1 // SPDX-License-Identifier: GPL-2.0-only
4 * Library for filesystems writers.
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 #include <linux/pidfs.h>
28 #include <linux/uaccess.h>
32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33 struct kstat *stat, u32 request_mask,
34 unsigned int query_flags)
36 struct inode *inode = d_inode(path->dentry);
37 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
41 EXPORT_SYMBOL(simple_getattr);
43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
45 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
47 buf->f_fsid = u64_to_fsid(id);
48 buf->f_type = dentry->d_sb->s_magic;
49 buf->f_bsize = PAGE_SIZE;
50 buf->f_namelen = NAME_MAX;
53 EXPORT_SYMBOL(simple_statfs);
56 * Retaining negative dentries for an in-memory filesystem just wastes
57 * memory and lookup time: arrange for them to be deleted immediately.
59 int always_delete_dentry(const struct dentry *dentry)
63 EXPORT_SYMBOL(always_delete_dentry);
65 const struct dentry_operations simple_dentry_operations = {
66 .d_delete = always_delete_dentry,
68 EXPORT_SYMBOL(simple_dentry_operations);
71 * Lookup the data. This is trivial - if the dentry didn't already
72 * exist, we know it is negative. Set d_op to delete negative dentries.
74 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
76 if (dentry->d_name.len > NAME_MAX)
77 return ERR_PTR(-ENAMETOOLONG);
78 if (!dentry->d_sb->s_d_op)
79 d_set_d_op(dentry, &simple_dentry_operations);
81 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
87 EXPORT_SYMBOL(simple_lookup);
89 int dcache_dir_open(struct inode *inode, struct file *file)
91 file->private_data = d_alloc_cursor(file->f_path.dentry);
93 return file->private_data ? 0 : -ENOMEM;
95 EXPORT_SYMBOL(dcache_dir_open);
97 int dcache_dir_close(struct inode *inode, struct file *file)
99 dput(file->private_data);
102 EXPORT_SYMBOL(dcache_dir_close);
104 /* parent is locked at least shared */
106 * Returns an element of siblings' list.
107 * We are looking for <count>th positive after <p>; if
108 * found, dentry is grabbed and returned to caller.
109 * If no such element exists, NULL is returned.
111 static struct dentry *scan_positives(struct dentry *cursor,
112 struct hlist_node **p,
116 struct dentry *dentry = cursor->d_parent, *found = NULL;
118 spin_lock(&dentry->d_lock);
120 struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
122 // we must at least skip cursors, to avoid livelocks
123 if (d->d_flags & DCACHE_DENTRY_CURSOR)
125 if (simple_positive(d) && !--count) {
126 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
127 if (simple_positive(d))
128 found = dget_dlock(d);
129 spin_unlock(&d->d_lock);
134 if (need_resched()) {
135 if (!hlist_unhashed(&cursor->d_sib))
136 __hlist_del(&cursor->d_sib);
137 hlist_add_behind(&cursor->d_sib, &d->d_sib);
138 p = &cursor->d_sib.next;
139 spin_unlock(&dentry->d_lock);
141 spin_lock(&dentry->d_lock);
144 spin_unlock(&dentry->d_lock);
149 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
151 struct dentry *dentry = file->f_path.dentry;
154 offset += file->f_pos;
163 if (offset != file->f_pos) {
164 struct dentry *cursor = file->private_data;
165 struct dentry *to = NULL;
167 inode_lock_shared(dentry->d_inode);
170 to = scan_positives(cursor, &dentry->d_children.first,
172 spin_lock(&dentry->d_lock);
173 hlist_del_init(&cursor->d_sib);
175 hlist_add_behind(&cursor->d_sib, &to->d_sib);
176 spin_unlock(&dentry->d_lock);
179 file->f_pos = offset;
181 inode_unlock_shared(dentry->d_inode);
185 EXPORT_SYMBOL(dcache_dir_lseek);
188 * Directory is locked and all positive dentries in it are safe, since
189 * for ramfs-type trees they can't go away without unlink() or rmdir(),
190 * both impossible due to the lock on directory.
193 int dcache_readdir(struct file *file, struct dir_context *ctx)
195 struct dentry *dentry = file->f_path.dentry;
196 struct dentry *cursor = file->private_data;
197 struct dentry *next = NULL;
198 struct hlist_node **p;
200 if (!dir_emit_dots(file, ctx))
204 p = &dentry->d_children.first;
206 p = &cursor->d_sib.next;
208 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
209 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
210 d_inode(next)->i_ino,
211 fs_umode_to_dtype(d_inode(next)->i_mode)))
214 p = &next->d_sib.next;
216 spin_lock(&dentry->d_lock);
217 hlist_del_init(&cursor->d_sib);
219 hlist_add_before(&cursor->d_sib, &next->d_sib);
220 spin_unlock(&dentry->d_lock);
225 EXPORT_SYMBOL(dcache_readdir);
227 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
231 EXPORT_SYMBOL(generic_read_dir);
233 const struct file_operations simple_dir_operations = {
234 .open = dcache_dir_open,
235 .release = dcache_dir_close,
236 .llseek = dcache_dir_lseek,
237 .read = generic_read_dir,
238 .iterate_shared = dcache_readdir,
241 EXPORT_SYMBOL(simple_dir_operations);
243 const struct inode_operations simple_dir_inode_operations = {
244 .lookup = simple_lookup,
246 EXPORT_SYMBOL(simple_dir_inode_operations);
248 /* simple_offset_add() never assigns these to a dentry */
250 DIR_OFFSET_FIRST = 2, /* Find first real entry */
251 DIR_OFFSET_EOD = S32_MAX,
254 /* simple_offset_add() allocation range */
256 DIR_OFFSET_MIN = DIR_OFFSET_FIRST + 1,
257 DIR_OFFSET_MAX = DIR_OFFSET_EOD - 1,
260 static void offset_set(struct dentry *dentry, long offset)
262 dentry->d_fsdata = (void *)offset;
265 static long dentry2offset(struct dentry *dentry)
267 return (long)dentry->d_fsdata;
270 static struct lock_class_key simple_offset_lock_class;
273 * simple_offset_init - initialize an offset_ctx
274 * @octx: directory offset map to be initialized
277 void simple_offset_init(struct offset_ctx *octx)
279 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
280 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
281 octx->next_offset = DIR_OFFSET_MIN;
285 * simple_offset_add - Add an entry to a directory's offset map
286 * @octx: directory offset ctx to be updated
287 * @dentry: new dentry being added
289 * Returns zero on success. @octx and the dentry's offset are updated.
290 * Otherwise, a negative errno value is returned.
