1 // SPDX-License-Identifier: GPL-2.0
9 * mballoc.c contains the multiblocks allocation routines
12 #include "ext4_jbd2.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
21 #ifdef CONFIG_EXT4_DEBUG
22 ushort ext4_mballoc_debug __read_mostly;
24 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
25 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
30 * - test ext4_ext_search_left() and ext4_ext_search_right()
31 * - search for metadata in few groups
34 * - normalization should take into account whether file is still open
35 * - discard preallocations if no free space left (policy?)
36 * - don't normalize tails
38 * - reservation for superuser
41 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
42 * - track min/max extents in each group for better group selection
43 * - mb_mark_used() may allocate chunk right after splitting buddy
44 * - tree of groups sorted by number of free blocks
49 * The allocation request involve request for multiple number of blocks
50 * near to the goal(block) value specified.
52 * During initialization phase of the allocator we decide to use the
53 * group preallocation or inode preallocation depending on the size of
54 * the file. The size of the file could be the resulting file size we
55 * would have after allocation, or the current file size, which ever
56 * is larger. If the size is less than sbi->s_mb_stream_request we
57 * select to use the group preallocation. The default value of
58 * s_mb_stream_request is 16 blocks. This can also be tuned via
59 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
60 * terms of number of blocks.
62 * The main motivation for having small file use group preallocation is to
63 * ensure that we have small files closer together on the disk.
65 * First stage the allocator looks at the inode prealloc list,
66 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
67 * spaces for this particular inode. The inode prealloc space is
70 * pa_lstart -> the logical start block for this prealloc space
71 * pa_pstart -> the physical start block for this prealloc space
72 * pa_len -> length for this prealloc space (in clusters)
73 * pa_free -> free space available in this prealloc space (in clusters)
75 * The inode preallocation space is used looking at the _logical_ start
76 * block. If only the logical file block falls within the range of prealloc
77 * space we will consume the particular prealloc space. This makes sure that
78 * we have contiguous physical blocks representing the file blocks
80 * The important thing to be noted in case of inode prealloc space is that
81 * we don't modify the values associated to inode prealloc space except
84 * If we are not able to find blocks in the inode prealloc space and if we
85 * have the group allocation flag set then we look at the locality group
86 * prealloc space. These are per CPU prealloc list represented as
88 * ext4_sb_info.s_locality_groups[smp_processor_id()]
90 * The reason for having a per cpu locality group is to reduce the contention
91 * between CPUs. It is possible to get scheduled at this point.
93 * The locality group prealloc space is used looking at whether we have
94 * enough free space (pa_free) within the prealloc space.
96 * If we can't allocate blocks via inode prealloc or/and locality group
97 * prealloc then we look at the buddy cache. The buddy cache is represented
98 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
99 * mapped to the buddy and bitmap information regarding different
100 * groups. The buddy information is attached to buddy cache inode so that
101 * we can access them through the page cache. The information regarding
102 * each group is loaded via ext4_mb_load_buddy. The information involve
103 * block bitmap and buddy information. The information are stored in the
107 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
110 * one block each for bitmap and buddy information. So for each group we
111 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
112 * blocksize) blocks. So it can have information regarding groups_per_page
113 * which is blocks_per_page/2
115 * The buddy cache inode is not stored on disk. The inode is thrown
116 * away when the filesystem is unmounted.
118 * We look for count number of blocks in the buddy cache. If we were able
119 * to locate that many free blocks we return with additional information
120 * regarding rest of the contiguous physical block available
122 * Before allocating blocks via buddy cache we normalize the request
123 * blocks. This ensure we ask for more blocks that we needed. The extra
124 * blocks that we get after allocation is added to the respective prealloc
125 * list. In case of inode preallocation we follow a list of heuristics
126 * based on file size. This can be found in ext4_mb_normalize_request. If
127 * we are doing a group prealloc we try to normalize the request to
128 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
129 * dependent on the cluster size; for non-bigalloc file systems, it is
130 * 512 blocks. This can be tuned via
131 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
132 * terms of number of blocks. If we have mounted the file system with -O
133 * stripe=<value> option the group prealloc request is normalized to the
134 * the smallest multiple of the stripe value (sbi->s_stripe) which is
135 * greater than the default mb_group_prealloc.
137 * The regular allocator (using the buddy cache) supports a few tunables.
139 * /sys/fs/ext4/<partition>/mb_min_to_scan
140 * /sys/fs/ext4/<partition>/mb_max_to_scan
141 * /sys/fs/ext4/<partition>/mb_order2_req
143 * The regular allocator uses buddy scan only if the request len is power of
144 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
145 * value of s_mb_order2_reqs can be tuned via
146 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
147 * stripe size (sbi->s_stripe), we try to search for contiguous block in
148 * stripe size. This should result in better allocation on RAID setups. If
149 * not, we search in the specific group using bitmap for best extents. The
150 * tunable min_to_scan and max_to_scan control the behaviour here.
151 * min_to_scan indicate how long the mballoc __must__ look for a best
152 * extent and max_to_scan indicates how long the mballoc __can__ look for a
153 * best extent in the found extents. Searching for the blocks starts with
154 * the group specified as the goal value in allocation context via
155 * ac_g_ex. Each group is first checked based on the criteria whether it
156 * can be used for allocation. ext4_mb_good_group explains how the groups are
159 * Both the prealloc space are getting populated as above. So for the first
160 * request we will hit the buddy cache which will result in this prealloc
161 * space getting filled. The prealloc space is then later used for the
162 * subsequent request.
166 * mballoc operates on the following data:
168 * - in-core buddy (actually includes buddy and bitmap)
169 * - preallocation descriptors (PAs)
171 * there are two types of preallocations:
173 * assiged to specific inode and can be used for this inode only.
174 * it describes part of inode's space preallocated to specific
175 * physical blocks. any block from that preallocated can be used
176 * independent. the descriptor just tracks number of blocks left
177 * unused. so, before taking some block from descriptor, one must
178 * make sure corresponded logical block isn't allocated yet. this
179 * also means that freeing any block within descriptor's range
180 * must discard all preallocated blocks.
182 * assigned to specific locality group which does not translate to
183 * permanent set of inodes: inode can join and leave group. space
184 * from this type of preallocation can be used for any inode. thus
185 * it's consumed from the beginning to the end.
187 * relation between them can be expressed as:
188 * in-core buddy = on-disk bitmap + preallocation descriptors
190 * this mean blocks mballoc considers used are:
191 * - allocated blocks (persistent)
192 * - preallocated blocks (non-persistent)
194 * consistency in mballoc world means that at any time a block is either
195 * free or used in ALL structures. notice: "any time" should not be read
196 * literally -- time is discrete and delimited by locks.
198 * to keep it simple, we don't use block numbers, instead we count number of
199 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
201 * all operations can be expressed as:
202 * - init buddy: buddy = on-disk + PAs
203 * - new PA: buddy += N; PA = N
204 * - use inode PA: on-disk += N; PA -= N
205 * - discard inode PA buddy -= on-disk - PA; PA = 0
206 * - use locality group PA on-disk += N; PA -= N
207 * - discard locality group PA buddy -= PA; PA = 0
208 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
209 * is used in real operation because we can't know actual used
210 * bits from PA, only from on-disk bitmap
212 * if we follow this strict logic, then all operations above should be atomic.
213 * given some of them can block, we'd have to use something like semaphores
214 * killing performance on high-end SMP hardware. let's try to relax it using
215 * the following knowledge:
216 * 1) if buddy is referenced, it's already initialized
217 * 2) while block is used in buddy and the buddy is referenced,
218 * nobody can re-allocate that block
219 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
220 * bit set and PA claims same block, it's OK. IOW, one can set bit in
221 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
224 * so, now we're building a concurrency table:
227 * blocks for PA are allocated in the buddy, buddy must be referenced
228 * until PA is linked to allocation group to avoid concurrent buddy init
230 * we need to make sure that either on-disk bitmap or PA has uptodate data
231 * given (3) we care that PA-=N operation doesn't interfere with init
233 * the simplest way would be to have buddy initialized by the discard
234 * - use locality group PA
235 * again PA-=N must be serialized with init
236 * - discard locality group PA
237 * the simplest way would be to have buddy initialized by the discard
240 * i_data_sem serializes them
242 * discard process must wait until PA isn't used by another process
243 * - use locality group PA
244 * some mutex should serialize them
245 * - discard locality group PA
246 * discard process must wait until PA isn't used by another process
249 * i_data_sem or another mutex should serializes them
251 * discard process must wait until PA isn't used by another process
252 * - use locality group PA
253 * nothing wrong here -- they're different PAs covering different blocks
254 * - discard locality group PA
255 * discard process must wait until PA isn't used by another process
257 * now we're ready to make few consequences:
258 * - PA is referenced and while it is no discard is possible
259 * - PA is referenced until block isn't marked in on-disk bitmap
260 * - PA changes only after on-disk bitmap
261 * - discard must not compete with init. either init is done before
262 * any discard or they're serialized somehow
263 * - buddy init as sum of on-disk bitmap and PAs is done atomically
265 * a special case when we've used PA to emptiness. no need to modify buddy
266 * in this case, but we should care about concurrent init
271 * Logic in few words:
276 * mark bits in on-disk bitmap
279 * - use preallocation:
280 * find proper PA (per-inode or group)
282 * mark bits in on-disk bitmap
288 * mark bits in on-disk bitmap
291 * - discard preallocations in group:
293 * move them onto local list
294 * load on-disk bitmap
296 * remove PA from object (inode or locality group)
297 * mark free blocks in-core
299 * - discard inode's preallocations:
306 * - bitlock on a group (group)
307 * - object (inode/locality) (object)
318 * - release consumed pa:
323 * - generate in-core bitmap:
327 * - discard all for given object (inode, locality group):
332 * - discard all for given group:
339 static struct kmem_cache *ext4_pspace_cachep;
340 static struct kmem_cache *ext4_ac_cachep;
341 static struct kmem_cache *ext4_free_data_cachep;
343 /* We create slab caches for groupinfo data structures based on the
344 * superblock block size. There will be one per mounted filesystem for
345 * each unique s_blocksize_bits */
346 #define NR_GRPINFO_CACHES 8
347 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
349 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
350 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
351 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
352 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
355 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
357 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
360 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
362 #if BITS_PER_LONG == 64
363 *bit += ((unsigned long) addr & 7UL) << 3;
364 addr = (void *) ((unsigned long) addr & ~7UL);
365 #elif BITS_PER_LONG == 32
366 *bit += ((unsigned long) addr & 3UL) << 3;
367 addr = (void *) ((unsigned long) addr & ~3UL);
369 #error "how many bits you are?!"
374 static inline int mb_test_bit(int bit, void *addr)
377 * ext4_test_bit on architecture like powerpc
378 * needs unsigned long aligned address
380 addr = mb_correct_addr_and_bit(&bit, addr);
381 return ext4_test_bit(bit, addr);
384 static inline void mb_set_bit(int bit, void *addr)
386 addr = mb_correct_addr_and_bit(&bit, addr);
387 ext4_set_bit(bit, addr);
390 static inline void mb_clear_bit(int bit, void *addr)
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 ext4_clear_bit(bit, addr);
396 static inline int mb_test_and_clear_bit(int bit, void *addr)
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 return ext4_test_and_clear_bit(bit, addr);
402 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
404 int fix = 0, ret, tmpmax;
405 addr = mb_correct_addr_and_bit(&fix, addr);
409 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
415 static inline int mb_find_next_bit(void *addr, int max, int start)
417 int fix = 0, ret, tmpmax;
418 addr = mb_correct_addr_and_bit(&fix, addr);
422 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
428 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
432 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
435 if (order > e4b->bd_blkbits + 1) {
440 /* at order 0 we see each particular block */
442 *max = 1 << (e4b->bd_blkbits + 3);
443 return e4b->bd_bitmap;
446 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
447 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
453 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
454 int first, int count)
457 struct super_block *sb = e4b->bd_sb;
459 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
461 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
462 for (i = 0; i < count; i++) {
463 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
464 ext4_fsblk_t blocknr;
466 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
467 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
468 ext4_grp_locked_error(sb, e4b->bd_group,
469 inode ? inode->i_ino : 0,
471 "freeing block already freed "
474 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
475 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
477 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
481 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
485 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
487 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
488 for (i = 0; i < count; i++) {
489 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
490 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
494 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
496 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
497 unsigned char *b1, *b2;
499 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
500 b2 = (unsigned char *) bitmap;
501 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
502 if (b1[i] != b2[i]) {
503 ext4_msg(e4b->bd_sb, KERN_ERR,
504 "corruption in group %u "
505 "at byte %u(%u): %x in copy != %x "
507 e4b->bd_group, i, i * 8, b1[i], b2[i]);
515 static inline void mb_free_blocks_double(struct inode *inode,
516 struct ext4_buddy *e4b, int first, int count)
520 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
521 int first, int count)
525 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
531 #ifdef AGGRESSIVE_CHECK
533 #define MB_CHECK_ASSERT(assert) \
537 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
538 function, file, line, # assert); \
543 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
544 const char *function, int line)
546 struct super_block *sb = e4b->bd_sb;
547 int order = e4b->bd_blkbits + 1;
554 struct ext4_group_info *grp;
557 struct list_head *cur;
562 static int mb_check_counter;
563 if (mb_check_counter++ % 100 != 0)
568 buddy = mb_find_buddy(e4b, order, &max);
569 MB_CHECK_ASSERT(buddy);
570 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
571 MB_CHECK_ASSERT(buddy2);
572 MB_CHECK_ASSERT(buddy != buddy2);
573 MB_CHECK_ASSERT(max * 2 == max2);
576 for (i = 0; i < max; i++) {
578 if (mb_test_bit(i, buddy)) {
579 /* only single bit in buddy2 may be 1 */
580 if (!mb_test_bit(i << 1, buddy2)) {
582 mb_test_bit((i<<1)+1, buddy2));
583 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
585 mb_test_bit(i << 1, buddy2));
590 /* both bits in buddy2 must be 1 */
591 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
592 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
594 for (j = 0; j < (1 << order); j++) {
595 k = (i * (1 << order)) + j;
597 !mb_test_bit(k, e4b->bd_bitmap));
601 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
606 buddy = mb_find_buddy(e4b, 0, &max);
607 for (i = 0; i < max; i++) {
608 if (!mb_test_bit(i, buddy)) {
609 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
617 /* check used bits only */
618 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
619 buddy2 = mb_find_buddy(e4b, j, &max2);
621 MB_CHECK_ASSERT(k < max2);
622 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
625 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
626 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
628 grp = ext4_get_group_info(sb, e4b->bd_group);
629 list_for_each(cur, &grp->bb_prealloc_list) {
630 ext4_group_t groupnr;
631 struct ext4_prealloc_space *pa;
632 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
633 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
634 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
635 for (i = 0; i < pa->pa_len; i++)
636 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
640 #undef MB_CHECK_ASSERT
641 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
642 __FILE__, __func__, __LINE__)
644 #define mb_check_buddy(e4b)
648 * Divide blocks started from @first with length @len into
649 * smaller chunks with power of 2 blocks.
650 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
651 * then increase bb_counters[] for corresponded chunk size.
