRATEPAGE_SUCCESS;
3772 }
3773 #endif
3774
3775 #ifdef CONFIG_SWAP
3776 /* Copied from generic_swapfile_activate() to check any holes */
3777 static int check_swap_activate(struct swap_info_struct *sis,
3778                                 struct file *swap_file, sector_t *span)
3779 {
3780         struct address_space *mapping = swap_file->f_mapping;
3781         struct inode *inode = mapping->host;
3782         unsigned blocks_per_page;
3783         unsigned long page_no;
3784         unsigned blkbits;
3785         sector_t probe_block;
3786         sector_t last_block;
3787         sector_t lowest_block = -1;
3788         sector_t highest_block = 0;
3789         int nr_extents = 0;
3790         int ret;
3791
3792         blkbits = inode->i_blkbits;
3793         blocks_per_page = PAGE_SIZE >> blkbits;
3794
3795         /*
3796          * Map all the blocks into the extent list.  This code doesn't try
3797          * to be very smart.
3798          */
3799         probe_block = 0;
3800         page_no = 0;
3801         last_block = i_size_read(inode) >> blkbits;
3802         while ((probe_block + blocks_per_page) <= last_block &&
3803                         page_no < sis->max) {
3804                 unsigned block_in_page;
3805                 sector_t first_block;
3806                 sector_t block = 0;
3807                 int      err = 0;
3808
3809                 cond_resched();
3810
3811                 block = probe_block;
3812                 err = bmap(inode, &block);
3813                 if (err || !block)
3814                         goto bad_bmap;
3815                 first_block = block;
3816
3817                 /*
3818                  * It must be PAGE_SIZE aligned on-disk
3819                  */
3820                 if (first_block & (blocks_per_page - 1)) {
3821                         probe_block++;
3822                         goto reprobe;
3823                 }
3824
3825                 for (block_in_page = 1; block_in_page < blocks_per_page;
3826                                         block_in_page++) {
3827
3828                         block = probe_block + block_in_page;
3829                         err = bmap(inode, &block);
3830
3831                         if (err || !block)
3832                                 goto bad_bmap;
3833
3834                         if (block != first_block + block_in_page) {
3835                                 /* Discontiguity */
3836                                 probe_block++;
3837                                 goto reprobe;
3838                         }
3839                 }
3840
3841                 first_block >>= (PAGE_SHIFT - blkbits);
3842                 if (page_no) {  /* exclude the header page */
3843                         if (first_block < lowest_block)
3844                                 lowest_block = first_block;
3845                         if (first_block > highest_block)
3846                                 highest_block = first_block;
3847                 }
3848
3849                 /*
3850                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3851                  */
3852                 ret = add_swap_extent(sis, page_no, 1, first_block);
3853                 if (ret < 0)
3854                         goto out;
3855                 nr_extents += ret;
3856                 page_no++;
3857                 probe_block += blocks_per_page;
3858 reprobe:
3859                 continue;
3860         }
3861         ret = nr_extents;
3862         *span = 1 + highest_block - lowest_block;
3863         if (page_no == 0)
3864                 page_no = 1;    /* force Empty message */
3865         sis->max = page_no;
3866         sis->pages = page_no - 1;
3867         sis->highest_bit = page_no - 1;
3868 out:
3869         return ret;
3870 bad_bmap:
3871         pr_err("swapon: swapfile has holes\n");
3872         return -EINVAL;
3873 }
3874
3875 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3876                                 sector_t *span)
3877 {
3878         struct inode *inode = file_inode(file);
3879         int ret;
3880
3881         if (!S_ISREG(inode->i_mode))
3882                 return -EINVAL;
3883
3884         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3885                 return -EROFS;
3886
3887         ret = f2fs_convert_inline_inode(inode);