292 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
294 unsigned long offset;
297 if (dentry2offset(dentry) != 0)
300 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
301 DIR_OFFSET_MAX, &octx->next_offset,
303 if (unlikely(ret < 0))
304 return ret == -EBUSY ? -ENOSPC : ret;
306 offset_set(dentry, offset);
310 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
315 ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
318 offset_set(dentry, offset);
323 * simple_offset_remove - Remove an entry to a directory's offset map
324 * @octx: directory offset ctx to be updated
325 * @dentry: dentry being removed
328 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
332 offset = dentry2offset(dentry);
336 mtree_erase(&octx->mt, offset);
337 offset_set(dentry, 0);
341 * simple_offset_rename - handle directory offsets for rename
342 * @old_dir: parent directory of source entry
343 * @old_dentry: dentry of source entry
344 * @new_dir: parent_directory of destination entry
345 * @new_dentry: dentry of destination
347 * Caller provides appropriate serialization.
349 * User space expects the directory offset value of the replaced
350 * (new) directory entry to be unchanged after a rename.
352 * Returns zero on success, a negative errno value on failure.
354 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
355 struct inode *new_dir, struct dentry *new_dentry)
357 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
358 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
359 long new_offset = dentry2offset(new_dentry);
361 simple_offset_remove(old_ctx, old_dentry);
364 offset_set(new_dentry, 0);
365 return simple_offset_replace(new_ctx, old_dentry, new_offset);
367 return simple_offset_add(new_ctx, old_dentry);
371 * simple_offset_rename_exchange - exchange rename with directory offsets
372 * @old_dir: parent of dentry being moved
373 * @old_dentry: dentry being moved
374 * @new_dir: destination parent
375 * @new_dentry: destination dentry
377 * This API preserves the directory offset values. Caller provides
378 * appropriate serialization.
380 * Returns zero on success. Otherwise a negative errno is returned and the
381 * rename is rolled back.
383 int simple_offset_rename_exchange(struct inode *old_dir,
384 struct dentry *old_dentry,
385 struct inode *new_dir,
386 struct dentry *new_dentry)
388 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
389 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
390 long old_index = dentry2offset(old_dentry);
391 long new_index = dentry2offset(new_dentry);
394 simple_offset_remove(old_ctx, old_dentry);
395 simple_offset_remove(new_ctx, new_dentry);
397 ret = simple_offset_replace(new_ctx, old_dentry, new_index);
401 ret = simple_offset_replace(old_ctx, new_dentry, old_index);
403 simple_offset_remove(new_ctx, old_dentry);
407 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
409 simple_offset_remove(new_ctx, old_dentry);
410 simple_offset_remove(old_ctx, new_dentry);
416 (void)simple_offset_replace(old_ctx, old_dentry, old_index);
417 (void)simple_offset_replace(new_ctx, new_dentry, new_index);
422 * simple_offset_destroy - Release offset map
423 * @octx: directory offset ctx that is about to be destroyed
425 * During fs teardown (eg. umount), a directory's offset map might still
426 * contain entries. xa_destroy() cleans out anything that remains.
428 void simple_offset_destroy(struct offset_ctx *octx)
430 mtree_destroy(&octx->mt);
434 * offset_dir_llseek - Advance the read position of a directory descriptor
435 * @file: an open directory whose position is to be updated
436 * @offset: a byte offset
437 * @whence: enumerator describing the starting position for this update
439 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
441 * Returns the updated read position if successful; otherwise a
442 * negative errno is returned and the read position remains unchanged.
444 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
448 offset += file->f_pos;
458 return vfs_setpos(file, offset, LONG_MAX);
461 static struct dentry *find_positive_dentry(struct dentry *parent,
462 struct dentry *dentry,
465 struct dentry *found = NULL;
467 spin_lock(&parent->d_lock);
469 dentry = d_next_sibling(dentry);
471 dentry = d_first_child(parent);
472 hlist_for_each_entry_from(dentry, d_sib) {
473 if (!simple_positive(dentry))
475 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
476 if (simple_positive(dentry))
477 found = dget_dlock(dentry);
478 spin_unlock(&dentry->d_lock);
482 spin_unlock(&parent->d_lock);
486 static noinline_for_stack struct dentry *
487 offset_dir_lookup(struct dentry *parent, loff_t offset)
489 struct inode *inode = d_inode(parent);
490 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
491 struct dentry *child, *found = NULL;
493 MA_STATE(mas, &octx->mt, offset, offset);
495 if (offset == DIR_OFFSET_FIRST)
496 found = find_positive_dentry(parent, NULL, false);
499 child = mas_find(&mas, DIR_OFFSET_MAX);
500 found = find_positive_dentry(parent, child, false);
506 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
508 struct inode *inode = d_inode(dentry);
510 return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len,
511 inode->i_ino, fs_umode_to_dtype(inode->i_mode));
514 static void offset_iterate_dir(struct file *file, struct dir_context *ctx)
516 struct dentry *dir = file->f_path.dentry;
517 struct dentry *dentry;
519 dentry = offset_dir_lookup(dir, ctx->pos);
525 ctx->pos = dentry2offset(dentry);
526 if (!offset_dir_emit(ctx, dentry))
529 next = find_positive_dentry(dir, dentry, true);
540 ctx->pos = DIR_OFFSET_EOD;
544 * offset_readdir - Emit entries starting at offset @ctx->pos
545 * @file: an open directory to iterate over
546 * @ctx: directory iteration context
548 * Caller must hold @file's i_rwsem to prevent insertion or removal of
549 * entries during this call.
551 * On entry, @ctx->pos contains an offset that represents the first entry
552 * to be read from the directory.
554 * The operation continues until there are no more entries to read, or
555 * until the ctx->actor indicates there is no more space in the caller's
558 * On return, @ctx->pos contains an offset that will read the next entry
559 * in this directory when offset_readdir() is called again with @ctx.