653 static void ext4_mb_mark_free_simple(struct super_block *sb,
654 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
655 struct ext4_group_info *grp)
657 struct ext4_sb_info *sbi = EXT4_SB(sb);
663 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
665 border = 2 << sb->s_blocksize_bits;
668 /* find how many blocks can be covered since this position */
669 max = ffs(first | border) - 1;
671 /* find how many blocks of power 2 we need to mark */
678 /* mark multiblock chunks only */
679 grp->bb_counters[min]++;
681 mb_clear_bit(first >> min,
682 buddy + sbi->s_mb_offsets[min]);
690 * Cache the order of the largest free extent we have available in this block
694 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
699 grp->bb_largest_free_order = -1; /* uninit */
701 bits = sb->s_blocksize_bits + 1;
702 for (i = bits; i >= 0; i--) {
703 if (grp->bb_counters[i] > 0) {
704 grp->bb_largest_free_order = i;
710 static noinline_for_stack
711 void ext4_mb_generate_buddy(struct super_block *sb,
712 void *buddy, void *bitmap, ext4_group_t group)
714 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
715 struct ext4_sb_info *sbi = EXT4_SB(sb);
716 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
721 unsigned fragments = 0;
722 unsigned long long period = get_cycles();
724 /* initialize buddy from bitmap which is aggregation
725 * of on-disk bitmap and preallocations */
726 i = mb_find_next_zero_bit(bitmap, max, 0);
727 grp->bb_first_free = i;
731 i = mb_find_next_bit(bitmap, max, i);
735 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
737 grp->bb_counters[0]++;
739 i = mb_find_next_zero_bit(bitmap, max, i);
741 grp->bb_fragments = fragments;
743 if (free != grp->bb_free) {
744 ext4_grp_locked_error(sb, group, 0, 0,
745 "block bitmap and bg descriptor "
746 "inconsistent: %u vs %u free clusters",
749 * If we intend to continue, we consider group descriptor
750 * corrupt and update bb_free using bitmap value
753 ext4_mark_group_bitmap_corrupted(sb, group,
754 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
756 mb_set_largest_free_order(sb, grp);
758 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
760 period = get_cycles() - period;
761 spin_lock(&sbi->s_bal_lock);
762 sbi->s_mb_buddies_generated++;
763 sbi->s_mb_generation_time += period;
764 spin_unlock(&sbi->s_bal_lock);
767 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
773 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
774 ext4_set_bits(buddy, 0, count);
776 e4b->bd_info->bb_fragments = 0;
777 memset(e4b->bd_info->bb_counters, 0,
778 sizeof(*e4b->bd_info->bb_counters) *
779 (e4b->bd_sb->s_blocksize_bits + 2));
781 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
782 e4b->bd_bitmap, e4b->bd_group);
785 /* The buddy information is attached the buddy cache inode
786 * for convenience. The information regarding each group
787 * is loaded via ext4_mb_load_buddy. The information involve
788 * block bitmap and buddy information. The information are
789 * stored in the inode as
792 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
795 * one block each for bitmap and buddy information.
796 * So for each group we take up 2 blocks. A page can
797 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
798 * So it can have information regarding groups_per_page which
799 * is blocks_per_page/2
801 * Locking note: This routine takes the block group lock of all groups
802 * for this page; do not hold this lock when calling this routine!
805 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
807 ext4_group_t ngroups;
813 ext4_group_t first_group, group;
815 struct super_block *sb;
816 struct buffer_head *bhs;
817 struct buffer_head **bh = NULL;
821 struct ext4_group_info *grinfo;
823 mb_debug(1, "init page %lu\n", page->index);
825 inode = page->mapping->host;
827 ngroups = ext4_get_groups_count(sb);
828 blocksize = i_blocksize(inode);
829 blocks_per_page = PAGE_SIZE / blocksize;
831 groups_per_page = blocks_per_page >> 1;
832 if (groups_per_page == 0)
835 /* allocate buffer_heads to read bitmaps */
836 if (groups_per_page > 1) {
837 i = sizeof(struct buffer_head *) * groups_per_page;
838 bh = kzalloc(i, gfp);
846 first_group = page->index * blocks_per_page / 2;
848 /* read all groups the page covers into the cache */
849 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
850 if (group >= ngroups)
853 grinfo = ext4_get_group_info(sb, group);
855 * If page is uptodate then we came here after online resize
856 * which added some new uninitialized group info structs, so
857 * we must skip all initialized uptodate buddies on the page,
858 * which may be currently in use by an allocating task.
860 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
864 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
866 err = PTR_ERR(bh[i]);
870 mb_debug(1, "read bitmap for group %u\n", group);
873 /* wait for I/O completion */
874 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
879 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
884 first_block = page->index * blocks_per_page;
885 for (i = 0; i < blocks_per_page; i++) {
886 group = (first_block + i) >> 1;
887 if (group >= ngroups)
890 if (!bh[group - first_group])
891 /* skip initialized uptodate buddy */
894 if (!buffer_verified(bh[group - first_group]))
895 /* Skip faulty bitmaps */
900 * data carry information regarding this
901 * particular group in the format specified
905 data = page_address(page) + (i * blocksize);
906 bitmap = bh[group - first_group]->b_data;
909 * We place the buddy block and bitmap block
912 if ((first_block + i) & 1) {
913 /* this is block of buddy */
914 BUG_ON(incore == NULL);
915 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
916 group, page->index, i * blocksize);
917 trace_ext4_mb_buddy_bitmap_load(sb, group);
918 grinfo = ext4_get_group_info(sb, group);
919 grinfo->bb_fragments = 0;
920 memset(grinfo->bb_counters, 0,
921 sizeof(*grinfo->bb_counters) *
922 (sb->s_blocksize_bits+2));
924 * incore got set to the group block bitmap below
926 ext4_lock_group(sb, group);
928 memset(data, 0xff, blocksize);
929 ext4_mb_generate_buddy(sb, data, incore, group);
930 ext4_unlock_group(sb, group);
933 /* this is block of bitmap */
934 BUG_ON(incore != NULL);
935 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
936 group, page->index, i * blocksize);
937 trace_ext4_mb_bitmap_load(sb, group);
939 /* see comments in ext4_mb_put_pa() */
940 ext4_lock_group(sb, group);
941 memcpy(data, bitmap, blocksize);
943 /* mark all preallocated blks used in in-core bitmap */
944 ext4_mb_generate_from_pa(sb, data, group);
945 ext4_mb_generate_from_freelist(sb, data, group);
946 ext4_unlock_group(sb, group);
948 /* set incore so that the buddy information can be
949 * generated using this
954 SetPageUptodate(page);
958 for (i = 0; i < groups_per_page; i++)
967 * Lock the buddy and bitmap pages. This make sure other parallel init_group
968 * on the same buddy page doesn't happen whild holding the buddy page lock.
969 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
970 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
972 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
973 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
975 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
976 int block, pnum, poff;
980 e4b->bd_buddy_page = NULL;
981 e4b->bd_bitmap_page = NULL;
983 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
985 * the buddy cache inode stores the block bitmap
986 * and buddy information in consecutive blocks.
987 * So for each group we need two blocks.
990 pnum = block / blocks_per_page;
991 poff = block % blocks_per_page;
992 page = find_or_create_page(inode->i_mapping, pnum, gfp);
995 BUG_ON(page->mapping != inode->i_mapping);
996 e4b->bd_bitmap_page = page;
997 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
999 if (blocks_per_page >= 2) {
1000 /* buddy and bitmap are on the same page */
1005 pnum = block / blocks_per_page;
1006 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1009 BUG_ON(page->mapping != inode->i_mapping);
1010 e4b->bd_buddy_page = page;
1014 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1016 if (e4b->bd_bitmap_page) {
1017 unlock_page(e4b->bd_bitmap_page);
1018 put_page(e4b->bd_bitmap_page);
1020 if (e4b->bd_buddy_page) {
1021 unlock_page(e4b->bd_buddy_page);
1022 put_page(e4b->bd_buddy_page);
1027 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1028 * block group lock of all groups for this page; do not hold the BG lock when
1029 * calling this routine!
1031 static noinline_for_stack
1032 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1035 struct ext4_group_info *this_grp;
1036 struct ext4_buddy e4b;
1041 mb_debug(1, "init group %u\n", group);
1042 this_grp = ext4_get_group_info(sb, group);
1044 * This ensures that we don't reinit the buddy cache
1045 * page which map to the group from which we are already
1046 * allocating. If we are looking at the buddy cache we would
1047 * have taken a reference using ext4_mb_load_buddy and that
1048 * would have pinned buddy page to page cache.
1049 * The call to ext4_mb_get_buddy_page_lock will mark the
1052 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1053 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1055 * somebody initialized the group
1056 * return without doing anything
1061 page = e4b.bd_bitmap_page;
1062 ret = ext4_mb_init_cache(page, NULL, gfp);
1065 if (!PageUptodate(page)) {
1070 if (e4b.bd_buddy_page == NULL) {
1072 * If both the bitmap and buddy are in
1073 * the same page we don't need to force
1079 /* init buddy cache */
1080 page = e4b.bd_buddy_page;
1081 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1084 if (!PageUptodate(page)) {
1089 ext4_mb_put_buddy_page_lock(&e4b);
1094 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1095 * block group lock of all groups for this page; do not hold the BG lock when
1096 * calling this routine!
1098 static noinline_for_stack int
1099 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1100 struct ext4_buddy *e4b, gfp_t gfp)
1102 int blocks_per_page;
1108 struct ext4_group_info *grp;
1109 struct ext4_sb_info *sbi = EXT4_SB(sb);
1110 struct inode *inode = sbi->s_buddy_cache;
1113 mb_debug(1, "load group %u\n", group);
1115 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1116 grp = ext4_get_group_info(sb, group);
1118 e4b->bd_blkbits = sb->s_blocksize_bits;
1121 e4b->bd_group = group;
1122 e4b->bd_buddy_page = NULL;
1123 e4b->bd_bitmap_page = NULL;
1125 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1127 * we need full data about the group
1128 * to make a good selection
1130 ret = ext4_mb_init_group(sb, group, gfp);
1136 * the buddy cache inode stores the block bitmap
1137 * and buddy information in consecutive blocks.
1138 * So for each group we need two blocks.
1141 pnum = block / blocks_per_page;
1142 poff = block % blocks_per_page;
1144 /* we could use find_or_create_page(), but it locks page
1145 * what we'd like to avoid in fast path ... */
1146 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1147 if (page == NULL || !PageUptodate(page)) {
1150 * drop the page reference and try
1151 * to get the page with lock. If we
1152 * are not uptodate that implies
1153 * somebody just created the page but
1154 * is yet to initialize the same. So
1155 * wait for it to initialize.
1158 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1160 BUG_ON(page->mapping != inode->i_mapping);
1161 if (!PageUptodate(page)) {
1162 ret = ext4_mb_init_cache(page, NULL, gfp);
1167 mb_cmp_bitmaps(e4b, page_address(page) +
1168 (poff * sb->s_blocksize));
1177 if (!PageUptodate(page)) {
1182 /* Pages marked accessed already */
1183 e4b->bd_bitmap_page = page;
1184 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1187 pnum = block / blocks_per_page;
1188 poff = block % blocks_per_page;
1190 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1191 if (page == NULL || !PageUptodate(page)) {
1194 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1196 BUG_ON(page->mapping != inode->i_mapping);
1197 if (!PageUptodate(page)) {
1198 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1212 if (!PageUptodate(page)) {
1217 /* Pages marked accessed already */
1218 e4b->bd_buddy_page = page;
1219 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1221 BUG_ON(e4b->bd_bitmap_page == NULL);
1222 BUG_ON(e4b->bd_buddy_page == NULL);
1229 if (e4b->bd_bitmap_page)
1230 put_page(e4b->bd_bitmap_page);
1231 if (e4b->bd_buddy_page)
1232 put_page(e4b->bd_buddy_page);
1233 e4b->bd_buddy = NULL;
1234 e4b->bd_bitmap = NULL;
1238 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1239 struct ext4_buddy *e4b)
1241 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1244 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1246 if (e4b->bd_bitmap_page)
1247 put_page(e4b->bd_bitmap_page);
1248 if (e4b->bd_buddy_page)
1249 put_page(e4b->bd_buddy_page);
1253 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1256 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1259 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1260 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1263 while (order <= e4b->bd_blkbits + 1) {
1265 if (!mb_test_bit(block, bb)) {
1266 /* this block is part of buddy of order 'order' */
1276 static void mb_clear_bits(void *bm, int cur, int len)
1282 if ((cur & 31) == 0 && (len - cur) >= 32) {
1283 /* fast path: clear whole word at once */
1284 addr = bm + (cur >> 3);
1289 mb_clear_bit(cur, bm);
1294 /* clear bits in given range
1295 * will return first found zero bit if any, -1 otherwise
1297 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1304 if ((cur & 31) == 0 && (len - cur) >= 32) {
1305 /* fast path: clear whole word at once */
1306 addr = bm + (cur >> 3);
1307 if (*addr != (__u32)(-1) && zero_bit == -1)
1308 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1313 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1321 void ext4_set_bits(void *bm, int cur, int len)
1327 if ((cur & 31) == 0 && (len - cur) >= 32) {
1328 /* fast path: set whole word at once */
1329 addr = bm + (cur >> 3);
1334 mb_set_bit(cur, bm);
1340 * _________________________________________________________________ */
1342 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1344 if (mb_test_bit(*bit + side, bitmap)) {
1345 mb_clear_bit(*bit, bitmap);
1351 mb_set_bit(*bit, bitmap);
1356 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1360 void *buddy = mb_find_buddy(e4b, order, &max);
1365 /* Bits in range [first; last] are known to be set since
1366 * corresponding blocks were allocated. Bits in range
1367 * (first; last) will stay set because they form buddies on
1368 * upper layer. We just deal with borders if they don't
1369 * align with upper layer and then go up.
1370 * Releasing entire group is all about clearing
1371 * single bit of highest order buddy.
1375 * ---------------------------------
1377 * ---------------------------------
1378 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1379 * ---------------------------------
1381 * \_____________________/
1383 * Neither [1] nor [6] is aligned to above layer.
1384 * Left neighbour [0] is free, so mark it busy,
1385 * decrease bb_counters and extend range to
1387 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1388 * mark [6] free, increase bb_counters and shrink range to
1390 * Then shift range to [0; 2], go up and do the same.
1395 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1397 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1402 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1403 mb_clear_bits(buddy, first, last - first + 1);
1404 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1413 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1414 int first, int count)
1416 int left_is_free = 0;
1417 int right_is_free = 0;
1419 int last = first + count - 1;
1420 struct super_block *sb = e4b->bd_sb;
1422 if (WARN_ON(count == 0))
1424 BUG_ON(last >= (sb->s_blocksize << 3));
1425 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1426 /* Don't bother if the block group is corrupt. */
1427 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1430 mb_check_buddy(e4b);
1431 mb_free_blocks_double(inode, e4b, first, count);
1433 e4b->bd_info->bb_free += count;
1434 if (first < e4b->bd_info->bb_first_free)
1435 e4b->bd_info->bb_first_free = first;
1437 /* access memory sequentially: check left neighbour,
1438 * clear range and then check right neighbour
1441 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1442 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1443 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1444 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1446 if (unlikely(block != -1)) {
1447 struct ext4_sb_info *sbi = EXT4_SB(sb);
1448 ext4_fsblk_t blocknr;
1450 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1451 blocknr += EXT4_C2B(sbi, block);
1452 ext4_grp_locked_error(sb, e4b->bd_group,
1453 inode ? inode->i_ino : 0,
1455 "freeing already freed block "
1456 "(bit %u); block bitmap corrupt.",
1458 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1459 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1460 mb_regenerate_buddy(e4b);
1464 /* let's maintain fragments counter */
1465 if (left_is_free && right_is_free)
1466 e4b->bd_info->bb_fragments--;
1467 else if (!left_is_free && !right_is_free)
1468 e4b->bd_info->bb_fragments++;
1470 /* buddy[0] == bd_bitmap is a special case, so handle
1471 * it right away and let mb_buddy_mark_free stay free of
1472 * zero order checks.
