1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
10 #include <linux/error-injection.h>
14 #include "transaction.h"
15 #include "print-tree.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
27 static struct kmem_cache *btrfs_path_cachep;
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct extent_buffer *dst,
36 struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 static const struct btrfs_csums {
46 const char driver[12];
48 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
49 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
50 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
51 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
52 .driver = "blake2b-256" },
56 * The leaf data grows from end-to-front in the node. this returns the address
57 * of the start of the last item, which is the stop of the leaf data stack.
59 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
61 u32 nr = btrfs_header_nritems(leaf);
64 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
65 return btrfs_item_offset(leaf, nr - 1);
69 * Move data in a @leaf (using memmove, safe for overlapping ranges).
71 * @leaf: leaf that we're doing a memmove on
72 * @dst_offset: item data offset we're moving to
73 * @src_offset: item data offset were' moving from
74 * @len: length of the data we're moving
76 * Wrapper around memmove_extent_buffer() that takes into account the header on
77 * the leaf. The btrfs_item offset's start directly after the header, so we
78 * have to adjust any offsets to account for the header in the leaf. This
79 * handles that math to simplify the callers.
81 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
82 unsigned long dst_offset,
83 unsigned long src_offset,
86 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
87 btrfs_item_nr_offset(leaf, 0) + src_offset, len);
91 * Copy item data from @src into @dst at the given @offset.
93 * @dst: destination leaf that we're copying into
94 * @src: source leaf that we're copying from
95 * @dst_offset: item data offset we're copying to
96 * @src_offset: item data offset were' copying from
97 * @len: length of the data we're copying
99 * Wrapper around copy_extent_buffer() that takes into account the header on
100 * the leaf. The btrfs_item offset's start directly after the header, so we
101 * have to adjust any offsets to account for the header in the leaf. This
102 * handles that math to simplify the callers.
104 static inline void copy_leaf_data(const struct extent_buffer *dst,
105 const struct extent_buffer *src,
106 unsigned long dst_offset,
107 unsigned long src_offset, unsigned long len)
109 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
110 btrfs_item_nr_offset(src, 0) + src_offset, len);
114 * Move items in a @leaf (using memmove).
116 * @dst: destination leaf for the items
117 * @dst_item: the item nr we're copying into
118 * @src_item: the item nr we're copying from
119 * @nr_items: the number of items to copy
121 * Wrapper around memmove_extent_buffer() that does the math to get the
122 * appropriate offsets into the leaf from the item numbers.
124 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
125 int dst_item, int src_item, int nr_items)
127 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
128 btrfs_item_nr_offset(leaf, src_item),
129 nr_items * sizeof(struct btrfs_item));
133 * Copy items from @src into @dst at the given @offset.
135 * @dst: destination leaf for the items
136 * @src: source leaf for the items
137 * @dst_item: the item nr we're copying into
138 * @src_item: the item nr we're copying from
139 * @nr_items: the number of items to copy
141 * Wrapper around copy_extent_buffer() that does the math to get the
142 * appropriate offsets into the leaf from the item numbers.
144 static inline void copy_leaf_items(const struct extent_buffer *dst,
145 const struct extent_buffer *src,
146 int dst_item, int src_item, int nr_items)
148 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
149 btrfs_item_nr_offset(src, src_item),
150 nr_items * sizeof(struct btrfs_item));
153 int btrfs_super_csum_size(const struct btrfs_super_block *s)
155 u16 t = btrfs_super_csum_type(s);
157 * csum type is validated at mount time
159 return btrfs_csums[t].size;
162 const char *btrfs_super_csum_name(u16 csum_type)
164 /* csum type is validated at mount time */
165 return btrfs_csums[csum_type].name;
169 * Return driver name if defined, otherwise the name that's also a valid driver
172 const char *btrfs_super_csum_driver(u16 csum_type)
174 /* csum type is validated at mount time */
175 return btrfs_csums[csum_type].driver[0] ?
176 btrfs_csums[csum_type].driver :
177 btrfs_csums[csum_type].name;
180 size_t __attribute_const__ btrfs_get_num_csums(void)
182 return ARRAY_SIZE(btrfs_csums);
185 struct btrfs_path *btrfs_alloc_path(void)
189 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
192 /* this also releases the path */
193 void btrfs_free_path(struct btrfs_path *p)
197 btrfs_release_path(p);
198 kmem_cache_free(btrfs_path_cachep, p);
202 * path release drops references on the extent buffers in the path
203 * and it drops any locks held by this path
205 * It is safe to call this on paths that no locks or extent buffers held.
207 noinline void btrfs_release_path(struct btrfs_path *p)
211 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
219 free_extent_buffer(p->nodes[i]);
225 * We want the transaction abort to print stack trace only for errors where the
226 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
227 * caused by external factors.
229 bool __cold abort_should_print_stack(int errno)
241 * safely gets a reference on the root node of a tree. A lock
242 * is not taken, so a concurrent writer may put a different node
243 * at the root of the tree. See btrfs_lock_root_node for the
246 * The extent buffer returned by this has a reference taken, so
247 * it won't disappear. It may stop being the root of the tree
248 * at any time because there are no locks held.
250 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
252 struct extent_buffer *eb;
256 eb = rcu_dereference(root->node);
259 * RCU really hurts here, we could free up the root node because
260 * it was COWed but we may not get the new root node yet so do
261 * the inc_not_zero dance and if it doesn't work then
262 * synchronize_rcu and try again.
264 if (atomic_inc_not_zero(&eb->refs)) {
275 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
276 * just get put onto a simple dirty list. Transaction walks this list to make
277 * sure they get properly updated on disk.
279 static void add_root_to_dirty_list(struct btrfs_root *root)
281 struct btrfs_fs_info *fs_info = root->fs_info;
283 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
284 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
287 spin_lock(&fs_info->trans_lock);
288 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
289 /* Want the extent tree to be the last on the list */
290 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
291 list_move_tail(&root->dirty_list,
292 &fs_info->dirty_cowonly_roots);
294 list_move(&root->dirty_list,
295 &fs_info->dirty_cowonly_roots);
297 spin_unlock(&fs_info->trans_lock);
301 * used by snapshot creation to make a copy of a root for a tree with
302 * a given objectid. The buffer with the new root node is returned in
303 * cow_ret, and this func returns zero on success or a negative error code.
305 int btrfs_copy_root(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct extent_buffer *buf,
308 struct extent_buffer **cow_ret, u64 new_root_objectid)
310 struct btrfs_fs_info *fs_info = root->fs_info;
311 struct extent_buffer *cow;
314 struct btrfs_disk_key disk_key;
316 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
317 trans->transid != fs_info->running_transaction->transid);
318 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
319 trans->transid != root->last_trans);
321 level = btrfs_header_level(buf);
323 btrfs_item_key(buf, &disk_key, 0);
325 btrfs_node_key(buf, &disk_key, 0);
327 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
328 &disk_key, level, buf->start, 0,
329 BTRFS_NESTING_NEW_ROOT);
333 copy_extent_buffer_full(cow, buf);
334 btrfs_set_header_bytenr(cow, cow->start);
335 btrfs_set_header_generation(cow, trans->transid);
336 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
337 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
338 BTRFS_HEADER_FLAG_RELOC);
339 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
340 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
342 btrfs_set_header_owner(cow, new_root_objectid);
344 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
346 WARN_ON(btrfs_header_generation(buf) > trans->transid);
347 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
348 ret = btrfs_inc_ref(trans, root, cow, 1);
350 ret = btrfs_inc_ref(trans, root, cow, 0);
352 btrfs_tree_unlock(cow);
353 free_extent_buffer(cow);
354 btrfs_abort_transaction(trans, ret);
358 btrfs_mark_buffer_dirty(cow);
364 * check if the tree block can be shared by multiple trees
366 int btrfs_block_can_be_shared(struct btrfs_root *root,
367 struct extent_buffer *buf)
370 * Tree blocks not in shareable trees and tree roots are never shared.
371 * If a block was allocated after the last snapshot and the block was
372 * not allocated by tree relocation, we know the block is not shared.
374 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
375 buf != root->node && buf != root->commit_root &&
376 (btrfs_header_generation(buf) <=
377 btrfs_root_last_snapshot(&root->root_item) ||
378 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
384 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
385 struct btrfs_root *root,
386 struct extent_buffer *buf,
387 struct extent_buffer *cow,
390 struct btrfs_fs_info *fs_info = root->fs_info;
398 * Backrefs update rules:
400 * Always use full backrefs for extent pointers in tree block
401 * allocated by tree relocation.
403 * If a shared tree block is no longer referenced by its owner
404 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
405 * use full backrefs for extent pointers in tree block.
407 * If a tree block is been relocating
408 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
409 * use full backrefs for extent pointers in tree block.
410 * The reason for this is some operations (such as drop tree)
411 * are only allowed for blocks use full backrefs.