560 * Caller places this value in the d_off field of the last entry in the
566 static int offset_readdir(struct file *file, struct dir_context *ctx)
568 struct dentry *dir = file->f_path.dentry;
570 lockdep_assert_held(&d_inode(dir)->i_rwsem);
572 if (!dir_emit_dots(file, ctx))
574 if (ctx->pos != DIR_OFFSET_EOD)
575 offset_iterate_dir(file, ctx);
579 const struct file_operations simple_offset_dir_operations = {
580 .llseek = offset_dir_llseek,
581 .iterate_shared = offset_readdir,
582 .read = generic_read_dir,
586 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
588 struct dentry *child = NULL, *d;
590 spin_lock(&parent->d_lock);
591 d = prev ? d_next_sibling(prev) : d_first_child(parent);
592 hlist_for_each_entry_from(d, d_sib) {
593 if (simple_positive(d)) {
594 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
595 if (simple_positive(d))
596 child = dget_dlock(d);
597 spin_unlock(&d->d_lock);
602 spin_unlock(&parent->d_lock);
607 void simple_recursive_removal(struct dentry *dentry,
608 void (*callback)(struct dentry *))
610 struct dentry *this = dget(dentry);
612 struct dentry *victim = NULL, *child;
613 struct inode *inode = this->d_inode;
617 inode->i_flags |= S_DEAD;
618 while ((child = find_next_child(this, victim)) == NULL) {
620 // update metadata while it's still locked
621 inode_set_ctime_current(inode);
625 this = this->d_parent;
626 inode = this->d_inode;
628 if (simple_positive(victim)) {
629 d_invalidate(victim); // avoid lost mounts
630 if (d_is_dir(victim))
631 fsnotify_rmdir(inode, victim);
633 fsnotify_unlink(inode, victim);
636 dput(victim); // unpin it
638 if (victim == dentry) {
639 inode_set_mtime_to_ts(inode,
640 inode_set_ctime_current(inode));
641 if (d_is_dir(dentry))
652 EXPORT_SYMBOL(simple_recursive_removal);
654 static const struct super_operations simple_super_operations = {
655 .statfs = simple_statfs,
658 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
660 struct pseudo_fs_context *ctx = fc->fs_private;
663 s->s_maxbytes = MAX_LFS_FILESIZE;
664 s->s_blocksize = PAGE_SIZE;
665 s->s_blocksize_bits = PAGE_SHIFT;
666 s->s_magic = ctx->magic;
667 s->s_op = ctx->ops ?: &simple_super_operations;
668 s->s_export_op = ctx->eops;
669 s->s_xattr = ctx->xattr;
676 * since this is the first inode, make it number 1. New inodes created
677 * after this must take care not to collide with it (by passing
678 * max_reserved of 1 to iunique).
681 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
682 simple_inode_init_ts(root);
683 s->s_root = d_make_root(root);
686 s->s_d_op = ctx->dops;
690 static int pseudo_fs_get_tree(struct fs_context *fc)
692 return get_tree_nodev(fc, pseudo_fs_fill_super);
695 static void pseudo_fs_free(struct fs_context *fc)
697 kfree(fc->fs_private);
700 static const struct fs_context_operations pseudo_fs_context_ops = {
701 .free = pseudo_fs_free,
702 .get_tree = pseudo_fs_get_tree,
706 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
707 * will never be mountable)
709 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
712 struct pseudo_fs_context *ctx;
714 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
717 fc->fs_private = ctx;
718 fc->ops = &pseudo_fs_context_ops;
719 fc->sb_flags |= SB_NOUSER;
724 EXPORT_SYMBOL(init_pseudo);
726 int simple_open(struct inode *inode, struct file *file)
728 if (inode->i_private)
729 file->private_data = inode->i_private;
732 EXPORT_SYMBOL(simple_open);
734 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
736 struct inode *inode = d_inode(old_dentry);
738 inode_set_mtime_to_ts(dir,
739 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
743 d_instantiate(dentry, inode);
746 EXPORT_SYMBOL(simple_link);
748 int simple_empty(struct dentry *dentry)
750 struct dentry *child;
753 spin_lock(&dentry->d_lock);
754 hlist_for_each_entry(child, &dentry->d_children, d_sib) {
755 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
756 if (simple_positive(child)) {
757 spin_unlock(&child->d_lock);
760 spin_unlock(&child->d_lock);
764 spin_unlock(&dentry->d_lock);
767 EXPORT_SYMBOL(simple_empty);
769 int simple_unlink(struct inode *dir, struct dentry *dentry)
771 struct inode *inode = d_inode(dentry);
773 inode_set_mtime_to_ts(dir,
774 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
779 EXPORT_SYMBOL(simple_unlink);
781 int simple_rmdir(struct inode *dir, struct dentry *dentry)
783 if (!simple_empty(dentry))
786 drop_nlink(d_inode(dentry));
787 simple_unlink(dir, dentry);
791 EXPORT_SYMBOL(simple_rmdir);
794 * simple_rename_timestamp - update the various inode timestamps for rename
795 * @old_dir: old parent directory
796 * @old_dentry: dentry that is being renamed
797 * @new_dir: new parent directory
798 * @new_dentry: target for rename
800 * POSIX mandates that the old and new parent directories have their ctime and
801 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
802 * their ctime updated.
804 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
805 struct inode *new_dir, struct dentry *new_dentry)
807 struct inode *newino = d_inode(new_dentry);
809 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
810 if (new_dir != old_dir)
811 inode_set_mtime_to_ts(new_dir,
812 inode_set_ctime_current(new_dir));
813 inode_set_ctime_current(d_inode(old_dentry));
815 inode_set_ctime_current(newino);
817 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
819 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
820 struct inode *new_dir, struct dentry *new_dentry)
822 bool old_is_dir = d_is_dir(old_dentry);
823 bool new_is_dir = d_is_dir(new_dentry);
825 if (old_dir != new_dir && old_is_dir != new_is_dir) {
834 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
837 EXPORT_SYMBOL_GPL(simple_rename_exchange);
839 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
840 struct dentry *old_dentry, struct inode *new_dir,
841 struct dentry *new_dentry, unsigned int flags)
843 int they_are_dirs = d_is_dir(old_dentry);
845 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
848 if (flags & RENAME_EXCHANGE)
849 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
851 if (!simple_empty(new_dentry))
854 if (d_really_is_positive(new_dentry)) {
855 simple_unlink(new_dir, new_dentry);
857 drop_nlink(d_inode(new_dentry));
860 } else if (they_are_dirs) {
865 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
868 EXPORT_SYMBOL(simple_rename);
871 * simple_setattr - setattr for simple filesystem
872 * @idmap: idmap of the target mount
874 * @iattr: iattr structure
876 * Returns 0 on success, -error on failure.
878 * simple_setattr is a simple ->setattr implementation without a proper
879 * implementation of size changes.
881 * It can either be used for in-memory filesystems or special files
882 * on simple regular filesystems. Anything that needs to change on-disk
883 * or wire state on size changes needs its own setattr method.