1473 * Check if neighbours are to be coaleasced,
1474 * adjust bitmap bb_counters and borders appropriately.
1477 first += !left_is_free;
1478 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1481 last -= !right_is_free;
1482 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1486 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1489 mb_set_largest_free_order(sb, e4b->bd_info);
1490 mb_check_buddy(e4b);
1493 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1494 int needed, struct ext4_free_extent *ex)
1500 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1503 buddy = mb_find_buddy(e4b, 0, &max);
1504 BUG_ON(buddy == NULL);
1505 BUG_ON(block >= max);
1506 if (mb_test_bit(block, buddy)) {
1513 /* find actual order */
1514 order = mb_find_order_for_block(e4b, block);
1515 block = block >> order;
1517 ex->fe_len = 1 << order;
1518 ex->fe_start = block << order;
1519 ex->fe_group = e4b->bd_group;
1521 /* calc difference from given start */
1522 next = next - ex->fe_start;
1524 ex->fe_start += next;
1526 while (needed > ex->fe_len &&
1527 mb_find_buddy(e4b, order, &max)) {
1529 if (block + 1 >= max)
1532 next = (block + 1) * (1 << order);
1533 if (mb_test_bit(next, e4b->bd_bitmap))
1536 order = mb_find_order_for_block(e4b, next);
1538 block = next >> order;
1539 ex->fe_len += 1 << order;
1542 if (ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))) {
1543 /* Should never happen! (but apparently sometimes does?!?) */
1545 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1546 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1547 block, order, needed, ex->fe_group, ex->fe_start,
1548 ex->fe_len, ex->fe_logical);
1556 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1562 int start = ex->fe_start;
1563 int len = ex->fe_len;
1568 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1569 BUG_ON(e4b->bd_group != ex->fe_group);
1570 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1571 mb_check_buddy(e4b);
1572 mb_mark_used_double(e4b, start, len);
1574 e4b->bd_info->bb_free -= len;
1575 if (e4b->bd_info->bb_first_free == start)
1576 e4b->bd_info->bb_first_free += len;
1578 /* let's maintain fragments counter */
1580 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1581 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1582 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1584 e4b->bd_info->bb_fragments++;
1585 else if (!mlen && !max)
1586 e4b->bd_info->bb_fragments--;
1588 /* let's maintain buddy itself */
1590 ord = mb_find_order_for_block(e4b, start);
1592 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1593 /* the whole chunk may be allocated at once! */
1595 buddy = mb_find_buddy(e4b, ord, &max);
1596 BUG_ON((start >> ord) >= max);
1597 mb_set_bit(start >> ord, buddy);
1598 e4b->bd_info->bb_counters[ord]--;
1605 /* store for history */
1607 ret = len | (ord << 16);
1609 /* we have to split large buddy */
1611 buddy = mb_find_buddy(e4b, ord, &max);
1612 mb_set_bit(start >> ord, buddy);
1613 e4b->bd_info->bb_counters[ord]--;
1616 cur = (start >> ord) & ~1U;
1617 buddy = mb_find_buddy(e4b, ord, &max);
1618 mb_clear_bit(cur, buddy);
1619 mb_clear_bit(cur + 1, buddy);
1620 e4b->bd_info->bb_counters[ord]++;
1621 e4b->bd_info->bb_counters[ord]++;
1623 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1625 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1626 mb_check_buddy(e4b);
1632 * Must be called under group lock!
1634 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1635 struct ext4_buddy *e4b)
1637 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1640 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1641 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1643 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1644 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1645 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1647 /* preallocation can change ac_b_ex, thus we store actually
1648 * allocated blocks for history */
1649 ac->ac_f_ex = ac->ac_b_ex;
1651 ac->ac_status = AC_STATUS_FOUND;
1652 ac->ac_tail = ret & 0xffff;
1653 ac->ac_buddy = ret >> 16;
1656 * take the page reference. We want the page to be pinned
1657 * so that we don't get a ext4_mb_init_cache_call for this
1658 * group until we update the bitmap. That would mean we
1659 * double allocate blocks. The reference is dropped
1660 * in ext4_mb_release_context
1662 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1663 get_page(ac->ac_bitmap_page);
1664 ac->ac_buddy_page = e4b->bd_buddy_page;
1665 get_page(ac->ac_buddy_page);
1666 /* store last allocated for subsequent stream allocation */
1667 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1668 spin_lock(&sbi->s_md_lock);
1669 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1670 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1671 spin_unlock(&sbi->s_md_lock);
1676 * regular allocator, for general purposes allocation
1679 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1680 struct ext4_buddy *e4b,
1683 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1684 struct ext4_free_extent *bex = &ac->ac_b_ex;
1685 struct ext4_free_extent *gex = &ac->ac_g_ex;
1686 struct ext4_free_extent ex;
1689 if (ac->ac_status == AC_STATUS_FOUND)
1692 * We don't want to scan for a whole year
1694 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1695 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1696 ac->ac_status = AC_STATUS_BREAK;
1701 * Haven't found good chunk so far, let's continue
1703 if (bex->fe_len < gex->fe_len)
1706 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1707 && bex->fe_group == e4b->bd_group) {
1708 /* recheck chunk's availability - we don't know
1709 * when it was found (within this lock-unlock
1711 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1712 if (max >= gex->fe_len) {
1713 ext4_mb_use_best_found(ac, e4b);
1720 * The routine checks whether found extent is good enough. If it is,
1721 * then the extent gets marked used and flag is set to the context
1722 * to stop scanning. Otherwise, the extent is compared with the
1723 * previous found extent and if new one is better, then it's stored
1724 * in the context. Later, the best found extent will be used, if
1725 * mballoc can't find good enough extent.
1727 * FIXME: real allocation policy is to be designed yet!
1729 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1730 struct ext4_free_extent *ex,
1731 struct ext4_buddy *e4b)
1733 struct ext4_free_extent *bex = &ac->ac_b_ex;
1734 struct ext4_free_extent *gex = &ac->ac_g_ex;
1736 BUG_ON(ex->fe_len <= 0);
1737 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1738 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1739 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1744 * The special case - take what you catch first
1746 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1748 ext4_mb_use_best_found(ac, e4b);
1753 * Let's check whether the chuck is good enough
1755 if (ex->fe_len == gex->fe_len) {
1757 ext4_mb_use_best_found(ac, e4b);
1762 * If this is first found extent, just store it in the context
1764 if (bex->fe_len == 0) {
1770 * If new found extent is better, store it in the context
1772 if (bex->fe_len < gex->fe_len) {
1773 /* if the request isn't satisfied, any found extent
1774 * larger than previous best one is better */
1775 if (ex->fe_len > bex->fe_len)
1777 } else if (ex->fe_len > gex->fe_len) {
1778 /* if the request is satisfied, then we try to find
1779 * an extent that still satisfy the request, but is
1780 * smaller than previous one */
1781 if (ex->fe_len < bex->fe_len)
1785 ext4_mb_check_limits(ac, e4b, 0);
1788 static noinline_for_stack
1789 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1790 struct ext4_buddy *e4b)
1792 struct ext4_free_extent ex = ac->ac_b_ex;
1793 ext4_group_t group = ex.fe_group;
1797 BUG_ON(ex.fe_len <= 0);
1798 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1802 ext4_lock_group(ac->ac_sb, group);
1803 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1807 ext4_mb_use_best_found(ac, e4b);
1810 ext4_unlock_group(ac->ac_sb, group);
1811 ext4_mb_unload_buddy(e4b);
1816 static noinline_for_stack
1817 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1818 struct ext4_buddy *e4b)
1820 ext4_group_t group = ac->ac_g_ex.fe_group;
1823 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1824 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1825 struct ext4_free_extent ex;
1827 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1829 if (grp->bb_free == 0)
1832 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1836 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1837 ext4_mb_unload_buddy(e4b);
1841 ext4_lock_group(ac->ac_sb, group);
1842 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1843 ac->ac_g_ex.fe_len, &ex);
1844 ex.fe_logical = 0xDEADFA11; /* debug value */
1846 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1849 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1851 /* use do_div to get remainder (would be 64-bit modulo) */
1852 if (do_div(start, sbi->s_stripe) == 0) {
1855 ext4_mb_use_best_found(ac, e4b);
1857 } else if (max >= ac->ac_g_ex.fe_len) {
1858 BUG_ON(ex.fe_len <= 0);
1859 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1860 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1863 ext4_mb_use_best_found(ac, e4b);
1864 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1865 /* Sometimes, caller may want to merge even small
1866 * number of blocks to an existing extent */
1867 BUG_ON(ex.fe_len <= 0);
1868 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1869 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1872 ext4_mb_use_best_found(ac, e4b);
1874 ext4_unlock_group(ac->ac_sb, group);
1875 ext4_mb_unload_buddy(e4b);
1881 * The routine scans buddy structures (not bitmap!) from given order
1882 * to max order and tries to find big enough chunk to satisfy the req
1884 static noinline_for_stack
1885 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1886 struct ext4_buddy *e4b)
1888 struct super_block *sb = ac->ac_sb;
1889 struct ext4_group_info *grp = e4b->bd_info;
1895 BUG_ON(ac->ac_2order <= 0);
1896 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1897 if (grp->bb_counters[i] == 0)
1900 buddy = mb_find_buddy(e4b, i, &max);
1901 BUG_ON(buddy == NULL);
1903 k = mb_find_next_zero_bit(buddy, max, 0);
1908 ac->ac_b_ex.fe_len = 1 << i;
1909 ac->ac_b_ex.fe_start = k << i;
1910 ac->ac_b_ex.fe_group = e4b->bd_group;
1912 ext4_mb_use_best_found(ac, e4b);
1914 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1916 if (EXT4_SB(sb)->s_mb_stats)
1917 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1924 * The routine scans the group and measures all found extents.
1925 * In order to optimize scanning, caller must pass number of
1926 * free blocks in the group, so the routine can know upper limit.
1928 static noinline_for_stack
1929 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1930 struct ext4_buddy *e4b)
1932 struct super_block *sb = ac->ac_sb;
1933 void *bitmap = e4b->bd_bitmap;
1934 struct ext4_free_extent ex;
1938 free = e4b->bd_info->bb_free;
1941 i = e4b->bd_info->bb_first_free;
1943 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1944 i = mb_find_next_zero_bit(bitmap,
1945 EXT4_CLUSTERS_PER_GROUP(sb), i);
1946 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1948 * IF we have corrupt bitmap, we won't find any
1949 * free blocks even though group info says we
1950 * we have free blocks
1952 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1953 "%d free clusters as per "
1954 "group info. But bitmap says 0",
1956 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1957 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1961 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1962 BUG_ON(ex.fe_len <= 0);
1963 if (free < ex.fe_len) {
1964 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1965 "%d free clusters as per "
1966 "group info. But got %d blocks",
1968 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1969 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1971 * The number of free blocks differs. This mostly
1972 * indicate that the bitmap is corrupt. So exit
1973 * without claiming the space.
1977 ex.fe_logical = 0xDEADC0DE; /* debug value */
1978 ext4_mb_measure_extent(ac, &ex, e4b);
1984 ext4_mb_check_limits(ac, e4b, 1);
1988 * This is a special case for storages like raid5
1989 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1991 static noinline_for_stack
1992 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1993 struct ext4_buddy *e4b)
1995 struct super_block *sb = ac->ac_sb;
1996 struct ext4_sb_info *sbi = EXT4_SB(sb);
1997 void *bitmap = e4b->bd_bitmap;
1998 struct ext4_free_extent ex;
1999 ext4_fsblk_t first_group_block;
2004 BUG_ON(sbi->s_stripe == 0);
2006 /* find first stripe-aligned block in group */
2007 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2009 a = first_group_block + sbi->s_stripe - 1;
2010 do_div(a, sbi->s_stripe);
2011 i = (a * sbi->s_stripe) - first_group_block;
2013 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2014 if (!mb_test_bit(i, bitmap)) {
2015 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2016 if (max >= sbi->s_stripe) {
2018 ex.fe_logical = 0xDEADF00D; /* debug value */
2020 ext4_mb_use_best_found(ac, e4b);
2029 * This is now called BEFORE we load the buddy bitmap.
2030 * Returns either 1 or 0 indicating that the group is either suitable
2031 * for the allocation or not. In addition it can also return negative
2032 * error code when something goes wrong.
2034 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2035 ext4_group_t group, int cr)
2037 unsigned free, fragments;
2038 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2039 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2041 BUG_ON(cr < 0 || cr >= 4);
2043 free = grp->bb_free;
2046 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2049 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2052 /* We only do this if the grp has never been initialized */
2053 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2054 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2059 fragments = grp->bb_fragments;
2065 BUG_ON(ac->ac_2order == 0);
2067 /* Avoid using the first bg of a flexgroup for data files */
2068 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2069 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2070 ((group % flex_size) == 0))
2073 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2074 (free / fragments) >= ac->ac_g_ex.fe_len)
2077 if (grp->bb_largest_free_order < ac->ac_2order)
2082 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2086 if (free >= ac->ac_g_ex.fe_len)
2098 static noinline_for_stack int
2099 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2101 ext4_group_t ngroups, group, i;
2103 int err = 0, first_err = 0;
2104 struct ext4_sb_info *sbi;
2105 struct super_block *sb;
2106 struct ext4_buddy e4b;
2110 ngroups = ext4_get_groups_count(sb);
2111 /* non-extent files are limited to low blocks/groups */
2112 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2113 ngroups = sbi->s_blockfile_groups;
2115 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2117 /* first, try the goal */
2118 err = ext4_mb_find_by_goal(ac, &e4b);
2119 if (err || ac->ac_status == AC_STATUS_FOUND)
2122 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2126 * ac->ac2_order is set only if the fe_len is a power of 2
2127 * if ac2_order is set we also set criteria to 0 so that we
2128 * try exact allocation using buddy.
2130 i = fls(ac->ac_g_ex.fe_len);
2133 * We search using buddy data only if the order of the request
2134 * is greater than equal to the sbi_s_mb_order2_reqs
2135 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2136 * We also support searching for power-of-two requests only for
2137 * requests upto maximum buddy size we have constructed.