414 if (btrfs_block_can_be_shared(root, buf)) {
415 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
416 btrfs_header_level(buf), 1,
422 btrfs_handle_fs_error(fs_info, ret, NULL);
427 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
428 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
429 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
434 owner = btrfs_header_owner(buf);
435 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
436 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
439 if ((owner == root->root_key.objectid ||
440 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
441 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
442 ret = btrfs_inc_ref(trans, root, buf, 1);
446 if (root->root_key.objectid ==
447 BTRFS_TREE_RELOC_OBJECTID) {
448 ret = btrfs_dec_ref(trans, root, buf, 0);
451 ret = btrfs_inc_ref(trans, root, cow, 1);
455 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
458 if (root->root_key.objectid ==
459 BTRFS_TREE_RELOC_OBJECTID)
460 ret = btrfs_inc_ref(trans, root, cow, 1);
462 ret = btrfs_inc_ref(trans, root, cow, 0);
466 if (new_flags != 0) {
467 int level = btrfs_header_level(buf);
469 ret = btrfs_set_disk_extent_flags(trans, buf,
475 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
476 if (root->root_key.objectid ==
477 BTRFS_TREE_RELOC_OBJECTID)
478 ret = btrfs_inc_ref(trans, root, cow, 1);
480 ret = btrfs_inc_ref(trans, root, cow, 0);
483 ret = btrfs_dec_ref(trans, root, buf, 1);
487 btrfs_clean_tree_block(buf);
494 * does the dirty work in cow of a single block. The parent block (if
495 * supplied) is updated to point to the new cow copy. The new buffer is marked
496 * dirty and returned locked. If you modify the block it needs to be marked
499 * search_start -- an allocation hint for the new block
501 * empty_size -- a hint that you plan on doing more cow. This is the size in
502 * bytes the allocator should try to find free next to the block it returns.
503 * This is just a hint and may be ignored by the allocator.
505 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
506 struct btrfs_root *root,
507 struct extent_buffer *buf,
508 struct extent_buffer *parent, int parent_slot,
509 struct extent_buffer **cow_ret,
510 u64 search_start, u64 empty_size,
511 enum btrfs_lock_nesting nest)
513 struct btrfs_fs_info *fs_info = root->fs_info;
514 struct btrfs_disk_key disk_key;
515 struct extent_buffer *cow;
519 u64 parent_start = 0;
524 btrfs_assert_tree_write_locked(buf);
526 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
527 trans->transid != fs_info->running_transaction->transid);
528 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
529 trans->transid != root->last_trans);
531 level = btrfs_header_level(buf);
534 btrfs_item_key(buf, &disk_key, 0);
536 btrfs_node_key(buf, &disk_key, 0);
538 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
539 parent_start = parent->start;
541 cow = btrfs_alloc_tree_block(trans, root, parent_start,
542 root->root_key.objectid, &disk_key, level,
543 search_start, empty_size, nest);
547 /* cow is set to blocking by btrfs_init_new_buffer */
549 copy_extent_buffer_full(cow, buf);
550 btrfs_set_header_bytenr(cow, cow->start);
551 btrfs_set_header_generation(cow, trans->transid);
552 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
553 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
554 BTRFS_HEADER_FLAG_RELOC);
555 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
556 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
558 btrfs_set_header_owner(cow, root->root_key.objectid);
560 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
562 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
564 btrfs_tree_unlock(cow);
565 free_extent_buffer(cow);
566 btrfs_abort_transaction(trans, ret);
570 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
571 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
573 btrfs_tree_unlock(cow);
574 free_extent_buffer(cow);
575 btrfs_abort_transaction(trans, ret);
580 if (buf == root->node) {
581 WARN_ON(parent && parent != buf);
582 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
583 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
584 parent_start = buf->start;
586 atomic_inc(&cow->refs);
587 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
589 rcu_assign_pointer(root->node, cow);
591 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
592 parent_start, last_ref);
593 free_extent_buffer(buf);
594 add_root_to_dirty_list(root);
596 WARN_ON(trans->transid != btrfs_header_generation(parent));
597 btrfs_tree_mod_log_insert_key(parent, parent_slot,
598 BTRFS_MOD_LOG_KEY_REPLACE);
599 btrfs_set_node_blockptr(parent, parent_slot,
601 btrfs_set_node_ptr_generation(parent, parent_slot,
603 btrfs_mark_buffer_dirty(parent);
605 ret = btrfs_tree_mod_log_free_eb(buf);
607 btrfs_tree_unlock(cow);
608 free_extent_buffer(cow);
609 btrfs_abort_transaction(trans, ret);
613 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
614 parent_start, last_ref);
617 btrfs_tree_unlock(buf);
618 free_extent_buffer_stale(buf);
619 btrfs_mark_buffer_dirty(cow);
624 static inline int should_cow_block(struct btrfs_trans_handle *trans,
625 struct btrfs_root *root,
626 struct extent_buffer *buf)
628 if (btrfs_is_testing(root->fs_info))
631 /* Ensure we can see the FORCE_COW bit */
632 smp_mb__before_atomic();
635 * We do not need to cow a block if
636 * 1) this block is not created or changed in this transaction;
637 * 2) this block does not belong to TREE_RELOC tree;
638 * 3) the root is not forced COW.
640 * What is forced COW:
641 * when we create snapshot during committing the transaction,
642 * after we've finished copying src root, we must COW the shared
643 * block to ensure the metadata consistency.
645 if (btrfs_header_generation(buf) == trans->transid &&
646 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
647 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
648 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
649 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
655 * cows a single block, see __btrfs_cow_block for the real work.
656 * This version of it has extra checks so that a block isn't COWed more than
657 * once per transaction, as long as it hasn't been written yet
659 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
660 struct btrfs_root *root, struct extent_buffer *buf,
661 struct extent_buffer *parent, int parent_slot,
662 struct extent_buffer **cow_ret,
663 enum btrfs_lock_nesting nest)
665 struct btrfs_fs_info *fs_info = root->fs_info;
669 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
671 "COW'ing blocks on a fs root that's being dropped");
673 if (trans->transaction != fs_info->running_transaction)
674 WARN(1, KERN_CRIT "trans %llu running %llu\n",
676 fs_info->running_transaction->transid);
678 if (trans->transid != fs_info->generation)
679 WARN(1, KERN_CRIT "trans %llu running %llu\n",
680 trans->transid, fs_info->generation);
682 if (!should_cow_block(trans, root, buf)) {
687 search_start = buf->start & ~((u64)SZ_1G - 1);
690 * Before CoWing this block for later modification, check if it's
691 * the subtree root and do the delayed subtree trace if needed.
693 * Also We don't care about the error, as it's handled internally.
695 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
696 ret = __btrfs_cow_block(trans, root, buf, parent,
697 parent_slot, cow_ret, search_start, 0, nest);
699 trace_btrfs_cow_block(root, buf, *cow_ret);
703 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
706 * helper function for defrag to decide if two blocks pointed to by a
707 * node are actually close by
709 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
711 if (blocknr < other && other - (blocknr + blocksize) < 32768)
713 if (blocknr > other && blocknr - (other + blocksize) < 32768)
718 #ifdef __LITTLE_ENDIAN
721 * Compare two keys, on little-endian the disk order is same as CPU order and
722 * we can avoid the conversion.
724 static int comp_keys(const struct btrfs_disk_key *disk_key,
725 const struct btrfs_key *k2)
727 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
729 return btrfs_comp_cpu_keys(k1, k2);
735 * compare two keys in a memcmp fashion
737 static int comp_keys(const struct btrfs_disk_key *disk,
738 const struct btrfs_key *k2)
742 btrfs_disk_key_to_cpu(&k1, disk);
744 return btrfs_comp_cpu_keys(&k1, k2);
749 * same as comp_keys only with two btrfs_key's
751 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
753 if (k1->objectid > k2->objectid)
755 if (k1->objectid < k2->objectid)
757 if (k1->type > k2->type)
759 if (k1->type < k2->type)
761 if (k1->offset > k2->offset)
763 if (k1->offset < k2->offset)
769 * this is used by the defrag code to go through all the
770 * leaves pointed to by a node and reallocate them so that
771 * disk order is close to key order
773 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
774 struct btrfs_root *root, struct extent_buffer *parent,
775 int start_slot, u64 *last_ret,
776 struct btrfs_key *progress)
778 struct btrfs_fs_info *fs_info = root->fs_info;
779 struct extent_buffer *cur;
781 u64 search_start = *last_ret;
789 int progress_passed = 0;
790 struct btrfs_disk_key disk_key;
792 WARN_ON(trans->transaction != fs_info->running_transaction);
793 WARN_ON(trans->transid != fs_info->generation);
795 parent_nritems = btrfs_header_nritems(parent);
796 blocksize = fs_info->nodesize;
797 end_slot = parent_nritems - 1;
799 if (parent_nritems <= 1)
802 for (i = start_slot; i <= end_slot; i++) {
805 btrfs_node_key(parent, &disk_key, i);
806 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
810 blocknr = btrfs_node_blockptr(parent, i);
812 last_block = blocknr;
815 other = btrfs_node_blockptr(parent, i - 1);
816 close = close_blocks(blocknr, other, blocksize);
818 if (!close && i < end_slot) {
819 other = btrfs_node_blockptr(parent, i + 1);
820 close = close_blocks(blocknr, other, blocksize);
823 last_block = blocknr;
827 cur = btrfs_read_node_slot(parent, i);
830 if (search_start == 0)
831 search_start = last_block;
833 btrfs_tree_lock(cur);
834 err = __btrfs_cow_block(trans, root, cur, parent, i,
837 (end_slot - i) * blocksize),
840 btrfs_tree_unlock(cur);
841 free_extent_buffer(cur);
844 search_start = cur->start;
845 last_block = cur->start;
846 *last_ret = search_start;
847 btrfs_tree_unlock(cur);
848 free_extent_buffer(cur);
854 * Search for a key in the given extent_buffer.
