]> Git Repo - linux.git/blob - drivers/net/wireless/intel/iwlwifi/pcie/rx.c
Merge tag 'trace-v5.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2003-2014, 2018-2021 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/sched.h>
8 #include <linux/wait.h>
9 #include <linux/gfp.h>
10
11 #include "iwl-prph.h"
12 #include "iwl-io.h"
13 #include "internal.h"
14 #include "iwl-op-mode.h"
15 #include "iwl-context-info-gen3.h"
16
17 /******************************************************************************
18  *
19  * RX path functions
20  *
21  ******************************************************************************/
22
23 /*
24  * Rx theory of operation
25  *
26  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
27  * each of which point to Receive Buffers to be filled by the NIC.  These get
28  * used not only for Rx frames, but for any command response or notification
29  * from the NIC.  The driver and NIC manage the Rx buffers by means
30  * of indexes into the circular buffer.
31  *
32  * Rx Queue Indexes
33  * The host/firmware share two index registers for managing the Rx buffers.
34  *
35  * The READ index maps to the first position that the firmware may be writing
36  * to -- the driver can read up to (but not including) this position and get
37  * good data.
38  * The READ index is managed by the firmware once the card is enabled.
39  *
40  * The WRITE index maps to the last position the driver has read from -- the
41  * position preceding WRITE is the last slot the firmware can place a packet.
42  *
43  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
44  * WRITE = READ.
45  *
46  * During initialization, the host sets up the READ queue position to the first
47  * INDEX position, and WRITE to the last (READ - 1 wrapped)
48  *
49  * When the firmware places a packet in a buffer, it will advance the READ index
50  * and fire the RX interrupt.  The driver can then query the READ index and
51  * process as many packets as possible, moving the WRITE index forward as it
52  * resets the Rx queue buffers with new memory.
53  *
54  * The management in the driver is as follows:
55  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
56  *   When the interrupt handler is called, the request is processed.
57  *   The page is either stolen - transferred to the upper layer
58  *   or reused - added immediately to the iwl->rxq->rx_free list.
59  * + When the page is stolen - the driver updates the matching queue's used
60  *   count, detaches the RBD and transfers it to the queue used list.
61  *   When there are two used RBDs - they are transferred to the allocator empty
62  *   list. Work is then scheduled for the allocator to start allocating
63  *   eight buffers.
64  *   When there are another 6 used RBDs - they are transferred to the allocator
65  *   empty list and the driver tries to claim the pre-allocated buffers and
66  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
67  *   until ready.
68  *   When there are 8+ buffers in the free list - either from allocation or from
69  *   8 reused unstolen pages - restock is called to update the FW and indexes.
70  * + In order to make sure the allocator always has RBDs to use for allocation
71  *   the allocator has initial pool in the size of num_queues*(8-2) - the
72  *   maximum missing RBDs per allocation request (request posted with 2
73  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
74  *   The queues supplies the recycle of the rest of the RBDs.
75  * + A received packet is processed and handed to the kernel network stack,
76  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
77  * + If there are no allocated buffers in iwl->rxq->rx_free,
78  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
79  *   If there were enough free buffers and RX_STALLED is set it is cleared.
80  *
81  *
82  * Driver sequence:
83  *
84  * iwl_rxq_alloc()            Allocates rx_free
85  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
86  *                            iwl_pcie_rxq_restock.
87  *                            Used only during initialization.
88  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
89  *                            queue, updates firmware pointers, and updates
90  *                            the WRITE index.
91  * iwl_pcie_rx_allocator()     Background work for allocating pages.
92  *
93  * -- enable interrupts --
94  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
95  *                            READ INDEX, detaching the SKB from the pool.
96  *                            Moves the packet buffer from queue to rx_used.
97  *                            Posts and claims requests to the allocator.
98  *                            Calls iwl_pcie_rxq_restock to refill any empty
99  *                            slots.
100  *
101  * RBD life-cycle:
102  *
103  * Init:
104  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
105  *
106  * Regular Receive interrupt:
107  * Page Stolen:
108  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
109  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
110  * Page not Stolen:
111  * rxq.queue -> rxq.rx_free -> rxq.queue
112  * ...
113  *
114  */
115
116 /*
117  * iwl_rxq_space - Return number of free slots available in queue.
118  */
119 static int iwl_rxq_space(const struct iwl_rxq *rxq)
120 {
121         /* Make sure rx queue size is a power of 2 */
122         WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
123
124         /*
125          * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
126          * between empty and completely full queues.
127          * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
128          * defined for negative dividends.
129          */
130         return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
131 }
132
133 /*
134  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
135  */
136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
137 {
138         return cpu_to_le32((u32)(dma_addr >> 8));
139 }
140
141 /*
142  * iwl_pcie_rx_stop - stops the Rx DMA
143  */
144 int iwl_pcie_rx_stop(struct iwl_trans *trans)
145 {
146         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
147                 /* TODO: remove this once fw does it */
148                 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
149                 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
150                                               RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
151         } else if (trans->trans_cfg->mq_rx_supported) {
152                 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
153                 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
154                                            RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
155         } else {
156                 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
157                 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
158                                            FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
159                                            1000);
160         }
161 }
162
163 /*
164  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
165  */
166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
167                                     struct iwl_rxq *rxq)
168 {
169         u32 reg;
170
171         lockdep_assert_held(&rxq->lock);
172
173         /*
174          * explicitly wake up the NIC if:
175          * 1. shadow registers aren't enabled
176          * 2. there is a chance that the NIC is asleep
177          */
178         if (!trans->trans_cfg->base_params->shadow_reg_enable &&
179             test_bit(STATUS_TPOWER_PMI, &trans->status)) {
180                 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
181
182                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
183                         IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
184                                        reg);
185                         iwl_set_bit(trans, CSR_GP_CNTRL,
186                                     CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
187                         rxq->need_update = true;
188                         return;
189                 }
190         }
191
192         rxq->write_actual = round_down(rxq->write, 8);
193         if (trans->trans_cfg->mq_rx_supported)
194                 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
195                             rxq->write_actual);
196         else
197                 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
198 }
199
200 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
201 {
202         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
203         int i;
204
205         for (i = 0; i < trans->num_rx_queues; i++) {
206                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
207
208                 if (!rxq->need_update)
209                         continue;
210                 spin_lock_bh(&rxq->lock);
211                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
212                 rxq->need_update = false;
213                 spin_unlock_bh(&rxq->lock);
214         }
215 }
216
217 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
218                                 struct iwl_rxq *rxq,
219                                 struct iwl_rx_mem_buffer *rxb)
220 {
221         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
222                 struct iwl_rx_transfer_desc *bd = rxq->bd;
223
224                 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
225
226                 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
227                 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
228         } else {
229                 __le64 *bd = rxq->bd;
230
231                 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
232         }
233
234         IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
235                      (u32)rxb->vid, rxq->id, rxq->write);
236 }
237
238 /*
239  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
240  */
241 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
242                                   struct iwl_rxq *rxq)
243 {
244         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
245         struct iwl_rx_mem_buffer *rxb;
246
247         /*
248          * If the device isn't enabled - no need to try to add buffers...
249          * This can happen when we stop the device and still have an interrupt
250          * pending. We stop the APM before we sync the interrupts because we
251          * have to (see comment there). On the other hand, since the APM is
252          * stopped, we cannot access the HW (in particular not prph).
253          * So don't try to restock if the APM has been already stopped.
254          */
255         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
256                 return;
257
258         spin_lock_bh(&rxq->lock);
259         while (rxq->free_count) {
260                 /* Get next free Rx buffer, remove from free list */
261                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
262                                        list);
263                 list_del(&rxb->list);
264                 rxb->invalid = false;
265                 /* some low bits are expected to be unset (depending on hw) */
266                 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
267                 /* Point to Rx buffer via next RBD in circular buffer */
268                 iwl_pcie_restock_bd(trans, rxq, rxb);
269                 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
270                 rxq->free_count--;
271         }
272         spin_unlock_bh(&rxq->lock);
273
274         /*
275          * If we've added more space for the firmware to place data, tell it.
276          * Increment device's write pointer in multiples of 8.
277          */
278         if (rxq->write_actual != (rxq->write & ~0x7)) {
279                 spin_lock_bh(&rxq->lock);
280                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
281                 spin_unlock_bh(&rxq->lock);
282         }
283 }
284
285 /*
286  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
287  */
288 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
289                                   struct iwl_rxq *rxq)
290 {
291         struct iwl_rx_mem_buffer *rxb;
292
293         /*
294          * If the device isn't enabled - not need to try to add buffers...
295          * This can happen when we stop the device and still have an interrupt
296          * pending. We stop the APM before we sync the interrupts because we
297          * have to (see comment there). On the other hand, since the APM is
298          * stopped, we cannot access the HW (in particular not prph).
299          * So don't try to restock if the APM has been already stopped.
300          */
301         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
302                 return;
303
304         spin_lock_bh(&rxq->lock);
305         while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
306                 __le32 *bd = (__le32 *)rxq->bd;
307                 /* The overwritten rxb must be a used one */
308                 rxb = rxq->queue[rxq->write];
309                 BUG_ON(rxb && rxb->page);
310
311                 /* Get next free Rx buffer, remove from free list */
312                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
313                                        list);
314                 list_del(&rxb->list);
315                 rxb->invalid = false;
316
317                 /* Point to Rx buffer via next RBD in circular buffer */
318                 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
319                 rxq->queue[rxq->write] = rxb;
320                 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
321                 rxq->free_count--;
322         }
323         spin_unlock_bh(&rxq->lock);
324
325         /* If we've added more space for the firmware to place data, tell it.
