1 // SPDX-License-Identifier: GPL-2.0
4 * Flexible Static Memory Controller (FSMC)
5 * Driver for NAND portions
7 * Copyright © 2010 ST Microelectronics
11 * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
12 * Copyright © 2007 STMicroelectronics Pvt. Ltd.
13 * Copyright © 2009 Alessandro Rubini
16 #include <linux/clk.h>
17 #include <linux/completion.h>
18 #include <linux/dmaengine.h>
19 #include <linux/dma-direction.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/err.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/resource.h>
25 #include <linux/sched.h>
26 #include <linux/types.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/rawnand.h>
29 #include <linux/platform_device.h>
31 #include <linux/mtd/partitions.h>
33 #include <linux/slab.h>
34 #include <linux/amba/bus.h>
35 #include <mtd/mtd-abi.h>
37 /* fsmc controller registers for NOR flash */
39 /* ctrl register definitions */
40 #define BANK_ENABLE BIT(0)
42 #define NOR_DEV (2 << 2)
43 #define WIDTH_16 BIT(4)
44 #define RSTPWRDWN BIT(6)
46 #define WRT_ENABLE BIT(12)
47 #define WAIT_ENB BIT(13)
50 /* ctrl_tim register definitions */
52 #define FSMC_NOR_BANK_SZ 0x8
53 #define FSMC_NOR_REG_SIZE 0x40
55 #define FSMC_NOR_REG(base, bank, reg) ((base) + \
56 (FSMC_NOR_BANK_SZ * (bank)) + \
59 /* fsmc controller registers for NAND flash */
61 /* pc register definitions */
62 #define FSMC_RESET BIT(0)
63 #define FSMC_WAITON BIT(1)
64 #define FSMC_ENABLE BIT(2)
65 #define FSMC_DEVTYPE_NAND BIT(3)
66 #define FSMC_DEVWID_16 BIT(4)
67 #define FSMC_ECCEN BIT(6)
68 #define FSMC_ECCPLEN_256 BIT(7)
69 #define FSMC_TCLR_SHIFT (9)
70 #define FSMC_TCLR_MASK (0xF)
71 #define FSMC_TAR_SHIFT (13)
72 #define FSMC_TAR_MASK (0xF)
74 /* sts register definitions */
75 #define FSMC_CODE_RDY BIT(15)
77 /* comm register definitions */
78 #define FSMC_TSET_SHIFT 0
79 #define FSMC_TSET_MASK 0xFF
80 #define FSMC_TWAIT_SHIFT 8
81 #define FSMC_TWAIT_MASK 0xFF
82 #define FSMC_THOLD_SHIFT 16
83 #define FSMC_THOLD_MASK 0xFF
84 #define FSMC_THIZ_SHIFT 24
85 #define FSMC_THIZ_MASK 0xFF
91 #define FSMC_NAND_BANK_SZ 0x20
93 #define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ)
95 struct fsmc_nand_timings {
110 * struct fsmc_nand_data - structure for FSMC NAND device state
112 * @base: Inherit from the nand_controller struct
113 * @pid: Part ID on the AMBA PrimeCell format
114 * @nand: Chip related info for a NAND flash.
116 * @bank: Bank number for probed device.
117 * @dev: Parent device
119 * @clk: Clock structure for FSMC.
121 * @read_dma_chan: DMA channel for read access
122 * @write_dma_chan: DMA channel for write access to NAND
123 * @dma_access_complete: Completion structure
125 * @dev_timings: NAND timings
127 * @data_pa: NAND Physical port for Data.
128 * @data_va: NAND port for Data.
129 * @cmd_va: NAND port for Command.
130 * @addr_va: NAND port for Address.
131 * @regs_va: Registers base address for a given bank.