856 * The lower boundary for the search is specified by the slot number @low. Use a
857 * value of 0 to search over the whole extent buffer.
859 * The slot in the extent buffer is returned via @slot. If the key exists in the
860 * extent buffer, then @slot will point to the slot where the key is, otherwise
861 * it points to the slot where you would insert the key.
863 * Slot may point to the total number of items (i.e. one position beyond the last
864 * key) if the key is bigger than the last key in the extent buffer.
866 static noinline int generic_bin_search(struct extent_buffer *eb, int low,
867 const struct btrfs_key *key, int *slot)
871 int high = btrfs_header_nritems(eb);
873 const int key_size = sizeof(struct btrfs_disk_key);
876 btrfs_err(eb->fs_info,
877 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
878 __func__, low, high, eb->start,
879 btrfs_header_owner(eb), btrfs_header_level(eb));
883 if (btrfs_header_level(eb) == 0) {
884 p = offsetof(struct btrfs_leaf, items);
885 item_size = sizeof(struct btrfs_item);
887 p = offsetof(struct btrfs_node, ptrs);
888 item_size = sizeof(struct btrfs_key_ptr);
893 unsigned long offset;
894 struct btrfs_disk_key *tmp;
895 struct btrfs_disk_key unaligned;
898 mid = (low + high) / 2;
899 offset = p + mid * item_size;
900 oip = offset_in_page(offset);
902 if (oip + key_size <= PAGE_SIZE) {
903 const unsigned long idx = get_eb_page_index(offset);
904 char *kaddr = page_address(eb->pages[idx]);
906 oip = get_eb_offset_in_page(eb, offset);
907 tmp = (struct btrfs_disk_key *)(kaddr + oip);
909 read_extent_buffer(eb, &unaligned, offset, key_size);
913 ret = comp_keys(tmp, key);
929 * Simple binary search on an extent buffer. Works for both leaves and nodes, and
930 * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
932 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
935 return generic_bin_search(eb, 0, key, slot);
938 static void root_add_used(struct btrfs_root *root, u32 size)
940 spin_lock(&root->accounting_lock);
941 btrfs_set_root_used(&root->root_item,
942 btrfs_root_used(&root->root_item) + size);
943 spin_unlock(&root->accounting_lock);
946 static void root_sub_used(struct btrfs_root *root, u32 size)
948 spin_lock(&root->accounting_lock);
949 btrfs_set_root_used(&root->root_item,
950 btrfs_root_used(&root->root_item) - size);
951 spin_unlock(&root->accounting_lock);
954 /* given a node and slot number, this reads the blocks it points to. The
955 * extent buffer is returned with a reference taken (but unlocked).
957 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
960 int level = btrfs_header_level(parent);
961 struct btrfs_tree_parent_check check = { 0 };
962 struct extent_buffer *eb;
964 if (slot < 0 || slot >= btrfs_header_nritems(parent))
965 return ERR_PTR(-ENOENT);
969 check.level = level - 1;
970 check.transid = btrfs_node_ptr_generation(parent, slot);
971 check.owner_root = btrfs_header_owner(parent);
972 check.has_first_key = true;
973 btrfs_node_key_to_cpu(parent, &check.first_key, slot);
975 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
979 if (!extent_buffer_uptodate(eb)) {
980 free_extent_buffer(eb);
981 return ERR_PTR(-EIO);
988 * node level balancing, used to make sure nodes are in proper order for
989 * item deletion. We balance from the top down, so we have to make sure
990 * that a deletion won't leave an node completely empty later on.
992 static noinline int balance_level(struct btrfs_trans_handle *trans,
993 struct btrfs_root *root,
994 struct btrfs_path *path, int level)
996 struct btrfs_fs_info *fs_info = root->fs_info;
997 struct extent_buffer *right = NULL;
998 struct extent_buffer *mid;
999 struct extent_buffer *left = NULL;
1000 struct extent_buffer *parent = NULL;
1004 int orig_slot = path->slots[level];
1009 mid = path->nodes[level];
1011 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1012 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1014 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1016 if (level < BTRFS_MAX_LEVEL - 1) {
1017 parent = path->nodes[level + 1];
1018 pslot = path->slots[level + 1];
1022 * deal with the case where there is only one pointer in the root
1023 * by promoting the node below to a root
1026 struct extent_buffer *child;
1028 if (btrfs_header_nritems(mid) != 1)
1031 /* promote the child to a root */
1032 child = btrfs_read_node_slot(mid, 0);
1033 if (IS_ERR(child)) {
1034 ret = PTR_ERR(child);
1035 btrfs_handle_fs_error(fs_info, ret, NULL);
1039 btrfs_tree_lock(child);
1040 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1043 btrfs_tree_unlock(child);
1044 free_extent_buffer(child);
1048 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1050 rcu_assign_pointer(root->node, child);
1052 add_root_to_dirty_list(root);
1053 btrfs_tree_unlock(child);
1055 path->locks[level] = 0;
1056 path->nodes[level] = NULL;
1057 btrfs_clean_tree_block(mid);
1058 btrfs_tree_unlock(mid);
1059 /* once for the path */
1060 free_extent_buffer(mid);
1062 root_sub_used(root, mid->len);
1063 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1064 /* once for the root ptr */
1065 free_extent_buffer_stale(mid);
1068 if (btrfs_header_nritems(mid) >
1069 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1072 left = btrfs_read_node_slot(parent, pslot - 1);
1077 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1078 wret = btrfs_cow_block(trans, root, left,
1079 parent, pslot - 1, &left,
1080 BTRFS_NESTING_LEFT_COW);
1087 right = btrfs_read_node_slot(parent, pslot + 1);
1092 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1093 wret = btrfs_cow_block(trans, root, right,
1094 parent, pslot + 1, &right,
1095 BTRFS_NESTING_RIGHT_COW);
1102 /* first, try to make some room in the middle buffer */
1104 orig_slot += btrfs_header_nritems(left);
1105 wret = push_node_left(trans, left, mid, 1);
1111 * then try to empty the right most buffer into the middle
1114 wret = push_node_left(trans, mid, right, 1);
1115 if (wret < 0 && wret != -ENOSPC)
1117 if (btrfs_header_nritems(right) == 0) {
1118 btrfs_clean_tree_block(right);
1119 btrfs_tree_unlock(right);
1120 del_ptr(root, path, level + 1, pslot + 1);
1121 root_sub_used(root, right->len);
1122 btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1124 free_extent_buffer_stale(right);
1127 struct btrfs_disk_key right_key;
1128 btrfs_node_key(right, &right_key, 0);
1129 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1130 BTRFS_MOD_LOG_KEY_REPLACE);
1132 btrfs_set_node_key(parent, &right_key, pslot + 1);
1133 btrfs_mark_buffer_dirty(parent);
1136 if (btrfs_header_nritems(mid) == 1) {
1138 * we're not allowed to leave a node with one item in the
1139 * tree during a delete. A deletion from lower in the tree
1140 * could try to delete the only pointer in this node.
1141 * So, pull some keys from the left.
1142 * There has to be a left pointer at this point because
1143 * otherwise we would have pulled some pointers from the
1148 btrfs_handle_fs_error(fs_info, ret, NULL);
1151 wret = balance_node_right(trans, mid, left);
1157 wret = push_node_left(trans, left, mid, 1);
1163 if (btrfs_header_nritems(mid) == 0) {
1164 btrfs_clean_tree_block(mid);
1165 btrfs_tree_unlock(mid);
1166 del_ptr(root, path, level + 1, pslot);
1167 root_sub_used(root, mid->len);
1168 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1169 free_extent_buffer_stale(mid);
1172 /* update the parent key to reflect our changes */
1173 struct btrfs_disk_key mid_key;
1174 btrfs_node_key(mid, &mid_key, 0);
1175 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1176 BTRFS_MOD_LOG_KEY_REPLACE);
1178 btrfs_set_node_key(parent, &mid_key, pslot);
1179 btrfs_mark_buffer_dirty(parent);
1182 /* update the path */
1184 if (btrfs_header_nritems(left) > orig_slot) {
1185 atomic_inc(&left->refs);
1186 /* left was locked after cow */
1187 path->nodes[level] = left;
1188 path->slots[level + 1] -= 1;
1189 path->slots[level] = orig_slot;
1191 btrfs_tree_unlock(mid);
1192 free_extent_buffer(mid);
1195 orig_slot -= btrfs_header_nritems(left);
1196 path->slots[level] = orig_slot;
1199 /* double check we haven't messed things up */
1201 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1205 btrfs_tree_unlock(right);
1206 free_extent_buffer(right);
1209 if (path->nodes[level] != left)
1210 btrfs_tree_unlock(left);
1211 free_extent_buffer(left);
1216 /* Node balancing for insertion. Here we only split or push nodes around
1217 * when they are completely full. This is also done top down, so we
1218 * have to be pessimistic.
