2 * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 #include <crypto/internal/aead.h>
19 #include <crypto/aes.h>
20 #include <crypto/algapi.h>
21 #include <crypto/authenc.h>
22 #include <crypto/des.h>
23 #include <crypto/md5.h>
24 #include <crypto/sha.h>
25 #include <crypto/internal/skcipher.h>
26 #include <linux/clk.h>
27 #include <linux/crypto.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/err.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
35 #include <linux/list.h>
36 #include <linux/module.h>
38 #include <linux/platform_device.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/scatterlist.h>
42 #include <linux/sched.h>
43 #include <linux/sizes.h>
44 #include <linux/slab.h>
45 #include <linux/timer.h>
47 #include "picoxcell_crypto_regs.h"
50 * The threshold for the number of entries in the CMD FIFO available before
51 * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
52 * number of interrupts raised to the CPU.
54 #define CMD0_IRQ_THRESHOLD 1
57 * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
58 * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
59 * When there are packets in flight but lower than the threshold, we enable
60 * the timer and at expiry, attempt to remove any processed packets from the
61 * queue and if there are still packets left, schedule the timer again.
63 #define PACKET_TIMEOUT 1
65 /* The priority to register each algorithm with. */
66 #define SPACC_CRYPTO_ALG_PRIORITY 10000
68 #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16
69 #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
70 #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64
71 #define SPACC_CRYPTO_IPSEC_MAX_CTXS 32
72 #define SPACC_CRYPTO_IPSEC_FIFO_SZ 32
73 #define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64
74 #define SPACC_CRYPTO_L2_HASH_PG_SZ 64
75 #define SPACC_CRYPTO_L2_MAX_CTXS 128
76 #define SPACC_CRYPTO_L2_FIFO_SZ 128
78 #define MAX_DDT_LEN 16
80 /* DDT format. This must match the hardware DDT format exactly. */
87 * Asynchronous crypto request structure.
89 * This structure defines a request that is either queued for processing or
93 struct list_head list;
94 struct spacc_engine *engine;
95 struct crypto_async_request *req;
99 dma_addr_t src_addr, dst_addr;
100 struct spacc_ddt *src_ddt, *dst_ddt;
101 void (*complete)(struct spacc_req *req);
105 unsigned long ctrl_default;
108 struct spacc_engine *engine;
109 struct list_head entry;
114 struct spacc_engine {
116 struct list_head pending;
120 struct list_head completed;
121 struct list_head in_progress;
122 struct tasklet_struct complete;
123 unsigned long fifo_sz;
124 void __iomem *cipher_ctx_base;
125 void __iomem *hash_key_base;
126 struct spacc_alg *algs;
128 struct list_head registered_algs;
129 struct spacc_aead *aeads;
131 struct list_head registered_aeads;
138 struct timer_list packet_timeout;
139 unsigned stat_irq_thresh;
140 struct dma_pool *req_pool;
143 /* Algorithm type mask. */
144 #define SPACC_CRYPTO_ALG_MASK 0x7
146 /* SPACC definition of a crypto algorithm. */
148 unsigned long ctrl_default;
150 struct crypto_alg alg;
151 struct spacc_engine *engine;
152 struct list_head entry;
157 /* Generic context structure for any algorithm type. */
158 struct spacc_generic_ctx {
159 struct spacc_engine *engine;
165 /* Block cipher context. */
166 struct spacc_ablk_ctx {
167 struct spacc_generic_ctx generic;
168 u8 key[AES_MAX_KEY_SIZE];
171 * The fallback cipher. If the operation can't be done in hardware,
172 * fallback to a software version.
174 struct crypto_sync_skcipher *sw_cipher;
177 /* AEAD cipher context. */
178 struct spacc_aead_ctx {
179 struct spacc_generic_ctx generic;
180 u8 cipher_key[AES_MAX_KEY_SIZE];
181 u8 hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
184 struct crypto_aead *sw_cipher;
187 static int spacc_ablk_submit(struct spacc_req *req);
189 static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
191 return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
194 static inline struct spacc_aead *to_spacc_aead(struct aead_alg *alg)
196 return container_of(alg, struct spacc_aead, alg);
199 static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
201 u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
203 return fifo_stat & SPA_FIFO_CMD_FULL;
207 * Given a cipher context, and a context number, get the base address of the
210 * Returns the address of the context page where the key/context may
213 static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
217 return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
218 (indx * ctx->engine->cipher_pg_sz) :
219 ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
222 /* The context pages can only be written with 32-bit accesses. */
223 static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
226 const u32 *src32 = (const u32 *) src;
229 writel(*src32++, dst++);
232 static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
233 void __iomem *page_addr, const u8 *key,
234 size_t key_len, const u8 *iv, size_t iv_len)
236 void __iomem *key_ptr = page_addr + ctx->key_offs;
237 void __iomem *iv_ptr = page_addr + ctx->iv_offs;
239 memcpy_toio32(key_ptr, key, key_len / 4);
240 memcpy_toio32(iv_ptr, iv, iv_len / 4);
244 * Load a context into the engines context memory.
246 * Returns the index of the context page where the context was loaded.
248 static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
249 const u8 *ciph_key, size_t ciph_len,
250 const u8 *iv, size_t ivlen, const u8 *hash_key,
253 unsigned indx = ctx->engine->next_ctx++;
254 void __iomem *ciph_page_addr, *hash_page_addr;
256 ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
257 hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
259 ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
260 spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
262 writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
263 (1 << SPA_KEY_SZ_CIPHER_OFFSET),
264 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
267 memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
268 writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
269 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
275 static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
282 * Take a crypto request and scatterlists for the data and turn them into DDTs
283 * for passing to the crypto engines. This also DMA maps the data so that the
284 * crypto engines can DMA to/from them.