885 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
888 struct inode *inode = d_inode(dentry);
891 error = setattr_prepare(idmap, dentry, iattr);
895 if (iattr->ia_valid & ATTR_SIZE)
896 truncate_setsize(inode, iattr->ia_size);
897 setattr_copy(idmap, inode, iattr);
898 mark_inode_dirty(inode);
901 EXPORT_SYMBOL(simple_setattr);
903 static int simple_read_folio(struct file *file, struct folio *folio)
905 folio_zero_range(folio, 0, folio_size(folio));
906 flush_dcache_folio(folio);
907 folio_mark_uptodate(folio);
912 int simple_write_begin(struct file *file, struct address_space *mapping,
913 loff_t pos, unsigned len,
914 struct folio **foliop, void **fsdata)
918 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
919 mapping_gfp_mask(mapping));
921 return PTR_ERR(folio);
925 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
926 size_t from = offset_in_folio(folio, pos);
928 folio_zero_segments(folio, 0, from,
929 from + len, folio_size(folio));
933 EXPORT_SYMBOL(simple_write_begin);
936 * simple_write_end - .write_end helper for non-block-device FSes
937 * @file: See .write_end of address_space_operations
945 * simple_write_end does the minimum needed for updating a folio after
946 * writing is done. It has the same API signature as the .write_end of
947 * address_space_operations vector. So it can just be set onto .write_end for
948 * FSes that don't need any other processing. i_mutex is assumed to be held.
949 * Block based filesystems should use generic_write_end().
950 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
951 * is not called, so a filesystem that actually does store data in .write_inode
952 * should extend on what's done here with a call to mark_inode_dirty() in the
953 * case that i_size has changed.
955 * Use *ONLY* with simple_read_folio()
957 static int simple_write_end(struct file *file, struct address_space *mapping,
958 loff_t pos, unsigned len, unsigned copied,
959 struct folio *folio, void *fsdata)
961 struct inode *inode = folio->mapping->host;
962 loff_t last_pos = pos + copied;
964 /* zero the stale part of the folio if we did a short copy */
965 if (!folio_test_uptodate(folio)) {
967 size_t from = offset_in_folio(folio, pos);
969 folio_zero_range(folio, from + copied, len - copied);
971 folio_mark_uptodate(folio);
974 * No need to use i_size_read() here, the i_size
975 * cannot change under us because we hold the i_mutex.
977 if (last_pos > inode->i_size)
978 i_size_write(inode, last_pos);
980 folio_mark_dirty(folio);
988 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
990 const struct address_space_operations ram_aops = {
991 .read_folio = simple_read_folio,
992 .write_begin = simple_write_begin,
993 .write_end = simple_write_end,
994 .dirty_folio = noop_dirty_folio,
996 EXPORT_SYMBOL(ram_aops);
999 * the inodes created here are not hashed. If you use iunique to generate
1000 * unique inode values later for this filesystem, then you must take care
1001 * to pass it an appropriate max_reserved value to avoid collisions.
1003 int simple_fill_super(struct super_block *s, unsigned long magic,
1004 const struct tree_descr *files)
1006 struct inode *inode;
1007 struct dentry *dentry;
1010 s->s_blocksize = PAGE_SIZE;
1011 s->s_blocksize_bits = PAGE_SHIFT;
1013 s->s_op = &simple_super_operations;
1016 inode = new_inode(s);
1020 * because the root inode is 1, the files array must not contain an
1024 inode->i_mode = S_IFDIR | 0755;
1025 simple_inode_init_ts(inode);
1026 inode->i_op = &simple_dir_inode_operations;
1027 inode->i_fop = &simple_dir_operations;
1028 set_nlink(inode, 2);
1029 s->s_root = d_make_root(inode);
1032 for (i = 0; !files->name || files->name[0]; i++, files++) {
1036 /* warn if it tries to conflict with the root inode */
1037 if (unlikely(i == 1))
1038 printk(KERN_WARNING "%s: %s passed in a files array"
1039 "with an index of 1!\n", __func__,
1042 dentry = d_alloc_name(s->s_root, files->name);
1045 inode = new_inode(s);
1050 inode->i_mode = S_IFREG | files->mode;
1051 simple_inode_init_ts(inode);
1052 inode->i_fop = files->ops;
1054 d_add(dentry, inode);
1058 EXPORT_SYMBOL(simple_fill_super);
1060 static DEFINE_SPINLOCK(pin_fs_lock);
1062 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1064 struct vfsmount *mnt = NULL;
1065 spin_lock(&pin_fs_lock);
1066 if (unlikely(!*mount)) {
1067 spin_unlock(&pin_fs_lock);
1068 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1070 return PTR_ERR(mnt);
1071 spin_lock(&pin_fs_lock);
1077 spin_unlock(&pin_fs_lock);
1081 EXPORT_SYMBOL(simple_pin_fs);
1083 void simple_release_fs(struct vfsmount **mount, int *count)
1085 struct vfsmount *mnt;
1086 spin_lock(&pin_fs_lock);
1090 spin_unlock(&pin_fs_lock);
1093 EXPORT_SYMBOL(simple_release_fs);
1096 * simple_read_from_buffer - copy data from the buffer to user space
1097 * @to: the user space buffer to read to
1098 * @count: the maximum number of bytes to read
1099 * @ppos: the current position in the buffer
1100 * @from: the buffer to read from
1101 * @available: the size of the buffer
1103 * The simple_read_from_buffer() function reads up to @count bytes from the
1104 * buffer @from at offset @ppos into the user space address starting at @to.
1106 * On success, the number of bytes read is returned and the offset @ppos is
1107 * advanced by this number, or negative value is returned on error.
1109 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1110 const void *from, size_t available)
1117 if (pos >= available || !count)
1119 if (count > available - pos)
1120 count = available - pos;
1121 ret = copy_to_user(to, from + pos, count);
1125 *ppos = pos + count;
1128 EXPORT_SYMBOL(simple_read_from_buffer);
1131 * simple_write_to_buffer - copy data from user space to the buffer
1132 * @to: the buffer to write to
1133 * @available: the size of the buffer
1134 * @ppos: the current position in the buffer
1135 * @from: the user space buffer to read from
1136 * @count: the maximum number of bytes to read
1138 * The simple_write_to_buffer() function reads up to @count bytes from the user
1139 * space address starting at @from into the buffer @to at offset @ppos.
1141 * On success, the number of bytes written is returned and the offset @ppos is
1142 * advanced by this number, or negative value is returned on error.
1144 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1145 const void __user *from, size_t count)
1152 if (pos >= available || !count)
1154 if (count > available - pos)
1155 count = available - pos;
1156 res = copy_from_user(to + pos, from, count);
1160 *ppos = pos + count;
1163 EXPORT_SYMBOL(simple_write_to_buffer);
1166 * memory_read_from_buffer - copy data from the buffer
1167 * @to: the kernel space buffer to read to
1168 * @count: the maximum number of bytes to read
1169 * @ppos: the current position in the buffer
1170 * @from: the buffer to read from
1171 * @available: the size of the buffer
1173 * The memory_read_from_buffer() function reads up to @count bytes from the
1174 * buffer @from at offset @ppos into the kernel space address starting at @to.
