1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_MAPLE_TREE_H
3 #define _LINUX_MAPLE_TREE_H
5 * Maple Tree - An RCU-safe adaptive tree for storing ranges
6 * Copyright (c) 2018-2022 Oracle
11 #include <linux/kernel.h>
12 #include <linux/rcupdate.h>
13 #include <linux/spinlock.h>
14 /* #define CONFIG_MAPLE_RCU_DISABLED */
17 * Allocated nodes are mutable until they have been inserted into the tree,
18 * at which time they cannot change their type until they have been removed
19 * from the tree and an RCU grace period has passed.
21 * Removed nodes have their ->parent set to point to themselves. RCU readers
22 * check ->parent before relying on the value that they loaded from the
23 * slots array. This lets us reuse the slots array for the RCU head.
25 * Nodes in the tree point to their parent unless bit 0 is set.
27 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64)
29 #define MAPLE_NODE_SLOTS 31 /* 256 bytes including ->parent */
30 #define MAPLE_RANGE64_SLOTS 16 /* 256 bytes */
31 #define MAPLE_ARANGE64_SLOTS 10 /* 240 bytes */
32 #define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 1)
35 #define MAPLE_NODE_SLOTS 63 /* 256 bytes including ->parent */
36 #define MAPLE_RANGE64_SLOTS 32 /* 256 bytes */
37 #define MAPLE_ARANGE64_SLOTS 21 /* 240 bytes */
38 #define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 2)
39 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */
41 #define MAPLE_NODE_MASK 255UL
44 * The node->parent of the root node has bit 0 set and the rest of the pointer
45 * is a pointer to the tree itself. No more bits are available in this pointer
46 * (on m68k, the data structure may only be 2-byte aligned).
48 * Internal non-root nodes can only have maple_range_* nodes as parents. The
49 * parent pointer is 256B aligned like all other tree nodes. When storing a 32
50 * or 64 bit values, the offset can fit into 4 bits. The 16 bit values need an
51 * extra bit to store the offset. This extra bit comes from a reuse of the last
52 * bit in the node type. This is possible by using bit 1 to indicate if bit 2
53 * is part of the type or the slot.
55 * Once the type is decided, the decision of an allocation range type or a range
56 * type is done by examining the immutable tree flag for the MAPLE_ALLOC_RANGE
61 * 0x?00 = 16 bit nodes
62 * 0x010 = 32 bit nodes
63 * 0x110 = 64 bit nodes
65 * Slot size and location in the parent pointer:
66 * type : slot location
68 * 0x?00 : 16 bit values, type in 0-1, slot in 2-6
69 * 0x010 : 32 bit values, type in 0-2, slot in 3-6
70 * 0x110 : 64 bit values, type in 0-2, slot in 3-6
74 * This metadata is used to optimize the gap updating code and in reverse
75 * searching for gaps or any other code that needs to find the end of the data.
77 struct maple_metadata {
83 * Leaf nodes do not store pointers to nodes, they store user data. Users may
84 * store almost any bit pattern. As noted above, the optimisation of storing an
85 * entry at 0 in the root pointer cannot be done for data which have the bottom
86 * two bits set to '10'. We also reserve values with the bottom two bits set to
87 * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use. Some APIs
88 * return errnos as a negative errno shifted right by two bits and the bottom
89 * two bits set to '10', and while choosing to store these values in the array
90 * is not an error, it may lead to confusion if you're testing for an error with
93 * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits
94 * 3-6), bit 2 is reserved. That leaves bits 0-1 unused for now.