286 static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
287 struct scatterlist *payload,
289 enum dma_data_direction dir,
290 dma_addr_t *ddt_phys)
292 unsigned mapped_ents;
293 struct scatterlist *cur;
294 struct spacc_ddt *ddt;
298 nents = sg_nents_for_len(payload, nbytes);
300 dev_err(engine->dev, "Invalid numbers of SG.\n");
303 mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
305 if (mapped_ents + 1 > MAX_DDT_LEN)
308 ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
312 for_each_sg(payload, cur, mapped_ents, i)
313 ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
314 ddt_set(&ddt[mapped_ents], 0, 0);
319 dma_unmap_sg(engine->dev, payload, nents, dir);
323 static int spacc_aead_make_ddts(struct aead_request *areq)
325 struct crypto_aead *aead = crypto_aead_reqtfm(areq);
326 struct spacc_req *req = aead_request_ctx(areq);
327 struct spacc_engine *engine = req->engine;
328 struct spacc_ddt *src_ddt, *dst_ddt;
330 int src_nents, dst_nents;
331 struct scatterlist *cur;
332 int i, dst_ents, src_ents;
334 total = areq->assoclen + areq->cryptlen;
336 total += crypto_aead_authsize(aead);
338 src_nents = sg_nents_for_len(areq->src, total);
340 dev_err(engine->dev, "Invalid numbers of src SG.\n");
343 if (src_nents + 1 > MAX_DDT_LEN)
347 if (areq->src != areq->dst) {
348 dst_nents = sg_nents_for_len(areq->dst, total);
350 dev_err(engine->dev, "Invalid numbers of dst SG.\n");
353 if (src_nents + 1 > MAX_DDT_LEN)
357 src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
361 dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
365 req->src_ddt = src_ddt;
366 req->dst_ddt = dst_ddt;
369 src_ents = dma_map_sg(engine->dev, areq->src, src_nents,
374 dst_ents = dma_map_sg(engine->dev, areq->dst, dst_nents,
378 dma_unmap_sg(engine->dev, areq->src, src_nents,
383 src_ents = dma_map_sg(engine->dev, areq->src, src_nents,
391 * Now map in the payload for the source and destination and terminate
392 * with the NULL pointers.
394 for_each_sg(areq->src, cur, src_ents, i)
395 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
397 /* For decryption we need to skip the associated data. */
398 total = req->is_encrypt ? 0 : areq->assoclen;
399 for_each_sg(areq->dst, cur, dst_ents, i) {
400 unsigned len = sg_dma_len(cur);
407 ddt_set(dst_ddt++, sg_dma_address(cur) + total, len - total);
410 ddt_set(src_ddt, 0, 0);
411 ddt_set(dst_ddt, 0, 0);
416 dma_pool_free(engine->req_pool, dst_ddt, req->dst_addr);
418 dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
423 static void spacc_aead_free_ddts(struct spacc_req *req)
425 struct aead_request *areq = container_of(req->req, struct aead_request,
427 struct crypto_aead *aead = crypto_aead_reqtfm(areq);
428 unsigned total = areq->assoclen + areq->cryptlen +
429 (req->is_encrypt ? crypto_aead_authsize(aead) : 0);
430 struct spacc_aead_ctx *aead_ctx = crypto_aead_ctx(aead);
431 struct spacc_engine *engine = aead_ctx->generic.engine;
432 int nents = sg_nents_for_len(areq->src, total);
434 /* sg_nents_for_len should not fail since it works when mapping sg */
435 if (unlikely(nents < 0)) {
436 dev_err(engine->dev, "Invalid numbers of src SG.\n");
440 if (areq->src != areq->dst) {
441 dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
442 nents = sg_nents_for_len(areq->dst, total);
443 if (unlikely(nents < 0)) {
444 dev_err(engine->dev, "Invalid numbers of dst SG.\n");
447 dma_unmap_sg(engine->dev, areq->dst, nents, DMA_FROM_DEVICE);
449 dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
451 dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
452 dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
455 static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
456 dma_addr_t ddt_addr, struct scatterlist *payload,
457 unsigned nbytes, enum dma_data_direction dir)
459 int nents = sg_nents_for_len(payload, nbytes);
462 dev_err(req->engine->dev, "Invalid numbers of SG.\n");
466 dma_unmap_sg(req->engine->dev, payload, nents, dir);
467 dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
470 static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
473 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
474 struct crypto_authenc_keys keys;
477 crypto_aead_clear_flags(ctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
478 crypto_aead_set_flags(ctx->sw_cipher, crypto_aead_get_flags(tfm) &
479 CRYPTO_TFM_REQ_MASK);
480 err = crypto_aead_setkey(ctx->sw_cipher, key, keylen);
481 crypto_aead_clear_flags(tfm, CRYPTO_TFM_RES_MASK);
482 crypto_aead_set_flags(tfm, crypto_aead_get_flags(ctx->sw_cipher) &
483 CRYPTO_TFM_RES_MASK);
487 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
490 if (keys.enckeylen > AES_MAX_KEY_SIZE)
493 if (keys.authkeylen > sizeof(ctx->hash_ctx))
496 memcpy(ctx->cipher_key, keys.enckey, keys.enckeylen);
497 ctx->cipher_key_len = keys.enckeylen;
499 memcpy(ctx->hash_ctx, keys.authkey, keys.authkeylen);
500 ctx->hash_key_len = keys.authkeylen;
502 memzero_explicit(&keys, sizeof(keys));
506 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
507 memzero_explicit(&keys, sizeof(keys));
511 static int spacc_aead_setauthsize(struct crypto_aead *tfm,
512 unsigned int authsize)
514 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
516 return crypto_aead_setauthsize(ctx->sw_cipher, authsize);
520 * Check if an AEAD request requires a fallback operation. Some requests can't
521 * be completed in hardware because the hardware may not support certain key
522 * sizes. In these cases we need to complete the request in software.