133 struct fsmc_nand_data {
134 struct nand_controller base;
136 struct nand_chip nand;
140 enum access_mode mode;
143 /* DMA related objects */
144 struct dma_chan *read_dma_chan;
145 struct dma_chan *write_dma_chan;
146 struct completion dma_access_complete;
148 struct fsmc_nand_timings *dev_timings;
151 void __iomem *data_va;
152 void __iomem *cmd_va;
153 void __iomem *addr_va;
154 void __iomem *regs_va;
157 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
158 struct mtd_oob_region *oobregion)
160 struct nand_chip *chip = mtd_to_nand(mtd);
162 if (section >= chip->ecc.steps)
165 oobregion->offset = (section * 16) + 2;
166 oobregion->length = 3;
171 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
172 struct mtd_oob_region *oobregion)
174 struct nand_chip *chip = mtd_to_nand(mtd);
176 if (section >= chip->ecc.steps)
179 oobregion->offset = (section * 16) + 8;
181 if (section < chip->ecc.steps - 1)
182 oobregion->length = 8;
184 oobregion->length = mtd->oobsize - oobregion->offset;
189 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
190 .ecc = fsmc_ecc1_ooblayout_ecc,
191 .free = fsmc_ecc1_ooblayout_free,
195 * ECC placement definitions in oobfree type format.
196 * There are 13 bytes of ecc for every 512 byte block and it has to be read
197 * consecutively and immediately after the 512 byte data block for hardware to
198 * generate the error bit offsets in 512 byte data.
200 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
201 struct mtd_oob_region *oobregion)
203 struct nand_chip *chip = mtd_to_nand(mtd);
205 if (section >= chip->ecc.steps)
208 oobregion->length = chip->ecc.bytes;
210 if (!section && mtd->writesize <= 512)
211 oobregion->offset = 0;
213 oobregion->offset = (section * 16) + 2;
218 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
219 struct mtd_oob_region *oobregion)
221 struct nand_chip *chip = mtd_to_nand(mtd);
223 if (section >= chip->ecc.steps)
226 oobregion->offset = (section * 16) + 15;
228 if (section < chip->ecc.steps - 1)
229 oobregion->length = 3;
231 oobregion->length = mtd->oobsize - oobregion->offset;
236 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
237 .ecc = fsmc_ecc4_ooblayout_ecc,
238 .free = fsmc_ecc4_ooblayout_free,
241 static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
243 return container_of(chip, struct fsmc_nand_data, nand);
247 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
249 * This routine initializes timing parameters related to NAND memory access in
252 static void fsmc_nand_setup(struct fsmc_nand_data *host,
253 struct fsmc_nand_timings *tims)
255 u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
256 u32 tclr, tar, thiz, thold, twait, tset;
258 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
259 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
260 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
261 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
262 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
263 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
265 if (host->nand.options & NAND_BUSWIDTH_16)
266 value |= FSMC_DEVWID_16;
268 writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
269 writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
270 writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
273 static int fsmc_calc_timings(struct fsmc_nand_data *host,
274 const struct nand_sdr_timings *sdrt,
275 struct fsmc_nand_timings *tims)
277 unsigned long hclk = clk_get_rate(host->clk);
278 unsigned long hclkn = NSEC_PER_SEC / hclk;
279 u32 thiz, thold, twait, tset;
281 if (sdrt->tRC_min < 30000)
284 tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
285 if (tims->tar > FSMC_TAR_MASK)
286 tims->tar = FSMC_TAR_MASK;
287 tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
288 if (tims->tclr > FSMC_TCLR_MASK)
289 tims->tclr = FSMC_TCLR_MASK;
291 thiz = sdrt->tCS_min - sdrt->tWP_min;
292 tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
294 thold = sdrt->tDH_min;
295 if (thold < sdrt->tCH_min)
296 thold = sdrt->tCH_min;
297 if (thold < sdrt->tCLH_min)
