1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * derived from drivers/kvm/kvm_main.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
19 #include <linux/kvm_host.h>
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
63 #include <trace/events/kvm.h>
65 #include <asm/debugreg.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/internal.h> /* Ugh! */
72 #include <asm/pvclock.h>
73 #include <asm/div64.h>
74 #include <asm/irq_remapping.h>
75 #include <asm/mshyperv.h>
76 #include <asm/hypervisor.h>
77 #include <asm/tlbflush.h>
78 #include <asm/intel_pt.h>
79 #include <asm/emulate_prefix.h>
81 #include <clocksource/hyperv_timer.h>
83 #define CREATE_TRACE_POINTS
86 #define MAX_IO_MSRS 256
87 #define KVM_MAX_MCE_BANKS 32
88 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
89 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
91 #define emul_to_vcpu(ctxt) \
92 ((struct kvm_vcpu *)(ctxt)->vcpu)
95 * - enable syscall per default because its emulated by KVM
96 * - enable LME and LMA per default on 64 bit KVM
100 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
102 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
105 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
107 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
109 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
110 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
112 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
113 static void process_nmi(struct kvm_vcpu *vcpu);
114 static void process_smi(struct kvm_vcpu *vcpu);
115 static void enter_smm(struct kvm_vcpu *vcpu);
116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
117 static void store_regs(struct kvm_vcpu *vcpu);
118 static int sync_regs(struct kvm_vcpu *vcpu);
120 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
121 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
123 struct kvm_x86_ops kvm_x86_ops __read_mostly;
124 EXPORT_SYMBOL_GPL(kvm_x86_ops);
126 #define KVM_X86_OP(func) \
127 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
128 *(((struct kvm_x86_ops *)0)->func));
129 #define KVM_X86_OP_NULL KVM_X86_OP
130 #include <asm/kvm-x86-ops.h>
131 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
132 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
133 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
135 static bool __read_mostly ignore_msrs = 0;
136 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
138 bool __read_mostly report_ignored_msrs = true;
139 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
140 EXPORT_SYMBOL_GPL(report_ignored_msrs);
142 unsigned int min_timer_period_us = 200;
143 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
145 static bool __read_mostly kvmclock_periodic_sync = true;
146 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
148 bool __read_mostly kvm_has_tsc_control;
149 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
150 u32 __read_mostly kvm_max_guest_tsc_khz;
151 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
152 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
153 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
154 u64 __read_mostly kvm_max_tsc_scaling_ratio;
155 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
156 u64 __read_mostly kvm_default_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
158 bool __read_mostly kvm_has_bus_lock_exit;
159 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
161 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
162 static u32 __read_mostly tsc_tolerance_ppm = 250;
163 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
166 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
167 * adaptive tuning starting from default advancement of 1000ns. '0' disables
168 * advancement entirely. Any other value is used as-is and disables adaptive
169 * tuning, i.e. allows privileged userspace to set an exact advancement time.
171 static int __read_mostly lapic_timer_advance_ns = -1;
172 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
174 static bool __read_mostly vector_hashing = true;
175 module_param(vector_hashing, bool, S_IRUGO);
177 bool __read_mostly enable_vmware_backdoor = false;
178 module_param(enable_vmware_backdoor, bool, S_IRUGO);
179 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
181 static bool __read_mostly force_emulation_prefix = false;
182 module_param(force_emulation_prefix, bool, S_IRUGO);
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
188 * Restoring the host value for MSRs that are only consumed when running in
189 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
190 * returns to userspace, i.e. the kernel can run with the guest's value.
192 #define KVM_MAX_NR_USER_RETURN_MSRS 16
194 struct kvm_user_return_msrs {
195 struct user_return_notifier urn;
197 struct kvm_user_return_msr_values {
200 } values[KVM_MAX_NR_USER_RETURN_MSRS];
203 u32 __read_mostly kvm_nr_uret_msrs;
204 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
205 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
206 static struct kvm_user_return_msrs __percpu *user_return_msrs;
208 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
209 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
210 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
211 | XFEATURE_MASK_PKRU)
213 u64 __read_mostly host_efer;
214 EXPORT_SYMBOL_GPL(host_efer);
216 bool __read_mostly allow_smaller_maxphyaddr = 0;
217 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
219 bool __read_mostly enable_apicv = true;
220 EXPORT_SYMBOL_GPL(enable_apicv);
222 u64 __read_mostly host_xss;
223 EXPORT_SYMBOL_GPL(host_xss);
224 u64 __read_mostly supported_xss;
225 EXPORT_SYMBOL_GPL(supported_xss);
227 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
228 KVM_GENERIC_VM_STATS(),
229 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
230 STATS_DESC_COUNTER(VM, mmu_pte_write),
231 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
232 STATS_DESC_COUNTER(VM, mmu_flooded),
233 STATS_DESC_COUNTER(VM, mmu_recycled),
234 STATS_DESC_COUNTER(VM, mmu_cache_miss),
235 STATS_DESC_ICOUNTER(VM, mmu_unsync),
236 STATS_DESC_ICOUNTER(VM, pages_4k),
237 STATS_DESC_ICOUNTER(VM, pages_2m),
238 STATS_DESC_ICOUNTER(VM, pages_1g),
239 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
240 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
241 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
244 const struct kvm_stats_header kvm_vm_stats_header = {
245 .name_size = KVM_STATS_NAME_SIZE,
246 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
247 .id_offset = sizeof(struct kvm_stats_header),
248 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
249 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
250 sizeof(kvm_vm_stats_desc),
253 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
254 KVM_GENERIC_VCPU_STATS(),
255 STATS_DESC_COUNTER(VCPU, pf_fixed),
256 STATS_DESC_COUNTER(VCPU, pf_guest),
257 STATS_DESC_COUNTER(VCPU, tlb_flush),
258 STATS_DESC_COUNTER(VCPU, invlpg),
259 STATS_DESC_COUNTER(VCPU, exits),
260 STATS_DESC_COUNTER(VCPU, io_exits),
261 STATS_DESC_COUNTER(VCPU, mmio_exits),
262 STATS_DESC_COUNTER(VCPU, signal_exits),
263 STATS_DESC_COUNTER(VCPU, irq_window_exits),
264 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
265 STATS_DESC_COUNTER(VCPU, l1d_flush),
266 STATS_DESC_COUNTER(VCPU, halt_exits),
267 STATS_DESC_COUNTER(VCPU, request_irq_exits),
268 STATS_DESC_COUNTER(VCPU, irq_exits),
269 STATS_DESC_COUNTER(VCPU, host_state_reload),
270 STATS_DESC_COUNTER(VCPU, fpu_reload),
271 STATS_DESC_COUNTER(VCPU, insn_emulation),
272 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
273 STATS_DESC_COUNTER(VCPU, hypercalls),
274 STATS_DESC_COUNTER(VCPU, irq_injections),
275 STATS_DESC_COUNTER(VCPU, nmi_injections),
276 STATS_DESC_COUNTER(VCPU, req_event),
277 STATS_DESC_COUNTER(VCPU, nested_run),
278 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
279 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
280 STATS_DESC_ICOUNTER(VCPU, guest_mode)
283 const struct kvm_stats_header kvm_vcpu_stats_header = {
284 .name_size = KVM_STATS_NAME_SIZE,
285 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
286 .id_offset = sizeof(struct kvm_stats_header),
287 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
288 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
289 sizeof(kvm_vcpu_stats_desc),
292 u64 __read_mostly host_xcr0;
293 u64 __read_mostly supported_xcr0;
294 EXPORT_SYMBOL_GPL(supported_xcr0);
296 static struct kmem_cache *x86_fpu_cache;
298 static struct kmem_cache *x86_emulator_cache;
301 * When called, it means the previous get/set msr reached an invalid msr.
302 * Return true if we want to ignore/silent this failed msr access.
304 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
306 const char *op = write ? "wrmsr" : "rdmsr";
309 if (report_ignored_msrs)
310 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
315 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
321 static struct kmem_cache *kvm_alloc_emulator_cache(void)
323 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
324 unsigned int size = sizeof(struct x86_emulate_ctxt);
326 return kmem_cache_create_usercopy("x86_emulator", size,
327 __alignof__(struct x86_emulate_ctxt),
328 SLAB_ACCOUNT, useroffset,
329 size - useroffset, NULL);
332 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
334 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
337 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
338 vcpu->arch.apf.gfns[i] = ~0;
341 static void kvm_on_user_return(struct user_return_notifier *urn)
344 struct kvm_user_return_msrs *msrs
345 = container_of(urn, struct kvm_user_return_msrs, urn);
346 struct kvm_user_return_msr_values *values;
350 * Disabling irqs at this point since the following code could be
351 * interrupted and executed through kvm_arch_hardware_disable()
353 local_irq_save(flags);
354 if (msrs->registered) {
355 msrs->registered = false;
356 user_return_notifier_unregister(urn);
358 local_irq_restore(flags);
359 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
360 values = &msrs->values[slot];
361 if (values->host != values->curr) {
362 wrmsrl(kvm_uret_msrs_list[slot], values->host);
363 values->curr = values->host;
368 static int kvm_probe_user_return_msr(u32 msr)
374 ret = rdmsrl_safe(msr, &val);
377 ret = wrmsrl_safe(msr, val);
383 int kvm_add_user_return_msr(u32 msr)
385 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
387 if (kvm_probe_user_return_msr(msr))
390 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
391 return kvm_nr_uret_msrs++;
393 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
395 int kvm_find_user_return_msr(u32 msr)
399 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
400 if (kvm_uret_msrs_list[i] == msr)
405 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
407 static void kvm_user_return_msr_cpu_online(void)
409 unsigned int cpu = smp_processor_id();
410 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
414 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
416 msrs->values[i].host = value;
417 msrs->values[i].curr = value;
421 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
423 unsigned int cpu = smp_processor_id();
424 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
427 value = (value & mask) | (msrs->values[slot].host & ~mask);
428 if (value == msrs->values[slot].curr)
430 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
434 msrs->values[slot].curr = value;
435 if (!msrs->registered) {
436 msrs->urn.on_user_return = kvm_on_user_return;
437 user_return_notifier_register(&msrs->urn);
438 msrs->registered = true;
442 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
444 static void drop_user_return_notifiers(void)
446 unsigned int cpu = smp_processor_id();
447 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
449 if (msrs->registered)
450 kvm_on_user_return(&msrs->urn);
453 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
455 return vcpu->arch.apic_base;
457 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
459 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
461 return kvm_apic_mode(kvm_get_apic_base(vcpu));
463 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
465 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
467 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
468 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
469 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
470 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
472 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
474 if (!msr_info->host_initiated) {
475 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
477 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
481 kvm_lapic_set_base(vcpu, msr_info->data);
482 kvm_recalculate_apic_map(vcpu->kvm);
485 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
488 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
490 * Hardware virtualization extension instructions may fault if a reboot turns
491 * off virtualization while processes are running. Usually after catching the
492 * fault we just panic; during reboot instead the instruction is ignored.
494 noinstr void kvm_spurious_fault(void)
496 /* Fault while not rebooting. We want the trace. */
497 BUG_ON(!kvm_rebooting);
499 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
501 #define EXCPT_BENIGN 0
502 #define EXCPT_CONTRIBUTORY 1
505 static int exception_class(int vector)
515 return EXCPT_CONTRIBUTORY;
522 #define EXCPT_FAULT 0
524 #define EXCPT_ABORT 2
525 #define EXCPT_INTERRUPT 3
527 static int exception_type(int vector)
531 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
532 return EXCPT_INTERRUPT;
536 /* #DB is trap, as instruction watchpoints are handled elsewhere */
537 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
540 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
543 /* Reserved exceptions will result in fault */
547 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
549 unsigned nr = vcpu->arch.exception.nr;
550 bool has_payload = vcpu->arch.exception.has_payload;
551 unsigned long payload = vcpu->arch.exception.payload;
559 * "Certain debug exceptions may clear bit 0-3. The
560 * remaining contents of the DR6 register are never
561 * cleared by the processor".
563 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
565 * In order to reflect the #DB exception payload in guest
566 * dr6, three components need to be considered: active low
567 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
569 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
570 * In the target guest dr6:
571 * FIXED_1 bits should always be set.
572 * Active low bits should be cleared if 1-setting in payload.
573 * Active high bits should be set if 1-setting in payload.
575 * Note, the payload is compatible with the pending debug
576 * exceptions/exit qualification under VMX, that active_low bits
577 * are active high in payload.
578 * So they need to be flipped for DR6.
580 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
581 vcpu->arch.dr6 |= payload;
582 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
585 * The #DB payload is defined as compatible with the 'pending
586 * debug exceptions' field under VMX, not DR6. While bit 12 is
587 * defined in the 'pending debug exceptions' field (enabled
588 * breakpoint), it is reserved and must be zero in DR6.
590 vcpu->arch.dr6 &= ~BIT(12);
593 vcpu->arch.cr2 = payload;
597 vcpu->arch.exception.has_payload = false;
598 vcpu->arch.exception.payload = 0;
600 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
602 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
603 unsigned nr, bool has_error, u32 error_code,
604 bool has_payload, unsigned long payload, bool reinject)
609 kvm_make_request(KVM_REQ_EVENT, vcpu);
611 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
615 * On vmentry, vcpu->arch.exception.pending is only
616 * true if an event injection was blocked by
617 * nested_run_pending. In that case, however,
618 * vcpu_enter_guest requests an immediate exit,
619 * and the guest shouldn't proceed far enough to
622 WARN_ON_ONCE(vcpu->arch.exception.pending);
623 vcpu->arch.exception.injected = true;
624 if (WARN_ON_ONCE(has_payload)) {
626 * A reinjected event has already
627 * delivered its payload.
633 vcpu->arch.exception.pending = true;
634 vcpu->arch.exception.injected = false;
636 vcpu->arch.exception.has_error_code = has_error;
637 vcpu->arch.exception.nr = nr;
638 vcpu->arch.exception.error_code = error_code;
639 vcpu->arch.exception.has_payload = has_payload;
640 vcpu->arch.exception.payload = payload;
641 if (!is_guest_mode(vcpu))
642 kvm_deliver_exception_payload(vcpu);
646 /* to check exception */
647 prev_nr = vcpu->arch.exception.nr;
648 if (prev_nr == DF_VECTOR) {
649 /* triple fault -> shutdown */
650 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
653 class1 = exception_class(prev_nr);
654 class2 = exception_class(nr);
655 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
656 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
658 * Generate double fault per SDM Table 5-5. Set
659 * exception.pending = true so that the double fault
660 * can trigger a nested vmexit.
662 vcpu->arch.exception.pending = true;
663 vcpu->arch.exception.injected = false;
664 vcpu->arch.exception.has_error_code = true;
665 vcpu->arch.exception.nr = DF_VECTOR;
666 vcpu->arch.exception.error_code = 0;
667 vcpu->arch.exception.has_payload = false;
668 vcpu->arch.exception.payload = 0;
670 /* replace previous exception with a new one in a hope
671 that instruction re-execution will regenerate lost
676 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
678 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
680 EXPORT_SYMBOL_GPL(kvm_queue_exception);
682 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
684 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
688 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
689 unsigned long payload)
691 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
693 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
695 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
696 u32 error_code, unsigned long payload)
698 kvm_multiple_exception(vcpu, nr, true, error_code,
699 true, payload, false);
702 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
705 kvm_inject_gp(vcpu, 0);
707 return kvm_skip_emulated_instruction(vcpu);
711 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
713 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
715 ++vcpu->stat.pf_guest;
716 vcpu->arch.exception.nested_apf =
717 is_guest_mode(vcpu) && fault->async_page_fault;
718 if (vcpu->arch.exception.nested_apf) {
719 vcpu->arch.apf.nested_apf_token = fault->address;
720 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
722 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
726 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
728 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
729 struct x86_exception *fault)
731 struct kvm_mmu *fault_mmu;
732 WARN_ON_ONCE(fault->vector != PF_VECTOR);
734 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
738 * Invalidate the TLB entry for the faulting address, if it exists,
739 * else the access will fault indefinitely (and to emulate hardware).
741 if ((fault->error_code & PFERR_PRESENT_MASK) &&
742 !(fault->error_code & PFERR_RSVD_MASK))
743 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
744 fault_mmu->root_hpa);
746 fault_mmu->inject_page_fault(vcpu, fault);
747 return fault->nested_page_fault;
749 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
751 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
753 atomic_inc(&vcpu->arch.nmi_queued);
754 kvm_make_request(KVM_REQ_NMI, vcpu);
756 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
758 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
760 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
762 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
764 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
766 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
768 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
771 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
772 * a #GP and return false.
774 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
776 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
778 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
781 EXPORT_SYMBOL_GPL(kvm_require_cpl);
783 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
785 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
788 kvm_queue_exception(vcpu, UD_VECTOR);
791 EXPORT_SYMBOL_GPL(kvm_require_dr);
793 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
795 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
799 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
801 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
803 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
807 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
810 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
813 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(pdpt_gfn),
814 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
815 if (real_gpa == UNMAPPED_GVA)
818 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
819 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
820 cr3 & GENMASK(11, 5), sizeof(pdpte));
824 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
825 if ((pdpte[i] & PT_PRESENT_MASK) &&
826 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
831 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
832 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
833 vcpu->arch.pdptrs_from_userspace = false;
837 EXPORT_SYMBOL_GPL(load_pdptrs);
839 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
841 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
842 kvm_clear_async_pf_completion_queue(vcpu);
843 kvm_async_pf_hash_reset(vcpu);
846 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
847 kvm_mmu_reset_context(vcpu);
849 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
850 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
851 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
852 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
854 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
856 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
858 unsigned long old_cr0 = kvm_read_cr0(vcpu);
859 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
864 if (cr0 & 0xffffffff00000000UL)
868 cr0 &= ~CR0_RESERVED_BITS;
870 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
873 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
877 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
878 (cr0 & X86_CR0_PG)) {
883 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
888 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
889 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
890 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
893 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
896 static_call(kvm_x86_set_cr0)(vcpu, cr0);
898 kvm_post_set_cr0(vcpu, old_cr0, cr0);
902 EXPORT_SYMBOL_GPL(kvm_set_cr0);
904 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
906 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
908 EXPORT_SYMBOL_GPL(kvm_lmsw);
910 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
912 if (vcpu->arch.guest_state_protected)
915 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
917 if (vcpu->arch.xcr0 != host_xcr0)
918 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
920 if (vcpu->arch.xsaves_enabled &&
921 vcpu->arch.ia32_xss != host_xss)
922 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
925 if (static_cpu_has(X86_FEATURE_PKU) &&
926 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
927 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
928 vcpu->arch.pkru != vcpu->arch.host_pkru)
929 write_pkru(vcpu->arch.pkru);
931 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
933 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
935 if (vcpu->arch.guest_state_protected)
938 if (static_cpu_has(X86_FEATURE_PKU) &&
939 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
940 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
941 vcpu->arch.pkru = rdpkru();
942 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
943 write_pkru(vcpu->arch.host_pkru);
946 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
948 if (vcpu->arch.xcr0 != host_xcr0)
949 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
951 if (vcpu->arch.xsaves_enabled &&
952 vcpu->arch.ia32_xss != host_xss)
953 wrmsrl(MSR_IA32_XSS, host_xss);
957 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
959 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
962 u64 old_xcr0 = vcpu->arch.xcr0;
965 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
966 if (index != XCR_XFEATURE_ENABLED_MASK)
968 if (!(xcr0 & XFEATURE_MASK_FP))
970 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
974 * Do not allow the guest to set bits that we do not support
975 * saving. However, xcr0 bit 0 is always set, even if the
976 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
978 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
979 if (xcr0 & ~valid_bits)
982 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
983 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
986 if (xcr0 & XFEATURE_MASK_AVX512) {
987 if (!(xcr0 & XFEATURE_MASK_YMM))
989 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
992 vcpu->arch.xcr0 = xcr0;
994 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
995 kvm_update_cpuid_runtime(vcpu);
999 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1001 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1002 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1003 kvm_inject_gp(vcpu, 0);
1007 return kvm_skip_emulated_instruction(vcpu);
1009 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1011 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1013 if (cr4 & cr4_reserved_bits)
1016 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1019 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1021 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1023 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1026 * If any role bit is changed, the MMU needs to be reset.
1028 * If CR4.PCIDE is changed 1 -> 0, the guest TLB must be flushed.
1029 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1030 * according to the SDM; however, stale prev_roots could be reused
1031 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1032 * free them all. KVM_REQ_MMU_RELOAD is fit for the both cases; it
1033 * is slow, but changing CR4.PCIDE is a rare case.
1035 * If CR4.PGE is changed, the guest TLB must be flushed.
1037 * Note: resetting MMU is a superset of KVM_REQ_MMU_RELOAD and
1038 * KVM_REQ_MMU_RELOAD is a superset of KVM_REQ_TLB_FLUSH_GUEST, hence
1039 * the usage of "else if".
1041 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1042 kvm_mmu_reset_context(vcpu);
1043 else if ((cr4 ^ old_cr4) & X86_CR4_PCIDE)
1044 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
1045 else if ((cr4 ^ old_cr4) & X86_CR4_PGE)
1046 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1048 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1050 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1052 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1053 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1056 if (!kvm_is_valid_cr4(vcpu, cr4))
1059 if (is_long_mode(vcpu)) {
1060 if (!(cr4 & X86_CR4_PAE))
1062 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1064 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1065 && ((cr4 ^ old_cr4) & pdptr_bits)
1066 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1067 kvm_read_cr3(vcpu)))
1070 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1071 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1074 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1075 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1079 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1081 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1085 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1087 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1089 struct kvm_mmu *mmu = vcpu->arch.mmu;
1090 unsigned long roots_to_free = 0;
1094 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1095 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1096 * also via the emulator. KVM's TDP page tables are not in the scope of
1097 * the invalidation, but the guest's TLB entries need to be flushed as
1098 * the CPU may have cached entries in its TLB for the target PCID.
1100 if (unlikely(tdp_enabled)) {
1101 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1106 * If neither the current CR3 nor any of the prev_roots use the given
1107 * PCID, then nothing needs to be done here because a resync will
1108 * happen anyway before switching to any other CR3.
1110 if (kvm_get_active_pcid(vcpu) == pcid) {
1111 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1112 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1116 * If PCID is disabled, there is no need to free prev_roots even if the
1117 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1120 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1123 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1124 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1125 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1127 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1130 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1132 bool skip_tlb_flush = false;
1133 unsigned long pcid = 0;
1134 #ifdef CONFIG_X86_64
1135 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1138 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1139 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1140 pcid = cr3 & X86_CR3_PCID_MASK;
1144 /* PDPTRs are always reloaded for PAE paging. */
1145 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1146 goto handle_tlb_flush;
1149 * Do not condition the GPA check on long mode, this helper is used to
1150 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1151 * the current vCPU mode is accurate.
1153 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1156 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1159 if (cr3 != kvm_read_cr3(vcpu))
1160 kvm_mmu_new_pgd(vcpu, cr3);
1162 vcpu->arch.cr3 = cr3;
1163 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1167 * A load of CR3 that flushes the TLB flushes only the current PCID,
1168 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1169 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1170 * and it's impossible to use a non-zero PCID when PCID is disabled,
1171 * i.e. only PCID=0 can be relevant.
1173 if (!skip_tlb_flush)
1174 kvm_invalidate_pcid(vcpu, pcid);
1178 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1180 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1182 if (cr8 & CR8_RESERVED_BITS)
1184 if (lapic_in_kernel(vcpu))
1185 kvm_lapic_set_tpr(vcpu, cr8);
1187 vcpu->arch.cr8 = cr8;
1190 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1192 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1194 if (lapic_in_kernel(vcpu))
1195 return kvm_lapic_get_cr8(vcpu);
1197 return vcpu->arch.cr8;
1199 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1201 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1205 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1206 for (i = 0; i < KVM_NR_DB_REGS; i++)
1207 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1211 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1215 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1216 dr7 = vcpu->arch.guest_debug_dr7;
1218 dr7 = vcpu->arch.dr7;
1219 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1220 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1221 if (dr7 & DR7_BP_EN_MASK)
1222 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1224 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1226 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1228 u64 fixed = DR6_FIXED_1;
1230 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1233 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1234 fixed |= DR6_BUS_LOCK;
1238 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1240 size_t size = ARRAY_SIZE(vcpu->arch.db);
1244 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1245 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1246 vcpu->arch.eff_db[dr] = val;
1250 if (!kvm_dr6_valid(val))
1252 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1256 if (!kvm_dr7_valid(val))
1258 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1259 kvm_update_dr7(vcpu);
1265 EXPORT_SYMBOL_GPL(kvm_set_dr);
1267 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1269 size_t size = ARRAY_SIZE(vcpu->arch.db);
1273 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1277 *val = vcpu->arch.dr6;
1281 *val = vcpu->arch.dr7;
1285 EXPORT_SYMBOL_GPL(kvm_get_dr);
1287 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1289 u32 ecx = kvm_rcx_read(vcpu);
1292 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1293 kvm_inject_gp(vcpu, 0);
1297 kvm_rax_write(vcpu, (u32)data);
1298 kvm_rdx_write(vcpu, data >> 32);
1299 return kvm_skip_emulated_instruction(vcpu);
1301 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1304 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1305 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1307 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1308 * extract the supported MSRs from the related const lists.
1309 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1310 * capabilities of the host cpu. This capabilities test skips MSRs that are
1311 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1312 * may depend on host virtualization features rather than host cpu features.
1315 static const u32 msrs_to_save_all[] = {
1316 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1318 #ifdef CONFIG_X86_64
1319 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1321 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1322 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1324 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1325 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1326 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1327 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1328 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1329 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1330 MSR_IA32_UMWAIT_CONTROL,
1332 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1333 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1334 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1335 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1336 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1337 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1338 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1339 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1340 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1341 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1342 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1343 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1344 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1345 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1346 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1347 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1348 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1349 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1350 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1351 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1352 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1353 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1355 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1356 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1357 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1358 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1359 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1360 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1363 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1364 static unsigned num_msrs_to_save;
1366 static const u32 emulated_msrs_all[] = {
1367 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1368 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1369 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1370 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1371 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1372 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1373 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1375 HV_X64_MSR_VP_INDEX,
1376 HV_X64_MSR_VP_RUNTIME,
1377 HV_X64_MSR_SCONTROL,
1378 HV_X64_MSR_STIMER0_CONFIG,
1379 HV_X64_MSR_VP_ASSIST_PAGE,
1380 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1381 HV_X64_MSR_TSC_EMULATION_STATUS,
1382 HV_X64_MSR_SYNDBG_OPTIONS,
1383 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1384 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1385 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1387 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1388 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1390 MSR_IA32_TSC_ADJUST,
1391 MSR_IA32_TSC_DEADLINE,
1392 MSR_IA32_ARCH_CAPABILITIES,
1393 MSR_IA32_PERF_CAPABILITIES,
1394 MSR_IA32_MISC_ENABLE,
1395 MSR_IA32_MCG_STATUS,
1397 MSR_IA32_MCG_EXT_CTL,
1401 MSR_MISC_FEATURES_ENABLES,
1402 MSR_AMD64_VIRT_SPEC_CTRL,
1403 MSR_AMD64_TSC_RATIO,
1408 * The following list leaves out MSRs whose values are determined
1409 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1410 * We always support the "true" VMX control MSRs, even if the host
1411 * processor does not, so I am putting these registers here rather
1412 * than in msrs_to_save_all.
1415 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1416 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1417 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1418 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1420 MSR_IA32_VMX_CR0_FIXED0,
1421 MSR_IA32_VMX_CR4_FIXED0,
1422 MSR_IA32_VMX_VMCS_ENUM,
1423 MSR_IA32_VMX_PROCBASED_CTLS2,
1424 MSR_IA32_VMX_EPT_VPID_CAP,
1425 MSR_IA32_VMX_VMFUNC,
1428 MSR_KVM_POLL_CONTROL,
1431 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1432 static unsigned num_emulated_msrs;
1435 * List of msr numbers which are used to expose MSR-based features that
1436 * can be used by a hypervisor to validate requested CPU features.
1438 static const u32 msr_based_features_all[] = {
1440 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1441 MSR_IA32_VMX_PINBASED_CTLS,
1442 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1443 MSR_IA32_VMX_PROCBASED_CTLS,
1444 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1445 MSR_IA32_VMX_EXIT_CTLS,
1446 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1447 MSR_IA32_VMX_ENTRY_CTLS,
1449 MSR_IA32_VMX_CR0_FIXED0,
1450 MSR_IA32_VMX_CR0_FIXED1,
1451 MSR_IA32_VMX_CR4_FIXED0,
1452 MSR_IA32_VMX_CR4_FIXED1,
1453 MSR_IA32_VMX_VMCS_ENUM,
1454 MSR_IA32_VMX_PROCBASED_CTLS2,
1455 MSR_IA32_VMX_EPT_VPID_CAP,
1456 MSR_IA32_VMX_VMFUNC,
1460 MSR_IA32_ARCH_CAPABILITIES,
1461 MSR_IA32_PERF_CAPABILITIES,
1464 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1465 static unsigned int num_msr_based_features;
1467 static u64 kvm_get_arch_capabilities(void)
1471 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1472 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1475 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1476 * the nested hypervisor runs with NX huge pages. If it is not,
1477 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1478 * L1 guests, so it need not worry about its own (L2) guests.
1480 data |= ARCH_CAP_PSCHANGE_MC_NO;
1483 * If we're doing cache flushes (either "always" or "cond")
1484 * we will do one whenever the guest does a vmlaunch/vmresume.
1485 * If an outer hypervisor is doing the cache flush for us
1486 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1487 * capability to the guest too, and if EPT is disabled we're not
1488 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1489 * require a nested hypervisor to do a flush of its own.
1491 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1492 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1494 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1495 data |= ARCH_CAP_RDCL_NO;
1496 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1497 data |= ARCH_CAP_SSB_NO;
1498 if (!boot_cpu_has_bug(X86_BUG_MDS))
1499 data |= ARCH_CAP_MDS_NO;
1501 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1503 * If RTM=0 because the kernel has disabled TSX, the host might
1504 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1505 * and therefore knows that there cannot be TAA) but keep
1506 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1507 * and we want to allow migrating those guests to tsx=off hosts.
1509 data &= ~ARCH_CAP_TAA_NO;
1510 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1511 data |= ARCH_CAP_TAA_NO;
1514 * Nothing to do here; we emulate TSX_CTRL if present on the
1515 * host so the guest can choose between disabling TSX or
1516 * using VERW to clear CPU buffers.
1523 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1525 switch (msr->index) {
1526 case MSR_IA32_ARCH_CAPABILITIES:
1527 msr->data = kvm_get_arch_capabilities();
1529 case MSR_IA32_UCODE_REV:
1530 rdmsrl_safe(msr->index, &msr->data);
1533 return static_call(kvm_x86_get_msr_feature)(msr);
1538 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1540 struct kvm_msr_entry msr;
1544 r = kvm_get_msr_feature(&msr);
1546 if (r == KVM_MSR_RET_INVALID) {
1547 /* Unconditionally clear the output for simplicity */
1549 if (kvm_msr_ignored_check(index, 0, false))
1561 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1563 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1566 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1569 if (efer & (EFER_LME | EFER_LMA) &&
1570 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1573 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1579 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1581 if (efer & efer_reserved_bits)
1584 return __kvm_valid_efer(vcpu, efer);
1586 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1588 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1590 u64 old_efer = vcpu->arch.efer;
1591 u64 efer = msr_info->data;
1594 if (efer & efer_reserved_bits)
1597 if (!msr_info->host_initiated) {
1598 if (!__kvm_valid_efer(vcpu, efer))
1601 if (is_paging(vcpu) &&
1602 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1607 efer |= vcpu->arch.efer & EFER_LMA;
1609 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1615 /* Update reserved bits */
1616 if ((efer ^ old_efer) & EFER_NX)
1617 kvm_mmu_reset_context(vcpu);
1622 void kvm_enable_efer_bits(u64 mask)
1624 efer_reserved_bits &= ~mask;
1626 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1628 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1630 struct kvm_x86_msr_filter *msr_filter;
1631 struct msr_bitmap_range *ranges;
1632 struct kvm *kvm = vcpu->kvm;
1637 /* x2APIC MSRs do not support filtering. */
1638 if (index >= 0x800 && index <= 0x8ff)
1641 idx = srcu_read_lock(&kvm->srcu);
1643 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1649 allowed = msr_filter->default_allow;
1650 ranges = msr_filter->ranges;
1652 for (i = 0; i < msr_filter->count; i++) {
1653 u32 start = ranges[i].base;
1654 u32 end = start + ranges[i].nmsrs;
1655 u32 flags = ranges[i].flags;
1656 unsigned long *bitmap = ranges[i].bitmap;
1658 if ((index >= start) && (index < end) && (flags & type)) {
1659 allowed = !!test_bit(index - start, bitmap);
1665 srcu_read_unlock(&kvm->srcu, idx);
1669 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1672 * Write @data into the MSR specified by @index. Select MSR specific fault
1673 * checks are bypassed if @host_initiated is %true.