326          * Increment device's write pointer in multiples of 8. */
327         if (rxq->write_actual != (rxq->write & ~0x7)) {
328                 spin_lock_bh(&rxq->lock);
329                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
330                 spin_unlock_bh(&rxq->lock);
331         }
332 }
333
334 /*
335  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
336  *
337  * If there are slots in the RX queue that need to be restocked,
338  * and we have free pre-allocated buffers, fill the ranks as much
339  * as we can, pulling from rx_free.
340  *
341  * This moves the 'write' index forward to catch up with 'processed', and
342  * also updates the memory address in the firmware to reference the new
343  * target buffer.
344  */
345 static
346 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
347 {
348         if (trans->trans_cfg->mq_rx_supported)
349                 iwl_pcie_rxmq_restock(trans, rxq);
350         else
351                 iwl_pcie_rxsq_restock(trans, rxq);
352 }
353
354 /*
355  * iwl_pcie_rx_alloc_page - allocates and returns a page.
356  *
357  */
358 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
359                                            u32 *offset, gfp_t priority)
360 {
361         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
362         unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
363         unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
364         struct page *page;
365         gfp_t gfp_mask = priority;
366
367         if (trans_pcie->rx_page_order > 0)
368                 gfp_mask |= __GFP_COMP;
369
370         if (trans_pcie->alloc_page) {
371                 spin_lock_bh(&trans_pcie->alloc_page_lock);
372                 /* recheck */
373                 if (trans_pcie->alloc_page) {
374                         *offset = trans_pcie->alloc_page_used;
375                         page = trans_pcie->alloc_page;
376                         trans_pcie->alloc_page_used += rbsize;
377                         if (trans_pcie->alloc_page_used >= allocsize)
378                                 trans_pcie->alloc_page = NULL;
379                         else
380                                 get_page(page);
381                         spin_unlock_bh(&trans_pcie->alloc_page_lock);
382                         return page;
383                 }
384                 spin_unlock_bh(&trans_pcie->alloc_page_lock);
385         }
386
387         /* Alloc a new receive buffer */
388         page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
389         if (!page) {
390                 if (net_ratelimit())
391                         IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
392                                        trans_pcie->rx_page_order);
393                 /*
394                  * Issue an error if we don't have enough pre-allocated
395                   * buffers.
396                  */
397                 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
398                         IWL_CRIT(trans,
399                                  "Failed to alloc_pages\n");
400                 return NULL;
401         }
402
403         if (2 * rbsize <= allocsize) {
404                 spin_lock_bh(&trans_pcie->alloc_page_lock);
405                 if (!trans_pcie->alloc_page) {
406                         get_page(page);
407                         trans_pcie->alloc_page = page;
408                         trans_pcie->alloc_page_used = rbsize;
409                 }
410                 spin_unlock_bh(&trans_pcie->alloc_page_lock);
411         }
412
413         *offset = 0;
414         return page;
415 }
416
417 /*
418  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
419  *
420  * A used RBD is an Rx buffer that has been given to the stack. To use it again
421  * a page must be allocated and the RBD must point to the page. This function
422  * doesn't change the HW pointer but handles the list of pages that is used by
423  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
424  * allocated buffers.
425  */
426 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
427                             struct iwl_rxq *rxq)
428 {
429         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
430         struct iwl_rx_mem_buffer *rxb;
431         struct page *page;
432
433         while (1) {
434                 unsigned int offset;
435
436                 spin_lock_bh(&rxq->lock);
437                 if (list_empty(&rxq->rx_used)) {
438                         spin_unlock_bh(&rxq->lock);
439                         return;
440                 }
441                 spin_unlock_bh(&rxq->lock);
442
443                 page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
444                 if (!page)
445                         return;
446
447                 spin_lock_bh(&rxq->lock);
448
449                 if (list_empty(&rxq->rx_used)) {
450                         spin_unlock_bh(&rxq->lock);
451                         __free_pages(page, trans_pcie->rx_page_order);
452                         return;
453                 }
454                 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
455                                        list);
456                 list_del(&rxb->list);
457                 spin_unlock_bh(&rxq->lock);
458
459                 BUG_ON(rxb->page);
460                 rxb->page = page;
461                 rxb->offset = offset;
462                 /* Get physical address of the RB */
463                 rxb->page_dma =
464                         dma_map_page(trans->dev, page, rxb->offset,
465                                      trans_pcie->rx_buf_bytes,
466                                      DMA_FROM_DEVICE);
467                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
468                         rxb->page = NULL;
469                         spin_lock_bh(&rxq->lock);
470                         list_add(&rxb->list, &rxq->rx_used);
471                         spin_unlock_bh(&rxq->lock);
472                         __free_pages(page, trans_pcie->rx_page_order);
473                         return;
474                 }
475
476                 spin_lock_bh(&rxq->lock);
477
478                 list_add_tail(&rxb->list, &rxq->rx_free);
479                 rxq->free_count++;
480
481                 spin_unlock_bh(&rxq->lock);
482         }
483 }
484
485 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
486 {
487         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
488         int i;
489
490         for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
491                 if (!trans_pcie->rx_pool[i].page)
492                         continue;
493                 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
494                                trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
495                 __free_pages(trans_pcie->rx_pool[i].page,
496                              trans_pcie->rx_page_order);
497                 trans_pcie->rx_pool[i].page = NULL;
498         }
499 }
500
501 /*
502  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
503  *
504  * Allocates for each received request 8 pages
505  * Called as a scheduled work item.
506  */
507 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
508 {
509         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
510         struct iwl_rb_allocator *rba = &trans_pcie->rba;
511         struct list_head local_empty;
512         int pending = atomic_read(&rba->req_pending);
513
514         IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
515
516         /* If we were scheduled - there is at least one request */
517         spin_lock_bh(&rba->lock);
518         /* swap out the rba->rbd_empty to a local list */
519         list_replace_init(&rba->rbd_empty, &local_empty);
520         spin_unlock_bh(&rba->lock);
521
522         while (pending) {
523                 int i;
524                 LIST_HEAD(local_allocated);
525                 gfp_t gfp_mask = GFP_KERNEL;
526
527                 /* Do not post a warning if there are only a few requests */
528                 if (pending < RX_PENDING_WATERMARK)
529                         gfp_mask |= __GFP_NOWARN;
530
531                 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
532                         struct iwl_rx_mem_buffer *rxb;
533                         struct page *page;
534
535                         /* List should never be empty - each reused RBD is
536                          * returned to the list, and initial pool covers any
537                          * possible gap between the time the page is allocated
538                          * to the time the RBD is added.
539                          */
540                         BUG_ON(list_empty(&local_empty));
541                         /* Get the first rxb from the rbd list */
542                         rxb = list_first_entry(&local_empty,
543                                                struct iwl_rx_mem_buffer, list);
544                         BUG_ON(rxb->page);
545
546                         /* Alloc a new receive buffer */
547                         page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
548                                                       gfp_mask);
549                         if (!page)
550                                 continue;
551                         rxb->page = page;
552
553                         /* Get physical address of the RB */
554                         rxb->page_dma = dma_map_page(trans->dev, page,
555                                                      rxb->offset,
556                                                      trans_pcie->rx_buf_bytes,
557                                                      DMA_FROM_DEVICE);
558                         if (dma_mapping_error(trans->dev, rxb->page_dma)) {
559                                 rxb->page = NULL;
560                                 __free_pages(page, trans_pcie->rx_page_order);
561                                 continue;
562                         }
563
564                         /* move the allocated entry to the out list */
565                         list_move(&rxb->list, &local_allocated);
566                         i++;
567                 }
568
569                 atomic_dec(&rba->req_pending);
570                 pending--;
571
572                 if (!pending) {
573                         pending = atomic_read(&rba->req_pending);
574                         if (pending)
575                                 IWL_DEBUG_TPT(trans,
576                                               "Got more pending allocation requests = %d\n",
577                                               pending);
578                 }
579
580                 spin_lock_bh(&rba->lock);
581                 /* add the allocated rbds to the allocator allocated list */
582                 list_splice_tail(&local_allocated, &rba->rbd_allocated);
583                 /* get more empty RBDs for current pending requests */
584                 list_splice_tail_init(&rba->rbd_empty, &local_empty);
585                 spin_unlock_bh(&rba->lock);
586
587                 atomic_inc(&rba->req_ready);
588
589         }
590
591         spin_lock_bh(&rba->lock);
592         /* return unused rbds to the allocator empty list */
593         list_splice_tail(&local_empty, &rba->rbd_empty);
594         spin_unlock_bh(&rba->lock);
595
596         IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
597 }
598
599 /*
600  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
601 .*
602 .* Called by queue when the queue posted allocation request and
603  * has freed 8 RBDs in order to restock itself.
604  * This function directly moves the allocated RBs to the queue's ownership
605  * and updates the relevant counters.
