4 * Copyright (C) 1992 Rick Sladkey
6 * Changes Copyright (C) 1994 by Florian La Roche
7 * - Do not copy data too often around in the kernel.
8 * - In nfs_file_read the return value of kmalloc wasn't checked.
9 * - Put in a better version of read look-ahead buffering. Original idea
12 * Expire cache on write to a file by Wai S Kok (Oct 1994).
14 * Total rewrite of read side for new NFS buffer cache.. Linus.
16 * nfs regular file handling functions
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
32 #include <asm/uaccess.h>
34 #include "delegation.h"
42 #define NFSDBG_FACILITY NFSDBG_FILE
44 static const struct vm_operations_struct nfs_file_vm_ops;
46 /* Hack for future NFS swap support */
48 # define IS_SWAPFILE(inode) (0)
51 int nfs_check_flags(int flags)
53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
64 nfs_file_open(struct inode *inode, struct file *filp)
68 dprintk("NFS: open file(%pD2)\n", filp);
70 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 res = nfs_check_flags(filp->f_flags);
75 res = nfs_open(inode, filp);
80 nfs_file_release(struct inode *inode, struct file *filp)
82 dprintk("NFS: release(%pD2)\n", filp);
84 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 return nfs_release(inode, filp);
87 EXPORT_SYMBOL_GPL(nfs_file_release);
90 * nfs_revalidate_size - Revalidate the file size
91 * @inode - pointer to inode struct
92 * @file - pointer to struct file
94 * Revalidates the file length. This is basically a wrapper around
95 * nfs_revalidate_inode() that takes into account the fact that we may
96 * have cached writes (in which case we don't care about the server's
97 * idea of what the file length is), or O_DIRECT (in which case we
98 * shouldn't trust the cache).
100 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102 struct nfs_server *server = NFS_SERVER(inode);
103 struct nfs_inode *nfsi = NFS_I(inode);
105 if (nfs_have_delegated_attributes(inode))
108 if (filp->f_flags & O_DIRECT)
110 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
112 if (nfs_attribute_timeout(inode))
117 return __nfs_revalidate_inode(server, inode);
120 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
122 dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
123 filp, offset, whence);
126 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
127 * the cached file length
129 if (whence != SEEK_SET && whence != SEEK_CUR) {
130 struct inode *inode = filp->f_mapping->host;
132 int retval = nfs_revalidate_file_size(inode, filp);
134 return (loff_t)retval;
137 return generic_file_llseek(filp, offset, whence);
139 EXPORT_SYMBOL_GPL(nfs_file_llseek);
142 * Flush all dirty pages, and check for write errors.
145 nfs_file_flush(struct file *file, fl_owner_t id)
147 struct inode *inode = file_inode(file);
149 dprintk("NFS: flush(%pD2)\n", file);
151 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
152 if ((file->f_mode & FMODE_WRITE) == 0)
156 * If we're holding a write delegation, then just start the i/o
157 * but don't wait for completion (or send a commit).
159 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
160 return filemap_fdatawrite(file->f_mapping);
162 /* Flush writes to the server and return any errors */
163 return vfs_fsync(file, 0);
165 EXPORT_SYMBOL_GPL(nfs_file_flush);
168 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
170 struct inode *inode = file_inode(iocb->ki_filp);
173 if (iocb->ki_flags & IOCB_DIRECT)
174 return nfs_file_direct_read(iocb, to, iocb->ki_pos);
176 dprintk("NFS: read(%pD2, %zu@%lu)\n",
178 iov_iter_count(to), (unsigned long) iocb->ki_pos);
180 result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping);
182 result = generic_file_read_iter(iocb, to);
184 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
188 EXPORT_SYMBOL_GPL(nfs_file_read);
191 nfs_file_splice_read(struct file *filp, loff_t *ppos,
192 struct pipe_inode_info *pipe, size_t count,
195 struct inode *inode = file_inode(filp);
198 dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
199 filp, (unsigned long) count, (unsigned long long) *ppos);
201 res = nfs_revalidate_mapping_protected(inode, filp->f_mapping);
203 res = generic_file_splice_read(filp, ppos, pipe, count, flags);
205 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
209 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
212 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
214 struct inode *inode = file_inode(file);
217 dprintk("NFS: mmap(%pD2)\n", file);
219 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
220 * so we call that before revalidating the mapping
222 status = generic_file_mmap(file, vma);
224 vma->vm_ops = &nfs_file_vm_ops;
225 status = nfs_revalidate_mapping(inode, file->f_mapping);
229 EXPORT_SYMBOL_GPL(nfs_file_mmap);
232 * Flush any dirty pages for this process, and check for write errors.