1674 * Returns 0 on success, non-0 otherwise.
1675 * Assumes vcpu_load() was already called.
1677 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1678 bool host_initiated)
1680 struct msr_data msr;
1682 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1683 return KVM_MSR_RET_FILTERED;
1688 case MSR_KERNEL_GS_BASE:
1691 if (is_noncanonical_address(data, vcpu))
1694 case MSR_IA32_SYSENTER_EIP:
1695 case MSR_IA32_SYSENTER_ESP:
1697 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1698 * non-canonical address is written on Intel but not on
1699 * AMD (which ignores the top 32-bits, because it does
1700 * not implement 64-bit SYSENTER).
1702 * 64-bit code should hence be able to write a non-canonical
1703 * value on AMD. Making the address canonical ensures that
1704 * vmentry does not fail on Intel after writing a non-canonical
1705 * value, and that something deterministic happens if the guest
1706 * invokes 64-bit SYSENTER.
1708 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1711 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1714 if (!host_initiated &&
1715 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1716 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1720 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1721 * incomplete and conflicting architectural behavior. Current
1722 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1723 * reserved and always read as zeros. Enforce Intel's reserved
1724 * bits check if and only if the guest CPU is Intel, and clear
1725 * the bits in all other cases. This ensures cross-vendor
1726 * migration will provide consistent behavior for the guest.
1728 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1737 msr.host_initiated = host_initiated;
1739 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1742 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1743 u32 index, u64 data, bool host_initiated)
1745 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1747 if (ret == KVM_MSR_RET_INVALID)
1748 if (kvm_msr_ignored_check(index, data, true))
1755 * Read the MSR specified by @index into @data. Select MSR specific fault
1756 * checks are bypassed if @host_initiated is %true.
1757 * Returns 0 on success, non-0 otherwise.
1758 * Assumes vcpu_load() was already called.
1760 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1761 bool host_initiated)
1763 struct msr_data msr;
1766 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1767 return KVM_MSR_RET_FILTERED;
1771 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1774 if (!host_initiated &&
1775 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1776 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1782 msr.host_initiated = host_initiated;
1784 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1790 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1791 u32 index, u64 *data, bool host_initiated)
1793 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1795 if (ret == KVM_MSR_RET_INVALID) {
1796 /* Unconditionally clear *data for simplicity */
1798 if (kvm_msr_ignored_check(index, 0, false))
1805 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1807 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1809 EXPORT_SYMBOL_GPL(kvm_get_msr);
1811 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1813 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1815 EXPORT_SYMBOL_GPL(kvm_set_msr);
1817 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1819 int err = vcpu->run->msr.error;
1821 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1822 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1825 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1828 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1830 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1833 static u64 kvm_msr_reason(int r)
1836 case KVM_MSR_RET_INVALID:
1837 return KVM_MSR_EXIT_REASON_UNKNOWN;
1838 case KVM_MSR_RET_FILTERED:
1839 return KVM_MSR_EXIT_REASON_FILTER;
1841 return KVM_MSR_EXIT_REASON_INVAL;
1845 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1846 u32 exit_reason, u64 data,
1847 int (*completion)(struct kvm_vcpu *vcpu),
1850 u64 msr_reason = kvm_msr_reason(r);
1852 /* Check if the user wanted to know about this MSR fault */
1853 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1856 vcpu->run->exit_reason = exit_reason;
1857 vcpu->run->msr.error = 0;
1858 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1859 vcpu->run->msr.reason = msr_reason;
1860 vcpu->run->msr.index = index;
1861 vcpu->run->msr.data = data;
1862 vcpu->arch.complete_userspace_io = completion;
1867 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1869 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1870 complete_emulated_rdmsr, r);
1873 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1875 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1876 complete_emulated_wrmsr, r);
1879 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1881 u32 ecx = kvm_rcx_read(vcpu);
1885 r = kvm_get_msr(vcpu, ecx, &data);
1887 /* MSR read failed? See if we should ask user space */
1888 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1889 /* Bounce to user space */
1894 trace_kvm_msr_read(ecx, data);
1896 kvm_rax_write(vcpu, data & -1u);
1897 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1899 trace_kvm_msr_read_ex(ecx);
1902 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1904 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1906 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1908 u32 ecx = kvm_rcx_read(vcpu);
1909 u64 data = kvm_read_edx_eax(vcpu);
1912 r = kvm_set_msr(vcpu, ecx, data);
1914 /* MSR write failed? See if we should ask user space */
1915 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1916 /* Bounce to user space */
1919 /* Signal all other negative errors to userspace */
1924 trace_kvm_msr_write(ecx, data);
1926 trace_kvm_msr_write_ex(ecx, data);
1928 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1930 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1932 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1934 return kvm_skip_emulated_instruction(vcpu);
1936 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1938 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1940 /* Treat an INVD instruction as a NOP and just skip it. */
1941 return kvm_emulate_as_nop(vcpu);
1943 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1945 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1947 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1948 return kvm_emulate_as_nop(vcpu);
1950 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1952 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1954 kvm_queue_exception(vcpu, UD_VECTOR);
1957 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1959 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1961 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1962 return kvm_emulate_as_nop(vcpu);
1964 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1966 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1968 xfer_to_guest_mode_prepare();
1969 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1970 xfer_to_guest_mode_work_pending();
1974 * The fast path for frequent and performance sensitive wrmsr emulation,
1975 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1976 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1977 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1978 * other cases which must be called after interrupts are enabled on the host.
1980 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1982 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1985 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1986 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1987 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1988 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1991 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1992 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1993 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1994 trace_kvm_apic_write(APIC_ICR, (u32)data);
2001 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2003 if (!kvm_can_use_hv_timer(vcpu))
2006 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2010 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2012 u32 msr = kvm_rcx_read(vcpu);
2014 fastpath_t ret = EXIT_FASTPATH_NONE;
2017 case APIC_BASE_MSR + (APIC_ICR >> 4):
2018 data = kvm_read_edx_eax(vcpu);
2019 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2020 kvm_skip_emulated_instruction(vcpu);
2021 ret = EXIT_FASTPATH_EXIT_HANDLED;
2024 case MSR_IA32_TSC_DEADLINE:
2025 data = kvm_read_edx_eax(vcpu);
2026 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2027 kvm_skip_emulated_instruction(vcpu);
2028 ret = EXIT_FASTPATH_REENTER_GUEST;
2035 if (ret != EXIT_FASTPATH_NONE)
2036 trace_kvm_msr_write(msr, data);
2040 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2043 * Adapt set_msr() to msr_io()'s calling convention
2045 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2047 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2050 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2052 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2055 #ifdef CONFIG_X86_64
2056 struct pvclock_clock {
2066 struct pvclock_gtod_data {
2069 struct pvclock_clock clock; /* extract of a clocksource struct */
2070 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2076 static struct pvclock_gtod_data pvclock_gtod_data;
2078 static void update_pvclock_gtod(struct timekeeper *tk)
2080 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2082 write_seqcount_begin(&vdata->seq);
2084 /* copy pvclock gtod data */
2085 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2086 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2087 vdata->clock.mask = tk->tkr_mono.mask;
2088 vdata->clock.mult = tk->tkr_mono.mult;
2089 vdata->clock.shift = tk->tkr_mono.shift;
2090 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2091 vdata->clock.offset = tk->tkr_mono.base;
2093 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2094 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2095 vdata->raw_clock.mask = tk->tkr_raw.mask;
2096 vdata->raw_clock.mult = tk->tkr_raw.mult;
2097 vdata->raw_clock.shift = tk->tkr_raw.shift;
2098 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2099 vdata->raw_clock.offset = tk->tkr_raw.base;
2101 vdata->wall_time_sec = tk->xtime_sec;
2103 vdata->offs_boot = tk->offs_boot;
2105 write_seqcount_end(&vdata->seq);
2108 static s64 get_kvmclock_base_ns(void)
2110 /* Count up from boot time, but with the frequency of the raw clock. */
2111 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2114 static s64 get_kvmclock_base_ns(void)
2116 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2117 return ktime_get_boottime_ns();
2121 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2125 struct pvclock_wall_clock wc;
2132 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2137 ++version; /* first time write, random junk */
2141 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2145 * The guest calculates current wall clock time by adding
2146 * system time (updated by kvm_guest_time_update below) to the
2147 * wall clock specified here. We do the reverse here.
2149 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2151 wc.nsec = do_div(wall_nsec, 1000000000);
2152 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2153 wc.version = version;
2155 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2158 wc_sec_hi = wall_nsec >> 32;
2159 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2160 &wc_sec_hi, sizeof(wc_sec_hi));
2164 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2167 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2168 bool old_msr, bool host_initiated)
2170 struct kvm_arch *ka = &vcpu->kvm->arch;
2172 if (vcpu->vcpu_id == 0 && !host_initiated) {
2173 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2174 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2176 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2179 vcpu->arch.time = system_time;
2180 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2182 /* we verify if the enable bit is set... */
2183 vcpu->arch.pv_time_enabled = false;
2184 if (!(system_time & 1))
2187 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2188 &vcpu->arch.pv_time, system_time & ~1ULL,
2189 sizeof(struct pvclock_vcpu_time_info)))
2190 vcpu->arch.pv_time_enabled = true;
2195 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2197 do_shl32_div32(dividend, divisor);
2201 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2202 s8 *pshift, u32 *pmultiplier)
2210 scaled64 = scaled_hz;
2211 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2216 tps32 = (uint32_t)tps64;
2217 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2218 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2226 *pmultiplier = div_frac(scaled64, tps32);
2229 #ifdef CONFIG_X86_64
2230 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2233 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2234 static unsigned long max_tsc_khz;
2236 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2238 u64 v = (u64)khz * (1000000 + ppm);
2243 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2245 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2249 /* Guest TSC same frequency as host TSC? */
2251 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2255 /* TSC scaling supported? */
2256 if (!kvm_has_tsc_control) {
2257 if (user_tsc_khz > tsc_khz) {
2258 vcpu->arch.tsc_catchup = 1;
2259 vcpu->arch.tsc_always_catchup = 1;
2262 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2267 /* TSC scaling required - calculate ratio */
2268 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2269 user_tsc_khz, tsc_khz);
2271 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2272 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2277 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2281 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2283 u32 thresh_lo, thresh_hi;
2284 int use_scaling = 0;
2286 /* tsc_khz can be zero if TSC calibration fails */
2287 if (user_tsc_khz == 0) {
2288 /* set tsc_scaling_ratio to a safe value */
2289 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2293 /* Compute a scale to convert nanoseconds in TSC cycles */
2294 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2295 &vcpu->arch.virtual_tsc_shift,
2296 &vcpu->arch.virtual_tsc_mult);
2297 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2300 * Compute the variation in TSC rate which is acceptable
2301 * within the range of tolerance and decide if the
2302 * rate being applied is within that bounds of the hardware
2303 * rate. If so, no scaling or compensation need be done.
2305 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2306 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2307 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2308 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2311 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2314 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2316 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2317 vcpu->arch.virtual_tsc_mult,
2318 vcpu->arch.virtual_tsc_shift);
2319 tsc += vcpu->arch.this_tsc_write;
2323 static inline int gtod_is_based_on_tsc(int mode)
2325 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2328 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2330 #ifdef CONFIG_X86_64
2332 struct kvm_arch *ka = &vcpu->kvm->arch;
2333 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2335 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2336 atomic_read(&vcpu->kvm->online_vcpus));
2339 * Once the masterclock is enabled, always perform request in
2340 * order to update it.
2342 * In order to enable masterclock, the host clocksource must be TSC
2343 * and the vcpus need to have matched TSCs. When that happens,
2344 * perform request to enable masterclock.
2346 if (ka->use_master_clock ||
2347 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2348 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2350 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2351 atomic_read(&vcpu->kvm->online_vcpus),
2352 ka->use_master_clock, gtod->clock.vclock_mode);
2357 * Multiply tsc by a fixed point number represented by ratio.
2359 * The most significant 64-N bits (mult) of ratio represent the
2360 * integral part of the fixed point number; the remaining N bits
2361 * (frac) represent the fractional part, ie. ratio represents a fixed
2362 * point number (mult + frac * 2^(-N)).
2364 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2366 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2368 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2371 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2375 if (ratio != kvm_default_tsc_scaling_ratio)
2376 _tsc = __scale_tsc(ratio, tsc);
2380 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2382 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2386 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2388 return target_tsc - tsc;
2391 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2393 return vcpu->arch.l1_tsc_offset +
2394 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2396 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2398 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2402 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2403 nested_offset = l1_offset;
2405 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2406 kvm_tsc_scaling_ratio_frac_bits);
2408 nested_offset += l2_offset;
2409 return nested_offset;
2411 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2413 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2415 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2416 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2417 kvm_tsc_scaling_ratio_frac_bits);
2419 return l1_multiplier;
2421 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2423 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2425 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2426 vcpu->arch.l1_tsc_offset,
2429 vcpu->arch.l1_tsc_offset = l1_offset;
2432 * If we are here because L1 chose not to trap WRMSR to TSC then
2433 * according to the spec this should set L1's TSC (as opposed to
2434 * setting L1's offset for L2).
2436 if (is_guest_mode(vcpu))
2437 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2439 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2440 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2442 vcpu->arch.tsc_offset = l1_offset;
2444 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2447 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2449 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2451 /* Userspace is changing the multiplier while L2 is active */
2452 if (is_guest_mode(vcpu))
2453 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2455 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2457 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2459 if (kvm_has_tsc_control)
2460 static_call(kvm_x86_write_tsc_multiplier)(
2461 vcpu, vcpu->arch.tsc_scaling_ratio);
2464 static inline bool kvm_check_tsc_unstable(void)
2466 #ifdef CONFIG_X86_64
2468 * TSC is marked unstable when we're running on Hyper-V,
2469 * 'TSC page' clocksource is good.
2471 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2474 return check_tsc_unstable();
2478 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2479 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2482 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2483 u64 ns, bool matched)
2485 struct kvm *kvm = vcpu->kvm;
2487 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2490 * We also track th most recent recorded KHZ, write and time to
2491 * allow the matching interval to be extended at each write.
2493 kvm->arch.last_tsc_nsec = ns;
2494 kvm->arch.last_tsc_write = tsc;
2495 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2496 kvm->arch.last_tsc_offset = offset;
2498 vcpu->arch.last_guest_tsc = tsc;
2500 kvm_vcpu_write_tsc_offset(vcpu, offset);
2504 * We split periods of matched TSC writes into generations.
2505 * For each generation, we track the original measured
2506 * nanosecond time, offset, and write, so if TSCs are in
2507 * sync, we can match exact offset, and if not, we can match
2508 * exact software computation in compute_guest_tsc()
2510 * These values are tracked in kvm->arch.cur_xxx variables.
2512 kvm->arch.cur_tsc_generation++;
2513 kvm->arch.cur_tsc_nsec = ns;
2514 kvm->arch.cur_tsc_write = tsc;
2515 kvm->arch.cur_tsc_offset = offset;
2516 kvm->arch.nr_vcpus_matched_tsc = 0;
2517 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2518 kvm->arch.nr_vcpus_matched_tsc++;
2521 /* Keep track of which generation this VCPU has synchronized to */
2522 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2523 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2524 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2526 kvm_track_tsc_matching(vcpu);
2529 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2531 struct kvm *kvm = vcpu->kvm;
2532 u64 offset, ns, elapsed;
2533 unsigned long flags;
2534 bool matched = false;
2535 bool synchronizing = false;
2537 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2538 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2539 ns = get_kvmclock_base_ns();
2540 elapsed = ns - kvm->arch.last_tsc_nsec;
2542 if (vcpu->arch.virtual_tsc_khz) {
2545 * detection of vcpu initialization -- need to sync
2546 * with other vCPUs. This particularly helps to keep
2547 * kvm_clock stable after CPU hotplug
2549 synchronizing = true;
2551 u64 tsc_exp = kvm->arch.last_tsc_write +
2552 nsec_to_cycles(vcpu, elapsed);
2553 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2555 * Special case: TSC write with a small delta (1 second)
2556 * of virtual cycle time against real time is
2557 * interpreted as an attempt to synchronize the CPU.
2559 synchronizing = data < tsc_exp + tsc_hz &&
2560 data + tsc_hz > tsc_exp;
2565 * For a reliable TSC, we can match TSC offsets, and for an unstable
2566 * TSC, we add elapsed time in this computation. We could let the
2567 * compensation code attempt to catch up if we fall behind, but
2568 * it's better to try to match offsets from the beginning.
2570 if (synchronizing &&
2571 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2572 if (!kvm_check_tsc_unstable()) {
2573 offset = kvm->arch.cur_tsc_offset;
2575 u64 delta = nsec_to_cycles(vcpu, elapsed);
2577 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2582 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2583 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2586 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2589 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2590 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2593 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2595 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2596 WARN_ON(adjustment < 0);
2597 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2598 vcpu->arch.l1_tsc_scaling_ratio);
2599 adjust_tsc_offset_guest(vcpu, adjustment);
2602 #ifdef CONFIG_X86_64
2604 static u64 read_tsc(void)
2606 u64 ret = (u64)rdtsc_ordered();
2607 u64 last = pvclock_gtod_data.clock.cycle_last;
2609 if (likely(ret >= last))
2613 * GCC likes to generate cmov here, but this branch is extremely
2614 * predictable (it's just a function of time and the likely is
2615 * very likely) and there's a data dependence, so force GCC
2616 * to generate a branch instead. I don't barrier() because
2617 * we don't actually need a barrier, and if this function
2618 * ever gets inlined it will generate worse code.
2624 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2630 switch (clock->vclock_mode) {
2631 case VDSO_CLOCKMODE_HVCLOCK:
2632 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2634 if (tsc_pg_val != U64_MAX) {
2635 /* TSC page valid */
2636 *mode = VDSO_CLOCKMODE_HVCLOCK;
2637 v = (tsc_pg_val - clock->cycle_last) &
2640 /* TSC page invalid */
2641 *mode = VDSO_CLOCKMODE_NONE;
2644 case VDSO_CLOCKMODE_TSC:
2645 *mode = VDSO_CLOCKMODE_TSC;
2646 *tsc_timestamp = read_tsc();
2647 v = (*tsc_timestamp - clock->cycle_last) &
2651 *mode = VDSO_CLOCKMODE_NONE;
2654 if (*mode == VDSO_CLOCKMODE_NONE)
2655 *tsc_timestamp = v = 0;
2657 return v * clock->mult;
2660 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2662 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2668 seq = read_seqcount_begin(>od->seq);
2669 ns = gtod->raw_clock.base_cycles;
2670 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2671 ns >>= gtod->raw_clock.shift;
2672 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2673 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2679 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2681 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2687 seq = read_seqcount_begin(>od->seq);
2688 ts->tv_sec = gtod->wall_time_sec;
2689 ns = gtod->clock.base_cycles;
2690 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2691 ns >>= gtod->clock.shift;
2692 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2694 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2700 /* returns true if host is using TSC based clocksource */
2701 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2703 /* checked again under seqlock below */
2704 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2707 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2711 /* returns true if host is using TSC based clocksource */
2712 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2715 /* checked again under seqlock below */
2716 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2719 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2725 * Assuming a stable TSC across physical CPUS, and a stable TSC
2726 * across virtual CPUs, the following condition is possible.
2727 * Each numbered line represents an event visible to both
2728 * CPUs at the next numbered event.
2730 * "timespecX" represents host monotonic time. "tscX" represents
2733 * VCPU0 on CPU0 | VCPU1 on CPU1
2735 * 1. read timespec0,tsc0
2736 * 2. | timespec1 = timespec0 + N
2738 * 3. transition to guest | transition to guest
2739 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2740 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2741 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2743 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2746 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2748 * - 0 < N - M => M < N
2750 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2751 * always the case (the difference between two distinct xtime instances
2752 * might be smaller then the difference between corresponding TSC reads,
2753 * when updating guest vcpus pvclock areas).
2755 * To avoid that problem, do not allow visibility of distinct
2756 * system_timestamp/tsc_timestamp values simultaneously: use a master
2757 * copy of host monotonic time values. Update that master copy
2760 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2764 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2766 #ifdef CONFIG_X86_64
2767 struct kvm_arch *ka = &kvm->arch;
2769 bool host_tsc_clocksource, vcpus_matched;
2771 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2772 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2773 atomic_read(&kvm->online_vcpus));
2776 * If the host uses TSC clock, then passthrough TSC as stable
2779 host_tsc_clocksource = kvm_get_time_and_clockread(
2780 &ka->master_kernel_ns,
2781 &ka->master_cycle_now);
2783 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2784 && !ka->backwards_tsc_observed
2785 && !ka->boot_vcpu_runs_old_kvmclock;
2787 if (ka->use_master_clock)
2788 atomic_set(&kvm_guest_has_master_clock, 1);
2790 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2791 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2796 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2798 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2801 static void __kvm_start_pvclock_update(struct kvm *kvm)
2803 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2804 write_seqcount_begin(&kvm->arch.pvclock_sc);
2807 static void kvm_start_pvclock_update(struct kvm *kvm)
2809 kvm_make_mclock_inprogress_request(kvm);
2811 /* no guest entries from this point */
2812 __kvm_start_pvclock_update(kvm);
2815 static void kvm_end_pvclock_update(struct kvm *kvm)
2817 struct kvm_arch *ka = &kvm->arch;
2818 struct kvm_vcpu *vcpu;
2821 write_seqcount_end(&ka->pvclock_sc);
2822 raw_spin_unlock_irq(&ka->tsc_write_lock);
2823 kvm_for_each_vcpu(i, vcpu, kvm)
2824 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2826 /* guest entries allowed */
2827 kvm_for_each_vcpu(i, vcpu, kvm)
2828 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2831 static void kvm_update_masterclock(struct kvm *kvm)
2833 kvm_hv_invalidate_tsc_page(kvm);
2834 kvm_start_pvclock_update(kvm);
2835 pvclock_update_vm_gtod_copy(kvm);
2836 kvm_end_pvclock_update(kvm);
2839 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
2840 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2842 struct kvm_arch *ka = &kvm->arch;
2843 struct pvclock_vcpu_time_info hv_clock;
2845 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2849 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2850 #ifdef CONFIG_X86_64
2851 struct timespec64 ts;
2853 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2854 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2855 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2858 data->host_tsc = rdtsc();
2860 data->flags |= KVM_CLOCK_TSC_STABLE;
2861 hv_clock.tsc_timestamp = ka->master_cycle_now;
2862 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2863 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2864 &hv_clock.tsc_shift,
2865 &hv_clock.tsc_to_system_mul);
2866 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2868 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2874 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2876 struct kvm_arch *ka = &kvm->arch;
2880 seq = read_seqcount_begin(&ka->pvclock_sc);
2881 __get_kvmclock(kvm, data);
2882 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2885 u64 get_kvmclock_ns(struct kvm *kvm)
2887 struct kvm_clock_data data;
2889 get_kvmclock(kvm, &data);
2893 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2894 struct gfn_to_hva_cache *cache,
2895 unsigned int offset)
2897 struct kvm_vcpu_arch *vcpu = &v->arch;
2898 struct pvclock_vcpu_time_info guest_hv_clock;
2900 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2901 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2904 /* This VCPU is paused, but it's legal for a guest to read another
2905 * VCPU's kvmclock, so we really have to follow the specification where
2906 * it says that version is odd if data is being modified, and even after
2909 * Version field updates must be kept separate. This is because
2910 * kvm_write_guest_cached might use a "rep movs" instruction, and
2911 * writes within a string instruction are weakly ordered. So there
2912 * are three writes overall.
2914 * As a small optimization, only write the version field in the first
2915 * and third write. The vcpu->pv_time cache is still valid, because the
2916 * version field is the first in the struct.
2918 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2920 if (guest_hv_clock.version & 1)
2921 ++guest_hv_clock.version; /* first time write, random junk */
2923 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2924 kvm_write_guest_offset_cached(v->kvm, cache,
2925 &vcpu->hv_clock, offset,
2926 sizeof(vcpu->hv_clock.version));
2930 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2931 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2933 if (vcpu->pvclock_set_guest_stopped_request) {
2934 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2935 vcpu->pvclock_set_guest_stopped_request = false;
2938 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2940 kvm_write_guest_offset_cached(v->kvm, cache,
2941 &vcpu->hv_clock, offset,
2942 sizeof(vcpu->hv_clock));
2946 vcpu->hv_clock.version++;
2947 kvm_write_guest_offset_cached(v->kvm, cache,
2948 &vcpu->hv_clock, offset,
2949 sizeof(vcpu->hv_clock.version));
2952 static int kvm_guest_time_update(struct kvm_vcpu *v)
2954 unsigned long flags, tgt_tsc_khz;
2956 struct kvm_vcpu_arch *vcpu = &v->arch;
2957 struct kvm_arch *ka = &v->kvm->arch;
2959 u64 tsc_timestamp, host_tsc;
2961 bool use_master_clock;
2967 * If the host uses TSC clock, then passthrough TSC as stable
2971 seq = read_seqcount_begin(&ka->pvclock_sc);
2972 use_master_clock = ka->use_master_clock;
2973 if (use_master_clock) {
2974 host_tsc = ka->master_cycle_now;
2975 kernel_ns = ka->master_kernel_ns;
2977 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2979 /* Keep irq disabled to prevent changes to the clock */
2980 local_irq_save(flags);
2981 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2982 if (unlikely(tgt_tsc_khz == 0)) {
2983 local_irq_restore(flags);
2984 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2987 if (!use_master_clock) {
2989 kernel_ns = get_kvmclock_base_ns();
2992 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2995 * We may have to catch up the TSC to match elapsed wall clock
2996 * time for two reasons, even if kvmclock is used.
2997 * 1) CPU could have been running below the maximum TSC rate
2998 * 2) Broken TSC compensation resets the base at each VCPU
2999 * entry to avoid unknown leaps of TSC even when running
3000 * again on the same CPU. This may cause apparent elapsed
3001 * time to disappear, and the guest to stand still or run
3004 if (vcpu->tsc_catchup) {
3005 u64 tsc = compute_guest_tsc(v, kernel_ns);
3006 if (tsc > tsc_timestamp) {
3007 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3008 tsc_timestamp = tsc;
3012 local_irq_restore(flags);
3014 /* With all the info we got, fill in the values */
3016 if (kvm_has_tsc_control)
3017 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
3018 v->arch.l1_tsc_scaling_ratio);
3020 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3021 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3022 &vcpu->hv_clock.tsc_shift,
3023 &vcpu->hv_clock.tsc_to_system_mul);
3024 vcpu->hw_tsc_khz = tgt_tsc_khz;
3027 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3028 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3029 vcpu->last_guest_tsc = tsc_timestamp;
3031 /* If the host uses TSC clocksource, then it is stable */
3033 if (use_master_clock)
3034 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3036 vcpu->hv_clock.flags = pvclock_flags;
3038 if (vcpu->pv_time_enabled)
3039 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3040 if (vcpu->xen.vcpu_info_set)
3041 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3042 offsetof(struct compat_vcpu_info, time));
3043 if (vcpu->xen.vcpu_time_info_set)
3044 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3046 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3051 * kvmclock updates which are isolated to a given vcpu, such as
3052 * vcpu->cpu migration, should not allow system_timestamp from
3053 * the rest of the vcpus to remain static. Otherwise ntp frequency
3054 * correction applies to one vcpu's system_timestamp but not
3057 * So in those cases, request a kvmclock update for all vcpus.
3058 * We need to rate-limit these requests though, as they can
3059 * considerably slow guests that have a large number of vcpus.
3060 * The time for a remote vcpu to update its kvmclock is bound
3061 * by the delay we use to rate-limit the updates.
3064 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3066 static void kvmclock_update_fn(struct work_struct *work)
3069 struct delayed_work *dwork = to_delayed_work(work);
3070 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3071 kvmclock_update_work);
3072 struct kvm *kvm = container_of(ka, struct kvm, arch);
3073 struct kvm_vcpu *vcpu;
3075 kvm_for_each_vcpu(i, vcpu, kvm) {
3076 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3077 kvm_vcpu_kick(vcpu);
3081 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3083 struct kvm *kvm = v->kvm;
3085 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3086 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3087 KVMCLOCK_UPDATE_DELAY);
3090 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3092 static void kvmclock_sync_fn(struct work_struct *work)
3094 struct delayed_work *dwork = to_delayed_work(work);
3095 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3096 kvmclock_sync_work);
3097 struct kvm *kvm = container_of(ka, struct kvm, arch);
3099 if (!kvmclock_periodic_sync)
3102 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3103 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3104 KVMCLOCK_SYNC_PERIOD);
3108 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3110 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3112 /* McStatusWrEn enabled? */
3113 if (guest_cpuid_is_amd_or_hygon(vcpu))
3114 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3119 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3121 u64 mcg_cap = vcpu->arch.mcg_cap;
3122 unsigned bank_num = mcg_cap & 0xff;
3123 u32 msr = msr_info->index;
3124 u64 data = msr_info->data;
3127 case MSR_IA32_MCG_STATUS:
3128 vcpu->arch.mcg_status = data;
3130 case MSR_IA32_MCG_CTL:
3131 if (!(mcg_cap & MCG_CTL_P) &&
3132 (data || !msr_info->host_initiated))
3134 if (data != 0 && data != ~(u64)0)
3136 vcpu->arch.mcg_ctl = data;
3139 if (msr >= MSR_IA32_MC0_CTL &&
3140 msr < MSR_IA32_MCx_CTL(bank_num)) {
3141 u32 offset = array_index_nospec(
3142 msr - MSR_IA32_MC0_CTL,
3143 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3145 /* only 0 or all 1s can be written to IA32_MCi_CTL
3146 * some Linux kernels though clear bit 10 in bank 4 to
3147 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3148 * this to avoid an uncatched #GP in the guest
3150 if ((offset & 0x3) == 0 &&
3151 data != 0 && (data | (1 << 10)) != ~(u64)0)
3155 if (!msr_info->host_initiated &&
3156 (offset & 0x3) == 1 && data != 0) {
3157 if (!can_set_mci_status(vcpu))
3161 vcpu->arch.mce_banks[offset] = data;
3169 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3171 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3173 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3176 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3178 gpa_t gpa = data & ~0x3f;
3180 /* Bits 4:5 are reserved, Should be zero */
3184 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3185 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3188 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3189 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3192 if (!lapic_in_kernel(vcpu))
3193 return data ? 1 : 0;
3195 vcpu->arch.apf.msr_en_val = data;
3197 if (!kvm_pv_async_pf_enabled(vcpu)) {
3198 kvm_clear_async_pf_completion_queue(vcpu);
3199 kvm_async_pf_hash_reset(vcpu);
3203 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3207 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3208 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3210 kvm_async_pf_wakeup_all(vcpu);
3215 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3217 /* Bits 8-63 are reserved */
3221 if (!lapic_in_kernel(vcpu))
3224 vcpu->arch.apf.msr_int_val = data;
3226 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3231 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3233 vcpu->arch.pv_time_enabled = false;
3234 vcpu->arch.time = 0;
3237 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3239 ++vcpu->stat.tlb_flush;
3240 static_call(kvm_x86_tlb_flush_all)(vcpu);
3243 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3245 ++vcpu->stat.tlb_flush;
3249 * A TLB flush on behalf of the guest is equivalent to
3250 * INVPCID(all), toggling CR4.PGE, etc., which requires
3251 * a forced sync of the shadow page tables. Ensure all the
3252 * roots are synced and the guest TLB in hardware is clean.
