2 * Utility functions for x86 operand and address decoding
4 * Copyright (C) Intel Corporation 2017
6 #include <linux/kernel.h>
7 #include <linux/string.h>
8 #include <linux/ratelimit.h>
9 #include <linux/mmu_context.h>
10 #include <asm/desc_defs.h>
14 #include <asm/insn-eval.h>
19 #define pr_fmt(fmt) "insn: " fmt
29 * is_string_insn() - Determine if instruction is a string instruction
30 * @insn: Instruction containing the opcode to inspect
34 * true if the instruction, determined by the opcode, is any of the
35 * string instructions as defined in the Intel Software Development manual.
38 static bool is_string_insn(struct insn *insn)
40 insn_get_opcode(insn);
42 /* All string instructions have a 1-byte opcode. */
43 if (insn->opcode.nbytes != 1)
46 switch (insn->opcode.bytes[0]) {
47 case 0x6c ... 0x6f: /* INS, OUTS */
48 case 0xa4 ... 0xa7: /* MOVS, CMPS */
49 case 0xaa ... 0xaf: /* STOS, LODS, SCAS */
57 * insn_has_rep_prefix() - Determine if instruction has a REP prefix
58 * @insn: Instruction containing the prefix to inspect
62 * true if the instruction has a REP prefix, false if not.
64 bool insn_has_rep_prefix(struct insn *insn)
69 insn_get_prefixes(insn);
71 for_each_insn_prefix(insn, i, p) {
72 if (p == 0xf2 || p == 0xf3)
80 * get_seg_reg_override_idx() - obtain segment register override index
81 * @insn: Valid instruction with segment override prefixes
83 * Inspect the instruction prefixes in @insn and find segment overrides, if any.
87 * A constant identifying the segment register to use, among CS, SS, DS,
88 * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
89 * prefixes were found.
91 * -EINVAL in case of error.
93 static int get_seg_reg_override_idx(struct insn *insn)
95 int idx = INAT_SEG_REG_DEFAULT;
96 int num_overrides = 0, i;
99 insn_get_prefixes(insn);
101 /* Look for any segment override prefixes. */
102 for_each_insn_prefix(insn, i, p) {
105 attr = inat_get_opcode_attribute(p);
107 case INAT_MAKE_PREFIX(INAT_PFX_CS):
108 idx = INAT_SEG_REG_CS;
111 case INAT_MAKE_PREFIX(INAT_PFX_SS):
112 idx = INAT_SEG_REG_SS;
115 case INAT_MAKE_PREFIX(INAT_PFX_DS):
116 idx = INAT_SEG_REG_DS;
119 case INAT_MAKE_PREFIX(INAT_PFX_ES):
120 idx = INAT_SEG_REG_ES;
123 case INAT_MAKE_PREFIX(INAT_PFX_FS):
124 idx = INAT_SEG_REG_FS;
127 case INAT_MAKE_PREFIX(INAT_PFX_GS):
128 idx = INAT_SEG_REG_GS;
131 /* No default action needed. */
135 /* More than one segment override prefix leads to undefined behavior. */
136 if (num_overrides > 1)
143 * check_seg_overrides() - check if segment override prefixes are allowed
144 * @insn: Valid instruction with segment override prefixes
145 * @regoff: Operand offset, in pt_regs, for which the check is performed
147 * For a particular register used in register-indirect addressing, determine if
148 * segment override prefixes can be used. Specifically, no overrides are allowed
149 * for rDI if used with a string instruction.
153 * True if segment override prefixes can be used with the register indicated
154 * in @regoff. False if otherwise.
156 static bool check_seg_overrides(struct insn *insn, int regoff)
158 if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
165 * resolve_default_seg() - resolve default segment register index for an operand
166 * @insn: Instruction with opcode and address size. Must be valid.
167 * @regs: Register values as seen when entering kernel mode
168 * @off: Operand offset, in pt_regs, for which resolution is needed
170 * Resolve the default segment register index associated with the instruction
171 * operand register indicated by @off. Such index is resolved based on defaults
172 * described in the Intel Software Development Manual.
176 * If in protected mode, a constant identifying the segment register to use,
177 * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
179 * -EINVAL in case of error.
181 static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
183 if (any_64bit_mode(regs))
184 return INAT_SEG_REG_IGNORE;
186 * Resolve the default segment register as described in Section 3.7.4
187 * of the Intel Software Development Manual Vol. 1:
189 * + DS for all references involving r[ABCD]X, and rSI.
190 * + If used in a string instruction, ES for rDI. Otherwise, DS.
191 * + AX, CX and DX are not valid register operands in 16-bit address
192 * encodings but are valid for 32-bit and 64-bit encodings.
193 * + -EDOM is reserved to identify for cases in which no register
194 * is used (i.e., displacement-only addressing). Use DS.