524 static int spacc_aead_need_fallback(struct aead_request *aead_req)
526 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
527 struct aead_alg *alg = crypto_aead_alg(aead);
528 struct spacc_aead *spacc_alg = to_spacc_aead(alg);
529 struct spacc_aead_ctx *ctx = crypto_aead_ctx(aead);
532 * If we have a non-supported key-length, then we need to do a
535 if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
536 SPA_CTRL_CIPH_ALG_AES &&
537 ctx->cipher_key_len != AES_KEYSIZE_128 &&
538 ctx->cipher_key_len != AES_KEYSIZE_256)
544 static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
547 struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
548 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
549 struct aead_request *subreq = aead_request_ctx(req);
551 aead_request_set_tfm(subreq, ctx->sw_cipher);
552 aead_request_set_callback(subreq, req->base.flags,
553 req->base.complete, req->base.data);
554 aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
556 aead_request_set_ad(subreq, req->assoclen);
558 return is_encrypt ? crypto_aead_encrypt(subreq) :
559 crypto_aead_decrypt(subreq);
562 static void spacc_aead_complete(struct spacc_req *req)
564 spacc_aead_free_ddts(req);
565 req->req->complete(req->req, req->result);
568 static int spacc_aead_submit(struct spacc_req *req)
570 struct aead_request *aead_req =
571 container_of(req->req, struct aead_request, base);
572 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
573 unsigned int authsize = crypto_aead_authsize(aead);
574 struct spacc_aead_ctx *ctx = crypto_aead_ctx(aead);
575 struct aead_alg *alg = crypto_aead_alg(aead);
576 struct spacc_aead *spacc_alg = to_spacc_aead(alg);
577 struct spacc_engine *engine = ctx->generic.engine;
578 u32 ctrl, proc_len, assoc_len;
580 req->result = -EINPROGRESS;
581 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
582 ctx->cipher_key_len, aead_req->iv, crypto_aead_ivsize(aead),
583 ctx->hash_ctx, ctx->hash_key_len);
585 /* Set the source and destination DDT pointers. */
586 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
587 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
588 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
590 assoc_len = aead_req->assoclen;
591 proc_len = aead_req->cryptlen + assoc_len;
594 * If we are decrypting, we need to take the length of the ICV out of
595 * the processing length.
597 if (!req->is_encrypt)
598 proc_len -= authsize;
600 writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
601 writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
602 writel(authsize, engine->regs + SPA_ICV_LEN_REG_OFFSET);
603 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
604 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
606 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
607 (1 << SPA_CTRL_ICV_APPEND);
609 ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
611 ctrl |= (1 << SPA_CTRL_KEY_EXP);
613 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
615 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
620 static int spacc_req_submit(struct spacc_req *req);
622 static void spacc_push(struct spacc_engine *engine)
624 struct spacc_req *req;
626 while (!list_empty(&engine->pending) &&
627 engine->in_flight + 1 <= engine->fifo_sz) {
630 req = list_first_entry(&engine->pending, struct spacc_req,
632 list_move_tail(&req->list, &engine->in_progress);
634 req->result = spacc_req_submit(req);
639 * Setup an AEAD request for processing. This will configure the engine, load
640 * the context and then start the packet processing.
642 static int spacc_aead_setup(struct aead_request *req,
643 unsigned alg_type, bool is_encrypt)
645 struct crypto_aead *aead = crypto_aead_reqtfm(req);
646 struct aead_alg *alg = crypto_aead_alg(aead);
647 struct spacc_engine *engine = to_spacc_aead(alg)->engine;
648 struct spacc_req *dev_req = aead_request_ctx(req);
652 dev_req->req = &req->base;
653 dev_req->is_encrypt = is_encrypt;
654 dev_req->result = -EBUSY;
655 dev_req->engine = engine;
656 dev_req->complete = spacc_aead_complete;
658 if (unlikely(spacc_aead_need_fallback(req) ||
659 ((err = spacc_aead_make_ddts(req)) == -E2BIG)))
660 return spacc_aead_do_fallback(req, alg_type, is_encrypt);
666 spin_lock_irqsave(&engine->hw_lock, flags);
667 if (unlikely(spacc_fifo_cmd_full(engine)) ||
668 engine->in_flight + 1 > engine->fifo_sz) {
669 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
671 spin_unlock_irqrestore(&engine->hw_lock, flags);
674 list_add_tail(&dev_req->list, &engine->pending);
676 list_add_tail(&dev_req->list, &engine->pending);
679 spin_unlock_irqrestore(&engine->hw_lock, flags);
684 spacc_aead_free_ddts(dev_req);
689 static int spacc_aead_encrypt(struct aead_request *req)
691 struct crypto_aead *aead = crypto_aead_reqtfm(req);
692 struct spacc_aead *alg = to_spacc_aead(crypto_aead_alg(aead));
694 return spacc_aead_setup(req, alg->type, 1);
697 static int spacc_aead_decrypt(struct aead_request *req)
699 struct crypto_aead *aead = crypto_aead_reqtfm(req);
700 struct spacc_aead *alg = to_spacc_aead(crypto_aead_alg(aead));
702 return spacc_aead_setup(req, alg->type, 0);
706 * Initialise a new AEAD context. This is responsible for allocating the
707 * fallback cipher and initialising the context.
709 static int spacc_aead_cra_init(struct crypto_aead *tfm)
711 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
712 struct aead_alg *alg = crypto_aead_alg(tfm);
713 struct spacc_aead *spacc_alg = to_spacc_aead(alg);
714 struct spacc_engine *engine = spacc_alg->engine;
716 ctx->generic.flags = spacc_alg->type;
717 ctx->generic.engine = engine;
718 ctx->sw_cipher = crypto_alloc_aead(alg->base.cra_name, 0,
719 CRYPTO_ALG_NEED_FALLBACK);
720 if (IS_ERR(ctx->sw_cipher))
721 return PTR_ERR(ctx->sw_cipher);
722 ctx->generic.key_offs = spacc_alg->key_offs;
723 ctx->generic.iv_offs = spacc_alg->iv_offs;
725 crypto_aead_set_reqsize(
727 max(sizeof(struct spacc_req),
728 sizeof(struct aead_request) +
729 crypto_aead_reqsize(ctx->sw_cipher)));
735 * Destructor for an AEAD context. This is called when the transform is freed
736 * and must free the fallback cipher.
738 static void spacc_aead_cra_exit(struct crypto_aead *tfm)
740 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
742 crypto_free_aead(ctx->sw_cipher);
746 * Set the DES key for a block cipher transform. This also performs weak key
747 * checking if the transform has requested it.