3254 kvm_mmu_sync_roots(vcpu);
3255 kvm_mmu_sync_prev_roots(vcpu);
3258 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3261 static void record_steal_time(struct kvm_vcpu *vcpu)
3263 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3264 struct kvm_steal_time __user *st;
3265 struct kvm_memslots *slots;
3269 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3270 kvm_xen_runstate_set_running(vcpu);
3274 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3277 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3280 slots = kvm_memslots(vcpu->kvm);
3282 if (unlikely(slots->generation != ghc->generation ||
3283 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3284 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3286 /* We rely on the fact that it fits in a single page. */
3287 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3289 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3290 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3294 st = (struct kvm_steal_time __user *)ghc->hva;
3295 if (!user_access_begin(st, sizeof(*st)))
3299 * Doing a TLB flush here, on the guest's behalf, can avoid
3302 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3303 u8 st_preempted = 0;
3306 asm volatile("1: xchgb %0, %2\n"
3309 _ASM_EXTABLE_UA(1b, 2b)
3310 : "+r" (st_preempted),
3312 : "m" (st->preempted));
3318 vcpu->arch.st.preempted = 0;
3320 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3321 st_preempted & KVM_VCPU_FLUSH_TLB);
3322 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3323 kvm_vcpu_flush_tlb_guest(vcpu);
3325 if (!user_access_begin(st, sizeof(*st)))
3328 unsafe_put_user(0, &st->preempted, out);
3329 vcpu->arch.st.preempted = 0;
3332 unsafe_get_user(version, &st->version, out);
3334 version += 1; /* first time write, random junk */
3337 unsafe_put_user(version, &st->version, out);
3341 unsafe_get_user(steal, &st->steal, out);
3342 steal += current->sched_info.run_delay -
3343 vcpu->arch.st.last_steal;
3344 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3345 unsafe_put_user(steal, &st->steal, out);
3348 unsafe_put_user(version, &st->version, out);
3353 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3356 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3359 u32 msr = msr_info->index;
3360 u64 data = msr_info->data;
3362 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3363 return kvm_xen_write_hypercall_page(vcpu, data);
3366 case MSR_AMD64_NB_CFG:
3367 case MSR_IA32_UCODE_WRITE:
3368 case MSR_VM_HSAVE_PA:
3369 case MSR_AMD64_PATCH_LOADER:
3370 case MSR_AMD64_BU_CFG2:
3371 case MSR_AMD64_DC_CFG:
3372 case MSR_F15H_EX_CFG:
3375 case MSR_IA32_UCODE_REV:
3376 if (msr_info->host_initiated)
3377 vcpu->arch.microcode_version = data;
3379 case MSR_IA32_ARCH_CAPABILITIES:
3380 if (!msr_info->host_initiated)
3382 vcpu->arch.arch_capabilities = data;
3384 case MSR_IA32_PERF_CAPABILITIES: {
3385 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3387 if (!msr_info->host_initiated)
3389 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3391 if (data & ~msr_ent.data)
3394 vcpu->arch.perf_capabilities = data;
3399 return set_efer(vcpu, msr_info);
3401 data &= ~(u64)0x40; /* ignore flush filter disable */
3402 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3403 data &= ~(u64)0x8; /* ignore TLB cache disable */
3405 /* Handle McStatusWrEn */
3406 if (data == BIT_ULL(18)) {
3407 vcpu->arch.msr_hwcr = data;
3408 } else if (data != 0) {
3409 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3414 case MSR_FAM10H_MMIO_CONF_BASE:
3416 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3421 case 0x200 ... 0x2ff:
3422 return kvm_mtrr_set_msr(vcpu, msr, data);
3423 case MSR_IA32_APICBASE:
3424 return kvm_set_apic_base(vcpu, msr_info);
3425 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3426 return kvm_x2apic_msr_write(vcpu, msr, data);
3427 case MSR_IA32_TSC_DEADLINE:
3428 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3430 case MSR_IA32_TSC_ADJUST:
3431 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3432 if (!msr_info->host_initiated) {
3433 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3434 adjust_tsc_offset_guest(vcpu, adj);
3435 /* Before back to guest, tsc_timestamp must be adjusted
3436 * as well, otherwise guest's percpu pvclock time could jump.
3438 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3440 vcpu->arch.ia32_tsc_adjust_msr = data;
3443 case MSR_IA32_MISC_ENABLE:
3444 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3445 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3446 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3448 vcpu->arch.ia32_misc_enable_msr = data;
3449 kvm_update_cpuid_runtime(vcpu);
3451 vcpu->arch.ia32_misc_enable_msr = data;
3454 case MSR_IA32_SMBASE:
3455 if (!msr_info->host_initiated)
3457 vcpu->arch.smbase = data;
3459 case MSR_IA32_POWER_CTL:
3460 vcpu->arch.msr_ia32_power_ctl = data;
3463 if (msr_info->host_initiated) {
3464 kvm_synchronize_tsc(vcpu, data);
3466 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3467 adjust_tsc_offset_guest(vcpu, adj);
3468 vcpu->arch.ia32_tsc_adjust_msr += adj;
3472 if (!msr_info->host_initiated &&
3473 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3476 * KVM supports exposing PT to the guest, but does not support
3477 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3478 * XSAVES/XRSTORS to save/restore PT MSRs.
3480 if (data & ~supported_xss)
3482 vcpu->arch.ia32_xss = data;
3485 if (!msr_info->host_initiated)
3487 vcpu->arch.smi_count = data;
3489 case MSR_KVM_WALL_CLOCK_NEW:
3490 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3493 vcpu->kvm->arch.wall_clock = data;
3494 kvm_write_wall_clock(vcpu->kvm, data, 0);
3496 case MSR_KVM_WALL_CLOCK:
3497 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3500 vcpu->kvm->arch.wall_clock = data;
3501 kvm_write_wall_clock(vcpu->kvm, data, 0);
3503 case MSR_KVM_SYSTEM_TIME_NEW:
3504 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3507 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3509 case MSR_KVM_SYSTEM_TIME:
3510 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3513 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3515 case MSR_KVM_ASYNC_PF_EN:
3516 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3519 if (kvm_pv_enable_async_pf(vcpu, data))
3522 case MSR_KVM_ASYNC_PF_INT:
3523 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3526 if (kvm_pv_enable_async_pf_int(vcpu, data))
3529 case MSR_KVM_ASYNC_PF_ACK:
3530 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3533 vcpu->arch.apf.pageready_pending = false;
3534 kvm_check_async_pf_completion(vcpu);
3537 case MSR_KVM_STEAL_TIME:
3538 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3541 if (unlikely(!sched_info_on()))
3544 if (data & KVM_STEAL_RESERVED_MASK)
3547 vcpu->arch.st.msr_val = data;
3549 if (!(data & KVM_MSR_ENABLED))
3552 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3555 case MSR_KVM_PV_EOI_EN:
3556 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3559 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3563 case MSR_KVM_POLL_CONTROL:
3564 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3567 /* only enable bit supported */
3568 if (data & (-1ULL << 1))
3571 vcpu->arch.msr_kvm_poll_control = data;
3574 case MSR_IA32_MCG_CTL:
3575 case MSR_IA32_MCG_STATUS:
3576 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3577 return set_msr_mce(vcpu, msr_info);
3579 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3580 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3583 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3584 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3585 if (kvm_pmu_is_valid_msr(vcpu, msr))
3586 return kvm_pmu_set_msr(vcpu, msr_info);
3588 if (pr || data != 0)
3589 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3590 "0x%x data 0x%llx\n", msr, data);
3592 case MSR_K7_CLK_CTL:
3594 * Ignore all writes to this no longer documented MSR.
3595 * Writes are only relevant for old K7 processors,
3596 * all pre-dating SVM, but a recommended workaround from
3597 * AMD for these chips. It is possible to specify the
3598 * affected processor models on the command line, hence
3599 * the need to ignore the workaround.
3602 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3603 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3604 case HV_X64_MSR_SYNDBG_OPTIONS:
3605 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3606 case HV_X64_MSR_CRASH_CTL:
3607 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3608 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3609 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3610 case HV_X64_MSR_TSC_EMULATION_STATUS:
3611 return kvm_hv_set_msr_common(vcpu, msr, data,
3612 msr_info->host_initiated);
3613 case MSR_IA32_BBL_CR_CTL3:
3614 /* Drop writes to this legacy MSR -- see rdmsr
3615 * counterpart for further detail.
3617 if (report_ignored_msrs)
3618 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3621 case MSR_AMD64_OSVW_ID_LENGTH:
3622 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3624 vcpu->arch.osvw.length = data;
3626 case MSR_AMD64_OSVW_STATUS:
3627 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3629 vcpu->arch.osvw.status = data;
3631 case MSR_PLATFORM_INFO:
3632 if (!msr_info->host_initiated ||
3633 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3634 cpuid_fault_enabled(vcpu)))
3636 vcpu->arch.msr_platform_info = data;
3638 case MSR_MISC_FEATURES_ENABLES:
3639 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3640 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3641 !supports_cpuid_fault(vcpu)))
3643 vcpu->arch.msr_misc_features_enables = data;
3646 if (kvm_pmu_is_valid_msr(vcpu, msr))
3647 return kvm_pmu_set_msr(vcpu, msr_info);
3648 return KVM_MSR_RET_INVALID;
3652 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3654 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3657 u64 mcg_cap = vcpu->arch.mcg_cap;
3658 unsigned bank_num = mcg_cap & 0xff;
3661 case MSR_IA32_P5_MC_ADDR:
3662 case MSR_IA32_P5_MC_TYPE:
3665 case MSR_IA32_MCG_CAP:
3666 data = vcpu->arch.mcg_cap;
3668 case MSR_IA32_MCG_CTL:
3669 if (!(mcg_cap & MCG_CTL_P) && !host)
3671 data = vcpu->arch.mcg_ctl;
3673 case MSR_IA32_MCG_STATUS:
3674 data = vcpu->arch.mcg_status;
3677 if (msr >= MSR_IA32_MC0_CTL &&
3678 msr < MSR_IA32_MCx_CTL(bank_num)) {
3679 u32 offset = array_index_nospec(
3680 msr - MSR_IA32_MC0_CTL,
3681 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3683 data = vcpu->arch.mce_banks[offset];
3692 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3694 switch (msr_info->index) {
3695 case MSR_IA32_PLATFORM_ID:
3696 case MSR_IA32_EBL_CR_POWERON:
3697 case MSR_IA32_LASTBRANCHFROMIP:
3698 case MSR_IA32_LASTBRANCHTOIP:
3699 case MSR_IA32_LASTINTFROMIP:
3700 case MSR_IA32_LASTINTTOIP:
3701 case MSR_AMD64_SYSCFG:
3702 case MSR_K8_TSEG_ADDR:
3703 case MSR_K8_TSEG_MASK:
3704 case MSR_VM_HSAVE_PA:
3705 case MSR_K8_INT_PENDING_MSG:
3706 case MSR_AMD64_NB_CFG:
3707 case MSR_FAM10H_MMIO_CONF_BASE:
3708 case MSR_AMD64_BU_CFG2:
3709 case MSR_IA32_PERF_CTL:
3710 case MSR_AMD64_DC_CFG:
3711 case MSR_F15H_EX_CFG:
3713 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3714 * limit) MSRs. Just return 0, as we do not want to expose the host
3715 * data here. Do not conditionalize this on CPUID, as KVM does not do
3716 * so for existing CPU-specific MSRs.
3718 case MSR_RAPL_POWER_UNIT:
3719 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3720 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3721 case MSR_PKG_ENERGY_STATUS: /* Total package */
3722 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3725 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3726 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3727 return kvm_pmu_get_msr(vcpu, msr_info);
3728 if (!msr_info->host_initiated)
3732 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3733 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3734 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3735 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3736 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3737 return kvm_pmu_get_msr(vcpu, msr_info);
3740 case MSR_IA32_UCODE_REV:
3741 msr_info->data = vcpu->arch.microcode_version;
3743 case MSR_IA32_ARCH_CAPABILITIES:
3744 if (!msr_info->host_initiated &&
3745 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3747 msr_info->data = vcpu->arch.arch_capabilities;
3749 case MSR_IA32_PERF_CAPABILITIES:
3750 if (!msr_info->host_initiated &&
3751 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3753 msr_info->data = vcpu->arch.perf_capabilities;
3755 case MSR_IA32_POWER_CTL:
3756 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3758 case MSR_IA32_TSC: {
3760 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3761 * even when not intercepted. AMD manual doesn't explicitly
3762 * state this but appears to behave the same.
3764 * On userspace reads and writes, however, we unconditionally
3765 * return L1's TSC value to ensure backwards-compatible
3766 * behavior for migration.
3770 if (msr_info->host_initiated) {
3771 offset = vcpu->arch.l1_tsc_offset;
3772 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3774 offset = vcpu->arch.tsc_offset;
3775 ratio = vcpu->arch.tsc_scaling_ratio;
3778 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3782 case 0x200 ... 0x2ff:
3783 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3784 case 0xcd: /* fsb frequency */
3788 * MSR_EBC_FREQUENCY_ID
3789 * Conservative value valid for even the basic CPU models.
3790 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3791 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3792 * and 266MHz for model 3, or 4. Set Core Clock
3793 * Frequency to System Bus Frequency Ratio to 1 (bits
3794 * 31:24) even though these are only valid for CPU
3795 * models > 2, however guests may end up dividing or
3796 * multiplying by zero otherwise.
3798 case MSR_EBC_FREQUENCY_ID:
3799 msr_info->data = 1 << 24;
3801 case MSR_IA32_APICBASE:
3802 msr_info->data = kvm_get_apic_base(vcpu);
3804 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3805 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3806 case MSR_IA32_TSC_DEADLINE:
3807 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3809 case MSR_IA32_TSC_ADJUST:
3810 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3812 case MSR_IA32_MISC_ENABLE:
3813 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3815 case MSR_IA32_SMBASE:
3816 if (!msr_info->host_initiated)
3818 msr_info->data = vcpu->arch.smbase;
3821 msr_info->data = vcpu->arch.smi_count;
3823 case MSR_IA32_PERF_STATUS:
3824 /* TSC increment by tick */
3825 msr_info->data = 1000ULL;
3826 /* CPU multiplier */
3827 msr_info->data |= (((uint64_t)4ULL) << 40);
3830 msr_info->data = vcpu->arch.efer;
3832 case MSR_KVM_WALL_CLOCK:
3833 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3836 msr_info->data = vcpu->kvm->arch.wall_clock;
3838 case MSR_KVM_WALL_CLOCK_NEW:
3839 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3842 msr_info->data = vcpu->kvm->arch.wall_clock;
3844 case MSR_KVM_SYSTEM_TIME:
3845 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3848 msr_info->data = vcpu->arch.time;
3850 case MSR_KVM_SYSTEM_TIME_NEW:
3851 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3854 msr_info->data = vcpu->arch.time;
3856 case MSR_KVM_ASYNC_PF_EN:
3857 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3860 msr_info->data = vcpu->arch.apf.msr_en_val;
3862 case MSR_KVM_ASYNC_PF_INT:
3863 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3866 msr_info->data = vcpu->arch.apf.msr_int_val;
3868 case MSR_KVM_ASYNC_PF_ACK:
3869 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3874 case MSR_KVM_STEAL_TIME:
3875 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3878 msr_info->data = vcpu->arch.st.msr_val;
3880 case MSR_KVM_PV_EOI_EN:
3881 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3884 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3886 case MSR_KVM_POLL_CONTROL:
3887 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3890 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3892 case MSR_IA32_P5_MC_ADDR:
3893 case MSR_IA32_P5_MC_TYPE:
3894 case MSR_IA32_MCG_CAP:
3895 case MSR_IA32_MCG_CTL:
3896 case MSR_IA32_MCG_STATUS:
3897 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3898 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3899 msr_info->host_initiated);
3901 if (!msr_info->host_initiated &&
3902 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3904 msr_info->data = vcpu->arch.ia32_xss;
3906 case MSR_K7_CLK_CTL:
3908 * Provide expected ramp-up count for K7. All other
3909 * are set to zero, indicating minimum divisors for
3912 * This prevents guest kernels on AMD host with CPU
3913 * type 6, model 8 and higher from exploding due to
3914 * the rdmsr failing.
3916 msr_info->data = 0x20000000;
3918 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3919 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3920 case HV_X64_MSR_SYNDBG_OPTIONS:
3921 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3922 case HV_X64_MSR_CRASH_CTL:
3923 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3924 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3925 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3926 case HV_X64_MSR_TSC_EMULATION_STATUS:
3927 return kvm_hv_get_msr_common(vcpu,
3928 msr_info->index, &msr_info->data,
3929 msr_info->host_initiated);
3930 case MSR_IA32_BBL_CR_CTL3:
3931 /* This legacy MSR exists but isn't fully documented in current
3932 * silicon. It is however accessed by winxp in very narrow
3933 * scenarios where it sets bit #19, itself documented as
3934 * a "reserved" bit. Best effort attempt to source coherent
3935 * read data here should the balance of the register be
3936 * interpreted by the guest:
3938 * L2 cache control register 3: 64GB range, 256KB size,
3939 * enabled, latency 0x1, configured
3941 msr_info->data = 0xbe702111;
3943 case MSR_AMD64_OSVW_ID_LENGTH:
3944 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3946 msr_info->data = vcpu->arch.osvw.length;
3948 case MSR_AMD64_OSVW_STATUS:
3949 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3951 msr_info->data = vcpu->arch.osvw.status;
3953 case MSR_PLATFORM_INFO:
3954 if (!msr_info->host_initiated &&
3955 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3957 msr_info->data = vcpu->arch.msr_platform_info;
3959 case MSR_MISC_FEATURES_ENABLES:
3960 msr_info->data = vcpu->arch.msr_misc_features_enables;
3963 msr_info->data = vcpu->arch.msr_hwcr;
3966 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3967 return kvm_pmu_get_msr(vcpu, msr_info);
3968 return KVM_MSR_RET_INVALID;
3972 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3975 * Read or write a bunch of msrs. All parameters are kernel addresses.
3977 * @return number of msrs set successfully.
3979 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3980 struct kvm_msr_entry *entries,
3981 int (*do_msr)(struct kvm_vcpu *vcpu,
3982 unsigned index, u64 *data))
3986 for (i = 0; i < msrs->nmsrs; ++i)
3987 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3994 * Read or write a bunch of msrs. Parameters are user addresses.
3996 * @return number of msrs set successfully.
3998 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3999 int (*do_msr)(struct kvm_vcpu *vcpu,
4000 unsigned index, u64 *data),
4003 struct kvm_msrs msrs;
4004 struct kvm_msr_entry *entries;
4009 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4013 if (msrs.nmsrs >= MAX_IO_MSRS)
4016 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4017 entries = memdup_user(user_msrs->entries, size);
4018 if (IS_ERR(entries)) {
4019 r = PTR_ERR(entries);
4023 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4028 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4039 static inline bool kvm_can_mwait_in_guest(void)
4041 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4042 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4043 boot_cpu_has(X86_FEATURE_ARAT);
4046 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4047 struct kvm_cpuid2 __user *cpuid_arg)
4049 struct kvm_cpuid2 cpuid;
4053 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4056 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4061 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4067 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4072 case KVM_CAP_IRQCHIP:
4074 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4075 case KVM_CAP_SET_TSS_ADDR:
4076 case KVM_CAP_EXT_CPUID:
4077 case KVM_CAP_EXT_EMUL_CPUID:
4078 case KVM_CAP_CLOCKSOURCE:
4080 case KVM_CAP_NOP_IO_DELAY:
4081 case KVM_CAP_MP_STATE:
4082 case KVM_CAP_SYNC_MMU:
4083 case KVM_CAP_USER_NMI:
4084 case KVM_CAP_REINJECT_CONTROL:
4085 case KVM_CAP_IRQ_INJECT_STATUS:
4086 case KVM_CAP_IOEVENTFD:
4087 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4089 case KVM_CAP_PIT_STATE2:
4090 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4091 case KVM_CAP_VCPU_EVENTS:
4092 case KVM_CAP_HYPERV:
4093 case KVM_CAP_HYPERV_VAPIC:
4094 case KVM_CAP_HYPERV_SPIN:
4095 case KVM_CAP_HYPERV_SYNIC:
4096 case KVM_CAP_HYPERV_SYNIC2:
4097 case KVM_CAP_HYPERV_VP_INDEX:
4098 case KVM_CAP_HYPERV_EVENTFD:
4099 case KVM_CAP_HYPERV_TLBFLUSH:
4100 case KVM_CAP_HYPERV_SEND_IPI:
4101 case KVM_CAP_HYPERV_CPUID:
4102 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4103 case KVM_CAP_SYS_HYPERV_CPUID:
4104 case KVM_CAP_PCI_SEGMENT:
4105 case KVM_CAP_DEBUGREGS:
4106 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4108 case KVM_CAP_ASYNC_PF:
4109 case KVM_CAP_ASYNC_PF_INT:
4110 case KVM_CAP_GET_TSC_KHZ:
4111 case KVM_CAP_KVMCLOCK_CTRL:
4112 case KVM_CAP_READONLY_MEM:
4113 case KVM_CAP_HYPERV_TIME:
4114 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4115 case KVM_CAP_TSC_DEADLINE_TIMER:
4116 case KVM_CAP_DISABLE_QUIRKS:
4117 case KVM_CAP_SET_BOOT_CPU_ID:
4118 case KVM_CAP_SPLIT_IRQCHIP:
4119 case KVM_CAP_IMMEDIATE_EXIT:
4120 case KVM_CAP_PMU_EVENT_FILTER:
4121 case KVM_CAP_GET_MSR_FEATURES:
4122 case KVM_CAP_MSR_PLATFORM_INFO:
4123 case KVM_CAP_EXCEPTION_PAYLOAD:
4124 case KVM_CAP_SET_GUEST_DEBUG:
4125 case KVM_CAP_LAST_CPU:
4126 case KVM_CAP_X86_USER_SPACE_MSR:
4127 case KVM_CAP_X86_MSR_FILTER:
4128 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4129 #ifdef CONFIG_X86_SGX_KVM
4130 case KVM_CAP_SGX_ATTRIBUTE:
4132 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4133 case KVM_CAP_SREGS2:
4134 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4135 case KVM_CAP_VCPU_ATTRIBUTES:
4138 case KVM_CAP_EXIT_HYPERCALL:
4139 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4141 case KVM_CAP_SET_GUEST_DEBUG2:
4142 return KVM_GUESTDBG_VALID_MASK;
4143 #ifdef CONFIG_KVM_XEN
4144 case KVM_CAP_XEN_HVM:
4145 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4146 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4147 KVM_XEN_HVM_CONFIG_SHARED_INFO;
4148 if (sched_info_on())
4149 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4152 case KVM_CAP_SYNC_REGS:
4153 r = KVM_SYNC_X86_VALID_FIELDS;
4155 case KVM_CAP_ADJUST_CLOCK:
4156 r = KVM_CLOCK_VALID_FLAGS;
4158 case KVM_CAP_X86_DISABLE_EXITS:
4159 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4160 KVM_X86_DISABLE_EXITS_CSTATE;
4161 if(kvm_can_mwait_in_guest())
4162 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4164 case KVM_CAP_X86_SMM:
4165 /* SMBASE is usually relocated above 1M on modern chipsets,
4166 * and SMM handlers might indeed rely on 4G segment limits,
4167 * so do not report SMM to be available if real mode is
4168 * emulated via vm86 mode. Still, do not go to great lengths
4169 * to avoid userspace's usage of the feature, because it is a
4170 * fringe case that is not enabled except via specific settings
4171 * of the module parameters.
4173 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4176 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4178 case KVM_CAP_NR_VCPUS:
4179 r = KVM_SOFT_MAX_VCPUS;
4181 case KVM_CAP_MAX_VCPUS:
4184 case KVM_CAP_MAX_VCPU_ID:
4185 r = KVM_MAX_VCPU_IDS;
4187 case KVM_CAP_PV_MMU: /* obsolete */
4191 r = KVM_MAX_MCE_BANKS;
4194 r = boot_cpu_has(X86_FEATURE_XSAVE);
4196 case KVM_CAP_TSC_CONTROL:
4197 r = kvm_has_tsc_control;
4199 case KVM_CAP_X2APIC_API:
4200 r = KVM_X2APIC_API_VALID_FLAGS;
4202 case KVM_CAP_NESTED_STATE:
4203 r = kvm_x86_ops.nested_ops->get_state ?
4204 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4206 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4207 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4209 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4210 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4212 case KVM_CAP_SMALLER_MAXPHYADDR:
4213 r = (int) allow_smaller_maxphyaddr;
4215 case KVM_CAP_STEAL_TIME:
4216 r = sched_info_on();
4218 case KVM_CAP_X86_BUS_LOCK_EXIT:
4219 if (kvm_has_bus_lock_exit)
4220 r = KVM_BUS_LOCK_DETECTION_OFF |
4221 KVM_BUS_LOCK_DETECTION_EXIT;
4232 long kvm_arch_dev_ioctl(struct file *filp,
4233 unsigned int ioctl, unsigned long arg)
4235 void __user *argp = (void __user *)arg;
4239 case KVM_GET_MSR_INDEX_LIST: {
4240 struct kvm_msr_list __user *user_msr_list = argp;
4241 struct kvm_msr_list msr_list;
4245 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4248 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4249 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4252 if (n < msr_list.nmsrs)
4255 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4256 num_msrs_to_save * sizeof(u32)))
4258 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4260 num_emulated_msrs * sizeof(u32)))
4265 case KVM_GET_SUPPORTED_CPUID:
4266 case KVM_GET_EMULATED_CPUID: {
4267 struct kvm_cpuid2 __user *cpuid_arg = argp;
4268 struct kvm_cpuid2 cpuid;
4271 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4274 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4280 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4285 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4287 if (copy_to_user(argp, &kvm_mce_cap_supported,
4288 sizeof(kvm_mce_cap_supported)))
4292 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4293 struct kvm_msr_list __user *user_msr_list = argp;
4294 struct kvm_msr_list msr_list;
4298 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4301 msr_list.nmsrs = num_msr_based_features;
4302 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4305 if (n < msr_list.nmsrs)
4308 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4309 num_msr_based_features * sizeof(u32)))
4315 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4317 case KVM_GET_SUPPORTED_HV_CPUID:
4318 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4328 static void wbinvd_ipi(void *garbage)
4333 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4335 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4338 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4340 /* Address WBINVD may be executed by guest */
4341 if (need_emulate_wbinvd(vcpu)) {
4342 if (static_call(kvm_x86_has_wbinvd_exit)())
4343 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4344 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4345 smp_call_function_single(vcpu->cpu,
4346 wbinvd_ipi, NULL, 1);
4349 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4351 /* Save host pkru register if supported */
4352 vcpu->arch.host_pkru = read_pkru();
4354 /* Apply any externally detected TSC adjustments (due to suspend) */
4355 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4356 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4357 vcpu->arch.tsc_offset_adjustment = 0;
4358 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4361 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4362 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4363 rdtsc() - vcpu->arch.last_host_tsc;
4365 mark_tsc_unstable("KVM discovered backwards TSC");
4367 if (kvm_check_tsc_unstable()) {
4368 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4369 vcpu->arch.last_guest_tsc);
4370 kvm_vcpu_write_tsc_offset(vcpu, offset);
4371 vcpu->arch.tsc_catchup = 1;
4374 if (kvm_lapic_hv_timer_in_use(vcpu))
4375 kvm_lapic_restart_hv_timer(vcpu);
4378 * On a host with synchronized TSC, there is no need to update
4379 * kvmclock on vcpu->cpu migration
4381 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4382 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4383 if (vcpu->cpu != cpu)
4384 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4388 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4391 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4393 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4394 struct kvm_steal_time __user *st;
4395 struct kvm_memslots *slots;
4396 static const u8 preempted = KVM_VCPU_PREEMPTED;
4398 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4401 if (vcpu->arch.st.preempted)
4404 /* This happens on process exit */
4405 if (unlikely(current->mm != vcpu->kvm->mm))
4408 slots = kvm_memslots(vcpu->kvm);
4410 if (unlikely(slots->generation != ghc->generation ||
4411 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4414 st = (struct kvm_steal_time __user *)ghc->hva;
4415 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4417 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4418 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4420 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4423 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4427 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4428 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4431 * Take the srcu lock as memslots will be accessed to check the gfn
4432 * cache generation against the memslots generation.
4434 idx = srcu_read_lock(&vcpu->kvm->srcu);
4435 if (kvm_xen_msr_enabled(vcpu->kvm))
4436 kvm_xen_runstate_set_preempted(vcpu);
4438 kvm_steal_time_set_preempted(vcpu);
4439 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4441 static_call(kvm_x86_vcpu_put)(vcpu);
4442 vcpu->arch.last_host_tsc = rdtsc();
4445 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4446 struct kvm_lapic_state *s)
4448 if (vcpu->arch.apicv_active)
4449 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4451 return kvm_apic_get_state(vcpu, s);
4454 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4455 struct kvm_lapic_state *s)
4459 r = kvm_apic_set_state(vcpu, s);
4462 update_cr8_intercept(vcpu);
4467 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4470 * We can accept userspace's request for interrupt injection
4471 * as long as we have a place to store the interrupt number.
4472 * The actual injection will happen when the CPU is able to
4473 * deliver the interrupt.
4475 if (kvm_cpu_has_extint(vcpu))
4478 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4479 return (!lapic_in_kernel(vcpu) ||
4480 kvm_apic_accept_pic_intr(vcpu));
4483 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4486 * Do not cause an interrupt window exit if an exception
4487 * is pending or an event needs reinjection; userspace
4488 * might want to inject the interrupt manually using KVM_SET_REGS
4489 * or KVM_SET_SREGS. For that to work, we must be at an
4490 * instruction boundary and with no events half-injected.
4492 return (kvm_arch_interrupt_allowed(vcpu) &&
4493 kvm_cpu_accept_dm_intr(vcpu) &&
4494 !kvm_event_needs_reinjection(vcpu) &&
4495 !vcpu->arch.exception.pending);
4498 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4499 struct kvm_interrupt *irq)
4501 if (irq->irq >= KVM_NR_INTERRUPTS)
4504 if (!irqchip_in_kernel(vcpu->kvm)) {
4505 kvm_queue_interrupt(vcpu, irq->irq, false);
4506 kvm_make_request(KVM_REQ_EVENT, vcpu);
4511 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4512 * fail for in-kernel 8259.