2139 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2141 * This should tell if fe_len is exactly power of 2
2143 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2144 ac->ac_2order = array_index_nospec(i - 1,
2145 sb->s_blocksize_bits + 2);
2148 /* if stream allocation is enabled, use global goal */
2149 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2150 /* TBD: may be hot point */
2151 spin_lock(&sbi->s_md_lock);
2152 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2153 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2154 spin_unlock(&sbi->s_md_lock);
2157 /* Let's just scan groups to find more-less suitable blocks */
2158 cr = ac->ac_2order ? 0 : 1;
2160 * cr == 0 try to get exact allocation,
2161 * cr == 3 try to get anything
2164 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2165 ac->ac_criteria = cr;
2167 * searching for the right group start
2168 * from the goal value specified
2170 group = ac->ac_g_ex.fe_group;
2172 for (i = 0; i < ngroups; group++, i++) {
2176 * Artificially restricted ngroups for non-extent
2177 * files makes group > ngroups possible on first loop.
2179 if (group >= ngroups)
2182 /* This now checks without needing the buddy page */
2183 ret = ext4_mb_good_group(ac, group, cr);
2190 err = ext4_mb_load_buddy(sb, group, &e4b);
2194 ext4_lock_group(sb, group);
2197 * We need to check again after locking the
2200 ret = ext4_mb_good_group(ac, group, cr);
2202 ext4_unlock_group(sb, group);
2203 ext4_mb_unload_buddy(&e4b);
2209 ac->ac_groups_scanned++;
2211 ext4_mb_simple_scan_group(ac, &e4b);
2212 else if (cr == 1 && sbi->s_stripe &&
2213 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2214 ext4_mb_scan_aligned(ac, &e4b);
2216 ext4_mb_complex_scan_group(ac, &e4b);
2218 ext4_unlock_group(sb, group);
2219 ext4_mb_unload_buddy(&e4b);
2221 if (ac->ac_status != AC_STATUS_CONTINUE)
2226 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2227 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2229 * We've been searching too long. Let's try to allocate
2230 * the best chunk we've found so far
2233 ext4_mb_try_best_found(ac, &e4b);
2234 if (ac->ac_status != AC_STATUS_FOUND) {
2236 * Someone more lucky has already allocated it.
2237 * The only thing we can do is just take first
2239 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2241 ac->ac_b_ex.fe_group = 0;
2242 ac->ac_b_ex.fe_start = 0;
2243 ac->ac_b_ex.fe_len = 0;
2244 ac->ac_status = AC_STATUS_CONTINUE;
2245 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2247 atomic_inc(&sbi->s_mb_lost_chunks);
2252 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2257 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2259 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2262 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2265 return (void *) ((unsigned long) group);
2268 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2270 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2274 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2277 return (void *) ((unsigned long) group);
2280 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2282 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2283 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2285 int err, buddy_loaded = 0;
2286 struct ext4_buddy e4b;
2287 struct ext4_group_info *grinfo;
2288 unsigned char blocksize_bits = min_t(unsigned char,
2289 sb->s_blocksize_bits,
2290 EXT4_MAX_BLOCK_LOG_SIZE);
2292 struct ext4_group_info info;
2293 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2298 seq_puts(seq, "#group: free frags first ["
2299 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2300 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2302 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2303 sizeof(struct ext4_group_info);
2305 grinfo = ext4_get_group_info(sb, group);
2306 /* Load the group info in memory only if not already loaded. */
2307 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2308 err = ext4_mb_load_buddy(sb, group, &e4b);
2310 seq_printf(seq, "#%-5u: I/O error\n", group);
2316 memcpy(&sg, ext4_get_group_info(sb, group), i);
2319 ext4_mb_unload_buddy(&e4b);
2321 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2322 sg.info.bb_fragments, sg.info.bb_first_free);
2323 for (i = 0; i <= 13; i++)
2324 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2325 sg.info.bb_counters[i] : 0);
2326 seq_printf(seq, " ]\n");
2331 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2335 const struct seq_operations ext4_mb_seq_groups_ops = {
2336 .start = ext4_mb_seq_groups_start,
2337 .next = ext4_mb_seq_groups_next,
2338 .stop = ext4_mb_seq_groups_stop,
2339 .show = ext4_mb_seq_groups_show,
2342 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2344 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2345 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2352 * Allocate the top-level s_group_info array for the specified number
2355 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2357 struct ext4_sb_info *sbi = EXT4_SB(sb);
2359 struct ext4_group_info ***new_groupinfo;
2361 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2362 EXT4_DESC_PER_BLOCK_BITS(sb);
2363 if (size <= sbi->s_group_info_size)
2366 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2367 new_groupinfo = kvzalloc(size, GFP_KERNEL);
2368 if (!new_groupinfo) {
2369 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2372 if (sbi->s_group_info) {
2373 memcpy(new_groupinfo, sbi->s_group_info,
2374 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2375 kvfree(sbi->s_group_info);
2377 sbi->s_group_info = new_groupinfo;
2378 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2379 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2380 sbi->s_group_info_size);
2384 /* Create and initialize ext4_group_info data for the given group. */
2385 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2386 struct ext4_group_desc *desc)
2390 struct ext4_sb_info *sbi = EXT4_SB(sb);
2391 struct ext4_group_info **meta_group_info;
2392 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2395 * First check if this group is the first of a reserved block.
2396 * If it's true, we have to allocate a new table of pointers
2397 * to ext4_group_info structures
2399 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2400 metalen = sizeof(*meta_group_info) <<
2401 EXT4_DESC_PER_BLOCK_BITS(sb);
2402 meta_group_info = kmalloc(metalen, GFP_NOFS);
2403 if (meta_group_info == NULL) {
2404 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2405 "for a buddy group");
2406 goto exit_meta_group_info;
2408 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2413 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2414 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2416 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2417 if (meta_group_info[i] == NULL) {
2418 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2419 goto exit_group_info;
2421 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2422 &(meta_group_info[i]->bb_state));
2425 * initialize bb_free to be able to skip
2426 * empty groups without initialization
2428 if (ext4_has_group_desc_csum(sb) &&
2429 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2430 meta_group_info[i]->bb_free =
2431 ext4_free_clusters_after_init(sb, group, desc);
2433 meta_group_info[i]->bb_free =
2434 ext4_free_group_clusters(sb, desc);
2437 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2438 init_rwsem(&meta_group_info[i]->alloc_sem);
2439 meta_group_info[i]->bb_free_root = RB_ROOT;
2440 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2444 struct buffer_head *bh;
2445 meta_group_info[i]->bb_bitmap =
2446 kmalloc(sb->s_blocksize, GFP_NOFS);
2447 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2448 bh = ext4_read_block_bitmap(sb, group);
2449 BUG_ON(IS_ERR_OR_NULL(bh));
2450 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2459 /* If a meta_group_info table has been allocated, release it now */
2460 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2461 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2462 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2464 exit_meta_group_info:
2466 } /* ext4_mb_add_groupinfo */
2468 static int ext4_mb_init_backend(struct super_block *sb)
2470 ext4_group_t ngroups = ext4_get_groups_count(sb);
2472 struct ext4_sb_info *sbi = EXT4_SB(sb);
2474 struct ext4_group_desc *desc;
2475 struct kmem_cache *cachep;
2477 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2481 sbi->s_buddy_cache = new_inode(sb);
2482 if (sbi->s_buddy_cache == NULL) {
2483 ext4_msg(sb, KERN_ERR, "can't get new inode");
2486 /* To avoid potentially colliding with an valid on-disk inode number,
2487 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2488 * not in the inode hash, so it should never be found by iget(), but
2489 * this will avoid confusion if it ever shows up during debugging. */
2490 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2491 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2492 for (i = 0; i < ngroups; i++) {
2493 desc = ext4_get_group_desc(sb, i, NULL);
2495 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2498 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2505 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2507 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2508 i = sbi->s_group_info_size;
2510 kfree(sbi->s_group_info[i]);
2511 iput(sbi->s_buddy_cache);
2513 kvfree(sbi->s_group_info);
2517 static void ext4_groupinfo_destroy_slabs(void)
2521 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2522 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2523 ext4_groupinfo_caches[i] = NULL;
2527 static int ext4_groupinfo_create_slab(size_t size)
2529 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2531 int blocksize_bits = order_base_2(size);
2532 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2533 struct kmem_cache *cachep;
2535 if (cache_index >= NR_GRPINFO_CACHES)
2538 if (unlikely(cache_index < 0))
2541 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2542 if (ext4_groupinfo_caches[cache_index]) {
2543 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2544 return 0; /* Already created */
2547 slab_size = offsetof(struct ext4_group_info,
2548 bb_counters[blocksize_bits + 2]);
2550 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2551 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2554 ext4_groupinfo_caches[cache_index] = cachep;
2556 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2559 "EXT4-fs: no memory for groupinfo slab cache\n");
2566 int ext4_mb_init(struct super_block *sb)
2568 struct ext4_sb_info *sbi = EXT4_SB(sb);
2570 unsigned offset, offset_incr;
2574 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2576 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2577 if (sbi->s_mb_offsets == NULL) {
2582 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2583 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2584 if (sbi->s_mb_maxs == NULL) {
2589 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2593 /* order 0 is regular bitmap */
2594 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2595 sbi->s_mb_offsets[0] = 0;
2599 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2600 max = sb->s_blocksize << 2;
2602 sbi->s_mb_offsets[i] = offset;
2603 sbi->s_mb_maxs[i] = max;
2604 offset += offset_incr;
2605 offset_incr = offset_incr >> 1;
2608 } while (i <= sb->s_blocksize_bits + 1);
2610 spin_lock_init(&sbi->s_md_lock);
2611 spin_lock_init(&sbi->s_bal_lock);
2612 sbi->s_mb_free_pending = 0;
2613 INIT_LIST_HEAD(&sbi->s_freed_data_list);
2615 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2616 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2617 sbi->s_mb_stats = MB_DEFAULT_STATS;
2618 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2619 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2621 * The default group preallocation is 512, which for 4k block
2622 * sizes translates to 2 megabytes. However for bigalloc file
2623 * systems, this is probably too big (i.e, if the cluster size
2624 * is 1 megabyte, then group preallocation size becomes half a
2625 * gigabyte!). As a default, we will keep a two megabyte
2626 * group pralloc size for cluster sizes up to 64k, and after
2627 * that, we will force a minimum group preallocation size of
2628 * 32 clusters. This translates to 8 megs when the cluster
2629 * size is 256k, and 32 megs when the cluster size is 1 meg,
2630 * which seems reasonable as a default.
2632 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2633 sbi->s_cluster_bits, 32);
2635 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2636 * to the lowest multiple of s_stripe which is bigger than
2637 * the s_mb_group_prealloc as determined above. We want
2638 * the preallocation size to be an exact multiple of the
2639 * RAID stripe size so that preallocations don't fragment
2642 if (sbi->s_stripe > 1) {
2643 sbi->s_mb_group_prealloc = roundup(
2644 sbi->s_mb_group_prealloc, sbi->s_stripe);
2647 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2648 if (sbi->s_locality_groups == NULL) {
2652 for_each_possible_cpu(i) {
2653 struct ext4_locality_group *lg;
2654 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2655 mutex_init(&lg->lg_mutex);
2656 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2657 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2658 spin_lock_init(&lg->lg_prealloc_lock);
2661 /* init file for buddy data */
2662 ret = ext4_mb_init_backend(sb);
2664 goto out_free_locality_groups;
2668 out_free_locality_groups:
2669 free_percpu(sbi->s_locality_groups);
2670 sbi->s_locality_groups = NULL;
2672 kfree(sbi->s_mb_offsets);
2673 sbi->s_mb_offsets = NULL;
2674 kfree(sbi->s_mb_maxs);
2675 sbi->s_mb_maxs = NULL;
2679 /* need to called with the ext4 group lock held */
2680 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2682 struct ext4_prealloc_space *pa;
2683 struct list_head *cur, *tmp;
2686 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2687 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2688 list_del(&pa->pa_group_list);
2690 kmem_cache_free(ext4_pspace_cachep, pa);
2693 mb_debug(1, "mballoc: %u PAs left\n", count);
2697 int ext4_mb_release(struct super_block *sb)
2699 ext4_group_t ngroups = ext4_get_groups_count(sb);
2701 int num_meta_group_infos;
2702 struct ext4_group_info *grinfo;
2703 struct ext4_sb_info *sbi = EXT4_SB(sb);
2704 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2706 if (sbi->s_group_info) {
2707 for (i = 0; i < ngroups; i++) {
2708 grinfo = ext4_get_group_info(sb, i);
2710 kfree(grinfo->bb_bitmap);
2712 ext4_lock_group(sb, i);
2713 ext4_mb_cleanup_pa(grinfo);
2714 ext4_unlock_group(sb, i);
2715 kmem_cache_free(cachep, grinfo);
2717 num_meta_group_infos = (ngroups +
2718 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2719 EXT4_DESC_PER_BLOCK_BITS(sb);
2720 for (i = 0; i < num_meta_group_infos; i++)
2721 kfree(sbi->s_group_info[i]);
2722 kvfree(sbi->s_group_info);
2724 kfree(sbi->s_mb_offsets);
2725 kfree(sbi->s_mb_maxs);
2726 iput(sbi->s_buddy_cache);
2727 if (sbi->s_mb_stats) {
2728 ext4_msg(sb, KERN_INFO,
2729 "mballoc: %u blocks %u reqs (%u success)",
2730 atomic_read(&sbi->s_bal_allocated),
2731 atomic_read(&sbi->s_bal_reqs),
2732 atomic_read(&sbi->s_bal_success));
2733 ext4_msg(sb, KERN_INFO,
2734 "mballoc: %u extents scanned, %u goal hits, "
2735 "%u 2^N hits, %u breaks, %u lost",
2736 atomic_read(&sbi->s_bal_ex_scanned),
2737 atomic_read(&sbi->s_bal_goals),
2738 atomic_read(&sbi->s_bal_2orders),
2739 atomic_read(&sbi->s_bal_breaks),
2740 atomic_read(&sbi->s_mb_lost_chunks));
2741 ext4_msg(sb, KERN_INFO,
2742 "mballoc: %lu generated and it took %Lu",
2743 sbi->s_mb_buddies_generated,
2744 sbi->s_mb_generation_time);
2745 ext4_msg(sb, KERN_INFO,
2746 "mballoc: %u preallocated, %u discarded",
2747 atomic_read(&sbi->s_mb_preallocated),
2748 atomic_read(&sbi->s_mb_discarded));
2751 free_percpu(sbi->s_locality_groups);
2756 static inline int ext4_issue_discard(struct super_block *sb,
2757 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2760 ext4_fsblk_t discard_block;
2762 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2763 ext4_group_first_block_no(sb, block_group));
2764 count = EXT4_C2B(EXT4_SB(sb), count);
2765 trace_ext4_discard_blocks(sb,
2766 (unsigned long long) discard_block, count);
2768 return __blkdev_issue_discard(sb->s_bdev,
2769 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
2770 (sector_t)count << (sb->s_blocksize_bits - 9),
2773 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2776 static void ext4_free_data_in_buddy(struct super_block *sb,
2777 struct ext4_free_data *entry)
2779 struct ext4_buddy e4b;
2780 struct ext4_group_info *db;
2781 int err, count = 0, count2 = 0;
2783 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2784 entry->efd_count, entry->efd_group, entry);
2786 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2787 /* we expect to find existing buddy because it's pinned */
2790 spin_lock(&EXT4_SB(sb)->s_md_lock);
2791 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2792 spin_unlock(&EXT4_SB(sb)->s_md_lock);
2795 /* there are blocks to put in buddy to make them really free */
2796 count += entry->efd_count;
2798 ext4_lock_group(sb, entry->efd_group);
2799 /* Take it out of per group rb tree */
2800 rb_erase(&entry->efd_node, &(db->bb_free_root));
2801 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2804 * Clear the trimmed flag for the group so that the next
2805 * ext4_trim_fs can trim it.