298 thold = sdrt->tCLH_min;
299 if (thold < sdrt->tWH_min)
300 thold = sdrt->tWH_min;
301 if (thold < sdrt->tALH_min)
302 thold = sdrt->tALH_min;
303 if (thold < sdrt->tREH_min)
304 thold = sdrt->tREH_min;
305 tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
306 if (tims->thold == 0)
308 else if (tims->thold > FSMC_THOLD_MASK)
309 tims->thold = FSMC_THOLD_MASK;
311 twait = max(sdrt->tRP_min, sdrt->tWP_min);
312 tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
313 if (tims->twait == 0)
315 else if (tims->twait > FSMC_TWAIT_MASK)
316 tims->twait = FSMC_TWAIT_MASK;
318 tset = max(sdrt->tCS_min - sdrt->tWP_min,
319 sdrt->tCEA_max - sdrt->tREA_max);
320 tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
323 else if (tims->tset > FSMC_TSET_MASK)
324 tims->tset = FSMC_TSET_MASK;
329 static int fsmc_setup_interface(struct nand_chip *nand, int csline,
330 const struct nand_interface_config *conf)
332 struct fsmc_nand_data *host = nand_to_fsmc(nand);
333 struct fsmc_nand_timings tims;
334 const struct nand_sdr_timings *sdrt;
337 sdrt = nand_get_sdr_timings(conf);
339 return PTR_ERR(sdrt);
341 ret = fsmc_calc_timings(host, sdrt, &tims);
345 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
348 fsmc_nand_setup(host, &tims);
354 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
356 static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
358 struct fsmc_nand_data *host = nand_to_fsmc(chip);
360 writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
361 host->regs_va + FSMC_PC);
362 writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
363 host->regs_va + FSMC_PC);
364 writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
365 host->regs_va + FSMC_PC);
369 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
370 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
373 static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
376 struct fsmc_nand_data *host = nand_to_fsmc(chip);
378 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
381 if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
385 } while (!time_after_eq(jiffies, deadline));
387 if (time_after_eq(jiffies, deadline)) {
388 dev_err(host->dev, "calculate ecc timed out\n");
392 ecc_tmp = readl_relaxed(host->regs_va + ECC1);
394 ecc[1] = ecc_tmp >> 8;
395 ecc[2] = ecc_tmp >> 16;
396 ecc[3] = ecc_tmp >> 24;
398 ecc_tmp = readl_relaxed(host->regs_va + ECC2);
400 ecc[5] = ecc_tmp >> 8;
401 ecc[6] = ecc_tmp >> 16;
402 ecc[7] = ecc_tmp >> 24;
404 ecc_tmp = readl_relaxed(host->regs_va + ECC3);
406 ecc[9] = ecc_tmp >> 8;
407 ecc[10] = ecc_tmp >> 16;
408 ecc[11] = ecc_tmp >> 24;
410 ecc_tmp = readl_relaxed(host->regs_va + STS);
411 ecc[12] = ecc_tmp >> 16;
417 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
418 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
421 static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
424 struct fsmc_nand_data *host = nand_to_fsmc(chip);
427 ecc_tmp = readl_relaxed(host->regs_va + ECC1);
429 ecc[1] = ecc_tmp >> 8;
430 ecc[2] = ecc_tmp >> 16;
435 /* Count the number of 0's in buff upto a max of max_bits */
436 static int count_written_bits(u8 *buff, int size, int max_bits)
438 int k, written_bits = 0;
440 for (k = 0; k < size; k++) {
441 written_bits += hweight8(~buff[k]);
442 if (written_bits > max_bits)
449 static void dma_complete(void *param)
451 struct fsmc_nand_data *host = param;
453 complete(&host->dma_access_complete);
456 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
457 enum dma_data_direction direction)
459 struct dma_chan *chan;
460 struct dma_device *dma_dev;
461 struct dma_async_tx_descriptor *tx;
462 dma_addr_t dma_dst, dma_src, dma_addr;
464 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
466 unsigned long time_left;
468 if (direction == DMA_TO_DEVICE)
469 chan = host->write_dma_chan;
470 else if (direction == DMA_FROM_DEVICE)
471 chan = host->read_dma_chan;
475 dma_dev = chan->device;
476 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
478 if (direction == DMA_TO_DEVICE) {
480 dma_dst = host->data_pa;