195 * + SS for rSP or rBP.
200 case offsetof(struct pt_regs, ax):
201 case offsetof(struct pt_regs, cx):
202 case offsetof(struct pt_regs, dx):
203 /* Need insn to verify address size. */
204 if (insn->addr_bytes == 2)
210 case offsetof(struct pt_regs, bx):
211 case offsetof(struct pt_regs, si):
212 return INAT_SEG_REG_DS;
214 case offsetof(struct pt_regs, di):
215 if (is_string_insn(insn))
216 return INAT_SEG_REG_ES;
217 return INAT_SEG_REG_DS;
219 case offsetof(struct pt_regs, bp):
220 case offsetof(struct pt_regs, sp):
221 return INAT_SEG_REG_SS;
223 case offsetof(struct pt_regs, ip):
224 return INAT_SEG_REG_CS;
232 * resolve_seg_reg() - obtain segment register index
233 * @insn: Instruction with operands
234 * @regs: Register values as seen when entering kernel mode
235 * @regoff: Operand offset, in pt_regs, used to deterimine segment register
237 * Determine the segment register associated with the operands and, if
238 * applicable, prefixes and the instruction pointed by @insn.
240 * The segment register associated to an operand used in register-indirect
241 * addressing depends on:
243 * a) Whether running in long mode (in such a case segments are ignored, except
244 * if FS or GS are used).
246 * b) Whether segment override prefixes can be used. Certain instructions and
247 * registers do not allow override prefixes.
249 * c) Whether segment overrides prefixes are found in the instruction prefixes.
251 * d) If there are not segment override prefixes or they cannot be used, the
252 * default segment register associated with the operand register is used.
254 * The function checks first if segment override prefixes can be used with the
255 * operand indicated by @regoff. If allowed, obtain such overridden segment
256 * register index. Lastly, if not prefixes were found or cannot be used, resolve
257 * the segment register index to use based on the defaults described in the
258 * Intel documentation. In long mode, all segment register indexes will be
259 * ignored, except if overrides were found for FS or GS. All these operations
260 * are done using helper functions.
262 * The operand register, @regoff, is represented as the offset from the base of
265 * As stated, the main use of this function is to determine the segment register
266 * index based on the instruction, its operands and prefixes. Hence, @insn
267 * must be valid. However, if @regoff indicates rIP, we don't need to inspect
268 * @insn at all as in this case CS is used in all cases. This case is checked
269 * before proceeding further.
271 * Please note that this function does not return the value in the segment
272 * register (i.e., the segment selector) but our defined index. The segment
273 * selector needs to be obtained using get_segment_selector() and passing the
274 * segment register index resolved by this function.
278 * An index identifying the segment register to use, among CS, SS, DS,
279 * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
281 * -EINVAL in case of error.
283 static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
288 * In the unlikely event of having to resolve the segment register
289 * index for rIP, do it first. Segment override prefixes should not
290 * be used. Hence, it is not necessary to inspect the instruction,
291 * which may be invalid at this point.
293 if (regoff == offsetof(struct pt_regs, ip)) {
294 if (any_64bit_mode(regs))
295 return INAT_SEG_REG_IGNORE;
297 return INAT_SEG_REG_CS;
303 if (!check_seg_overrides(insn, regoff))
304 return resolve_default_seg(insn, regs, regoff);
306 idx = get_seg_reg_override_idx(insn);
310 if (idx == INAT_SEG_REG_DEFAULT)
311 return resolve_default_seg(insn, regs, regoff);
314 * In long mode, segment override prefixes are ignored, except for
315 * overrides for FS and GS.
317 if (any_64bit_mode(regs)) {
318 if (idx != INAT_SEG_REG_FS &&
319 idx != INAT_SEG_REG_GS)
320 idx = INAT_SEG_REG_IGNORE;
327 * get_segment_selector() - obtain segment selector
328 * @regs: Register values as seen when entering kernel mode
329 * @seg_reg_idx: Segment register index to use
331 * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
332 * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
333 * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
334 * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
335 * registers. This done for only for completeness as in CONFIG_X86_64 segment
336 * registers are ignored.