96 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
97 * indicate that the tree is specifying ranges, Pivots may appear in the
98 * subtree with an entry attached to the value whereas keys are unique to a
99 * specific position of a B-tree. Pivot values are inclusive of the slot with
103 struct maple_range_64 {
104 struct maple_pnode *parent;
105 unsigned long pivot[MAPLE_RANGE64_SLOTS - 1];
107 void __rcu *slot[MAPLE_RANGE64_SLOTS];
109 void __rcu *pad[MAPLE_RANGE64_SLOTS - 1];
110 struct maple_metadata meta;
116 * At tree creation time, the user can specify that they're willing to trade off
117 * storing fewer entries in a tree in return for storing more information in
120 * The maple tree supports recording the largest range of NULL entries available
121 * in this node, also called gaps. This optimises the tree for allocating a
124 struct maple_arange_64 {
125 struct maple_pnode *parent;
126 unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1];
127 void __rcu *slot[MAPLE_ARANGE64_SLOTS];
128 unsigned long gap[MAPLE_ARANGE64_SLOTS];
129 struct maple_metadata meta;
134 unsigned char node_count;
135 unsigned int request_count;
136 struct maple_alloc *slot[MAPLE_ALLOC_SLOTS];
139 struct maple_topiary {
140 struct maple_pnode *parent;
141 struct maple_enode *next; /* Overlaps the pivot */
153 * DOC: Maple tree flags
155 * * MT_FLAGS_ALLOC_RANGE - Track gaps in this tree
156 * * MT_FLAGS_USE_RCU - Operate in RCU mode
157 * * MT_FLAGS_HEIGHT_OFFSET - The position of the tree height in the flags
158 * * MT_FLAGS_HEIGHT_MASK - The mask for the maple tree height value
159 * * MT_FLAGS_LOCK_MASK - How the mt_lock is used
160 * * MT_FLAGS_LOCK_IRQ - Acquired irq-safe
161 * * MT_FLAGS_LOCK_BH - Acquired bh-safe
162 * * MT_FLAGS_LOCK_EXTERN - mt_lock is not used
164 * MAPLE_HEIGHT_MAX The largest height that can be stored
166 #define MT_FLAGS_ALLOC_RANGE 0x01
167 #define MT_FLAGS_USE_RCU 0x02
168 #define MT_FLAGS_HEIGHT_OFFSET 0x02
169 #define MT_FLAGS_HEIGHT_MASK 0x7C
170 #define MT_FLAGS_LOCK_MASK 0x300
171 #define MT_FLAGS_LOCK_IRQ 0x100
172 #define MT_FLAGS_LOCK_BH 0x200
173 #define MT_FLAGS_LOCK_EXTERN 0x300
175 #define MAPLE_HEIGHT_MAX 31
178 #define MAPLE_NODE_TYPE_MASK 0x0F
179 #define MAPLE_NODE_TYPE_SHIFT 0x03
181 #define MAPLE_RESERVED_RANGE 4096
183 #ifdef CONFIG_LOCKDEP
184 typedef struct lockdep_map *lockdep_map_p;
185 #define mt_lock_is_held(mt) \
186 (!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock))
188 #define mt_write_lock_is_held(mt) \
189 (!(mt)->ma_external_lock || \
190 lock_is_held_type((mt)->ma_external_lock, 0))
192 #define mt_set_external_lock(mt, lock) \
193 (mt)->ma_external_lock = &(lock)->dep_map
195 #define mt_on_stack(mt) (mt).ma_external_lock = NULL
197 typedef struct { /* nothing */ } lockdep_map_p;
198 #define mt_lock_is_held(mt) 1
199 #define mt_write_lock_is_held(mt) 1
200 #define mt_set_external_lock(mt, lock) do { } while (0)
201 #define mt_on_stack(mt) do { } while (0)
205 * If the tree contains a single entry at index 0, it is usually stored in
206 * tree->ma_root. To optimise for the page cache, an entry which ends in '00',
207 * '01' or '11' is stored in the root, but an entry which ends in '10' will be
208 * stored in a node. Bits 3-6 are used to store enum maple_type.
210 * The flags are used both to store some immutable information about this tree
211 * (set at tree creation time) and dynamic information set under the spinlock.
213 * Another use of flags are to indicate global states of the tree. This is the
214 * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in
215 * RCU mode. This mode was added to allow the tree to reuse nodes instead of
216 * re-allocating and RCU freeing nodes when there is a single user.