482 dma_src = host->data_pa;
486 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
489 dev_err(host->dev, "device_prep_dma_memcpy error\n");
494 tx->callback = dma_complete;
495 tx->callback_param = host;
496 cookie = tx->tx_submit(tx);
498 ret = dma_submit_error(cookie);
500 dev_err(host->dev, "dma_submit_error %d\n", cookie);
504 dma_async_issue_pending(chan);
507 wait_for_completion_timeout(&host->dma_access_complete,
508 msecs_to_jiffies(3000));
509 if (time_left == 0) {
510 dmaengine_terminate_all(chan);
511 dev_err(host->dev, "wait_for_completion_timeout\n");
519 dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
525 * fsmc_write_buf - write buffer to chip
526 * @host: FSMC NAND controller
528 * @len: number of bytes to write
530 static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
535 if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
536 IS_ALIGNED(len, sizeof(u32))) {
540 for (i = 0; i < len; i++)
541 writel_relaxed(p[i], host->data_va);
543 for (i = 0; i < len; i++)
544 writeb_relaxed(buf[i], host->data_va);
549 * fsmc_read_buf - read chip data into buffer
550 * @host: FSMC NAND controller
551 * @buf: buffer to store date
552 * @len: number of bytes to read
554 static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
558 if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
559 IS_ALIGNED(len, sizeof(u32))) {
563 for (i = 0; i < len; i++)
564 p[i] = readl_relaxed(host->data_va);
566 for (i = 0; i < len; i++)
567 buf[i] = readb_relaxed(host->data_va);
572 * fsmc_read_buf_dma - read chip data into buffer
573 * @host: FSMC NAND controller
574 * @buf: buffer to store date
575 * @len: number of bytes to read
577 static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
580 dma_xfer(host, buf, len, DMA_FROM_DEVICE);
584 * fsmc_write_buf_dma - write buffer to chip
585 * @host: FSMC NAND controller
587 * @len: number of bytes to write
589 static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
592 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
596 * fsmc_exec_op - hook called by the core to execute NAND operations
598 * This controller is simple enough and thus does not need to use the parser
599 * provided by the core, instead, handle every situation here.
601 static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
604 struct fsmc_nand_data *host = nand_to_fsmc(chip);
605 const struct nand_op_instr *instr = NULL;
613 pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
615 for (op_id = 0; op_id < op->ninstrs; op_id++) {
616 instr = &op->instrs[op_id];
618 nand_op_trace(" ", instr);
620 switch (instr->type) {
621 case NAND_OP_CMD_INSTR:
622 writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
625 case NAND_OP_ADDR_INSTR:
626 for (i = 0; i < instr->ctx.addr.naddrs; i++)
627 writeb_relaxed(instr->ctx.addr.addrs[i],
631 case NAND_OP_DATA_IN_INSTR:
632 if (host->mode == USE_DMA_ACCESS)
633 fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
634 instr->ctx.data.len);
636 fsmc_read_buf(host, instr->ctx.data.buf.in,
637 instr->ctx.data.len);
640 case NAND_OP_DATA_OUT_INSTR:
641 if (host->mode == USE_DMA_ACCESS)
642 fsmc_write_buf_dma(host,
643 instr->ctx.data.buf.out,
644 instr->ctx.data.len);
646 fsmc_write_buf(host, instr->ctx.data.buf.out,
647 instr->ctx.data.len);
650 case NAND_OP_WAITRDY_INSTR:
651 ret = nand_soft_waitrdy(chip,
652 instr->ctx.waitrdy.timeout_ms);
661 * fsmc_read_page_hwecc
662 * @chip: nand chip info structure
663 * @buf: buffer to store read data
664 * @oob_required: caller expects OOB data read to chip->oob_poi
665 * @page: page number to read
667 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
668 * performed in a strict sequence as follows:
669 * data(512 byte) -> ecc(13 byte)
670 * After this read, fsmc hardware generates and reports error data bits(up to a
673 static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
674 int oob_required, int page)
676 struct mtd_info *mtd = nand_to_mtd(chip);
677 int i, j, s, stat, eccsize = chip->ecc.size;
678 int eccbytes = chip->ecc.bytes;
679 int eccsteps = chip->ecc.steps;