3888         if (ret)
3889                 return ret;
3890
3891         if (f2fs_disable_compressed_file(inode))
3892                 return -EINVAL;
3893
3894         ret = check_swap_activate(sis, file, span);
3895         if (ret < 0)
3896                 return ret;
3897
3898         set_inode_flag(inode, FI_PIN_FILE);
3899         f2fs_precache_extents(inode);
3900         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3901         return ret;
3902 }
3903
3904 static void f2fs_swap_deactivate(struct file *file)
3905 {
3906         struct inode *inode = file_inode(file);
3907
3908         clear_inode_flag(inode, FI_PIN_FILE);
3909 }
3910 #else
3911 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3912                                 sector_t *span)
3913 {
3914         return -EOPNOTSUPP;
3915 }
3916
3917 static void f2fs_swap_deactivate(struct file *file)
3918 {
3919 }
3920 #endif
3921
3922 const struct address_space_operations f2fs_dblock_aops = {
3923         .readpage       = f2fs_read_data_page,
3924         .readahead      = f2fs_readahead,
3925         .writepage      = f2fs_write_data_page,
3926         .writepages     = f2fs_write_data_pages,
3927         .write_begin    = f2fs_write_begin,
3928         .write_end      = f2fs_write_end,
3929         .set_page_dirty = f2fs_set_data_page_dirty,
3930         .invalidatepage = f2fs_invalidate_page,
3931         .releasepage    = f2fs_release_page,
3932         .direct_IO      = f2fs_direct_IO,
3933         .bmap           = f2fs_bmap,
3934         .swap_activate  = f2fs_swap_activate,
3935         .swap_deactivate = f2fs_swap_deactivate,
3936 #ifdef CONFIG_MIGRATION
3937         .migratepage    = f2fs_migrate_page,
3938 #endif
3939 };
3940
3941 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3942 {
3943         struct address_space *mapping = page_mapping(page);
3944         unsigned long flags;
3945
3946         xa_lock_irqsave(&mapping->i_pages, flags);
3947         __xa_clear_mark(&mapping->i_pages, page_index(page),
3948                                                 PAGECACHE_TAG_DIRTY);
3949         xa_unlock_irqrestore(&mapping->i_pages, flags);
3950 }
3951
3952 int __init f2fs_init_post_read_processing(void)
3953 {
3954         bio_post_read_ctx_cache =
3955                 kmem_cache_create("f2fs_bio_post_read_ctx",
3956                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
3957         if (!bio_post_read_ctx_cache)
3958                 goto fail;
3959         bio_post_read_ctx_pool =
3960                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3961                                          bio_post_read_ctx_cache);
3962         if (!bio_post_read_ctx_pool)
3963                 goto fail_free_cache;
3964         return 0;
3965
3966 fail_free_cache:
3967         kmem_cache_destroy(bio_post_read_ctx_cache);
3968 fail:
3969         return -ENOMEM;
3970 }
3971
3972 void f2fs_destroy_post_read_processing(void)
3973 {
3974         mempool_destroy(bio_post_read_ctx_pool);
3975         kmem_cache_destroy(bio_post_read_ctx_cache);
3976 }
3977
3978 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
3979 {
3980         if (!f2fs_sb_has_encrypt(sbi) &&
3981                 !f2fs_sb_has_verity(sbi) &&
3982                 !f2fs_sb_has_compression(sbi))
3983                 return 0;
3984
3985         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
3986                                                  WQ_UNBOUND | WQ_HIGHPRI,
3987                                                  num_online_cpus());
3988         if (!sbi->post_read_wq)
3989                 return -ENOMEM;
3990         return 0;
3991 }
3992
3993 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
3994 {
3995         if (sbi->post_read_wq)
3996                 destroy_workqueue(sbi->post_read_wq);
3997 }
3998
3999 int __init f2fs_init_bio_entry_cache(void)
4000 {
4001         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4002                         sizeof(struct bio_entry));
4003         if (!bio_entry_slab)
4004                 return -ENOMEM;
4005         return 0;
4006 }
4007
4008 void f2fs_destroy_bio_entry_cache(void)
4009 {
4010         kmem_cache_destroy(bio_entry_slab);
4011 }
This page took 0.263735 seconds and 4 git commands to generate.