2806 * If the volume is mounted with -o discard, online discard
2807 * is supported and the free blocks will be trimmed online.
2809 if (!test_opt(sb, DISCARD))
2810 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2812 if (!db->bb_free_root.rb_node) {
2813 /* No more items in the per group rb tree
2814 * balance refcounts from ext4_mb_free_metadata()
2816 put_page(e4b.bd_buddy_page);
2817 put_page(e4b.bd_bitmap_page);
2819 ext4_unlock_group(sb, entry->efd_group);
2820 kmem_cache_free(ext4_free_data_cachep, entry);
2821 ext4_mb_unload_buddy(&e4b);
2823 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2827 * This function is called by the jbd2 layer once the commit has finished,
2828 * so we know we can free the blocks that were released with that commit.
2830 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2832 struct ext4_sb_info *sbi = EXT4_SB(sb);
2833 struct ext4_free_data *entry, *tmp;
2834 struct bio *discard_bio = NULL;
2835 struct list_head freed_data_list;
2836 struct list_head *cut_pos = NULL;
2839 INIT_LIST_HEAD(&freed_data_list);
2841 spin_lock(&sbi->s_md_lock);
2842 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2843 if (entry->efd_tid != commit_tid)
2845 cut_pos = &entry->efd_list;
2848 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2850 spin_unlock(&sbi->s_md_lock);
2852 if (test_opt(sb, DISCARD)) {
2853 list_for_each_entry(entry, &freed_data_list, efd_list) {
2854 err = ext4_issue_discard(sb, entry->efd_group,
2855 entry->efd_start_cluster,
2858 if (err && err != -EOPNOTSUPP) {
2859 ext4_msg(sb, KERN_WARNING, "discard request in"
2860 " group:%d block:%d count:%d failed"
2861 " with %d", entry->efd_group,
2862 entry->efd_start_cluster,
2863 entry->efd_count, err);
2864 } else if (err == -EOPNOTSUPP)
2869 submit_bio_wait(discard_bio);
2870 bio_put(discard_bio);
2874 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2875 ext4_free_data_in_buddy(sb, entry);
2878 int __init ext4_init_mballoc(void)
2880 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2881 SLAB_RECLAIM_ACCOUNT);
2882 if (ext4_pspace_cachep == NULL)
2885 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2886 SLAB_RECLAIM_ACCOUNT);
2887 if (ext4_ac_cachep == NULL) {
2888 kmem_cache_destroy(ext4_pspace_cachep);
2892 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2893 SLAB_RECLAIM_ACCOUNT);
2894 if (ext4_free_data_cachep == NULL) {
2895 kmem_cache_destroy(ext4_pspace_cachep);
2896 kmem_cache_destroy(ext4_ac_cachep);
2902 void ext4_exit_mballoc(void)
2905 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2906 * before destroying the slab cache.
2909 kmem_cache_destroy(ext4_pspace_cachep);
2910 kmem_cache_destroy(ext4_ac_cachep);
2911 kmem_cache_destroy(ext4_free_data_cachep);
2912 ext4_groupinfo_destroy_slabs();
2917 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2918 * Returns 0 if success or error code
2920 static noinline_for_stack int
2921 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2922 handle_t *handle, unsigned int reserv_clstrs)
2924 struct buffer_head *bitmap_bh = NULL;
2925 struct ext4_group_desc *gdp;
2926 struct buffer_head *gdp_bh;
2927 struct ext4_sb_info *sbi;
2928 struct super_block *sb;
2932 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2933 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2938 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2939 if (IS_ERR(bitmap_bh)) {
2940 err = PTR_ERR(bitmap_bh);
2945 BUFFER_TRACE(bitmap_bh, "getting write access");
2946 err = ext4_journal_get_write_access(handle, bitmap_bh);
2951 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2955 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2956 ext4_free_group_clusters(sb, gdp));
2958 BUFFER_TRACE(gdp_bh, "get_write_access");
2959 err = ext4_journal_get_write_access(handle, gdp_bh);
2963 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2965 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2966 if (!ext4_data_block_valid(sbi, block, len)) {
2967 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2968 "fs metadata", block, block+len);
2969 /* File system mounted not to panic on error
2970 * Fix the bitmap and return EFSCORRUPTED
2971 * We leak some of the blocks here.
2973 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2974 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2975 ac->ac_b_ex.fe_len);
2976 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2977 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2979 err = -EFSCORRUPTED;
2983 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2984 #ifdef AGGRESSIVE_CHECK
2987 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2988 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2989 bitmap_bh->b_data));
2993 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2994 ac->ac_b_ex.fe_len);
2995 if (ext4_has_group_desc_csum(sb) &&
2996 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2997 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2998 ext4_free_group_clusters_set(sb, gdp,
2999 ext4_free_clusters_after_init(sb,
3000 ac->ac_b_ex.fe_group, gdp));
3002 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3003 ext4_free_group_clusters_set(sb, gdp, len);
3004 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3005 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3007 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3008 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3010 * Now reduce the dirty block count also. Should not go negative
3012 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3013 /* release all the reserved blocks if non delalloc */
3014 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3017 if (sbi->s_log_groups_per_flex) {
3018 ext4_group_t flex_group = ext4_flex_group(sbi,
3019 ac->ac_b_ex.fe_group);
3020 atomic64_sub(ac->ac_b_ex.fe_len,
3021 &sbi->s_flex_groups[flex_group].free_clusters);
3024 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3027 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3035 * here we normalize request for locality group
3036 * Group request are normalized to s_mb_group_prealloc, which goes to
3037 * s_strip if we set the same via mount option.
3038 * s_mb_group_prealloc can be configured via
3039 * /sys/fs/ext4/<partition>/mb_group_prealloc
3041 * XXX: should we try to preallocate more than the group has now?
3043 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3045 struct super_block *sb = ac->ac_sb;
3046 struct ext4_locality_group *lg = ac->ac_lg;
3049 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3050 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3051 current->pid, ac->ac_g_ex.fe_len);
3055 * Normalization means making request better in terms of
3056 * size and alignment
3058 static noinline_for_stack void
3059 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3060 struct ext4_allocation_request *ar)
3062 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3065 loff_t size, start_off;
3066 loff_t orig_size __maybe_unused;
3068 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3069 struct ext4_prealloc_space *pa;
3071 /* do normalize only data requests, metadata requests
3072 do not need preallocation */
3073 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3076 /* sometime caller may want exact blocks */
3077 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3080 /* caller may indicate that preallocation isn't
3081 * required (it's a tail, for example) */
3082 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3085 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3086 ext4_mb_normalize_group_request(ac);
3090 bsbits = ac->ac_sb->s_blocksize_bits;
3092 /* first, let's learn actual file size
3093 * given current request is allocated */
3094 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3095 size = size << bsbits;
3096 if (size < i_size_read(ac->ac_inode))
3097 size = i_size_read(ac->ac_inode);
3100 /* max size of free chunks */
3103 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3104 (req <= (size) || max <= (chunk_size))
3106 /* first, try to predict filesize */
3107 /* XXX: should this table be tunable? */
3109 if (size <= 16 * 1024) {
3111 } else if (size <= 32 * 1024) {
3113 } else if (size <= 64 * 1024) {
3115 } else if (size <= 128 * 1024) {
3117 } else if (size <= 256 * 1024) {
3119 } else if (size <= 512 * 1024) {
3121 } else if (size <= 1024 * 1024) {
3123 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3124 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3125 (21 - bsbits)) << 21;
3126 size = 2 * 1024 * 1024;
3127 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3128 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3129 (22 - bsbits)) << 22;
3130 size = 4 * 1024 * 1024;
3131 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3132 (8<<20)>>bsbits, max, 8 * 1024)) {
3133 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3134 (23 - bsbits)) << 23;
3135 size = 8 * 1024 * 1024;
3137 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3138 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3139 ac->ac_o_ex.fe_len) << bsbits;
3141 size = size >> bsbits;
3142 start = start_off >> bsbits;
3144 /* don't cover already allocated blocks in selected range */
3145 if (ar->pleft && start <= ar->lleft) {
3146 size -= ar->lleft + 1 - start;
3147 start = ar->lleft + 1;
3149 if (ar->pright && start + size - 1 >= ar->lright)
3150 size -= start + size - ar->lright;
3153 * Trim allocation request for filesystems with artificially small
3156 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3157 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3161 /* check we don't cross already preallocated blocks */
3163 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3168 spin_lock(&pa->pa_lock);
3169 if (pa->pa_deleted) {
3170 spin_unlock(&pa->pa_lock);
3174 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3177 /* PA must not overlap original request */
3178 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3179 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3181 /* skip PAs this normalized request doesn't overlap with */
3182 if (pa->pa_lstart >= end || pa_end <= start) {
3183 spin_unlock(&pa->pa_lock);
3186 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3188 /* adjust start or end to be adjacent to this pa */
3189 if (pa_end <= ac->ac_o_ex.fe_logical) {
3190 BUG_ON(pa_end < start);
3192 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3193 BUG_ON(pa->pa_lstart > end);
3194 end = pa->pa_lstart;
3196 spin_unlock(&pa->pa_lock);
3201 /* XXX: extra loop to check we really don't overlap preallocations */
3203 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3206 spin_lock(&pa->pa_lock);
3207 if (pa->pa_deleted == 0) {
3208 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3210 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3212 spin_unlock(&pa->pa_lock);
3216 if (start + size <= ac->ac_o_ex.fe_logical &&
3217 start > ac->ac_o_ex.fe_logical) {
3218 ext4_msg(ac->ac_sb, KERN_ERR,
3219 "start %lu, size %lu, fe_logical %lu",
3220 (unsigned long) start, (unsigned long) size,
3221 (unsigned long) ac->ac_o_ex.fe_logical);
3224 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3226 /* now prepare goal request */
3228 /* XXX: is it better to align blocks WRT to logical
3229 * placement or satisfy big request as is */
3230 ac->ac_g_ex.fe_logical = start;
3231 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3233 /* define goal start in order to merge */
3234 if (ar->pright && (ar->lright == (start + size))) {
3235 /* merge to the right */
3236 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3237 &ac->ac_f_ex.fe_group,
3238 &ac->ac_f_ex.fe_start);
3239 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3241 if (ar->pleft && (ar->lleft + 1 == start)) {
3242 /* merge to the left */
3243 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3244 &ac->ac_f_ex.fe_group,
3245 &ac->ac_f_ex.fe_start);
3246 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3249 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3250 (unsigned) orig_size, (unsigned) start);
3253 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3255 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3257 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3258 atomic_inc(&sbi->s_bal_reqs);
3259 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3260 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3261 atomic_inc(&sbi->s_bal_success);
3262 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3263 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3264 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3265 atomic_inc(&sbi->s_bal_goals);
3266 if (ac->ac_found > sbi->s_mb_max_to_scan)
3267 atomic_inc(&sbi->s_bal_breaks);
3270 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3271 trace_ext4_mballoc_alloc(ac);
3273 trace_ext4_mballoc_prealloc(ac);
3277 * Called on failure; free up any blocks from the inode PA for this
3278 * context. We don't need this for MB_GROUP_PA because we only change
3279 * pa_free in ext4_mb_release_context(), but on failure, we've already
3280 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3282 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3284 struct ext4_prealloc_space *pa = ac->ac_pa;
3285 struct ext4_buddy e4b;
3289 if (ac->ac_f_ex.fe_len == 0)
3291 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3294 * This should never happen since we pin the
3295 * pages in the ext4_allocation_context so
3296 * ext4_mb_load_buddy() should never fail.
3298 WARN(1, "mb_load_buddy failed (%d)", err);
3301 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3302 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3303 ac->ac_f_ex.fe_len);
3304 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3305 ext4_mb_unload_buddy(&e4b);
3308 if (pa->pa_type == MB_INODE_PA)
3309 pa->pa_free += ac->ac_b_ex.fe_len;
3313 * use blocks preallocated to inode
3315 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3316 struct ext4_prealloc_space *pa)
3318 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3323 /* found preallocated blocks, use them */
3324 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3325 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3326 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3327 len = EXT4_NUM_B2C(sbi, end - start);
3328 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3329 &ac->ac_b_ex.fe_start);
3330 ac->ac_b_ex.fe_len = len;
3331 ac->ac_status = AC_STATUS_FOUND;
3334 BUG_ON(start < pa->pa_pstart);
3335 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3336 BUG_ON(pa->pa_free < len);
3339 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3343 * use blocks preallocated to locality group
3345 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3346 struct ext4_prealloc_space *pa)
3348 unsigned int len = ac->ac_o_ex.fe_len;
3350 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3351 &ac->ac_b_ex.fe_group,
3352 &ac->ac_b_ex.fe_start);
3353 ac->ac_b_ex.fe_len = len;
3354 ac->ac_status = AC_STATUS_FOUND;
3357 /* we don't correct pa_pstart or pa_plen here to avoid
3358 * possible race when the group is being loaded concurrently
3359 * instead we correct pa later, after blocks are marked
3360 * in on-disk bitmap -- see ext4_mb_release_context()
3361 * Other CPUs are prevented from allocating from this pa by lg_mutex
3363 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3367 * Return the prealloc space that have minimal distance
3368 * from the goal block. @cpa is the prealloc
3369 * space that is having currently known minimal distance
3370 * from the goal block.
3372 static struct ext4_prealloc_space *
3373 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3374 struct ext4_prealloc_space *pa,
3375 struct ext4_prealloc_space *cpa)
3377 ext4_fsblk_t cur_distance, new_distance;
3380 atomic_inc(&pa->pa_count);
3383 cur_distance = abs(goal_block - cpa->pa_pstart);
3384 new_distance = abs(goal_block - pa->pa_pstart);
3386 if (cur_distance <= new_distance)
3389 /* drop the previous reference */
3390 atomic_dec(&cpa->pa_count);
3391 atomic_inc(&pa->pa_count);
3396 * search goal blocks in preallocated space
3398 static noinline_for_stack int
3399 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3401 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3403 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3404 struct ext4_locality_group *lg;
3405 struct ext4_prealloc_space *pa, *cpa = NULL;
3406 ext4_fsblk_t goal_block;
3408 /* only data can be preallocated */
3409 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3412 /* first, try per-file preallocation */
3414 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3416 /* all fields in this condition don't change,
3417 * so we can skip locking for them */
3418 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3419 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3420 EXT4_C2B(sbi, pa->pa_len)))
3423 /* non-extent files can't have physical blocks past 2^32 */
3424 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3425 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3426 EXT4_MAX_BLOCK_FILE_PHYS))
3429 /* found preallocated blocks, use them */
3430 spin_lock(&pa->pa_lock);
3431 if (pa->pa_deleted == 0 && pa->pa_free) {
3432 atomic_inc(&pa->pa_count);
3433 ext4_mb_use_inode_pa(ac, pa);
3434 spin_unlock(&pa->pa_lock);
3435 ac->ac_criteria = 10;
3439 spin_unlock(&pa->pa_lock);
3443 /* can we use group allocation? */
3444 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3447 /* inode may have no locality group for some reason */
3451 order = fls(ac->ac_o_ex.fe_len) - 1;
3452 if (order > PREALLOC_TB_SIZE - 1)
3453 /* The max size of hash table is PREALLOC_TB_SIZE */
3454 order = PREALLOC_TB_SIZE - 1;
3456 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3458 * search for the prealloc space that is having
3459 * minimal distance from the goal block.