4514 if (pic_in_kernel(vcpu->kvm))
4517 if (vcpu->arch.pending_external_vector != -1)
4520 vcpu->arch.pending_external_vector = irq->irq;
4521 kvm_make_request(KVM_REQ_EVENT, vcpu);
4525 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4527 kvm_inject_nmi(vcpu);
4532 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4534 kvm_make_request(KVM_REQ_SMI, vcpu);
4539 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4540 struct kvm_tpr_access_ctl *tac)
4544 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4548 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4552 unsigned bank_num = mcg_cap & 0xff, bank;
4555 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4557 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4560 vcpu->arch.mcg_cap = mcg_cap;
4561 /* Init IA32_MCG_CTL to all 1s */
4562 if (mcg_cap & MCG_CTL_P)
4563 vcpu->arch.mcg_ctl = ~(u64)0;
4564 /* Init IA32_MCi_CTL to all 1s */
4565 for (bank = 0; bank < bank_num; bank++)
4566 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4568 static_call(kvm_x86_setup_mce)(vcpu);
4573 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4574 struct kvm_x86_mce *mce)
4576 u64 mcg_cap = vcpu->arch.mcg_cap;
4577 unsigned bank_num = mcg_cap & 0xff;
4578 u64 *banks = vcpu->arch.mce_banks;
4580 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4583 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4584 * reporting is disabled
4586 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4587 vcpu->arch.mcg_ctl != ~(u64)0)
4589 banks += 4 * mce->bank;
4591 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4592 * reporting is disabled for the bank
4594 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4596 if (mce->status & MCI_STATUS_UC) {
4597 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4598 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4599 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4602 if (banks[1] & MCI_STATUS_VAL)
4603 mce->status |= MCI_STATUS_OVER;
4604 banks[2] = mce->addr;
4605 banks[3] = mce->misc;
4606 vcpu->arch.mcg_status = mce->mcg_status;
4607 banks[1] = mce->status;
4608 kvm_queue_exception(vcpu, MC_VECTOR);
4609 } else if (!(banks[1] & MCI_STATUS_VAL)
4610 || !(banks[1] & MCI_STATUS_UC)) {
4611 if (banks[1] & MCI_STATUS_VAL)
4612 mce->status |= MCI_STATUS_OVER;
4613 banks[2] = mce->addr;
4614 banks[3] = mce->misc;
4615 banks[1] = mce->status;
4617 banks[1] |= MCI_STATUS_OVER;
4621 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4622 struct kvm_vcpu_events *events)
4626 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4630 * In guest mode, payload delivery should be deferred,
4631 * so that the L1 hypervisor can intercept #PF before
4632 * CR2 is modified (or intercept #DB before DR6 is
4633 * modified under nVMX). Unless the per-VM capability,
4634 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4635 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4636 * opportunistically defer the exception payload, deliver it if the
4637 * capability hasn't been requested before processing a
4638 * KVM_GET_VCPU_EVENTS.
4640 if (!vcpu->kvm->arch.exception_payload_enabled &&
4641 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4642 kvm_deliver_exception_payload(vcpu);
4645 * The API doesn't provide the instruction length for software
4646 * exceptions, so don't report them. As long as the guest RIP
4647 * isn't advanced, we should expect to encounter the exception
4650 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4651 events->exception.injected = 0;
4652 events->exception.pending = 0;
4654 events->exception.injected = vcpu->arch.exception.injected;
4655 events->exception.pending = vcpu->arch.exception.pending;
4657 * For ABI compatibility, deliberately conflate
4658 * pending and injected exceptions when
4659 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4661 if (!vcpu->kvm->arch.exception_payload_enabled)
4662 events->exception.injected |=
4663 vcpu->arch.exception.pending;
4665 events->exception.nr = vcpu->arch.exception.nr;
4666 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4667 events->exception.error_code = vcpu->arch.exception.error_code;
4668 events->exception_has_payload = vcpu->arch.exception.has_payload;
4669 events->exception_payload = vcpu->arch.exception.payload;
4671 events->interrupt.injected =
4672 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4673 events->interrupt.nr = vcpu->arch.interrupt.nr;
4674 events->interrupt.soft = 0;
4675 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4677 events->nmi.injected = vcpu->arch.nmi_injected;
4678 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4679 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4680 events->nmi.pad = 0;
4682 events->sipi_vector = 0; /* never valid when reporting to user space */
4684 events->smi.smm = is_smm(vcpu);
4685 events->smi.pending = vcpu->arch.smi_pending;
4686 events->smi.smm_inside_nmi =
4687 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4688 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4690 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4691 | KVM_VCPUEVENT_VALID_SHADOW
4692 | KVM_VCPUEVENT_VALID_SMM);
4693 if (vcpu->kvm->arch.exception_payload_enabled)
4694 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4696 memset(&events->reserved, 0, sizeof(events->reserved));
4699 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4701 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4702 struct kvm_vcpu_events *events)
4704 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4705 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4706 | KVM_VCPUEVENT_VALID_SHADOW
4707 | KVM_VCPUEVENT_VALID_SMM
4708 | KVM_VCPUEVENT_VALID_PAYLOAD))
4711 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4712 if (!vcpu->kvm->arch.exception_payload_enabled)
4714 if (events->exception.pending)
4715 events->exception.injected = 0;
4717 events->exception_has_payload = 0;
4719 events->exception.pending = 0;
4720 events->exception_has_payload = 0;
4723 if ((events->exception.injected || events->exception.pending) &&
4724 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4727 /* INITs are latched while in SMM */
4728 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4729 (events->smi.smm || events->smi.pending) &&
4730 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4734 vcpu->arch.exception.injected = events->exception.injected;
4735 vcpu->arch.exception.pending = events->exception.pending;
4736 vcpu->arch.exception.nr = events->exception.nr;
4737 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4738 vcpu->arch.exception.error_code = events->exception.error_code;
4739 vcpu->arch.exception.has_payload = events->exception_has_payload;
4740 vcpu->arch.exception.payload = events->exception_payload;
4742 vcpu->arch.interrupt.injected = events->interrupt.injected;
4743 vcpu->arch.interrupt.nr = events->interrupt.nr;
4744 vcpu->arch.interrupt.soft = events->interrupt.soft;
4745 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4746 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4747 events->interrupt.shadow);
4749 vcpu->arch.nmi_injected = events->nmi.injected;
4750 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4751 vcpu->arch.nmi_pending = events->nmi.pending;
4752 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4754 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4755 lapic_in_kernel(vcpu))
4756 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4758 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4759 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4760 kvm_smm_changed(vcpu, events->smi.smm);
4762 vcpu->arch.smi_pending = events->smi.pending;
4764 if (events->smi.smm) {
4765 if (events->smi.smm_inside_nmi)
4766 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4768 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4771 if (lapic_in_kernel(vcpu)) {
4772 if (events->smi.latched_init)
4773 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4775 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4779 kvm_make_request(KVM_REQ_EVENT, vcpu);
4784 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4785 struct kvm_debugregs *dbgregs)
4789 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4790 kvm_get_dr(vcpu, 6, &val);
4792 dbgregs->dr7 = vcpu->arch.dr7;
4794 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4797 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4798 struct kvm_debugregs *dbgregs)
4803 if (!kvm_dr6_valid(dbgregs->dr6))
4805 if (!kvm_dr7_valid(dbgregs->dr7))
4808 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4809 kvm_update_dr0123(vcpu);
4810 vcpu->arch.dr6 = dbgregs->dr6;
4811 vcpu->arch.dr7 = dbgregs->dr7;
4812 kvm_update_dr7(vcpu);
4817 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4819 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4821 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4822 u64 xstate_bv = xsave->header.xfeatures;
4826 * Copy legacy XSAVE area, to avoid complications with CPUID
4827 * leaves 0 and 1 in the loop below.
4829 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4832 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4833 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4836 * Copy each region from the possibly compacted offset to the
4837 * non-compacted offset.
4839 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4841 u32 size, offset, ecx, edx;
4842 u64 xfeature_mask = valid & -valid;
4843 int xfeature_nr = fls64(xfeature_mask) - 1;
4846 cpuid_count(XSTATE_CPUID, xfeature_nr,
4847 &size, &offset, &ecx, &edx);
4849 if (xfeature_nr == XFEATURE_PKRU) {
4850 memcpy(dest + offset, &vcpu->arch.pkru,
4851 sizeof(vcpu->arch.pkru));
4853 src = get_xsave_addr(xsave, xfeature_nr);
4855 memcpy(dest + offset, src, size);
4858 valid -= xfeature_mask;
4862 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4864 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4865 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4869 * Copy legacy XSAVE area, to avoid complications with CPUID
4870 * leaves 0 and 1 in the loop below.
4872 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4874 /* Set XSTATE_BV and possibly XCOMP_BV. */
4875 xsave->header.xfeatures = xstate_bv;
4876 if (boot_cpu_has(X86_FEATURE_XSAVES))
4877 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4880 * Copy each region from the non-compacted offset to the
4881 * possibly compacted offset.
4883 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4885 u32 size, offset, ecx, edx;
4886 u64 xfeature_mask = valid & -valid;
4887 int xfeature_nr = fls64(xfeature_mask) - 1;
4889 cpuid_count(XSTATE_CPUID, xfeature_nr,
4890 &size, &offset, &ecx, &edx);
4892 if (xfeature_nr == XFEATURE_PKRU) {
4893 memcpy(&vcpu->arch.pkru, src + offset,
4894 sizeof(vcpu->arch.pkru));
4896 void *dest = get_xsave_addr(xsave, xfeature_nr);
4899 memcpy(dest, src + offset, size);
4902 valid -= xfeature_mask;
4906 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4907 struct kvm_xsave *guest_xsave)
4909 if (!vcpu->arch.guest_fpu)
4912 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4913 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4914 fill_xsave((u8 *) guest_xsave->region, vcpu);
4916 memcpy(guest_xsave->region,
4917 &vcpu->arch.guest_fpu->state.fxsave,
4918 sizeof(struct fxregs_state));
4919 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4920 XFEATURE_MASK_FPSSE;
4924 #define XSAVE_MXCSR_OFFSET 24
4926 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4927 struct kvm_xsave *guest_xsave)
4932 if (!vcpu->arch.guest_fpu)
4935 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4936 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4938 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4940 * Here we allow setting states that are not present in
4941 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4942 * with old userspace.
4944 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4946 load_xsave(vcpu, (u8 *)guest_xsave->region);
4948 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4949 mxcsr & ~mxcsr_feature_mask)
4951 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4952 guest_xsave->region, sizeof(struct fxregs_state));
4957 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4958 struct kvm_xcrs *guest_xcrs)
4960 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4961 guest_xcrs->nr_xcrs = 0;
4965 guest_xcrs->nr_xcrs = 1;
4966 guest_xcrs->flags = 0;
4967 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4968 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4971 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4972 struct kvm_xcrs *guest_xcrs)
4976 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4979 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4982 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4983 /* Only support XCR0 currently */
4984 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4985 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4986 guest_xcrs->xcrs[i].value);
4995 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4996 * stopped by the hypervisor. This function will be called from the host only.
4997 * EINVAL is returned when the host attempts to set the flag for a guest that
4998 * does not support pv clocks.
5000 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5002 if (!vcpu->arch.pv_time_enabled)
5004 vcpu->arch.pvclock_set_guest_stopped_request = true;
5005 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5009 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5010 struct kvm_device_attr *attr)
5014 switch (attr->attr) {
5015 case KVM_VCPU_TSC_OFFSET:
5025 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5026 struct kvm_device_attr *attr)
5028 u64 __user *uaddr = (u64 __user *)(unsigned long)attr->addr;
5031 if ((u64)(unsigned long)uaddr != attr->addr)
5034 switch (attr->attr) {
5035 case KVM_VCPU_TSC_OFFSET:
5037 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5048 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5049 struct kvm_device_attr *attr)
5051 u64 __user *uaddr = (u64 __user *)(unsigned long)attr->addr;
5052 struct kvm *kvm = vcpu->kvm;
5055 if ((u64)(unsigned long)uaddr != attr->addr)
5058 switch (attr->attr) {
5059 case KVM_VCPU_TSC_OFFSET: {
5060 u64 offset, tsc, ns;
5061 unsigned long flags;
5065 if (get_user(offset, uaddr))
5068 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5070 matched = (vcpu->arch.virtual_tsc_khz &&
5071 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5072 kvm->arch.last_tsc_offset == offset);
5074 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5075 ns = get_kvmclock_base_ns();
5077 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5078 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5090 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5094 struct kvm_device_attr attr;
5097 if (copy_from_user(&attr, argp, sizeof(attr)))
5100 if (attr.group != KVM_VCPU_TSC_CTRL)
5104 case KVM_HAS_DEVICE_ATTR:
5105 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5107 case KVM_GET_DEVICE_ATTR:
5108 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5110 case KVM_SET_DEVICE_ATTR:
5111 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5118 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5119 struct kvm_enable_cap *cap)
5122 uint16_t vmcs_version;
5123 void __user *user_ptr;
5129 case KVM_CAP_HYPERV_SYNIC2:
5134 case KVM_CAP_HYPERV_SYNIC:
5135 if (!irqchip_in_kernel(vcpu->kvm))
5137 return kvm_hv_activate_synic(vcpu, cap->cap ==
5138 KVM_CAP_HYPERV_SYNIC2);
5139 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5140 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5142 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5144 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5145 if (copy_to_user(user_ptr, &vmcs_version,
5146 sizeof(vmcs_version)))
5150 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5151 if (!kvm_x86_ops.enable_direct_tlbflush)
5154 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5156 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5157 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5159 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5160 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5161 if (vcpu->arch.pv_cpuid.enforce)
5162 kvm_update_pv_runtime(vcpu);
5170 long kvm_arch_vcpu_ioctl(struct file *filp,
5171 unsigned int ioctl, unsigned long arg)
5173 struct kvm_vcpu *vcpu = filp->private_data;
5174 void __user *argp = (void __user *)arg;
5177 struct kvm_sregs2 *sregs2;
5178 struct kvm_lapic_state *lapic;
5179 struct kvm_xsave *xsave;
5180 struct kvm_xcrs *xcrs;
5188 case KVM_GET_LAPIC: {
5190 if (!lapic_in_kernel(vcpu))
5192 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5193 GFP_KERNEL_ACCOUNT);
5198 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5202 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5207 case KVM_SET_LAPIC: {
5209 if (!lapic_in_kernel(vcpu))
5211 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5212 if (IS_ERR(u.lapic)) {
5213 r = PTR_ERR(u.lapic);
5217 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5220 case KVM_INTERRUPT: {
5221 struct kvm_interrupt irq;
5224 if (copy_from_user(&irq, argp, sizeof(irq)))
5226 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5230 r = kvm_vcpu_ioctl_nmi(vcpu);
5234 r = kvm_vcpu_ioctl_smi(vcpu);
5237 case KVM_SET_CPUID: {
5238 struct kvm_cpuid __user *cpuid_arg = argp;
5239 struct kvm_cpuid cpuid;
5242 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5244 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5247 case KVM_SET_CPUID2: {
5248 struct kvm_cpuid2 __user *cpuid_arg = argp;
5249 struct kvm_cpuid2 cpuid;
5252 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5254 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5255 cpuid_arg->entries);
5258 case KVM_GET_CPUID2: {
5259 struct kvm_cpuid2 __user *cpuid_arg = argp;
5260 struct kvm_cpuid2 cpuid;
5263 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5265 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5266 cpuid_arg->entries);
5270 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5275 case KVM_GET_MSRS: {
5276 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5277 r = msr_io(vcpu, argp, do_get_msr, 1);
5278 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5281 case KVM_SET_MSRS: {
5282 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5283 r = msr_io(vcpu, argp, do_set_msr, 0);
5284 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5287 case KVM_TPR_ACCESS_REPORTING: {
5288 struct kvm_tpr_access_ctl tac;
5291 if (copy_from_user(&tac, argp, sizeof(tac)))
5293 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5297 if (copy_to_user(argp, &tac, sizeof(tac)))
5302 case KVM_SET_VAPIC_ADDR: {
5303 struct kvm_vapic_addr va;
5307 if (!lapic_in_kernel(vcpu))
5310 if (copy_from_user(&va, argp, sizeof(va)))
5312 idx = srcu_read_lock(&vcpu->kvm->srcu);
5313 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5314 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5317 case KVM_X86_SETUP_MCE: {
5321 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5323 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5326 case KVM_X86_SET_MCE: {
5327 struct kvm_x86_mce mce;
5330 if (copy_from_user(&mce, argp, sizeof(mce)))
5332 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5335 case KVM_GET_VCPU_EVENTS: {
5336 struct kvm_vcpu_events events;
5338 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5341 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5346 case KVM_SET_VCPU_EVENTS: {
5347 struct kvm_vcpu_events events;
5350 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5353 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5356 case KVM_GET_DEBUGREGS: {
5357 struct kvm_debugregs dbgregs;
5359 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5362 if (copy_to_user(argp, &dbgregs,
5363 sizeof(struct kvm_debugregs)))
5368 case KVM_SET_DEBUGREGS: {
5369 struct kvm_debugregs dbgregs;
5372 if (copy_from_user(&dbgregs, argp,
5373 sizeof(struct kvm_debugregs)))
5376 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5379 case KVM_GET_XSAVE: {
5380 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5385 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5388 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5393 case KVM_SET_XSAVE: {
5394 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5395 if (IS_ERR(u.xsave)) {
5396 r = PTR_ERR(u.xsave);
5400 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5403 case KVM_GET_XCRS: {
5404 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5409 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5412 if (copy_to_user(argp, u.xcrs,
5413 sizeof(struct kvm_xcrs)))
5418 case KVM_SET_XCRS: {
5419 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5420 if (IS_ERR(u.xcrs)) {
5421 r = PTR_ERR(u.xcrs);
5425 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5428 case KVM_SET_TSC_KHZ: {
5432 user_tsc_khz = (u32)arg;
5434 if (kvm_has_tsc_control &&
5435 user_tsc_khz >= kvm_max_guest_tsc_khz)
5438 if (user_tsc_khz == 0)
5439 user_tsc_khz = tsc_khz;
5441 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5446 case KVM_GET_TSC_KHZ: {
5447 r = vcpu->arch.virtual_tsc_khz;
5450 case KVM_KVMCLOCK_CTRL: {
5451 r = kvm_set_guest_paused(vcpu);
5454 case KVM_ENABLE_CAP: {
5455 struct kvm_enable_cap cap;
5458 if (copy_from_user(&cap, argp, sizeof(cap)))
5460 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5463 case KVM_GET_NESTED_STATE: {
5464 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5468 if (!kvm_x86_ops.nested_ops->get_state)
5471 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5473 if (get_user(user_data_size, &user_kvm_nested_state->size))
5476 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5481 if (r > user_data_size) {
5482 if (put_user(r, &user_kvm_nested_state->size))
5492 case KVM_SET_NESTED_STATE: {
5493 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5494 struct kvm_nested_state kvm_state;
5498 if (!kvm_x86_ops.nested_ops->set_state)
5502 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5506 if (kvm_state.size < sizeof(kvm_state))
5509 if (kvm_state.flags &
5510 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5511 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5512 | KVM_STATE_NESTED_GIF_SET))
5515 /* nested_run_pending implies guest_mode. */
5516 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5517 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5520 idx = srcu_read_lock(&vcpu->kvm->srcu);
5521 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5522 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5525 case KVM_GET_SUPPORTED_HV_CPUID:
5526 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5528 #ifdef CONFIG_KVM_XEN
5529 case KVM_XEN_VCPU_GET_ATTR: {
5530 struct kvm_xen_vcpu_attr xva;
5533 if (copy_from_user(&xva, argp, sizeof(xva)))
5535 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5536 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5540 case KVM_XEN_VCPU_SET_ATTR: {
5541 struct kvm_xen_vcpu_attr xva;
5544 if (copy_from_user(&xva, argp, sizeof(xva)))
5546 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5550 case KVM_GET_SREGS2: {
5551 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5555 __get_sregs2(vcpu, u.sregs2);
5557 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5562 case KVM_SET_SREGS2: {
5563 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5564 if (IS_ERR(u.sregs2)) {
5565 r = PTR_ERR(u.sregs2);
5569 r = __set_sregs2(vcpu, u.sregs2);
5572 case KVM_HAS_DEVICE_ATTR:
5573 case KVM_GET_DEVICE_ATTR:
5574 case KVM_SET_DEVICE_ATTR:
5575 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5587 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5589 return VM_FAULT_SIGBUS;
5592 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5596 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5598 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5602 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5605 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5608 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5609 unsigned long kvm_nr_mmu_pages)
5611 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5614 mutex_lock(&kvm->slots_lock);
5616 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5617 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5619 mutex_unlock(&kvm->slots_lock);
5623 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5625 return kvm->arch.n_max_mmu_pages;
5628 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5630 struct kvm_pic *pic = kvm->arch.vpic;
5634 switch (chip->chip_id) {
5635 case KVM_IRQCHIP_PIC_MASTER:
5636 memcpy(&chip->chip.pic, &pic->pics[0],
5637 sizeof(struct kvm_pic_state));
5639 case KVM_IRQCHIP_PIC_SLAVE:
5640 memcpy(&chip->chip.pic, &pic->pics[1],
5641 sizeof(struct kvm_pic_state));
5643 case KVM_IRQCHIP_IOAPIC:
5644 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5653 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5655 struct kvm_pic *pic = kvm->arch.vpic;
5659 switch (chip->chip_id) {
5660 case KVM_IRQCHIP_PIC_MASTER:
5661 spin_lock(&pic->lock);
5662 memcpy(&pic->pics[0], &chip->chip.pic,
5663 sizeof(struct kvm_pic_state));
5664 spin_unlock(&pic->lock);
5666 case KVM_IRQCHIP_PIC_SLAVE:
5667 spin_lock(&pic->lock);
5668 memcpy(&pic->pics[1], &chip->chip.pic,
5669 sizeof(struct kvm_pic_state));
5670 spin_unlock(&pic->lock);
5672 case KVM_IRQCHIP_IOAPIC:
5673 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5679 kvm_pic_update_irq(pic);
5683 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5685 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5687 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5689 mutex_lock(&kps->lock);
5690 memcpy(ps, &kps->channels, sizeof(*ps));
5691 mutex_unlock(&kps->lock);
5695 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5698 struct kvm_pit *pit = kvm->arch.vpit;
5700 mutex_lock(&pit->pit_state.lock);
5701 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5702 for (i = 0; i < 3; i++)
5703 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5704 mutex_unlock(&pit->pit_state.lock);
5708 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5710 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5711 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5712 sizeof(ps->channels));
5713 ps->flags = kvm->arch.vpit->pit_state.flags;
5714 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5715 memset(&ps->reserved, 0, sizeof(ps->reserved));
5719 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5723 u32 prev_legacy, cur_legacy;
5724 struct kvm_pit *pit = kvm->arch.vpit;
5726 mutex_lock(&pit->pit_state.lock);
5727 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5728 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5729 if (!prev_legacy && cur_legacy)
5731 memcpy(&pit->pit_state.channels, &ps->channels,
5732 sizeof(pit->pit_state.channels));
5733 pit->pit_state.flags = ps->flags;
5734 for (i = 0; i < 3; i++)
5735 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5737 mutex_unlock(&pit->pit_state.lock);
5741 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5742 struct kvm_reinject_control *control)
5744 struct kvm_pit *pit = kvm->arch.vpit;
5746 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5747 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5748 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5750 mutex_lock(&pit->pit_state.lock);
5751 kvm_pit_set_reinject(pit, control->pit_reinject);
5752 mutex_unlock(&pit->pit_state.lock);
5757 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5761 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5762 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5763 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5766 struct kvm_vcpu *vcpu;
5769 kvm_for_each_vcpu(i, vcpu, kvm)
5770 kvm_vcpu_kick(vcpu);
5773 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5776 if (!irqchip_in_kernel(kvm))
5779 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5780 irq_event->irq, irq_event->level,
5785 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5786 struct kvm_enable_cap *cap)
5794 case KVM_CAP_DISABLE_QUIRKS:
5795 kvm->arch.disabled_quirks = cap->args[0];
5798 case KVM_CAP_SPLIT_IRQCHIP: {
5799 mutex_lock(&kvm->lock);
5801 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5802 goto split_irqchip_unlock;
5804 if (irqchip_in_kernel(kvm))
5805 goto split_irqchip_unlock;
5806 if (kvm->created_vcpus)
5807 goto split_irqchip_unlock;
5808 r = kvm_setup_empty_irq_routing(kvm);
5810 goto split_irqchip_unlock;
5811 /* Pairs with irqchip_in_kernel. */
5813 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5814 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5816 split_irqchip_unlock:
5817 mutex_unlock(&kvm->lock);
5820 case KVM_CAP_X2APIC_API:
5822 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5825 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5826 kvm->arch.x2apic_format = true;
5827 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5828 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5832 case KVM_CAP_X86_DISABLE_EXITS:
5834 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5837 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5838 kvm_can_mwait_in_guest())
5839 kvm->arch.mwait_in_guest = true;
5840 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5841 kvm->arch.hlt_in_guest = true;
5842 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5843 kvm->arch.pause_in_guest = true;
5844 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5845 kvm->arch.cstate_in_guest = true;
5848 case KVM_CAP_MSR_PLATFORM_INFO:
5849 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5852 case KVM_CAP_EXCEPTION_PAYLOAD:
5853 kvm->arch.exception_payload_enabled = cap->args[0];
5856 case KVM_CAP_X86_USER_SPACE_MSR:
5857 kvm->arch.user_space_msr_mask = cap->args[0];
5860 case KVM_CAP_X86_BUS_LOCK_EXIT:
5862 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5865 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5866 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5869 if (kvm_has_bus_lock_exit &&
5870 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5871 kvm->arch.bus_lock_detection_enabled = true;
5874 #ifdef CONFIG_X86_SGX_KVM
5875 case KVM_CAP_SGX_ATTRIBUTE: {
5876 unsigned long allowed_attributes = 0;
5878 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5882 /* KVM only supports the PROVISIONKEY privileged attribute. */
5883 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5884 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5885 kvm->arch.sgx_provisioning_allowed = true;
5891 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5893 if (kvm_x86_ops.vm_copy_enc_context_from)
5894 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5896 case KVM_CAP_EXIT_HYPERCALL:
5897 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5901 kvm->arch.hypercall_exit_enabled = cap->args[0];
5904 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5906 if (cap->args[0] & ~1)
5908 kvm->arch.exit_on_emulation_error = cap->args[0];
5918 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5920 struct kvm_x86_msr_filter *msr_filter;
5922 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5926 msr_filter->default_allow = default_allow;
5930 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5937 for (i = 0; i < msr_filter->count; i++)
5938 kfree(msr_filter->ranges[i].bitmap);
5943 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5944 struct kvm_msr_filter_range *user_range)
5946 unsigned long *bitmap = NULL;
5949 if (!user_range->nmsrs)
5952 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5955 if (!user_range->flags)
5958 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5959 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5962 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5964 return PTR_ERR(bitmap);
5966 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5967 .flags = user_range->flags,
5968 .base = user_range->base,
5969 .nmsrs = user_range->nmsrs,
5973 msr_filter->count++;
5977 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5979 struct kvm_msr_filter __user *user_msr_filter = argp;
5980 struct kvm_x86_msr_filter *new_filter, *old_filter;
5981 struct kvm_msr_filter filter;
5987 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5990 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5991 empty &= !filter.ranges[i].nmsrs;
5993 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5994 if (empty && !default_allow)
5997 new_filter = kvm_alloc_msr_filter(default_allow);
6001 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6002 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6004 kvm_free_msr_filter(new_filter);
6009 mutex_lock(&kvm->lock);
6011 /* The per-VM filter is protected by kvm->lock... */
6012 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6014 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6015 synchronize_srcu(&kvm->srcu);
6017 kvm_free_msr_filter(old_filter);
6019 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6020 mutex_unlock(&kvm->lock);
6025 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6026 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6028 struct kvm_vcpu *vcpu;
6031 mutex_lock(&kvm->lock);
6032 kvm_for_each_vcpu(i, vcpu, kvm) {
6033 if (!vcpu->arch.pv_time_enabled)
6036 ret = kvm_set_guest_paused(vcpu);
6038 kvm_err("Failed to pause guest VCPU%d: %d\n",
6039 vcpu->vcpu_id, ret);
6043 mutex_unlock(&kvm->lock);
6045 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6048 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6051 case PM_HIBERNATION_PREPARE:
6052 case PM_SUSPEND_PREPARE:
6053 return kvm_arch_suspend_notifier(kvm);
6058 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6060 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6062 struct kvm_clock_data data = { 0 };
6064 get_kvmclock(kvm, &data);
6065 if (copy_to_user(argp, &data, sizeof(data)))
6071 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6073 struct kvm_arch *ka = &kvm->arch;
6074 struct kvm_clock_data data;
6077 if (copy_from_user(&data, argp, sizeof(data)))
6081 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6082 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6084 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6087 kvm_hv_invalidate_tsc_page(kvm);
6088 kvm_start_pvclock_update(kvm);
6089 pvclock_update_vm_gtod_copy(kvm);
6092 * This pairs with kvm_guest_time_update(): when masterclock is
6093 * in use, we use master_kernel_ns + kvmclock_offset to set
6094 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6095 * is slightly ahead) here we risk going negative on unsigned
6096 * 'system_time' when 'data.clock' is very small.
6098 if (data.flags & KVM_CLOCK_REALTIME) {
6099 u64 now_real_ns = ktime_get_real_ns();
6102 * Avoid stepping the kvmclock backwards.
6104 if (now_real_ns > data.realtime)
6105 data.clock += now_real_ns - data.realtime;
6108 if (ka->use_master_clock)
6109 now_raw_ns = ka->master_kernel_ns;
6111 now_raw_ns = get_kvmclock_base_ns();
6112 ka->kvmclock_offset = data.clock - now_raw_ns;
6113 kvm_end_pvclock_update(kvm);
6117 long kvm_arch_vm_ioctl(struct file *filp,
6118 unsigned int ioctl, unsigned long arg)
6120 struct kvm *kvm = filp->private_data;
6121 void __user *argp = (void __user *)arg;
6124 * This union makes it completely explicit to gcc-3.x
6125 * that these two variables' stack usage should be
6126 * combined, not added together.