606  */
607 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
608                                       struct iwl_rxq *rxq)
609 {
610         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
611         struct iwl_rb_allocator *rba = &trans_pcie->rba;
612         int i;
613
614         lockdep_assert_held(&rxq->lock);
615
616         /*
617          * atomic_dec_if_positive returns req_ready - 1 for any scenario.
618          * If req_ready is 0 atomic_dec_if_positive will return -1 and this
619          * function will return early, as there are no ready requests.
620          * atomic_dec_if_positive will perofrm the *actual* decrement only if
621          * req_ready > 0, i.e. - there are ready requests and the function
622          * hands one request to the caller.
623          */
624         if (atomic_dec_if_positive(&rba->req_ready) < 0)
625                 return;
626
627         spin_lock(&rba->lock);
628         for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
629                 /* Get next free Rx buffer, remove it from free list */
630                 struct iwl_rx_mem_buffer *rxb =
631                         list_first_entry(&rba->rbd_allocated,
632                                          struct iwl_rx_mem_buffer, list);
633
634                 list_move(&rxb->list, &rxq->rx_free);
635         }
636         spin_unlock(&rba->lock);
637
638         rxq->used_count -= RX_CLAIM_REQ_ALLOC;
639         rxq->free_count += RX_CLAIM_REQ_ALLOC;
640 }
641
642 void iwl_pcie_rx_allocator_work(struct work_struct *data)
643 {
644         struct iwl_rb_allocator *rba_p =
645                 container_of(data, struct iwl_rb_allocator, rx_alloc);
646         struct iwl_trans_pcie *trans_pcie =
647                 container_of(rba_p, struct iwl_trans_pcie, rba);
648
649         iwl_pcie_rx_allocator(trans_pcie->trans);
650 }
651
652 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
653 {
654         struct iwl_rx_transfer_desc *rx_td;
655
656         if (use_rx_td)
657                 return sizeof(*rx_td);
658         else
659                 return trans->trans_cfg->mq_rx_supported ? sizeof(__le64) :
660                         sizeof(__le32);
661 }
662
663 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
664                                   struct iwl_rxq *rxq)
665 {
666         struct device *dev = trans->dev;
667         bool use_rx_td = (trans->trans_cfg->device_family >=
668                           IWL_DEVICE_FAMILY_AX210);
669         int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
670
671         if (rxq->bd)
672                 dma_free_coherent(trans->dev,
673                                   free_size * rxq->queue_size,
674                                   rxq->bd, rxq->bd_dma);
675         rxq->bd_dma = 0;
676         rxq->bd = NULL;
677
678         rxq->rb_stts_dma = 0;
679         rxq->rb_stts = NULL;
680
681         if (rxq->used_bd)
682                 dma_free_coherent(trans->dev,
683                                   (use_rx_td ? sizeof(*rxq->cd) :
684                                    sizeof(__le32)) * rxq->queue_size,
685                                   rxq->used_bd, rxq->used_bd_dma);
686         rxq->used_bd_dma = 0;
687         rxq->used_bd = NULL;
688
689         if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_AX210)
690                 return;
691
692         if (rxq->tr_tail)
693                 dma_free_coherent(dev, sizeof(__le16),
694                                   rxq->tr_tail, rxq->tr_tail_dma);
695         rxq->tr_tail_dma = 0;
696         rxq->tr_tail = NULL;
697
698         if (rxq->cr_tail)
699                 dma_free_coherent(dev, sizeof(__le16),
700                                   rxq->cr_tail, rxq->cr_tail_dma);
701         rxq->cr_tail_dma = 0;
702         rxq->cr_tail = NULL;
703 }
704
705 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
706                                   struct iwl_rxq *rxq)
707 {
708         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
709         struct device *dev = trans->dev;
710         int i;
711         int free_size;
712         bool use_rx_td = (trans->trans_cfg->device_family >=
713                           IWL_DEVICE_FAMILY_AX210);
714         size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
715                               sizeof(struct iwl_rb_status);
716
717         spin_lock_init(&rxq->lock);
718         if (trans->trans_cfg->mq_rx_supported)
719                 rxq->queue_size = trans->cfg->num_rbds;
720         else
721                 rxq->queue_size = RX_QUEUE_SIZE;
722
723         free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
724
725         /*
726          * Allocate the circular buffer of Read Buffer Descriptors
727          * (RBDs)
728          */
729         rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
730                                      &rxq->bd_dma, GFP_KERNEL);
731         if (!rxq->bd)
732                 goto err;
733
734         if (trans->trans_cfg->mq_rx_supported) {
735                 rxq->used_bd = dma_alloc_coherent(dev,
736                                                   (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size,
737                                                   &rxq->used_bd_dma,
738                                                   GFP_KERNEL);
739                 if (!rxq->used_bd)
740                         goto err;
741         }
742
743         rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
744         rxq->rb_stts_dma =
745                 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
746
747         if (!use_rx_td)
748                 return 0;
749
750         /* Allocate the driver's pointer to TR tail */
751         rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16),
752                                           &rxq->tr_tail_dma, GFP_KERNEL);
753         if (!rxq->tr_tail)
754                 goto err;
755
756         /* Allocate the driver's pointer to CR tail */
757         rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16),
758                                           &rxq->cr_tail_dma, GFP_KERNEL);
759         if (!rxq->cr_tail)
760                 goto err;
761
762         return 0;
763
764 err:
765         for (i = 0; i < trans->num_rx_queues; i++) {
766                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
767
768                 iwl_pcie_free_rxq_dma(trans, rxq);
769         }
770
771         return -ENOMEM;
772 }
773
774 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
775 {
776         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
777         struct iwl_rb_allocator *rba = &trans_pcie->rba;
778         int i, ret;
779         size_t rb_stts_size = trans->trans_cfg->device_family >=
780                                 IWL_DEVICE_FAMILY_AX210 ?
781                               sizeof(__le16) : sizeof(struct iwl_rb_status);
782
783         if (WARN_ON(trans_pcie->rxq))
784                 return -EINVAL;
785
786         trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
787                                   GFP_KERNEL);
788         trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
789                                       sizeof(trans_pcie->rx_pool[0]),
790                                       GFP_KERNEL);
791         trans_pcie->global_table =
792                 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
793                         sizeof(trans_pcie->global_table[0]),
794                         GFP_KERNEL);
795         if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
796             !trans_pcie->global_table) {
797                 ret = -ENOMEM;
798                 goto err;
799         }
800
801         spin_lock_init(&rba->lock);
802
803         /*
804          * Allocate the driver's pointer to receive buffer status.
805          * Allocate for all queues continuously (HW requirement).
806          */
807         trans_pcie->base_rb_stts =
808                         dma_alloc_coherent(trans->dev,
809                                            rb_stts_size * trans->num_rx_queues,
810                                            &trans_pcie->base_rb_stts_dma,
811                                            GFP_KERNEL);
812         if (!trans_pcie->base_rb_stts) {
813                 ret = -ENOMEM;
814                 goto err;
815         }
816
817         for (i = 0; i < trans->num_rx_queues; i++) {
818                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
819
820                 rxq->id = i;
821                 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
822                 if (ret)
823                         goto err;
824         }
825         return 0;
826
827 err:
828         if (trans_pcie->base_rb_stts) {
829                 dma_free_coherent(trans->dev,
830                                   rb_stts_size * trans->num_rx_queues,
831                                   trans_pcie->base_rb_stts,
832                                   trans_pcie->base_rb_stts_dma);
833                 trans_pcie->base_rb_stts = NULL;
834                 trans_pcie->base_rb_stts_dma = 0;
835         }
836         kfree(trans_pcie->rx_pool);
837         trans_pcie->rx_pool = NULL;
838         kfree(trans_pcie->global_table);
839         trans_pcie->global_table = NULL;
840         kfree(trans_pcie->rxq);
841         trans_pcie->rxq = NULL;
842
843         return ret;
844 }
845
846 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
847 {
848         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
849         u32 rb_size;
850         const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
851
852         switch (trans_pcie->rx_buf_size) {
853         case IWL_AMSDU_4K:
854                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
855                 break;
856         case IWL_AMSDU_8K:
857                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
858                 break;
859         case IWL_AMSDU_12K:
860                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
861                 break;
862         default:
863                 WARN_ON(1);
864                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
865         }
866
867         if (!iwl_trans_grab_nic_access(trans))
868                 return;
869
870         /* Stop Rx DMA */
871         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
872         /* reset and flush pointers */
873         iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
874         iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
875         iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
876
877         /* Reset driver's Rx queue write index */
878         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
879
880         /* Tell device where to find RBD circular buffer in DRAM */
881         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
882                     (u32)(rxq->bd_dma >> 8));
883
884         /* Tell device where in DRAM to update its Rx status */
885         iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
886                     rxq->rb_stts_dma >> 4);
887
888         /* Enable Rx DMA
889          * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
890          *      the credit mechanism in 5000 HW RX FIFO
891          * Direct rx interrupts to hosts
892          * Rx buffer size 4 or 8k or 12k
893          * RB timeout 0x10
894          * 256 RBDs
895          */
896         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
897                     FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
898                     FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
899                     FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
900                     rb_size |
901                     (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
902                     (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
903
904         iwl_trans_release_nic_access(trans);
905
906         /* Set interrupt coalescing timer to default (2048 usecs) */
907         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
908
909         /* W/A for interrupt coalescing bug in 7260 and 3160 */
910         if (trans->cfg->host_interrupt_operation_mode)
911                 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
912 }
913
914 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
915 {
916         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
917         u32 rb_size, enabled = 0;
918         int i;
919
920         switch (trans_pcie->rx_buf_size) {
921         case IWL_AMSDU_2K:
922                 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
923                 break;
924         case IWL_AMSDU_4K:
925                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
926                 break;
927         case IWL_AMSDU_8K:
928                 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
929                 break;
930         case IWL_AMSDU_12K:
931                 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
932                 break;
933         default:
934                 WARN_ON(1);
935                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
936         }
937
938         if (!iwl_trans_grab_nic_access(trans))
939                 return;
940
941         /* Stop Rx DMA */
942         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
943         /* disable free amd used rx queue operation */
944         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
945
946         for (i = 0; i < trans->num_rx_queues; i++) {
947                 /* Tell device where to find RBD free table in DRAM */
948                 iwl_write_prph64_no_grab(trans,
949                                          RFH_Q_FRBDCB_BA_LSB(i),
950                                          trans_pcie->rxq[i].bd_dma);
951                 /* Tell device where to find RBD used table in DRAM */
952                 iwl_write_prph64_no_grab(trans,
953                                          RFH_Q_URBDCB_BA_LSB(i),
954                                          trans_pcie->rxq[i].used_bd_dma);
955                 /* Tell device where in DRAM to update its Rx status */
956                 iwl_write_prph64_no_grab(trans,
957                                          RFH_Q_URBD_STTS_WPTR_LSB(i),
958                                          trans_pcie->rxq[i].rb_stts_dma);
959                 /* Reset device indice tables */
960                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
961                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
962                 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
963
964                 enabled |= BIT(i) | BIT(i + 16);
965         }
966
967         /*
968          * Enable Rx DMA
969          * Rx buffer size 4 or 8k or 12k
970          * Min RB size 4 or 8
971          * Drop frames that exceed RB size
972          * 512 RBDs
973          */
974         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
975                                RFH_DMA_EN_ENABLE_VAL | rb_size |
976                                RFH_RXF_DMA_MIN_RB_4_8 |
977                                RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
978                                RFH_RXF_DMA_RBDCB_SIZE_512);
979
980         /*
981          * Activate DMA snooping.