221 lockdep_map_p ma_external_lock;
223 unsigned int ma_flags;
228 * MTREE_INIT() - Initialize a maple tree
229 * @name: The maple tree name
230 * @__flags: The maple tree flags
233 #define MTREE_INIT(name, __flags) { \
234 .ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock), \
235 .ma_flags = __flags, \
240 * MTREE_INIT_EXT() - Initialize a maple tree with an external lock.
241 * @name: The tree name
242 * @__flags: The maple tree flags
243 * @__lock: The external lock
245 #ifdef CONFIG_LOCKDEP
246 #define MTREE_INIT_EXT(name, __flags, __lock) { \
247 .ma_external_lock = &(__lock).dep_map, \
248 .ma_flags = (__flags), \
252 #define MTREE_INIT_EXT(name, __flags, __lock) MTREE_INIT(name, __flags)
255 #define DEFINE_MTREE(name) \
256 struct maple_tree name = MTREE_INIT(name, 0)
258 #define mtree_lock(mt) spin_lock((&(mt)->ma_lock))
259 #define mtree_lock_nested(mas, subclass) \
260 spin_lock_nested((&(mt)->ma_lock), subclass)
261 #define mtree_unlock(mt) spin_unlock((&(mt)->ma_lock))
264 * The Maple Tree squeezes various bits in at various points which aren't
265 * necessarily obvious. Usually, this is done by observing that pointers are
266 * N-byte aligned and thus the bottom log_2(N) bits are available for use. We
267 * don't use the high bits of pointers to store additional information because
268 * we don't know what bits are unused on any given architecture.
270 * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8
271 * low bits for our own purposes. Nodes are currently of 4 types:
272 * 1. Single pointer (Range is 0-0)
273 * 2. Non-leaf Allocation Range nodes
274 * 3. Non-leaf Range nodes
275 * 4. Leaf Range nodes All nodes consist of a number of node slots,
276 * pivots, and a parent pointer.
282 struct maple_pnode *parent;
283 void __rcu *slot[MAPLE_NODE_SLOTS];
288 struct maple_enode *piv_parent;
289 unsigned char parent_slot;
290 enum maple_type type;
291 unsigned char slot_len;
292 unsigned int ma_flags;
294 struct maple_range_64 mr64;
295 struct maple_arange_64 ma64;
296 struct maple_alloc alloc;
301 * More complicated stores can cause two nodes to become one or three and
302 * potentially alter the height of the tree. Either half of the tree may need
303 * to be rebalanced against the other. The ma_topiary struct is used to track
304 * which nodes have been 'cut' from the tree so that the change can be done
305 * safely at a later date. This is done to support RCU.
308 struct maple_enode *head;
309 struct maple_enode *tail;
310 struct maple_tree *mtree;
313 void *mtree_load(struct maple_tree *mt, unsigned long index);
315 int mtree_insert(struct maple_tree *mt, unsigned long index,
316 void *entry, gfp_t gfp);
317 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
318 unsigned long last, void *entry, gfp_t gfp);
319 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
320 void *entry, unsigned long size, unsigned long min,
321 unsigned long max, gfp_t gfp);
322 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
323 void *entry, unsigned long size, unsigned long min,
324 unsigned long max, gfp_t gfp);
326 int mtree_store_range(struct maple_tree *mt, unsigned long first,
327 unsigned long last, void *entry, gfp_t gfp);
328 int mtree_store(struct maple_tree *mt, unsigned long index,
329 void *entry, gfp_t gfp);
330 void *mtree_erase(struct maple_tree *mt, unsigned long index);
332 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp);
333 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp);
335 void mtree_destroy(struct maple_tree *mt);
336 void __mt_destroy(struct maple_tree *mt);
339 * mtree_empty() - Determine if a tree has any present entries.
342 * Context: Any context.
343 * Return: %true if the tree contains only NULL pointers.
