]> Git Repo - linux.git/blob - drivers/mtd/nand/raw/fsmc_nand.c
Merge tag 'trace-v5.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux.git] / drivers / mtd / nand / raw / fsmc_nand.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ST Microelectronics
4  * Flexible Static Memory Controller (FSMC)
5  * Driver for NAND portions
6  *
7  * Copyright © 2010 ST Microelectronics
8  * Vipin Kumar <[email protected]>
9  * Ashish Priyadarshi
10  *
11  * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
12  *  Copyright © 2007 STMicroelectronics Pvt. Ltd.
13  *  Copyright © 2009 Alessandro Rubini
14  */
15
16 #include <linux/clk.h>
17 #include <linux/completion.h>
18 #include <linux/dmaengine.h>
19 #include <linux/dma-direction.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/err.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/resource.h>
25 #include <linux/sched.h>
26 #include <linux/types.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/rawnand.h>
29 #include <linux/platform_device.h>
30 #include <linux/of.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/io.h>
33 #include <linux/slab.h>
34 #include <linux/amba/bus.h>
35 #include <mtd/mtd-abi.h>
36
37 /* fsmc controller registers for NOR flash */
38 #define CTRL                    0x0
39         /* ctrl register definitions */
40         #define BANK_ENABLE             BIT(0)
41         #define MUXED                   BIT(1)
42         #define NOR_DEV                 (2 << 2)
43         #define WIDTH_16                BIT(4)
44         #define RSTPWRDWN               BIT(6)
45         #define WPROT                   BIT(7)
46         #define WRT_ENABLE              BIT(12)
47         #define WAIT_ENB                BIT(13)
48
49 #define CTRL_TIM                0x4
50         /* ctrl_tim register definitions */
51
52 #define FSMC_NOR_BANK_SZ        0x8
53 #define FSMC_NOR_REG_SIZE       0x40
54
55 #define FSMC_NOR_REG(base, bank, reg)   ((base) +                       \
56                                          (FSMC_NOR_BANK_SZ * (bank)) +  \
57                                          (reg))
58
59 /* fsmc controller registers for NAND flash */
60 #define FSMC_PC                 0x00
61         /* pc register definitions */
62         #define FSMC_RESET              BIT(0)
63         #define FSMC_WAITON             BIT(1)
64         #define FSMC_ENABLE             BIT(2)
65         #define FSMC_DEVTYPE_NAND       BIT(3)
66         #define FSMC_DEVWID_16          BIT(4)
67         #define FSMC_ECCEN              BIT(6)
68         #define FSMC_ECCPLEN_256        BIT(7)
69         #define FSMC_TCLR_SHIFT         (9)
70         #define FSMC_TCLR_MASK          (0xF)
71         #define FSMC_TAR_SHIFT          (13)
72         #define FSMC_TAR_MASK           (0xF)
73 #define STS                     0x04
74         /* sts register definitions */
75         #define FSMC_CODE_RDY           BIT(15)
76 #define COMM                    0x08
77         /* comm register definitions */
78         #define FSMC_TSET_SHIFT         0
79         #define FSMC_TSET_MASK          0xFF
80         #define FSMC_TWAIT_SHIFT        8
81         #define FSMC_TWAIT_MASK         0xFF
82         #define FSMC_THOLD_SHIFT        16
83         #define FSMC_THOLD_MASK         0xFF
84         #define FSMC_THIZ_SHIFT         24
85         #define FSMC_THIZ_MASK          0xFF
86 #define ATTRIB                  0x0C
87 #define IOATA                   0x10
88 #define ECC1                    0x14
89 #define ECC2                    0x18
90 #define ECC3                    0x1C
91 #define FSMC_NAND_BANK_SZ       0x20
92
93 #define FSMC_BUSY_WAIT_TIMEOUT  (1 * HZ)
94
95 struct fsmc_nand_timings {
96         u8 tclr;
97         u8 tar;
98         u8 thiz;
99         u8 thold;
100         u8 twait;
101         u8 tset;
102 };
103
104 enum access_mode {
105         USE_DMA_ACCESS = 1,
106         USE_WORD_ACCESS,
107 };
108
109 /**
110  * struct fsmc_nand_data - structure for FSMC NAND device state
111  *
112  * @base:               Inherit from the nand_controller struct
113  * @pid:                Part ID on the AMBA PrimeCell format
114  * @nand:               Chip related info for a NAND flash.
115  *
116  * @bank:               Bank number for probed device.
117  * @dev:                Parent device
118  * @mode:               Access mode
119  * @clk:                Clock structure for FSMC.
120  *
121  * @read_dma_chan:      DMA channel for read access
122  * @write_dma_chan:     DMA channel for write access to NAND
123  * @dma_access_complete: Completion structure
124  *
125  * @dev_timings:        NAND timings
126  *
127  * @data_pa:            NAND Physical port for Data.