982          * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
983          * Default queue is 0
984          */
985         iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
986                                RFH_GEN_CFG_RFH_DMA_SNOOP |
987                                RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
988                                RFH_GEN_CFG_SERVICE_DMA_SNOOP |
989                                RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
990                                                trans->trans_cfg->integrated ?
991                                                RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
992                                                RFH_GEN_CFG_RB_CHUNK_SIZE_128));
993         /* Enable the relevant rx queues */
994         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
995
996         iwl_trans_release_nic_access(trans);
997
998         /* Set interrupt coalescing timer to default (2048 usecs) */
999         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1000 }
1001
1002 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
1003 {
1004         lockdep_assert_held(&rxq->lock);
1005
1006         INIT_LIST_HEAD(&rxq->rx_free);
1007         INIT_LIST_HEAD(&rxq->rx_used);
1008         rxq->free_count = 0;
1009         rxq->used_count = 0;
1010 }
1011
1012 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
1013
1014 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
1015 {
1016         struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1017         struct iwl_trans_pcie *trans_pcie;
1018         struct iwl_trans *trans;
1019         int ret;
1020
1021         trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1022         trans = trans_pcie->trans;
1023
1024         ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1025
1026         IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
1027                       rxq->id, ret, budget);
1028
1029         if (ret < budget) {
1030                 spin_lock(&trans_pcie->irq_lock);
1031                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1032                         _iwl_enable_interrupts(trans);
1033                 spin_unlock(&trans_pcie->irq_lock);
1034
1035                 napi_complete_done(&rxq->napi, ret);
1036         }
1037
1038         return ret;
1039 }
1040
1041 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
1042 {
1043         struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1044         struct iwl_trans_pcie *trans_pcie;
1045         struct iwl_trans *trans;
1046         int ret;
1047
1048         trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1049         trans = trans_pcie->trans;
1050
1051         ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1052         IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
1053                       budget);
1054
1055         if (ret < budget) {
1056                 int irq_line = rxq->id;
1057
1058                 /* FIRST_RSS is shared with line 0 */
1059                 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
1060                     rxq->id == 1)
1061                         irq_line = 0;
1062
1063                 spin_lock(&trans_pcie->irq_lock);
1064                 iwl_pcie_clear_irq(trans, irq_line);
1065                 spin_unlock(&trans_pcie->irq_lock);
1066
1067                 napi_complete_done(&rxq->napi, ret);
1068         }
1069
1070         return ret;
1071 }
1072
1073 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1074 {
1075         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1076         struct iwl_rxq *def_rxq;
1077         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1078         int i, err, queue_size, allocator_pool_size, num_alloc;
1079
1080         if (!trans_pcie->rxq) {
1081                 err = iwl_pcie_rx_alloc(trans);
1082                 if (err)
1083                         return err;
1084         }
1085         def_rxq = trans_pcie->rxq;
1086
1087         cancel_work_sync(&rba->rx_alloc);
1088
1089         spin_lock_bh(&rba->lock);
1090         atomic_set(&rba->req_pending, 0);
1091         atomic_set(&rba->req_ready, 0);
1092         INIT_LIST_HEAD(&rba->rbd_allocated);
1093         INIT_LIST_HEAD(&rba->rbd_empty);
1094         spin_unlock_bh(&rba->lock);
1095
1096         /* free all first - we might be reconfigured for a different size */
1097         iwl_pcie_free_rbs_pool(trans);
1098
1099         for (i = 0; i < RX_QUEUE_SIZE; i++)
1100                 def_rxq->queue[i] = NULL;
1101
1102         for (i = 0; i < trans->num_rx_queues; i++) {
1103                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1104
1105                 spin_lock_bh(&rxq->lock);
1106                 /*
1107                  * Set read write pointer to reflect that we have processed
1108                  * and used all buffers, but have not restocked the Rx queue
1109                  * with fresh buffers
1110                  */
1111                 rxq->read = 0;
1112                 rxq->write = 0;
1113                 rxq->write_actual = 0;
1114                 memset(rxq->rb_stts, 0,
1115                        (trans->trans_cfg->device_family >=
1116                         IWL_DEVICE_FAMILY_AX210) ?
1117                        sizeof(__le16) : sizeof(struct iwl_rb_status));
1118
1119                 iwl_pcie_rx_init_rxb_lists(rxq);
1120
1121                 spin_unlock_bh(&rxq->lock);
1122
1123                 if (!rxq->napi.poll) {
1124                         int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
1125
1126                         if (trans_pcie->msix_enabled)
1127                                 poll = iwl_pcie_napi_poll_msix;
1128
1129                         netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1130                                        poll, NAPI_POLL_WEIGHT);
1131                         napi_enable(&rxq->napi);
1132                 }
1133
1134         }
1135
1136         /* move the pool to the default queue and allocator ownerships */
1137         queue_size = trans->trans_cfg->mq_rx_supported ?
1138                         trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1139         allocator_pool_size = trans->num_rx_queues *
1140                 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1141         num_alloc = queue_size + allocator_pool_size;
1142
1143         for (i = 0; i < num_alloc; i++) {
1144                 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1145
1146                 if (i < allocator_pool_size)
1147                         list_add(&rxb->list, &rba->rbd_empty);
1148                 else
1149                         list_add(&rxb->list, &def_rxq->rx_used);
1150                 trans_pcie->global_table[i] = rxb;
1151                 rxb->vid = (u16)(i + 1);
1152                 rxb->invalid = true;
1153         }
1154
1155         iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1156
1157         return 0;
1158 }
1159
1160 int iwl_pcie_rx_init(struct iwl_trans *trans)
1161 {
1162         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1163         int ret = _iwl_pcie_rx_init(trans);
1164
1165         if (ret)
1166                 return ret;
1167
1168         if (trans->trans_cfg->mq_rx_supported)
1169                 iwl_pcie_rx_mq_hw_init(trans);
1170         else
1171                 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1172
1173         iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1174
1175         spin_lock_bh(&trans_pcie->rxq->lock);
1176         iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1177         spin_unlock_bh(&trans_pcie->rxq->lock);
1178
1179         return 0;
1180 }
1181
1182 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1183 {
1184         /* Set interrupt coalescing timer to default (2048 usecs) */
1185         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1186
1187         /*
1188          * We don't configure the RFH.
1189          * Restock will be done at alive, after firmware configured the RFH.