1220 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1221 struct btrfs_root *root,
1222 struct btrfs_path *path, int level)
1224 struct btrfs_fs_info *fs_info = root->fs_info;
1225 struct extent_buffer *right = NULL;
1226 struct extent_buffer *mid;
1227 struct extent_buffer *left = NULL;
1228 struct extent_buffer *parent = NULL;
1232 int orig_slot = path->slots[level];
1237 mid = path->nodes[level];
1238 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1240 if (level < BTRFS_MAX_LEVEL - 1) {
1241 parent = path->nodes[level + 1];
1242 pslot = path->slots[level + 1];
1248 left = btrfs_read_node_slot(parent, pslot - 1);
1252 /* first, try to make some room in the middle buffer */
1256 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1258 left_nr = btrfs_header_nritems(left);
1259 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1262 ret = btrfs_cow_block(trans, root, left, parent,
1264 BTRFS_NESTING_LEFT_COW);
1268 wret = push_node_left(trans, left, mid, 0);
1274 struct btrfs_disk_key disk_key;
1275 orig_slot += left_nr;
1276 btrfs_node_key(mid, &disk_key, 0);
1277 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1278 BTRFS_MOD_LOG_KEY_REPLACE);
1280 btrfs_set_node_key(parent, &disk_key, pslot);
1281 btrfs_mark_buffer_dirty(parent);
1282 if (btrfs_header_nritems(left) > orig_slot) {
1283 path->nodes[level] = left;
1284 path->slots[level + 1] -= 1;
1285 path->slots[level] = orig_slot;
1286 btrfs_tree_unlock(mid);
1287 free_extent_buffer(mid);
1290 btrfs_header_nritems(left);
1291 path->slots[level] = orig_slot;
1292 btrfs_tree_unlock(left);
1293 free_extent_buffer(left);
1297 btrfs_tree_unlock(left);
1298 free_extent_buffer(left);
1300 right = btrfs_read_node_slot(parent, pslot + 1);
1305 * then try to empty the right most buffer into the middle
1310 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1312 right_nr = btrfs_header_nritems(right);
1313 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1316 ret = btrfs_cow_block(trans, root, right,
1318 &right, BTRFS_NESTING_RIGHT_COW);
1322 wret = balance_node_right(trans, right, mid);
1328 struct btrfs_disk_key disk_key;
1330 btrfs_node_key(right, &disk_key, 0);
1331 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1332 BTRFS_MOD_LOG_KEY_REPLACE);
1334 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1335 btrfs_mark_buffer_dirty(parent);
1337 if (btrfs_header_nritems(mid) <= orig_slot) {
1338 path->nodes[level] = right;
1339 path->slots[level + 1] += 1;
1340 path->slots[level] = orig_slot -
1341 btrfs_header_nritems(mid);
1342 btrfs_tree_unlock(mid);
1343 free_extent_buffer(mid);
1345 btrfs_tree_unlock(right);
1346 free_extent_buffer(right);
1350 btrfs_tree_unlock(right);
1351 free_extent_buffer(right);
1357 * readahead one full node of leaves, finding things that are close
1358 * to the block in 'slot', and triggering ra on them.
1360 static void reada_for_search(struct btrfs_fs_info *fs_info,
1361 struct btrfs_path *path,
1362 int level, int slot, u64 objectid)
1364 struct extent_buffer *node;
1365 struct btrfs_disk_key disk_key;
1375 if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1378 if (!path->nodes[level])
1381 node = path->nodes[level];
1384 * Since the time between visiting leaves is much shorter than the time
1385 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1386 * much IO at once (possibly random).
1388 if (path->reada == READA_FORWARD_ALWAYS) {
1390 nread_max = node->fs_info->nodesize;
1392 nread_max = SZ_128K;
1397 search = btrfs_node_blockptr(node, slot);
1398 blocksize = fs_info->nodesize;
1399 if (path->reada != READA_FORWARD_ALWAYS) {
1400 struct extent_buffer *eb;
1402 eb = find_extent_buffer(fs_info, search);
1404 free_extent_buffer(eb);
1411 nritems = btrfs_header_nritems(node);
1415 if (path->reada == READA_BACK) {
1419 } else if (path->reada == READA_FORWARD ||
1420 path->reada == READA_FORWARD_ALWAYS) {
1425 if (path->reada == READA_BACK && objectid) {
1426 btrfs_node_key(node, &disk_key, nr);
1427 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1430 search = btrfs_node_blockptr(node, nr);
1431 if (path->reada == READA_FORWARD_ALWAYS ||
1432 (search <= target && target - search <= 65536) ||
1433 (search > target && search - target <= 65536)) {
1434 btrfs_readahead_node_child(node, nr);
1438 if (nread > nread_max || nscan > 32)
1443 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1445 struct extent_buffer *parent;
1449 parent = path->nodes[level + 1];
1453 nritems = btrfs_header_nritems(parent);
1454 slot = path->slots[level + 1];
1457 btrfs_readahead_node_child(parent, slot - 1);
1458 if (slot + 1 < nritems)
1459 btrfs_readahead_node_child(parent, slot + 1);
1464 * when we walk down the tree, it is usually safe to unlock the higher layers
1465 * in the tree. The exceptions are when our path goes through slot 0, because
1466 * operations on the tree might require changing key pointers higher up in the
1469 * callers might also have set path->keep_locks, which tells this code to keep
1470 * the lock if the path points to the last slot in the block. This is part of
1471 * walking through the tree, and selecting the next slot in the higher block.
1473 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1474 * if lowest_unlock is 1, level 0 won't be unlocked
1476 static noinline void unlock_up(struct btrfs_path *path, int level,
1477 int lowest_unlock, int min_write_lock_level,
1478 int *write_lock_level)
1481 int skip_level = level;
1482 bool check_skip = true;
1484 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1485 if (!path->nodes[i])
1487 if (!path->locks[i])
1491 if (path->slots[i] == 0) {
1496 if (path->keep_locks) {
1499 nritems = btrfs_header_nritems(path->nodes[i]);
1500 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1507 if (i >= lowest_unlock && i > skip_level) {
1509 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1511 if (write_lock_level &&
1512 i > min_write_lock_level &&
1513 i <= *write_lock_level) {
1514 *write_lock_level = i - 1;
1521 * Helper function for btrfs_search_slot() and other functions that do a search
1522 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1523 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1524 * its pages from disk.
1526 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1527 * whole btree search, starting again from the current root node.
1530 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1531 struct extent_buffer **eb_ret, int level, int slot,
1532 const struct btrfs_key *key)
1534 struct btrfs_fs_info *fs_info = root->fs_info;
1535 struct btrfs_tree_parent_check check = { 0 };
1538 struct extent_buffer *tmp;
1543 unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1544 blocknr = btrfs_node_blockptr(*eb_ret, slot);
1545 gen = btrfs_node_ptr_generation(*eb_ret, slot);
1546 parent_level = btrfs_header_level(*eb_ret);
1547 btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1548 check.has_first_key = true;
1549 check.level = parent_level - 1;
1550 check.transid = gen;
1551 check.owner_root = root->root_key.objectid;
1554 * If we need to read an extent buffer from disk and we are holding locks
1555 * on upper level nodes, we unlock all the upper nodes before reading the
1556 * extent buffer, and then return -EAGAIN to the caller as it needs to
1557 * restart the search. We don't release the lock on the current level
1558 * because we need to walk this node to figure out which blocks to read.
1560 tmp = find_extent_buffer(fs_info, blocknr);
1562 if (p->reada == READA_FORWARD_ALWAYS)
1563 reada_for_search(fs_info, p, level, slot, key->objectid);
1565 /* first we do an atomic uptodate check */
1566 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1568 * Do extra check for first_key, eb can be stale due to
1569 * being cached, read from scrub, or have multiple
1570 * parents (shared tree blocks).