749 static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
752 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
753 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
754 u32 tmp[DES_EXPKEY_WORDS];
756 if (unlikely(!des_ekey(tmp, key)) &&
757 (crypto_ablkcipher_get_flags(cipher) &
758 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) {
759 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
763 memcpy(ctx->key, key, len);
770 * Set the 3DES key for a block cipher transform. This also performs weak key
771 * checking if the transform has requested it.
773 static int spacc_des3_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
776 struct spacc_ablk_ctx *ctx = crypto_ablkcipher_ctx(cipher);
780 flags = crypto_ablkcipher_get_flags(cipher);
781 err = __des3_verify_key(&flags, key);
783 crypto_ablkcipher_set_flags(cipher, flags);
787 memcpy(ctx->key, key, len);
794 * Set the key for an AES block cipher. Some key lengths are not supported in
795 * hardware so this must also check whether a fallback is needed.
797 static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
800 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
801 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
804 if (len > AES_MAX_KEY_SIZE) {
805 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
810 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
811 * request for any other size (192 bits) then we need to do a software
814 if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
819 * Set the fallback transform to use the same request flags as
820 * the hardware transform.
822 crypto_sync_skcipher_clear_flags(ctx->sw_cipher,
823 CRYPTO_TFM_REQ_MASK);
824 crypto_sync_skcipher_set_flags(ctx->sw_cipher,
825 cipher->base.crt_flags &
826 CRYPTO_TFM_REQ_MASK);
828 err = crypto_sync_skcipher_setkey(ctx->sw_cipher, key, len);
830 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
832 crypto_sync_skcipher_get_flags(ctx->sw_cipher) &
836 goto sw_setkey_failed;
839 memcpy(ctx->key, key, len);
846 static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
847 const u8 *key, unsigned int len)
849 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
850 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
853 if (len > AES_MAX_KEY_SIZE) {
854 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
859 memcpy(ctx->key, key, len);
866 static int spacc_ablk_need_fallback(struct spacc_req *req)
868 struct spacc_ablk_ctx *ctx;
869 struct crypto_tfm *tfm = req->req->tfm;
870 struct crypto_alg *alg = req->req->tfm->__crt_alg;
871 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
873 ctx = crypto_tfm_ctx(tfm);
875 return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
876 SPA_CTRL_CIPH_ALG_AES &&
877 ctx->key_len != AES_KEYSIZE_128 &&
878 ctx->key_len != AES_KEYSIZE_256;
881 static void spacc_ablk_complete(struct spacc_req *req)
883 struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
885 if (ablk_req->src != ablk_req->dst) {
886 spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
887 ablk_req->nbytes, DMA_TO_DEVICE);
888 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
889 ablk_req->nbytes, DMA_FROM_DEVICE);
891 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
892 ablk_req->nbytes, DMA_BIDIRECTIONAL);
894 req->req->complete(req->req, req->result);
897 static int spacc_ablk_submit(struct spacc_req *req)
899 struct crypto_tfm *tfm = req->req->tfm;
900 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
901 struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
902 struct crypto_alg *alg = req->req->tfm->__crt_alg;
903 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
904 struct spacc_engine *engine = ctx->generic.engine;
907 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
908 ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
911 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
912 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
913 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
915 writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
916 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
917 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
918 writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
920 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
921 (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
922 (1 << SPA_CTRL_KEY_EXP));
924 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
926 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
931 static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
932 unsigned alg_type, bool is_encrypt)
934 struct crypto_tfm *old_tfm =
935 crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
936 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
937 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->sw_cipher);
941 * Change the request to use the software fallback transform, and once
942 * the ciphering has completed, put the old transform back into the
945 skcipher_request_set_sync_tfm(subreq, ctx->sw_cipher);
946 skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL);
947 skcipher_request_set_crypt(subreq, req->src, req->dst,
948 req->nbytes, req->info);
949 err = is_encrypt ? crypto_skcipher_encrypt(subreq) :
950 crypto_skcipher_decrypt(subreq);
951 skcipher_request_zero(subreq);
956 static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
959 struct crypto_alg *alg = req->base.tfm->__crt_alg;
960 struct spacc_engine *engine = to_spacc_alg(alg)->engine;
961 struct spacc_req *dev_req = ablkcipher_request_ctx(req);
965 dev_req->req = &req->base;
966 dev_req->is_encrypt = is_encrypt;
967 dev_req->engine = engine;
968 dev_req->complete = spacc_ablk_complete;
969 dev_req->result = -EINPROGRESS;
971 if (unlikely(spacc_ablk_need_fallback(dev_req)))
972 return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
975 * Create the DDT's for the engine. If we share the same source and
976 * destination then we can optimize by reusing the DDT's.
978 if (req->src != req->dst) {
979 dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
980 req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
981 if (!dev_req->src_ddt)
984 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
985 req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
986 if (!dev_req->dst_ddt)
989 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
990 req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
991 if (!dev_req->dst_ddt)
994 dev_req->src_ddt = NULL;
995 dev_req->src_addr = dev_req->dst_addr;
999 spin_lock_irqsave(&engine->hw_lock, flags);
1001 * Check if the engine will accept the operation now. If it won't then
1002 * we either stick it on the end of a pending list if we can backlog,
1003 * or bailout with an error if not.
1005 if (unlikely(spacc_fifo_cmd_full(engine)) ||
1006 engine->in_flight + 1 > engine->fifo_sz) {
1007 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
1009 spin_unlock_irqrestore(&engine->hw_lock, flags);
1012 list_add_tail(&dev_req->list, &engine->pending);
1014 list_add_tail(&dev_req->list, &engine->pending);
1017 spin_unlock_irqrestore(&engine->hw_lock, flags);
1022 spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
1023 req->nbytes, req->src == req->dst ?