1190          */
1191         return _iwl_pcie_rx_init(trans);
1192 }
1193
1194 void iwl_pcie_rx_free(struct iwl_trans *trans)
1195 {
1196         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1197         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1198         int i;
1199         size_t rb_stts_size = trans->trans_cfg->device_family >=
1200                                 IWL_DEVICE_FAMILY_AX210 ?
1201                               sizeof(__le16) : sizeof(struct iwl_rb_status);
1202
1203         /*
1204          * if rxq is NULL, it means that nothing has been allocated,
1205          * exit now
1206          */
1207         if (!trans_pcie->rxq) {
1208                 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1209                 return;
1210         }
1211
1212         cancel_work_sync(&rba->rx_alloc);
1213
1214         iwl_pcie_free_rbs_pool(trans);
1215
1216         if (trans_pcie->base_rb_stts) {
1217                 dma_free_coherent(trans->dev,
1218                                   rb_stts_size * trans->num_rx_queues,
1219                                   trans_pcie->base_rb_stts,
1220                                   trans_pcie->base_rb_stts_dma);
1221                 trans_pcie->base_rb_stts = NULL;
1222                 trans_pcie->base_rb_stts_dma = 0;
1223         }
1224
1225         for (i = 0; i < trans->num_rx_queues; i++) {
1226                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1227
1228                 iwl_pcie_free_rxq_dma(trans, rxq);
1229
1230                 if (rxq->napi.poll) {
1231                         napi_disable(&rxq->napi);
1232                         netif_napi_del(&rxq->napi);
1233                 }
1234         }
1235         kfree(trans_pcie->rx_pool);
1236         kfree(trans_pcie->global_table);
1237         kfree(trans_pcie->rxq);
1238
1239         if (trans_pcie->alloc_page)
1240                 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1241 }
1242
1243 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1244                                           struct iwl_rb_allocator *rba)
1245 {
1246         spin_lock(&rba->lock);
1247         list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1248         spin_unlock(&rba->lock);
1249 }
1250
1251 /*
1252  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1253  *
1254  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1255  * When there are 2 empty RBDs - a request for allocation is posted
1256  */
1257 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1258                                   struct iwl_rx_mem_buffer *rxb,
1259                                   struct iwl_rxq *rxq, bool emergency)
1260 {
1261         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1262         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1263
1264         /* Move the RBD to the used list, will be moved to allocator in batches
1265          * before claiming or posting a request*/
1266         list_add_tail(&rxb->list, &rxq->rx_used);
1267
1268         if (unlikely(emergency))
1269                 return;
1270
1271         /* Count the allocator owned RBDs */
1272         rxq->used_count++;
1273
1274         /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1275          * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1276          * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1277          * after but we still need to post another request.
1278          */
1279         if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1280                 /* Move the 2 RBDs to the allocator ownership.
1281                  Allocator has another 6 from pool for the request completion*/
1282                 iwl_pcie_rx_move_to_allocator(rxq, rba);
1283
1284                 atomic_inc(&rba->req_pending);
1285                 queue_work(rba->alloc_wq, &rba->rx_alloc);
1286         }
1287 }
1288
1289 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1290                                 struct iwl_rxq *rxq,
1291                                 struct iwl_rx_mem_buffer *rxb,
1292                                 bool emergency,
1293                                 int i)
1294 {
1295         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1296         struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
1297         bool page_stolen = false;
1298         int max_len = trans_pcie->rx_buf_bytes;
1299         u32 offset = 0;
1300
1301         if (WARN_ON(!rxb))
1302                 return;
1303
1304         dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1305
1306         while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1307                 struct iwl_rx_packet *pkt;
1308                 bool reclaim;
1309                 int len;
1310                 struct iwl_rx_cmd_buffer rxcb = {
1311                         ._offset = rxb->offset + offset,
1312                         ._rx_page_order = trans_pcie->rx_page_order,
1313                         ._page = rxb->page,
1314                         ._page_stolen = false,
1315                         .truesize = max_len,
1316                 };
1317
1318                 pkt = rxb_addr(&rxcb);
1319
1320                 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1321                         IWL_DEBUG_RX(trans,
1322                                      "Q %d: RB end marker at offset %d\n",
1323                                      rxq->id, offset);
1324                         break;
1325                 }
1326
1327                 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1328                         FH_RSCSR_RXQ_POS != rxq->id,
1329                      "frame on invalid queue - is on %d and indicates %d\n",
1330                      rxq->id,
1331                      (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1332                         FH_RSCSR_RXQ_POS);
1333
1334                 IWL_DEBUG_RX(trans,
1335                              "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1336                              rxq->id, offset,
1337                              iwl_get_cmd_string(trans,
1338                                                 iwl_cmd_id(pkt->hdr.cmd,
1339                                                            pkt->hdr.group_id,
1340                                                            0)),
1341                              pkt->hdr.group_id, pkt->hdr.cmd,
1342                              le16_to_cpu(pkt->hdr.sequence));
1343
1344                 len = iwl_rx_packet_len(pkt);
1345                 len += sizeof(u32); /* account for status word */
1346
1347                 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1348
1349                 /* check that what the device tells us made sense */
1350                 if (offset > max_len)
1351                         break;
1352
1353                 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1354                 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1355
1356                 /* Reclaim a command buffer only if this packet is a response
1357                  *   to a (driver-originated) command.
1358                  * If the packet (e.g. Rx frame) originated from uCode,
1359                  *   there is no command buffer to reclaim.
1360                  * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1361                  *   but apparently a few don't get set; catch them here. */
1362                 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1363                 if (reclaim && !pkt->hdr.group_id) {
1364                         int i;
1365
1366                         for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1367                                 if (trans_pcie->no_reclaim_cmds[i] ==
1368                                                         pkt->hdr.cmd) {
1369                                         reclaim = false;
1370                                         break;
1371                                 }
1372                         }
1373                 }
1374
1375                 if (rxq->id == trans_pcie->def_rx_queue)
1376                         iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1377                                        &rxcb);
1378                 else
1379                         iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1380                                            &rxcb, rxq->id);
1381
1382                 /*
1383                  * After here, we should always check rxcb._page_stolen,
1384                  * if it is true then one of the handlers took the page.
1385                  */
1386
1387                 if (reclaim) {
1388                         u16 sequence = le16_to_cpu(pkt->hdr.sequence);
1389                         int index = SEQ_TO_INDEX(sequence);
1390                         int cmd_index = iwl_txq_get_cmd_index(txq, index);
1391
1392                         kfree_sensitive(txq->entries[cmd_index].free_buf);
1393                         txq->entries[cmd_index].free_buf = NULL;
1394
1395                         /* Invoke any callbacks, transfer the buffer to caller,
1396                          * and fire off the (possibly) blocking
1397                          * iwl_trans_send_cmd()
1398                          * as we reclaim the driver command queue */
1399                         if (!rxcb._page_stolen)
1400                                 iwl_pcie_hcmd_complete(trans, &rxcb);
1401                         else
1402                                 IWL_WARN(trans, "Claim null rxb?\n");
1403                 }
1404
1405                 page_stolen |= rxcb._page_stolen;
1406                 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1407                         break;
1408         }
1409
1410         /* page was stolen from us -- free our reference */
1411         if (page_stolen) {
1412                 __free_pages(rxb->page, trans_pcie->rx_page_order);
1413                 rxb->page = NULL;
1414         }
1415
1416         /* Reuse the page if possible. For notification packets and
1417          * SKBs that fail to Rx correctly, add them back into the
1418          * rx_free list for reuse later. */
1419         if (rxb->page != NULL) {
1420                 rxb->page_dma =
1421                         dma_map_page(trans->dev, rxb->page, rxb->offset,
1422                                      trans_pcie->rx_buf_bytes,
1423                                      DMA_FROM_DEVICE);
1424                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1425                         /*
1426                          * free the page(s) as well to not break
1427                          * the invariant that the items on the used
1428                          * list have no page(s)
1429                          */
1430                         __free_pages(rxb->page, trans_pcie->rx_page_order);
1431                         rxb->page = NULL;
1432                         iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1433                 } else {
1434                         list_add_tail(&rxb->list, &rxq->rx_free);
1435                         rxq->free_count++;
1436                 }
1437         } else
1438                 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1439 }
1440
1441 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1442                                                   struct iwl_rxq *rxq, int i,
1443                                                   bool *join)
1444 {
1445         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1446         struct iwl_rx_mem_buffer *rxb;
1447         u16 vid;
1448
1449         BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1450
1451         if (!trans->trans_cfg->mq_rx_supported) {
1452                 rxb = rxq->queue[i];
1453                 rxq->queue[i] = NULL;
1454                 return rxb;
1455         }
1456
1457         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1458                 vid = le16_to_cpu(rxq->cd[i].rbid);
1459                 *join = rxq->cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1460         } else {
1461                 vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF; /* 12-bit VID */
1462         }
1463
1464         if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1465                 goto out_err;
1466
1467         rxb = trans_pcie->global_table[vid - 1];
1468         if (rxb->invalid)
1469                 goto out_err;
1470
1471         IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1472
1473         rxb->invalid = true;
1474
1475         return rxb;
1476
1477 out_err:
1478         WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1479         iwl_force_nmi(trans);
1480         return NULL;
1481 }
1482
1483 /*
1484  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1485  */
1486 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
1487 {
1488         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1489         struct iwl_rxq *rxq;
1490         u32 r, i, count = 0, handled = 0;
1491         bool emergency = false;
1492
1493         if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1494                 return budget;
1495
1496         rxq = &trans_pcie->rxq[queue];
1497
1498 restart:
1499         spin_lock(&rxq->lock);
1500         /* uCode's read index (stored in shared DRAM) indicates the last Rx
1501          * buffer that the driver may process (last buffer filled by ucode). */
1502         r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1503         i = rxq->read;
1504
1505         /* W/A 9000 device step A0 wrap-around bug */
1506         r &= (rxq->queue_size - 1);
1507
1508         /* Rx interrupt, but nothing sent from uCode */
1509         if (i == r)
1510                 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1511
1512         while (i != r && ++handled < budget) {
1513                 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1514                 struct iwl_rx_mem_buffer *rxb;
1515                 /* number of RBDs still waiting for page allocation */
1516                 u32 rb_pending_alloc =
1517                         atomic_read(&trans_pcie->rba.req_pending) *
1518                         RX_CLAIM_REQ_ALLOC;
1519                 bool join = false;
1520
1521                 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1522                              !emergency)) {
1523                         iwl_pcie_rx_move_to_allocator(rxq, rba);
1524                         emergency = true;
1525                         IWL_DEBUG_TPT(trans,
1526                                       "RX path is in emergency. Pending allocations %d\n",
1527                                       rb_pending_alloc);
1528                 }
1529
1530                 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1531
1532                 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1533                 if (!rxb)
1534                         goto out;
1535
1536                 if (unlikely(join || rxq->next_rb_is_fragment)) {
1537                         rxq->next_rb_is_fragment = join;
1538                         /*
1539                          * We can only get a multi-RB in the following cases:
1540                          *  - firmware issue, sending a too big notification
1541                          *  - sniffer mode with a large A-MSDU
1542                          *  - large MTU frames (>2k)
1543                          * since the multi-RB functionality is limited to newer
1544                          * hardware that cannot put multiple entries into a
1545                          * single RB.