128  * @data_va:            NAND port for Data.
129  * @cmd_va:             NAND port for Command.
130  * @addr_va:            NAND port for Address.
131  * @regs_va:            Registers base address for a given bank.
132  */
133 struct fsmc_nand_data {
134         struct nand_controller  base;
135         u32                     pid;
136         struct nand_chip        nand;
137
138         unsigned int            bank;
139         struct device           *dev;
140         enum access_mode        mode;
141         struct clk              *clk;
142
143         /* DMA related objects */
144         struct dma_chan         *read_dma_chan;
145         struct dma_chan         *write_dma_chan;
146         struct completion       dma_access_complete;
147
148         struct fsmc_nand_timings *dev_timings;
149
150         dma_addr_t              data_pa;
151         void __iomem            *data_va;
152         void __iomem            *cmd_va;
153         void __iomem            *addr_va;
154         void __iomem            *regs_va;
155 };
156
157 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
158                                    struct mtd_oob_region *oobregion)
159 {
160         struct nand_chip *chip = mtd_to_nand(mtd);
161
162         if (section >= chip->ecc.steps)
163                 return -ERANGE;
164
165         oobregion->offset = (section * 16) + 2;
166         oobregion->length = 3;
167
168         return 0;
169 }
170
171 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
172                                     struct mtd_oob_region *oobregion)
173 {
174         struct nand_chip *chip = mtd_to_nand(mtd);
175
176         if (section >= chip->ecc.steps)
177                 return -ERANGE;
178
179         oobregion->offset = (section * 16) + 8;
180
181         if (section < chip->ecc.steps - 1)
182                 oobregion->length = 8;
183         else
184                 oobregion->length = mtd->oobsize - oobregion->offset;
185
186         return 0;
187 }
188
189 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
190         .ecc = fsmc_ecc1_ooblayout_ecc,
191         .free = fsmc_ecc1_ooblayout_free,
192 };
193
194 /*
195  * ECC placement definitions in oobfree type format.
196  * There are 13 bytes of ecc for every 512 byte block and it has to be read
197  * consecutively and immediately after the 512 byte data block for hardware to
198  * generate the error bit offsets in 512 byte data.
199  */
200 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
201                                    struct mtd_oob_region *oobregion)
202 {
203         struct nand_chip *chip = mtd_to_nand(mtd);
204
205         if (section >= chip->ecc.steps)
206                 return -ERANGE;
207
208         oobregion->length = chip->ecc.bytes;
209
210         if (!section && mtd->writesize <= 512)
211                 oobregion->offset = 0;
212         else
213                 oobregion->offset = (section * 16) + 2;
214
215         return 0;
216 }
217
218 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
219                                     struct mtd_oob_region *oobregion)
220 {
221         struct nand_chip *chip = mtd_to_nand(mtd);
222
223         if (section >= chip->ecc.steps)
224                 return -ERANGE;
225
226         oobregion->offset = (section * 16) + 15;
227
228         if (section < chip->ecc.steps - 1)
229                 oobregion->length = 3;
230         else
231                 oobregion->length = mtd->oobsize - oobregion->offset;
232
233         return 0;
234 }
235
236 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
237         .ecc = fsmc_ecc4_ooblayout_ecc,
238         .free = fsmc_ecc4_ooblayout_free,
239 };
240
241 static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
242 {
243         return container_of(chip, struct fsmc_nand_data, nand);
244 }
245
246 /*
247  * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
248  *
249  * This routine initializes timing parameters related to NAND memory access in
250  * FSMC registers
251  */
252 static void fsmc_nand_setup(struct fsmc_nand_data *host,
253                             struct fsmc_nand_timings *tims)
254 {
255         u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
256         u32 tclr, tar, thiz, thold, twait, tset;
257
258         tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
259         tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
260         thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
261         thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
262         twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
263         tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
264
265         if (host->nand.options & NAND_BUSWIDTH_16)
266                 value |= FSMC_DEVWID_16;
267
268         writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
269         writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
270         writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
271 }
272
273 static int fsmc_calc_timings(struct fsmc_nand_data *host,
274                              const struct nand_sdr_timings *sdrt,
275                              struct fsmc_nand_timings *tims)
276 {
277         unsigned long hclk = clk_get_rate(host->clk);
278         unsigned long hclkn = NSEC_PER_SEC / hclk;
279         u32 thiz, thold, twait, tset;