1176 * On success, the number of bytes read is returned and the offset @ppos is
1177 * advanced by this number, or negative value is returned on error.
1179 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1180 const void *from, size_t available)
1186 if (pos >= available)
1188 if (count > available - pos)
1189 count = available - pos;
1190 memcpy(to, from + pos, count);
1191 *ppos = pos + count;
1195 EXPORT_SYMBOL(memory_read_from_buffer);
1198 * Transaction based IO.
1199 * The file expects a single write which triggers the transaction, and then
1200 * possibly a read which collects the result - which is stored in a
1201 * file-local buffer.
1204 void simple_transaction_set(struct file *file, size_t n)
1206 struct simple_transaction_argresp *ar = file->private_data;
1208 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1211 * The barrier ensures that ar->size will really remain zero until
1212 * ar->data is ready for reading.
1217 EXPORT_SYMBOL(simple_transaction_set);
1219 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1221 struct simple_transaction_argresp *ar;
1222 static DEFINE_SPINLOCK(simple_transaction_lock);
1224 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1225 return ERR_PTR(-EFBIG);
1227 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1229 return ERR_PTR(-ENOMEM);
1231 spin_lock(&simple_transaction_lock);
1233 /* only one write allowed per open */
1234 if (file->private_data) {
1235 spin_unlock(&simple_transaction_lock);
1236 free_page((unsigned long)ar);
1237 return ERR_PTR(-EBUSY);
1240 file->private_data = ar;
1242 spin_unlock(&simple_transaction_lock);
1244 if (copy_from_user(ar->data, buf, size))
1245 return ERR_PTR(-EFAULT);
1249 EXPORT_SYMBOL(simple_transaction_get);
1251 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1253 struct simple_transaction_argresp *ar = file->private_data;
1257 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1259 EXPORT_SYMBOL(simple_transaction_read);
1261 int simple_transaction_release(struct inode *inode, struct file *file)
1263 free_page((unsigned long)file->private_data);
1266 EXPORT_SYMBOL(simple_transaction_release);
1268 /* Simple attribute files */
1270 struct simple_attr {
1271 int (*get)(void *, u64 *);
1272 int (*set)(void *, u64);
1273 char get_buf[24]; /* enough to store a u64 and "\n\0" */
1276 const char *fmt; /* format for read operation */
1277 struct mutex mutex; /* protects access to these buffers */
1280 /* simple_attr_open is called by an actual attribute open file operation
1281 * to set the attribute specific access operations. */
1282 int simple_attr_open(struct inode *inode, struct file *file,
1283 int (*get)(void *, u64 *), int (*set)(void *, u64),
1286 struct simple_attr *attr;
1288 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1294 attr->data = inode->i_private;
1296 mutex_init(&attr->mutex);
1298 file->private_data = attr;
1300 return nonseekable_open(inode, file);
1302 EXPORT_SYMBOL_GPL(simple_attr_open);
1304 int simple_attr_release(struct inode *inode, struct file *file)
1306 kfree(file->private_data);
1309 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
1311 /* read from the buffer that is filled with the get function */
1312 ssize_t simple_attr_read(struct file *file, char __user *buf,
1313 size_t len, loff_t *ppos)
1315 struct simple_attr *attr;
1319 attr = file->private_data;
1324 ret = mutex_lock_interruptible(&attr->mutex);
1328 if (*ppos && attr->get_buf[0]) {
1329 /* continued read */
1330 size = strlen(attr->get_buf);
1334 ret = attr->get(attr->data, &val);
1338 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1339 attr->fmt, (unsigned long long)val);
1342 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1344 mutex_unlock(&attr->mutex);
1347 EXPORT_SYMBOL_GPL(simple_attr_read);
1349 /* interpret the buffer as a number to call the set function with */
1350 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1351 size_t len, loff_t *ppos, bool is_signed)
1353 struct simple_attr *attr;
1354 unsigned long long val;
1358 attr = file->private_data;
1362 ret = mutex_lock_interruptible(&attr->mutex);
1367 size = min(sizeof(attr->set_buf) - 1, len);
1368 if (copy_from_user(attr->set_buf, buf, size))
1371 attr->set_buf[size] = '\0';
1373 ret = kstrtoll(attr->set_buf, 0, &val);
1375 ret = kstrtoull(attr->set_buf, 0, &val);
1378 ret = attr->set(attr->data, val);
1380 ret = len; /* on success, claim we got the whole input */
1382 mutex_unlock(&attr->mutex);
1386 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1387 size_t len, loff_t *ppos)
1389 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1391 EXPORT_SYMBOL_GPL(simple_attr_write);
1393 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1394 size_t len, loff_t *ppos)
1396 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1398 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1401 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1402 * @inode: the object to encode
1403 * @fh: where to store the file handle fragment
1404 * @max_len: maximum length to store there (in 4 byte units)
1405 * @parent: parent directory inode, if wanted
1407 * This generic encode_fh function assumes that the 32 inode number
1408 * is suitable for locating an inode, and that the generation number
1409 * can be used to check that it is still valid. It places them in the
1410 * filehandle fragment where export_decode_fh expects to find them.
1412 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1413 struct inode *parent)
1415 struct fid *fid = (void *)fh;
1417 int type = FILEID_INO32_GEN;
1419 if (parent && (len < 4)) {
1421 return FILEID_INVALID;
1422 } else if (len < 2) {
1424 return FILEID_INVALID;
1428 fid->i32.ino = inode->i_ino;
1429 fid->i32.gen = inode->i_generation;
1431 fid->i32.parent_ino = parent->i_ino;
1432 fid->i32.parent_gen = parent->i_generation;
1434 type = FILEID_INO32_GEN_PARENT;
1439 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1442 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1443 * @sb: filesystem to do the file handle conversion on
1444 * @fid: file handle to convert
1445 * @fh_len: length of the file handle in bytes
1446 * @fh_type: type of file handle
1447 * @get_inode: filesystem callback to retrieve inode
1449 * This function decodes @fid as long as it has one of the well-known
1450 * Linux filehandle types and calls @get_inode on it to retrieve the
1451 * inode for the object specified in the file handle.