1546                          *
1547                          * Right now, the higher layers aren't set up to deal
1548                          * with that, so discard all of these.
1549                          */
1550                         list_add_tail(&rxb->list, &rxq->rx_free);
1551                         rxq->free_count++;
1552                 } else {
1553                         iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1554                 }
1555
1556                 i = (i + 1) & (rxq->queue_size - 1);
1557
1558                 /*
1559                  * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1560                  * try to claim the pre-allocated buffers from the allocator.
1561                  * If not ready - will try to reclaim next time.
1562                  * There is no need to reschedule work - allocator exits only
1563                  * on success
1564                  */
1565                 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1566                         iwl_pcie_rx_allocator_get(trans, rxq);
1567
1568                 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1569                         /* Add the remaining empty RBDs for allocator use */
1570                         iwl_pcie_rx_move_to_allocator(rxq, rba);
1571                 } else if (emergency) {
1572                         count++;
1573                         if (count == 8) {
1574                                 count = 0;
1575                                 if (rb_pending_alloc < rxq->queue_size / 3) {
1576                                         IWL_DEBUG_TPT(trans,
1577                                                       "RX path exited emergency. Pending allocations %d\n",
1578                                                       rb_pending_alloc);
1579                                         emergency = false;
1580                                 }
1581
1582                                 rxq->read = i;
1583                                 spin_unlock(&rxq->lock);
1584                                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1585                                 iwl_pcie_rxq_restock(trans, rxq);
1586                                 goto restart;
1587                         }
1588                 }
1589         }
1590 out:
1591         /* Backtrack one entry */
1592         rxq->read = i;
1593         /* update cr tail with the rxq read pointer */
1594         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1595                 *rxq->cr_tail = cpu_to_le16(r);
1596         spin_unlock(&rxq->lock);
1597
1598         /*
1599          * handle a case where in emergency there are some unallocated RBDs.
1600          * those RBDs are in the used list, but are not tracked by the queue's
1601          * used_count which counts allocator owned RBDs.
1602          * unallocated emergency RBDs must be allocated on exit, otherwise
1603          * when called again the function may not be in emergency mode and
1604          * they will be handed to the allocator with no tracking in the RBD
1605          * allocator counters, which will lead to them never being claimed back
1606          * by the queue.
1607          * by allocating them here, they are now in the queue free list, and
1608          * will be restocked by the next call of iwl_pcie_rxq_restock.
1609          */
1610         if (unlikely(emergency && count))
1611                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1612
1613         iwl_pcie_rxq_restock(trans, rxq);
1614
1615         return handled;
1616 }
1617
1618 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1619 {
1620         u8 queue = entry->entry;
1621         struct msix_entry *entries = entry - queue;
1622
1623         return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1624 }
1625
1626 /*
1627  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1628  * This interrupt handler should be used with RSS queue only.
1629  */
1630 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1631 {
1632         struct msix_entry *entry = dev_id;
1633         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1634         struct iwl_trans *trans = trans_pcie->trans;
1635         struct iwl_rxq *rxq = &trans_pcie->rxq[entry->entry];
1636
1637         trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1638
1639         if (WARN_ON(entry->entry >= trans->num_rx_queues))
1640                 return IRQ_NONE;
1641
1642         if (WARN_ONCE(!rxq,
1643                       "[%d] Got MSI-X interrupt before we have Rx queues",
1644                       entry->entry))
1645                 return IRQ_NONE;
1646
1647         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1648         IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
1649
1650         local_bh_disable();
1651         if (napi_schedule_prep(&rxq->napi))
1652                 __napi_schedule(&rxq->napi);
1653         else
1654                 iwl_pcie_clear_irq(trans, entry->entry);
1655         local_bh_enable();
1656
1657         lock_map_release(&trans->sync_cmd_lockdep_map);
1658
1659         return IRQ_HANDLED;
1660 }
1661
1662 /*
1663  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1664  */
1665 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1666 {
1667         int i;
1668
1669         /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1670         if (trans->cfg->internal_wimax_coex &&
1671             !trans->cfg->apmg_not_supported &&
1672             (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1673                              APMS_CLK_VAL_MRB_FUNC_MODE) ||
1674              (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1675                             APMG_PS_CTRL_VAL_RESET_REQ))) {
1676                 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1677                 iwl_op_mode_wimax_active(trans->op_mode);
1678                 wake_up(&trans->wait_command_queue);
1679                 return;
1680         }
1681
1682         for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1683                 if (!trans->txqs.txq[i])
1684                         continue;
1685                 del_timer(&trans->txqs.txq[i]->stuck_timer);
1686         }
1687
1688         /* The STATUS_FW_ERROR bit is set in this function. This must happen
1689          * before we wake up the command caller, to ensure a proper cleanup. */
1690         iwl_trans_fw_error(trans);
1691
1692         clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1693         wake_up(&trans->wait_command_queue);
1694 }
1695
1696 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1697 {
1698         u32 inta;
1699
1700         lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1701
1702         trace_iwlwifi_dev_irq(trans->dev);
1703
1704         /* Discover which interrupts are active/pending */
1705         inta = iwl_read32(trans, CSR_INT);
1706
1707         /* the thread will service interrupts and re-enable them */
1708         return inta;
1709 }
1710
1711 /* a device (PCI-E) page is 4096 bytes long */
1712 #define ICT_SHIFT       12
1713 #define ICT_SIZE        (1 << ICT_SHIFT)
1714 #define ICT_COUNT       (ICT_SIZE / sizeof(u32))
1715
1716 /* interrupt handler using ict table, with this interrupt driver will
1717  * stop using INTA register to get device's interrupt, reading this register
1718  * is expensive, device will write interrupts in ICT dram table, increment
1719  * index then will fire interrupt to driver, driver will OR all ICT table
1720  * entries from current index up to table entry with 0 value. the result is
1721  * the interrupt we need to service, driver will set the entries back to 0 and
1722  * set index.
1723  */
1724 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1725 {
1726         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1727         u32 inta;
1728         u32 val = 0;
1729         u32 read;
1730
1731         trace_iwlwifi_dev_irq(trans->dev);
1732
1733         /* Ignore interrupt if there's nothing in NIC to service.
1734          * This may be due to IRQ shared with another device,
1735          * or due to sporadic interrupts thrown from our NIC. */
1736         read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1737         trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1738         if (!read)
1739                 return 0;
1740
1741         /*
1742          * Collect all entries up to the first 0, starting from ict_index;
1743          * note we already read at ict_index.
1744          */
1745         do {
1746                 val |= read;
1747                 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1748                                 trans_pcie->ict_index, read);
1749                 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1750                 trans_pcie->ict_index =
1751                         ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1752
1753                 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1754                 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1755                                            read);
1756         } while (read);
1757
1758         /* We should not get this value, just ignore it. */
1759         if (val == 0xffffffff)
1760                 val = 0;
1761
1762         /*
1763          * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1764          * (bit 15 before shifting it to 31) to clear when using interrupt
1765          * coalescing. fortunately, bits 18 and 19 stay set when this happens
1766          * so we use them to decide on the real state of the Rx bit.
1767          * In order words, bit 15 is set if bit 18 or bit 19 are set.