280
281         if (sdrt->tRC_min < 30000)
282                 return -EOPNOTSUPP;
283
284         tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
285         if (tims->tar > FSMC_TAR_MASK)
286                 tims->tar = FSMC_TAR_MASK;
287         tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
288         if (tims->tclr > FSMC_TCLR_MASK)
289                 tims->tclr = FSMC_TCLR_MASK;
290
291         thiz = sdrt->tCS_min - sdrt->tWP_min;
292         tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
293
294         thold = sdrt->tDH_min;
295         if (thold < sdrt->tCH_min)
296                 thold = sdrt->tCH_min;
297         if (thold < sdrt->tCLH_min)
298                 thold = sdrt->tCLH_min;
299         if (thold < sdrt->tWH_min)
300                 thold = sdrt->tWH_min;
301         if (thold < sdrt->tALH_min)
302                 thold = sdrt->tALH_min;
303         if (thold < sdrt->tREH_min)
304                 thold = sdrt->tREH_min;
305         tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
306         if (tims->thold == 0)
307                 tims->thold = 1;
308         else if (tims->thold > FSMC_THOLD_MASK)
309                 tims->thold = FSMC_THOLD_MASK;
310
311         twait = max(sdrt->tRP_min, sdrt->tWP_min);
312         tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
313         if (tims->twait == 0)
314                 tims->twait = 1;
315         else if (tims->twait > FSMC_TWAIT_MASK)
316                 tims->twait = FSMC_TWAIT_MASK;
317
318         tset = max(sdrt->tCS_min - sdrt->tWP_min,
319                    sdrt->tCEA_max - sdrt->tREA_max);
320         tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
321         if (tims->tset == 0)
322                 tims->tset = 1;
323         else if (tims->tset > FSMC_TSET_MASK)
324                 tims->tset = FSMC_TSET_MASK;
325
326         return 0;
327 }
328
329 static int fsmc_setup_interface(struct nand_chip *nand, int csline,
330                                 const struct nand_interface_config *conf)
331 {
332         struct fsmc_nand_data *host = nand_to_fsmc(nand);
333         struct fsmc_nand_timings tims;
334         const struct nand_sdr_timings *sdrt;
335         int ret;
336
337         sdrt = nand_get_sdr_timings(conf);
338         if (IS_ERR(sdrt))
339                 return PTR_ERR(sdrt);
340
341         ret = fsmc_calc_timings(host, sdrt, &tims);
342         if (ret)
343                 return ret;
344
345         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
346                 return 0;
347
348         fsmc_nand_setup(host, &tims);
349
350         return 0;
351 }
352
353 /*
354  * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
355  */
356 static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
357 {
358         struct fsmc_nand_data *host = nand_to_fsmc(chip);
359
360         writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
361                        host->regs_va + FSMC_PC);
362         writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
363                        host->regs_va + FSMC_PC);
364         writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
365                        host->regs_va + FSMC_PC);
366 }
367
368 /*
369  * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
370  * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
371  * max of 8-bits)
372  */
373 static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
374                                 u8 *ecc)
375 {
376         struct fsmc_nand_data *host = nand_to_fsmc(chip);
377         u32 ecc_tmp;
378         unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
379
380         do {
381                 if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
382                         break;
383
384                 cond_resched();
385         } while (!time_after_eq(jiffies, deadline));
386
387         if (time_after_eq(jiffies, deadline)) {
388                 dev_err(host->dev, "calculate ecc timed out\n");
389                 return -ETIMEDOUT;
390         }
391
392         ecc_tmp = readl_relaxed(host->regs_va + ECC1);
393         ecc[0] = ecc_tmp;
394         ecc[1] = ecc_tmp >> 8;
395         ecc[2] = ecc_tmp >> 16;
396         ecc[3] = ecc_tmp >> 24;
397
398         ecc_tmp = readl_relaxed(host->regs_va + ECC2);
399         ecc[4] = ecc_tmp;
400         ecc[5] = ecc_tmp >> 8;
401         ecc[6] = ecc_tmp >> 16;
402         ecc[7] = ecc_tmp >> 24;
403
404         ecc_tmp = readl_relaxed(host->regs_va + ECC3);
405         ecc[8] = ecc_tmp;
406         ecc[9] = ecc_tmp >> 8;
407         ecc[10] = ecc_tmp >> 16;
408         ecc[11] = ecc_tmp >> 24;
409
410         ecc_tmp = readl_relaxed(host->regs_va + STS);
411         ecc[12] = ecc_tmp >> 16;
412
413         return 0;
414 }
415
416 /*
417  * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
418  * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
419  * max of 1-bit)
420  */
421 static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
422                                 u8 *ecc)
423 {
424         struct fsmc_nand_data *host = nand_to_fsmc(chip);
425         u32 ecc_tmp;
426
427         ecc_tmp = readl_relaxed(host->regs_va + ECC1);
428         ecc[0] = ecc_tmp;
429         ecc[1] = ecc_tmp >> 8;
430         ecc[2] = ecc_tmp >> 16;
431
432         return 0;