340 * Value of the segment selector, including null when running in
345 static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
350 switch (seg_reg_idx) {
351 case INAT_SEG_REG_IGNORE:
353 case INAT_SEG_REG_CS:
354 return (unsigned short)(regs->cs & 0xffff);
355 case INAT_SEG_REG_SS:
356 return (unsigned short)(regs->ss & 0xffff);
357 case INAT_SEG_REG_DS:
358 savesegment(ds, sel);
360 case INAT_SEG_REG_ES:
361 savesegment(es, sel);
363 case INAT_SEG_REG_FS:
364 savesegment(fs, sel);
366 case INAT_SEG_REG_GS:
367 savesegment(gs, sel);
372 #else /* CONFIG_X86_32 */
373 struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
375 if (v8086_mode(regs)) {
376 switch (seg_reg_idx) {
377 case INAT_SEG_REG_CS:
378 return (unsigned short)(regs->cs & 0xffff);
379 case INAT_SEG_REG_SS:
380 return (unsigned short)(regs->ss & 0xffff);
381 case INAT_SEG_REG_DS:
383 case INAT_SEG_REG_ES:
385 case INAT_SEG_REG_FS:
387 case INAT_SEG_REG_GS:
389 case INAT_SEG_REG_IGNORE:
395 switch (seg_reg_idx) {
396 case INAT_SEG_REG_CS:
397 return (unsigned short)(regs->cs & 0xffff);
398 case INAT_SEG_REG_SS:
399 return (unsigned short)(regs->ss & 0xffff);
400 case INAT_SEG_REG_DS:
401 return (unsigned short)(regs->ds & 0xffff);
402 case INAT_SEG_REG_ES:
403 return (unsigned short)(regs->es & 0xffff);
404 case INAT_SEG_REG_FS:
405 return (unsigned short)(regs->fs & 0xffff);
406 case INAT_SEG_REG_GS:
408 * GS may or may not be in regs as per CONFIG_X86_32_LAZY_GS.
409 * The macro below takes care of both cases.
411 return get_user_gs(regs);
412 case INAT_SEG_REG_IGNORE:
416 #endif /* CONFIG_X86_64 */
419 static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
424 static const int regoff[] = {
425 offsetof(struct pt_regs, ax),
426 offsetof(struct pt_regs, cx),
427 offsetof(struct pt_regs, dx),
428 offsetof(struct pt_regs, bx),
429 offsetof(struct pt_regs, sp),
430 offsetof(struct pt_regs, bp),
431 offsetof(struct pt_regs, si),
432 offsetof(struct pt_regs, di),
434 offsetof(struct pt_regs, r8),
435 offsetof(struct pt_regs, r9),
436 offsetof(struct pt_regs, r10),
437 offsetof(struct pt_regs, r11),
438 offsetof(struct pt_regs, r12),
439 offsetof(struct pt_regs, r13),
440 offsetof(struct pt_regs, r14),
441 offsetof(struct pt_regs, r15),
444 int nr_registers = ARRAY_SIZE(regoff);
446 * Don't possibly decode a 32-bit instructions as
447 * reading a 64-bit-only register.
449 if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
454 regno = X86_MODRM_RM(insn->modrm.value);
457 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
458 * follows the ModRM byte.
460 if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
463 if (X86_REX_B(insn->rex_prefix.value))
468 regno = X86_MODRM_REG(insn->modrm.value);
470 if (X86_REX_R(insn->rex_prefix.value))
475 regno = X86_SIB_INDEX(insn->sib.value);
476 if (X86_REX_X(insn->rex_prefix.value))
480 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
481 * portion of the address computation is null. This is
482 * true only if REX.X is 0. In such a case, the SIB index
483 * is used in the address computation.
485 if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
490 regno = X86_SIB_BASE(insn->sib.value);
492 * If ModRM.mod is 0 and SIB.base == 5, the base of the
493 * register-indirect addressing is 0. In this case, a
494 * 32-bit displacement follows the SIB byte.
496 if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
499 if (X86_REX_B(insn->rex_prefix.value))
504 pr_err_ratelimited("invalid register type: %d\n", type);
508 if (regno >= nr_registers) {
509 WARN_ONCE(1, "decoded an instruction with an invalid register");
512 return regoff[regno];
516 * get_reg_offset_16() - Obtain offset of register indicated by instruction
517 * @insn: Instruction containing ModRM byte
518 * @regs: Register values as seen when entering kernel mode
519 * @offs1: Offset of the first operand register
520 * @offs2: Offset of the second opeand register, if applicable
522 * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
523 * in @insn. This function is to be used with 16-bit address encodings. The
524 * @offs1 and @offs2 will be written with the offset of the two registers
525 * indicated by the instruction. In cases where any of the registers is not
526 * referenced by the instruction, the value will be set to -EDOM.
530 * 0 on success, -EINVAL on error.
532 static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
533 int *offs1, int *offs2)
536 * 16-bit addressing can use one or two registers. Specifics of
537 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
538 * ModR/M Byte" of the Intel Software Development Manual.