233 * The return status from this call provides a reliable indication of
234 * whether any write errors occurred for this process.
236 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
237 * disk, but it retrieves and clears ctx->error after synching, despite
238 * the two being set at the same time in nfs_context_set_write_error().
239 * This is because the former is used to notify the _next_ call to
240 * nfs_file_write() that a write error occurred, and hence cause it to
241 * fall back to doing a synchronous write.
244 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
246 struct nfs_open_context *ctx = nfs_file_open_context(file);
247 struct inode *inode = file_inode(file);
248 int have_error, do_resend, status;
251 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
253 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
254 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
255 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
256 status = nfs_commit_inode(inode, FLUSH_SYNC);
257 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
259 ret = xchg(&ctx->error, 0);
267 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
273 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
276 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
279 struct inode *inode = file_inode(file);
281 trace_nfs_fsync_enter(inode);
283 nfs_inode_dio_wait(inode);
285 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
288 mutex_lock(&inode->i_mutex);
289 ret = nfs_file_fsync_commit(file, start, end, datasync);
290 mutex_unlock(&inode->i_mutex);
292 * If nfs_file_fsync_commit detected a server reboot, then
293 * resend all dirty pages that might have been covered by
294 * the NFS_CONTEXT_RESEND_WRITES flag
298 } while (ret == -EAGAIN);
300 trace_nfs_fsync_exit(inode, ret);
305 * Decide whether a read/modify/write cycle may be more efficient
306 * then a modify/write/read cycle when writing to a page in the
309 * The modify/write/read cycle may occur if a page is read before
310 * being completely filled by the writer. In this situation, the
311 * page must be completely written to stable storage on the server
312 * before it can be refilled by reading in the page from the server.
313 * This can lead to expensive, small, FILE_SYNC mode writes being
316 * It may be more efficient to read the page first if the file is
317 * open for reading in addition to writing, the page is not marked
318 * as Uptodate, it is not dirty or waiting to be committed,
319 * indicating that it was previously allocated and then modified,
320 * that there were valid bytes of data in that range of the file,
321 * and that the new data won't completely replace the old data in
322 * that range of the file.
324 static int nfs_want_read_modify_write(struct file *file, struct page *page,
325 loff_t pos, unsigned len)
327 unsigned int pglen = nfs_page_length(page);
328 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
329 unsigned int end = offset + len;
331 if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
332 if (!PageUptodate(page))
337 if ((file->f_mode & FMODE_READ) && /* open for read? */
338 !PageUptodate(page) && /* Uptodate? */
339 !PagePrivate(page) && /* i/o request already? */
340 pglen && /* valid bytes of file? */
341 (end < pglen || offset)) /* replace all valid bytes? */
347 * This does the "real" work of the write. We must allocate and lock the
348 * page to be sent back to the generic routine, which then copies the
349 * data from user space.
351 * If the writer ends up delaying the write, the writer needs to
352 * increment the page use counts until he is done with the page.