6129 struct kvm_pit_state ps;
6130 struct kvm_pit_state2 ps2;
6131 struct kvm_pit_config pit_config;
6135 case KVM_SET_TSS_ADDR:
6136 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6138 case KVM_SET_IDENTITY_MAP_ADDR: {
6141 mutex_lock(&kvm->lock);
6143 if (kvm->created_vcpus)
6144 goto set_identity_unlock;
6146 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6147 goto set_identity_unlock;
6148 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6149 set_identity_unlock:
6150 mutex_unlock(&kvm->lock);
6153 case KVM_SET_NR_MMU_PAGES:
6154 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6156 case KVM_GET_NR_MMU_PAGES:
6157 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6159 case KVM_CREATE_IRQCHIP: {
6160 mutex_lock(&kvm->lock);
6163 if (irqchip_in_kernel(kvm))
6164 goto create_irqchip_unlock;
6167 if (kvm->created_vcpus)
6168 goto create_irqchip_unlock;
6170 r = kvm_pic_init(kvm);
6172 goto create_irqchip_unlock;
6174 r = kvm_ioapic_init(kvm);
6176 kvm_pic_destroy(kvm);
6177 goto create_irqchip_unlock;
6180 r = kvm_setup_default_irq_routing(kvm);
6182 kvm_ioapic_destroy(kvm);
6183 kvm_pic_destroy(kvm);
6184 goto create_irqchip_unlock;
6186 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6188 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6189 create_irqchip_unlock:
6190 mutex_unlock(&kvm->lock);
6193 case KVM_CREATE_PIT:
6194 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6196 case KVM_CREATE_PIT2:
6198 if (copy_from_user(&u.pit_config, argp,
6199 sizeof(struct kvm_pit_config)))
6202 mutex_lock(&kvm->lock);
6205 goto create_pit_unlock;
6207 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6211 mutex_unlock(&kvm->lock);
6213 case KVM_GET_IRQCHIP: {
6214 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6215 struct kvm_irqchip *chip;
6217 chip = memdup_user(argp, sizeof(*chip));
6224 if (!irqchip_kernel(kvm))
6225 goto get_irqchip_out;
6226 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6228 goto get_irqchip_out;
6230 if (copy_to_user(argp, chip, sizeof(*chip)))
6231 goto get_irqchip_out;
6237 case KVM_SET_IRQCHIP: {
6238 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6239 struct kvm_irqchip *chip;
6241 chip = memdup_user(argp, sizeof(*chip));
6248 if (!irqchip_kernel(kvm))
6249 goto set_irqchip_out;
6250 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6257 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6260 if (!kvm->arch.vpit)
6262 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6266 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6273 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6275 mutex_lock(&kvm->lock);
6277 if (!kvm->arch.vpit)
6279 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6281 mutex_unlock(&kvm->lock);
6284 case KVM_GET_PIT2: {
6286 if (!kvm->arch.vpit)
6288 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6292 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6297 case KVM_SET_PIT2: {
6299 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6301 mutex_lock(&kvm->lock);
6303 if (!kvm->arch.vpit)
6305 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6307 mutex_unlock(&kvm->lock);
6310 case KVM_REINJECT_CONTROL: {
6311 struct kvm_reinject_control control;
6313 if (copy_from_user(&control, argp, sizeof(control)))
6316 if (!kvm->arch.vpit)
6318 r = kvm_vm_ioctl_reinject(kvm, &control);
6321 case KVM_SET_BOOT_CPU_ID:
6323 mutex_lock(&kvm->lock);
6324 if (kvm->created_vcpus)
6327 kvm->arch.bsp_vcpu_id = arg;
6328 mutex_unlock(&kvm->lock);
6330 #ifdef CONFIG_KVM_XEN
6331 case KVM_XEN_HVM_CONFIG: {
6332 struct kvm_xen_hvm_config xhc;
6334 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6336 r = kvm_xen_hvm_config(kvm, &xhc);
6339 case KVM_XEN_HVM_GET_ATTR: {
6340 struct kvm_xen_hvm_attr xha;
6343 if (copy_from_user(&xha, argp, sizeof(xha)))
6345 r = kvm_xen_hvm_get_attr(kvm, &xha);
6346 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6350 case KVM_XEN_HVM_SET_ATTR: {
6351 struct kvm_xen_hvm_attr xha;
6354 if (copy_from_user(&xha, argp, sizeof(xha)))
6356 r = kvm_xen_hvm_set_attr(kvm, &xha);
6361 r = kvm_vm_ioctl_set_clock(kvm, argp);
6364 r = kvm_vm_ioctl_get_clock(kvm, argp);
6366 case KVM_MEMORY_ENCRYPT_OP: {
6368 if (kvm_x86_ops.mem_enc_op)
6369 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6372 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6373 struct kvm_enc_region region;
6376 if (copy_from_user(®ion, argp, sizeof(region)))
6380 if (kvm_x86_ops.mem_enc_reg_region)
6381 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, ®ion);
6384 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6385 struct kvm_enc_region region;
6388 if (copy_from_user(®ion, argp, sizeof(region)))
6392 if (kvm_x86_ops.mem_enc_unreg_region)
6393 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, ®ion);
6396 case KVM_HYPERV_EVENTFD: {
6397 struct kvm_hyperv_eventfd hvevfd;
6400 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6402 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6405 case KVM_SET_PMU_EVENT_FILTER:
6406 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6408 case KVM_X86_SET_MSR_FILTER:
6409 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6418 static void kvm_init_msr_list(void)
6420 struct x86_pmu_capability x86_pmu;
6424 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6425 "Please update the fixed PMCs in msrs_to_saved_all[]");
6427 perf_get_x86_pmu_capability(&x86_pmu);
6429 num_msrs_to_save = 0;
6430 num_emulated_msrs = 0;
6431 num_msr_based_features = 0;
6433 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6434 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6438 * Even MSRs that are valid in the host may not be exposed
6439 * to the guests in some cases.
6441 switch (msrs_to_save_all[i]) {
6442 case MSR_IA32_BNDCFGS:
6443 if (!kvm_mpx_supported())
6447 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6448 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6451 case MSR_IA32_UMWAIT_CONTROL:
6452 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6455 case MSR_IA32_RTIT_CTL:
6456 case MSR_IA32_RTIT_STATUS:
6457 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6460 case MSR_IA32_RTIT_CR3_MATCH:
6461 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6462 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6465 case MSR_IA32_RTIT_OUTPUT_BASE:
6466 case MSR_IA32_RTIT_OUTPUT_MASK:
6467 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6468 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6469 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6472 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6473 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6474 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6475 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6478 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6479 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6480 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6483 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6484 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6485 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6492 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6495 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6496 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6499 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6502 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6503 struct kvm_msr_entry msr;
6505 msr.index = msr_based_features_all[i];
6506 if (kvm_get_msr_feature(&msr))
6509 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6513 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6521 if (!(lapic_in_kernel(vcpu) &&
6522 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6523 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6534 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6541 if (!(lapic_in_kernel(vcpu) &&
6542 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6544 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6546 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6556 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6557 struct kvm_segment *var, int seg)
6559 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6562 void kvm_get_segment(struct kvm_vcpu *vcpu,
6563 struct kvm_segment *var, int seg)
6565 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6568 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6569 struct x86_exception *exception)
6573 BUG_ON(!mmu_is_nested(vcpu));
6575 /* NPT walks are always user-walks */
6576 access |= PFERR_USER_MASK;
6577 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6582 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6583 struct x86_exception *exception)
6585 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6586 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6588 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6590 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6591 struct x86_exception *exception)
6593 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6594 access |= PFERR_FETCH_MASK;
6595 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6598 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6599 struct x86_exception *exception)
6601 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6602 access |= PFERR_WRITE_MASK;
6603 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6605 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6607 /* uses this to access any guest's mapped memory without checking CPL */
6608 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6609 struct x86_exception *exception)
6611 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6614 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6615 struct kvm_vcpu *vcpu, u32 access,
6616 struct x86_exception *exception)
6619 int r = X86EMUL_CONTINUE;
6622 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6624 unsigned offset = addr & (PAGE_SIZE-1);
6625 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6628 if (gpa == UNMAPPED_GVA)
6629 return X86EMUL_PROPAGATE_FAULT;
6630 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6633 r = X86EMUL_IO_NEEDED;
6645 /* used for instruction fetching */
6646 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6647 gva_t addr, void *val, unsigned int bytes,
6648 struct x86_exception *exception)
6650 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6651 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6655 /* Inline kvm_read_guest_virt_helper for speed. */
6656 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6658 if (unlikely(gpa == UNMAPPED_GVA))
6659 return X86EMUL_PROPAGATE_FAULT;
6661 offset = addr & (PAGE_SIZE-1);
6662 if (WARN_ON(offset + bytes > PAGE_SIZE))
6663 bytes = (unsigned)PAGE_SIZE - offset;
6664 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6666 if (unlikely(ret < 0))
6667 return X86EMUL_IO_NEEDED;
6669 return X86EMUL_CONTINUE;
6672 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6673 gva_t addr, void *val, unsigned int bytes,
6674 struct x86_exception *exception)
6676 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6679 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6680 * is returned, but our callers are not ready for that and they blindly
6681 * call kvm_inject_page_fault. Ensure that they at least do not leak
6682 * uninitialized kernel stack memory into cr2 and error code.
6684 memset(exception, 0, sizeof(*exception));
6685 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6688 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6690 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6691 gva_t addr, void *val, unsigned int bytes,
6692 struct x86_exception *exception, bool system)
6694 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6697 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6698 access |= PFERR_USER_MASK;
6700 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6703 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6704 unsigned long addr, void *val, unsigned int bytes)
6706 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6707 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6709 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6712 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6713 struct kvm_vcpu *vcpu, u32 access,
6714 struct x86_exception *exception)
6717 int r = X86EMUL_CONTINUE;
6720 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6723 unsigned offset = addr & (PAGE_SIZE-1);
6724 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6727 if (gpa == UNMAPPED_GVA)
6728 return X86EMUL_PROPAGATE_FAULT;
6729 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6731 r = X86EMUL_IO_NEEDED;
6743 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6744 unsigned int bytes, struct x86_exception *exception,
6747 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6748 u32 access = PFERR_WRITE_MASK;
6750 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6751 access |= PFERR_USER_MASK;
6753 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6757 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6758 unsigned int bytes, struct x86_exception *exception)
6760 /* kvm_write_guest_virt_system can pull in tons of pages. */
6761 vcpu->arch.l1tf_flush_l1d = true;
6763 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6764 PFERR_WRITE_MASK, exception);
6766 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6768 int handle_ud(struct kvm_vcpu *vcpu)
6770 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6771 int emul_type = EMULTYPE_TRAP_UD;
6772 char sig[5]; /* ud2; .ascii "kvm" */
6773 struct x86_exception e;
6775 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6778 if (force_emulation_prefix &&
6779 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6780 sig, sizeof(sig), &e) == 0 &&
6781 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6782 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6783 emul_type = EMULTYPE_TRAP_UD_FORCED;
6786 return kvm_emulate_instruction(vcpu, emul_type);
6788 EXPORT_SYMBOL_GPL(handle_ud);
6790 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6791 gpa_t gpa, bool write)
6793 /* For APIC access vmexit */
6794 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6797 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6798 trace_vcpu_match_mmio(gva, gpa, write, true);
6805 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6806 gpa_t *gpa, struct x86_exception *exception,
6809 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6810 | (write ? PFERR_WRITE_MASK : 0);
6813 * currently PKRU is only applied to ept enabled guest so
6814 * there is no pkey in EPT page table for L1 guest or EPT
6815 * shadow page table for L2 guest.
6817 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6818 !permission_fault(vcpu, vcpu->arch.walk_mmu,
6819 vcpu->arch.mmio_access, 0, access))) {
6820 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6821 (gva & (PAGE_SIZE - 1));
6822 trace_vcpu_match_mmio(gva, *gpa, write, false);
6826 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6828 if (*gpa == UNMAPPED_GVA)
6831 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6834 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6835 const void *val, int bytes)
6839 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6842 kvm_page_track_write(vcpu, gpa, val, bytes);
6846 struct read_write_emulator_ops {
6847 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6849 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6850 void *val, int bytes);
6851 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6852 int bytes, void *val);
6853 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6854 void *val, int bytes);
6858 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6860 if (vcpu->mmio_read_completed) {
6861 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6862 vcpu->mmio_fragments[0].gpa, val);
6863 vcpu->mmio_read_completed = 0;
6870 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6871 void *val, int bytes)
6873 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6876 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6877 void *val, int bytes)
6879 return emulator_write_phys(vcpu, gpa, val, bytes);
6882 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6884 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6885 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6888 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6889 void *val, int bytes)
6891 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6892 return X86EMUL_IO_NEEDED;
6895 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6896 void *val, int bytes)
6898 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6900 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6901 return X86EMUL_CONTINUE;
6904 static const struct read_write_emulator_ops read_emultor = {
6905 .read_write_prepare = read_prepare,
6906 .read_write_emulate = read_emulate,
6907 .read_write_mmio = vcpu_mmio_read,
6908 .read_write_exit_mmio = read_exit_mmio,
6911 static const struct read_write_emulator_ops write_emultor = {
6912 .read_write_emulate = write_emulate,
6913 .read_write_mmio = write_mmio,
6914 .read_write_exit_mmio = write_exit_mmio,
6918 static int emulator_read_write_onepage(unsigned long addr, void *val,
6920 struct x86_exception *exception,
6921 struct kvm_vcpu *vcpu,
6922 const struct read_write_emulator_ops *ops)
6926 bool write = ops->write;
6927 struct kvm_mmio_fragment *frag;
6928 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6931 * If the exit was due to a NPF we may already have a GPA.
6932 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6933 * Note, this cannot be used on string operations since string
6934 * operation using rep will only have the initial GPA from the NPF
6937 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6938 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6939 gpa = ctxt->gpa_val;
6940 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6942 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6944 return X86EMUL_PROPAGATE_FAULT;
6947 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6948 return X86EMUL_CONTINUE;
6951 * Is this MMIO handled locally?
6953 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6954 if (handled == bytes)
6955 return X86EMUL_CONTINUE;
6961 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6962 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6966 return X86EMUL_CONTINUE;
6969 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6971 void *val, unsigned int bytes,
6972 struct x86_exception *exception,
6973 const struct read_write_emulator_ops *ops)
6975 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6979 if (ops->read_write_prepare &&
6980 ops->read_write_prepare(vcpu, val, bytes))
6981 return X86EMUL_CONTINUE;
6983 vcpu->mmio_nr_fragments = 0;
6985 /* Crossing a page boundary? */
6986 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6989 now = -addr & ~PAGE_MASK;
6990 rc = emulator_read_write_onepage(addr, val, now, exception,
6993 if (rc != X86EMUL_CONTINUE)
6996 if (ctxt->mode != X86EMUL_MODE_PROT64)
7002 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7004 if (rc != X86EMUL_CONTINUE)
7007 if (!vcpu->mmio_nr_fragments)
7010 gpa = vcpu->mmio_fragments[0].gpa;
7012 vcpu->mmio_needed = 1;
7013 vcpu->mmio_cur_fragment = 0;
7015 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7016 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7017 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7018 vcpu->run->mmio.phys_addr = gpa;
7020 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7023 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7027 struct x86_exception *exception)
7029 return emulator_read_write(ctxt, addr, val, bytes,
7030 exception, &read_emultor);
7033 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7037 struct x86_exception *exception)
7039 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7040 exception, &write_emultor);
7043 #define CMPXCHG_TYPE(t, ptr, old, new) \
7044 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
7046 #ifdef CONFIG_X86_64
7047 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
7049 # define CMPXCHG64(ptr, old, new) \
7050 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
7053 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7058 struct x86_exception *exception)
7060 struct kvm_host_map map;
7061 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7067 /* guests cmpxchg8b have to be emulated atomically */
7068 if (bytes > 8 || (bytes & (bytes - 1)))
7071 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7073 if (gpa == UNMAPPED_GVA ||
7074 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7078 * Emulate the atomic as a straight write to avoid #AC if SLD is
7079 * enabled in the host and the access splits a cache line.
7081 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7082 page_line_mask = ~(cache_line_size() - 1);
7084 page_line_mask = PAGE_MASK;
7086 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7089 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7092 kaddr = map.hva + offset_in_page(gpa);
7096 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7099 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7102 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7105 exchanged = CMPXCHG64(kaddr, old, new);
7111 kvm_vcpu_unmap(vcpu, &map, true);
7114 return X86EMUL_CMPXCHG_FAILED;
7116 kvm_page_track_write(vcpu, gpa, new, bytes);
7118 return X86EMUL_CONTINUE;
7121 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7123 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7126 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7130 for (i = 0; i < vcpu->arch.pio.count; i++) {
7131 if (vcpu->arch.pio.in)
7132 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7133 vcpu->arch.pio.size, pd);
7135 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7136 vcpu->arch.pio.port, vcpu->arch.pio.size,
7140 pd += vcpu->arch.pio.size;
7145 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7146 unsigned short port, void *val,
7147 unsigned int count, bool in)
7149 vcpu->arch.pio.port = port;
7150 vcpu->arch.pio.in = in;
7151 vcpu->arch.pio.count = count;
7152 vcpu->arch.pio.size = size;
7154 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
7155 vcpu->arch.pio.count = 0;
7159 vcpu->run->exit_reason = KVM_EXIT_IO;
7160 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7161 vcpu->run->io.size = size;
7162 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7163 vcpu->run->io.count = count;
7164 vcpu->run->io.port = port;
7169 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7170 unsigned short port, void *val, unsigned int count)
7174 if (vcpu->arch.pio.count)
7177 memset(vcpu->arch.pio_data, 0, size * count);
7179 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
7182 memcpy(val, vcpu->arch.pio_data, size * count);
7183 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
7184 vcpu->arch.pio.count = 0;
7191 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7192 int size, unsigned short port, void *val,
7195 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7199 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7200 unsigned short port, const void *val,
7203 memcpy(vcpu->arch.pio_data, val, size * count);
7204 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7205 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7208 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7209 int size, unsigned short port,
7210 const void *val, unsigned int count)
7212 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7215 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7217 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7220 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7222 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7225 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7227 if (!need_emulate_wbinvd(vcpu))
7228 return X86EMUL_CONTINUE;
7230 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7231 int cpu = get_cpu();
7233 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7234 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7235 wbinvd_ipi, NULL, 1);
7237 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7240 return X86EMUL_CONTINUE;
7243 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7245 kvm_emulate_wbinvd_noskip(vcpu);
7246 return kvm_skip_emulated_instruction(vcpu);
7248 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7252 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7254 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7257 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7258 unsigned long *dest)
7260 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7263 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7264 unsigned long value)
7267 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7270 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7272 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7275 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7277 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7278 unsigned long value;
7282 value = kvm_read_cr0(vcpu);
7285 value = vcpu->arch.cr2;
7288 value = kvm_read_cr3(vcpu);
7291 value = kvm_read_cr4(vcpu);
7294 value = kvm_get_cr8(vcpu);
7297 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7304 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7306 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7311 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7314 vcpu->arch.cr2 = val;
7317 res = kvm_set_cr3(vcpu, val);
7320 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7323 res = kvm_set_cr8(vcpu, val);
7326 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7333 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7335 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7338 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7340 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7343 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7345 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7348 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7350 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7353 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7355 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7358 static unsigned long emulator_get_cached_segment_base(
7359 struct x86_emulate_ctxt *ctxt, int seg)
7361 return get_segment_base(emul_to_vcpu(ctxt), seg);
7364 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7365 struct desc_struct *desc, u32 *base3,
7368 struct kvm_segment var;
7370 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7371 *selector = var.selector;
7374 memset(desc, 0, sizeof(*desc));
7382 set_desc_limit(desc, var.limit);
7383 set_desc_base(desc, (unsigned long)var.base);
7384 #ifdef CONFIG_X86_64
7386 *base3 = var.base >> 32;
7388 desc->type = var.type;
7390 desc->dpl = var.dpl;
7391 desc->p = var.present;
7392 desc->avl = var.avl;
7400 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7401 struct desc_struct *desc, u32 base3,
7404 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7405 struct kvm_segment var;
7407 var.selector = selector;
7408 var.base = get_desc_base(desc);
7409 #ifdef CONFIG_X86_64
7410 var.base |= ((u64)base3) << 32;
7412 var.limit = get_desc_limit(desc);
7414 var.limit = (var.limit << 12) | 0xfff;
7415 var.type = desc->type;
7416 var.dpl = desc->dpl;
7421 var.avl = desc->avl;
7422 var.present = desc->p;
7423 var.unusable = !var.present;
7426 kvm_set_segment(vcpu, &var, seg);
7430 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7431 u32 msr_index, u64 *pdata)
7433 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7436 r = kvm_get_msr(vcpu, msr_index, pdata);
7438 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7439 /* Bounce to user space */
7440 return X86EMUL_IO_NEEDED;
7446 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7447 u32 msr_index, u64 data)
7449 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7452 r = kvm_set_msr(vcpu, msr_index, data);
7454 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7455 /* Bounce to user space */
7456 return X86EMUL_IO_NEEDED;
7462 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7464 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7466 return vcpu->arch.smbase;
7469 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7471 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7473 vcpu->arch.smbase = smbase;
7476 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7479 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7482 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7483 u32 pmc, u64 *pdata)
7485 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7488 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7490 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7493 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7494 struct x86_instruction_info *info,
7495 enum x86_intercept_stage stage)
7497 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7501 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7502 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7505 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7508 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7510 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7513 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7515 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7518 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7520 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7523 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7525 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7528 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7530 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7533 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7535 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7538 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7540 return emul_to_vcpu(ctxt)->arch.hflags;
7543 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7545 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7547 kvm_smm_changed(vcpu, false);
7550 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7551 const char *smstate)
7553 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7556 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7558 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7561 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7563 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7566 static const struct x86_emulate_ops emulate_ops = {
7567 .read_gpr = emulator_read_gpr,
7568 .write_gpr = emulator_write_gpr,
7569 .read_std = emulator_read_std,
7570 .write_std = emulator_write_std,
7571 .read_phys = kvm_read_guest_phys_system,
7572 .fetch = kvm_fetch_guest_virt,
7573 .read_emulated = emulator_read_emulated,
7574 .write_emulated = emulator_write_emulated,
7575 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7576 .invlpg = emulator_invlpg,
7577 .pio_in_emulated = emulator_pio_in_emulated,
7578 .pio_out_emulated = emulator_pio_out_emulated,
7579 .get_segment = emulator_get_segment,
7580 .set_segment = emulator_set_segment,
7581 .get_cached_segment_base = emulator_get_cached_segment_base,
7582 .get_gdt = emulator_get_gdt,
7583 .get_idt = emulator_get_idt,
7584 .set_gdt = emulator_set_gdt,
7585 .set_idt = emulator_set_idt,
7586 .get_cr = emulator_get_cr,
7587 .set_cr = emulator_set_cr,
7588 .cpl = emulator_get_cpl,
7589 .get_dr = emulator_get_dr,
7590 .set_dr = emulator_set_dr,
7591 .get_smbase = emulator_get_smbase,
7592 .set_smbase = emulator_set_smbase,
7593 .set_msr = emulator_set_msr,
7594 .get_msr = emulator_get_msr,
7595 .check_pmc = emulator_check_pmc,
7596 .read_pmc = emulator_read_pmc,
7597 .halt = emulator_halt,
7598 .wbinvd = emulator_wbinvd,
7599 .fix_hypercall = emulator_fix_hypercall,
7600 .intercept = emulator_intercept,
7601 .get_cpuid = emulator_get_cpuid,
7602 .guest_has_long_mode = emulator_guest_has_long_mode,
7603 .guest_has_movbe = emulator_guest_has_movbe,
7604 .guest_has_fxsr = emulator_guest_has_fxsr,
7605 .set_nmi_mask = emulator_set_nmi_mask,
7606 .get_hflags = emulator_get_hflags,
7607 .exiting_smm = emulator_exiting_smm,
7608 .leave_smm = emulator_leave_smm,
7609 .triple_fault = emulator_triple_fault,
7610 .set_xcr = emulator_set_xcr,
7613 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7615 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7617 * an sti; sti; sequence only disable interrupts for the first
7618 * instruction. So, if the last instruction, be it emulated or
7619 * not, left the system with the INT_STI flag enabled, it
7620 * means that the last instruction is an sti. We should not
7621 * leave the flag on in this case. The same goes for mov ss
7623 if (int_shadow & mask)
7625 if (unlikely(int_shadow || mask)) {
7626 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7628 kvm_make_request(KVM_REQ_EVENT, vcpu);
7632 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7634 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7635 if (ctxt->exception.vector == PF_VECTOR)
7636 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7638 if (ctxt->exception.error_code_valid)
7639 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7640 ctxt->exception.error_code);
7642 kvm_queue_exception(vcpu, ctxt->exception.vector);
7646 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7648 struct x86_emulate_ctxt *ctxt;
7650 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7652 pr_err("kvm: failed to allocate vcpu's emulator\n");
7657 ctxt->ops = &emulate_ops;
7658 vcpu->arch.emulate_ctxt = ctxt;
7663 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7665 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7668 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7670 ctxt->gpa_available = false;
7671 ctxt->eflags = kvm_get_rflags(vcpu);
7672 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7674 ctxt->eip = kvm_rip_read(vcpu);
7675 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7676 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7677 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7678 cs_db ? X86EMUL_MODE_PROT32 :
7679 X86EMUL_MODE_PROT16;
7680 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7681 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7682 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7684 ctxt->interruptibility = 0;
7685 ctxt->have_exception = false;
7686 ctxt->exception.vector = -1;
7687 ctxt->perm_ok = false;
7689 init_decode_cache(ctxt);
7690 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7693 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7695 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7698 init_emulate_ctxt(vcpu);
7702 ctxt->_eip = ctxt->eip + inc_eip;
7703 ret = emulate_int_real(ctxt, irq);
7705 if (ret != X86EMUL_CONTINUE) {
7706 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7708 ctxt->eip = ctxt->_eip;
7709 kvm_rip_write(vcpu, ctxt->eip);
7710 kvm_set_rflags(vcpu, ctxt->eflags);
7713 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7715 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7716 u8 ndata, u8 *insn_bytes, u8 insn_size)
7718 struct kvm_run *run = vcpu->run;
7723 * Zero the whole array used to retrieve the exit info, as casting to
7724 * u32 for select entries will leave some chunks uninitialized.
7726 memset(&info, 0, sizeof(info));
7728 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7729 &info[2], (u32 *)&info[3],
7732 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7733 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7736 * There's currently space for 13 entries, but 5 are used for the exit
7737 * reason and info. Restrict to 4 to reduce the maintenance burden
7738 * when expanding kvm_run.emulation_failure in the future.
7740 if (WARN_ON_ONCE(ndata > 4))
7743 /* Always include the flags as a 'data' entry. */
7745 run->emulation_failure.flags = 0;
7748 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7749 sizeof(run->emulation_failure.insn_bytes) != 16));
7751 run->emulation_failure.flags |=
7752 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7753 run->emulation_failure.insn_size = insn_size;
7754 memset(run->emulation_failure.insn_bytes, 0x90,
7755 sizeof(run->emulation_failure.insn_bytes));
7756 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7759 memcpy(&run->internal.data[info_start], info, sizeof(info));
7760 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7761 ndata * sizeof(data[0]));
7763 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7766 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
7768 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7770 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
7771 ctxt->fetch.end - ctxt->fetch.data);
7774 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7777 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
7779 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
7781 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7783 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
7785 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
7787 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7789 struct kvm *kvm = vcpu->kvm;
7791 ++vcpu->stat.insn_emulation_fail;
7792 trace_kvm_emulate_insn_failed(vcpu);
7794 if (emulation_type & EMULTYPE_VMWARE_GP) {
7795 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7799 if (kvm->arch.exit_on_emulation_error ||
7800 (emulation_type & EMULTYPE_SKIP)) {
7801 prepare_emulation_ctxt_failure_exit(vcpu);
7805 kvm_queue_exception(vcpu, UD_VECTOR);
7807 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7808 prepare_emulation_ctxt_failure_exit(vcpu);
7815 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7816 bool write_fault_to_shadow_pgtable,
7819 gpa_t gpa = cr2_or_gpa;
7822 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7825 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7826 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7829 if (!vcpu->arch.mmu->direct_map) {
7831 * Write permission should be allowed since only
7832 * write access need to be emulated.
7834 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7837 * If the mapping is invalid in guest, let cpu retry
7838 * it to generate fault.
7840 if (gpa == UNMAPPED_GVA)
7845 * Do not retry the unhandleable instruction if it faults on the
7846 * readonly host memory, otherwise it will goto a infinite loop:
7847 * retry instruction -> write #PF -> emulation fail -> retry
7848 * instruction -> ...
7850 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7853 * If the instruction failed on the error pfn, it can not be fixed,
7854 * report the error to userspace.
7856 if (is_error_noslot_pfn(pfn))
7859 kvm_release_pfn_clean(pfn);
7861 /* The instructions are well-emulated on direct mmu. */
7862 if (vcpu->arch.mmu->direct_map) {
7863 unsigned int indirect_shadow_pages;
7865 write_lock(&vcpu->kvm->mmu_lock);
7866 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7867 write_unlock(&vcpu->kvm->mmu_lock);
7869 if (indirect_shadow_pages)
7870 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7876 * if emulation was due to access to shadowed page table
7877 * and it failed try to unshadow page and re-enter the
7878 * guest to let CPU execute the instruction.
7880 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7883 * If the access faults on its page table, it can not
7884 * be fixed by unprotecting shadow page and it should
7885 * be reported to userspace.
7887 return !write_fault_to_shadow_pgtable;
7890 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7891 gpa_t cr2_or_gpa, int emulation_type)
7893 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7894 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7896 last_retry_eip = vcpu->arch.last_retry_eip;
7897 last_retry_addr = vcpu->arch.last_retry_addr;
7900 * If the emulation is caused by #PF and it is non-page_table
7901 * writing instruction, it means the VM-EXIT is caused by shadow
7902 * page protected, we can zap the shadow page and retry this
7903 * instruction directly.
7905 * Note: if the guest uses a non-page-table modifying instruction
7906 * on the PDE that points to the instruction, then we will unmap
7907 * the instruction and go to an infinite loop. So, we cache the
7908 * last retried eip and the last fault address, if we meet the eip
7909 * and the address again, we can break out of the potential infinite
7912 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7914 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7917 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7918 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7921 if (x86_page_table_writing_insn(ctxt))
7924 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7927 vcpu->arch.last_retry_eip = ctxt->eip;
7928 vcpu->arch.last_retry_addr = cr2_or_gpa;
7930 if (!vcpu->arch.mmu->direct_map)
7931 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7933 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7938 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7939 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7941 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7943 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7946 vcpu->arch.hflags |= HF_SMM_MASK;
7948 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7950 /* Process a latched INIT or SMI, if any. */
7951 kvm_make_request(KVM_REQ_EVENT, vcpu);
7954 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
7955 * on SMM exit we still need to reload them from
7958 vcpu->arch.pdptrs_from_userspace = false;
7961 kvm_mmu_reset_context(vcpu);
7964 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7973 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7974 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7979 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7981 struct kvm_run *kvm_run = vcpu->run;
7983 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7984 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7985 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7986 kvm_run->debug.arch.exception = DB_VECTOR;
7987 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7990 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7994 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7996 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7999 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8004 * rflags is the old, "raw" value of the flags. The new value has
8005 * not been saved yet.
8007 * This is correct even for TF set by the guest, because "the
8008 * processor will not generate this exception after the instruction
8009 * that sets the TF flag".
8011 if (unlikely(rflags & X86_EFLAGS_TF))
8012 r = kvm_vcpu_do_singlestep(vcpu);
8015 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8017 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
8019 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8020 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8021 struct kvm_run *kvm_run = vcpu->run;
8022 unsigned long eip = kvm_get_linear_rip(vcpu);
8023 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8024 vcpu->arch.guest_debug_dr7,
8028 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8029 kvm_run->debug.arch.pc = eip;
8030 kvm_run->debug.arch.exception = DB_VECTOR;
8031 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8037 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8038 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8039 unsigned long eip = kvm_get_linear_rip(vcpu);
8040 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8045 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8054 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8056 switch (ctxt->opcode_len) {
8063 case 0xe6: /* OUT */
8067 case 0x6c: /* INS */
8069 case 0x6e: /* OUTS */
8076 case 0x33: /* RDPMC */
8086 * Decode to be emulated instruction. Return EMULATION_OK if success.
8088 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8089 void *insn, int insn_len)
8091 int r = EMULATION_OK;
8092 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8094 init_emulate_ctxt(vcpu);
8097 * We will reenter on the same instruction since we do not set
8098 * complete_userspace_io. This does not handle watchpoints yet,
8099 * those would be handled in the emulate_ops.
8101 if (!(emulation_type & EMULTYPE_SKIP) &&
8102 kvm_vcpu_check_breakpoint(vcpu, &r))
8105 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8107 trace_kvm_emulate_insn_start(vcpu);
8108 ++vcpu->stat.insn_emulation;
8112 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8114 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8115 int emulation_type, void *insn, int insn_len)
8118 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8119 bool writeback = true;
8120 bool write_fault_to_spt;
8122 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
8125 vcpu->arch.l1tf_flush_l1d = true;
8128 * Clear write_fault_to_shadow_pgtable here to ensure it is
8131 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8132 vcpu->arch.write_fault_to_shadow_pgtable = false;
8134 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8135 kvm_clear_exception_queue(vcpu);
8137 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8139 if (r != EMULATION_OK) {
8140 if ((emulation_type & EMULTYPE_TRAP_UD) ||
8141 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8142 kvm_queue_exception(vcpu, UD_VECTOR);
8145 if (reexecute_instruction(vcpu, cr2_or_gpa,
8149 if (ctxt->have_exception) {
8151 * #UD should result in just EMULATION_FAILED, and trap-like
8152 * exception should not be encountered during decode.
8154 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8155 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8156 inject_emulated_exception(vcpu);
8159 return handle_emulation_failure(vcpu, emulation_type);
8163 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8164 !is_vmware_backdoor_opcode(ctxt)) {
8165 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8170 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
8171 * for kvm_skip_emulated_instruction(). The caller is responsible for
8172 * updating interruptibility state and injecting single-step #DBs.