540 static const int regoff1[] = {
541 offsetof(struct pt_regs, bx),
542 offsetof(struct pt_regs, bx),
543 offsetof(struct pt_regs, bp),
544 offsetof(struct pt_regs, bp),
545 offsetof(struct pt_regs, si),
546 offsetof(struct pt_regs, di),
547 offsetof(struct pt_regs, bp),
548 offsetof(struct pt_regs, bx),
551 static const int regoff2[] = {
552 offsetof(struct pt_regs, si),
553 offsetof(struct pt_regs, di),
554 offsetof(struct pt_regs, si),
555 offsetof(struct pt_regs, di),
562 if (!offs1 || !offs2)
565 /* Operand is a register, use the generic function. */
566 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
567 *offs1 = insn_get_modrm_rm_off(insn, regs);
572 *offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
573 *offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
576 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
577 * only addressing. This means that no registers are involved in
578 * computing the effective address. Thus, ensure that the first
579 * register offset is invalild. The second register offset is already
580 * invalid under the aforementioned conditions.
582 if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
583 (X86_MODRM_RM(insn->modrm.value) == 6))
590 * get_desc() - Obtain contents of a segment descriptor
591 * @out: Segment descriptor contents on success
592 * @sel: Segment selector
594 * Given a segment selector, obtain a pointer to the segment descriptor.
595 * Both global and local descriptor tables are supported.
599 * True on success, false on failure.
603 static bool get_desc(struct desc_struct *out, unsigned short sel)
605 struct desc_ptr gdt_desc = {0, 0};
606 unsigned long desc_base;
608 #ifdef CONFIG_MODIFY_LDT_SYSCALL
609 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
610 bool success = false;
611 struct ldt_struct *ldt;
613 /* Bits [15:3] contain the index of the desired entry. */
616 mutex_lock(¤t->active_mm->context.lock);
617 ldt = current->active_mm->context.ldt;
618 if (ldt && sel < ldt->nr_entries) {
619 *out = ldt->entries[sel];
623 mutex_unlock(¤t->active_mm->context.lock);
628 native_store_gdt(&gdt_desc);
631 * Segment descriptors have a size of 8 bytes. Thus, the index is
632 * multiplied by 8 to obtain the memory offset of the desired descriptor
633 * from the base of the GDT. As bits [15:3] of the segment selector
634 * contain the index, it can be regarded as multiplied by 8 already.
635 * All that remains is to clear bits [2:0].
637 desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
639 if (desc_base > gdt_desc.size)
642 *out = *(struct desc_struct *)(gdt_desc.address + desc_base);
647 * insn_get_seg_base() - Obtain base address of segment descriptor.
648 * @regs: Register values as seen when entering kernel mode
649 * @seg_reg_idx: Index of the segment register pointing to seg descriptor
651 * Obtain the base address of the segment as indicated by the segment descriptor
652 * pointed by the segment selector. The segment selector is obtained from the
653 * input segment register index @seg_reg_idx.
657 * In protected mode, base address of the segment. Zero in long mode,
658 * except when FS or GS are used. In virtual-8086 mode, the segment
659 * selector shifted 4 bits to the right.
661 * -1L in case of error.
663 unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
665 struct desc_struct desc;
668 sel = get_segment_selector(regs, seg_reg_idx);
672 if (v8086_mode(regs))
674 * Base is simply the segment selector shifted 4
677 return (unsigned long)(sel << 4);
679 if (any_64bit_mode(regs)) {
681 * Only FS or GS will have a base address, the rest of
682 * the segments' bases are forced to 0.
686 if (seg_reg_idx == INAT_SEG_REG_FS) {
687 rdmsrl(MSR_FS_BASE, base);
688 } else if (seg_reg_idx == INAT_SEG_REG_GS) {
690 * swapgs was called at the kernel entry point. Thus,
691 * MSR_KERNEL_GS_BASE will have the user-space GS base.
694 rdmsrl(MSR_KERNEL_GS_BASE, base);
696 rdmsrl(MSR_GS_BASE, base);
703 /* In protected mode the segment selector cannot be null. */
707 if (!get_desc(&desc, sel))
710 return get_desc_base(&desc);
714 * get_seg_limit() - Obtain the limit of a segment descriptor
715 * @regs: Register values as seen when entering kernel mode
716 * @seg_reg_idx: Index of the segment register pointing to seg descriptor
718 * Obtain the limit of the segment as indicated by the segment descriptor
719 * pointed by the segment selector. The segment selector is obtained from the
720 * input segment register index @seg_reg_idx.
724 * In protected mode, the limit of the segment descriptor in bytes.
725 * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
726 * limit is returned as -1L to imply a limit-less segment.
728 * Zero is returned on error.
730 static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
732 struct desc_struct desc;
736 sel = get_segment_selector(regs, seg_reg_idx);
740 if (any_64bit_mode(regs) || v8086_mode(regs))
746 if (!get_desc(&desc, sel))
750 * If the granularity bit is set, the limit is given in multiples
751 * of 4096. This also means that the 12 least significant bits are
752 * not tested when checking the segment limits. In practice,
753 * this means that the segment ends in (limit << 12) + 0xfff.