1768          */
1769         if (val & 0xC0000)
1770                 val |= 0x8000;
1771
1772         inta = (0xff & val) | ((0xff00 & val) << 16);
1773         return inta;
1774 }
1775
1776 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1777 {
1778         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1779         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1780         bool hw_rfkill, prev, report;
1781
1782         mutex_lock(&trans_pcie->mutex);
1783         prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1784         hw_rfkill = iwl_is_rfkill_set(trans);
1785         if (hw_rfkill) {
1786                 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1787                 set_bit(STATUS_RFKILL_HW, &trans->status);
1788         }
1789         if (trans_pcie->opmode_down)
1790                 report = hw_rfkill;
1791         else
1792                 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1793
1794         IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1795                  hw_rfkill ? "disable radio" : "enable radio");
1796
1797         isr_stats->rfkill++;
1798
1799         if (prev != report)
1800                 iwl_trans_pcie_rf_kill(trans, report);
1801         mutex_unlock(&trans_pcie->mutex);
1802
1803         if (hw_rfkill) {
1804                 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1805                                        &trans->status))
1806                         IWL_DEBUG_RF_KILL(trans,
1807                                           "Rfkill while SYNC HCMD in flight\n");
1808                 wake_up(&trans->wait_command_queue);
1809         } else {
1810                 clear_bit(STATUS_RFKILL_HW, &trans->status);
1811                 if (trans_pcie->opmode_down)
1812                         clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1813         }
1814 }
1815
1816 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1817 {
1818         struct iwl_trans *trans = dev_id;
1819         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1820         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1821         u32 inta = 0;
1822         u32 handled = 0;
1823         bool polling = false;
1824
1825         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1826
1827         spin_lock_bh(&trans_pcie->irq_lock);
1828
1829         /* dram interrupt table not set yet,
1830          * use legacy interrupt.
1831          */
1832         if (likely(trans_pcie->use_ict))
1833                 inta = iwl_pcie_int_cause_ict(trans);
1834         else
1835                 inta = iwl_pcie_int_cause_non_ict(trans);
1836
1837         if (iwl_have_debug_level(IWL_DL_ISR)) {
1838                 IWL_DEBUG_ISR(trans,
1839                               "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1840                               inta, trans_pcie->inta_mask,
1841                               iwl_read32(trans, CSR_INT_MASK),
1842                               iwl_read32(trans, CSR_FH_INT_STATUS));
1843                 if (inta & (~trans_pcie->inta_mask))
1844                         IWL_DEBUG_ISR(trans,
1845                                       "We got a masked interrupt (0x%08x)\n",
1846                                       inta & (~trans_pcie->inta_mask));
1847         }
1848
1849         inta &= trans_pcie->inta_mask;
1850
1851         /*
1852          * Ignore interrupt if there's nothing in NIC to service.
1853          * This may be due to IRQ shared with another device,
1854          * or due to sporadic interrupts thrown from our NIC.
1855          */
1856         if (unlikely(!inta)) {
1857                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1858                 /*
1859                  * Re-enable interrupts here since we don't
1860                  * have anything to service
1861                  */
1862                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1863                         _iwl_enable_interrupts(trans);
1864                 spin_unlock_bh(&trans_pcie->irq_lock);
1865                 lock_map_release(&trans->sync_cmd_lockdep_map);
1866                 return IRQ_NONE;
1867         }
1868
1869         if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1870                 /*
1871                  * Hardware disappeared. It might have
1872                  * already raised an interrupt.
1873                  */
1874                 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1875                 spin_unlock_bh(&trans_pcie->irq_lock);
1876                 goto out;
1877         }
1878
1879         /* Ack/clear/reset pending uCode interrupts.
1880          * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1881          */
1882         /* There is a hardware bug in the interrupt mask function that some
1883          * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1884          * they are disabled in the CSR_INT_MASK register. Furthermore the
1885          * ICT interrupt handling mechanism has another bug that might cause
1886          * these unmasked interrupts fail to be detected. We workaround the
1887          * hardware bugs here by ACKing all the possible interrupts so that
1888          * interrupt coalescing can still be achieved.
1889          */
1890         iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1891
1892         if (iwl_have_debug_level(IWL_DL_ISR))
1893                 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1894                               inta, iwl_read32(trans, CSR_INT_MASK));
1895
1896         spin_unlock_bh(&trans_pcie->irq_lock);
1897
1898         /* Now service all interrupt bits discovered above. */
1899         if (inta & CSR_INT_BIT_HW_ERR) {
1900                 IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1901
1902                 /* Tell the device to stop sending interrupts */
1903                 iwl_disable_interrupts(trans);
1904
1905                 isr_stats->hw++;
1906                 iwl_pcie_irq_handle_error(trans);
1907
1908                 handled |= CSR_INT_BIT_HW_ERR;
1909
1910                 goto out;
1911         }
1912
1913         /* NIC fires this, but we don't use it, redundant with WAKEUP */
1914         if (inta & CSR_INT_BIT_SCD) {
1915                 IWL_DEBUG_ISR(trans,
1916                               "Scheduler finished to transmit the frame/frames.\n");
1917                 isr_stats->sch++;
1918         }
1919
1920         /* Alive notification via Rx interrupt will do the real work */
1921         if (inta & CSR_INT_BIT_ALIVE) {
1922                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1923                 isr_stats->alive++;
1924                 if (trans->trans_cfg->gen2) {
1925                         /*
1926                          * We can restock, since firmware configured
1927                          * the RFH
1928                          */
1929                         iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1930                 }
1931
1932                 handled |= CSR_INT_BIT_ALIVE;
1933         }
1934
1935         /* Safely ignore these bits for debug checks below */
1936         inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1937
1938         /* HW RF KILL switch toggled */
1939         if (inta & CSR_INT_BIT_RF_KILL) {
1940                 iwl_pcie_handle_rfkill_irq(trans);
1941                 handled |= CSR_INT_BIT_RF_KILL;
1942         }
1943
1944         /* Chip got too hot and stopped itself */
1945         if (inta & CSR_INT_BIT_CT_KILL) {
1946                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1947                 isr_stats->ctkill++;
1948                 handled |= CSR_INT_BIT_CT_KILL;
1949         }
1950
1951         /* Error detected by uCode */
1952         if (inta & CSR_INT_BIT_SW_ERR) {
1953                 IWL_ERR(trans, "Microcode SW error detected. "
1954                         " Restarting 0x%X.\n", inta);
1955                 isr_stats->sw++;
1956                 iwl_pcie_irq_handle_error(trans);
1957                 handled |= CSR_INT_BIT_SW_ERR;
1958         }
1959
1960         /* uCode wakes up after power-down sleep */
1961         if (inta & CSR_INT_BIT_WAKEUP) {
1962                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1963                 iwl_pcie_rxq_check_wrptr(trans);
1964                 iwl_pcie_txq_check_wrptrs(trans);
1965
1966                 isr_stats->wakeup++;
1967
1968                 handled |= CSR_INT_BIT_WAKEUP;
1969         }
1970
1971         /* All uCode command responses, including Tx command responses,
1972          * Rx "responses" (frame-received notification), and other
1973          * notifications from uCode come through here*/
1974         if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1975                     CSR_INT_BIT_RX_PERIODIC)) {
1976                 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1977                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1978                         handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1979                         iwl_write32(trans, CSR_FH_INT_STATUS,
1980                                         CSR_FH_INT_RX_MASK);
1981                 }
1982                 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1983                         handled |= CSR_INT_BIT_RX_PERIODIC;
1984                         iwl_write32(trans,
1985                                 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1986                 }
1987                 /* Sending RX interrupt require many steps to be done in the
1988                  * the device:
1989                  * 1- write interrupt to current index in ICT table.
1990                  * 2- dma RX frame.
1991                  * 3- update RX shared data to indicate last write index.
1992                  * 4- send interrupt.
1993                  * This could lead to RX race, driver could receive RX interrupt
1994                  * but the shared data changes does not reflect this;
1995                  * periodic interrupt will detect any dangling Rx activity.
1996                  */
1997
1998                 /* Disable periodic interrupt; we use it as just a one-shot. */
1999                 iwl_write8(trans, CSR_INT_PERIODIC_REG,
2000                             CSR_INT_PERIODIC_DIS);
2001
2002                 /*
2003                  * Enable periodic interrupt in 8 msec only if we received
2004                  * real RX interrupt (instead of just periodic int), to catch
2005                  * any dangling Rx interrupt.  If it was just the periodic
2006                  * interrupt, there was no dangling Rx activity, and no need
2007                  * to extend the periodic interrupt; one-shot is enough.