1024 DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
1026 if (req->src != req->dst)
1027 spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
1028 req->src, req->nbytes, DMA_TO_DEVICE);
1033 static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
1035 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1036 struct crypto_alg *alg = tfm->__crt_alg;
1037 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
1038 struct spacc_engine *engine = spacc_alg->engine;
1040 ctx->generic.flags = spacc_alg->type;
1041 ctx->generic.engine = engine;
1042 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1043 ctx->sw_cipher = crypto_alloc_sync_skcipher(
1044 alg->cra_name, 0, CRYPTO_ALG_NEED_FALLBACK);
1045 if (IS_ERR(ctx->sw_cipher)) {
1046 dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1048 return PTR_ERR(ctx->sw_cipher);
1051 ctx->generic.key_offs = spacc_alg->key_offs;
1052 ctx->generic.iv_offs = spacc_alg->iv_offs;
1054 tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
1059 static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
1061 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1063 crypto_free_sync_skcipher(ctx->sw_cipher);
1066 static int spacc_ablk_encrypt(struct ablkcipher_request *req)
1068 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1069 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1070 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1072 return spacc_ablk_setup(req, alg->type, 1);
1075 static int spacc_ablk_decrypt(struct ablkcipher_request *req)
1077 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1078 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1079 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1081 return spacc_ablk_setup(req, alg->type, 0);
1084 static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1086 return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1087 SPA_FIFO_STAT_EMPTY;
1090 static void spacc_process_done(struct spacc_engine *engine)
1092 struct spacc_req *req;
1093 unsigned long flags;
1095 spin_lock_irqsave(&engine->hw_lock, flags);
1097 while (!spacc_fifo_stat_empty(engine)) {
1098 req = list_first_entry(&engine->in_progress, struct spacc_req,
1100 list_move_tail(&req->list, &engine->completed);
1101 --engine->in_flight;
1103 /* POP the status register. */
1104 writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1105 req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1106 SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1109 * Convert the SPAcc error status into the standard POSIX error
1112 if (unlikely(req->result)) {
1113 switch (req->result) {
1114 case SPA_STATUS_ICV_FAIL:
1115 req->result = -EBADMSG;
1118 case SPA_STATUS_MEMORY_ERROR:
1119 dev_warn(engine->dev,
1120 "memory error triggered\n");
1121 req->result = -EFAULT;
1124 case SPA_STATUS_BLOCK_ERROR:
1125 dev_warn(engine->dev,
1126 "block error triggered\n");
1133 tasklet_schedule(&engine->complete);
1135 spin_unlock_irqrestore(&engine->hw_lock, flags);
1138 static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1140 struct spacc_engine *engine = (struct spacc_engine *)dev;
1141 u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1143 writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1144 spacc_process_done(engine);
1149 static void spacc_packet_timeout(struct timer_list *t)
1151 struct spacc_engine *engine = from_timer(engine, t, packet_timeout);
1153 spacc_process_done(engine);
1156 static int spacc_req_submit(struct spacc_req *req)
1158 struct crypto_alg *alg = req->req->tfm->__crt_alg;
1160 if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1161 return spacc_aead_submit(req);
1163 return spacc_ablk_submit(req);
1166 static void spacc_spacc_complete(unsigned long data)
1168 struct spacc_engine *engine = (struct spacc_engine *)data;
1169 struct spacc_req *req, *tmp;
1170 unsigned long flags;
1171 LIST_HEAD(completed);
1173 spin_lock_irqsave(&engine->hw_lock, flags);
1175 list_splice_init(&engine->completed, &completed);
1177 if (engine->in_flight)
1178 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1180 spin_unlock_irqrestore(&engine->hw_lock, flags);
1182 list_for_each_entry_safe(req, tmp, &completed, list) {
1183 list_del(&req->list);
1189 static int spacc_suspend(struct device *dev)
1191 struct spacc_engine *engine = dev_get_drvdata(dev);
1194 * We only support standby mode. All we have to do is gate the clock to
1195 * the spacc. The hardware will preserve state until we turn it back
1198 clk_disable(engine->clk);
1203 static int spacc_resume(struct device *dev)
1205 struct spacc_engine *engine = dev_get_drvdata(dev);
1207 return clk_enable(engine->clk);
1210 static const struct dev_pm_ops spacc_pm_ops = {
1211 .suspend = spacc_suspend,
1212 .resume = spacc_resume,
1214 #endif /* CONFIG_PM */
1216 static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1218 return dev ? dev_get_drvdata(dev) : NULL;
1221 static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1222 struct device_attribute *attr,
1225 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1227 return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1230 static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1231 struct device_attribute *attr,
1232 const char *buf, size_t len)
1234 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1235 unsigned long thresh;
1237 if (kstrtoul(buf, 0, &thresh))
1240 thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1242 engine->stat_irq_thresh = thresh;