755 limit = get_desc_limit(&desc);
757 limit = (limit << 12) + 0xfff;
763 * insn_get_code_seg_params() - Obtain code segment parameters
764 * @regs: Structure with register values as seen when entering kernel mode
766 * Obtain address and operand sizes of the code segment. It is obtained from the
767 * selector contained in the CS register in regs. In protected mode, the default
768 * address is determined by inspecting the L and D bits of the segment
769 * descriptor. In virtual-8086 mode, the default is always two bytes for both
770 * address and operand sizes.
774 * An int containing ORed-in default parameters on success.
778 int insn_get_code_seg_params(struct pt_regs *regs)
780 struct desc_struct desc;
783 if (v8086_mode(regs))
784 /* Address and operand size are both 16-bit. */
785 return INSN_CODE_SEG_PARAMS(2, 2);
787 sel = get_segment_selector(regs, INAT_SEG_REG_CS);
791 if (!get_desc(&desc, sel))
795 * The most significant byte of the Type field of the segment descriptor
796 * determines whether a segment contains data or code. If this is a data
797 * segment, return error.
799 if (!(desc.type & BIT(3)))
802 switch ((desc.l << 1) | desc.d) {
804 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
807 return INSN_CODE_SEG_PARAMS(2, 2);
809 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
812 return INSN_CODE_SEG_PARAMS(4, 4);
814 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
815 * operand size is 32-bit.
817 return INSN_CODE_SEG_PARAMS(4, 8);
818 case 3: /* Invalid setting. CS.L=1, CS.D=1 */
826 * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
827 * @insn: Instruction containing the ModRM byte
828 * @regs: Register values as seen when entering kernel mode
832 * The register indicated by the r/m part of the ModRM byte. The
833 * register is obtained as an offset from the base of pt_regs. In specific
834 * cases, the returned value can be -EDOM to indicate that the particular value
835 * of ModRM does not refer to a register and shall be ignored.
837 int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
839 return get_reg_offset(insn, regs, REG_TYPE_RM);
843 * insn_get_modrm_reg_off() - Obtain register in reg part of the ModRM byte
844 * @insn: Instruction containing the ModRM byte
845 * @regs: Register values as seen when entering kernel mode
849 * The register indicated by the reg part of the ModRM byte. The
850 * register is obtained as an offset from the base of pt_regs.
852 int insn_get_modrm_reg_off(struct insn *insn, struct pt_regs *regs)
854 return get_reg_offset(insn, regs, REG_TYPE_REG);
858 * get_seg_base_limit() - obtain base address and limit of a segment
859 * @insn: Instruction. Must be valid.
860 * @regs: Register values as seen when entering kernel mode
861 * @regoff: Operand offset, in pt_regs, used to resolve segment descriptor
862 * @base: Obtained segment base
863 * @limit: Obtained segment limit
865 * Obtain the base address and limit of the segment associated with the operand
866 * @regoff and, if any or allowed, override prefixes in @insn. This function is
867 * different from insn_get_seg_base() as the latter does not resolve the segment
868 * associated with the instruction operand. If a limit is not needed (e.g.,
869 * when running in long mode), @limit can be NULL.
873 * 0 on success. @base and @limit will contain the base address and of the
874 * resolved segment, respectively.
878 static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
879 int regoff, unsigned long *base,
880 unsigned long *limit)
887 seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
891 *base = insn_get_seg_base(regs, seg_reg_idx);
898 *limit = get_seg_limit(regs, seg_reg_idx);
906 * get_eff_addr_reg() - Obtain effective address from register operand
907 * @insn: Instruction. Must be valid.
908 * @regs: Register values as seen when entering kernel mode
909 * @regoff: Obtained operand offset, in pt_regs, with the effective address
910 * @eff_addr: Obtained effective address
912 * Obtain the effective address stored in the register operand as indicated by
913 * the ModRM byte. This function is to be used only with register addressing
914 * (i.e., ModRM.mod is 3). The effective address is saved in @eff_addr. The
915 * register operand, as an offset from the base of pt_regs, is saved in @regoff;
916 * such offset can then be used to resolve the segment associated with the
917 * operand. This function can be used with any of the supported address sizes
922 * 0 on success. @eff_addr will have the effective address stored in the
923 * operand indicated by ModRM. @regoff will have such operand as an offset from
924 * the base of pt_regs.