3461 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3463 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3465 spin_lock(&pa->pa_lock);
3466 if (pa->pa_deleted == 0 &&
3467 pa->pa_free >= ac->ac_o_ex.fe_len) {
3469 cpa = ext4_mb_check_group_pa(goal_block,
3472 spin_unlock(&pa->pa_lock);
3477 ext4_mb_use_group_pa(ac, cpa);
3478 ac->ac_criteria = 20;
3485 * the function goes through all block freed in the group
3486 * but not yet committed and marks them used in in-core bitmap.
3487 * buddy must be generated from this bitmap
3488 * Need to be called with the ext4 group lock held
3490 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3494 struct ext4_group_info *grp;
3495 struct ext4_free_data *entry;
3497 grp = ext4_get_group_info(sb, group);
3498 n = rb_first(&(grp->bb_free_root));
3501 entry = rb_entry(n, struct ext4_free_data, efd_node);
3502 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3509 * the function goes through all preallocation in this group and marks them
3510 * used in in-core bitmap. buddy must be generated from this bitmap
3511 * Need to be called with ext4 group lock held
3513 static noinline_for_stack
3514 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3517 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3518 struct ext4_prealloc_space *pa;
3519 struct list_head *cur;
3520 ext4_group_t groupnr;
3521 ext4_grpblk_t start;
3522 int preallocated = 0;
3525 /* all form of preallocation discards first load group,
3526 * so the only competing code is preallocation use.
3527 * we don't need any locking here
3528 * notice we do NOT ignore preallocations with pa_deleted
3529 * otherwise we could leave used blocks available for
3530 * allocation in buddy when concurrent ext4_mb_put_pa()
3531 * is dropping preallocation
3533 list_for_each(cur, &grp->bb_prealloc_list) {
3534 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3535 spin_lock(&pa->pa_lock);
3536 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3539 spin_unlock(&pa->pa_lock);
3540 if (unlikely(len == 0))
3542 BUG_ON(groupnr != group);
3543 ext4_set_bits(bitmap, start, len);
3544 preallocated += len;
3546 mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3549 static void ext4_mb_pa_callback(struct rcu_head *head)
3551 struct ext4_prealloc_space *pa;
3552 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3554 BUG_ON(atomic_read(&pa->pa_count));
3555 BUG_ON(pa->pa_deleted == 0);
3556 kmem_cache_free(ext4_pspace_cachep, pa);
3560 * drops a reference to preallocated space descriptor
3561 * if this was the last reference and the space is consumed
3563 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3564 struct super_block *sb, struct ext4_prealloc_space *pa)
3567 ext4_fsblk_t grp_blk;
3569 /* in this short window concurrent discard can set pa_deleted */
3570 spin_lock(&pa->pa_lock);
3571 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3572 spin_unlock(&pa->pa_lock);
3576 if (pa->pa_deleted == 1) {
3577 spin_unlock(&pa->pa_lock);
3582 spin_unlock(&pa->pa_lock);
3584 grp_blk = pa->pa_pstart;
3586 * If doing group-based preallocation, pa_pstart may be in the
3587 * next group when pa is used up
3589 if (pa->pa_type == MB_GROUP_PA)
3592 grp = ext4_get_group_number(sb, grp_blk);
3597 * P1 (buddy init) P2 (regular allocation)
3598 * find block B in PA
3599 * copy on-disk bitmap to buddy
3600 * mark B in on-disk bitmap
3601 * drop PA from group
3602 * mark all PAs in buddy
3604 * thus, P1 initializes buddy with B available. to prevent this
3605 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3608 ext4_lock_group(sb, grp);
3609 list_del(&pa->pa_group_list);
3610 ext4_unlock_group(sb, grp);
3612 spin_lock(pa->pa_obj_lock);
3613 list_del_rcu(&pa->pa_inode_list);
3614 spin_unlock(pa->pa_obj_lock);
3616 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3620 * creates new preallocated space for given inode
3622 static noinline_for_stack int
3623 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3625 struct super_block *sb = ac->ac_sb;
3626 struct ext4_sb_info *sbi = EXT4_SB(sb);
3627 struct ext4_prealloc_space *pa;
3628 struct ext4_group_info *grp;
3629 struct ext4_inode_info *ei;
3631 /* preallocate only when found space is larger then requested */
3632 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3633 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3634 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3636 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3640 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3646 /* we can't allocate as much as normalizer wants.
3647 * so, found space must get proper lstart
3648 * to cover original request */
3649 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3650 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3652 /* we're limited by original request in that
3653 * logical block must be covered any way
3654 * winl is window we can move our chunk within */
3655 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3657 /* also, we should cover whole original request */
3658 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3660 /* the smallest one defines real window */
3661 win = min(winl, wins);
3663 offs = ac->ac_o_ex.fe_logical %
3664 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3665 if (offs && offs < win)
3668 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3669 EXT4_NUM_B2C(sbi, win);
3670 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3671 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3674 /* preallocation can change ac_b_ex, thus we store actually
3675 * allocated blocks for history */
3676 ac->ac_f_ex = ac->ac_b_ex;
3678 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3679 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3680 pa->pa_len = ac->ac_b_ex.fe_len;
3681 pa->pa_free = pa->pa_len;
3682 atomic_set(&pa->pa_count, 1);
3683 spin_lock_init(&pa->pa_lock);
3684 INIT_LIST_HEAD(&pa->pa_inode_list);
3685 INIT_LIST_HEAD(&pa->pa_group_list);
3687 pa->pa_type = MB_INODE_PA;
3689 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3690 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3691 trace_ext4_mb_new_inode_pa(ac, pa);
3693 ext4_mb_use_inode_pa(ac, pa);
3694 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3696 ei = EXT4_I(ac->ac_inode);
3697 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3699 pa->pa_obj_lock = &ei->i_prealloc_lock;
3700 pa->pa_inode = ac->ac_inode;
3702 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3703 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3704 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3706 spin_lock(pa->pa_obj_lock);
3707 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3708 spin_unlock(pa->pa_obj_lock);
3714 * creates new preallocated space for locality group inodes belongs to
3716 static noinline_for_stack int
3717 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3719 struct super_block *sb = ac->ac_sb;
3720 struct ext4_locality_group *lg;
3721 struct ext4_prealloc_space *pa;
3722 struct ext4_group_info *grp;
3724 /* preallocate only when found space is larger then requested */
3725 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3726 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3727 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3729 BUG_ON(ext4_pspace_cachep == NULL);
3730 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3734 /* preallocation can change ac_b_ex, thus we store actually
3735 * allocated blocks for history */
3736 ac->ac_f_ex = ac->ac_b_ex;
3738 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3739 pa->pa_lstart = pa->pa_pstart;
3740 pa->pa_len = ac->ac_b_ex.fe_len;
3741 pa->pa_free = pa->pa_len;
3742 atomic_set(&pa->pa_count, 1);
3743 spin_lock_init(&pa->pa_lock);
3744 INIT_LIST_HEAD(&pa->pa_inode_list);
3745 INIT_LIST_HEAD(&pa->pa_group_list);
3747 pa->pa_type = MB_GROUP_PA;
3749 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3750 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3751 trace_ext4_mb_new_group_pa(ac, pa);
3753 ext4_mb_use_group_pa(ac, pa);
3754 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3756 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3760 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3761 pa->pa_inode = NULL;
3763 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3764 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3765 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3768 * We will later add the new pa to the right bucket
3769 * after updating the pa_free in ext4_mb_release_context
3774 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3778 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3779 err = ext4_mb_new_group_pa(ac);
3781 err = ext4_mb_new_inode_pa(ac);
3786 * finds all unused blocks in on-disk bitmap, frees them in
3787 * in-core bitmap and buddy.
3788 * @pa must be unlinked from inode and group lists, so that
3789 * nobody else can find/use it.
3790 * the caller MUST hold group/inode locks.
3791 * TODO: optimize the case when there are no in-core structures yet
3793 static noinline_for_stack int
3794 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3795 struct ext4_prealloc_space *pa)
3797 struct super_block *sb = e4b->bd_sb;
3798 struct ext4_sb_info *sbi = EXT4_SB(sb);
3803 unsigned long long grp_blk_start;
3806 BUG_ON(pa->pa_deleted == 0);
3807 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3808 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3809 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3810 end = bit + pa->pa_len;
3813 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3816 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3817 mb_debug(1, " free preallocated %u/%u in group %u\n",
3818 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3819 (unsigned) next - bit, (unsigned) group);
3822 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3823 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3824 EXT4_C2B(sbi, bit)),
3826 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3829 if (free != pa->pa_free) {
3830 ext4_msg(e4b->bd_sb, KERN_CRIT,
3831 "pa %p: logic %lu, phys. %lu, len %lu",
3832 pa, (unsigned long) pa->pa_lstart,
3833 (unsigned long) pa->pa_pstart,
3834 (unsigned long) pa->pa_len);
3835 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3838 * pa is already deleted so we use the value obtained
3839 * from the bitmap and continue.
3842 atomic_add(free, &sbi->s_mb_discarded);
3847 static noinline_for_stack int
3848 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3849 struct ext4_prealloc_space *pa)
3851 struct super_block *sb = e4b->bd_sb;
3855 trace_ext4_mb_release_group_pa(sb, pa);
3856 BUG_ON(pa->pa_deleted == 0);
3857 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3858 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3859 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3860 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3861 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3867 * releases all preallocations in given group
3869 * first, we need to decide discard policy:
3870 * - when do we discard
3872 * - how many do we discard
3873 * 1) how many requested
3875 static noinline_for_stack int
3876 ext4_mb_discard_group_preallocations(struct super_block *sb,
3877 ext4_group_t group, int needed)
3879 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3880 struct buffer_head *bitmap_bh = NULL;
3881 struct ext4_prealloc_space *pa, *tmp;
3882 struct list_head list;
3883 struct ext4_buddy e4b;
3888 mb_debug(1, "discard preallocation for group %u\n", group);
3890 if (list_empty(&grp->bb_prealloc_list))
3893 bitmap_bh = ext4_read_block_bitmap(sb, group);
3894 if (IS_ERR(bitmap_bh)) {
3895 err = PTR_ERR(bitmap_bh);
3896 ext4_error(sb, "Error %d reading block bitmap for %u",
3901 err = ext4_mb_load_buddy(sb, group, &e4b);
3903 ext4_warning(sb, "Error %d loading buddy information for %u",
3910 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3912 INIT_LIST_HEAD(&list);
3914 ext4_lock_group(sb, group);
3915 list_for_each_entry_safe(pa, tmp,
3916 &grp->bb_prealloc_list, pa_group_list) {
3917 spin_lock(&pa->pa_lock);
3918 if (atomic_read(&pa->pa_count)) {
3919 spin_unlock(&pa->pa_lock);
3923 if (pa->pa_deleted) {
3924 spin_unlock(&pa->pa_lock);
3928 /* seems this one can be freed ... */
3931 /* we can trust pa_free ... */
3932 free += pa->pa_free;
3934 spin_unlock(&pa->pa_lock);
3936 list_del(&pa->pa_group_list);
3937 list_add(&pa->u.pa_tmp_list, &list);
3940 /* if we still need more blocks and some PAs were used, try again */
3941 if (free < needed && busy) {
3943 ext4_unlock_group(sb, group);
3948 /* found anything to free? */
3949 if (list_empty(&list)) {
3954 /* now free all selected PAs */
3955 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3957 /* remove from object (inode or locality group) */
3958 spin_lock(pa->pa_obj_lock);
3959 list_del_rcu(&pa->pa_inode_list);
3960 spin_unlock(pa->pa_obj_lock);
3962 if (pa->pa_type == MB_GROUP_PA)
3963 ext4_mb_release_group_pa(&e4b, pa);
3965 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3967 list_del(&pa->u.pa_tmp_list);
3968 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3972 ext4_unlock_group(sb, group);
3973 ext4_mb_unload_buddy(&e4b);
3979 * releases all non-used preallocated blocks for given inode
3981 * It's important to discard preallocations under i_data_sem
3982 * We don't want another block to be served from the prealloc
3983 * space when we are discarding the inode prealloc space.