1243 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1244 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1248 static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1249 spacc_stat_irq_thresh_store);
1251 static struct spacc_alg ipsec_engine_algs[] = {
1253 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1255 .iv_offs = AES_MAX_KEY_SIZE,
1257 .cra_name = "cbc(aes)",
1258 .cra_driver_name = "cbc-aes-picoxcell",
1259 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1260 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1261 CRYPTO_ALG_KERN_DRIVER_ONLY |
1263 CRYPTO_ALG_NEED_FALLBACK,
1264 .cra_blocksize = AES_BLOCK_SIZE,
1265 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1266 .cra_type = &crypto_ablkcipher_type,
1267 .cra_module = THIS_MODULE,
1269 .setkey = spacc_aes_setkey,
1270 .encrypt = spacc_ablk_encrypt,
1271 .decrypt = spacc_ablk_decrypt,
1272 .min_keysize = AES_MIN_KEY_SIZE,
1273 .max_keysize = AES_MAX_KEY_SIZE,
1274 .ivsize = AES_BLOCK_SIZE,
1276 .cra_init = spacc_ablk_cra_init,
1277 .cra_exit = spacc_ablk_cra_exit,
1282 .iv_offs = AES_MAX_KEY_SIZE,
1283 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1285 .cra_name = "ecb(aes)",
1286 .cra_driver_name = "ecb-aes-picoxcell",
1287 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1288 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1289 CRYPTO_ALG_KERN_DRIVER_ONLY |
1290 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1291 .cra_blocksize = AES_BLOCK_SIZE,
1292 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1293 .cra_type = &crypto_ablkcipher_type,
1294 .cra_module = THIS_MODULE,
1296 .setkey = spacc_aes_setkey,
1297 .encrypt = spacc_ablk_encrypt,
1298 .decrypt = spacc_ablk_decrypt,
1299 .min_keysize = AES_MIN_KEY_SIZE,
1300 .max_keysize = AES_MAX_KEY_SIZE,
1302 .cra_init = spacc_ablk_cra_init,
1303 .cra_exit = spacc_ablk_cra_exit,
1307 .key_offs = DES_BLOCK_SIZE,
1309 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1311 .cra_name = "cbc(des)",
1312 .cra_driver_name = "cbc-des-picoxcell",
1313 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1314 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1316 CRYPTO_ALG_KERN_DRIVER_ONLY,
1317 .cra_blocksize = DES_BLOCK_SIZE,
1318 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1319 .cra_type = &crypto_ablkcipher_type,
1320 .cra_module = THIS_MODULE,
1322 .setkey = spacc_des_setkey,
1323 .encrypt = spacc_ablk_encrypt,
1324 .decrypt = spacc_ablk_decrypt,
1325 .min_keysize = DES_KEY_SIZE,
1326 .max_keysize = DES_KEY_SIZE,
1327 .ivsize = DES_BLOCK_SIZE,
1329 .cra_init = spacc_ablk_cra_init,
1330 .cra_exit = spacc_ablk_cra_exit,
1334 .key_offs = DES_BLOCK_SIZE,
1336 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1338 .cra_name = "ecb(des)",
1339 .cra_driver_name = "ecb-des-picoxcell",
1340 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1341 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1343 CRYPTO_ALG_KERN_DRIVER_ONLY,
1344 .cra_blocksize = DES_BLOCK_SIZE,
1345 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1346 .cra_type = &crypto_ablkcipher_type,
1347 .cra_module = THIS_MODULE,
1349 .setkey = spacc_des_setkey,
1350 .encrypt = spacc_ablk_encrypt,
1351 .decrypt = spacc_ablk_decrypt,
1352 .min_keysize = DES_KEY_SIZE,
1353 .max_keysize = DES_KEY_SIZE,
1355 .cra_init = spacc_ablk_cra_init,
1356 .cra_exit = spacc_ablk_cra_exit,
1360 .key_offs = DES_BLOCK_SIZE,
1362 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1364 .cra_name = "cbc(des3_ede)",
1365 .cra_driver_name = "cbc-des3-ede-picoxcell",
1366 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1367 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1369 CRYPTO_ALG_KERN_DRIVER_ONLY,
1370 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1371 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1372 .cra_type = &crypto_ablkcipher_type,
1373 .cra_module = THIS_MODULE,
1375 .setkey = spacc_des3_setkey,
1376 .encrypt = spacc_ablk_encrypt,
1377 .decrypt = spacc_ablk_decrypt,
1378 .min_keysize = DES3_EDE_KEY_SIZE,
1379 .max_keysize = DES3_EDE_KEY_SIZE,
1380 .ivsize = DES3_EDE_BLOCK_SIZE,
1382 .cra_init = spacc_ablk_cra_init,
1383 .cra_exit = spacc_ablk_cra_exit,
1387 .key_offs = DES_BLOCK_SIZE,
1389 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1391 .cra_name = "ecb(des3_ede)",
1392 .cra_driver_name = "ecb-des3-ede-picoxcell",
1393 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1394 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1396 CRYPTO_ALG_KERN_DRIVER_ONLY,
1397 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1398 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1399 .cra_type = &crypto_ablkcipher_type,
1400 .cra_module = THIS_MODULE,
1402 .setkey = spacc_des3_setkey,
1403 .encrypt = spacc_ablk_encrypt,
1404 .decrypt = spacc_ablk_decrypt,
1405 .min_keysize = DES3_EDE_KEY_SIZE,
1406 .max_keysize = DES3_EDE_KEY_SIZE,
1408 .cra_init = spacc_ablk_cra_init,
1409 .cra_exit = spacc_ablk_cra_exit,
1414 static struct spacc_aead ipsec_engine_aeads[] = {
1416 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1417 SPA_CTRL_CIPH_MODE_CBC |
1418 SPA_CTRL_HASH_ALG_SHA |
1419 SPA_CTRL_HASH_MODE_HMAC,
1421 .iv_offs = AES_MAX_KEY_SIZE,
1424 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1425 .cra_driver_name = "authenc-hmac-sha1-"
1426 "cbc-aes-picoxcell",
1427 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1428 .cra_flags = CRYPTO_ALG_ASYNC |
1429 CRYPTO_ALG_NEED_FALLBACK |
1430 CRYPTO_ALG_KERN_DRIVER_ONLY,
1431 .cra_blocksize = AES_BLOCK_SIZE,
1432 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1433 .cra_module = THIS_MODULE,