8174 if (emulation_type & EMULTYPE_SKIP) {
8175 kvm_rip_write(vcpu, ctxt->_eip);
8176 if (ctxt->eflags & X86_EFLAGS_RF)
8177 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8181 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8184 /* this is needed for vmware backdoor interface to work since it
8185 changes registers values during IO operation */
8186 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8187 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8188 emulator_invalidate_register_cache(ctxt);
8192 if (emulation_type & EMULTYPE_PF) {
8193 /* Save the faulting GPA (cr2) in the address field */
8194 ctxt->exception.address = cr2_or_gpa;
8196 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8197 if (vcpu->arch.mmu->direct_map) {
8198 ctxt->gpa_available = true;
8199 ctxt->gpa_val = cr2_or_gpa;
8202 /* Sanitize the address out of an abundance of paranoia. */
8203 ctxt->exception.address = 0;
8206 r = x86_emulate_insn(ctxt);
8208 if (r == EMULATION_INTERCEPTED)
8211 if (r == EMULATION_FAILED) {
8212 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8216 return handle_emulation_failure(vcpu, emulation_type);
8219 if (ctxt->have_exception) {
8221 if (inject_emulated_exception(vcpu))
8223 } else if (vcpu->arch.pio.count) {
8224 if (!vcpu->arch.pio.in) {
8225 /* FIXME: return into emulator if single-stepping. */
8226 vcpu->arch.pio.count = 0;
8229 vcpu->arch.complete_userspace_io = complete_emulated_pio;
8232 } else if (vcpu->mmio_needed) {
8233 ++vcpu->stat.mmio_exits;
8235 if (!vcpu->mmio_is_write)
8238 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8239 } else if (r == EMULATION_RESTART)
8245 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8246 toggle_interruptibility(vcpu, ctxt->interruptibility);
8247 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8248 if (!ctxt->have_exception ||
8249 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8250 kvm_rip_write(vcpu, ctxt->eip);
8251 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8252 r = kvm_vcpu_do_singlestep(vcpu);
8253 if (kvm_x86_ops.update_emulated_instruction)
8254 static_call(kvm_x86_update_emulated_instruction)(vcpu);
8255 __kvm_set_rflags(vcpu, ctxt->eflags);
8259 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8260 * do nothing, and it will be requested again as soon as
8261 * the shadow expires. But we still need to check here,
8262 * because POPF has no interrupt shadow.
8264 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8265 kvm_make_request(KVM_REQ_EVENT, vcpu);
8267 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8272 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8274 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8276 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8278 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8279 void *insn, int insn_len)
8281 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8283 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8285 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8287 vcpu->arch.pio.count = 0;
8291 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8293 vcpu->arch.pio.count = 0;
8295 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8298 return kvm_skip_emulated_instruction(vcpu);
8301 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8302 unsigned short port)
8304 unsigned long val = kvm_rax_read(vcpu);
8305 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8311 * Workaround userspace that relies on old KVM behavior of %rip being
8312 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8315 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8316 vcpu->arch.complete_userspace_io =
8317 complete_fast_pio_out_port_0x7e;
8318 kvm_skip_emulated_instruction(vcpu);
8320 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8321 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8326 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8330 /* We should only ever be called with arch.pio.count equal to 1 */
8331 BUG_ON(vcpu->arch.pio.count != 1);
8333 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8334 vcpu->arch.pio.count = 0;
8338 /* For size less than 4 we merge, else we zero extend */
8339 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8342 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8343 * the copy and tracing
8345 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8346 kvm_rax_write(vcpu, val);
8348 return kvm_skip_emulated_instruction(vcpu);
8351 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8352 unsigned short port)
8357 /* For size less than 4 we merge, else we zero extend */
8358 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8360 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8362 kvm_rax_write(vcpu, val);
8366 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8367 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8372 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8377 ret = kvm_fast_pio_in(vcpu, size, port);
8379 ret = kvm_fast_pio_out(vcpu, size, port);
8380 return ret && kvm_skip_emulated_instruction(vcpu);
8382 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8384 static int kvmclock_cpu_down_prep(unsigned int cpu)
8386 __this_cpu_write(cpu_tsc_khz, 0);
8390 static void tsc_khz_changed(void *data)
8392 struct cpufreq_freqs *freq = data;
8393 unsigned long khz = 0;
8397 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8398 khz = cpufreq_quick_get(raw_smp_processor_id());
8401 __this_cpu_write(cpu_tsc_khz, khz);
8404 #ifdef CONFIG_X86_64
8405 static void kvm_hyperv_tsc_notifier(void)
8410 mutex_lock(&kvm_lock);
8411 list_for_each_entry(kvm, &vm_list, vm_list)
8412 kvm_make_mclock_inprogress_request(kvm);
8414 /* no guest entries from this point */
8415 hyperv_stop_tsc_emulation();
8417 /* TSC frequency always matches when on Hyper-V */
8418 for_each_present_cpu(cpu)
8419 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8420 kvm_max_guest_tsc_khz = tsc_khz;
8422 list_for_each_entry(kvm, &vm_list, vm_list) {
8423 __kvm_start_pvclock_update(kvm);
8424 pvclock_update_vm_gtod_copy(kvm);
8425 kvm_end_pvclock_update(kvm);
8428 mutex_unlock(&kvm_lock);
8432 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8435 struct kvm_vcpu *vcpu;
8436 int i, send_ipi = 0;
8439 * We allow guests to temporarily run on slowing clocks,
8440 * provided we notify them after, or to run on accelerating
8441 * clocks, provided we notify them before. Thus time never
8444 * However, we have a problem. We can't atomically update
8445 * the frequency of a given CPU from this function; it is
8446 * merely a notifier, which can be called from any CPU.
8447 * Changing the TSC frequency at arbitrary points in time
8448 * requires a recomputation of local variables related to
8449 * the TSC for each VCPU. We must flag these local variables
8450 * to be updated and be sure the update takes place with the
8451 * new frequency before any guests proceed.
8453 * Unfortunately, the combination of hotplug CPU and frequency
8454 * change creates an intractable locking scenario; the order
8455 * of when these callouts happen is undefined with respect to
8456 * CPU hotplug, and they can race with each other. As such,
8457 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8458 * undefined; you can actually have a CPU frequency change take
8459 * place in between the computation of X and the setting of the
8460 * variable. To protect against this problem, all updates of
8461 * the per_cpu tsc_khz variable are done in an interrupt
8462 * protected IPI, and all callers wishing to update the value
8463 * must wait for a synchronous IPI to complete (which is trivial
8464 * if the caller is on the CPU already). This establishes the
8465 * necessary total order on variable updates.
8467 * Note that because a guest time update may take place
8468 * anytime after the setting of the VCPU's request bit, the
8469 * correct TSC value must be set before the request. However,
8470 * to ensure the update actually makes it to any guest which
8471 * starts running in hardware virtualization between the set
8472 * and the acquisition of the spinlock, we must also ping the
8473 * CPU after setting the request bit.
8477 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8479 mutex_lock(&kvm_lock);
8480 list_for_each_entry(kvm, &vm_list, vm_list) {
8481 kvm_for_each_vcpu(i, vcpu, kvm) {
8482 if (vcpu->cpu != cpu)
8484 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8485 if (vcpu->cpu != raw_smp_processor_id())
8489 mutex_unlock(&kvm_lock);
8491 if (freq->old < freq->new && send_ipi) {
8493 * We upscale the frequency. Must make the guest
8494 * doesn't see old kvmclock values while running with
8495 * the new frequency, otherwise we risk the guest sees
8496 * time go backwards.
8498 * In case we update the frequency for another cpu
8499 * (which might be in guest context) send an interrupt
8500 * to kick the cpu out of guest context. Next time
8501 * guest context is entered kvmclock will be updated,
8502 * so the guest will not see stale values.
8504 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8508 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8511 struct cpufreq_freqs *freq = data;
8514 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8516 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8519 for_each_cpu(cpu, freq->policy->cpus)
8520 __kvmclock_cpufreq_notifier(freq, cpu);
8525 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8526 .notifier_call = kvmclock_cpufreq_notifier
8529 static int kvmclock_cpu_online(unsigned int cpu)
8531 tsc_khz_changed(NULL);
8535 static void kvm_timer_init(void)
8537 max_tsc_khz = tsc_khz;
8539 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8540 #ifdef CONFIG_CPU_FREQ
8541 struct cpufreq_policy *policy;
8545 policy = cpufreq_cpu_get(cpu);
8547 if (policy->cpuinfo.max_freq)
8548 max_tsc_khz = policy->cpuinfo.max_freq;
8549 cpufreq_cpu_put(policy);
8553 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8554 CPUFREQ_TRANSITION_NOTIFIER);
8557 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8558 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8561 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8562 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8564 int kvm_is_in_guest(void)
8566 return __this_cpu_read(current_vcpu) != NULL;
8569 static int kvm_is_user_mode(void)
8573 if (__this_cpu_read(current_vcpu))
8574 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8576 return user_mode != 0;
8579 static unsigned long kvm_get_guest_ip(void)
8581 unsigned long ip = 0;
8583 if (__this_cpu_read(current_vcpu))
8584 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8589 static void kvm_handle_intel_pt_intr(void)
8591 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8593 kvm_make_request(KVM_REQ_PMI, vcpu);
8594 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8595 (unsigned long *)&vcpu->arch.pmu.global_status);
8598 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8599 .is_in_guest = kvm_is_in_guest,
8600 .is_user_mode = kvm_is_user_mode,
8601 .get_guest_ip = kvm_get_guest_ip,
8602 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
8605 #ifdef CONFIG_X86_64
8606 static void pvclock_gtod_update_fn(struct work_struct *work)
8610 struct kvm_vcpu *vcpu;
8613 mutex_lock(&kvm_lock);
8614 list_for_each_entry(kvm, &vm_list, vm_list)
8615 kvm_for_each_vcpu(i, vcpu, kvm)
8616 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8617 atomic_set(&kvm_guest_has_master_clock, 0);
8618 mutex_unlock(&kvm_lock);
8621 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8624 * Indirection to move queue_work() out of the tk_core.seq write held
8625 * region to prevent possible deadlocks against time accessors which
8626 * are invoked with work related locks held.
8628 static void pvclock_irq_work_fn(struct irq_work *w)
8630 queue_work(system_long_wq, &pvclock_gtod_work);
8633 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8636 * Notification about pvclock gtod data update.
8638 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8641 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8642 struct timekeeper *tk = priv;
8644 update_pvclock_gtod(tk);
8647 * Disable master clock if host does not trust, or does not use,
8648 * TSC based clocksource. Delegate queue_work() to irq_work as
8649 * this is invoked with tk_core.seq write held.
8651 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8652 atomic_read(&kvm_guest_has_master_clock) != 0)
8653 irq_work_queue(&pvclock_irq_work);
8657 static struct notifier_block pvclock_gtod_notifier = {
8658 .notifier_call = pvclock_gtod_notify,
8662 int kvm_arch_init(void *opaque)
8664 struct kvm_x86_init_ops *ops = opaque;
8667 if (kvm_x86_ops.hardware_enable) {
8668 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8673 if (!ops->cpu_has_kvm_support()) {
8674 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8675 ops->runtime_ops->name);
8679 if (ops->disabled_by_bios()) {
8680 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8681 ops->runtime_ops->name);
8687 * KVM explicitly assumes that the guest has an FPU and
8688 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8689 * vCPU's FPU state as a fxregs_state struct.
8691 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8692 printk(KERN_ERR "kvm: inadequate fpu\n");
8698 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8699 __alignof__(struct fpu), SLAB_ACCOUNT,
8701 if (!x86_fpu_cache) {
8702 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8706 x86_emulator_cache = kvm_alloc_emulator_cache();
8707 if (!x86_emulator_cache) {
8708 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8709 goto out_free_x86_fpu_cache;
8712 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8713 if (!user_return_msrs) {
8714 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8715 goto out_free_x86_emulator_cache;
8717 kvm_nr_uret_msrs = 0;
8719 r = kvm_mmu_module_init();
8721 goto out_free_percpu;
8725 perf_register_guest_info_callbacks(&kvm_guest_cbs);
8727 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8728 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8729 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8732 if (pi_inject_timer == -1)
8733 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8734 #ifdef CONFIG_X86_64
8735 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8737 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8738 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8744 free_percpu(user_return_msrs);
8745 out_free_x86_emulator_cache:
8746 kmem_cache_destroy(x86_emulator_cache);
8747 out_free_x86_fpu_cache:
8748 kmem_cache_destroy(x86_fpu_cache);
8753 void kvm_arch_exit(void)
8755 #ifdef CONFIG_X86_64
8756 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8757 clear_hv_tscchange_cb();
8760 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8762 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8763 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8764 CPUFREQ_TRANSITION_NOTIFIER);
8765 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8766 #ifdef CONFIG_X86_64
8767 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8768 irq_work_sync(&pvclock_irq_work);
8769 cancel_work_sync(&pvclock_gtod_work);
8771 kvm_x86_ops.hardware_enable = NULL;
8772 kvm_mmu_module_exit();
8773 free_percpu(user_return_msrs);
8774 kmem_cache_destroy(x86_emulator_cache);
8775 kmem_cache_destroy(x86_fpu_cache);
8776 #ifdef CONFIG_KVM_XEN
8777 static_key_deferred_flush(&kvm_xen_enabled);
8778 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8782 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8784 ++vcpu->stat.halt_exits;
8785 if (lapic_in_kernel(vcpu)) {
8786 vcpu->arch.mp_state = state;
8789 vcpu->run->exit_reason = reason;
8794 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8796 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8798 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8800 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8802 int ret = kvm_skip_emulated_instruction(vcpu);
8804 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8805 * KVM_EXIT_DEBUG here.
8807 return kvm_vcpu_halt(vcpu) && ret;
8809 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8811 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8813 int ret = kvm_skip_emulated_instruction(vcpu);
8815 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8817 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8819 #ifdef CONFIG_X86_64
8820 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8821 unsigned long clock_type)
8823 struct kvm_clock_pairing clock_pairing;
8824 struct timespec64 ts;
8828 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8829 return -KVM_EOPNOTSUPP;
8831 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8832 return -KVM_EOPNOTSUPP;
8834 clock_pairing.sec = ts.tv_sec;
8835 clock_pairing.nsec = ts.tv_nsec;
8836 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8837 clock_pairing.flags = 0;
8838 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8841 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8842 sizeof(struct kvm_clock_pairing)))
8850 * kvm_pv_kick_cpu_op: Kick a vcpu.
8852 * @apicid - apicid of vcpu to be kicked.
8854 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8856 struct kvm_lapic_irq lapic_irq;
8858 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8859 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8860 lapic_irq.level = 0;
8861 lapic_irq.dest_id = apicid;
8862 lapic_irq.msi_redir_hint = false;
8864 lapic_irq.delivery_mode = APIC_DM_REMRD;
8865 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8868 bool kvm_apicv_activated(struct kvm *kvm)
8870 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8872 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8874 static void kvm_apicv_init(struct kvm *kvm)
8876 init_rwsem(&kvm->arch.apicv_update_lock);
8879 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8880 &kvm->arch.apicv_inhibit_reasons);
8882 set_bit(APICV_INHIBIT_REASON_DISABLE,
8883 &kvm->arch.apicv_inhibit_reasons);
8886 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8888 struct kvm_vcpu *target = NULL;
8889 struct kvm_apic_map *map;
8891 vcpu->stat.directed_yield_attempted++;
8893 if (single_task_running())
8897 map = rcu_dereference(vcpu->kvm->arch.apic_map);
8899 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8900 target = map->phys_map[dest_id]->vcpu;
8904 if (!target || !READ_ONCE(target->ready))
8907 /* Ignore requests to yield to self */
8911 if (kvm_vcpu_yield_to(target) <= 0)
8914 vcpu->stat.directed_yield_successful++;
8920 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8922 u64 ret = vcpu->run->hypercall.ret;
8924 if (!is_64_bit_mode(vcpu))
8926 kvm_rax_write(vcpu, ret);
8927 ++vcpu->stat.hypercalls;
8928 return kvm_skip_emulated_instruction(vcpu);
8931 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8933 unsigned long nr, a0, a1, a2, a3, ret;
8936 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8937 return kvm_xen_hypercall(vcpu);
8939 if (kvm_hv_hypercall_enabled(vcpu))
8940 return kvm_hv_hypercall(vcpu);
8942 nr = kvm_rax_read(vcpu);
8943 a0 = kvm_rbx_read(vcpu);
8944 a1 = kvm_rcx_read(vcpu);
8945 a2 = kvm_rdx_read(vcpu);
8946 a3 = kvm_rsi_read(vcpu);
8948 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8950 op_64_bit = is_64_bit_mode(vcpu);
8959 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8967 case KVM_HC_VAPIC_POLL_IRQ:
8970 case KVM_HC_KICK_CPU:
8971 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8974 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8975 kvm_sched_yield(vcpu, a1);
8978 #ifdef CONFIG_X86_64
8979 case KVM_HC_CLOCK_PAIRING:
8980 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8983 case KVM_HC_SEND_IPI:
8984 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8987 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8989 case KVM_HC_SCHED_YIELD:
8990 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8993 kvm_sched_yield(vcpu, a0);
8996 case KVM_HC_MAP_GPA_RANGE: {
8997 u64 gpa = a0, npages = a1, attrs = a2;
9000 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9003 if (!PAGE_ALIGNED(gpa) || !npages ||
9004 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9009 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
9010 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
9011 vcpu->run->hypercall.args[0] = gpa;
9012 vcpu->run->hypercall.args[1] = npages;
9013 vcpu->run->hypercall.args[2] = attrs;
9014 vcpu->run->hypercall.longmode = op_64_bit;
9015 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9025 kvm_rax_write(vcpu, ret);
9027 ++vcpu->stat.hypercalls;
9028 return kvm_skip_emulated_instruction(vcpu);
9030 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9032 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9034 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9035 char instruction[3];
9036 unsigned long rip = kvm_rip_read(vcpu);
9038 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9040 return emulator_write_emulated(ctxt, rip, instruction, 3,
9044 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9046 return vcpu->run->request_interrupt_window &&
9047 likely(!pic_in_kernel(vcpu->kvm));
9050 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9052 struct kvm_run *kvm_run = vcpu->run;
9055 * if_flag is obsolete and useless, so do not bother
9056 * setting it for SEV-ES guests. Userspace can just
9057 * use kvm_run->ready_for_interrupt_injection.
9059 kvm_run->if_flag = !vcpu->arch.guest_state_protected
9060 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
9062 kvm_run->cr8 = kvm_get_cr8(vcpu);
9063 kvm_run->apic_base = kvm_get_apic_base(vcpu);
9064 kvm_run->ready_for_interrupt_injection =
9065 pic_in_kernel(vcpu->kvm) ||
9066 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9069 kvm_run->flags |= KVM_RUN_X86_SMM;
9072 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9076 if (!kvm_x86_ops.update_cr8_intercept)
9079 if (!lapic_in_kernel(vcpu))
9082 if (vcpu->arch.apicv_active)
9085 if (!vcpu->arch.apic->vapic_addr)
9086 max_irr = kvm_lapic_find_highest_irr(vcpu);
9093 tpr = kvm_lapic_get_cr8(vcpu);
9095 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9099 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9101 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9102 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9106 return kvm_x86_ops.nested_ops->check_events(vcpu);
9109 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9111 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9112 vcpu->arch.exception.error_code = false;
9113 static_call(kvm_x86_queue_exception)(vcpu);
9116 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9119 bool can_inject = true;
9121 /* try to reinject previous events if any */
9123 if (vcpu->arch.exception.injected) {
9124 kvm_inject_exception(vcpu);
9128 * Do not inject an NMI or interrupt if there is a pending
9129 * exception. Exceptions and interrupts are recognized at
9130 * instruction boundaries, i.e. the start of an instruction.
9131 * Trap-like exceptions, e.g. #DB, have higher priority than
9132 * NMIs and interrupts, i.e. traps are recognized before an
9133 * NMI/interrupt that's pending on the same instruction.
9134 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9135 * priority, but are only generated (pended) during instruction
9136 * execution, i.e. a pending fault-like exception means the
9137 * fault occurred on the *previous* instruction and must be
9138 * serviced prior to recognizing any new events in order to
9139 * fully complete the previous instruction.
9141 else if (!vcpu->arch.exception.pending) {
9142 if (vcpu->arch.nmi_injected) {
9143 static_call(kvm_x86_set_nmi)(vcpu);
9145 } else if (vcpu->arch.interrupt.injected) {
9146 static_call(kvm_x86_set_irq)(vcpu);
9151 WARN_ON_ONCE(vcpu->arch.exception.injected &&
9152 vcpu->arch.exception.pending);
9155 * Call check_nested_events() even if we reinjected a previous event
9156 * in order for caller to determine if it should require immediate-exit
9157 * from L2 to L1 due to pending L1 events which require exit
9160 if (is_guest_mode(vcpu)) {
9161 r = kvm_check_nested_events(vcpu);
9166 /* try to inject new event if pending */
9167 if (vcpu->arch.exception.pending) {
9168 trace_kvm_inj_exception(vcpu->arch.exception.nr,
9169 vcpu->arch.exception.has_error_code,
9170 vcpu->arch.exception.error_code);
9172 vcpu->arch.exception.pending = false;
9173 vcpu->arch.exception.injected = true;
9175 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9176 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9179 if (vcpu->arch.exception.nr == DB_VECTOR) {
9180 kvm_deliver_exception_payload(vcpu);
9181 if (vcpu->arch.dr7 & DR7_GD) {
9182 vcpu->arch.dr7 &= ~DR7_GD;
9183 kvm_update_dr7(vcpu);
9187 kvm_inject_exception(vcpu);
9191 /* Don't inject interrupts if the user asked to avoid doing so */
9192 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9196 * Finally, inject interrupt events. If an event cannot be injected
9197 * due to architectural conditions (e.g. IF=0) a window-open exit
9198 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
9199 * and can architecturally be injected, but we cannot do it right now:
9200 * an interrupt could have arrived just now and we have to inject it
9201 * as a vmexit, or there could already an event in the queue, which is
9202 * indicated by can_inject. In that case we request an immediate exit
9203 * in order to make progress and get back here for another iteration.
9204 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9206 if (vcpu->arch.smi_pending) {
9207 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9211 vcpu->arch.smi_pending = false;
9212 ++vcpu->arch.smi_count;
9216 static_call(kvm_x86_enable_smi_window)(vcpu);
9219 if (vcpu->arch.nmi_pending) {
9220 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9224 --vcpu->arch.nmi_pending;
9225 vcpu->arch.nmi_injected = true;
9226 static_call(kvm_x86_set_nmi)(vcpu);
9228 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9230 if (vcpu->arch.nmi_pending)
9231 static_call(kvm_x86_enable_nmi_window)(vcpu);
9234 if (kvm_cpu_has_injectable_intr(vcpu)) {
9235 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9239 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9240 static_call(kvm_x86_set_irq)(vcpu);
9241 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9243 if (kvm_cpu_has_injectable_intr(vcpu))
9244 static_call(kvm_x86_enable_irq_window)(vcpu);
9247 if (is_guest_mode(vcpu) &&
9248 kvm_x86_ops.nested_ops->hv_timer_pending &&
9249 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9250 *req_immediate_exit = true;
9252 WARN_ON(vcpu->arch.exception.pending);
9257 *req_immediate_exit = true;
9263 static void process_nmi(struct kvm_vcpu *vcpu)
9268 * x86 is limited to one NMI running, and one NMI pending after it.
9269 * If an NMI is already in progress, limit further NMIs to just one.
9270 * Otherwise, allow two (and we'll inject the first one immediately).
9272 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9275 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9276 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9277 kvm_make_request(KVM_REQ_EVENT, vcpu);
9280 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9283 flags |= seg->g << 23;
9284 flags |= seg->db << 22;
9285 flags |= seg->l << 21;
9286 flags |= seg->avl << 20;
9287 flags |= seg->present << 15;
9288 flags |= seg->dpl << 13;
9289 flags |= seg->s << 12;
9290 flags |= seg->type << 8;
9294 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9296 struct kvm_segment seg;
9299 kvm_get_segment(vcpu, &seg, n);
9300 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9303 offset = 0x7f84 + n * 12;
9305 offset = 0x7f2c + (n - 3) * 12;
9307 put_smstate(u32, buf, offset + 8, seg.base);
9308 put_smstate(u32, buf, offset + 4, seg.limit);
9309 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9312 #ifdef CONFIG_X86_64
9313 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9315 struct kvm_segment seg;
9319 kvm_get_segment(vcpu, &seg, n);
9320 offset = 0x7e00 + n * 16;
9322 flags = enter_smm_get_segment_flags(&seg) >> 8;
9323 put_smstate(u16, buf, offset, seg.selector);
9324 put_smstate(u16, buf, offset + 2, flags);
9325 put_smstate(u32, buf, offset + 4, seg.limit);
9326 put_smstate(u64, buf, offset + 8, seg.base);
9330 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9333 struct kvm_segment seg;
9337 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9338 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9339 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9340 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9342 for (i = 0; i < 8; i++)
9343 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9345 kvm_get_dr(vcpu, 6, &val);
9346 put_smstate(u32, buf, 0x7fcc, (u32)val);
9347 kvm_get_dr(vcpu, 7, &val);
9348 put_smstate(u32, buf, 0x7fc8, (u32)val);
9350 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9351 put_smstate(u32, buf, 0x7fc4, seg.selector);
9352 put_smstate(u32, buf, 0x7f64, seg.base);
9353 put_smstate(u32, buf, 0x7f60, seg.limit);
9354 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9356 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9357 put_smstate(u32, buf, 0x7fc0, seg.selector);
9358 put_smstate(u32, buf, 0x7f80, seg.base);
9359 put_smstate(u32, buf, 0x7f7c, seg.limit);
9360 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9362 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9363 put_smstate(u32, buf, 0x7f74, dt.address);
9364 put_smstate(u32, buf, 0x7f70, dt.size);
9366 static_call(kvm_x86_get_idt)(vcpu, &dt);
9367 put_smstate(u32, buf, 0x7f58, dt.address);
9368 put_smstate(u32, buf, 0x7f54, dt.size);
9370 for (i = 0; i < 6; i++)
9371 enter_smm_save_seg_32(vcpu, buf, i);
9373 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9376 put_smstate(u32, buf, 0x7efc, 0x00020000);
9377 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9380 #ifdef CONFIG_X86_64
9381 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9384 struct kvm_segment seg;
9388 for (i = 0; i < 16; i++)
9389 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9391 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9392 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9394 kvm_get_dr(vcpu, 6, &val);
9395 put_smstate(u64, buf, 0x7f68, val);
9396 kvm_get_dr(vcpu, 7, &val);
9397 put_smstate(u64, buf, 0x7f60, val);
9399 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9400 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9401 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9403 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9406 put_smstate(u32, buf, 0x7efc, 0x00020064);
9408 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9410 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9411 put_smstate(u16, buf, 0x7e90, seg.selector);
9412 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9413 put_smstate(u32, buf, 0x7e94, seg.limit);
9414 put_smstate(u64, buf, 0x7e98, seg.base);
9416 static_call(kvm_x86_get_idt)(vcpu, &dt);
9417 put_smstate(u32, buf, 0x7e84, dt.size);
9418 put_smstate(u64, buf, 0x7e88, dt.address);
9420 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9421 put_smstate(u16, buf, 0x7e70, seg.selector);
9422 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9423 put_smstate(u32, buf, 0x7e74, seg.limit);
9424 put_smstate(u64, buf, 0x7e78, seg.base);
9426 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9427 put_smstate(u32, buf, 0x7e64, dt.size);
9428 put_smstate(u64, buf, 0x7e68, dt.address);
9430 for (i = 0; i < 6; i++)
9431 enter_smm_save_seg_64(vcpu, buf, i);
9435 static void enter_smm(struct kvm_vcpu *vcpu)
9437 struct kvm_segment cs, ds;
9442 memset(buf, 0, 512);
9443 #ifdef CONFIG_X86_64
9444 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9445 enter_smm_save_state_64(vcpu, buf);
9448 enter_smm_save_state_32(vcpu, buf);
9451 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9452 * state (e.g. leave guest mode) after we've saved the state into the
9453 * SMM state-save area.
9455 static_call(kvm_x86_enter_smm)(vcpu, buf);
9457 kvm_smm_changed(vcpu, true);
9458 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9460 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9461 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9463 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9465 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9466 kvm_rip_write(vcpu, 0x8000);
9468 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9469 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9470 vcpu->arch.cr0 = cr0;
9472 static_call(kvm_x86_set_cr4)(vcpu, 0);
9474 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9475 dt.address = dt.size = 0;
9476 static_call(kvm_x86_set_idt)(vcpu, &dt);
9478 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9480 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9481 cs.base = vcpu->arch.smbase;
9486 cs.limit = ds.limit = 0xffffffff;
9487 cs.type = ds.type = 0x3;
9488 cs.dpl = ds.dpl = 0;
9493 cs.avl = ds.avl = 0;
9494 cs.present = ds.present = 1;
9495 cs.unusable = ds.unusable = 0;
9496 cs.padding = ds.padding = 0;
9498 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9499 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9500 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9501 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9502 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9503 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9505 #ifdef CONFIG_X86_64
9506 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9507 static_call(kvm_x86_set_efer)(vcpu, 0);
9510 kvm_update_cpuid_runtime(vcpu);
9511 kvm_mmu_reset_context(vcpu);
9514 static void process_smi(struct kvm_vcpu *vcpu)
9516 vcpu->arch.smi_pending = true;
9517 kvm_make_request(KVM_REQ_EVENT, vcpu);
9520 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9521 unsigned long *vcpu_bitmap)
9523 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9526 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9528 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9531 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9535 if (!lapic_in_kernel(vcpu))
9538 down_read(&vcpu->kvm->arch.apicv_update_lock);
9540 activate = kvm_apicv_activated(vcpu->kvm);
9541 if (vcpu->arch.apicv_active == activate)
9544 vcpu->arch.apicv_active = activate;
9545 kvm_apic_update_apicv(vcpu);
9546 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9549 * When APICv gets disabled, we may still have injected interrupts
9550 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9551 * still active when the interrupt got accepted. Make sure
9552 * inject_pending_event() is called to check for that.
9554 if (!vcpu->arch.apicv_active)
9555 kvm_make_request(KVM_REQ_EVENT, vcpu);
9558 up_read(&vcpu->kvm->arch.apicv_update_lock);
9560 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9562 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9564 unsigned long old, new;
9566 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9568 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9569 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9572 old = new = kvm->arch.apicv_inhibit_reasons;
9575 __clear_bit(bit, &new);
9577 __set_bit(bit, &new);
9579 if (!!old != !!new) {
9580 trace_kvm_apicv_update_request(activate, bit);
9582 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9583 * false positives in the sanity check WARN in svm_vcpu_run().
9584 * This task will wait for all vCPUs to ack the kick IRQ before
9585 * updating apicv_inhibit_reasons, and all other vCPUs will
9586 * block on acquiring apicv_update_lock so that vCPUs can't
9587 * redo svm_vcpu_run() without seeing the new inhibit state.
9589 * Note, holding apicv_update_lock and taking it in the read
9590 * side (handling the request) also prevents other vCPUs from
9591 * servicing the request with a stale apicv_inhibit_reasons.