1453 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1454 int fh_len, int fh_type, struct inode *(*get_inode)
1455 (struct super_block *sb, u64 ino, u32 gen))
1457 struct inode *inode = NULL;
1463 case FILEID_INO32_GEN:
1464 case FILEID_INO32_GEN_PARENT:
1465 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1469 return d_obtain_alias(inode);
1471 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1474 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1475 * @sb: filesystem to do the file handle conversion on
1476 * @fid: file handle to convert
1477 * @fh_len: length of the file handle in bytes
1478 * @fh_type: type of file handle
1479 * @get_inode: filesystem callback to retrieve inode
1481 * This function decodes @fid as long as it has one of the well-known
1482 * Linux filehandle types and calls @get_inode on it to retrieve the
1483 * inode for the _parent_ object specified in the file handle if it
1484 * is specified in the file handle, or NULL otherwise.
1486 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1487 int fh_len, int fh_type, struct inode *(*get_inode)
1488 (struct super_block *sb, u64 ino, u32 gen))
1490 struct inode *inode = NULL;
1496 case FILEID_INO32_GEN_PARENT:
1497 inode = get_inode(sb, fid->i32.parent_ino,
1498 (fh_len > 3 ? fid->i32.parent_gen : 0));
1502 return d_obtain_alias(inode);
1504 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1507 * __generic_file_fsync - generic fsync implementation for simple filesystems
1509 * @file: file to synchronize
1510 * @start: start offset in bytes
1511 * @end: end offset in bytes (inclusive)
1512 * @datasync: only synchronize essential metadata if true
1514 * This is a generic implementation of the fsync method for simple
1515 * filesystems which track all non-inode metadata in the buffers list
1516 * hanging off the address_space structure.
1518 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1521 struct inode *inode = file->f_mapping->host;
1525 err = file_write_and_wait_range(file, start, end);
1530 ret = sync_mapping_buffers(inode->i_mapping);
1531 if (!(inode->i_state & I_DIRTY_ALL))
1533 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1536 err = sync_inode_metadata(inode, 1);
1541 inode_unlock(inode);
1542 /* check and advance again to catch errors after syncing out buffers */
1543 err = file_check_and_advance_wb_err(file);
1548 EXPORT_SYMBOL(__generic_file_fsync);
1551 * generic_file_fsync - generic fsync implementation for simple filesystems
1553 * @file: file to synchronize
1554 * @start: start offset in bytes
1555 * @end: end offset in bytes (inclusive)
1556 * @datasync: only synchronize essential metadata if true
1560 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1563 struct inode *inode = file->f_mapping->host;
1566 err = __generic_file_fsync(file, start, end, datasync);
1569 return blkdev_issue_flush(inode->i_sb->s_bdev);
1571 EXPORT_SYMBOL(generic_file_fsync);
1574 * generic_check_addressable - Check addressability of file system
1575 * @blocksize_bits: log of file system block size
1576 * @num_blocks: number of blocks in file system
1578 * Determine whether a file system with @num_blocks blocks (and a
1579 * block size of 2**@blocksize_bits) is addressable by the sector_t
1580 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1582 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1584 u64 last_fs_block = num_blocks - 1;
1586 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1588 if (unlikely(num_blocks == 0))
1591 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1594 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1595 (last_fs_page > (pgoff_t)(~0ULL))) {
1600 EXPORT_SYMBOL(generic_check_addressable);
1603 * No-op implementation of ->fsync for in-memory filesystems.
1605 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1609 EXPORT_SYMBOL(noop_fsync);
1611 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1614 * iomap based filesystems support direct I/O without need for
1615 * this callback. However, it still needs to be set in
1616 * inode->a_ops so that open/fcntl know that direct I/O is
1617 * generally supported.
1621 EXPORT_SYMBOL_GPL(noop_direct_IO);
1623 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1624 void kfree_link(void *p)
1628 EXPORT_SYMBOL(kfree_link);
1630 struct inode *alloc_anon_inode(struct super_block *s)
1632 static const struct address_space_operations anon_aops = {
1633 .dirty_folio = noop_dirty_folio,
1635 struct inode *inode = new_inode_pseudo(s);
1638 return ERR_PTR(-ENOMEM);
1640 inode->i_ino = get_next_ino();
1641 inode->i_mapping->a_ops = &anon_aops;
1644 * Mark the inode dirty from the very beginning,
1645 * that way it will never be moved to the dirty
1646 * list because mark_inode_dirty() will think
1647 * that it already _is_ on the dirty list.
1649 inode->i_state = I_DIRTY;
1650 inode->i_mode = S_IRUSR | S_IWUSR;
1651 inode->i_uid = current_fsuid();
1652 inode->i_gid = current_fsgid();
1653 inode->i_flags |= S_PRIVATE;
1654 simple_inode_init_ts(inode);
1657 EXPORT_SYMBOL(alloc_anon_inode);
1660 * simple_nosetlease - generic helper for prohibiting leases
1661 * @filp: file pointer
1662 * @arg: type of lease to obtain
1663 * @flp: new lease supplied for insertion
1664 * @priv: private data for lm_setup operation
1666 * Generic helper for filesystems that do not wish to allow leases to be set.
1667 * All arguments are ignored and it just returns -EINVAL.
1670 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1675 EXPORT_SYMBOL(simple_nosetlease);
1678 * simple_get_link - generic helper to get the target of "fast" symlinks
1679 * @dentry: not used here
1680 * @inode: the symlink inode
1681 * @done: not used here
1683 * Generic helper for filesystems to use for symlink inodes where a pointer to
1684 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1685 * since as an optimization the path lookup code uses any non-NULL ->i_link
1686 * directly, without calling ->get_link(). But ->get_link() still must be set,
1687 * to mark the inode_operations as being for a symlink.
1689 * Return: the symlink target
1691 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1692 struct delayed_call *done)
1694 return inode->i_link;
1696 EXPORT_SYMBOL(simple_get_link);
1698 const struct inode_operations simple_symlink_inode_operations = {
1699 .get_link = simple_get_link,
1701 EXPORT_SYMBOL(simple_symlink_inode_operations);
1704 * Operations for a permanently empty directory.