1435 .setkey = spacc_aead_setkey,
1436 .setauthsize = spacc_aead_setauthsize,
1437 .encrypt = spacc_aead_encrypt,
1438 .decrypt = spacc_aead_decrypt,
1439 .ivsize = AES_BLOCK_SIZE,
1440 .maxauthsize = SHA1_DIGEST_SIZE,
1441 .init = spacc_aead_cra_init,
1442 .exit = spacc_aead_cra_exit,
1446 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1447 SPA_CTRL_CIPH_MODE_CBC |
1448 SPA_CTRL_HASH_ALG_SHA256 |
1449 SPA_CTRL_HASH_MODE_HMAC,
1451 .iv_offs = AES_MAX_KEY_SIZE,
1454 .cra_name = "authenc(hmac(sha256),cbc(aes))",
1455 .cra_driver_name = "authenc-hmac-sha256-"
1456 "cbc-aes-picoxcell",
1457 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1458 .cra_flags = CRYPTO_ALG_ASYNC |
1459 CRYPTO_ALG_NEED_FALLBACK |
1460 CRYPTO_ALG_KERN_DRIVER_ONLY,
1461 .cra_blocksize = AES_BLOCK_SIZE,
1462 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1463 .cra_module = THIS_MODULE,
1465 .setkey = spacc_aead_setkey,
1466 .setauthsize = spacc_aead_setauthsize,
1467 .encrypt = spacc_aead_encrypt,
1468 .decrypt = spacc_aead_decrypt,
1469 .ivsize = AES_BLOCK_SIZE,
1470 .maxauthsize = SHA256_DIGEST_SIZE,
1471 .init = spacc_aead_cra_init,
1472 .exit = spacc_aead_cra_exit,
1477 .iv_offs = AES_MAX_KEY_SIZE,
1478 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1479 SPA_CTRL_CIPH_MODE_CBC |
1480 SPA_CTRL_HASH_ALG_MD5 |
1481 SPA_CTRL_HASH_MODE_HMAC,
1484 .cra_name = "authenc(hmac(md5),cbc(aes))",
1485 .cra_driver_name = "authenc-hmac-md5-"
1486 "cbc-aes-picoxcell",
1487 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1488 .cra_flags = CRYPTO_ALG_ASYNC |
1489 CRYPTO_ALG_NEED_FALLBACK |
1490 CRYPTO_ALG_KERN_DRIVER_ONLY,
1491 .cra_blocksize = AES_BLOCK_SIZE,
1492 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1493 .cra_module = THIS_MODULE,
1495 .setkey = spacc_aead_setkey,
1496 .setauthsize = spacc_aead_setauthsize,
1497 .encrypt = spacc_aead_encrypt,
1498 .decrypt = spacc_aead_decrypt,
1499 .ivsize = AES_BLOCK_SIZE,
1500 .maxauthsize = MD5_DIGEST_SIZE,
1501 .init = spacc_aead_cra_init,
1502 .exit = spacc_aead_cra_exit,
1506 .key_offs = DES_BLOCK_SIZE,
1508 .ctrl_default = SPA_CTRL_CIPH_ALG_DES |
1509 SPA_CTRL_CIPH_MODE_CBC |
1510 SPA_CTRL_HASH_ALG_SHA |
1511 SPA_CTRL_HASH_MODE_HMAC,
1514 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1515 .cra_driver_name = "authenc-hmac-sha1-"
1516 "cbc-3des-picoxcell",
1517 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1518 .cra_flags = CRYPTO_ALG_ASYNC |
1519 CRYPTO_ALG_NEED_FALLBACK |
1520 CRYPTO_ALG_KERN_DRIVER_ONLY,
1521 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1522 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1523 .cra_module = THIS_MODULE,
1525 .setkey = spacc_aead_setkey,
1526 .setauthsize = spacc_aead_setauthsize,
1527 .encrypt = spacc_aead_encrypt,
1528 .decrypt = spacc_aead_decrypt,
1529 .ivsize = DES3_EDE_BLOCK_SIZE,
1530 .maxauthsize = SHA1_DIGEST_SIZE,
1531 .init = spacc_aead_cra_init,
1532 .exit = spacc_aead_cra_exit,
1536 .key_offs = DES_BLOCK_SIZE,
1538 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1539 SPA_CTRL_CIPH_MODE_CBC |
1540 SPA_CTRL_HASH_ALG_SHA256 |
1541 SPA_CTRL_HASH_MODE_HMAC,
1544 .cra_name = "authenc(hmac(sha256),"
1546 .cra_driver_name = "authenc-hmac-sha256-"
1547 "cbc-3des-picoxcell",
1548 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1549 .cra_flags = CRYPTO_ALG_ASYNC |
1550 CRYPTO_ALG_NEED_FALLBACK |
1551 CRYPTO_ALG_KERN_DRIVER_ONLY,
1552 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1553 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1554 .cra_module = THIS_MODULE,
1556 .setkey = spacc_aead_setkey,
1557 .setauthsize = spacc_aead_setauthsize,
1558 .encrypt = spacc_aead_encrypt,
1559 .decrypt = spacc_aead_decrypt,
1560 .ivsize = DES3_EDE_BLOCK_SIZE,
1561 .maxauthsize = SHA256_DIGEST_SIZE,
1562 .init = spacc_aead_cra_init,
1563 .exit = spacc_aead_cra_exit,
1567 .key_offs = DES_BLOCK_SIZE,
1569 .ctrl_default = SPA_CTRL_CIPH_ALG_DES |
1570 SPA_CTRL_CIPH_MODE_CBC |
1571 SPA_CTRL_HASH_ALG_MD5 |
1572 SPA_CTRL_HASH_MODE_HMAC,
1575 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1576 .cra_driver_name = "authenc-hmac-md5-"
1577 "cbc-3des-picoxcell",
1578 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1579 .cra_flags = CRYPTO_ALG_ASYNC |
1580 CRYPTO_ALG_NEED_FALLBACK |
1581 CRYPTO_ALG_KERN_DRIVER_ONLY,
1582 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1583 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1584 .cra_module = THIS_MODULE,
1586 .setkey = spacc_aead_setkey,
1587 .setauthsize = spacc_aead_setauthsize,
1588 .encrypt = spacc_aead_encrypt,
1589 .decrypt = spacc_aead_decrypt,
1590 .ivsize = DES3_EDE_BLOCK_SIZE,
1591 .maxauthsize = MD5_DIGEST_SIZE,
1592 .init = spacc_aead_cra_init,
1593 .exit = spacc_aead_cra_exit,
1598 static struct spacc_alg l2_engine_algs[] = {
1601 .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1602 .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1603 SPA_CTRL_CIPH_MODE_F8,
1605 .cra_name = "f8(kasumi)",
1606 .cra_driver_name = "f8-kasumi-picoxcell",
1607 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1608 .cra_flags = CRYPTO_ALG_ASYNC |
1609 CRYPTO_ALG_KERN_DRIVER_ONLY,
1611 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1612 .cra_type = &crypto_ablkcipher_type,
1613 .cra_module = THIS_MODULE,
1615 .setkey = spacc_kasumi_f8_setkey,
1616 .encrypt = spacc_ablk_encrypt,
1617 .decrypt = spacc_ablk_decrypt,
1622 .cra_init = spacc_ablk_cra_init,
1623 .cra_exit = spacc_ablk_cra_exit,
1629 static const struct of_device_id spacc_of_id_table[] = {