345 static inline bool mtree_empty(const struct maple_tree *mt)
347 return mt->ma_root == NULL;
354 * ma_active means the maple state is pointing to a node and offset and can
355 * continue operating on the tree.
356 * ma_start means we have not searched the tree.
357 * ma_root means we have searched the tree and the entry we found lives in
358 * the root of the tree (ie it has index 0, length 1 and is the only entry in
360 * ma_none means we have searched the tree and there is no node in the
361 * tree for this entry. For example, we searched for index 1 in an empty
362 * tree. Or we have a tree which points to a full leaf node and we
363 * searched for an entry which is larger than can be contained in that
365 * ma_pause means the data within the maple state may be stale, restart the
367 * ma_overflow means the search has reached the upper limit of the search
368 * ma_underflow means the search has reached the lower limit of the search
369 * ma_error means there was an error, check the node for the error number.
383 * The maple state is defined in the struct ma_state and is used to keep track
384 * of information during operations, and even between operations when using the
387 * If state->node has bit 0 set then it references a tree location which is not
388 * a node (eg the root). If bit 1 is set, the rest of the bits are a negative
389 * errno. Bit 2 (the 'unallocated slots' bit) is clear. Bits 3-6 indicate the
392 * state->alloc either has a request number of nodes or an allocated node. If
393 * stat->alloc has a requested number of nodes, the first bit will be set (0x1)
394 * and the remaining bits are the value. If state->alloc is a node, then the
395 * node will be of type maple_alloc. maple_alloc has MAPLE_NODE_SLOTS - 1 for
396 * storing more allocated nodes, a total number of nodes allocated, and the
397 * node_count in this node. node_count is the number of allocated nodes in this
398 * node. The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further
399 * nodes into state->alloc->slot[0]'s node. Nodes are taken from state->alloc
400 * by removing a node from the state->alloc node until state->alloc->node_count
401 * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted
402 * to state->alloc. Nodes are pushed onto state->alloc by putting the current
403 * state->alloc into the pushed node's slot[0].
405 * The state also contains the implied min/max of the state->node, the depth of
406 * this search, and the offset. The implied min/max are either from the parent
407 * node or are 0-oo for the root node. The depth is incremented or decremented
408 * every time a node is walked down or up. The offset is the slot/pivot of
409 * interest in the node - either for reading or writing.
411 * When returning a value the maple state index and last respectively contain
412 * the start and end of the range for the entry. Ranges are inclusive in the
415 * The status of the state is used to determine how the next action should treat
416 * the state. For instance, if the status is ma_start then the next action
417 * should start at the root of the tree and walk down. If the status is
418 * ma_pause then the node may be stale data and should be discarded. If the
419 * status is ma_overflow, then the last action hit the upper limit.
423 struct maple_tree *tree; /* The tree we're operating in */
424 unsigned long index; /* The index we're operating on - range start */
425 unsigned long last; /* The last index we're operating on - range end */
426 struct maple_enode *node; /* The node containing this entry */
427 unsigned long min; /* The minimum index of this node - implied pivot min */
428 unsigned long max; /* The maximum index of this node - implied pivot max */
429 struct maple_alloc *alloc; /* Allocated nodes for this operation */
430 enum maple_status status; /* The status of the state (active, start, none, etc) */
431 unsigned char depth; /* depth of tree descent during write */
432 unsigned char offset;
433 unsigned char mas_flags;
434 unsigned char end; /* The end of the node */
438 struct ma_state *mas;
439 struct maple_node *node; /* Decoded mas->node */
440 unsigned long r_min; /* range min */
441 unsigned long r_max; /* range max */
442 enum maple_type type; /* mas->node type */
443 unsigned char offset_end; /* The offset where the write ends */
444 unsigned long *pivots; /* mas->node->pivots pointer */
445 unsigned long end_piv; /* The pivot at the offset end */
446 void __rcu **slots; /* mas->node->slots pointer */
447 void *entry; /* The entry to write */
448 void *content; /* The existing entry that is being overwritten */
451 #define mas_lock(mas) spin_lock(&((mas)->tree->ma_lock))
452 #define mas_lock_nested(mas, subclass) \
453 spin_lock_nested(&((mas)->tree->ma_lock), subclass)
454 #define mas_unlock(mas) spin_unlock(&((mas)->tree->ma_lock))
457 * Special values for ma_state.node.