1706 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1708 return ERR_PTR(-ENOENT);
1711 static int empty_dir_setattr(struct mnt_idmap *idmap,
1712 struct dentry *dentry, struct iattr *attr)
1717 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1722 static const struct inode_operations empty_dir_inode_operations = {
1723 .lookup = empty_dir_lookup,
1724 .setattr = empty_dir_setattr,
1725 .listxattr = empty_dir_listxattr,
1728 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1730 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1731 return generic_file_llseek_size(file, offset, whence, 2, 2);
1734 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1736 dir_emit_dots(file, ctx);
1740 static const struct file_operations empty_dir_operations = {
1741 .llseek = empty_dir_llseek,
1742 .read = generic_read_dir,
1743 .iterate_shared = empty_dir_readdir,
1744 .fsync = noop_fsync,
1748 void make_empty_dir_inode(struct inode *inode)
1750 set_nlink(inode, 2);
1751 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1752 inode->i_uid = GLOBAL_ROOT_UID;
1753 inode->i_gid = GLOBAL_ROOT_GID;
1756 inode->i_blkbits = PAGE_SHIFT;
1757 inode->i_blocks = 0;
1759 inode->i_op = &empty_dir_inode_operations;
1760 inode->i_opflags &= ~IOP_XATTR;
1761 inode->i_fop = &empty_dir_operations;
1764 bool is_empty_dir_inode(struct inode *inode)
1766 return (inode->i_fop == &empty_dir_operations) &&
1767 (inode->i_op == &empty_dir_inode_operations);
1770 #if IS_ENABLED(CONFIG_UNICODE)
1772 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1773 * @dentry: dentry whose name we are checking against
1774 * @len: len of name of dentry
1775 * @str: str pointer to name of dentry
1776 * @name: Name to compare against
1778 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1780 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1781 const char *str, const struct qstr *name)
1783 const struct dentry *parent;
1784 const struct inode *dir;
1785 char strbuf[DNAME_INLINE_LEN];
1789 * Attempt a case-sensitive match first. It is cheaper and
1790 * should cover most lookups, including all the sane
1791 * applications that expect a case-sensitive filesystem.
1793 * This comparison is safe under RCU because the caller
1794 * guarantees the consistency between str and len. See
1795 * __d_lookup_rcu_op_compare() for details.
1797 if (len == name->len && !memcmp(str, name->name, len))
1800 parent = READ_ONCE(dentry->d_parent);
1801 dir = READ_ONCE(parent->d_inode);
1802 if (!dir || !IS_CASEFOLDED(dir))
1806 * If the dentry name is stored in-line, then it may be concurrently
1807 * modified by a rename. If this happens, the VFS will eventually retry
1808 * the lookup, so it doesn't matter what ->d_compare() returns.
1809 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1810 * string. Therefore, we have to copy the name into a temporary buffer.
1812 if (len <= DNAME_INLINE_LEN - 1) {
1813 memcpy(strbuf, str, len);
1816 /* prevent compiler from optimizing out the temporary buffer */
1822 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1824 EXPORT_SYMBOL(generic_ci_d_compare);
1827 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1828 * @dentry: dentry of the parent directory
1829 * @str: qstr of name whose hash we should fill in
1831 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1833 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1835 const struct inode *dir = READ_ONCE(dentry->d_inode);
1836 struct super_block *sb = dentry->d_sb;
1837 const struct unicode_map *um = sb->s_encoding;
1840 if (!dir || !IS_CASEFOLDED(dir))
1843 ret = utf8_casefold_hash(um, dentry, str);
1844 if (ret < 0 && sb_has_strict_encoding(sb))
1848 EXPORT_SYMBOL(generic_ci_d_hash);
1850 static const struct dentry_operations generic_ci_dentry_ops = {
1851 .d_hash = generic_ci_d_hash,
1852 .d_compare = generic_ci_d_compare,
1853 #ifdef CONFIG_FS_ENCRYPTION
1854 .d_revalidate = fscrypt_d_revalidate,
1859 * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1860 * This is a filesystem helper for comparison with directory entries.
1861 * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1863 * @parent: Inode of the parent of the dirent under comparison
1864 * @name: name under lookup.
1865 * @folded_name: Optional pre-folded name under lookup
1866 * @de_name: Dirent name.
1867 * @de_name_len: dirent name length.
1869 * Test whether a case-insensitive directory entry matches the filename
1870 * being searched. If @folded_name is provided, it is used instead of
1871 * recalculating the casefold of @name.
1873 * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1876 int generic_ci_match(const struct inode *parent,
1877 const struct qstr *name,
1878 const struct qstr *folded_name,
1879 const u8 *de_name, u32 de_name_len)
1881 const struct super_block *sb = parent->i_sb;
1882 const struct unicode_map *um = sb->s_encoding;
1883 struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1884 struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1887 if (IS_ENCRYPTED(parent)) {
1888 const struct fscrypt_str encrypted_name =
1889 FSTR_INIT((u8 *) de_name, de_name_len);
1891 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1894 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1895 if (!decrypted_name.name)
1897 res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1900 kfree(decrypted_name.name);
1903 dirent.name = decrypted_name.name;
1904 dirent.len = decrypted_name.len;
1908 * Attempt a case-sensitive match first. It is cheaper and
1909 * should cover most lookups, including all the sane
1910 * applications that expect a case-sensitive filesystem.
1913 if (dirent.len == name->len &&
1914 !memcmp(name->name, dirent.name, dirent.len))
1917 if (folded_name->name)
1918 res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1920 res = utf8_strncasecmp(um, name, &dirent);
1923 kfree(decrypted_name.name);
1924 if (res < 0 && sb_has_strict_encoding(sb)) {
1925 pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1930 EXPORT_SYMBOL(generic_ci_match);
1933 #ifdef CONFIG_FS_ENCRYPTION
1934 static const struct dentry_operations generic_encrypted_dentry_ops = {
1935 .d_revalidate = fscrypt_d_revalidate,
1940 * generic_set_sb_d_ops - helper for choosing the set of
1941 * filesystem-wide dentry operations for the enabled features
1942 * @sb: superblock to be configured
1944 * Filesystems supporting casefolding and/or fscrypt can call this
1945 * helper at mount-time to configure sb->s_d_op to best set of dentry
1946 * operations required for the enabled features. The helper must be
1947 * called after these have been configured, but before the root dentry
1950 void generic_set_sb_d_ops(struct super_block *sb)
1952 #if IS_ENABLED(CONFIG_UNICODE)
1953 if (sb->s_encoding) {
1954 sb->s_d_op = &generic_ci_dentry_ops;
1958 #ifdef CONFIG_FS_ENCRYPTION
1960 sb->s_d_op = &generic_encrypted_dentry_ops;
1965 EXPORT_SYMBOL(generic_set_sb_d_ops);
1968 * inode_maybe_inc_iversion - increments i_version
1969 * @inode: inode with the i_version that should be updated
1970 * @force: increment the counter even if it's not necessary?
1972 * Every time the inode is modified, the i_version field must be seen to have
1973 * changed by any observer.
1975 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1976 * the value, and clear the queried flag.
1978 * In the common case where neither is set, then we can return "false" without
1979 * updating i_version.
1981 * If this function returns false, and no other metadata has changed, then we
1982 * can avoid logging the metadata.
1984 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1989 * The i_version field is not strictly ordered with any other inode
1990 * information, but the legacy inode_inc_iversion code used a spinlock
1991 * to serialize increments.