928 static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
929 int *regoff, long *eff_addr)
931 insn_get_modrm(insn);
933 if (!insn->modrm.nbytes)
936 if (X86_MODRM_MOD(insn->modrm.value) != 3)
939 *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
943 /* Ignore bytes that are outside the address size. */
944 if (insn->addr_bytes == 2)
945 *eff_addr = regs_get_register(regs, *regoff) & 0xffff;
946 else if (insn->addr_bytes == 4)
947 *eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
948 else /* 64-bit address */
949 *eff_addr = regs_get_register(regs, *regoff);
955 * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
956 * @insn: Instruction. Must be valid.
957 * @regs: Register values as seen when entering kernel mode
958 * @regoff: Obtained operand offset, in pt_regs, associated with segment
959 * @eff_addr: Obtained effective address
961 * Obtain the effective address referenced by the ModRM byte of @insn. After
962 * identifying the registers involved in the register-indirect memory reference,
963 * its value is obtained from the operands in @regs. The computed address is
964 * stored @eff_addr. Also, the register operand that indicates the associated
965 * segment is stored in @regoff, this parameter can later be used to determine
970 * 0 on success. @eff_addr will have the referenced effective address. @regoff
971 * will have a register, as an offset from the base of pt_regs, that can be used
972 * to resolve the associated segment.
976 static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
977 int *regoff, long *eff_addr)
981 if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
984 insn_get_modrm(insn);
986 if (!insn->modrm.nbytes)
989 if (X86_MODRM_MOD(insn->modrm.value) > 2)
992 *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
995 * -EDOM means that we must ignore the address_offset. In such a case,
996 * in 64-bit mode the effective address relative to the rIP of the
997 * following instruction.
999 if (*regoff == -EDOM) {
1000 if (any_64bit_mode(regs))
1001 tmp = regs->ip + insn->length;
1004 } else if (*regoff < 0) {
1007 tmp = regs_get_register(regs, *regoff);
1010 if (insn->addr_bytes == 4) {
1011 int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
1013 *eff_addr = addr32 & 0xffffffff;
1015 *eff_addr = tmp + insn->displacement.value;
1022 * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
1023 * @insn: Instruction. Must be valid.
1024 * @regs: Register values as seen when entering kernel mode
1025 * @regoff: Obtained operand offset, in pt_regs, associated with segment
1026 * @eff_addr: Obtained effective address
1028 * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
1029 * After identifying the registers involved in the register-indirect memory
1030 * reference, its value is obtained from the operands in @regs. The computed
1031 * address is stored @eff_addr. Also, the register operand that indicates
1032 * the associated segment is stored in @regoff, this parameter can later be used
1033 * to determine such segment.
1037 * 0 on success. @eff_addr will have the referenced effective address. @regoff
1038 * will have a register, as an offset from the base of pt_regs, that can be used
1039 * to resolve the associated segment.
1043 static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
1044 int *regoff, short *eff_addr)
1046 int addr_offset1, addr_offset2, ret;
1047 short addr1 = 0, addr2 = 0, displacement;
1049 if (insn->addr_bytes != 2)
1052 insn_get_modrm(insn);
1054 if (!insn->modrm.nbytes)
1057 if (X86_MODRM_MOD(insn->modrm.value) > 2)
1060 ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1065 * Don't fail on invalid offset values. They might be invalid because
1066 * they cannot be used for this particular value of ModRM. Instead, use
1067 * them in the computation only if they contain a valid value.
1069 if (addr_offset1 != -EDOM)
1070 addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1072 if (addr_offset2 != -EDOM)
1073 addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1075 displacement = insn->displacement.value & 0xffff;
1076 *eff_addr = addr1 + addr2 + displacement;
1079 * The first operand register could indicate to use of either SS or DS
1080 * registers to obtain the segment selector. The second operand
1081 * register can only indicate the use of DS. Thus, the first operand
1082 * will be used to obtain the segment selector.
1084 *regoff = addr_offset1;
1090 * get_eff_addr_sib() - Obtain referenced effective address via SIB
1091 * @insn: Instruction. Must be valid.
1092 * @regs: Register values as seen when entering kernel mode
1093 * @regoff: Obtained operand offset, in pt_regs, associated with segment
1094 * @eff_addr: Obtained effective address
1096 * Obtain the effective address referenced by the SIB byte of @insn. After
1097 * identifying the registers involved in the indexed, register-indirect memory
1098 * reference, its value is obtained from the operands in @regs. The computed
1099 * address is stored @eff_addr. Also, the register operand that indicates the
1100 * associated segment is stored in @regoff, this parameter can later be used to
1101 * determine such segment.
1105 * 0 on success. @eff_addr will have the referenced effective address.
1106 * @base_offset will have a register, as an offset from the base of pt_regs,
1107 * that can be used to resolve the associated segment.