433 }
434
435 /* Count the number of 0's in buff upto a max of max_bits */
436 static int count_written_bits(u8 *buff, int size, int max_bits)
437 {
438         int k, written_bits = 0;
439
440         for (k = 0; k < size; k++) {
441                 written_bits += hweight8(~buff[k]);
442                 if (written_bits > max_bits)
443                         break;
444         }
445
446         return written_bits;
447 }
448
449 static void dma_complete(void *param)
450 {
451         struct fsmc_nand_data *host = param;
452
453         complete(&host->dma_access_complete);
454 }
455
456 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
457                     enum dma_data_direction direction)
458 {
459         struct dma_chan *chan;
460         struct dma_device *dma_dev;
461         struct dma_async_tx_descriptor *tx;
462         dma_addr_t dma_dst, dma_src, dma_addr;
463         dma_cookie_t cookie;
464         unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
465         int ret;
466         unsigned long time_left;
467
468         if (direction == DMA_TO_DEVICE)
469                 chan = host->write_dma_chan;
470         else if (direction == DMA_FROM_DEVICE)
471                 chan = host->read_dma_chan;
472         else
473                 return -EINVAL;
474
475         dma_dev = chan->device;
476         dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
477
478         if (direction == DMA_TO_DEVICE) {
479                 dma_src = dma_addr;
480                 dma_dst = host->data_pa;
481         } else {
482                 dma_src = host->data_pa;
483                 dma_dst = dma_addr;
484         }
485
486         tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
487                         len, flags);
488         if (!tx) {
489                 dev_err(host->dev, "device_prep_dma_memcpy error\n");
490                 ret = -EIO;
491                 goto unmap_dma;
492         }
493
494         tx->callback = dma_complete;
495         tx->callback_param = host;
496         cookie = tx->tx_submit(tx);
497
498         ret = dma_submit_error(cookie);
499         if (ret) {
500                 dev_err(host->dev, "dma_submit_error %d\n", cookie);
501                 goto unmap_dma;
502         }
503
504         dma_async_issue_pending(chan);
505
506         time_left =
507         wait_for_completion_timeout(&host->dma_access_complete,
508                                     msecs_to_jiffies(3000));
509         if (time_left == 0) {
510                 dmaengine_terminate_all(chan);
511                 dev_err(host->dev, "wait_for_completion_timeout\n");
512                 ret = -ETIMEDOUT;
513                 goto unmap_dma;
514         }
515
516         ret = 0;
517
518 unmap_dma:
519         dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
520
521         return ret;
522 }
523
524 /*
525  * fsmc_write_buf - write buffer to chip
526  * @host:       FSMC NAND controller
527  * @buf:        data buffer
528  * @len:        number of bytes to write
529  */
530 static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
531                            int len)
532 {
533         int i;
534
535         if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
536             IS_ALIGNED(len, sizeof(u32))) {
537                 u32 *p = (u32 *)buf;
538
539                 len = len >> 2;
540                 for (i = 0; i < len; i++)
541                         writel_relaxed(p[i], host->data_va);
542         } else {
543                 for (i = 0; i < len; i++)
544                         writeb_relaxed(buf[i], host->data_va);
545         }
546 }
547
548 /*
549  * fsmc_read_buf - read chip data into buffer
550  * @host:       FSMC NAND controller
551  * @buf:        buffer to store date
552  * @len:        number of bytes to read
553  */
554 static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
555 {
556         int i;
557
558         if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
559             IS_ALIGNED(len, sizeof(u32))) {
560                 u32 *p = (u32 *)buf;
561
562                 len = len >> 2;
563                 for (i = 0; i < len; i++)
564                         p[i] = readl_relaxed(host->data_va);
565         } else {
566                 for (i = 0; i < len; i++)
567                         buf[i] = readb_relaxed(host->data_va);
568         }
569 }
570
571 /*
572  * fsmc_read_buf_dma - read chip data into buffer
573  * @host:       FSMC NAND controller
574  * @buf:        buffer to store date
575  * @len:        number of bytes to read
576  */
577 static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
578                               int len)
579 {
580         dma_xfer(host, buf, len, DMA_FROM_DEVICE);
581 }
582
583 /*
584  * fsmc_write_buf_dma - write buffer to chip
585  * @host:       FSMC NAND controller
586  * @buf:        data buffer
587  * @len:        number of bytes to write
588  */
589 static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
590                                int len)
591 {
592         dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
593 }
594
595 /*
596  * fsmc_exec_op - hook called by the core to execute NAND operations
597  *
598  * This controller is simple enough and thus does not need to use the parser
599  * provided by the core, instead, handle every situation here.