458 * MA_ERROR represents an errno. After dropping the lock and attempting
459 * to resolve the error, the walk would have to be restarted from the
460 * top of the tree as the tree may have been modified.
462 #define MA_ERROR(err) \
463 ((struct maple_enode *)(((unsigned long)err << 2) | 2UL))
465 #define MA_STATE(name, mt, first, end) \
466 struct ma_state name = { \
471 .status = ma_start, \
478 #define MA_WR_STATE(name, ma_state, wr_entry) \
479 struct ma_wr_state name = { \
485 #define MA_TOPIARY(name, tree) \
486 struct ma_topiary name = { \
492 void *mas_walk(struct ma_state *mas);
493 void *mas_store(struct ma_state *mas, void *entry);
494 void *mas_erase(struct ma_state *mas);
495 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp);
496 void mas_store_prealloc(struct ma_state *mas, void *entry);
497 void *mas_find(struct ma_state *mas, unsigned long max);
498 void *mas_find_range(struct ma_state *mas, unsigned long max);
499 void *mas_find_rev(struct ma_state *mas, unsigned long min);
500 void *mas_find_range_rev(struct ma_state *mas, unsigned long max);
501 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp);
503 bool mas_nomem(struct ma_state *mas, gfp_t gfp);
504 void mas_pause(struct ma_state *mas);
505 void maple_tree_init(void);
506 void mas_destroy(struct ma_state *mas);
507 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries);
509 void *mas_prev(struct ma_state *mas, unsigned long min);
510 void *mas_prev_range(struct ma_state *mas, unsigned long max);
511 void *mas_next(struct ma_state *mas, unsigned long max);
512 void *mas_next_range(struct ma_state *mas, unsigned long max);
514 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max,
517 * This finds an empty area from the highest address to the lowest.
518 * AKA "Topdown" version,
520 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
521 unsigned long max, unsigned long size);
523 static inline void mas_init(struct ma_state *mas, struct maple_tree *tree,
526 memset(mas, 0, sizeof(struct ma_state));
528 mas->index = mas->last = addr;
529 mas->max = ULONG_MAX;
530 mas->status = ma_start;
534 static inline bool mas_is_active(struct ma_state *mas)
536 return mas->status == ma_active;
539 static inline bool mas_is_err(struct ma_state *mas)
541 return mas->status == ma_error;
545 * mas_reset() - Reset a Maple Tree operation state.
546 * @mas: Maple Tree operation state.
548 * Resets the error or walk state of the @mas so future walks of the
549 * array will start from the root. Use this if you have dropped the
550 * lock and want to reuse the ma_state.
552 * Context: Any context.
554 static __always_inline void mas_reset(struct ma_state *mas)
556 mas->status = ma_start;
561 * mas_for_each() - Iterate over a range of the maple tree.
562 * @__mas: Maple Tree operation state (maple_state)
563 * @__entry: Entry retrieved from the tree
564 * @__max: maximum index to retrieve from the tree
566 * When returned, mas->index and mas->last will hold the entire range for the
569 * Note: may return the zero entry.