354 static int nfs_write_begin(struct file *file, struct address_space *mapping,
355 loff_t pos, unsigned len, unsigned flags,
356 struct page **pagep, void **fsdata)
359 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
363 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
364 file, mapping->host->i_ino, len, (long long) pos);
368 * Prevent starvation issues if someone is doing a consistency
371 ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
372 nfs_wait_bit_killable, TASK_KILLABLE);
376 * Wait for O_DIRECT to complete
378 nfs_inode_dio_wait(mapping->host);
380 page = grab_cache_page_write_begin(mapping, index, flags);
385 ret = nfs_flush_incompatible(file, page);
388 page_cache_release(page);
389 } else if (!once_thru &&
390 nfs_want_read_modify_write(file, page, pos, len)) {
392 ret = nfs_readpage(file, page);
393 page_cache_release(page);
400 static int nfs_write_end(struct file *file, struct address_space *mapping,
401 loff_t pos, unsigned len, unsigned copied,
402 struct page *page, void *fsdata)
404 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
405 struct nfs_open_context *ctx = nfs_file_open_context(file);
408 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
409 file, mapping->host->i_ino, len, (long long) pos);
412 * Zero any uninitialised parts of the page, and then mark the page
413 * as up to date if it turns out that we're extending the file.
415 if (!PageUptodate(page)) {
416 unsigned pglen = nfs_page_length(page);
417 unsigned end = offset + len;
420 zero_user_segments(page, 0, offset,
421 end, PAGE_CACHE_SIZE);
422 SetPageUptodate(page);
423 } else if (end >= pglen) {
424 zero_user_segment(page, end, PAGE_CACHE_SIZE);
426 SetPageUptodate(page);
428 zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
431 status = nfs_updatepage(file, page, offset, copied);
434 page_cache_release(page);
438 NFS_I(mapping->host)->write_io += copied;
440 if (nfs_ctx_key_to_expire(ctx)) {
441 status = nfs_wb_all(mapping->host);
450 * Partially or wholly invalidate a page
451 * - Release the private state associated with a page if undergoing complete
453 * - Called if either PG_private or PG_fscache is set on the page
454 * - Caller holds page lock
456 static void nfs_invalidate_page(struct page *page, unsigned int offset,
459 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
460 page, offset, length);
462 if (offset != 0 || length < PAGE_CACHE_SIZE)
464 /* Cancel any unstarted writes on this page */
465 nfs_wb_page_cancel(page_file_mapping(page)->host, page);
467 nfs_fscache_invalidate_page(page, page->mapping->host);
471 * Attempt to release the private state associated with a page
472 * - Called if either PG_private or PG_fscache is set on the page
473 * - Caller holds page lock
474 * - Return true (may release page) or false (may not)
476 static int nfs_release_page(struct page *page, gfp_t gfp)
478 struct address_space *mapping = page->mapping;
480 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
482 /* Always try to initiate a 'commit' if relevant, but only
483 * wait for it if __GFP_WAIT is set. Even then, only wait 1
484 * second and only if the 'bdi' is not congested.
485 * Waiting indefinitely can cause deadlocks when the NFS
486 * server is on this machine, when a new TCP connection is
487 * needed and in other rare cases. There is no particular
488 * need to wait extensively here. A short wait has the
489 * benefit that someone else can worry about the freezer.
492 struct nfs_server *nfss = NFS_SERVER(mapping->host);
493 nfs_commit_inode(mapping->host, 0);
494 if ((gfp & __GFP_WAIT) &&
495 !bdi_write_congested(&nfss->backing_dev_info)) {
496 wait_on_page_bit_killable_timeout(page, PG_private,
498 if (PagePrivate(page))
499 set_bdi_congested(&nfss->backing_dev_info,
503 /* If PagePrivate() is set, then the page is not freeable */
504 if (PagePrivate(page))
506 return nfs_fscache_release_page(page, gfp);
509 static void nfs_check_dirty_writeback(struct page *page,
510 bool *dirty, bool *writeback)
512 struct nfs_inode *nfsi;
513 struct address_space *mapping = page_file_mapping(page);
515 if (!mapping || PageSwapCache(page))
519 * Check if an unstable page is currently being committed and
520 * if so, have the VM treat it as if the page is under writeback
521 * so it will not block due to pages that will shortly be freeable.