1993 * We add a full memory barrier to ensure that any de facto ordering
1994 * with other state is preserved (either implicitly coming from cmpxchg
1995 * or explicitly from smp_mb if we don't know upfront if we will execute
1998 * These barriers pair with inode_query_iversion().
2000 cur = inode_peek_iversion_raw(inode);
2001 if (!force && !(cur & I_VERSION_QUERIED)) {
2003 cur = inode_peek_iversion_raw(inode);
2007 /* If flag is clear then we needn't do anything */
2008 if (!force && !(cur & I_VERSION_QUERIED))
2011 /* Since lowest bit is flag, add 2 to avoid it */
2012 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2013 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2016 EXPORT_SYMBOL(inode_maybe_inc_iversion);
2019 * inode_query_iversion - read i_version for later use
2020 * @inode: inode from which i_version should be read
2022 * Read the inode i_version counter. This should be used by callers that wish
2023 * to store the returned i_version for later comparison. This will guarantee
2024 * that a later query of the i_version will result in a different value if
2025 * anything has changed.
2027 * In this implementation, we fetch the current value, set the QUERIED flag and
2028 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2029 * that fails, we try again with the newly fetched value from the cmpxchg.
2031 u64 inode_query_iversion(struct inode *inode)
2034 bool fenced = false;
2037 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2038 * inode_maybe_inc_iversion(), see that routine for more details.
2040 cur = inode_peek_iversion_raw(inode);
2042 /* If flag is already set, then no need to swap */
2043 if (cur & I_VERSION_QUERIED) {
2050 new = cur | I_VERSION_QUERIED;
2051 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2052 return cur >> I_VERSION_QUERIED_SHIFT;
2054 EXPORT_SYMBOL(inode_query_iversion);
2056 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2057 ssize_t direct_written, ssize_t buffered_written)
2059 struct address_space *mapping = iocb->ki_filp->f_mapping;
2060 loff_t pos = iocb->ki_pos - buffered_written;
2061 loff_t end = iocb->ki_pos - 1;
2065 * If the buffered write fallback returned an error, we want to return
2066 * the number of bytes which were written by direct I/O, or the error
2067 * code if that was zero.
2069 * Note that this differs from normal direct-io semantics, which will
2070 * return -EFOO even if some bytes were written.
2072 if (unlikely(buffered_written < 0)) {
2074 return direct_written;
2075 return buffered_written;
2079 * We need to ensure that the page cache pages are written to disk and
2080 * invalidated to preserve the expected O_DIRECT semantics.
2082 err = filemap_write_and_wait_range(mapping, pos, end);
2085 * We don't know how much we wrote, so just return the number of
2086 * bytes which were direct-written
2088 iocb->ki_pos -= buffered_written;
2090 return direct_written;
2093 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2094 return direct_written + buffered_written;
2096 EXPORT_SYMBOL_GPL(direct_write_fallback);
2099 * simple_inode_init_ts - initialize the timestamps for a new inode
2100 * @inode: inode to be initialized
2102 * When a new inode is created, most filesystems set the timestamps to the
2103 * current time. Add a helper to do this.
2105 struct timespec64 simple_inode_init_ts(struct inode *inode)
2107 struct timespec64 ts = inode_set_ctime_current(inode);
2109 inode_set_atime_to_ts(inode, ts);
2110 inode_set_mtime_to_ts(inode, ts);
2113 EXPORT_SYMBOL(simple_inode_init_ts);
2115 static inline struct dentry *get_stashed_dentry(struct dentry **stashed)
2117 struct dentry *dentry;
2120 dentry = rcu_dereference(*stashed);
2123 if (!lockref_get_not_dead(&dentry->d_lockref))
2128 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2129 struct super_block *sb,
2132 struct dentry *dentry;
2133 struct inode *inode;
2134 const struct stashed_operations *sops = sb->s_fs_info;
2137 inode = new_inode_pseudo(sb);
2139 sops->put_data(data);
2140 return ERR_PTR(-ENOMEM);
2143 inode->i_flags |= S_IMMUTABLE;
2144 inode->i_mode = S_IFREG;
2145 simple_inode_init_ts(inode);
2147 ret = sops->init_inode(inode, data);
2150 return ERR_PTR(ret);
2153 /* Notice when this is changed. */
2154 WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2155 WARN_ON_ONCE(!IS_IMMUTABLE(inode));
2157 dentry = d_alloc_anon(sb);
2160 return ERR_PTR(-ENOMEM);
2163 /* Store address of location where dentry's supposed to be stashed. */
2164 dentry->d_fsdata = stashed;
2166 /* @data is now owned by the fs */
2167 d_instantiate(dentry, inode);
2171 static struct dentry *stash_dentry(struct dentry **stashed,
2172 struct dentry *dentry)
2178 /* Assume any old dentry was cleared out. */
2179 old = cmpxchg(stashed, NULL, dentry);
2183 /* Check if somebody else installed a reusable dentry. */
2184 if (lockref_get_not_dead(&old->d_lockref))
2187 /* There's an old dead dentry there, try to take it over. */
2188 if (likely(try_cmpxchg(stashed, &old, dentry)))
2194 * path_from_stashed - create path from stashed or new dentry
2195 * @stashed: where to retrieve or stash dentry
2196 * @mnt: mnt of the filesystems to use
2197 * @data: data to store in inode->i_private
2198 * @path: path to create
2200 * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2201 * is still valid then it will be reused. If the dentry isn't able the function
2202 * will allocate a new dentry and inode. It will then check again whether it
2203 * can reuse an existing dentry in case one has been added in the meantime or
2204 * update @stashed with the newly added dentry.
2206 * Special-purpose helper for nsfs and pidfs.
2208 * Return: On success zero and on failure a negative error is returned.
2210 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2213 struct dentry *dentry;
2214 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2216 /* See if dentry can be reused. */
2217 path->dentry = get_stashed_dentry(stashed);
2219 sops->put_data(data);
2223 /* Allocate a new dentry. */
2224 dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2226 return PTR_ERR(dentry);
2228 /* Added a new dentry. @data is now owned by the filesystem. */
2229 path->dentry = stash_dentry(stashed, dentry);
2230 if (path->dentry != dentry)
2234 WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2235 WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2236 path->mnt = mntget(mnt);
2240 void stashed_dentry_prune(struct dentry *dentry)
2242 struct dentry **stashed = dentry->d_fsdata;
2243 struct inode *inode = d_inode(dentry);
2245 if (WARN_ON_ONCE(!stashed))
2252 * Only replace our own @dentry as someone else might've
2253 * already cleared out @dentry and stashed their own
2256 cmpxchg(stashed, dentry, NULL);