600  */
601 static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
602                         bool check_only)
603 {
604         struct fsmc_nand_data *host = nand_to_fsmc(chip);
605         const struct nand_op_instr *instr = NULL;
606         int ret = 0;
607         unsigned int op_id;
608         int i;
609
610         if (check_only)
611                 return 0;
612
613         pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
614
615         for (op_id = 0; op_id < op->ninstrs; op_id++) {
616                 instr = &op->instrs[op_id];
617
618                 nand_op_trace("  ", instr);
619
620                 switch (instr->type) {
621                 case NAND_OP_CMD_INSTR:
622                         writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
623                         break;
624
625                 case NAND_OP_ADDR_INSTR:
626                         for (i = 0; i < instr->ctx.addr.naddrs; i++)
627                                 writeb_relaxed(instr->ctx.addr.addrs[i],
628                                                host->addr_va);
629                         break;
630
631                 case NAND_OP_DATA_IN_INSTR:
632                         if (host->mode == USE_DMA_ACCESS)
633                                 fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
634                                                   instr->ctx.data.len);
635                         else
636                                 fsmc_read_buf(host, instr->ctx.data.buf.in,
637                                               instr->ctx.data.len);
638                         break;
639
640                 case NAND_OP_DATA_OUT_INSTR:
641                         if (host->mode == USE_DMA_ACCESS)
642                                 fsmc_write_buf_dma(host,
643                                                    instr->ctx.data.buf.out,
644                                                    instr->ctx.data.len);
645                         else
646                                 fsmc_write_buf(host, instr->ctx.data.buf.out,
647                                                instr->ctx.data.len);
648                         break;
649
650                 case NAND_OP_WAITRDY_INSTR:
651                         ret = nand_soft_waitrdy(chip,
652                                                 instr->ctx.waitrdy.timeout_ms);
653                         break;
654                 }
655         }
656
657         return ret;
658 }
659
660 /*
661  * fsmc_read_page_hwecc
662  * @chip:       nand chip info structure
663  * @buf:        buffer to store read data
664  * @oob_required:       caller expects OOB data read to chip->oob_poi
665  * @page:       page number to read
666  *
667  * This routine is needed for fsmc version 8 as reading from NAND chip has to be
668  * performed in a strict sequence as follows:
669  * data(512 byte) -> ecc(13 byte)
670  * After this read, fsmc hardware generates and reports error data bits(up to a
671  * max of 8 bits)
672  */
673 static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
674                                 int oob_required, int page)
675 {
676         struct mtd_info *mtd = nand_to_mtd(chip);
677         int i, j, s, stat, eccsize = chip->ecc.size;
678         int eccbytes = chip->ecc.bytes;
679         int eccsteps = chip->ecc.steps;
680         u8 *p = buf;
681         u8 *ecc_calc = chip->ecc.calc_buf;
682         u8 *ecc_code = chip->ecc.code_buf;
683         int off, len, ret, group = 0;
684         /*
685          * ecc_oob is intentionally taken as u16. In 16bit devices, we
686          * end up reading 14 bytes (7 words) from oob. The local array is
687          * to maintain word alignment
688          */
689         u16 ecc_oob[7];
690         u8 *oob = (u8 *)&ecc_oob[0];
691         unsigned int max_bitflips = 0;
692
693         for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
694                 nand_read_page_op(chip, page, s * eccsize, NULL, 0);
695                 chip->ecc.hwctl(chip, NAND_ECC_READ);
696                 ret = nand_read_data_op(chip, p, eccsize, false, false);
697                 if (ret)
698                         return ret;
699
700                 for (j = 0; j < eccbytes;) {
701                         struct mtd_oob_region oobregion;
702
703                         ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
704                         if (ret)
705                                 return ret;
706
707                         off = oobregion.offset;
708                         len = oobregion.length;
709
710                         /*
711                          * length is intentionally kept a higher multiple of 2
712                          * to read at least 13 bytes even in case of 16 bit NAND
713                          * devices
714                          */
715                         if (chip->options & NAND_BUSWIDTH_16)
716                                 len = roundup(len, 2);
717
718                         nand_read_oob_op(chip, page, off, oob + j, len);
719                         j += len;
720                 }
721
722                 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
723                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
724
725                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
726                 if (stat < 0) {
727                         mtd->ecc_stats.failed++;
728                 } else {
729                         mtd->ecc_stats.corrected += stat;
730                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
731                 }
732         }
733
734         return max_bitflips;
735 }
736
737 /*
738  * fsmc_bch8_correct_data
739  * @mtd:        mtd info structure
740  * @dat:        buffer of read data
741  * @read_ecc:   ecc read from device spare area
742  * @calc_ecc:   ecc calculated from read data
743  *
744  * calc_ecc is a 104 bit information containing maximum of 8 error
745  * offset information of 13 bits each in 512 bytes of read data.
746  */
747 static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
748                                   u8 *read_ecc, u8 *calc_ecc)
749 {
750         struct fsmc_nand_data *host = nand_to_fsmc(chip);
751         u32 err_idx[8];
752         u32 num_err, i;
753         u32 ecc1, ecc2, ecc3, ecc4;
754
755         num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
756
757         /* no bit flipping */
758         if (likely(num_err == 0))
759                 return 0;
760
761         /* too many errors */
762         if (unlikely(num_err > 8)) {
763                 /*
764                  * This is a temporary erase check. A newly erased page read
765                  * would result in an ecc error because the oob data is also
766                  * erased to FF and the calculated ecc for an FF data is not
767                  * FF..FF.