523 nfsi = NFS_I(mapping->host);
524 if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
530 * If PagePrivate() is set, then the page is not freeable and as the
531 * inode is not being committed, it's not going to be cleaned in the
532 * near future so treat it as dirty
534 if (PagePrivate(page))
539 * Attempt to clear the private state associated with a page when an error
540 * occurs that requires the cached contents of an inode to be written back or
542 * - Called if either PG_private or fscache is set on the page
543 * - Caller holds page lock
544 * - Return 0 if successful, -error otherwise
546 static int nfs_launder_page(struct page *page)
548 struct inode *inode = page_file_mapping(page)->host;
549 struct nfs_inode *nfsi = NFS_I(inode);
551 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
552 inode->i_ino, (long long)page_offset(page));
554 nfs_fscache_wait_on_page_write(nfsi, page);
555 return nfs_wb_page(inode, page);
558 #ifdef CONFIG_NFS_SWAP
559 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
563 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
568 ret = xs_swapper(rcu_dereference(clnt->cl_xprt), 1);
574 static void nfs_swap_deactivate(struct file *file)
576 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
579 xs_swapper(rcu_dereference(clnt->cl_xprt), 0);
584 const struct address_space_operations nfs_file_aops = {
585 .readpage = nfs_readpage,
586 .readpages = nfs_readpages,
587 .set_page_dirty = __set_page_dirty_nobuffers,
588 .writepage = nfs_writepage,
589 .writepages = nfs_writepages,
590 .write_begin = nfs_write_begin,
591 .write_end = nfs_write_end,
592 .invalidatepage = nfs_invalidate_page,
593 .releasepage = nfs_release_page,
594 .direct_IO = nfs_direct_IO,
595 .migratepage = nfs_migrate_page,
596 .launder_page = nfs_launder_page,
597 .is_dirty_writeback = nfs_check_dirty_writeback,
598 .error_remove_page = generic_error_remove_page,
599 #ifdef CONFIG_NFS_SWAP
600 .swap_activate = nfs_swap_activate,
601 .swap_deactivate = nfs_swap_deactivate,
606 * Notification that a PTE pointing to an NFS page is about to be made
607 * writable, implying that someone is about to modify the page through a
608 * shared-writable mapping
610 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
612 struct page *page = vmf->page;
613 struct file *filp = vma->vm_file;
614 struct inode *inode = file_inode(filp);
616 int ret = VM_FAULT_NOPAGE;
617 struct address_space *mapping;
619 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
620 filp, filp->f_mapping->host->i_ino,
621 (long long)page_offset(page));
623 /* make sure the cache has finished storing the page */
624 nfs_fscache_wait_on_page_write(NFS_I(inode), page);
626 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
627 nfs_wait_bit_killable, TASK_KILLABLE);
630 mapping = page_file_mapping(page);
631 if (mapping != inode->i_mapping)
634 wait_on_page_writeback(page);
636 pagelen = nfs_page_length(page);
640 ret = VM_FAULT_LOCKED;
641 if (nfs_flush_incompatible(filp, page) == 0 &&
642 nfs_updatepage(filp, page, 0, pagelen) == 0)
645 ret = VM_FAULT_SIGBUS;
652 static const struct vm_operations_struct nfs_file_vm_ops = {
653 .fault = filemap_fault,
654 .map_pages = filemap_map_pages,
655 .page_mkwrite = nfs_vm_page_mkwrite,
658 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
660 struct nfs_open_context *ctx;
662 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
664 ctx = nfs_file_open_context(filp);
665 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
666 nfs_ctx_key_to_expire(ctx))
671 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
673 struct file *file = iocb->ki_filp;
674 struct inode *inode = file_inode(file);
675 unsigned long written = 0;
677 size_t count = iov_iter_count(from);
679 result = nfs_key_timeout_notify(file, inode);
683 if (iocb->ki_flags & IOCB_DIRECT) {
684 result = generic_write_checks(iocb, from);
687 return nfs_file_direct_write(iocb, from);
690 dprintk("NFS: write(%pD2, %zu@%Ld)\n",
691 file, count, (long long) iocb->ki_pos);
694 if (IS_SWAPFILE(inode))
697 * O_APPEND implies that we must revalidate the file length.