1630 { .compatible = "picochip,spacc-ipsec" },
1631 { .compatible = "picochip,spacc-l2" },
1634 MODULE_DEVICE_TABLE(of, spacc_of_id_table);
1635 #endif /* CONFIG_OF */
1637 static int spacc_probe(struct platform_device *pdev)
1640 struct resource *mem, *irq;
1641 struct device_node *np = pdev->dev.of_node;
1642 struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1647 if (of_device_is_compatible(np, "picochip,spacc-ipsec")) {
1648 engine->max_ctxs = SPACC_CRYPTO_IPSEC_MAX_CTXS;
1649 engine->cipher_pg_sz = SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
1650 engine->hash_pg_sz = SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
1651 engine->fifo_sz = SPACC_CRYPTO_IPSEC_FIFO_SZ;
1652 engine->algs = ipsec_engine_algs;
1653 engine->num_algs = ARRAY_SIZE(ipsec_engine_algs);
1654 engine->aeads = ipsec_engine_aeads;
1655 engine->num_aeads = ARRAY_SIZE(ipsec_engine_aeads);
1656 } else if (of_device_is_compatible(np, "picochip,spacc-l2")) {
1657 engine->max_ctxs = SPACC_CRYPTO_L2_MAX_CTXS;
1658 engine->cipher_pg_sz = SPACC_CRYPTO_L2_CIPHER_PG_SZ;
1659 engine->hash_pg_sz = SPACC_CRYPTO_L2_HASH_PG_SZ;
1660 engine->fifo_sz = SPACC_CRYPTO_L2_FIFO_SZ;
1661 engine->algs = l2_engine_algs;
1662 engine->num_algs = ARRAY_SIZE(l2_engine_algs);
1667 engine->name = dev_name(&pdev->dev);
1669 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1670 engine->regs = devm_ioremap_resource(&pdev->dev, mem);
1671 if (IS_ERR(engine->regs))
1672 return PTR_ERR(engine->regs);
1674 irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1676 dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1680 if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1681 engine->name, engine)) {
1682 dev_err(engine->dev, "failed to request IRQ\n");
1686 engine->dev = &pdev->dev;
1687 engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1688 engine->hash_key_base = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1690 engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1691 MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1692 if (!engine->req_pool)
1695 spin_lock_init(&engine->hw_lock);
1697 engine->clk = clk_get(&pdev->dev, "ref");
1698 if (IS_ERR(engine->clk)) {
1699 dev_info(&pdev->dev, "clk unavailable\n");
1700 return PTR_ERR(engine->clk);
1703 if (clk_prepare_enable(engine->clk)) {
1704 dev_info(&pdev->dev, "unable to prepare/enable clk\n");
1709 ret = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1711 goto err_clk_disable;
1715 * Use an IRQ threshold of 50% as a default. This seems to be a
1716 * reasonable trade off of latency against throughput but can be
1717 * changed at runtime.
1719 engine->stat_irq_thresh = (engine->fifo_sz / 2);
1722 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1723 * only submit a new packet for processing when we complete another in
1724 * the queue. This minimizes time spent in the interrupt handler.
1726 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1727 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1728 writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1729 engine->regs + SPA_IRQ_EN_REG_OFFSET);
1731 timer_setup(&engine->packet_timeout, spacc_packet_timeout, 0);
1733 INIT_LIST_HEAD(&engine->pending);
1734 INIT_LIST_HEAD(&engine->completed);
1735 INIT_LIST_HEAD(&engine->in_progress);
1736 engine->in_flight = 0;
1737 tasklet_init(&engine->complete, spacc_spacc_complete,
1738 (unsigned long)engine);
1740 platform_set_drvdata(pdev, engine);
1743 INIT_LIST_HEAD(&engine->registered_algs);
1744 for (i = 0; i < engine->num_algs; ++i) {
1745 engine->algs[i].engine = engine;
1746 err = crypto_register_alg(&engine->algs[i].alg);
1748 list_add_tail(&engine->algs[i].entry,
1749 &engine->registered_algs);
1753 dev_err(engine->dev, "failed to register alg \"%s\"\n",
1754 engine->algs[i].alg.cra_name);
1756 dev_dbg(engine->dev, "registered alg \"%s\"\n",
1757 engine->algs[i].alg.cra_name);
1760 INIT_LIST_HEAD(&engine->registered_aeads);
1761 for (i = 0; i < engine->num_aeads; ++i) {
1762 engine->aeads[i].engine = engine;
1763 err = crypto_register_aead(&engine->aeads[i].alg);
1765 list_add_tail(&engine->aeads[i].entry,
1766 &engine->registered_aeads);
1770 dev_err(engine->dev, "failed to register alg \"%s\"\n",
1771 engine->aeads[i].alg.base.cra_name);
1773 dev_dbg(engine->dev, "registered alg \"%s\"\n",
1774 engine->aeads[i].alg.base.cra_name);
1780 del_timer_sync(&engine->packet_timeout);
1781 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1783 clk_disable_unprepare(engine->clk);
1785 clk_put(engine->clk);
1790 static int spacc_remove(struct platform_device *pdev)
1792 struct spacc_aead *aead, *an;
1793 struct spacc_alg *alg, *next;
1794 struct spacc_engine *engine = platform_get_drvdata(pdev);
1796 del_timer_sync(&engine->packet_timeout);
1797 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1799 list_for_each_entry_safe(aead, an, &engine->registered_aeads, entry) {
1800 list_del(&aead->entry);
1801 crypto_unregister_aead(&aead->alg);
1804 list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1805 list_del(&alg->entry);
1806 crypto_unregister_alg(&alg->alg);
1809 clk_disable_unprepare(engine->clk);
1810 clk_put(engine->clk);
1815 static struct platform_driver spacc_driver = {
1816 .probe = spacc_probe,
1817 .remove = spacc_remove,
1819 .name = "picochip,spacc",
1821 .pm = &spacc_pm_ops,
1822 #endif /* CONFIG_PM */
1823 .of_match_table = of_match_ptr(spacc_of_id_table),
1827 module_platform_driver(spacc_driver);
1829 MODULE_LICENSE("GPL");
1830 MODULE_AUTHOR("Jamie Iles");