2008                  */
2009                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
2010                         iwl_write8(trans, CSR_INT_PERIODIC_REG,
2011                                    CSR_INT_PERIODIC_ENA);
2012
2013                 isr_stats->rx++;
2014
2015                 local_bh_disable();
2016                 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2017                         polling = true;
2018                         __napi_schedule(&trans_pcie->rxq[0].napi);
2019                 }
2020                 local_bh_enable();
2021         }
2022
2023         /* This "Tx" DMA channel is used only for loading uCode */
2024         if (inta & CSR_INT_BIT_FH_TX) {
2025                 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2026                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2027                 isr_stats->tx++;
2028                 handled |= CSR_INT_BIT_FH_TX;
2029                 /* Wake up uCode load routine, now that load is complete */
2030                 trans_pcie->ucode_write_complete = true;
2031                 wake_up(&trans_pcie->ucode_write_waitq);
2032         }
2033
2034         if (inta & ~handled) {
2035                 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2036                 isr_stats->unhandled++;
2037         }
2038
2039         if (inta & ~(trans_pcie->inta_mask)) {
2040                 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2041                          inta & ~trans_pcie->inta_mask);
2042         }
2043
2044         if (!polling) {
2045                 spin_lock_bh(&trans_pcie->irq_lock);
2046                 /* only Re-enable all interrupt if disabled by irq */
2047                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
2048                         _iwl_enable_interrupts(trans);
2049                 /* we are loading the firmware, enable FH_TX interrupt only */
2050                 else if (handled & CSR_INT_BIT_FH_TX)
2051                         iwl_enable_fw_load_int(trans);
2052                 /* Re-enable RF_KILL if it occurred */
2053                 else if (handled & CSR_INT_BIT_RF_KILL)
2054                         iwl_enable_rfkill_int(trans);
2055                 /* Re-enable the ALIVE / Rx interrupt if it occurred */
2056                 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2057                         iwl_enable_fw_load_int_ctx_info(trans);
2058                 spin_unlock_bh(&trans_pcie->irq_lock);
2059         }
2060
2061 out:
2062         lock_map_release(&trans->sync_cmd_lockdep_map);
2063         return IRQ_HANDLED;
2064 }
2065
2066 /******************************************************************************
2067  *
2068  * ICT functions
2069  *
2070  ******************************************************************************/
2071
2072 /* Free dram table */
2073 void iwl_pcie_free_ict(struct iwl_trans *trans)
2074 {
2075         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2076
2077         if (trans_pcie->ict_tbl) {
2078                 dma_free_coherent(trans->dev, ICT_SIZE,
2079                                   trans_pcie->ict_tbl,
2080                                   trans_pcie->ict_tbl_dma);
2081                 trans_pcie->ict_tbl = NULL;
2082                 trans_pcie->ict_tbl_dma = 0;
2083         }
2084 }
2085
2086 /*
2087  * allocate dram shared table, it is an aligned memory
2088  * block of ICT_SIZE.
2089  * also reset all data related to ICT table interrupt.
2090  */
2091 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2092 {
2093         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2094
2095         trans_pcie->ict_tbl =
2096                 dma_alloc_coherent(trans->dev, ICT_SIZE,
2097                                    &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2098         if (!trans_pcie->ict_tbl)
2099                 return -ENOMEM;
2100
2101         /* just an API sanity check ... it is guaranteed to be aligned */
2102         if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2103                 iwl_pcie_free_ict(trans);
2104                 return -EINVAL;
2105         }
2106
2107         return 0;
2108 }
2109
2110 /* Device is going up inform it about using ICT interrupt table,
2111  * also we need to tell the driver to start using ICT interrupt.
2112  */
2113 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2114 {
2115         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2116         u32 val;
2117
2118         if (!trans_pcie->ict_tbl)
2119                 return;
2120
2121         spin_lock_bh(&trans_pcie->irq_lock);
2122         _iwl_disable_interrupts(trans);
2123
2124         memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2125
2126         val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2127
2128         val |= CSR_DRAM_INT_TBL_ENABLE |
2129                CSR_DRAM_INIT_TBL_WRAP_CHECK |
2130                CSR_DRAM_INIT_TBL_WRITE_POINTER;
2131
2132         IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2133
2134         iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2135         trans_pcie->use_ict = true;
2136         trans_pcie->ict_index = 0;
2137         iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2138         _iwl_enable_interrupts(trans);
2139         spin_unlock_bh(&trans_pcie->irq_lock);
2140 }
2141
2142 /* Device is going down disable ict interrupt usage */
2143 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2144 {
2145         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2146
2147         spin_lock_bh(&trans_pcie->irq_lock);
2148         trans_pcie->use_ict = false;
2149         spin_unlock_bh(&trans_pcie->irq_lock);
2150 }
2151
2152 irqreturn_t iwl_pcie_isr(int irq, void *data)
2153 {
2154         struct iwl_trans *trans = data;
2155
2156         if (!trans)
2157                 return IRQ_NONE;
2158
2159         /* Disable (but don't clear!) interrupts here to avoid
2160          * back-to-back ISRs and sporadic interrupts from our NIC.
2161          * If we have something to service, the tasklet will re-enable ints.
2162          * If we *don't* have something, we'll re-enable before leaving here.
2163          */
2164         iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2165
2166         return IRQ_WAKE_THREAD;
2167 }
2168
2169 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2170 {
2171         return IRQ_WAKE_THREAD;
2172 }
2173
2174 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2175 {
2176         struct msix_entry *entry = dev_id;
2177         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2178         struct iwl_trans *trans = trans_pcie->trans;
2179         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2180         u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
2181         u32 inta_fh, inta_hw;
2182         bool polling = false;
2183
2184         if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
2185                 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
2186
2187         if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
2188                 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
2189
2190         lock_map_acquire(&trans->sync_cmd_lockdep_map);
2191
2192         spin_lock_bh(&trans_pcie->irq_lock);
2193         inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2194         inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2195         /*
2196          * Clear causes registers to avoid being handling the same cause.
2197          */
2198         iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
2199         iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2200         spin_unlock_bh(&trans_pcie->irq_lock);
2201
2202         trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2203
2204         if (unlikely(!(inta_fh | inta_hw))) {
2205                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2206                 lock_map_release(&trans->sync_cmd_lockdep_map);
2207                 return IRQ_NONE;
2208         }
2209
2210         if (iwl_have_debug_level(IWL_DL_ISR)) {
2211                 IWL_DEBUG_ISR(trans,
2212                               "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2213                               entry->entry, inta_fh, trans_pcie->fh_mask,
2214                               iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2215                 if (inta_fh & ~trans_pcie->fh_mask)
2216                         IWL_DEBUG_ISR(trans,
2217                                       "We got a masked interrupt (0x%08x)\n",
2218                                       inta_fh & ~trans_pcie->fh_mask);
2219         }
2220
2221         inta_fh &= trans_pcie->fh_mask;
2222
2223         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2224             inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2225                 local_bh_disable();
2226                 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2227                         polling = true;
2228                         __napi_schedule(&trans_pcie->rxq[0].napi);
2229                 }
2230                 local_bh_enable();
2231         }
2232
2233         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2234             inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2235                 local_bh_disable();
2236                 if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
2237                         polling = true;
2238                         __napi_schedule(&trans_pcie->rxq[1].napi);
2239                 }
2240                 local_bh_enable();
2241         }
2242
2243         /* This "Tx" DMA channel is used only for loading uCode */
2244         if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2245                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2246                 isr_stats->tx++;
2247                 /*
2248                  * Wake up uCode load routine,
2249                  * now that load is complete
2250                  */
2251                 trans_pcie->ucode_write_complete = true;
2252                 wake_up(&trans_pcie->ucode_write_waitq);
2253         }
2254
2255         /* Error detected by uCode */
2256         if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2257             (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
2258                 IWL_ERR(trans,
2259                         "Microcode SW error detected. Restarting 0x%X.\n",
2260                         inta_fh);
2261                 isr_stats->sw++;
2262                 iwl_pcie_irq_handle_error(trans);
2263         }
2264
2265         /* After checking FH register check HW register */
2266         if (iwl_have_debug_level(IWL_DL_ISR)) {
2267                 IWL_DEBUG_ISR(trans,
2268                               "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2269                               entry->entry, inta_hw, trans_pcie->hw_mask,
2270                               iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2271                 if (inta_hw & ~trans_pcie->hw_mask)
2272                         IWL_DEBUG_ISR(trans,
2273                                       "We got a masked interrupt 0x%08x\n",
2274                                       inta_hw & ~trans_pcie->hw_mask);
2275         }
2276
2277         inta_hw &= trans_pcie->hw_mask;
2278
2279         /* Alive notification via Rx interrupt will do the real work */
2280         if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2281                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2282                 isr_stats->alive++;
2283                 if (trans->trans_cfg->gen2) {
2284                         /* We can restock, since firmware configured the RFH */
2285                         iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2286                 }
2287         }
2288
2289         if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2290                 u32 sleep_notif =
2291                         le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2292                 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2293                     sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2294                         IWL_DEBUG_ISR(trans,
2295                                       "Sx interrupt: sleep notification = 0x%x\n",
2296                                       sleep_notif);
2297                         trans_pcie->sx_complete = true;
2298                         wake_up(&trans_pcie->sx_waitq);
2299                 } else {
2300                         /* uCode wakes up after power-down sleep */
2301                         IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2302                         iwl_pcie_rxq_check_wrptr(trans);
2303                         iwl_pcie_txq_check_wrptrs(trans);
2304
2305                         isr_stats->wakeup++;
2306                 }
2307         }
2308
2309         /* Chip got too hot and stopped itself */
2310         if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2311                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2312                 isr_stats->ctkill++;
2313         }
2314
2315         /* HW RF KILL switch toggled */
2316         if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2317                 iwl_pcie_handle_rfkill_irq(trans);
2318
2319         if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2320                 IWL_ERR(trans,
2321                         "Hardware error detected. Restarting.\n");
2322
2323                 isr_stats->hw++;
2324                 trans->dbg.hw_error = true;
2325                 iwl_pcie_irq_handle_error(trans);
2326         }
2327
2328         if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
2329                 IWL_DEBUG_ISR(trans, "Reset flow completed\n");
2330                 trans_pcie->fw_reset_done = true;
2331                 wake_up(&trans_pcie->fw_reset_waitq);
2332         }
2333
2334         if (!polling)
2335                 iwl_pcie_clear_irq(trans, entry->entry);
2336
2337         lock_map_release(&trans->sync_cmd_lockdep_map);
2338
2339         return IRQ_HANDLED;
2340 }
This page took 0.181407 seconds and 4 git commands to generate.