768                  * This is a workaround to skip performing correction in case
769                  * data is FF..FF
770                  *
771                  * Logic:
772                  * For every page, each bit written as 0 is counted until these
773                  * number of bits are greater than 8 (the maximum correction
774                  * capability of FSMC for each 512 + 13 bytes)
775                  */
776
777                 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
778                 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
779
780                 if ((bits_ecc + bits_data) <= 8) {
781                         if (bits_data)
782                                 memset(dat, 0xff, chip->ecc.size);
783                         return bits_data;
784                 }
785
786                 return -EBADMSG;
787         }
788
789         /*
790          * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
791          * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
792          *
793          * calc_ecc is a 104 bit information containing maximum of 8 error
794          * offset information of 13 bits each. calc_ecc is copied into a
795          * u64 array and error offset indexes are populated in err_idx
796          * array
797          */
798         ecc1 = readl_relaxed(host->regs_va + ECC1);
799         ecc2 = readl_relaxed(host->regs_va + ECC2);
800         ecc3 = readl_relaxed(host->regs_va + ECC3);
801         ecc4 = readl_relaxed(host->regs_va + STS);
802
803         err_idx[0] = (ecc1 >> 0) & 0x1FFF;
804         err_idx[1] = (ecc1 >> 13) & 0x1FFF;
805         err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
806         err_idx[3] = (ecc2 >> 7) & 0x1FFF;
807         err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
808         err_idx[5] = (ecc3 >> 1) & 0x1FFF;
809         err_idx[6] = (ecc3 >> 14) & 0x1FFF;
810         err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
811
812         i = 0;
813         while (num_err--) {
814                 err_idx[i] ^= 3;
815
816                 if (err_idx[i] < chip->ecc.size * 8) {
817                         int err = err_idx[i];
818
819                         dat[err >> 3] ^= BIT(err & 7);
820                         i++;
821                 }
822         }
823         return i;
824 }
825
826 static bool filter(struct dma_chan *chan, void *slave)
827 {
828         chan->private = slave;
829         return true;
830 }
831
832 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
833                                      struct fsmc_nand_data *host,
834                                      struct nand_chip *nand)
835 {
836         struct device_node *np = pdev->dev.of_node;
837         u32 val;
838         int ret;
839
840         nand->options = 0;
841
842         if (!of_property_read_u32(np, "bank-width", &val)) {
843                 if (val == 2) {
844                         nand->options |= NAND_BUSWIDTH_16;
845                 } else if (val != 1) {
846                         dev_err(&pdev->dev, "invalid bank-width %u\n", val);
847                         return -EINVAL;
848                 }
849         }
850
851         if (of_get_property(np, "nand-skip-bbtscan", NULL))
852                 nand->options |= NAND_SKIP_BBTSCAN;
853
854         host->dev_timings = devm_kzalloc(&pdev->dev,
855                                          sizeof(*host->dev_timings),
856                                          GFP_KERNEL);
857         if (!host->dev_timings)
858                 return -ENOMEM;
859
860         ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
861                                         sizeof(*host->dev_timings));
862         if (ret)
863                 host->dev_timings = NULL;
864
865         /* Set default NAND bank to 0 */
866         host->bank = 0;
867         if (!of_property_read_u32(np, "bank", &val)) {
868                 if (val > 3) {
869                         dev_err(&pdev->dev, "invalid bank %u\n", val);
870                         return -EINVAL;
871                 }
872                 host->bank = val;
873         }
874         return 0;
875 }
876
877 static int fsmc_nand_attach_chip(struct nand_chip *nand)
878 {
879         struct mtd_info *mtd = nand_to_mtd(nand);
880         struct fsmc_nand_data *host = nand_to_fsmc(nand);
881
882         if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
883                 nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
884
885         if (!nand->ecc.size)
886                 nand->ecc.size = 512;
887
888         if (AMBA_REV_BITS(host->pid) >= 8) {
889                 nand->ecc.read_page = fsmc_read_page_hwecc;
890                 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
891                 nand->ecc.correct = fsmc_bch8_correct_data;
892                 nand->ecc.bytes = 13;
893                 nand->ecc.strength = 8;
894         }
895
896         if (AMBA_REV_BITS(host->pid) >= 8) {
897                 switch (mtd->oobsize) {
898                 case 16:
899                 case 64:
900                 case 128:
901                 case 224:
902                 case 256:
903                         break;
904                 default:
905                         dev_warn(host->dev,
906                                  "No oob scheme defined for oobsize %d\n",
907                                  mtd->oobsize);
908                         return -EINVAL;
909                 }
910
911                 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
912
913                 return 0;
914         }
915
916         switch (nand->ecc.engine_type) {
917         case NAND_ECC_ENGINE_TYPE_ON_HOST:
918                 dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
919                 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
920                 nand->ecc.correct = rawnand_sw_hamming_correct;
921                 nand->ecc.hwctl = fsmc_enable_hwecc;
922                 nand->ecc.bytes = 3;
923                 nand->ecc.strength = 1;
924                 nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
925                 break;
926
927         case NAND_ECC_ENGINE_TYPE_SOFT:
928                 if (nand->ecc.algo == NAND_ECC_ALGO_BCH) {
929                         dev_info(host->dev,
930                                  "Using 4-bit SW BCH ECC scheme\n");
931                         break;
932                 }
933                 break;
934
935         case NAND_ECC_ENGINE_TYPE_ON_DIE:
936                 break;
937
938         default:
939                 dev_err(host->dev, "Unsupported ECC mode!\n");
940                 return -ENOTSUPP;
941         }
942
943         /*
944          * Don't set layout for BCH4 SW ECC. This will be
945          * generated later during BCH initialization.