681 u8 *ecc_calc = chip->ecc.calc_buf;
682 u8 *ecc_code = chip->ecc.code_buf;
683 int off, len, ret, group = 0;
685 * ecc_oob is intentionally taken as u16. In 16bit devices, we
686 * end up reading 14 bytes (7 words) from oob. The local array is
687 * to maintain word alignment
690 u8 *oob = (u8 *)&ecc_oob[0];
691 unsigned int max_bitflips = 0;
693 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
694 nand_read_page_op(chip, page, s * eccsize, NULL, 0);
695 chip->ecc.hwctl(chip, NAND_ECC_READ);
696 ret = nand_read_data_op(chip, p, eccsize, false, false);
700 for (j = 0; j < eccbytes;) {
701 struct mtd_oob_region oobregion;
703 ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
707 off = oobregion.offset;
708 len = oobregion.length;
711 * length is intentionally kept a higher multiple of 2
712 * to read at least 13 bytes even in case of 16 bit NAND
715 if (chip->options & NAND_BUSWIDTH_16)
716 len = roundup(len, 2);
718 nand_read_oob_op(chip, page, off, oob + j, len);
722 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
723 chip->ecc.calculate(chip, p, &ecc_calc[i]);
725 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
727 mtd->ecc_stats.failed++;
729 mtd->ecc_stats.corrected += stat;
730 max_bitflips = max_t(unsigned int, max_bitflips, stat);
738 * fsmc_bch8_correct_data
739 * @mtd: mtd info structure
740 * @dat: buffer of read data
741 * @read_ecc: ecc read from device spare area
742 * @calc_ecc: ecc calculated from read data
744 * calc_ecc is a 104 bit information containing maximum of 8 error
745 * offset information of 13 bits each in 512 bytes of read data.
747 static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
748 u8 *read_ecc, u8 *calc_ecc)
750 struct fsmc_nand_data *host = nand_to_fsmc(chip);
753 u32 ecc1, ecc2, ecc3, ecc4;
755 num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
757 /* no bit flipping */
758 if (likely(num_err == 0))
761 /* too many errors */
762 if (unlikely(num_err > 8)) {
764 * This is a temporary erase check. A newly erased page read
765 * would result in an ecc error because the oob data is also
766 * erased to FF and the calculated ecc for an FF data is not
768 * This is a workaround to skip performing correction in case
772 * For every page, each bit written as 0 is counted until these
773 * number of bits are greater than 8 (the maximum correction
774 * capability of FSMC for each 512 + 13 bytes)
777 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
778 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
780 if ((bits_ecc + bits_data) <= 8) {
782 memset(dat, 0xff, chip->ecc.size);
790 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
791 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
793 * calc_ecc is a 104 bit information containing maximum of 8 error
794 * offset information of 13 bits each. calc_ecc is copied into a
795 * u64 array and error offset indexes are populated in err_idx
798 ecc1 = readl_relaxed(host->regs_va + ECC1);
799 ecc2 = readl_relaxed(host->regs_va + ECC2);
800 ecc3 = readl_relaxed(host->regs_va + ECC3);
801 ecc4 = readl_relaxed(host->regs_va + STS);
803 err_idx[0] = (ecc1 >> 0) & 0x1FFF;
804 err_idx[1] = (ecc1 >> 13) & 0x1FFF;
805 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
806 err_idx[3] = (ecc2 >> 7) & 0x1FFF;
807 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
808 err_idx[5] = (ecc3 >> 1) & 0x1FFF;
809 err_idx[6] = (ecc3 >> 14) & 0x1FFF;
810 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
816 if (err_idx[i] < chip->ecc.size * 8) {
817 int err = err_idx[i];
819 dat[err >> 3] ^= BIT(err & 7);
826 static bool filter(struct dma_chan *chan, void *slave)
828 chan->private = slave;
832 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
833 struct fsmc_nand_data *host,
834 struct nand_chip *nand)
836 struct device_node *np = pdev->dev.of_node;
842 if (!of_property_read_u32(np, "bank-width", &val)) {
844 nand->options |= NAND_BUSWIDTH_16;
845 } else if (val != 1) {
846 dev_err(&pdev->dev, "invalid bank-width %u\n", val);
851 if (of_get_property(np, "nand-skip-bbtscan", NULL))