9593 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9594 kvm->arch.apicv_inhibit_reasons = new;
9596 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9597 kvm_zap_gfn_range(kvm, gfn, gfn+1);
9600 kvm->arch.apicv_inhibit_reasons = new;
9602 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9604 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9606 down_write(&kvm->arch.apicv_update_lock);
9607 __kvm_request_apicv_update(kvm, activate, bit);
9608 up_write(&kvm->arch.apicv_update_lock);
9610 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9612 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9614 if (!kvm_apic_present(vcpu))
9617 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9619 if (irqchip_split(vcpu->kvm))
9620 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9622 if (vcpu->arch.apicv_active)
9623 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9624 if (ioapic_in_kernel(vcpu->kvm))
9625 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9628 if (is_guest_mode(vcpu))
9629 vcpu->arch.load_eoi_exitmap_pending = true;
9631 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9634 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9636 u64 eoi_exit_bitmap[4];
9638 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9641 if (to_hv_vcpu(vcpu))
9642 bitmap_or((ulong *)eoi_exit_bitmap,
9643 vcpu->arch.ioapic_handled_vectors,
9644 to_hv_synic(vcpu)->vec_bitmap, 256);
9646 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9649 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9650 unsigned long start, unsigned long end)
9652 unsigned long apic_address;
9655 * The physical address of apic access page is stored in the VMCS.
9656 * Update it when it becomes invalid.
9658 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9659 if (start <= apic_address && apic_address < end)
9660 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9663 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9665 if (!lapic_in_kernel(vcpu))
9668 if (!kvm_x86_ops.set_apic_access_page_addr)
9671 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9674 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9676 smp_send_reschedule(vcpu->cpu);
9678 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9681 * Returns 1 to let vcpu_run() continue the guest execution loop without
9682 * exiting to the userspace. Otherwise, the value will be returned to the
9685 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9689 dm_request_for_irq_injection(vcpu) &&
9690 kvm_cpu_accept_dm_intr(vcpu);
9691 fastpath_t exit_fastpath;
9693 bool req_immediate_exit = false;
9695 /* Forbid vmenter if vcpu dirty ring is soft-full */
9696 if (unlikely(vcpu->kvm->dirty_ring_size &&
9697 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9698 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9699 trace_kvm_dirty_ring_exit(vcpu);
9704 if (kvm_request_pending(vcpu)) {
9705 if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9709 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9710 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9715 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9716 kvm_mmu_unload(vcpu);
9717 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9718 __kvm_migrate_timers(vcpu);
9719 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9720 kvm_update_masterclock(vcpu->kvm);
9721 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9722 kvm_gen_kvmclock_update(vcpu);
9723 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9724 r = kvm_guest_time_update(vcpu);
9728 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9729 kvm_mmu_sync_roots(vcpu);
9730 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9731 kvm_mmu_load_pgd(vcpu);
9732 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9733 kvm_vcpu_flush_tlb_all(vcpu);
9735 /* Flushing all ASIDs flushes the current ASID... */
9736 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9738 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9739 kvm_vcpu_flush_tlb_current(vcpu);
9740 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9741 kvm_vcpu_flush_tlb_guest(vcpu);
9743 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9744 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9748 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9749 if (is_guest_mode(vcpu)) {
9750 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9752 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9753 vcpu->mmio_needed = 0;
9758 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9759 /* Page is swapped out. Do synthetic halt */
9760 vcpu->arch.apf.halted = true;
9764 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9765 record_steal_time(vcpu);
9766 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9768 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9770 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9771 kvm_pmu_handle_event(vcpu);
9772 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9773 kvm_pmu_deliver_pmi(vcpu);
9774 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9775 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9776 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9777 vcpu->arch.ioapic_handled_vectors)) {
9778 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9779 vcpu->run->eoi.vector =
9780 vcpu->arch.pending_ioapic_eoi;
9785 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9786 vcpu_scan_ioapic(vcpu);
9787 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9788 vcpu_load_eoi_exitmap(vcpu);
9789 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9790 kvm_vcpu_reload_apic_access_page(vcpu);
9791 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9792 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9793 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9797 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9798 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9799 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9803 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9804 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9806 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9807 vcpu->run->hyperv = hv_vcpu->exit;
9813 * KVM_REQ_HV_STIMER has to be processed after
9814 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9815 * depend on the guest clock being up-to-date
9817 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9818 kvm_hv_process_stimers(vcpu);
9819 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9820 kvm_vcpu_update_apicv(vcpu);
9821 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9822 kvm_check_async_pf_completion(vcpu);
9823 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9824 static_call(kvm_x86_msr_filter_changed)(vcpu);
9826 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9827 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9830 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9831 kvm_xen_has_interrupt(vcpu)) {
9832 ++vcpu->stat.req_event;
9833 r = kvm_apic_accept_events(vcpu);
9838 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9843 r = inject_pending_event(vcpu, &req_immediate_exit);
9849 static_call(kvm_x86_enable_irq_window)(vcpu);
9851 if (kvm_lapic_enabled(vcpu)) {
9852 update_cr8_intercept(vcpu);
9853 kvm_lapic_sync_to_vapic(vcpu);
9857 r = kvm_mmu_reload(vcpu);
9859 goto cancel_injection;
9864 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9867 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9868 * IPI are then delayed after guest entry, which ensures that they
9869 * result in virtual interrupt delivery.
9871 local_irq_disable();
9872 vcpu->mode = IN_GUEST_MODE;
9874 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9877 * 1) We should set ->mode before checking ->requests. Please see
9878 * the comment in kvm_vcpu_exiting_guest_mode().
9880 * 2) For APICv, we should set ->mode before checking PID.ON. This
9881 * pairs with the memory barrier implicit in pi_test_and_set_on
9882 * (see vmx_deliver_posted_interrupt).
9884 * 3) This also orders the write to mode from any reads to the page
9885 * tables done while the VCPU is running. Please see the comment
9886 * in kvm_flush_remote_tlbs.
9888 smp_mb__after_srcu_read_unlock();
9891 * This handles the case where a posted interrupt was
9892 * notified with kvm_vcpu_kick.
9894 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9895 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9897 if (kvm_vcpu_exit_request(vcpu)) {
9898 vcpu->mode = OUTSIDE_GUEST_MODE;
9902 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9904 goto cancel_injection;
9907 if (req_immediate_exit) {
9908 kvm_make_request(KVM_REQ_EVENT, vcpu);
9909 static_call(kvm_x86_request_immediate_exit)(vcpu);
9912 fpregs_assert_state_consistent();
9913 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9914 switch_fpu_return();
9916 if (unlikely(vcpu->arch.switch_db_regs)) {
9918 set_debugreg(vcpu->arch.eff_db[0], 0);
9919 set_debugreg(vcpu->arch.eff_db[1], 1);
9920 set_debugreg(vcpu->arch.eff_db[2], 2);
9921 set_debugreg(vcpu->arch.eff_db[3], 3);
9922 } else if (unlikely(hw_breakpoint_active())) {
9928 * Assert that vCPU vs. VM APICv state is consistent. An APICv
9929 * update must kick and wait for all vCPUs before toggling the
9930 * per-VM state, and responsing vCPUs must wait for the update
9931 * to complete before servicing KVM_REQ_APICV_UPDATE.
9933 WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
9935 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9936 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9939 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9940 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9944 if (vcpu->arch.apicv_active)
9945 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9949 * Do this here before restoring debug registers on the host. And
9950 * since we do this before handling the vmexit, a DR access vmexit
9951 * can (a) read the correct value of the debug registers, (b) set
9952 * KVM_DEBUGREG_WONT_EXIT again.
9954 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9955 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9956 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9957 kvm_update_dr0123(vcpu);
9958 kvm_update_dr7(vcpu);
9962 * If the guest has used debug registers, at least dr7
9963 * will be disabled while returning to the host.
9964 * If we don't have active breakpoints in the host, we don't
9965 * care about the messed up debug address registers. But if
9966 * we have some of them active, restore the old state.
9968 if (hw_breakpoint_active())
9969 hw_breakpoint_restore();
9971 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9972 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9974 vcpu->mode = OUTSIDE_GUEST_MODE;
9977 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9980 * Consume any pending interrupts, including the possible source of
9981 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9982 * An instruction is required after local_irq_enable() to fully unblock
9983 * interrupts on processors that implement an interrupt shadow, the
9984 * stat.exits increment will do nicely.
9986 kvm_before_interrupt(vcpu);
9989 local_irq_disable();
9990 kvm_after_interrupt(vcpu);
9993 * Wait until after servicing IRQs to account guest time so that any
9994 * ticks that occurred while running the guest are properly accounted
9995 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9996 * of accounting via context tracking, but the loss of accuracy is
9997 * acceptable for all known use cases.
9999 vtime_account_guest_exit();
10001 if (lapic_in_kernel(vcpu)) {
10002 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10003 if (delta != S64_MIN) {
10004 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10005 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10009 local_irq_enable();
10012 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10015 * Profile KVM exit RIPs:
10017 if (unlikely(prof_on == KVM_PROFILING)) {
10018 unsigned long rip = kvm_rip_read(vcpu);
10019 profile_hit(KVM_PROFILING, (void *)rip);
10022 if (unlikely(vcpu->arch.tsc_always_catchup))
10023 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10025 if (vcpu->arch.apic_attention)
10026 kvm_lapic_sync_from_vapic(vcpu);
10028 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10032 if (req_immediate_exit)
10033 kvm_make_request(KVM_REQ_EVENT, vcpu);
10034 static_call(kvm_x86_cancel_injection)(vcpu);
10035 if (unlikely(vcpu->arch.apic_attention))
10036 kvm_lapic_sync_from_vapic(vcpu);
10041 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
10043 if (!kvm_arch_vcpu_runnable(vcpu) &&
10044 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
10045 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10046 kvm_vcpu_block(vcpu);
10047 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10049 if (kvm_x86_ops.post_block)
10050 static_call(kvm_x86_post_block)(vcpu);
10052 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10056 if (kvm_apic_accept_events(vcpu) < 0)
10058 switch(vcpu->arch.mp_state) {
10059 case KVM_MP_STATE_HALTED:
10060 case KVM_MP_STATE_AP_RESET_HOLD:
10061 vcpu->arch.pv.pv_unhalted = false;
10062 vcpu->arch.mp_state =
10063 KVM_MP_STATE_RUNNABLE;
10065 case KVM_MP_STATE_RUNNABLE:
10066 vcpu->arch.apf.halted = false;
10068 case KVM_MP_STATE_INIT_RECEIVED:
10076 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10078 if (is_guest_mode(vcpu))
10079 kvm_check_nested_events(vcpu);
10081 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10082 !vcpu->arch.apf.halted);
10085 static int vcpu_run(struct kvm_vcpu *vcpu)
10088 struct kvm *kvm = vcpu->kvm;
10090 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10091 vcpu->arch.l1tf_flush_l1d = true;
10094 if (kvm_vcpu_running(vcpu)) {
10095 r = vcpu_enter_guest(vcpu);
10097 r = vcpu_block(kvm, vcpu);
10103 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10104 if (kvm_cpu_has_pending_timer(vcpu))
10105 kvm_inject_pending_timer_irqs(vcpu);
10107 if (dm_request_for_irq_injection(vcpu) &&
10108 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10110 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10111 ++vcpu->stat.request_irq_exits;
10115 if (__xfer_to_guest_mode_work_pending()) {
10116 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10117 r = xfer_to_guest_mode_handle_work(vcpu);
10120 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10124 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10129 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10133 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10134 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10135 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10139 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10141 BUG_ON(!vcpu->arch.pio.count);
10143 return complete_emulated_io(vcpu);
10147 * Implements the following, as a state machine:
10150 * for each fragment
10151 * for each mmio piece in the fragment
10158 * for each fragment
10159 * for each mmio piece in the fragment
10164 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10166 struct kvm_run *run = vcpu->run;
10167 struct kvm_mmio_fragment *frag;
10170 BUG_ON(!vcpu->mmio_needed);
10172 /* Complete previous fragment */
10173 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10174 len = min(8u, frag->len);
10175 if (!vcpu->mmio_is_write)
10176 memcpy(frag->data, run->mmio.data, len);
10178 if (frag->len <= 8) {
10179 /* Switch to the next fragment. */
10181 vcpu->mmio_cur_fragment++;
10183 /* Go forward to the next mmio piece. */
10189 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10190 vcpu->mmio_needed = 0;
10192 /* FIXME: return into emulator if single-stepping. */
10193 if (vcpu->mmio_is_write)
10195 vcpu->mmio_read_completed = 1;
10196 return complete_emulated_io(vcpu);
10199 run->exit_reason = KVM_EXIT_MMIO;
10200 run->mmio.phys_addr = frag->gpa;
10201 if (vcpu->mmio_is_write)
10202 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10203 run->mmio.len = min(8u, frag->len);
10204 run->mmio.is_write = vcpu->mmio_is_write;
10205 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10209 static void kvm_save_current_fpu(struct fpu *fpu)
10212 * If the target FPU state is not resident in the CPU registers, just
10213 * memcpy() from current, else save CPU state directly to the target.
10215 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10216 memcpy(&fpu->state, ¤t->thread.fpu.state,
10217 fpu_kernel_xstate_size);
10219 save_fpregs_to_fpstate(fpu);
10222 /* Swap (qemu) user FPU context for the guest FPU context. */
10223 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10227 kvm_save_current_fpu(vcpu->arch.user_fpu);
10230 * Guests with protected state can't have it set by the hypervisor,
10231 * so skip trying to set it.
10233 if (vcpu->arch.guest_fpu)
10234 /* PKRU is separately restored in kvm_x86_ops.run. */
10235 __restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
10236 ~XFEATURE_MASK_PKRU);
10238 fpregs_mark_activate();
10244 /* When vcpu_run ends, restore user space FPU context. */
10245 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10250 * Guests with protected state can't have it read by the hypervisor,
10251 * so skip trying to save it.
10253 if (vcpu->arch.guest_fpu)
10254 kvm_save_current_fpu(vcpu->arch.guest_fpu);
10256 restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
10258 fpregs_mark_activate();
10261 ++vcpu->stat.fpu_reload;
10265 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10267 struct kvm_run *kvm_run = vcpu->run;
10271 kvm_sigset_activate(vcpu);
10272 kvm_run->flags = 0;
10273 kvm_load_guest_fpu(vcpu);
10275 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10276 if (kvm_run->immediate_exit) {
10280 kvm_vcpu_block(vcpu);
10281 if (kvm_apic_accept_events(vcpu) < 0) {
10285 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10287 if (signal_pending(current)) {
10289 kvm_run->exit_reason = KVM_EXIT_INTR;
10290 ++vcpu->stat.signal_exits;
10295 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10296 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10301 if (kvm_run->kvm_dirty_regs) {
10302 r = sync_regs(vcpu);
10307 /* re-sync apic's tpr */
10308 if (!lapic_in_kernel(vcpu)) {
10309 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10315 if (unlikely(vcpu->arch.complete_userspace_io)) {
10316 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10317 vcpu->arch.complete_userspace_io = NULL;
10322 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10324 if (kvm_run->immediate_exit)
10327 r = vcpu_run(vcpu);
10330 kvm_put_guest_fpu(vcpu);
10331 if (kvm_run->kvm_valid_regs)
10333 post_kvm_run_save(vcpu);
10334 kvm_sigset_deactivate(vcpu);
10340 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10342 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10344 * We are here if userspace calls get_regs() in the middle of
10345 * instruction emulation. Registers state needs to be copied
10346 * back from emulation context to vcpu. Userspace shouldn't do
10347 * that usually, but some bad designed PV devices (vmware
10348 * backdoor interface) need this to work
10350 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10351 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10353 regs->rax = kvm_rax_read(vcpu);
10354 regs->rbx = kvm_rbx_read(vcpu);
10355 regs->rcx = kvm_rcx_read(vcpu);
10356 regs->rdx = kvm_rdx_read(vcpu);
10357 regs->rsi = kvm_rsi_read(vcpu);
10358 regs->rdi = kvm_rdi_read(vcpu);
10359 regs->rsp = kvm_rsp_read(vcpu);
10360 regs->rbp = kvm_rbp_read(vcpu);
10361 #ifdef CONFIG_X86_64
10362 regs->r8 = kvm_r8_read(vcpu);
10363 regs->r9 = kvm_r9_read(vcpu);
10364 regs->r10 = kvm_r10_read(vcpu);
10365 regs->r11 = kvm_r11_read(vcpu);
10366 regs->r12 = kvm_r12_read(vcpu);
10367 regs->r13 = kvm_r13_read(vcpu);
10368 regs->r14 = kvm_r14_read(vcpu);
10369 regs->r15 = kvm_r15_read(vcpu);
10372 regs->rip = kvm_rip_read(vcpu);
10373 regs->rflags = kvm_get_rflags(vcpu);
10376 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10379 __get_regs(vcpu, regs);
10384 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10386 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10387 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10389 kvm_rax_write(vcpu, regs->rax);
10390 kvm_rbx_write(vcpu, regs->rbx);
10391 kvm_rcx_write(vcpu, regs->rcx);
10392 kvm_rdx_write(vcpu, regs->rdx);
10393 kvm_rsi_write(vcpu, regs->rsi);
10394 kvm_rdi_write(vcpu, regs->rdi);
10395 kvm_rsp_write(vcpu, regs->rsp);
10396 kvm_rbp_write(vcpu, regs->rbp);
10397 #ifdef CONFIG_X86_64
10398 kvm_r8_write(vcpu, regs->r8);
10399 kvm_r9_write(vcpu, regs->r9);
10400 kvm_r10_write(vcpu, regs->r10);
10401 kvm_r11_write(vcpu, regs->r11);
10402 kvm_r12_write(vcpu, regs->r12);
10403 kvm_r13_write(vcpu, regs->r13);
10404 kvm_r14_write(vcpu, regs->r14);
10405 kvm_r15_write(vcpu, regs->r15);
10408 kvm_rip_write(vcpu, regs->rip);
10409 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10411 vcpu->arch.exception.pending = false;
10413 kvm_make_request(KVM_REQ_EVENT, vcpu);
10416 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10419 __set_regs(vcpu, regs);
10424 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10426 struct kvm_segment cs;
10428 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10432 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10434 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10436 struct desc_ptr dt;
10438 if (vcpu->arch.guest_state_protected)
10439 goto skip_protected_regs;
10441 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10442 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10443 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10444 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10445 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10446 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10448 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10449 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10451 static_call(kvm_x86_get_idt)(vcpu, &dt);
10452 sregs->idt.limit = dt.size;
10453 sregs->idt.base = dt.address;
10454 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10455 sregs->gdt.limit = dt.size;
10456 sregs->gdt.base = dt.address;
10458 sregs->cr2 = vcpu->arch.cr2;
10459 sregs->cr3 = kvm_read_cr3(vcpu);
10461 skip_protected_regs:
10462 sregs->cr0 = kvm_read_cr0(vcpu);
10463 sregs->cr4 = kvm_read_cr4(vcpu);
10464 sregs->cr8 = kvm_get_cr8(vcpu);
10465 sregs->efer = vcpu->arch.efer;
10466 sregs->apic_base = kvm_get_apic_base(vcpu);
10469 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10471 __get_sregs_common(vcpu, sregs);
10473 if (vcpu->arch.guest_state_protected)
10476 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10477 set_bit(vcpu->arch.interrupt.nr,
10478 (unsigned long *)sregs->interrupt_bitmap);
10481 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10485 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10487 if (vcpu->arch.guest_state_protected)
10490 if (is_pae_paging(vcpu)) {
10491 for (i = 0 ; i < 4 ; i++)
10492 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10493 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10497 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10498 struct kvm_sregs *sregs)
10501 __get_sregs(vcpu, sregs);
10506 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10507 struct kvm_mp_state *mp_state)
10512 if (kvm_mpx_supported())
10513 kvm_load_guest_fpu(vcpu);
10515 r = kvm_apic_accept_events(vcpu);
10520 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10521 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10522 vcpu->arch.pv.pv_unhalted)
10523 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10525 mp_state->mp_state = vcpu->arch.mp_state;
10528 if (kvm_mpx_supported())
10529 kvm_put_guest_fpu(vcpu);
10534 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10535 struct kvm_mp_state *mp_state)
10541 if (!lapic_in_kernel(vcpu) &&
10542 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10546 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10547 * INIT state; latched init should be reported using
10548 * KVM_SET_VCPU_EVENTS, so reject it here.
10550 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10551 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10552 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10555 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10556 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10557 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10559 vcpu->arch.mp_state = mp_state->mp_state;
10560 kvm_make_request(KVM_REQ_EVENT, vcpu);
10568 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10569 int reason, bool has_error_code, u32 error_code)
10571 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10574 init_emulate_ctxt(vcpu);
10576 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10577 has_error_code, error_code);
10579 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10580 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10581 vcpu->run->internal.ndata = 0;
10585 kvm_rip_write(vcpu, ctxt->eip);
10586 kvm_set_rflags(vcpu, ctxt->eflags);
10589 EXPORT_SYMBOL_GPL(kvm_task_switch);
10591 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10593 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10595 * When EFER.LME and CR0.PG are set, the processor is in
10596 * 64-bit mode (though maybe in a 32-bit code segment).
10597 * CR4.PAE and EFER.LMA must be set.
10599 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10601 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10605 * Not in 64-bit mode: EFER.LMA is clear and the code
10606 * segment cannot be 64-bit.
10608 if (sregs->efer & EFER_LMA || sregs->cs.l)
10612 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10615 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10616 int *mmu_reset_needed, bool update_pdptrs)
10618 struct msr_data apic_base_msr;
10620 struct desc_ptr dt;
10622 if (!kvm_is_valid_sregs(vcpu, sregs))
10625 apic_base_msr.data = sregs->apic_base;
10626 apic_base_msr.host_initiated = true;
10627 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10630 if (vcpu->arch.guest_state_protected)
10633 dt.size = sregs->idt.limit;
10634 dt.address = sregs->idt.base;
10635 static_call(kvm_x86_set_idt)(vcpu, &dt);
10636 dt.size = sregs->gdt.limit;
10637 dt.address = sregs->gdt.base;
10638 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10640 vcpu->arch.cr2 = sregs->cr2;
10641 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10642 vcpu->arch.cr3 = sregs->cr3;
10643 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10645 kvm_set_cr8(vcpu, sregs->cr8);
10647 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10648 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10650 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10651 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10652 vcpu->arch.cr0 = sregs->cr0;
10654 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10655 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10657 if (update_pdptrs) {
10658 idx = srcu_read_lock(&vcpu->kvm->srcu);
10659 if (is_pae_paging(vcpu)) {
10660 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10661 *mmu_reset_needed = 1;
10663 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10666 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10667 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10668 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10669 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10670 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10671 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10673 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10674 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10676 update_cr8_intercept(vcpu);
10678 /* Older userspace won't unhalt the vcpu on reset. */
10679 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10680 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10681 !is_protmode(vcpu))
10682 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10687 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10689 int pending_vec, max_bits;
10690 int mmu_reset_needed = 0;
10691 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10696 if (mmu_reset_needed)
10697 kvm_mmu_reset_context(vcpu);
10699 max_bits = KVM_NR_INTERRUPTS;
10700 pending_vec = find_first_bit(
10701 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10703 if (pending_vec < max_bits) {
10704 kvm_queue_interrupt(vcpu, pending_vec, false);
10705 pr_debug("Set back pending irq %d\n", pending_vec);
10706 kvm_make_request(KVM_REQ_EVENT, vcpu);
10711 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10713 int mmu_reset_needed = 0;
10714 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10715 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10716 !(sregs2->efer & EFER_LMA);
10719 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10722 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10725 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10726 &mmu_reset_needed, !valid_pdptrs);
10730 if (valid_pdptrs) {
10731 for (i = 0; i < 4 ; i++)
10732 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10734 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10735 mmu_reset_needed = 1;
10736 vcpu->arch.pdptrs_from_userspace = true;
10738 if (mmu_reset_needed)
10739 kvm_mmu_reset_context(vcpu);
10743 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10744 struct kvm_sregs *sregs)
10749 ret = __set_sregs(vcpu, sregs);
10754 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10755 struct kvm_guest_debug *dbg)
10757 unsigned long rflags;
10760 if (vcpu->arch.guest_state_protected)
10765 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10767 if (vcpu->arch.exception.pending)
10769 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10770 kvm_queue_exception(vcpu, DB_VECTOR);
10772 kvm_queue_exception(vcpu, BP_VECTOR);
10776 * Read rflags as long as potentially injected trace flags are still
10779 rflags = kvm_get_rflags(vcpu);
10781 vcpu->guest_debug = dbg->control;
10782 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10783 vcpu->guest_debug = 0;
10785 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10786 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10787 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10788 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10790 for (i = 0; i < KVM_NR_DB_REGS; i++)
10791 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10793 kvm_update_dr7(vcpu);
10795 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10796 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10799 * Trigger an rflags update that will inject or remove the trace
10802 kvm_set_rflags(vcpu, rflags);
10804 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10814 * Translate a guest virtual address to a guest physical address.
10816 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10817 struct kvm_translation *tr)
10819 unsigned long vaddr = tr->linear_address;
10825 idx = srcu_read_lock(&vcpu->kvm->srcu);
10826 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10827 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10828 tr->physical_address = gpa;
10829 tr->valid = gpa != UNMAPPED_GVA;
10837 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10839 struct fxregs_state *fxsave;
10841 if (!vcpu->arch.guest_fpu)
10846 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10847 memcpy(fpu->fpr, fxsave->st_space, 128);
10848 fpu->fcw = fxsave->cwd;
10849 fpu->fsw = fxsave->swd;
10850 fpu->ftwx = fxsave->twd;
10851 fpu->last_opcode = fxsave->fop;
10852 fpu->last_ip = fxsave->rip;
10853 fpu->last_dp = fxsave->rdp;
10854 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10860 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10862 struct fxregs_state *fxsave;
10864 if (!vcpu->arch.guest_fpu)
10869 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10871 memcpy(fxsave->st_space, fpu->fpr, 128);
10872 fxsave->cwd = fpu->fcw;
10873 fxsave->swd = fpu->fsw;
10874 fxsave->twd = fpu->ftwx;
10875 fxsave->fop = fpu->last_opcode;
10876 fxsave->rip = fpu->last_ip;
10877 fxsave->rdp = fpu->last_dp;
10878 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10884 static void store_regs(struct kvm_vcpu *vcpu)
10886 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10888 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10889 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10891 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10892 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10894 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10895 kvm_vcpu_ioctl_x86_get_vcpu_events(
10896 vcpu, &vcpu->run->s.regs.events);
10899 static int sync_regs(struct kvm_vcpu *vcpu)
10901 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10902 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10903 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10905 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10906 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10908 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10910 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10911 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10912 vcpu, &vcpu->run->s.regs.events))
10914 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10920 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10922 if (vcpu->arch.guest_fpu) {
10923 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10924 vcpu->arch.guest_fpu = NULL;
10927 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10929 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10931 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10932 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10933 "guest TSC will not be reliable\n");
10938 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10943 vcpu->arch.last_vmentry_cpu = -1;
10944 vcpu->arch.regs_avail = ~0;
10945 vcpu->arch.regs_dirty = ~0;
10947 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10948 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10950 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10952 r = kvm_mmu_create(vcpu);
10956 if (irqchip_in_kernel(vcpu->kvm)) {
10957 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10959 goto fail_mmu_destroy;
10960 if (kvm_apicv_activated(vcpu->kvm))
10961 vcpu->arch.apicv_active = true;
10963 static_branch_inc(&kvm_has_noapic_vcpu);
10967 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10969 goto fail_free_lapic;
10970 vcpu->arch.pio_data = page_address(page);
10972 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10973 GFP_KERNEL_ACCOUNT);
10974 if (!vcpu->arch.mce_banks)
10975 goto fail_free_pio_data;
10976 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10978 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10979 GFP_KERNEL_ACCOUNT))
10980 goto fail_free_mce_banks;
10982 if (!alloc_emulate_ctxt(vcpu))
10983 goto free_wbinvd_dirty_mask;
10985 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10986 GFP_KERNEL_ACCOUNT);
10987 if (!vcpu->arch.user_fpu) {
10988 pr_err("kvm: failed to allocate userspace's fpu\n");
10989 goto free_emulate_ctxt;
10992 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10993 GFP_KERNEL_ACCOUNT);
10994 if (!vcpu->arch.guest_fpu) {
10995 pr_err("kvm: failed to allocate vcpu's fpu\n");
10996 goto free_user_fpu;
10998 fpstate_init(&vcpu->arch.guest_fpu->state);
10999 if (boot_cpu_has(X86_FEATURE_XSAVES))
11000 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
11001 host_xcr0 | XSTATE_COMPACTION_ENABLED;
11003 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11004 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11006 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11008 kvm_async_pf_hash_reset(vcpu);
11009 kvm_pmu_init(vcpu);
11011 vcpu->arch.pending_external_vector = -1;
11012 vcpu->arch.preempted_in_kernel = false;
11014 #if IS_ENABLED(CONFIG_HYPERV)
11015 vcpu->arch.hv_root_tdp = INVALID_PAGE;
11018 r = static_call(kvm_x86_vcpu_create)(vcpu);
11020 goto free_guest_fpu;
11022 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11023 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11024 kvm_vcpu_mtrr_init(vcpu);
11026 kvm_set_tsc_khz(vcpu, max_tsc_khz);
11027 kvm_vcpu_reset(vcpu, false);
11028 kvm_init_mmu(vcpu);
11033 kvm_free_guest_fpu(vcpu);
11035 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
11037 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11038 free_wbinvd_dirty_mask:
11039 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11040 fail_free_mce_banks:
11041 kfree(vcpu->arch.mce_banks);
11042 fail_free_pio_data:
11043 free_page((unsigned long)vcpu->arch.pio_data);
11045 kvm_free_lapic(vcpu);
11047 kvm_mmu_destroy(vcpu);
11051 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11053 struct kvm *kvm = vcpu->kvm;
11055 if (mutex_lock_killable(&vcpu->mutex))
11058 kvm_synchronize_tsc(vcpu, 0);
11061 /* poll control enabled by default */
11062 vcpu->arch.msr_kvm_poll_control = 1;
11064 mutex_unlock(&vcpu->mutex);
11066 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11067 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11068 KVMCLOCK_SYNC_PERIOD);
11071 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11075 kvmclock_reset(vcpu);
11077 static_call(kvm_x86_vcpu_free)(vcpu);
11079 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11080 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11081 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
11082 kvm_free_guest_fpu(vcpu);
11084 kvm_hv_vcpu_uninit(vcpu);
11085 kvm_pmu_destroy(vcpu);
11086 kfree(vcpu->arch.mce_banks);
11087 kvm_free_lapic(vcpu);
11088 idx = srcu_read_lock(&vcpu->kvm->srcu);
11089 kvm_mmu_destroy(vcpu);
11090 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11091 free_page((unsigned long)vcpu->arch.pio_data);
11092 kvfree(vcpu->arch.cpuid_entries);
11093 if (!lapic_in_kernel(vcpu))
11094 static_branch_dec(&kvm_has_noapic_vcpu);
11097 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11099 struct kvm_cpuid_entry2 *cpuid_0x1;
11100 unsigned long old_cr0 = kvm_read_cr0(vcpu);
11101 unsigned long new_cr0;
11104 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11105 * to handle side effects. RESET emulation hits those flows and relies
11106 * on emulated/virtualized registers, including those that are loaded
11107 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
11108 * to detect improper or missing initialization.
11110 WARN_ON_ONCE(!init_event &&
11111 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11113 kvm_lapic_reset(vcpu, init_event);
11115 vcpu->arch.hflags = 0;
11117 vcpu->arch.smi_pending = 0;
11118 vcpu->arch.smi_count = 0;
11119 atomic_set(&vcpu->arch.nmi_queued, 0);
11120 vcpu->arch.nmi_pending = 0;
11121 vcpu->arch.nmi_injected = false;
11122 kvm_clear_interrupt_queue(vcpu);
11123 kvm_clear_exception_queue(vcpu);
11125 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11126 kvm_update_dr0123(vcpu);
11127 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11128 vcpu->arch.dr7 = DR7_FIXED_1;
11129 kvm_update_dr7(vcpu);
11131 vcpu->arch.cr2 = 0;
11133 kvm_make_request(KVM_REQ_EVENT, vcpu);
11134 vcpu->arch.apf.msr_en_val = 0;
11135 vcpu->arch.apf.msr_int_val = 0;
11136 vcpu->arch.st.msr_val = 0;
11138 kvmclock_reset(vcpu);
11140 kvm_clear_async_pf_completion_queue(vcpu);
11141 kvm_async_pf_hash_reset(vcpu);
11142 vcpu->arch.apf.halted = false;
11144 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
11145 void *mpx_state_buffer;
11148 * To avoid have the INIT path from kvm_apic_has_events() that be
11149 * called with loaded FPU and does not let userspace fix the state.