946          */
947         if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
948                 switch (mtd->oobsize) {
949                 case 16:
950                 case 64:
951                 case 128:
952                         mtd_set_ooblayout(mtd,
953                                           &fsmc_ecc1_ooblayout_ops);
954                         break;
955                 default:
956                         dev_warn(host->dev,
957                                  "No oob scheme defined for oobsize %d\n",
958                                  mtd->oobsize);
959                         return -EINVAL;
960                 }
961         }
962
963         return 0;
964 }
965
966 static const struct nand_controller_ops fsmc_nand_controller_ops = {
967         .attach_chip = fsmc_nand_attach_chip,
968         .exec_op = fsmc_exec_op,
969         .setup_interface = fsmc_setup_interface,
970 };
971
972 /**
973  * fsmc_nand_disable() - Disables the NAND bank
974  * @host: The instance to disable
975  */
976 static void fsmc_nand_disable(struct fsmc_nand_data *host)
977 {
978         u32 val;
979
980         val = readl(host->regs_va + FSMC_PC);
981         val &= ~FSMC_ENABLE;
982         writel(val, host->regs_va + FSMC_PC);
983 }
984
985 /*
986  * fsmc_nand_probe - Probe function
987  * @pdev:       platform device structure
988  */
989 static int __init fsmc_nand_probe(struct platform_device *pdev)
990 {
991         struct fsmc_nand_data *host;
992         struct mtd_info *mtd;
993         struct nand_chip *nand;
994         struct resource *res;
995         void __iomem *base;
996         dma_cap_mask_t mask;
997         int ret = 0;
998         u32 pid;
999         int i;
1000
1001         /* Allocate memory for the device structure (and zero it) */
1002         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
1003         if (!host)
1004                 return -ENOMEM;
1005
1006         nand = &host->nand;
1007
1008         ret = fsmc_nand_probe_config_dt(pdev, host, nand);
1009         if (ret)
1010                 return ret;
1011
1012         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
1013         host->data_va = devm_ioremap_resource(&pdev->dev, res);
1014         if (IS_ERR(host->data_va))
1015                 return PTR_ERR(host->data_va);
1016
1017         host->data_pa = (dma_addr_t)res->start;
1018
1019         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
1020         host->addr_va = devm_ioremap_resource(&pdev->dev, res);
1021         if (IS_ERR(host->addr_va))
1022                 return PTR_ERR(host->addr_va);
1023
1024         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
1025         host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
1026         if (IS_ERR(host->cmd_va))
1027                 return PTR_ERR(host->cmd_va);
1028
1029         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
1030         base = devm_ioremap_resource(&pdev->dev, res);
1031         if (IS_ERR(base))
1032                 return PTR_ERR(base);
1033
1034         host->regs_va = base + FSMC_NOR_REG_SIZE +
1035                 (host->bank * FSMC_NAND_BANK_SZ);
1036
1037         host->clk = devm_clk_get(&pdev->dev, NULL);
1038         if (IS_ERR(host->clk)) {
1039                 dev_err(&pdev->dev, "failed to fetch block clock\n");
1040                 return PTR_ERR(host->clk);
1041         }
1042
1043         ret = clk_prepare_enable(host->clk);
1044         if (ret)
1045                 return ret;
1046
1047         /*
1048          * This device ID is actually a common AMBA ID as used on the
1049          * AMBA PrimeCell bus. However it is not a PrimeCell.