852 nand->options |= NAND_SKIP_BBTSCAN;
854 host->dev_timings = devm_kzalloc(&pdev->dev,
855 sizeof(*host->dev_timings),
857 if (!host->dev_timings)
860 ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
861 sizeof(*host->dev_timings));
863 host->dev_timings = NULL;
865 /* Set default NAND bank to 0 */
867 if (!of_property_read_u32(np, "bank", &val)) {
869 dev_err(&pdev->dev, "invalid bank %u\n", val);
877 static int fsmc_nand_attach_chip(struct nand_chip *nand)
879 struct mtd_info *mtd = nand_to_mtd(nand);
880 struct fsmc_nand_data *host = nand_to_fsmc(nand);
882 if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
883 nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
886 nand->ecc.size = 512;
888 if (AMBA_REV_BITS(host->pid) >= 8) {
889 nand->ecc.read_page = fsmc_read_page_hwecc;
890 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
891 nand->ecc.correct = fsmc_bch8_correct_data;
892 nand->ecc.bytes = 13;
893 nand->ecc.strength = 8;
896 if (AMBA_REV_BITS(host->pid) >= 8) {
897 switch (mtd->oobsize) {
906 "No oob scheme defined for oobsize %d\n",
911 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
916 switch (nand->ecc.engine_type) {
917 case NAND_ECC_ENGINE_TYPE_ON_HOST:
918 dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
919 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
920 nand->ecc.correct = rawnand_sw_hamming_correct;
921 nand->ecc.hwctl = fsmc_enable_hwecc;
923 nand->ecc.strength = 1;
924 nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
927 case NAND_ECC_ENGINE_TYPE_SOFT:
928 if (nand->ecc.algo == NAND_ECC_ALGO_BCH) {
930 "Using 4-bit SW BCH ECC scheme\n");
935 case NAND_ECC_ENGINE_TYPE_ON_DIE:
939 dev_err(host->dev, "Unsupported ECC mode!\n");
944 * Don't set layout for BCH4 SW ECC. This will be
945 * generated later during BCH initialization.
947 if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
948 switch (mtd->oobsize) {
952 mtd_set_ooblayout(mtd,
953 &fsmc_ecc1_ooblayout_ops);
957 "No oob scheme defined for oobsize %d\n",
966 static const struct nand_controller_ops fsmc_nand_controller_ops = {
967 .attach_chip = fsmc_nand_attach_chip,
968 .exec_op = fsmc_exec_op,
969 .setup_interface = fsmc_setup_interface,
973 * fsmc_nand_disable() - Disables the NAND bank
974 * @host: The instance to disable
976 static void fsmc_nand_disable(struct fsmc_nand_data *host)
980 val = readl(host->regs_va + FSMC_PC);
982 writel(val, host->regs_va + FSMC_PC);
986 * fsmc_nand_probe - Probe function
987 * @pdev: platform device structure
989 static int __init fsmc_nand_probe(struct platform_device *pdev)
991 struct fsmc_nand_data *host;
992 struct mtd_info *mtd;
993 struct nand_chip *nand;
994 struct resource *res;
1001 /* Allocate memory for the device structure (and zero it) */
1002 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
1008 ret = fsmc_nand_probe_config_dt(pdev, host, nand);
1012 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
1013 host->data_va = devm_ioremap_resource(&pdev->dev, res);
1014 if (IS_ERR(host->data_va))
1015 return PTR_ERR(host->data_va);
1017 host->data_pa = (dma_addr_t)res->start;
1019 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
1020 host->addr_va = devm_ioremap_resource(&pdev->dev, res);
1021 if (IS_ERR(host->addr_va))
1022 return PTR_ERR(host->addr_va);
1024 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
1025 host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
1026 if (IS_ERR(host->cmd_va))
1027 return PTR_ERR(host->cmd_va);
1029 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
1030 base = devm_ioremap_resource(&pdev->dev, res);
1032 return PTR_ERR(base);
1034 host->regs_va = base + FSMC_NOR_REG_SIZE +
1035 (host->bank * FSMC_NAND_BANK_SZ);
1037 host->clk = devm_clk_get(&pdev->dev, NULL);
1038 if (IS_ERR(host->clk)) {
1039 dev_err(&pdev->dev, "failed to fetch block clock\n");
1040 return PTR_ERR(host->clk);
1043 ret = clk_prepare_enable(host->clk);
1048 * This device ID is actually a common AMBA ID as used on the
1049 * AMBA PrimeCell bus. However it is not a PrimeCell.