571 #define mas_for_each(__mas, __entry, __max) \
572 while (((__entry) = mas_find((__mas), (__max))) != NULL)
574 #ifdef CONFIG_DEBUG_MAPLE_TREE
575 enum mt_dump_format {
580 extern atomic_t maple_tree_tests_run;
581 extern atomic_t maple_tree_tests_passed;
583 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format);
584 void mas_dump(const struct ma_state *mas);
585 void mas_wr_dump(const struct ma_wr_state *wr_mas);
586 void mt_validate(struct maple_tree *mt);
587 void mt_cache_shrink(void);
588 #define MT_BUG_ON(__tree, __x) do { \
589 atomic_inc(&maple_tree_tests_run); \
591 pr_info("BUG at %s:%d (%u)\n", \
592 __func__, __LINE__, __x); \
593 mt_dump(__tree, mt_dump_hex); \
594 pr_info("Pass: %u Run:%u\n", \
595 atomic_read(&maple_tree_tests_passed), \
596 atomic_read(&maple_tree_tests_run)); \
599 atomic_inc(&maple_tree_tests_passed); \
603 #define MAS_BUG_ON(__mas, __x) do { \
604 atomic_inc(&maple_tree_tests_run); \
606 pr_info("BUG at %s:%d (%u)\n", \
607 __func__, __LINE__, __x); \
609 mt_dump((__mas)->tree, mt_dump_hex); \
610 pr_info("Pass: %u Run:%u\n", \
611 atomic_read(&maple_tree_tests_passed), \
612 atomic_read(&maple_tree_tests_run)); \
615 atomic_inc(&maple_tree_tests_passed); \
619 #define MAS_WR_BUG_ON(__wrmas, __x) do { \
620 atomic_inc(&maple_tree_tests_run); \
622 pr_info("BUG at %s:%d (%u)\n", \
623 __func__, __LINE__, __x); \
624 mas_wr_dump(__wrmas); \
625 mas_dump((__wrmas)->mas); \
626 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \
627 pr_info("Pass: %u Run:%u\n", \
628 atomic_read(&maple_tree_tests_passed), \
629 atomic_read(&maple_tree_tests_run)); \
632 atomic_inc(&maple_tree_tests_passed); \
636 #define MT_WARN_ON(__tree, __x) ({ \
638 atomic_inc(&maple_tree_tests_run); \
640 pr_info("WARN at %s:%d (%u)\n", \
641 __func__, __LINE__, __x); \
642 mt_dump(__tree, mt_dump_hex); \
643 pr_info("Pass: %u Run:%u\n", \
644 atomic_read(&maple_tree_tests_passed), \
645 atomic_read(&maple_tree_tests_run)); \
648 atomic_inc(&maple_tree_tests_passed); \
653 #define MAS_WARN_ON(__mas, __x) ({ \
655 atomic_inc(&maple_tree_tests_run); \
657 pr_info("WARN at %s:%d (%u)\n", \
658 __func__, __LINE__, __x); \
660 mt_dump((__mas)->tree, mt_dump_hex); \
661 pr_info("Pass: %u Run:%u\n", \
662 atomic_read(&maple_tree_tests_passed), \
663 atomic_read(&maple_tree_tests_run)); \
666 atomic_inc(&maple_tree_tests_passed); \
671 #define MAS_WR_WARN_ON(__wrmas, __x) ({ \
673 atomic_inc(&maple_tree_tests_run); \
675 pr_info("WARN at %s:%d (%u)\n", \
676 __func__, __LINE__, __x); \
677 mas_wr_dump(__wrmas); \
678 mas_dump((__wrmas)->mas); \
679 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \
680 pr_info("Pass: %u Run:%u\n", \
681 atomic_read(&maple_tree_tests_passed), \
682 atomic_read(&maple_tree_tests_run)); \
685 atomic_inc(&maple_tree_tests_passed); \
690 #define MT_BUG_ON(__tree, __x) BUG_ON(__x)
691 #define MAS_BUG_ON(__mas, __x) BUG_ON(__x)
692 #define MAS_WR_BUG_ON(__mas, __x) BUG_ON(__x)
693 #define MT_WARN_ON(__tree, __x) WARN_ON(__x)
694 #define MAS_WARN_ON(__mas, __x) WARN_ON(__x)
695 #define MAS_WR_WARN_ON(__mas, __x) WARN_ON(__x)
696 #endif /* CONFIG_DEBUG_MAPLE_TREE */
699 * __mas_set_range() - Set up Maple Tree operation state to a sub-range of the
701 * @mas: Maple Tree operation state.
702 * @start: New start of range in the Maple Tree.