1572 if (btrfs_verify_level_key(tmp,
1573 parent_level - 1, &check.first_key, gen)) {
1574 free_extent_buffer(tmp);
1582 free_extent_buffer(tmp);
1587 btrfs_unlock_up_safe(p, level + 1);
1589 /* now we're allowed to do a blocking uptodate check */
1590 ret = btrfs_read_extent_buffer(tmp, &check);
1592 free_extent_buffer(tmp);
1593 btrfs_release_path(p);
1596 if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1597 free_extent_buffer(tmp);
1598 btrfs_release_path(p);
1606 } else if (p->nowait) {
1611 btrfs_unlock_up_safe(p, level + 1);
1617 if (p->reada != READA_NONE)
1618 reada_for_search(fs_info, p, level, slot, key->objectid);
1620 tmp = read_tree_block(fs_info, blocknr, &check);
1622 btrfs_release_path(p);
1623 return PTR_ERR(tmp);
1626 * If the read above didn't mark this buffer up to date,
1627 * it will never end up being up to date. Set ret to EIO now
1628 * and give up so that our caller doesn't loop forever
1631 if (!extent_buffer_uptodate(tmp))
1638 free_extent_buffer(tmp);
1639 btrfs_release_path(p);
1646 * helper function for btrfs_search_slot. This does all of the checks
1647 * for node-level blocks and does any balancing required based on
1650 * If no extra work was required, zero is returned. If we had to
1651 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1655 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1656 struct btrfs_root *root, struct btrfs_path *p,
1657 struct extent_buffer *b, int level, int ins_len,
1658 int *write_lock_level)
1660 struct btrfs_fs_info *fs_info = root->fs_info;
1663 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1664 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1666 if (*write_lock_level < level + 1) {
1667 *write_lock_level = level + 1;
1668 btrfs_release_path(p);
1672 reada_for_balance(p, level);
1673 ret = split_node(trans, root, p, level);
1675 b = p->nodes[level];
1676 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1677 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1679 if (*write_lock_level < level + 1) {
1680 *write_lock_level = level + 1;
1681 btrfs_release_path(p);
1685 reada_for_balance(p, level);
1686 ret = balance_level(trans, root, p, level);
1690 b = p->nodes[level];
1692 btrfs_release_path(p);
1695 BUG_ON(btrfs_header_nritems(b) == 1);
1700 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1701 u64 iobjectid, u64 ioff, u8 key_type,
1702 struct btrfs_key *found_key)
1705 struct btrfs_key key;
1706 struct extent_buffer *eb;
1711 key.type = key_type;
1712 key.objectid = iobjectid;
1715 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1719 eb = path->nodes[0];
1720 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1721 ret = btrfs_next_leaf(fs_root, path);
1724 eb = path->nodes[0];
1727 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1728 if (found_key->type != key.type ||
1729 found_key->objectid != key.objectid)
1735 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1736 struct btrfs_path *p,
1737 int write_lock_level)
1739 struct extent_buffer *b;
1743 if (p->search_commit_root) {
1744 b = root->commit_root;
1745 atomic_inc(&b->refs);
1746 level = btrfs_header_level(b);
1748 * Ensure that all callers have set skip_locking when
1749 * p->search_commit_root = 1.
1751 ASSERT(p->skip_locking == 1);
1756 if (p->skip_locking) {
1757 b = btrfs_root_node(root);
1758 level = btrfs_header_level(b);
1762 /* We try very hard to do read locks on the root */
1763 root_lock = BTRFS_READ_LOCK;
1766 * If the level is set to maximum, we can skip trying to get the read
1769 if (write_lock_level < BTRFS_MAX_LEVEL) {
1771 * We don't know the level of the root node until we actually
1772 * have it read locked
1775 b = btrfs_try_read_lock_root_node(root);
1779 b = btrfs_read_lock_root_node(root);
1781 level = btrfs_header_level(b);
1782 if (level > write_lock_level)
1785 /* Whoops, must trade for write lock */
1786 btrfs_tree_read_unlock(b);
1787 free_extent_buffer(b);
1790 b = btrfs_lock_root_node(root);
1791 root_lock = BTRFS_WRITE_LOCK;
1793 /* The level might have changed, check again */
1794 level = btrfs_header_level(b);
1798 * The root may have failed to write out at some point, and thus is no
1799 * longer valid, return an error in this case.
1801 if (!extent_buffer_uptodate(b)) {
1803 btrfs_tree_unlock_rw(b, root_lock);
1804 free_extent_buffer(b);
1805 return ERR_PTR(-EIO);
1808 p->nodes[level] = b;
1809 if (!p->skip_locking)
1810 p->locks[level] = root_lock;
1812 * Callers are responsible for dropping b's references.
1818 * Replace the extent buffer at the lowest level of the path with a cloned
1819 * version. The purpose is to be able to use it safely, after releasing the
1820 * commit root semaphore, even if relocation is happening in parallel, the
1821 * transaction used for relocation is committed and the extent buffer is
1822 * reallocated in the next transaction.
1824 * This is used in a context where the caller does not prevent transaction
1825 * commits from happening, either by holding a transaction handle or holding
1826 * some lock, while it's doing searches through a commit root.
1827 * At the moment it's only used for send operations.
1829 static int finish_need_commit_sem_search(struct btrfs_path *path)
1831 const int i = path->lowest_level;
1832 const int slot = path->slots[i];
1833 struct extent_buffer *lowest = path->nodes[i];
1834 struct extent_buffer *clone;
1836 ASSERT(path->need_commit_sem);
1841 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1843 clone = btrfs_clone_extent_buffer(lowest);
1847 btrfs_release_path(path);
1848 path->nodes[i] = clone;
1849 path->slots[i] = slot;
1854 static inline int search_for_key_slot(struct extent_buffer *eb,
1855 int search_low_slot,
1856 const struct btrfs_key *key,
1861 * If a previous call to btrfs_bin_search() on a parent node returned an
1862 * exact match (prev_cmp == 0), we can safely assume the target key will
1863 * always be at slot 0 on lower levels, since each key pointer
1864 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1865 * subtree it points to. Thus we can skip searching lower levels.
1867 if (prev_cmp == 0) {
1872 return generic_bin_search(eb, search_low_slot, key, slot);
1875 static int search_leaf(struct btrfs_trans_handle *trans,
1876 struct btrfs_root *root,
1877 const struct btrfs_key *key,
1878 struct btrfs_path *path,
1882 struct extent_buffer *leaf = path->nodes[0];
1883 int leaf_free_space = -1;
1884 int search_low_slot = 0;
1886 bool do_bin_search = true;
1889 * If we are doing an insertion, the leaf has enough free space and the
1890 * destination slot for the key is not slot 0, then we can unlock our
1891 * write lock on the parent, and any other upper nodes, before doing the
1892 * binary search on the leaf (with search_for_key_slot()), allowing other
1893 * tasks to lock the parent and any other upper nodes.
1897 * Cache the leaf free space, since we will need it later and it
1898 * will not change until then.
1900 leaf_free_space = btrfs_leaf_free_space(leaf);
1903 * !path->locks[1] means we have a single node tree, the leaf is
1904 * the root of the tree.
1906 if (path->locks[1] && leaf_free_space >= ins_len) {
1907 struct btrfs_disk_key first_key;
1909 ASSERT(btrfs_header_nritems(leaf) > 0);
1910 btrfs_item_key(leaf, &first_key, 0);
1913 * Doing the extra comparison with the first key is cheap,
1914 * taking into account that the first key is very likely
1915 * already in a cache line because it immediately follows
1916 * the extent buffer's header and we have recently accessed
1917 * the header's level field.
1919 ret = comp_keys(&first_key, key);
1922 * The first key is smaller than the key we want
1923 * to insert, so we are safe to unlock all upper
1924 * nodes and we have to do the binary search.
1926 * We do use btrfs_unlock_up_safe() and not
1927 * unlock_up() because the later does not unlock
1928 * nodes with a slot of 0 - we can safely unlock
1929 * any node even if its slot is 0 since in this
1930 * case the key does not end up at slot 0 of the
1931 * leaf and there's no need to split the leaf.
1933 btrfs_unlock_up_safe(path, 1);
1934 search_low_slot = 1;
1937 * The first key is >= then the key we want to
1938 * insert, so we can skip the binary search as
1939 * the target key will be at slot 0.
1941 * We can not unlock upper nodes when the key is
1942 * less than the first key, because we will need
1943 * to update the key at slot 0 of the parent node
1944 * and possibly of other upper nodes too.
1945 * If the key matches the first key, then we can
1946 * unlock all the upper nodes, using
1947 * btrfs_unlock_up_safe() instead of unlock_up()
1951 btrfs_unlock_up_safe(path, 1);
1953 * ret is already 0 or 1, matching the result of
1954 * a btrfs_bin_search() call, so there is no need
1957 do_bin_search = false;
1963 if (do_bin_search) {
1964 ret = search_for_key_slot(leaf, search_low_slot, key,
1965 prev_cmp, &path->slots[0]);
1972 * Item key already exists. In this case, if we are allowed to
1973 * insert the item (for example, in dir_item case, item key
1974 * collision is allowed), it will be merged with the original
1975 * item. Only the item size grows, no new btrfs item will be
1976 * added. If search_for_extension is not set, ins_len already
1977 * accounts the size btrfs_item, deduct it here so leaf space
1978 * check will be correct.