3985 * FIXME!! Make sure it is valid at all the call sites
3987 void ext4_discard_preallocations(struct inode *inode)
3989 struct ext4_inode_info *ei = EXT4_I(inode);
3990 struct super_block *sb = inode->i_sb;
3991 struct buffer_head *bitmap_bh = NULL;
3992 struct ext4_prealloc_space *pa, *tmp;
3993 ext4_group_t group = 0;
3994 struct list_head list;
3995 struct ext4_buddy e4b;
3998 if (!S_ISREG(inode->i_mode)) {
3999 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4003 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4004 trace_ext4_discard_preallocations(inode);
4006 INIT_LIST_HEAD(&list);
4009 /* first, collect all pa's in the inode */
4010 spin_lock(&ei->i_prealloc_lock);
4011 while (!list_empty(&ei->i_prealloc_list)) {
4012 pa = list_entry(ei->i_prealloc_list.next,
4013 struct ext4_prealloc_space, pa_inode_list);
4014 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4015 spin_lock(&pa->pa_lock);
4016 if (atomic_read(&pa->pa_count)) {
4017 /* this shouldn't happen often - nobody should
4018 * use preallocation while we're discarding it */
4019 spin_unlock(&pa->pa_lock);
4020 spin_unlock(&ei->i_prealloc_lock);
4021 ext4_msg(sb, KERN_ERR,
4022 "uh-oh! used pa while discarding");
4024 schedule_timeout_uninterruptible(HZ);
4028 if (pa->pa_deleted == 0) {
4030 spin_unlock(&pa->pa_lock);
4031 list_del_rcu(&pa->pa_inode_list);
4032 list_add(&pa->u.pa_tmp_list, &list);
4036 /* someone is deleting pa right now */
4037 spin_unlock(&pa->pa_lock);
4038 spin_unlock(&ei->i_prealloc_lock);
4040 /* we have to wait here because pa_deleted
4041 * doesn't mean pa is already unlinked from
4042 * the list. as we might be called from
4043 * ->clear_inode() the inode will get freed
4044 * and concurrent thread which is unlinking
4045 * pa from inode's list may access already
4046 * freed memory, bad-bad-bad */
4048 /* XXX: if this happens too often, we can
4049 * add a flag to force wait only in case
4050 * of ->clear_inode(), but not in case of
4051 * regular truncate */
4052 schedule_timeout_uninterruptible(HZ);
4055 spin_unlock(&ei->i_prealloc_lock);
4057 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4058 BUG_ON(pa->pa_type != MB_INODE_PA);
4059 group = ext4_get_group_number(sb, pa->pa_pstart);
4061 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4062 GFP_NOFS|__GFP_NOFAIL);
4064 ext4_error(sb, "Error %d loading buddy information for %u",
4069 bitmap_bh = ext4_read_block_bitmap(sb, group);
4070 if (IS_ERR(bitmap_bh)) {
4071 err = PTR_ERR(bitmap_bh);
4072 ext4_error(sb, "Error %d reading block bitmap for %u",
4074 ext4_mb_unload_buddy(&e4b);
4078 ext4_lock_group(sb, group);
4079 list_del(&pa->pa_group_list);
4080 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4081 ext4_unlock_group(sb, group);
4083 ext4_mb_unload_buddy(&e4b);
4086 list_del(&pa->u.pa_tmp_list);
4087 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4091 #ifdef CONFIG_EXT4_DEBUG
4092 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4094 struct super_block *sb = ac->ac_sb;
4095 ext4_group_t ngroups, i;
4097 if (!ext4_mballoc_debug ||
4098 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4101 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4102 " Allocation context details:");
4103 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4104 ac->ac_status, ac->ac_flags);
4105 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4106 "goal %lu/%lu/%lu@%lu, "
4107 "best %lu/%lu/%lu@%lu cr %d",
4108 (unsigned long)ac->ac_o_ex.fe_group,
4109 (unsigned long)ac->ac_o_ex.fe_start,
4110 (unsigned long)ac->ac_o_ex.fe_len,
4111 (unsigned long)ac->ac_o_ex.fe_logical,
4112 (unsigned long)ac->ac_g_ex.fe_group,
4113 (unsigned long)ac->ac_g_ex.fe_start,
4114 (unsigned long)ac->ac_g_ex.fe_len,
4115 (unsigned long)ac->ac_g_ex.fe_logical,
4116 (unsigned long)ac->ac_b_ex.fe_group,
4117 (unsigned long)ac->ac_b_ex.fe_start,
4118 (unsigned long)ac->ac_b_ex.fe_len,
4119 (unsigned long)ac->ac_b_ex.fe_logical,
4120 (int)ac->ac_criteria);
4121 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4122 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4123 ngroups = ext4_get_groups_count(sb);
4124 for (i = 0; i < ngroups; i++) {
4125 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4126 struct ext4_prealloc_space *pa;
4127 ext4_grpblk_t start;
4128 struct list_head *cur;
4129 ext4_lock_group(sb, i);
4130 list_for_each(cur, &grp->bb_prealloc_list) {
4131 pa = list_entry(cur, struct ext4_prealloc_space,
4133 spin_lock(&pa->pa_lock);
4134 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4136 spin_unlock(&pa->pa_lock);
4137 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4140 ext4_unlock_group(sb, i);
4142 if (grp->bb_free == 0)
4144 printk(KERN_ERR "%u: %d/%d \n",
4145 i, grp->bb_free, grp->bb_fragments);
4147 printk(KERN_ERR "\n");
4150 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4157 * We use locality group preallocation for small size file. The size of the
4158 * file is determined by the current size or the resulting size after
4159 * allocation which ever is larger
4161 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4163 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4165 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4166 int bsbits = ac->ac_sb->s_blocksize_bits;
4169 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4172 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4175 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4176 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4179 if ((size == isize) &&
4180 !ext4_fs_is_busy(sbi) &&
4181 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4182 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4186 if (sbi->s_mb_group_prealloc <= 0) {
4187 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4191 /* don't use group allocation for large files */
4192 size = max(size, isize);
4193 if (size > sbi->s_mb_stream_request) {
4194 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4198 BUG_ON(ac->ac_lg != NULL);
4200 * locality group prealloc space are per cpu. The reason for having
4201 * per cpu locality group is to reduce the contention between block
4202 * request from multiple CPUs.
4204 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4206 /* we're going to use group allocation */
4207 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4209 /* serialize all allocations in the group */
4210 mutex_lock(&ac->ac_lg->lg_mutex);
4213 static noinline_for_stack int
4214 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4215 struct ext4_allocation_request *ar)
4217 struct super_block *sb = ar->inode->i_sb;
4218 struct ext4_sb_info *sbi = EXT4_SB(sb);
4219 struct ext4_super_block *es = sbi->s_es;
4223 ext4_grpblk_t block;
4225 /* we can't allocate > group size */
4228 /* just a dirty hack to filter too big requests */
4229 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4230 len = EXT4_CLUSTERS_PER_GROUP(sb);
4232 /* start searching from the goal */
4234 if (goal < le32_to_cpu(es->s_first_data_block) ||
4235 goal >= ext4_blocks_count(es))
4236 goal = le32_to_cpu(es->s_first_data_block);
4237 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4239 /* set up allocation goals */
4240 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4241 ac->ac_status = AC_STATUS_CONTINUE;
4243 ac->ac_inode = ar->inode;
4244 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4245 ac->ac_o_ex.fe_group = group;
4246 ac->ac_o_ex.fe_start = block;
4247 ac->ac_o_ex.fe_len = len;
4248 ac->ac_g_ex = ac->ac_o_ex;
4249 ac->ac_flags = ar->flags;
4251 /* we have to define context: we'll we work with a file or
4252 * locality group. this is a policy, actually */
4253 ext4_mb_group_or_file(ac);
4255 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4256 "left: %u/%u, right %u/%u to %swritable\n",
4257 (unsigned) ar->len, (unsigned) ar->logical,
4258 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4259 (unsigned) ar->lleft, (unsigned) ar->pleft,
4260 (unsigned) ar->lright, (unsigned) ar->pright,
4261 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4266 static noinline_for_stack void
4267 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4268 struct ext4_locality_group *lg,
4269 int order, int total_entries)
4271 ext4_group_t group = 0;
4272 struct ext4_buddy e4b;
4273 struct list_head discard_list;
4274 struct ext4_prealloc_space *pa, *tmp;
4276 mb_debug(1, "discard locality group preallocation\n");
4278 INIT_LIST_HEAD(&discard_list);
4280 spin_lock(&lg->lg_prealloc_lock);
4281 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4283 spin_lock(&pa->pa_lock);
4284 if (atomic_read(&pa->pa_count)) {
4286 * This is the pa that we just used
4287 * for block allocation. So don't
4290 spin_unlock(&pa->pa_lock);
4293 if (pa->pa_deleted) {
4294 spin_unlock(&pa->pa_lock);
4297 /* only lg prealloc space */
4298 BUG_ON(pa->pa_type != MB_GROUP_PA);
4300 /* seems this one can be freed ... */
4302 spin_unlock(&pa->pa_lock);
4304 list_del_rcu(&pa->pa_inode_list);
4305 list_add(&pa->u.pa_tmp_list, &discard_list);
4308 if (total_entries <= 5) {
4310 * we want to keep only 5 entries
4311 * allowing it to grow to 8. This
4312 * mak sure we don't call discard
4313 * soon for this list.
4318 spin_unlock(&lg->lg_prealloc_lock);
4320 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4323 group = ext4_get_group_number(sb, pa->pa_pstart);
4324 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4325 GFP_NOFS|__GFP_NOFAIL);
4327 ext4_error(sb, "Error %d loading buddy information for %u",
4331 ext4_lock_group(sb, group);
4332 list_del(&pa->pa_group_list);
4333 ext4_mb_release_group_pa(&e4b, pa);
4334 ext4_unlock_group(sb, group);
4336 ext4_mb_unload_buddy(&e4b);
4337 list_del(&pa->u.pa_tmp_list);
4338 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4343 * We have incremented pa_count. So it cannot be freed at this
4344 * point. Also we hold lg_mutex. So no parallel allocation is
4345 * possible from this lg. That means pa_free cannot be updated.
4347 * A parallel ext4_mb_discard_group_preallocations is possible.
4348 * which can cause the lg_prealloc_list to be updated.
4351 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4353 int order, added = 0, lg_prealloc_count = 1;
4354 struct super_block *sb = ac->ac_sb;
4355 struct ext4_locality_group *lg = ac->ac_lg;
4356 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4358 order = fls(pa->pa_free) - 1;
4359 if (order > PREALLOC_TB_SIZE - 1)
4360 /* The max size of hash table is PREALLOC_TB_SIZE */
4361 order = PREALLOC_TB_SIZE - 1;
4362 /* Add the prealloc space to lg */
4363 spin_lock(&lg->lg_prealloc_lock);
4364 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4366 spin_lock(&tmp_pa->pa_lock);
4367 if (tmp_pa->pa_deleted) {
4368 spin_unlock(&tmp_pa->pa_lock);
4371 if (!added && pa->pa_free < tmp_pa->pa_free) {
4372 /* Add to the tail of the previous entry */
4373 list_add_tail_rcu(&pa->pa_inode_list,
4374 &tmp_pa->pa_inode_list);
4377 * we want to count the total
4378 * number of entries in the list
4381 spin_unlock(&tmp_pa->pa_lock);
4382 lg_prealloc_count++;
4385 list_add_tail_rcu(&pa->pa_inode_list,
4386 &lg->lg_prealloc_list[order]);
4387 spin_unlock(&lg->lg_prealloc_lock);
4389 /* Now trim the list to be not more than 8 elements */
4390 if (lg_prealloc_count > 8) {
4391 ext4_mb_discard_lg_preallocations(sb, lg,
4392 order, lg_prealloc_count);
4399 * release all resource we used in allocation
4401 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4403 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4404 struct ext4_prealloc_space *pa = ac->ac_pa;
4406 if (pa->pa_type == MB_GROUP_PA) {
4407 /* see comment in ext4_mb_use_group_pa() */
4408 spin_lock(&pa->pa_lock);
4409 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4410 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4411 pa->pa_free -= ac->ac_b_ex.fe_len;
4412 pa->pa_len -= ac->ac_b_ex.fe_len;
4413 spin_unlock(&pa->pa_lock);
4418 * We want to add the pa to the right bucket.
4419 * Remove it from the list and while adding
4420 * make sure the list to which we are adding
4423 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4424 spin_lock(pa->pa_obj_lock);
4425 list_del_rcu(&pa->pa_inode_list);
4426 spin_unlock(pa->pa_obj_lock);
4427 ext4_mb_add_n_trim(ac);
4429 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4431 if (ac->ac_bitmap_page)
4432 put_page(ac->ac_bitmap_page);
4433 if (ac->ac_buddy_page)
4434 put_page(ac->ac_buddy_page);
4435 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4436 mutex_unlock(&ac->ac_lg->lg_mutex);
4437 ext4_mb_collect_stats(ac);
4441 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4443 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4447 trace_ext4_mb_discard_preallocations(sb, needed);
4448 for (i = 0; i < ngroups && needed > 0; i++) {
4449 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4458 * Main entry point into mballoc to allocate blocks
4459 * it tries to use preallocation first, then falls back
4460 * to usual allocation
4462 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4463 struct ext4_allocation_request *ar, int *errp)
4466 struct ext4_allocation_context *ac = NULL;
4467 struct ext4_sb_info *sbi;
4468 struct super_block *sb;
4469 ext4_fsblk_t block = 0;
4470 unsigned int inquota = 0;
4471 unsigned int reserv_clstrs = 0;
4474 sb = ar->inode->i_sb;
4477 trace_ext4_request_blocks(ar);
4479 /* Allow to use superuser reservation for quota file */
4480 if (ext4_is_quota_file(ar->inode))
4481 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4483 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4484 /* Without delayed allocation we need to verify
4485 * there is enough free blocks to do block allocation
4486 * and verify allocation doesn't exceed the quota limits.
4489 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4491 /* let others to free the space */
4493 ar->len = ar->len >> 1;
4499 reserv_clstrs = ar->len;
4500 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4501 dquot_alloc_block_nofail(ar->inode,
4502 EXT4_C2B(sbi, ar->len));
4505 dquot_alloc_block(ar->inode,
4506 EXT4_C2B(sbi, ar->len))) {
4508 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4519 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4526 *errp = ext4_mb_initialize_context(ac, ar);
4532 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4533 if (!ext4_mb_use_preallocated(ac)) {
4534 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4535 ext4_mb_normalize_request(ac, ar);
4537 /* allocate space in core */
4538 *errp = ext4_mb_regular_allocator(ac);
4540 goto discard_and_exit;
4542 /* as we've just preallocated more space than
4543 * user requested originally, we store allocated
4544 * space in a special descriptor */
4545 if (ac->ac_status == AC_STATUS_FOUND &&
4546 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4547 *errp = ext4_mb_new_preallocation(ac);
4550 ext4_discard_allocated_blocks(ac);
4554 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4555 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4557 ext4_discard_allocated_blocks(ac);
4560 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4561 ar->len = ac->ac_b_ex.fe_len;
4564 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4572 ac->ac_b_ex.fe_len = 0;
4574 ext4_mb_show_ac(ac);
4576 ext4_mb_release_context(ac);
4579 kmem_cache_free(ext4_ac_cachep, ac);
4580 if (inquota && ar->len < inquota)
4581 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4583 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4584 /* release all the reserved blocks if non delalloc */
4585 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4589 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4595 * We can merge two free data extents only if the physical blocks
4596 * are contiguous, AND the extents were freed by the same transaction,
4597 * AND the blocks are associated with the same group.
4599 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4600 struct ext4_free_data *entry,
4601 struct ext4_free_data *new_entry,
4602 struct rb_root *entry_rb_root)
4604 if ((entry->efd_tid != new_entry->efd_tid) ||
4605 (entry->efd_group != new_entry->efd_group))
4607 if (entry->efd_start_cluster + entry->efd_count ==
4608 new_entry->efd_start_cluster) {
4609 new_entry->efd_start_cluster = entry->efd_start_cluster;
4610 new_entry->efd_count += entry->efd_count;
4611 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4612 entry->efd_start_cluster) {
4613 new_entry->efd_count += entry->efd_count;
4616 spin_lock(&sbi->s_md_lock);
4617 list_del(&entry->efd_list);
4618 spin_unlock(&sbi->s_md_lock);
4619 rb_erase(&entry->efd_node, entry_rb_root);
4620 kmem_cache_free(ext4_free_data_cachep, entry);
4623 static noinline_for_stack int
4624 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4625 struct ext4_free_data *new_entry)
4627 ext4_group_t group = e4b->bd_group;
4628 ext4_grpblk_t cluster;
4629 ext4_grpblk_t clusters = new_entry->efd_count;
4630 struct ext4_free_data *entry;
4631 struct ext4_group_info *db = e4b->bd_info;
4632 struct super_block *sb = e4b->bd_sb;
4633 struct ext4_sb_info *sbi = EXT4_SB(sb);
4634 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4635 struct rb_node *parent = NULL, *new_node;
4637 BUG_ON(!ext4_handle_valid(handle));
4638 BUG_ON(e4b->bd_bitmap_page == NULL);
4639 BUG_ON(e4b->bd_buddy_page == NULL);
4641 new_node = &new_entry->efd_node;
4642 cluster = new_entry->efd_start_cluster;
4645 /* first free block exent. We need to
4646 protect buddy cache from being freed,
4647 * otherwise we'll refresh it from
4648 * on-disk bitmap and lose not-yet-available
4650 get_page(e4b->bd_buddy_page);
4651 get_page(e4b->bd_bitmap_page);
4655 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4656 if (cluster < entry->efd_start_cluster)
4658 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4659 n = &(*n)->rb_right;
4661 ext4_grp_locked_error(sb, group, 0,
4662 ext4_group_first_block_no(sb, group) +
4663 EXT4_C2B(sbi, cluster),
4664 "Block already on to-be-freed list");
4669 rb_link_node(new_node, parent, n);
4670 rb_insert_color(new_node, &db->bb_free_root);
4672 /* Now try to see the extent can be merged to left and right */
4673 node = rb_prev(new_node);
4675 entry = rb_entry(node, struct ext4_free_data, efd_node);
4676 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4677 &(db->bb_free_root));
4680 node = rb_next(new_node);
4682 entry = rb_entry(node, struct ext4_free_data, efd_node);
4683 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4684 &(db->bb_free_root));
4687 spin_lock(&sbi->s_md_lock);
4688 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4689 sbi->s_mb_free_pending += clusters;
4690 spin_unlock(&sbi->s_md_lock);
4695 * ext4_free_blocks() -- Free given blocks and update quota
4696 * @handle: handle for this transaction
4698 * @block: start physical block to free
4699 * @count: number of blocks to count
4700 * @flags: flags used by ext4_free_blocks
4702 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4703 struct buffer_head *bh, ext4_fsblk_t block,
4704 unsigned long count, int flags)
4706 struct buffer_head *bitmap_bh = NULL;
4707 struct super_block *sb = inode->i_sb;
4708 struct ext4_group_desc *gdp;
4709 unsigned int overflow;
4711 struct buffer_head *gd_bh;
4712 ext4_group_t block_group;
4713 struct ext4_sb_info *sbi;
4714 struct ext4_buddy e4b;
4715 unsigned int count_clusters;
4722 BUG_ON(block != bh->b_blocknr);
4724 block = bh->b_blocknr;
4728 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4729 !ext4_data_block_valid(sbi, block, count)) {
4730 ext4_error(sb, "Freeing blocks not in datazone - "
4731 "block = %llu, count = %lu", block, count);
4735 ext4_debug("freeing block %llu\n", block);
4736 trace_ext4_free_blocks(inode, block, count, flags);
4738 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4741 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4746 * If the extent to be freed does not begin on a cluster
4747 * boundary, we need to deal with partial clusters at the
4748 * beginning and end of the extent. Normally we will free
4749 * blocks at the beginning or the end unless we are explicitly
4750 * requested to avoid doing so.