699 if (iocb->ki_flags & IOCB_APPEND) {
700 result = nfs_revalidate_file_size(inode, file);
709 result = generic_file_write_iter(iocb, from);
713 /* Return error values for O_DSYNC and IS_SYNC() */
714 if (result >= 0 && nfs_need_sync_write(file, inode)) {
715 int err = vfs_fsync(file, 0);
720 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
725 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
728 EXPORT_SYMBOL_GPL(nfs_file_write);
731 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
733 struct inode *inode = filp->f_mapping->host;
735 unsigned int saved_type = fl->fl_type;
737 /* Try local locking first */
738 posix_test_lock(filp, fl);
739 if (fl->fl_type != F_UNLCK) {
740 /* found a conflict */
743 fl->fl_type = saved_type;
745 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
751 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
755 fl->fl_type = F_UNLCK;
759 static int do_vfs_lock(struct file *file, struct file_lock *fl)
762 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
764 res = posix_lock_file_wait(file, fl);
767 res = flock_lock_file_wait(file, fl);
776 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
778 struct inode *inode = filp->f_mapping->host;
779 struct nfs_lock_context *l_ctx;
783 * Flush all pending writes before doing anything
788 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
789 if (!IS_ERR(l_ctx)) {
790 status = nfs_iocounter_wait(&l_ctx->io_count);
791 nfs_put_lock_context(l_ctx);
796 /* NOTE: special case
797 * If we're signalled while cleaning up locks on process exit, we
798 * still need to complete the unlock.
801 * Use local locking if mounted with "-onolock" or with appropriate
805 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
807 status = do_vfs_lock(filp, fl);
812 is_time_granular(struct timespec *ts) {
813 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
817 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
819 struct inode *inode = filp->f_mapping->host;
823 * Flush all pending writes before doing anything
826 status = nfs_sync_mapping(filp->f_mapping);
831 * Use local locking if mounted with "-onolock" or with appropriate
835 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
837 status = do_vfs_lock(filp, fl);
842 * Revalidate the cache if the server has time stamps granular
843 * enough to detect subsecond changes. Otherwise, clear the
844 * cache to prevent missing any changes.
846 * This makes locking act as a cache coherency point.
848 nfs_sync_mapping(filp->f_mapping);
849 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
850 if (is_time_granular(&NFS_SERVER(inode)->time_delta))
851 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
853 nfs_zap_caches(inode);
860 * Lock a (portion of) a file
862 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
864 struct inode *inode = filp->f_mapping->host;
868 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
869 filp, fl->fl_type, fl->fl_flags,
870 (long long)fl->fl_start, (long long)fl->fl_end);
872 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
874 /* No mandatory locks over NFS */
875 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
878 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
881 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
882 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
888 ret = do_getlk(filp, cmd, fl, is_local);
889 else if (fl->fl_type == F_UNLCK)
890 ret = do_unlk(filp, cmd, fl, is_local);
892 ret = do_setlk(filp, cmd, fl, is_local);
896 EXPORT_SYMBOL_GPL(nfs_lock);
899 * Lock a (portion of) a file
901 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
903 struct inode *inode = filp->f_mapping->host;
906 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
907 filp, fl->fl_type, fl->fl_flags);
909 if (!(fl->fl_flags & FL_FLOCK))
913 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
914 * any standard. In principle we might be able to support LOCK_MAND
915 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
916 * NFS code is not set up for it.
918 if (fl->fl_type & LOCK_MAND)
921 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
924 /* We're simulating flock() locks using posix locks on the server */
925 if (fl->fl_type == F_UNLCK)
926 return do_unlk(filp, cmd, fl, is_local);
927 return do_setlk(filp, cmd, fl, is_local);
929 EXPORT_SYMBOL_GPL(nfs_flock);
931 const struct file_operations nfs_file_operations = {
932 .llseek = nfs_file_llseek,
933 .read_iter = nfs_file_read,
934 .write_iter = nfs_file_write,
935 .mmap = nfs_file_mmap,
936 .open = nfs_file_open,
937 .flush = nfs_file_flush,
938 .release = nfs_file_release,
939 .fsync = nfs_file_fsync,
942 .splice_read = nfs_file_splice_read,
943 .splice_write = iter_file_splice_write,
944 .check_flags = nfs_check_flags,
945 .setlease = simple_nosetlease,
947 EXPORT_SYMBOL_GPL(nfs_file_operations);