1980 if (ret == 0 && !path->search_for_extension) {
1981 ASSERT(ins_len >= sizeof(struct btrfs_item));
1982 ins_len -= sizeof(struct btrfs_item);
1985 ASSERT(leaf_free_space >= 0);
1987 if (leaf_free_space < ins_len) {
1990 err = split_leaf(trans, root, key, path, ins_len,
1993 if (WARN_ON(err > 0))
2004 * btrfs_search_slot - look for a key in a tree and perform necessary
2005 * modifications to preserve tree invariants.
2007 * @trans: Handle of transaction, used when modifying the tree
2008 * @p: Holds all btree nodes along the search path
2009 * @root: The root node of the tree
2010 * @key: The key we are looking for
2011 * @ins_len: Indicates purpose of search:
2012 * >0 for inserts it's size of item inserted (*)
2014 * 0 for plain searches, not modifying the tree
2016 * (*) If size of item inserted doesn't include
2017 * sizeof(struct btrfs_item), then p->search_for_extension must
2019 * @cow: boolean should CoW operations be performed. Must always be 1
2020 * when modifying the tree.
2022 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2023 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2025 * If @key is found, 0 is returned and you can find the item in the leaf level
2026 * of the path (level 0)
2028 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2029 * points to the slot where it should be inserted
2031 * If an error is encountered while searching the tree a negative error number
2034 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2035 const struct btrfs_key *key, struct btrfs_path *p,
2036 int ins_len, int cow)
2038 struct btrfs_fs_info *fs_info = root->fs_info;
2039 struct extent_buffer *b;
2044 int lowest_unlock = 1;
2045 /* everything at write_lock_level or lower must be write locked */
2046 int write_lock_level = 0;
2047 u8 lowest_level = 0;
2048 int min_write_lock_level;
2053 lowest_level = p->lowest_level;
2054 WARN_ON(lowest_level && ins_len > 0);
2055 WARN_ON(p->nodes[0] != NULL);
2056 BUG_ON(!cow && ins_len);
2059 * For now only allow nowait for read only operations. There's no
2060 * strict reason why we can't, we just only need it for reads so it's
2061 * only implemented for reads.
2063 ASSERT(!p->nowait || !cow);
2068 /* when we are removing items, we might have to go up to level
2069 * two as we update tree pointers Make sure we keep write
2070 * for those levels as well
2072 write_lock_level = 2;
2073 } else if (ins_len > 0) {
2075 * for inserting items, make sure we have a write lock on
2076 * level 1 so we can update keys
2078 write_lock_level = 1;
2082 write_lock_level = -1;
2084 if (cow && (p->keep_locks || p->lowest_level))
2085 write_lock_level = BTRFS_MAX_LEVEL;
2087 min_write_lock_level = write_lock_level;
2089 if (p->need_commit_sem) {
2090 ASSERT(p->search_commit_root);
2092 if (!down_read_trylock(&fs_info->commit_root_sem))
2095 down_read(&fs_info->commit_root_sem);
2101 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2110 level = btrfs_header_level(b);
2113 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2116 * if we don't really need to cow this block
2117 * then we don't want to set the path blocking,
2118 * so we test it here
2120 if (!should_cow_block(trans, root, b))
2124 * must have write locks on this node and the
2127 if (level > write_lock_level ||
2128 (level + 1 > write_lock_level &&
2129 level + 1 < BTRFS_MAX_LEVEL &&
2130 p->nodes[level + 1])) {
2131 write_lock_level = level + 1;
2132 btrfs_release_path(p);
2137 err = btrfs_cow_block(trans, root, b, NULL, 0,
2141 err = btrfs_cow_block(trans, root, b,
2142 p->nodes[level + 1],
2143 p->slots[level + 1], &b,
2151 p->nodes[level] = b;
2154 * we have a lock on b and as long as we aren't changing
2155 * the tree, there is no way to for the items in b to change.
2156 * It is safe to drop the lock on our parent before we
2157 * go through the expensive btree search on b.
2159 * If we're inserting or deleting (ins_len != 0), then we might
2160 * be changing slot zero, which may require changing the parent.
2161 * So, we can't drop the lock until after we know which slot
2162 * we're operating on.
2164 if (!ins_len && !p->keep_locks) {
2167 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2168 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2175 ASSERT(write_lock_level >= 1);
2177 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2178 if (!p->search_for_split)
2179 unlock_up(p, level, lowest_unlock,
2180 min_write_lock_level, NULL);
2184 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2189 if (ret && slot > 0) {
2193 p->slots[level] = slot;
2194 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2202 b = p->nodes[level];
2203 slot = p->slots[level];
2206 * Slot 0 is special, if we change the key we have to update
2207 * the parent pointer which means we must have a write lock on
2210 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2211 write_lock_level = level + 1;
2212 btrfs_release_path(p);
2216 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2219 if (level == lowest_level) {
2225 err = read_block_for_search(root, p, &b, level, slot, key);
2233 if (!p->skip_locking) {
2234 level = btrfs_header_level(b);
2236 btrfs_maybe_reset_lockdep_class(root, b);
2238 if (level <= write_lock_level) {
2240 p->locks[level] = BTRFS_WRITE_LOCK;
2243 if (!btrfs_try_tree_read_lock(b)) {
2244 free_extent_buffer(b);
2249 btrfs_tree_read_lock(b);
2251 p->locks[level] = BTRFS_READ_LOCK;
2253 p->nodes[level] = b;
2258 if (ret < 0 && !p->skip_release_on_error)
2259 btrfs_release_path(p);
2261 if (p->need_commit_sem) {
2264 ret2 = finish_need_commit_sem_search(p);
2265 up_read(&fs_info->commit_root_sem);
2272 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2275 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2276 * current state of the tree together with the operations recorded in the tree
2277 * modification log to search for the key in a previous version of this tree, as
2278 * denoted by the time_seq parameter.
2280 * Naturally, there is no support for insert, delete or cow operations.
2282 * The resulting path and return value will be set up as if we called
2283 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2285 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2286 struct btrfs_path *p, u64 time_seq)
2288 struct btrfs_fs_info *fs_info = root->fs_info;
2289 struct extent_buffer *b;
2294 int lowest_unlock = 1;
2295 u8 lowest_level = 0;
2297 lowest_level = p->lowest_level;
2298 WARN_ON(p->nodes[0] != NULL);
2301 if (p->search_commit_root) {
2303 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2307 b = btrfs_get_old_root(root, time_seq);
2312 level = btrfs_header_level(b);
2313 p->locks[level] = BTRFS_READ_LOCK;
2318 level = btrfs_header_level(b);
2319 p->nodes[level] = b;
2322 * we have a lock on b and as long as we aren't changing
2323 * the tree, there is no way to for the items in b to change.
2324 * It is safe to drop the lock on our parent before we
2325 * go through the expensive btree search on b.
2327 btrfs_unlock_up_safe(p, level + 1);
2329 ret = btrfs_bin_search(b, key, &slot);
2334 p->slots[level] = slot;
2335 unlock_up(p, level, lowest_unlock, 0, NULL);
2339 if (ret && slot > 0) {
2343 p->slots[level] = slot;
2344 unlock_up(p, level, lowest_unlock, 0, NULL);
2346 if (level == lowest_level) {
2352 err = read_block_for_search(root, p, &b, level, slot, key);
2360 level = btrfs_header_level(b);
2361 btrfs_tree_read_lock(b);
2362 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2367 p->locks[level] = BTRFS_READ_LOCK;
2368 p->nodes[level] = b;
2373 btrfs_release_path(p);
2379 * helper to use instead of search slot if no exact match is needed but
2380 * instead the next or previous item should be returned.
2381 * When find_higher is true, the next higher item is returned, the next lower
2383 * When return_any and find_higher are both true, and no higher item is found,
2384 * return the next lower instead.
2385 * When return_any is true and find_higher is false, and no lower item is found,
2386 * return the next higher instead.
2387 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2390 int btrfs_search_slot_for_read(struct btrfs_root *root,
2391 const struct btrfs_key *key,
2392 struct btrfs_path *p, int find_higher,
2396 struct extent_buffer *leaf;
2399 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2403 * a return value of 1 means the path is at the position where the
2404 * item should be inserted. Normally this is the next bigger item,
2405 * but in case the previous item is the last in a leaf, path points
2406 * to the first free slot in the previous leaf, i.e. at an invalid
2412 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2413 ret = btrfs_next_leaf(root, p);
2419 * no higher item found, return the next
2424 btrfs_release_path(p);
2428 if (p->slots[0] == 0) {
2429 ret = btrfs_prev_leaf(root, p);
2434 if (p->slots[0] == btrfs_header_nritems(leaf))
2441 * no lower item found, return the next
2446 btrfs_release_path(p);
2456 * Execute search and call btrfs_previous_item to traverse backwards if the item
2459 * Return 0 if found, 1 if not found and < 0 if error.
2461 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2462 struct btrfs_path *path)
2466 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2468 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2471 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2477 * Search for a valid slot for the given path.
2479 * @root: The root node of the tree.
2480 * @key: Will contain a valid item if found.
2481 * @path: The starting point to validate the slot.