1050          */
1051         for (pid = 0, i = 0; i < 4; i++)
1052                 pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
1053                         255) << (i * 8);
1054
1055         host->pid = pid;
1056
1057         dev_info(&pdev->dev,
1058                  "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
1059                  AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1060                  AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1061
1062         host->dev = &pdev->dev;
1063
1064         if (host->mode == USE_DMA_ACCESS)
1065                 init_completion(&host->dma_access_complete);
1066
1067         /* Link all private pointers */
1068         mtd = nand_to_mtd(&host->nand);
1069         nand_set_flash_node(nand, pdev->dev.of_node);
1070
1071         mtd->dev.parent = &pdev->dev;
1072
1073         nand->badblockbits = 7;
1074
1075         if (host->mode == USE_DMA_ACCESS) {
1076                 dma_cap_zero(mask);
1077                 dma_cap_set(DMA_MEMCPY, mask);
1078                 host->read_dma_chan = dma_request_channel(mask, filter, NULL);
1079                 if (!host->read_dma_chan) {
1080                         dev_err(&pdev->dev, "Unable to get read dma channel\n");
1081                         ret = -ENODEV;
1082                         goto disable_clk;
1083                 }
1084                 host->write_dma_chan = dma_request_channel(mask, filter, NULL);
1085                 if (!host->write_dma_chan) {
1086                         dev_err(&pdev->dev, "Unable to get write dma channel\n");
1087                         ret = -ENODEV;
1088                         goto release_dma_read_chan;
1089                 }
1090         }
1091
1092         if (host->dev_timings) {
1093                 fsmc_nand_setup(host, host->dev_timings);
1094                 nand->options |= NAND_KEEP_TIMINGS;
1095         }
1096
1097         nand_controller_init(&host->base);
1098         host->base.ops = &fsmc_nand_controller_ops;
1099         nand->controller = &host->base;
1100
1101         /*
1102          * Scan to find existence of the device
1103          */
1104         ret = nand_scan(nand, 1);
1105         if (ret)
1106                 goto release_dma_write_chan;
1107
1108         mtd->name = "nand";
1109         ret = mtd_device_register(mtd, NULL, 0);
1110         if (ret)
1111                 goto cleanup_nand;
1112
1113         platform_set_drvdata(pdev, host);
1114         dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1115
1116         return 0;
1117
1118 cleanup_nand:
1119         nand_cleanup(nand);
1120 release_dma_write_chan:
1121         if (host->mode == USE_DMA_ACCESS)
1122                 dma_release_channel(host->write_dma_chan);
1123 release_dma_read_chan:
1124         if (host->mode == USE_DMA_ACCESS)
1125                 dma_release_channel(host->read_dma_chan);
1126 disable_clk:
1127         fsmc_nand_disable(host);
1128         clk_disable_unprepare(host->clk);
1129
1130         return ret;
1131 }
1132
1133 /*
1134  * Clean up routine
1135  */
1136 static int fsmc_nand_remove(struct platform_device *pdev)
1137 {
1138         struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1139
1140         if (host) {
1141                 struct nand_chip *chip = &host->nand;
1142                 int ret;
1143
1144                 ret = mtd_device_unregister(nand_to_mtd(chip));
1145                 WARN_ON(ret);
1146                 nand_cleanup(chip);
1147                 fsmc_nand_disable(host);
1148
1149                 if (host->mode == USE_DMA_ACCESS) {
1150                         dma_release_channel(host->write_dma_chan);
1151                         dma_release_channel(host->read_dma_chan);
1152                 }
1153                 clk_disable_unprepare(host->clk);
1154         }
1155
1156         return 0;
1157 }
1158
1159 #ifdef CONFIG_PM_SLEEP
1160 static int fsmc_nand_suspend(struct device *dev)
1161 {
1162         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1163
1164         if (host)
1165                 clk_disable_unprepare(host->clk);
1166
1167         return 0;
1168 }
1169
1170 static int fsmc_nand_resume(struct device *dev)
1171 {
1172         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1173
1174         if (host) {
1175                 clk_prepare_enable(host->clk);
1176                 if (host->dev_timings)
1177                         fsmc_nand_setup(host, host->dev_timings);
1178                 nand_reset(&host->nand, 0);
1179         }
1180
1181         return 0;
1182 }
1183 #endif
1184
1185 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1186
1187 static const struct of_device_id fsmc_nand_id_table[] = {
1188         { .compatible = "st,spear600-fsmc-nand" },
1189         { .compatible = "stericsson,fsmc-nand" },
1190         {}
1191 };
1192 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1193
1194 static struct platform_driver fsmc_nand_driver = {
1195         .remove = fsmc_nand_remove,
1196         .driver = {
1197                 .name = "fsmc-nand",
1198                 .of_match_table = fsmc_nand_id_table,
1199                 .pm = &fsmc_nand_pm_ops,
1200         },
1201 };
1202
1203 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1204
1205 MODULE_LICENSE("GPL v2");
1206 MODULE_AUTHOR("Vipin Kumar <[email protected]>, Ashish Priyadarshi");
1207 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
This page took 0.104246 seconds and 4 git commands to generate.