703 * @last: New end of range in the Maple Tree.
705 * set the internal maple state values to a sub-range.
706 * Please use mas_set_range() if you do not know where you are in the tree.
708 static inline void __mas_set_range(struct ma_state *mas, unsigned long start,
711 /* Ensure the range starts within the current slot */
712 MAS_WARN_ON(mas, mas_is_active(mas) &&
713 (mas->index > start || mas->last < start));
719 * mas_set_range() - Set up Maple Tree operation state for a different index.
720 * @mas: Maple Tree operation state.
721 * @start: New start of range in the Maple Tree.
722 * @last: New end of range in the Maple Tree.
724 * Move the operation state to refer to a different range. This will
725 * have the effect of starting a walk from the top; see mas_next()
726 * to move to an adjacent index.
729 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last)
732 __mas_set_range(mas, start, last);
736 * mas_set() - Set up Maple Tree operation state for a different index.
737 * @mas: Maple Tree operation state.
738 * @index: New index into the Maple Tree.
740 * Move the operation state to refer to a different index. This will
741 * have the effect of starting a walk from the top; see mas_next()
742 * to move to an adjacent index.
744 static inline void mas_set(struct ma_state *mas, unsigned long index)
747 mas_set_range(mas, index, index);
750 static inline bool mt_external_lock(const struct maple_tree *mt)
752 return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN;
756 * mt_init_flags() - Initialise an empty maple tree with flags.
758 * @flags: maple tree flags.
760 * If you need to initialise a Maple Tree with special flags (eg, an
761 * allocation tree), use this function.
763 * Context: Any context.
765 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags)
767 mt->ma_flags = flags;
768 if (!mt_external_lock(mt))
769 spin_lock_init(&mt->ma_lock);
770 rcu_assign_pointer(mt->ma_root, NULL);
774 * mt_init() - Initialise an empty maple tree.
777 * An empty Maple Tree.
779 * Context: Any context.
781 static inline void mt_init(struct maple_tree *mt)
783 mt_init_flags(mt, 0);
786 static inline bool mt_in_rcu(struct maple_tree *mt)
788 #ifdef CONFIG_MAPLE_RCU_DISABLED
791 return mt->ma_flags & MT_FLAGS_USE_RCU;
795 * mt_clear_in_rcu() - Switch the tree to non-RCU mode.
796 * @mt: The Maple Tree
798 static inline void mt_clear_in_rcu(struct maple_tree *mt)
803 if (mt_external_lock(mt)) {
804 WARN_ON(!mt_lock_is_held(mt));
805 mt->ma_flags &= ~MT_FLAGS_USE_RCU;
808 mt->ma_flags &= ~MT_FLAGS_USE_RCU;
814 * mt_set_in_rcu() - Switch the tree to RCU safe mode.
815 * @mt: The Maple Tree
817 static inline void mt_set_in_rcu(struct maple_tree *mt)
822 if (mt_external_lock(mt)) {
823 WARN_ON(!mt_lock_is_held(mt));
824 mt->ma_flags |= MT_FLAGS_USE_RCU;
827 mt->ma_flags |= MT_FLAGS_USE_RCU;
832 static inline unsigned int mt_height(const struct maple_tree *mt)
834 return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET;
837 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max);
838 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
840 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min);
841 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max);
844 * mt_for_each - Iterate over each entry starting at index until max.
845 * @__tree: The Maple Tree
846 * @__entry: The current entry
847 * @__index: The index to start the search from. Subsequently used as iterator.
848 * @__max: The maximum limit for @index
850 * This iterator skips all entries, which resolve to a NULL pointer,
851 * e.g. entries which has been reserved with XA_ZERO_ENTRY.
853 #define mt_for_each(__tree, __entry, __index, __max) \
854 for (__entry = mt_find(__tree, &(__index), __max); \
855 __entry; __entry = mt_find_after(__tree, &(__index), __max))
857 #endif /*_LINUX_MAPLE_TREE_H */