2483 * Return: 0 if the item is valid
2487 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2488 struct btrfs_path *path)
2492 const int slot = path->slots[0];
2493 const struct extent_buffer *leaf = path->nodes[0];
2495 /* This is where we start walking the path. */
2496 if (slot >= btrfs_header_nritems(leaf)) {
2498 * If we've reached the last slot in this leaf we need
2499 * to go to the next leaf and reset the path.
2501 ret = btrfs_next_leaf(root, path);
2506 /* Store the found, valid item in @key. */
2507 btrfs_item_key_to_cpu(leaf, key, slot);
2514 * adjust the pointers going up the tree, starting at level
2515 * making sure the right key of each node is points to 'key'.
2516 * This is used after shifting pointers to the left, so it stops
2517 * fixing up pointers when a given leaf/node is not in slot 0 of the
2521 static void fixup_low_keys(struct btrfs_path *path,
2522 struct btrfs_disk_key *key, int level)
2525 struct extent_buffer *t;
2528 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2529 int tslot = path->slots[i];
2531 if (!path->nodes[i])
2534 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2535 BTRFS_MOD_LOG_KEY_REPLACE);
2537 btrfs_set_node_key(t, key, tslot);
2538 btrfs_mark_buffer_dirty(path->nodes[i]);
2547 * This function isn't completely safe. It's the caller's responsibility
2548 * that the new key won't break the order
2550 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2551 struct btrfs_path *path,
2552 const struct btrfs_key *new_key)
2554 struct btrfs_disk_key disk_key;
2555 struct extent_buffer *eb;
2558 eb = path->nodes[0];
2559 slot = path->slots[0];
2561 btrfs_item_key(eb, &disk_key, slot - 1);
2562 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2564 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2565 slot, btrfs_disk_key_objectid(&disk_key),
2566 btrfs_disk_key_type(&disk_key),
2567 btrfs_disk_key_offset(&disk_key),
2568 new_key->objectid, new_key->type,
2570 btrfs_print_leaf(eb);
2574 if (slot < btrfs_header_nritems(eb) - 1) {
2575 btrfs_item_key(eb, &disk_key, slot + 1);
2576 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2578 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2579 slot, btrfs_disk_key_objectid(&disk_key),
2580 btrfs_disk_key_type(&disk_key),
2581 btrfs_disk_key_offset(&disk_key),
2582 new_key->objectid, new_key->type,
2584 btrfs_print_leaf(eb);
2589 btrfs_cpu_key_to_disk(&disk_key, new_key);
2590 btrfs_set_item_key(eb, &disk_key, slot);
2591 btrfs_mark_buffer_dirty(eb);
2593 fixup_low_keys(path, &disk_key, 1);
2597 * Check key order of two sibling extent buffers.
2599 * Return true if something is wrong.
2600 * Return false if everything is fine.
2602 * Tree-checker only works inside one tree block, thus the following
2603 * corruption can not be detected by tree-checker:
2605 * Leaf @left | Leaf @right
2606 * --------------------------------------------------------------
2607 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2609 * Key f6 in leaf @left itself is valid, but not valid when the next
2610 * key in leaf @right is 7.
2611 * This can only be checked at tree block merge time.
2612 * And since tree checker has ensured all key order in each tree block
2613 * is correct, we only need to bother the last key of @left and the first
2616 static bool check_sibling_keys(struct extent_buffer *left,
2617 struct extent_buffer *right)
2619 struct btrfs_key left_last;
2620 struct btrfs_key right_first;
2621 int level = btrfs_header_level(left);
2622 int nr_left = btrfs_header_nritems(left);
2623 int nr_right = btrfs_header_nritems(right);
2625 /* No key to check in one of the tree blocks */
2626 if (!nr_left || !nr_right)
2630 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2631 btrfs_node_key_to_cpu(right, &right_first, 0);
2633 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2634 btrfs_item_key_to_cpu(right, &right_first, 0);
2637 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2638 btrfs_crit(left->fs_info,
2639 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2640 left_last.objectid, left_last.type,
2641 left_last.offset, right_first.objectid,
2642 right_first.type, right_first.offset);
2649 * try to push data from one node into the next node left in the
2652 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2653 * error, and > 0 if there was no room in the left hand block.
2655 static int push_node_left(struct btrfs_trans_handle *trans,
2656 struct extent_buffer *dst,
2657 struct extent_buffer *src, int empty)
2659 struct btrfs_fs_info *fs_info = trans->fs_info;
2665 src_nritems = btrfs_header_nritems(src);
2666 dst_nritems = btrfs_header_nritems(dst);
2667 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2668 WARN_ON(btrfs_header_generation(src) != trans->transid);
2669 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2671 if (!empty && src_nritems <= 8)
2674 if (push_items <= 0)
2678 push_items = min(src_nritems, push_items);
2679 if (push_items < src_nritems) {
2680 /* leave at least 8 pointers in the node if
2681 * we aren't going to empty it
2683 if (src_nritems - push_items < 8) {
2684 if (push_items <= 8)
2690 push_items = min(src_nritems - 8, push_items);
2692 /* dst is the left eb, src is the middle eb */
2693 if (check_sibling_keys(dst, src)) {
2695 btrfs_abort_transaction(trans, ret);
2698 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2700 btrfs_abort_transaction(trans, ret);
2703 copy_extent_buffer(dst, src,
2704 btrfs_node_key_ptr_offset(dst, dst_nritems),
2705 btrfs_node_key_ptr_offset(src, 0),
2706 push_items * sizeof(struct btrfs_key_ptr));
2708 if (push_items < src_nritems) {
2710 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2711 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2713 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2714 btrfs_node_key_ptr_offset(src, push_items),
2715 (src_nritems - push_items) *
2716 sizeof(struct btrfs_key_ptr));
2718 btrfs_set_header_nritems(src, src_nritems - push_items);
2719 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2720 btrfs_mark_buffer_dirty(src);
2721 btrfs_mark_buffer_dirty(dst);
2727 * try to push data from one node into the next node right in the
2730 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2731 * error, and > 0 if there was no room in the right hand block.
2733 * this will only push up to 1/2 the contents of the left node over
2735 static int balance_node_right(struct btrfs_trans_handle *trans,
2736 struct extent_buffer *dst,
2737 struct extent_buffer *src)
2739 struct btrfs_fs_info *fs_info = trans->fs_info;
2746 WARN_ON(btrfs_header_generation(src) != trans->transid);
2747 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2749 src_nritems = btrfs_header_nritems(src);
2750 dst_nritems = btrfs_header_nritems(dst);
2751 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2752 if (push_items <= 0)
2755 if (src_nritems < 4)
2758 max_push = src_nritems / 2 + 1;
2759 /* don't try to empty the node */
2760 if (max_push >= src_nritems)
2763 if (max_push < push_items)
2764 push_items = max_push;
2766 /* dst is the right eb, src is the middle eb */
2767 if (check_sibling_keys(src, dst)) {
2769 btrfs_abort_transaction(trans, ret);
2772 ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2774 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2775 btrfs_node_key_ptr_offset(dst, 0),
2777 sizeof(struct btrfs_key_ptr));
2779 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2782 btrfs_abort_transaction(trans, ret);
2785 copy_extent_buffer(dst, src,
2786 btrfs_node_key_ptr_offset(dst, 0),
2787 btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2788 push_items * sizeof(struct btrfs_key_ptr));
2790 btrfs_set_header_nritems(src, src_nritems - push_items);
2791 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2793 btrfs_mark_buffer_dirty(src);
2794 btrfs_mark_buffer_dirty(dst);
2800 * helper function to insert a new root level in the tree.
2801 * A new node is allocated, and a single item is inserted to
2802 * point to the existing root
2804 * returns zero on success or < 0 on failure.
2806 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2807 struct btrfs_root *root,
2808 struct btrfs_path *path, int level)
2810 struct btrfs_fs_info *fs_info = root->fs_info;
2812 struct extent_buffer *lower;
2813 struct extent_buffer *c;
2814 struct extent_buffer *old;
2815 struct btrfs_disk_key lower_key;
2818 BUG_ON(path->nodes[level]);
2819 BUG_ON(path->nodes[level-1] != root->node);
2821 lower = path->nodes[level-1];
2823 btrfs_item_key(lower, &lower_key, 0);
2825 btrfs_node_key(lower, &lower_key, 0);
2827 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2828 &lower_key, level, root->node->start, 0,
2829 BTRFS_NESTING_NEW_ROOT);
2833 root_add_used(root, fs_info->nodesize);
2835 btrfs_set_header_nritems(c, 1);
2836 btrfs_set_node_key(c, &lower_key, 0);
2837 btrfs_set_node_blockptr(c, 0, lower->start);
2838 lower_gen = btrfs_header_generation(lower);
2839 WARN_ON(lower_gen != trans->transid);
2841 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2843 btrfs_mark_buffer_dirty(c);
2846 ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2848 rcu_assign_pointer(root->node, c);
2850 /* the super has an extra ref to root->node */
2851 free_extent_buffer(old);
2853 add_root_to_dirty_list(root);
2854 atomic_inc(&c->refs);
2855 path->nodes[level] = c;
2856 path->locks[level] = BTRFS_WRITE_LOCK;
2857 path->slots[level] = 0;
2862 * worker function to insert a single pointer in a node.