1111 static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1112 int *base_offset, long *eff_addr)
1117 if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1120 insn_get_modrm(insn);
1122 if (!insn->modrm.nbytes)
1125 if (X86_MODRM_MOD(insn->modrm.value) > 2)
1130 if (!insn->sib.nbytes)
1133 *base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1134 indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1137 * Negative values in the base and index offset means an error when
1138 * decoding the SIB byte. Except -EDOM, which means that the registers
1139 * should not be used in the address computation.
1141 if (*base_offset == -EDOM)
1143 else if (*base_offset < 0)
1146 base = regs_get_register(regs, *base_offset);
1148 if (indx_offset == -EDOM)
1150 else if (indx_offset < 0)
1153 indx = regs_get_register(regs, indx_offset);
1155 if (insn->addr_bytes == 4) {
1156 int addr32, base32, idx32;
1158 base32 = base & 0xffffffff;
1159 idx32 = indx & 0xffffffff;
1161 addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1162 addr32 += insn->displacement.value;
1164 *eff_addr = addr32 & 0xffffffff;
1166 *eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1167 *eff_addr += insn->displacement.value;
1174 * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1175 * @insn: Instruction containing ModRM byte and displacement
1176 * @regs: Register values as seen when entering kernel mode
1178 * This function is to be used with 16-bit address encodings. Obtain the memory
1179 * address referred by the instruction's ModRM and displacement bytes. Also, the
1180 * segment used as base is determined by either any segment override prefixes in
1181 * @insn or the default segment of the registers involved in the address
1182 * computation. In protected mode, segment limits are enforced.
1186 * Linear address referenced by the instruction operands on success.
1190 static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1192 unsigned long linear_addr = -1L, seg_base, seg_limit;
1197 insn_get_modrm(insn);
1198 insn_get_displacement(insn);
1200 if (insn->addr_bytes != 2)
1203 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1204 ret = get_eff_addr_reg(insn, regs, ®off, &tmp);
1210 ret = get_eff_addr_modrm_16(insn, regs, ®off, &eff_addr);
1215 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1220 * Before computing the linear address, make sure the effective address
1221 * is within the limits of the segment. In virtual-8086 mode, segment
1222 * limits are not enforced. In such a case, the segment limit is -1L to
1223 * reflect this fact.
1225 if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1228 linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1230 /* Limit linear address to 20 bits */
1231 if (v8086_mode(regs))
1232 linear_addr &= 0xfffff;
1235 return (void __user *)linear_addr;
1239 * get_addr_ref_32() - Obtain a 32-bit linear address
1240 * @insn: Instruction with ModRM, SIB bytes and displacement
1241 * @regs: Register values as seen when entering kernel mode
1243 * This function is to be used with 32-bit address encodings to obtain the
1244 * linear memory address referred by the instruction's ModRM, SIB,
1245 * displacement bytes and segment base address, as applicable. If in protected
1246 * mode, segment limits are enforced.
1250 * Linear address referenced by instruction and registers on success.
1254 static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1256 unsigned long linear_addr = -1L, seg_base, seg_limit;
1257 int eff_addr, regoff;
1261 if (insn->addr_bytes != 4)
1264 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1265 ret = get_eff_addr_reg(insn, regs, ®off, &tmp);
1272 if (insn->sib.nbytes) {
1273 ret = get_eff_addr_sib(insn, regs, ®off, &tmp);
1279 ret = get_eff_addr_modrm(insn, regs, ®off, &tmp);
1287 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1292 * In protected mode, before computing the linear address, make sure
1293 * the effective address is within the limits of the segment.
1294 * 32-bit addresses can be used in long and virtual-8086 modes if an
1295 * address override prefix is used. In such cases, segment limits are
1296 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1297 * to reflect this situation.
1299 * After computed, the effective address is treated as an unsigned
1302 if (!any_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1306 * Even though 32-bit address encodings are allowed in virtual-8086
1307 * mode, the address range is still limited to [0x-0xffff].
1309 if (v8086_mode(regs) && (eff_addr & ~0xffff))
1313 * Data type long could be 64 bits in size. Ensure that our 32-bit
1314 * effective address is not sign-extended when computing the linear
1317 linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1319 /* Limit linear address to 20 bits */
1320 if (v8086_mode(regs))
1321 linear_addr &= 0xfffff;
1324 return (void __user *)linear_addr;
1328 * get_addr_ref_64() - Obtain a 64-bit linear address
1329 * @insn: Instruction struct with ModRM and SIB bytes and displacement
1330 * @regs: Structure with register values as seen when entering kernel mode
1332 * This function is to be used with 64-bit address encodings to obtain the
1333 * linear memory address referred by the instruction's ModRM, SIB,
1334 * displacement bytes and segment base address, as applicable.
1338 * Linear address referenced by instruction and registers on success.