11152 kvm_put_guest_fpu(vcpu);
11153 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
11155 if (mpx_state_buffer)
11156 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
11157 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
11159 if (mpx_state_buffer)
11160 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
11162 kvm_load_guest_fpu(vcpu);
11166 kvm_pmu_reset(vcpu);
11167 vcpu->arch.smbase = 0x30000;
11169 vcpu->arch.msr_misc_features_enables = 0;
11171 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
11174 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11175 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11176 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11179 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11180 * if no CPUID match is found. Note, it's impossible to get a match at
11181 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11182 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11183 * on RESET. But, go through the motions in case that's ever remedied.
11185 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11186 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11188 vcpu->arch.ia32_xss = 0;
11190 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11192 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11193 kvm_rip_write(vcpu, 0xfff0);
11195 vcpu->arch.cr3 = 0;
11196 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11199 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
11200 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11201 * (or qualify) that with a footnote stating that CD/NW are preserved.
11203 new_cr0 = X86_CR0_ET;
11205 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11207 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11209 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11210 static_call(kvm_x86_set_cr4)(vcpu, 0);
11211 static_call(kvm_x86_set_efer)(vcpu, 0);
11212 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11215 * Reset the MMU context if paging was enabled prior to INIT (which is
11216 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the
11217 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11218 * checked because it is unconditionally cleared on INIT and all other
11219 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11220 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11222 if (old_cr0 & X86_CR0_PG)
11223 kvm_mmu_reset_context(vcpu);
11226 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
11227 * APM states the TLBs are untouched by INIT, but it also states that
11228 * the TLBs are flushed on "External initialization of the processor."
11229 * Flush the guest TLB regardless of vendor, there is no meaningful
11230 * benefit in relying on the guest to flush the TLB immediately after
11231 * INIT. A spurious TLB flush is benign and likely negligible from a
11232 * performance perspective.
11235 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11237 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11239 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11241 struct kvm_segment cs;
11243 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11244 cs.selector = vector << 8;
11245 cs.base = vector << 12;
11246 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11247 kvm_rip_write(vcpu, 0);
11249 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11251 int kvm_arch_hardware_enable(void)
11254 struct kvm_vcpu *vcpu;
11259 bool stable, backwards_tsc = false;
11261 kvm_user_return_msr_cpu_online();
11262 ret = static_call(kvm_x86_hardware_enable)();
11266 local_tsc = rdtsc();
11267 stable = !kvm_check_tsc_unstable();
11268 list_for_each_entry(kvm, &vm_list, vm_list) {
11269 kvm_for_each_vcpu(i, vcpu, kvm) {
11270 if (!stable && vcpu->cpu == smp_processor_id())
11271 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11272 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11273 backwards_tsc = true;
11274 if (vcpu->arch.last_host_tsc > max_tsc)
11275 max_tsc = vcpu->arch.last_host_tsc;
11281 * Sometimes, even reliable TSCs go backwards. This happens on
11282 * platforms that reset TSC during suspend or hibernate actions, but
11283 * maintain synchronization. We must compensate. Fortunately, we can
11284 * detect that condition here, which happens early in CPU bringup,
11285 * before any KVM threads can be running. Unfortunately, we can't
11286 * bring the TSCs fully up to date with real time, as we aren't yet far
11287 * enough into CPU bringup that we know how much real time has actually
11288 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11289 * variables that haven't been updated yet.
11291 * So we simply find the maximum observed TSC above, then record the
11292 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
11293 * the adjustment will be applied. Note that we accumulate
11294 * adjustments, in case multiple suspend cycles happen before some VCPU
11295 * gets a chance to run again. In the event that no KVM threads get a
11296 * chance to run, we will miss the entire elapsed period, as we'll have
11297 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11298 * loose cycle time. This isn't too big a deal, since the loss will be
11299 * uniform across all VCPUs (not to mention the scenario is extremely
11300 * unlikely). It is possible that a second hibernate recovery happens
11301 * much faster than a first, causing the observed TSC here to be
11302 * smaller; this would require additional padding adjustment, which is
11303 * why we set last_host_tsc to the local tsc observed here.
11305 * N.B. - this code below runs only on platforms with reliable TSC,
11306 * as that is the only way backwards_tsc is set above. Also note
11307 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11308 * have the same delta_cyc adjustment applied if backwards_tsc
11309 * is detected. Note further, this adjustment is only done once,
11310 * as we reset last_host_tsc on all VCPUs to stop this from being
11311 * called multiple times (one for each physical CPU bringup).
11313 * Platforms with unreliable TSCs don't have to deal with this, they
11314 * will be compensated by the logic in vcpu_load, which sets the TSC to
11315 * catchup mode. This will catchup all VCPUs to real time, but cannot
11316 * guarantee that they stay in perfect synchronization.
11318 if (backwards_tsc) {
11319 u64 delta_cyc = max_tsc - local_tsc;
11320 list_for_each_entry(kvm, &vm_list, vm_list) {
11321 kvm->arch.backwards_tsc_observed = true;
11322 kvm_for_each_vcpu(i, vcpu, kvm) {
11323 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11324 vcpu->arch.last_host_tsc = local_tsc;
11325 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11329 * We have to disable TSC offset matching.. if you were
11330 * booting a VM while issuing an S4 host suspend....
11331 * you may have some problem. Solving this issue is
11332 * left as an exercise to the reader.
11334 kvm->arch.last_tsc_nsec = 0;
11335 kvm->arch.last_tsc_write = 0;
11342 void kvm_arch_hardware_disable(void)
11344 static_call(kvm_x86_hardware_disable)();
11345 drop_user_return_notifiers();
11348 int kvm_arch_hardware_setup(void *opaque)
11350 struct kvm_x86_init_ops *ops = opaque;
11353 rdmsrl_safe(MSR_EFER, &host_efer);
11355 if (boot_cpu_has(X86_FEATURE_XSAVES))
11356 rdmsrl(MSR_IA32_XSS, host_xss);
11358 r = ops->hardware_setup();
11362 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11363 kvm_ops_static_call_update();
11365 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11368 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11369 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11370 #undef __kvm_cpu_cap_has
11372 if (kvm_has_tsc_control) {
11374 * Make sure the user can only configure tsc_khz values that
11375 * fit into a signed integer.
11376 * A min value is not calculated because it will always
11377 * be 1 on all machines.
11379 u64 max = min(0x7fffffffULL,
11380 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11381 kvm_max_guest_tsc_khz = max;
11383 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11386 kvm_init_msr_list();
11390 void kvm_arch_hardware_unsetup(void)
11392 static_call(kvm_x86_hardware_unsetup)();
11395 int kvm_arch_check_processor_compat(void *opaque)
11397 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11398 struct kvm_x86_init_ops *ops = opaque;
11400 WARN_ON(!irqs_disabled());
11402 if (__cr4_reserved_bits(cpu_has, c) !=
11403 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11406 return ops->check_processor_compatibility();
11409 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11411 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11413 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11415 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11417 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11420 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11421 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11423 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11425 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11427 vcpu->arch.l1tf_flush_l1d = true;
11428 if (pmu->version && unlikely(pmu->event_count)) {
11429 pmu->need_cleanup = true;
11430 kvm_make_request(KVM_REQ_PMU, vcpu);
11432 static_call(kvm_x86_sched_in)(vcpu, cpu);
11435 void kvm_arch_free_vm(struct kvm *kvm)
11437 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11438 __kvm_arch_free_vm(kvm);
11442 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11445 unsigned long flags;
11450 ret = kvm_page_track_init(kvm);
11454 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11455 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11456 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11457 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11458 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11459 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11461 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11462 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11463 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11464 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11465 &kvm->arch.irq_sources_bitmap);
11467 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11468 mutex_init(&kvm->arch.apic_map_lock);
11469 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11470 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11472 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11473 pvclock_update_vm_gtod_copy(kvm);
11474 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11476 kvm->arch.guest_can_read_msr_platform_info = true;
11478 #if IS_ENABLED(CONFIG_HYPERV)
11479 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11480 kvm->arch.hv_root_tdp = INVALID_PAGE;
11483 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11484 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11486 kvm_apicv_init(kvm);
11487 kvm_hv_init_vm(kvm);
11488 kvm_mmu_init_vm(kvm);
11489 kvm_xen_init_vm(kvm);
11491 return static_call(kvm_x86_vm_init)(kvm);
11494 int kvm_arch_post_init_vm(struct kvm *kvm)
11496 return kvm_mmu_post_init_vm(kvm);
11499 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11502 kvm_mmu_unload(vcpu);
11506 static void kvm_free_vcpus(struct kvm *kvm)
11509 struct kvm_vcpu *vcpu;
11512 * Unpin any mmu pages first.
11514 kvm_for_each_vcpu(i, vcpu, kvm) {
11515 kvm_clear_async_pf_completion_queue(vcpu);
11516 kvm_unload_vcpu_mmu(vcpu);
11518 kvm_for_each_vcpu(i, vcpu, kvm)
11519 kvm_vcpu_destroy(vcpu);
11521 mutex_lock(&kvm->lock);
11522 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11523 kvm->vcpus[i] = NULL;
11525 atomic_set(&kvm->online_vcpus, 0);
11526 mutex_unlock(&kvm->lock);
11529 void kvm_arch_sync_events(struct kvm *kvm)
11531 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11532 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11536 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
11539 * __x86_set_memory_region: Setup KVM internal memory slot
11541 * @kvm: the kvm pointer to the VM.
11542 * @id: the slot ID to setup.
11543 * @gpa: the GPA to install the slot (unused when @size == 0).
11544 * @size: the size of the slot. Set to zero to uninstall a slot.
11546 * This function helps to setup a KVM internal memory slot. Specify
11547 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11548 * slot. The return code can be one of the following:
11550 * HVA: on success (uninstall will return a bogus HVA)
11553 * The caller should always use IS_ERR() to check the return value
11554 * before use. Note, the KVM internal memory slots are guaranteed to
11555 * remain valid and unchanged until the VM is destroyed, i.e., the
11556 * GPA->HVA translation will not change. However, the HVA is a user
11557 * address, i.e. its accessibility is not guaranteed, and must be
11558 * accessed via __copy_{to,from}_user().
11560 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11564 unsigned long hva, old_npages;
11565 struct kvm_memslots *slots = kvm_memslots(kvm);
11566 struct kvm_memory_slot *slot;
11568 /* Called with kvm->slots_lock held. */
11569 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11570 return ERR_PTR_USR(-EINVAL);
11572 slot = id_to_memslot(slots, id);
11574 if (slot && slot->npages)
11575 return ERR_PTR_USR(-EEXIST);
11578 * MAP_SHARED to prevent internal slot pages from being moved
11581 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11582 MAP_SHARED | MAP_ANONYMOUS, 0);
11583 if (IS_ERR((void *)hva))
11584 return (void __user *)hva;
11586 if (!slot || !slot->npages)
11589 old_npages = slot->npages;
11590 hva = slot->userspace_addr;
11593 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11594 struct kvm_userspace_memory_region m;
11596 m.slot = id | (i << 16);
11598 m.guest_phys_addr = gpa;
11599 m.userspace_addr = hva;
11600 m.memory_size = size;
11601 r = __kvm_set_memory_region(kvm, &m);
11603 return ERR_PTR_USR(r);
11607 vm_munmap(hva, old_npages * PAGE_SIZE);
11609 return (void __user *)hva;
11611 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11613 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11615 kvm_mmu_pre_destroy_vm(kvm);
11618 void kvm_arch_destroy_vm(struct kvm *kvm)
11620 if (current->mm == kvm->mm) {
11622 * Free memory regions allocated on behalf of userspace,
11623 * unless the the memory map has changed due to process exit
11626 mutex_lock(&kvm->slots_lock);
11627 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11629 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11631 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11632 mutex_unlock(&kvm->slots_lock);
11634 static_call_cond(kvm_x86_vm_destroy)(kvm);
11635 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11636 kvm_pic_destroy(kvm);
11637 kvm_ioapic_destroy(kvm);
11638 kvm_free_vcpus(kvm);
11639 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11640 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11641 kvm_mmu_uninit_vm(kvm);
11642 kvm_page_track_cleanup(kvm);
11643 kvm_xen_destroy_vm(kvm);
11644 kvm_hv_destroy_vm(kvm);
11647 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11651 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11652 kvfree(slot->arch.rmap[i]);
11653 slot->arch.rmap[i] = NULL;
11657 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11661 memslot_rmap_free(slot);
11663 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11664 kvfree(slot->arch.lpage_info[i - 1]);
11665 slot->arch.lpage_info[i - 1] = NULL;
11668 kvm_page_track_free_memslot(slot);
11671 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11673 const int sz = sizeof(*slot->arch.rmap[0]);
11676 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11678 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11680 if (slot->arch.rmap[i])
11683 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11684 if (!slot->arch.rmap[i]) {
11685 memslot_rmap_free(slot);
11693 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11694 struct kvm_memory_slot *slot,
11695 unsigned long npages)
11700 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11701 * old arrays will be freed by __kvm_set_memory_region() if installing
11702 * the new memslot is successful.
11704 memset(&slot->arch, 0, sizeof(slot->arch));
11706 if (kvm_memslots_have_rmaps(kvm)) {
11707 r = memslot_rmap_alloc(slot, npages);
11712 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11713 struct kvm_lpage_info *linfo;
11714 unsigned long ugfn;
11718 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11720 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11724 slot->arch.lpage_info[i - 1] = linfo;
11726 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11727 linfo[0].disallow_lpage = 1;
11728 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11729 linfo[lpages - 1].disallow_lpage = 1;
11730 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11732 * If the gfn and userspace address are not aligned wrt each
11733 * other, disable large page support for this slot.
11735 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11738 for (j = 0; j < lpages; ++j)
11739 linfo[j].disallow_lpage = 1;
11743 if (kvm_page_track_create_memslot(kvm, slot, npages))
11749 memslot_rmap_free(slot);
11751 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11752 kvfree(slot->arch.lpage_info[i - 1]);
11753 slot->arch.lpage_info[i - 1] = NULL;
11758 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11760 struct kvm_vcpu *vcpu;
11764 * memslots->generation has been incremented.
11765 * mmio generation may have reached its maximum value.
11767 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11769 /* Force re-initialization of steal_time cache */
11770 kvm_for_each_vcpu(i, vcpu, kvm)
11771 kvm_vcpu_kick(vcpu);
11774 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11775 struct kvm_memory_slot *memslot,
11776 const struct kvm_userspace_memory_region *mem,
11777 enum kvm_mr_change change)
11779 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11780 return kvm_alloc_memslot_metadata(kvm, memslot,
11781 mem->memory_size >> PAGE_SHIFT);
11786 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11788 struct kvm_arch *ka = &kvm->arch;
11790 if (!kvm_x86_ops.cpu_dirty_log_size)
11793 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11794 (!enable && --ka->cpu_dirty_logging_count == 0))
11795 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11797 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11800 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11801 struct kvm_memory_slot *old,
11802 const struct kvm_memory_slot *new,
11803 enum kvm_mr_change change)
11805 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11808 * Update CPU dirty logging if dirty logging is being toggled. This
11809 * applies to all operations.
11811 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11812 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11815 * Nothing more to do for RO slots (which can't be dirtied and can't be
11816 * made writable) or CREATE/MOVE/DELETE of a slot.
11818 * For a memslot with dirty logging disabled:
11819 * CREATE: No dirty mappings will already exist.
11820 * MOVE/DELETE: The old mappings will already have been cleaned up by
11821 * kvm_arch_flush_shadow_memslot()
11823 * For a memslot with dirty logging enabled:
11824 * CREATE: No shadow pages exist, thus nothing to write-protect
11825 * and no dirty bits to clear.
11826 * MOVE/DELETE: The old mappings will already have been cleaned up by
11827 * kvm_arch_flush_shadow_memslot().
11829 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11833 * READONLY and non-flags changes were filtered out above, and the only
11834 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11835 * logging isn't being toggled on or off.
11837 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11840 if (!log_dirty_pages) {
11842 * Dirty logging tracks sptes in 4k granularity, meaning that
11843 * large sptes have to be split. If live migration succeeds,
11844 * the guest in the source machine will be destroyed and large
11845 * sptes will be created in the destination. However, if the
11846 * guest continues to run in the source machine (for example if
11847 * live migration fails), small sptes will remain around and
11848 * cause bad performance.
11850 * Scan sptes if dirty logging has been stopped, dropping those
11851 * which can be collapsed into a single large-page spte. Later
11852 * page faults will create the large-page sptes.
11854 kvm_mmu_zap_collapsible_sptes(kvm, new);
11857 * Initially-all-set does not require write protecting any page,
11858 * because they're all assumed to be dirty.
11860 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11863 if (kvm_x86_ops.cpu_dirty_log_size) {
11864 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11865 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11867 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11872 void kvm_arch_commit_memory_region(struct kvm *kvm,
11873 const struct kvm_userspace_memory_region *mem,
11874 struct kvm_memory_slot *old,
11875 const struct kvm_memory_slot *new,
11876 enum kvm_mr_change change)
11878 if (!kvm->arch.n_requested_mmu_pages)
11879 kvm_mmu_change_mmu_pages(kvm,
11880 kvm_mmu_calculate_default_mmu_pages(kvm));
11882 kvm_mmu_slot_apply_flags(kvm, old, new, change);
11884 /* Free the arrays associated with the old memslot. */
11885 if (change == KVM_MR_MOVE)
11886 kvm_arch_free_memslot(kvm, old);
11889 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11891 kvm_mmu_zap_all(kvm);
11894 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11895 struct kvm_memory_slot *slot)
11897 kvm_page_track_flush_slot(kvm, slot);
11900 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11902 return (is_guest_mode(vcpu) &&
11903 kvm_x86_ops.guest_apic_has_interrupt &&
11904 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11907 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11909 if (!list_empty_careful(&vcpu->async_pf.done))
11912 if (kvm_apic_has_events(vcpu))
11915 if (vcpu->arch.pv.pv_unhalted)
11918 if (vcpu->arch.exception.pending)
11921 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11922 (vcpu->arch.nmi_pending &&
11923 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11926 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11927 (vcpu->arch.smi_pending &&
11928 static_call(kvm_x86_smi_allowed)(vcpu, false)))
11931 if (kvm_arch_interrupt_allowed(vcpu) &&
11932 (kvm_cpu_has_interrupt(vcpu) ||
11933 kvm_guest_apic_has_interrupt(vcpu)))
11936 if (kvm_hv_has_stimer_pending(vcpu))
11939 if (is_guest_mode(vcpu) &&
11940 kvm_x86_ops.nested_ops->hv_timer_pending &&
11941 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11947 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11949 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11952 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11954 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11960 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11962 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11965 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11966 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11967 kvm_test_request(KVM_REQ_EVENT, vcpu))
11970 return kvm_arch_dy_has_pending_interrupt(vcpu);
11973 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11975 if (vcpu->arch.guest_state_protected)
11978 return vcpu->arch.preempted_in_kernel;
11981 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11983 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11986 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11988 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11991 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11993 /* Can't read the RIP when guest state is protected, just return 0 */
11994 if (vcpu->arch.guest_state_protected)
11997 if (is_64_bit_mode(vcpu))
11998 return kvm_rip_read(vcpu);
11999 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12000 kvm_rip_read(vcpu));
12002 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12004 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12006 return kvm_get_linear_rip(vcpu) == linear_rip;
12008 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12010 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12012 unsigned long rflags;
12014 rflags = static_call(kvm_x86_get_rflags)(vcpu);
12015 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12016 rflags &= ~X86_EFLAGS_TF;
12019 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12021 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12023 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12024 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12025 rflags |= X86_EFLAGS_TF;
12026 static_call(kvm_x86_set_rflags)(vcpu, rflags);
12029 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12031 __kvm_set_rflags(vcpu, rflags);
12032 kvm_make_request(KVM_REQ_EVENT, vcpu);
12034 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12036 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12040 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12044 r = kvm_mmu_reload(vcpu);
12048 if (!vcpu->arch.mmu->direct_map &&
12049 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12052 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12055 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12057 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12059 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12062 static inline u32 kvm_async_pf_next_probe(u32 key)
12064 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12067 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12069 u32 key = kvm_async_pf_hash_fn(gfn);
12071 while (vcpu->arch.apf.gfns[key] != ~0)
12072 key = kvm_async_pf_next_probe(key);
12074 vcpu->arch.apf.gfns[key] = gfn;
12077 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12080 u32 key = kvm_async_pf_hash_fn(gfn);
12082 for (i = 0; i < ASYNC_PF_PER_VCPU &&
12083 (vcpu->arch.apf.gfns[key] != gfn &&
12084 vcpu->arch.apf.gfns[key] != ~0); i++)
12085 key = kvm_async_pf_next_probe(key);
12090 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12092 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12095 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12099 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12101 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12105 vcpu->arch.apf.gfns[i] = ~0;
12107 j = kvm_async_pf_next_probe(j);
12108 if (vcpu->arch.apf.gfns[j] == ~0)
12110 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12112 * k lies cyclically in ]i,j]
12114 * |....j i.k.| or |.k..j i...|
12116 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12117 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12122 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12124 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12126 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12130 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12132 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12134 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12135 &token, offset, sizeof(token));
12138 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12140 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12143 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12144 &val, offset, sizeof(val)))
12150 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12152 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12155 if (!kvm_pv_async_pf_enabled(vcpu) ||
12156 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12162 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12164 if (unlikely(!lapic_in_kernel(vcpu) ||
12165 kvm_event_needs_reinjection(vcpu) ||
12166 vcpu->arch.exception.pending))
12169 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12173 * If interrupts are off we cannot even use an artificial
12176 return kvm_arch_interrupt_allowed(vcpu);
12179 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12180 struct kvm_async_pf *work)
12182 struct x86_exception fault;
12184 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12185 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12187 if (kvm_can_deliver_async_pf(vcpu) &&
12188 !apf_put_user_notpresent(vcpu)) {
12189 fault.vector = PF_VECTOR;
12190 fault.error_code_valid = true;
12191 fault.error_code = 0;
12192 fault.nested_page_fault = false;
12193 fault.address = work->arch.token;
12194 fault.async_page_fault = true;
12195 kvm_inject_page_fault(vcpu, &fault);
12199 * It is not possible to deliver a paravirtualized asynchronous
12200 * page fault, but putting the guest in an artificial halt state
12201 * can be beneficial nevertheless: if an interrupt arrives, we
12202 * can deliver it timely and perhaps the guest will schedule
12203 * another process. When the instruction that triggered a page
12204 * fault is retried, hopefully the page will be ready in the host.
12206 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12211 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12212 struct kvm_async_pf *work)
12214 struct kvm_lapic_irq irq = {
12215 .delivery_mode = APIC_DM_FIXED,
12216 .vector = vcpu->arch.apf.vec
12219 if (work->wakeup_all)
12220 work->arch.token = ~0; /* broadcast wakeup */
12222 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12223 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12225 if ((work->wakeup_all || work->notpresent_injected) &&
12226 kvm_pv_async_pf_enabled(vcpu) &&
12227 !apf_put_user_ready(vcpu, work->arch.token)) {
12228 vcpu->arch.apf.pageready_pending = true;
12229 kvm_apic_set_irq(vcpu, &irq, NULL);
12232 vcpu->arch.apf.halted = false;
12233 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12236 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12238 kvm_make_request(KVM_REQ_APF_READY, vcpu);
12239 if (!vcpu->arch.apf.pageready_pending)
12240 kvm_vcpu_kick(vcpu);
12243 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12245 if (!kvm_pv_async_pf_enabled(vcpu))
12248 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12251 void kvm_arch_start_assignment(struct kvm *kvm)
12253 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12254 static_call_cond(kvm_x86_start_assignment)(kvm);
12256 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12258 void kvm_arch_end_assignment(struct kvm *kvm)
12260 atomic_dec(&kvm->arch.assigned_device_count);
12262 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12264 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12266 return atomic_read(&kvm->arch.assigned_device_count);
12268 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12270 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12272 atomic_inc(&kvm->arch.noncoherent_dma_count);
12274 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12276 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12278 atomic_dec(&kvm->arch.noncoherent_dma_count);
12280 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12282 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12284 return atomic_read(&kvm->arch.noncoherent_dma_count);
12286 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12288 bool kvm_arch_has_irq_bypass(void)
12293 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12294 struct irq_bypass_producer *prod)
12296 struct kvm_kernel_irqfd *irqfd =
12297 container_of(cons, struct kvm_kernel_irqfd, consumer);
12300 irqfd->producer = prod;
12301 kvm_arch_start_assignment(irqfd->kvm);
12302 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12303 prod->irq, irqfd->gsi, 1);
12306 kvm_arch_end_assignment(irqfd->kvm);
12311 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12312 struct irq_bypass_producer *prod)
12315 struct kvm_kernel_irqfd *irqfd =
12316 container_of(cons, struct kvm_kernel_irqfd, consumer);
12318 WARN_ON(irqfd->producer != prod);
12319 irqfd->producer = NULL;
12322 * When producer of consumer is unregistered, we change back to
12323 * remapped mode, so we can re-use the current implementation
12324 * when the irq is masked/disabled or the consumer side (KVM
12325 * int this case doesn't want to receive the interrupts.
12327 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12329 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12330 " fails: %d\n", irqfd->consumer.token, ret);
12332 kvm_arch_end_assignment(irqfd->kvm);
12335 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12336 uint32_t guest_irq, bool set)
12338 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12341 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12342 struct kvm_kernel_irq_routing_entry *new)
12344 if (new->type != KVM_IRQ_ROUTING_MSI)
12347 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12350 bool kvm_vector_hashing_enabled(void)
12352 return vector_hashing;
12355 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12357 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12359 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12362 int kvm_spec_ctrl_test_value(u64 value)
12365 * test that setting IA32_SPEC_CTRL to given value
12366 * is allowed by the host processor
12370 unsigned long flags;
12373 local_irq_save(flags);
12375 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12377 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12380 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12382 local_irq_restore(flags);
12386 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12388 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12390 struct x86_exception fault;
12391 u32 access = error_code &
12392 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12394 if (!(error_code & PFERR_PRESENT_MASK) ||
12395 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12397 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12398 * tables probably do not match the TLB. Just proceed
12399 * with the error code that the processor gave.
12401 fault.vector = PF_VECTOR;
12402 fault.error_code_valid = true;
12403 fault.error_code = error_code;
12404 fault.nested_page_fault = false;
12405 fault.address = gva;
12407 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12409 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12412 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12413 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12414 * indicates whether exit to userspace is needed.
12416 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12417 struct x86_exception *e)
12419 if (r == X86EMUL_PROPAGATE_FAULT) {
12420 kvm_inject_emulated_page_fault(vcpu, e);
12425 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12426 * while handling a VMX instruction KVM could've handled the request
12427 * correctly by exiting to userspace and performing I/O but there
12428 * doesn't seem to be a real use-case behind such requests, just return
12429 * KVM_EXIT_INTERNAL_ERROR for now.
12431 kvm_prepare_emulation_failure_exit(vcpu);
12435 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12437 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12440 struct x86_exception e;
12447 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12448 if (r != X86EMUL_CONTINUE)
12449 return kvm_handle_memory_failure(vcpu, r, &e);
12451 if (operand.pcid >> 12 != 0) {
12452 kvm_inject_gp(vcpu, 0);
12456 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12459 case INVPCID_TYPE_INDIV_ADDR:
12460 if ((!pcid_enabled && (operand.pcid != 0)) ||
12461 is_noncanonical_address(operand.gla, vcpu)) {
12462 kvm_inject_gp(vcpu, 0);
12465 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12466 return kvm_skip_emulated_instruction(vcpu);
12468 case INVPCID_TYPE_SINGLE_CTXT:
12469 if (!pcid_enabled && (operand.pcid != 0)) {
12470 kvm_inject_gp(vcpu, 0);
12474 kvm_invalidate_pcid(vcpu, operand.pcid);
12475 return kvm_skip_emulated_instruction(vcpu);
12477 case INVPCID_TYPE_ALL_NON_GLOBAL:
12479 * Currently, KVM doesn't mark global entries in the shadow
12480 * page tables, so a non-global flush just degenerates to a
12481 * global flush. If needed, we could optimize this later by
12482 * keeping track of global entries in shadow page tables.
12486 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12487 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12488 return kvm_skip_emulated_instruction(vcpu);
12491 BUG(); /* We have already checked above that type <= 3 */
12494 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12496 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12498 struct kvm_run *run = vcpu->run;
12499 struct kvm_mmio_fragment *frag;
12502 BUG_ON(!vcpu->mmio_needed);
12504 /* Complete previous fragment */
12505 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12506 len = min(8u, frag->len);
12507 if (!vcpu->mmio_is_write)
12508 memcpy(frag->data, run->mmio.data, len);
12510 if (frag->len <= 8) {
12511 /* Switch to the next fragment. */
12513 vcpu->mmio_cur_fragment++;
12515 /* Go forward to the next mmio piece. */
12521 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12522 vcpu->mmio_needed = 0;
12524 // VMG change, at this point, we're always done
12525 // RIP has already been advanced
12529 // More MMIO is needed
12530 run->mmio.phys_addr = frag->gpa;
12531 run->mmio.len = min(8u, frag->len);
12532 run->mmio.is_write = vcpu->mmio_is_write;
12533 if (run->mmio.is_write)
12534 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12535 run->exit_reason = KVM_EXIT_MMIO;
12537 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12542 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12546 struct kvm_mmio_fragment *frag;
12551 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12552 if (handled == bytes)
12559 /*TODO: Check if need to increment number of frags */
12560 frag = vcpu->mmio_fragments;
12561 vcpu->mmio_nr_fragments = 1;
12566 vcpu->mmio_needed = 1;
12567 vcpu->mmio_cur_fragment = 0;
12569 vcpu->run->mmio.phys_addr = gpa;
12570 vcpu->run->mmio.len = min(8u, frag->len);
12571 vcpu->run->mmio.is_write = 1;
12572 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12573 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12575 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12579 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12581 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12585 struct kvm_mmio_fragment *frag;
12590 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12591 if (handled == bytes)
12598 /*TODO: Check if need to increment number of frags */
12599 frag = vcpu->mmio_fragments;
12600 vcpu->mmio_nr_fragments = 1;
12605 vcpu->mmio_needed = 1;
12606 vcpu->mmio_cur_fragment = 0;
12608 vcpu->run->mmio.phys_addr = gpa;
12609 vcpu->run->mmio.len = min(8u, frag->len);
12610 vcpu->run->mmio.is_write = 0;
12611 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12613 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12617 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12619 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12621 memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
12622 vcpu->arch.pio.count * vcpu->arch.pio.size);
12623 vcpu->arch.pio.count = 0;
12628 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12629 unsigned int port, void *data, unsigned int count)
12633 ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
12638 vcpu->arch.pio.count = 0;
12643 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12644 unsigned int port, void *data, unsigned int count)
12648 ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
12651 vcpu->arch.pio.count = 0;
12653 vcpu->arch.guest_ins_data = data;
12654 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12660 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12661 unsigned int port, void *data, unsigned int count,
12664 return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
12665 : kvm_sev_es_outs(vcpu, size, port, data, count);
12667 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12669 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12670 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12671 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12672 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12673 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12674 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12675 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12676 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12677 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12678 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12679 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12680 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12681 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12682 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12683 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12684 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12685 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12686 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);