1051 for (pid = 0, i = 0; i < 4; i++)
1052 pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
1057 dev_info(&pdev->dev,
1058 "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
1059 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1060 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1062 host->dev = &pdev->dev;
1064 if (host->mode == USE_DMA_ACCESS)
1065 init_completion(&host->dma_access_complete);
1067 /* Link all private pointers */
1068 mtd = nand_to_mtd(&host->nand);
1069 nand_set_flash_node(nand, pdev->dev.of_node);
1071 mtd->dev.parent = &pdev->dev;
1073 nand->badblockbits = 7;
1075 if (host->mode == USE_DMA_ACCESS) {
1077 dma_cap_set(DMA_MEMCPY, mask);
1078 host->read_dma_chan = dma_request_channel(mask, filter, NULL);
1079 if (!host->read_dma_chan) {
1080 dev_err(&pdev->dev, "Unable to get read dma channel\n");
1084 host->write_dma_chan = dma_request_channel(mask, filter, NULL);
1085 if (!host->write_dma_chan) {
1086 dev_err(&pdev->dev, "Unable to get write dma channel\n");
1088 goto release_dma_read_chan;
1092 if (host->dev_timings) {
1093 fsmc_nand_setup(host, host->dev_timings);
1094 nand->options |= NAND_KEEP_TIMINGS;
1097 nand_controller_init(&host->base);
1098 host->base.ops = &fsmc_nand_controller_ops;
1099 nand->controller = &host->base;
1102 * Scan to find existence of the device
1104 ret = nand_scan(nand, 1);
1106 goto release_dma_write_chan;
1109 ret = mtd_device_register(mtd, NULL, 0);
1113 platform_set_drvdata(pdev, host);
1114 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1120 release_dma_write_chan:
1121 if (host->mode == USE_DMA_ACCESS)
1122 dma_release_channel(host->write_dma_chan);
1123 release_dma_read_chan:
1124 if (host->mode == USE_DMA_ACCESS)
1125 dma_release_channel(host->read_dma_chan);
1127 fsmc_nand_disable(host);
1128 clk_disable_unprepare(host->clk);
1136 static int fsmc_nand_remove(struct platform_device *pdev)
1138 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1141 struct nand_chip *chip = &host->nand;
1144 ret = mtd_device_unregister(nand_to_mtd(chip));
1147 fsmc_nand_disable(host);
1149 if (host->mode == USE_DMA_ACCESS) {
1150 dma_release_channel(host->write_dma_chan);
1151 dma_release_channel(host->read_dma_chan);
1153 clk_disable_unprepare(host->clk);
1159 #ifdef CONFIG_PM_SLEEP
1160 static int fsmc_nand_suspend(struct device *dev)
1162 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1165 clk_disable_unprepare(host->clk);
1170 static int fsmc_nand_resume(struct device *dev)
1172 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1175 clk_prepare_enable(host->clk);
1176 if (host->dev_timings)
1177 fsmc_nand_setup(host, host->dev_timings);
1178 nand_reset(&host->nand, 0);
1185 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1187 static const struct of_device_id fsmc_nand_id_table[] = {
1188 { .compatible = "st,spear600-fsmc-nand" },
1189 { .compatible = "stericsson,fsmc-nand" },
1192 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1194 static struct platform_driver fsmc_nand_driver = {
1195 .remove = fsmc_nand_remove,
1197 .name = "fsmc-nand",
1198 .of_match_table = fsmc_nand_id_table,
1199 .pm = &fsmc_nand_pm_ops,
1203 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1205 MODULE_LICENSE("GPL v2");
1207 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");