4752 overflow = EXT4_PBLK_COFF(sbi, block);
4754 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4755 overflow = sbi->s_cluster_ratio - overflow;
4757 if (count > overflow)
4766 overflow = EXT4_LBLK_COFF(sbi, count);
4768 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4769 if (count > overflow)
4774 count += sbi->s_cluster_ratio - overflow;
4777 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4779 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4781 for (i = 0; i < count; i++) {
4784 bh = sb_find_get_block(inode->i_sb, block + i);
4785 ext4_forget(handle, is_metadata, inode, bh, block + i);
4791 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4793 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4794 ext4_get_group_info(sb, block_group))))
4798 * Check to see if we are freeing blocks across a group
4801 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4802 overflow = EXT4_C2B(sbi, bit) + count -
4803 EXT4_BLOCKS_PER_GROUP(sb);
4806 count_clusters = EXT4_NUM_B2C(sbi, count);
4807 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4808 if (IS_ERR(bitmap_bh)) {
4809 err = PTR_ERR(bitmap_bh);
4813 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4819 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4820 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4821 in_range(block, ext4_inode_table(sb, gdp),
4822 sbi->s_itb_per_group) ||
4823 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4824 sbi->s_itb_per_group)) {
4826 ext4_error(sb, "Freeing blocks in system zone - "
4827 "Block = %llu, count = %lu", block, count);
4828 /* err = 0. ext4_std_error should be a no op */
4832 BUFFER_TRACE(bitmap_bh, "getting write access");
4833 err = ext4_journal_get_write_access(handle, bitmap_bh);
4838 * We are about to modify some metadata. Call the journal APIs
4839 * to unshare ->b_data if a currently-committing transaction is
4842 BUFFER_TRACE(gd_bh, "get_write_access");
4843 err = ext4_journal_get_write_access(handle, gd_bh);
4846 #ifdef AGGRESSIVE_CHECK
4849 for (i = 0; i < count_clusters; i++)
4850 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4853 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4855 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4856 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4857 GFP_NOFS|__GFP_NOFAIL);
4862 * We need to make sure we don't reuse the freed block until after the
4863 * transaction is committed. We make an exception if the inode is to be
4864 * written in writeback mode since writeback mode has weak data
4865 * consistency guarantees.
4867 if (ext4_handle_valid(handle) &&
4868 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4869 !ext4_should_writeback_data(inode))) {
4870 struct ext4_free_data *new_entry;
4872 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4875 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4876 GFP_NOFS|__GFP_NOFAIL);
4877 new_entry->efd_start_cluster = bit;
4878 new_entry->efd_group = block_group;
4879 new_entry->efd_count = count_clusters;
4880 new_entry->efd_tid = handle->h_transaction->t_tid;
4882 ext4_lock_group(sb, block_group);
4883 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4884 ext4_mb_free_metadata(handle, &e4b, new_entry);
4886 /* need to update group_info->bb_free and bitmap
4887 * with group lock held. generate_buddy look at
4888 * them with group lock_held
4890 if (test_opt(sb, DISCARD)) {
4891 err = ext4_issue_discard(sb, block_group, bit, count,
4893 if (err && err != -EOPNOTSUPP)
4894 ext4_msg(sb, KERN_WARNING, "discard request in"
4895 " group:%d block:%d count:%lu failed"
4896 " with %d", block_group, bit, count,
4899 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4901 ext4_lock_group(sb, block_group);
4902 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4903 mb_free_blocks(inode, &e4b, bit, count_clusters);
4906 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4907 ext4_free_group_clusters_set(sb, gdp, ret);
4908 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4909 ext4_group_desc_csum_set(sb, block_group, gdp);
4910 ext4_unlock_group(sb, block_group);
4912 if (sbi->s_log_groups_per_flex) {
4913 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4914 atomic64_add(count_clusters,
4915 &sbi->s_flex_groups[flex_group].free_clusters);
4919 * on a bigalloc file system, defer the s_freeclusters_counter
4920 * update to the caller (ext4_remove_space and friends) so they
4921 * can determine if a cluster freed here should be rereserved
4923 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
4924 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4925 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4926 percpu_counter_add(&sbi->s_freeclusters_counter,
4930 ext4_mb_unload_buddy(&e4b);
4932 /* We dirtied the bitmap block */
4933 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4934 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4936 /* And the group descriptor block */
4937 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4938 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4942 if (overflow && !err) {
4950 ext4_std_error(sb, err);
4955 * ext4_group_add_blocks() -- Add given blocks to an existing group
4956 * @handle: handle to this transaction
4958 * @block: start physical block to add to the block group
4959 * @count: number of blocks to free
4961 * This marks the blocks as free in the bitmap and buddy.
4963 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4964 ext4_fsblk_t block, unsigned long count)
4966 struct buffer_head *bitmap_bh = NULL;
4967 struct buffer_head *gd_bh;
4968 ext4_group_t block_group;
4971 struct ext4_group_desc *desc;
4972 struct ext4_sb_info *sbi = EXT4_SB(sb);
4973 struct ext4_buddy e4b;
4974 int err = 0, ret, free_clusters_count;
4975 ext4_grpblk_t clusters_freed;
4976 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
4977 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
4978 unsigned long cluster_count = last_cluster - first_cluster + 1;
4980 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4985 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4987 * Check to see if we are freeing blocks across a group
4990 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
4991 ext4_warning(sb, "too many blocks added to group %u",
4997 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4998 if (IS_ERR(bitmap_bh)) {
4999 err = PTR_ERR(bitmap_bh);
5004 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5010 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5011 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5012 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5013 in_range(block + count - 1, ext4_inode_table(sb, desc),
5014 sbi->s_itb_per_group)) {
5015 ext4_error(sb, "Adding blocks in system zones - "
5016 "Block = %llu, count = %lu",
5022 BUFFER_TRACE(bitmap_bh, "getting write access");
5023 err = ext4_journal_get_write_access(handle, bitmap_bh);
5028 * We are about to modify some metadata. Call the journal APIs
5029 * to unshare ->b_data if a currently-committing transaction is
5032 BUFFER_TRACE(gd_bh, "get_write_access");
5033 err = ext4_journal_get_write_access(handle, gd_bh);
5037 for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5038 BUFFER_TRACE(bitmap_bh, "clear bit");
5039 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5040 ext4_error(sb, "bit already cleared for block %llu",
5041 (ext4_fsblk_t)(block + i));
5042 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5048 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5053 * need to update group_info->bb_free and bitmap
5054 * with group lock held. generate_buddy look at
5055 * them with group lock_held
5057 ext4_lock_group(sb, block_group);
5058 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5059 mb_free_blocks(NULL, &e4b, bit, cluster_count);
5060 free_clusters_count = clusters_freed +
5061 ext4_free_group_clusters(sb, desc);
5062 ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5063 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5064 ext4_group_desc_csum_set(sb, block_group, desc);
5065 ext4_unlock_group(sb, block_group);
5066 percpu_counter_add(&sbi->s_freeclusters_counter,
5069 if (sbi->s_log_groups_per_flex) {
5070 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5071 atomic64_add(clusters_freed,
5072 &sbi->s_flex_groups[flex_group].free_clusters);
5075 ext4_mb_unload_buddy(&e4b);
5077 /* We dirtied the bitmap block */
5078 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5079 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5081 /* And the group descriptor block */
5082 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5083 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5089 ext4_std_error(sb, err);
5094 * ext4_trim_extent -- function to TRIM one single free extent in the group
5095 * @sb: super block for the file system
5096 * @start: starting block of the free extent in the alloc. group
5097 * @count: number of blocks to TRIM
5098 * @group: alloc. group we are working with
5099 * @e4b: ext4 buddy for the group
5101 * Trim "count" blocks starting at "start" in the "group". To assure that no
5102 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5103 * be called with under the group lock.
5105 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5106 ext4_group_t group, struct ext4_buddy *e4b)
5110 struct ext4_free_extent ex;
5113 trace_ext4_trim_extent(sb, group, start, count);
5115 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5117 ex.fe_start = start;
5118 ex.fe_group = group;
5122 * Mark blocks used, so no one can reuse them while
5125 mb_mark_used(e4b, &ex);
5126 ext4_unlock_group(sb, group);
5127 ret = ext4_issue_discard(sb, group, start, count, NULL);
5128 ext4_lock_group(sb, group);
5129 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5134 * ext4_trim_all_free -- function to trim all free space in alloc. group
5135 * @sb: super block for file system
5136 * @group: group to be trimmed
5137 * @start: first group block to examine
5138 * @max: last group block to examine
5139 * @minblocks: minimum extent block count
5141 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5142 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5146 * ext4_trim_all_free walks through group's block bitmap searching for free
5147 * extents. When the free extent is found, mark it as used in group buddy
5148 * bitmap. Then issue a TRIM command on this extent and free the extent in
5149 * the group buddy bitmap. This is done until whole group is scanned.
5151 static ext4_grpblk_t
5152 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5153 ext4_grpblk_t start, ext4_grpblk_t max,
5154 ext4_grpblk_t minblocks)
5157 ext4_grpblk_t next, count = 0, free_count = 0;
5158 struct ext4_buddy e4b;
5161 trace_ext4_trim_all_free(sb, group, start, max);
5163 ret = ext4_mb_load_buddy(sb, group, &e4b);
5165 ext4_warning(sb, "Error %d loading buddy information for %u",
5169 bitmap = e4b.bd_bitmap;
5171 ext4_lock_group(sb, group);
5172 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5173 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5176 start = (e4b.bd_info->bb_first_free > start) ?
5177 e4b.bd_info->bb_first_free : start;
5179 while (start <= max) {
5180 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5183 next = mb_find_next_bit(bitmap, max + 1, start);
5185 if ((next - start) >= minblocks) {
5186 ret = ext4_trim_extent(sb, start,
5187 next - start, group, &e4b);
5188 if (ret && ret != -EOPNOTSUPP)
5191 count += next - start;
5193 free_count += next - start;
5196 if (fatal_signal_pending(current)) {
5197 count = -ERESTARTSYS;
5201 if (need_resched()) {
5202 ext4_unlock_group(sb, group);
5204 ext4_lock_group(sb, group);
5207 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5213 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5216 ext4_unlock_group(sb, group);
5217 ext4_mb_unload_buddy(&e4b);
5219 ext4_debug("trimmed %d blocks in the group %d\n",
5226 * ext4_trim_fs() -- trim ioctl handle function
5227 * @sb: superblock for filesystem
5228 * @range: fstrim_range structure
5230 * start: First Byte to trim
5231 * len: number of Bytes to trim from start
5232 * minlen: minimum extent length in Bytes
5233 * ext4_trim_fs goes through all allocation groups containing Bytes from
5234 * start to start+len. For each such a group ext4_trim_all_free function
5235 * is invoked to trim all free space.
5237 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5239 struct ext4_group_info *grp;
5240 ext4_group_t group, first_group, last_group;
5241 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5242 uint64_t start, end, minlen, trimmed = 0;
5243 ext4_fsblk_t first_data_blk =
5244 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5245 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5248 start = range->start >> sb->s_blocksize_bits;
5249 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5250 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5251 range->minlen >> sb->s_blocksize_bits);
5253 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5254 start >= max_blks ||
5255 range->len < sb->s_blocksize)
5257 if (end >= max_blks)
5259 if (end <= first_data_blk)
5261 if (start < first_data_blk)
5262 start = first_data_blk;
5264 /* Determine first and last group to examine based on start and end */
5265 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5266 &first_group, &first_cluster);
5267 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5268 &last_group, &last_cluster);
5270 /* end now represents the last cluster to discard in this group */
5271 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5273 for (group = first_group; group <= last_group; group++) {
5274 grp = ext4_get_group_info(sb, group);
5275 /* We only do this if the grp has never been initialized */
5276 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5277 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5283 * For all the groups except the last one, last cluster will
5284 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5285 * change it for the last group, note that last_cluster is
5286 * already computed earlier by ext4_get_group_no_and_offset()
5288 if (group == last_group)
5291 if (grp->bb_free >= minlen) {
5292 cnt = ext4_trim_all_free(sb, group, first_cluster,
5302 * For every group except the first one, we are sure
5303 * that the first cluster to discard will be cluster #0.
5309 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5312 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5316 /* Iterate all the free extents in the group. */
5318 ext4_mballoc_query_range(
5319 struct super_block *sb,
5321 ext4_grpblk_t start,
5323 ext4_mballoc_query_range_fn formatter,
5328 struct ext4_buddy e4b;
5331 error = ext4_mb_load_buddy(sb, group, &e4b);
5334 bitmap = e4b.bd_bitmap;
5336 ext4_lock_group(sb, group);
5338 start = (e4b.bd_info->bb_first_free > start) ?
5339 e4b.bd_info->bb_first_free : start;
5340 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5341 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5343 while (start <= end) {
5344 start = mb_find_next_zero_bit(bitmap, end + 1, start);
5347 next = mb_find_next_bit(bitmap, end + 1, start);
5349 ext4_unlock_group(sb, group);
5350 error = formatter(sb, group, start, next - start, priv);
5353 ext4_lock_group(sb, group);
5358 ext4_unlock_group(sb, group);
5360 ext4_mb_unload_buddy(&e4b);