1342 #ifndef CONFIG_X86_64
1343 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1345 return (void __user *)-1L;
1348 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1350 unsigned long linear_addr = -1L, seg_base;
1354 if (insn->addr_bytes != 8)
1357 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1358 ret = get_eff_addr_reg(insn, regs, ®off, &eff_addr);
1363 if (insn->sib.nbytes) {
1364 ret = get_eff_addr_sib(insn, regs, ®off, &eff_addr);
1368 ret = get_eff_addr_modrm(insn, regs, ®off, &eff_addr);
1375 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1379 linear_addr = (unsigned long)eff_addr + seg_base;
1382 return (void __user *)linear_addr;
1384 #endif /* CONFIG_X86_64 */
1387 * insn_get_addr_ref() - Obtain the linear address referred by instruction
1388 * @insn: Instruction structure containing ModRM byte and displacement
1389 * @regs: Structure with register values as seen when entering kernel mode
1391 * Obtain the linear address referred by the instruction's ModRM, SIB and
1392 * displacement bytes, and segment base, as applicable. In protected mode,
1393 * segment limits are enforced.
1397 * Linear address referenced by instruction and registers on success.
1401 void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1404 return (void __user *)-1L;
1406 switch (insn->addr_bytes) {
1408 return get_addr_ref_16(insn, regs);
1410 return get_addr_ref_32(insn, regs);
1412 return get_addr_ref_64(insn, regs);
1414 return (void __user *)-1L;
1418 static unsigned long insn_get_effective_ip(struct pt_regs *regs)
1420 unsigned long seg_base = 0;
1423 * If not in user-space long mode, a custom code segment could be in
1424 * use. This is true in protected mode (if the process defined a local
1425 * descriptor table), or virtual-8086 mode. In most of the cases
1426 * seg_base will be zero as in USER_CS.
1428 if (!user_64bit_mode(regs)) {
1429 seg_base = insn_get_seg_base(regs, INAT_SEG_REG_CS);
1430 if (seg_base == -1L)
1434 return seg_base + regs->ip;
1438 * insn_fetch_from_user() - Copy instruction bytes from user-space memory
1439 * @regs: Structure with register values as seen when entering kernel mode
1440 * @buf: Array to store the fetched instruction
1442 * Gets the linear address of the instruction and copies the instruction bytes
1447 * Number of instruction bytes copied.
1449 * 0 if nothing was copied.
1451 int insn_fetch_from_user(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1456 ip = insn_get_effective_ip(regs);
1460 not_copied = copy_from_user(buf, (void __user *)ip, MAX_INSN_SIZE);
1462 return MAX_INSN_SIZE - not_copied;
1466 * insn_fetch_from_user_inatomic() - Copy instruction bytes from user-space memory
1467 * while in atomic code
1468 * @regs: Structure with register values as seen when entering kernel mode
1469 * @buf: Array to store the fetched instruction
1471 * Gets the linear address of the instruction and copies the instruction bytes
1472 * to the buf. This function must be used in atomic context.
1476 * Number of instruction bytes copied.
1478 * 0 if nothing was copied.
1480 int insn_fetch_from_user_inatomic(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1485 ip = insn_get_effective_ip(regs);
1489 not_copied = __copy_from_user_inatomic(buf, (void __user *)ip, MAX_INSN_SIZE);
1491 return MAX_INSN_SIZE - not_copied;
1495 * insn_decode() - Decode an instruction
1496 * @insn: Structure to store decoded instruction
1497 * @regs: Structure with register values as seen when entering kernel mode
1498 * @buf: Buffer containing the instruction bytes
1499 * @buf_size: Number of instruction bytes available in buf
1501 * Decodes the instruction provided in buf and stores the decoding results in
1502 * insn. Also determines the correct address and operand sizes.
1506 * True if instruction was decoded, False otherwise.
1508 bool insn_decode(struct insn *insn, struct pt_regs *regs,
1509 unsigned char buf[MAX_INSN_SIZE], int buf_size)
1513 insn_init(insn, buf, buf_size, user_64bit_mode(regs));
1516 * Override the default operand and address sizes with what is specified
1517 * in the code segment descriptor. The instruction decoder only sets
1518 * the address size it to either 4 or 8 address bytes and does nothing
1519 * for the operand bytes. This OK for most of the cases, but we could
1520 * have special cases where, for instance, a 16-bit code segment
1521 * descriptor is used.
1522 * If there is an address override prefix, the instruction decoder
1523 * correctly updates these values, even for 16-bit defaults.
1525 seg_defs = insn_get_code_seg_params(regs);
1526 if (seg_defs == -EINVAL)
1529 insn->addr_bytes = INSN_CODE_SEG_ADDR_SZ(seg_defs);
1530 insn->opnd_bytes = INSN_CODE_SEG_OPND_SZ(seg_defs);
1532 insn_get_length(insn);
1533 if (buf_size < insn->length)