2863 * the node should have enough room for the pointer already
2865 * slot and level indicate where you want the key to go, and
2866 * blocknr is the block the key points to.
2868 static void insert_ptr(struct btrfs_trans_handle *trans,
2869 struct btrfs_path *path,
2870 struct btrfs_disk_key *key, u64 bytenr,
2871 int slot, int level)
2873 struct extent_buffer *lower;
2877 BUG_ON(!path->nodes[level]);
2878 btrfs_assert_tree_write_locked(path->nodes[level]);
2879 lower = path->nodes[level];
2880 nritems = btrfs_header_nritems(lower);
2881 BUG_ON(slot > nritems);
2882 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2883 if (slot != nritems) {
2885 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2886 slot, nritems - slot);
2889 memmove_extent_buffer(lower,
2890 btrfs_node_key_ptr_offset(lower, slot + 1),
2891 btrfs_node_key_ptr_offset(lower, slot),
2892 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2895 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2896 BTRFS_MOD_LOG_KEY_ADD);
2899 btrfs_set_node_key(lower, key, slot);
2900 btrfs_set_node_blockptr(lower, slot, bytenr);
2901 WARN_ON(trans->transid == 0);
2902 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2903 btrfs_set_header_nritems(lower, nritems + 1);
2904 btrfs_mark_buffer_dirty(lower);
2908 * split the node at the specified level in path in two.
2909 * The path is corrected to point to the appropriate node after the split
2911 * Before splitting this tries to make some room in the node by pushing
2912 * left and right, if either one works, it returns right away.
2914 * returns 0 on success and < 0 on failure
2916 static noinline int split_node(struct btrfs_trans_handle *trans,
2917 struct btrfs_root *root,
2918 struct btrfs_path *path, int level)
2920 struct btrfs_fs_info *fs_info = root->fs_info;
2921 struct extent_buffer *c;
2922 struct extent_buffer *split;
2923 struct btrfs_disk_key disk_key;
2928 c = path->nodes[level];
2929 WARN_ON(btrfs_header_generation(c) != trans->transid);
2930 if (c == root->node) {
2932 * trying to split the root, lets make a new one
2934 * tree mod log: We don't log_removal old root in
2935 * insert_new_root, because that root buffer will be kept as a
2936 * normal node. We are going to log removal of half of the
2937 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2938 * holding a tree lock on the buffer, which is why we cannot
2939 * race with other tree_mod_log users.
2941 ret = insert_new_root(trans, root, path, level + 1);
2945 ret = push_nodes_for_insert(trans, root, path, level);
2946 c = path->nodes[level];
2947 if (!ret && btrfs_header_nritems(c) <
2948 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2954 c_nritems = btrfs_header_nritems(c);
2955 mid = (c_nritems + 1) / 2;
2956 btrfs_node_key(c, &disk_key, mid);
2958 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2959 &disk_key, level, c->start, 0,
2960 BTRFS_NESTING_SPLIT);
2962 return PTR_ERR(split);
2964 root_add_used(root, fs_info->nodesize);
2965 ASSERT(btrfs_header_level(c) == level);
2967 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2969 btrfs_abort_transaction(trans, ret);
2972 copy_extent_buffer(split, c,
2973 btrfs_node_key_ptr_offset(split, 0),
2974 btrfs_node_key_ptr_offset(c, mid),
2975 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2976 btrfs_set_header_nritems(split, c_nritems - mid);
2977 btrfs_set_header_nritems(c, mid);
2979 btrfs_mark_buffer_dirty(c);
2980 btrfs_mark_buffer_dirty(split);
2982 insert_ptr(trans, path, &disk_key, split->start,
2983 path->slots[level + 1] + 1, level + 1);
2985 if (path->slots[level] >= mid) {
2986 path->slots[level] -= mid;
2987 btrfs_tree_unlock(c);
2988 free_extent_buffer(c);
2989 path->nodes[level] = split;
2990 path->slots[level + 1] += 1;
2992 btrfs_tree_unlock(split);
2993 free_extent_buffer(split);
2999 * how many bytes are required to store the items in a leaf. start
3000 * and nr indicate which items in the leaf to check. This totals up the
3001 * space used both by the item structs and the item data
3003 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3006 int nritems = btrfs_header_nritems(l);
3007 int end = min(nritems, start + nr) - 1;
3011 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3012 data_len = data_len - btrfs_item_offset(l, end);
3013 data_len += sizeof(struct btrfs_item) * nr;
3014 WARN_ON(data_len < 0);
3019 * The space between the end of the leaf items and
3020 * the start of the leaf data. IOW, how much room
3021 * the leaf has left for both items and data
3023 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3025 struct btrfs_fs_info *fs_info = leaf->fs_info;
3026 int nritems = btrfs_header_nritems(leaf);
3029 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3032 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3034 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3035 leaf_space_used(leaf, 0, nritems), nritems);
3041 * min slot controls the lowest index we're willing to push to the
3042 * right. We'll push up to and including min_slot, but no lower
3044 static noinline int __push_leaf_right(struct btrfs_path *path,
3045 int data_size, int empty,
3046 struct extent_buffer *right,
3047 int free_space, u32 left_nritems,
3050 struct btrfs_fs_info *fs_info = right->fs_info;
3051 struct extent_buffer *left = path->nodes[0];
3052 struct extent_buffer *upper = path->nodes[1];
3053 struct btrfs_map_token token;
3054 struct btrfs_disk_key disk_key;
3067 nr = max_t(u32, 1, min_slot);
3069 if (path->slots[0] >= left_nritems)
3070 push_space += data_size;
3072 slot = path->slots[1];
3073 i = left_nritems - 1;
3075 if (!empty && push_items > 0) {
3076 if (path->slots[0] > i)
3078 if (path->slots[0] == i) {
3079 int space = btrfs_leaf_free_space(left);
3081 if (space + push_space * 2 > free_space)
3086 if (path->slots[0] == i)
3087 push_space += data_size;
3089 this_item_size = btrfs_item_size(left, i);
3090 if (this_item_size + sizeof(struct btrfs_item) +
3091 push_space > free_space)
3095 push_space += this_item_size + sizeof(struct btrfs_item);
3101 if (push_items == 0)
3104 WARN_ON(!empty && push_items == left_nritems);
3106 /* push left to right */
3107 right_nritems = btrfs_header_nritems(right);
3109 push_space = btrfs_item_data_end(left, left_nritems - push_items);
3110 push_space -= leaf_data_end(left);
3112 /* make room in the right data area */
3113 data_end = leaf_data_end(right);
3114 memmove_leaf_data(right, data_end - push_space, data_end,
3115 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3117 /* copy from the left data area */
3118 copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3119 leaf_data_end(left), push_space);
3121 memmove_leaf_items(right, push_items, 0, right_nritems);
3123 /* copy the items from left to right */
3124 copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3126 /* update the item pointers */
3127 btrfs_init_map_token(&token, right);
3128 right_nritems += push_items;
3129 btrfs_set_header_nritems(right, right_nritems);
3130 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3131 for (i = 0; i < right_nritems; i++) {
3132 push_space -= btrfs_token_item_size(&token, i);
3133 btrfs_set_token_item_offset(&token, i, push_space);
3136 left_nritems -= push_items;
3137 btrfs_set_header_nritems(left, left_nritems);
3140 btrfs_mark_buffer_dirty(left);
3142 btrfs_clean_tree_block(left);
3144 btrfs_mark_buffer_dirty(right);
3146 btrfs_item_key(right, &disk_key, 0);
3147 btrfs_set_node_key(upper, &disk_key, slot + 1);
3148 btrfs_mark_buffer_dirty(upper);
3150 /* then fixup the leaf pointer in the path */
3151 if (path->slots[0] >= left_nritems) {
3152 path->slots[0] -= left_nritems;
3153 if (btrfs_header_nritems(path->nodes[0]) == 0)
3154 btrfs_clean_tree_block(path->nodes[0]);
3155 btrfs_tree_unlock(path->nodes[0]);
3156 free_extent_buffer(path->nodes[0]);
3157 path->nodes[0] = right;
3158 path->slots[1] += 1;
3160 btrfs_tree_unlock(right);
3161 free_extent_buffer(right);
3166 btrfs_tree_unlock(right);
3167 free_extent_buffer(right);
3172 * push some data in the path leaf to the right, trying to free up at
3173 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3175 * returns 1 if the push failed because the other node didn't have enough
3176 * room, 0 if everything worked out and < 0 if there were major errors.
3178 * this will push starting from min_slot to the end of the leaf. It won't
3179 * push any slot lower than min_slot
3181 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3182 *root, struct btrfs_path *path,
3183 int min_data_size, int data_size,
3184 int empty, u32 min_slot)
3186 struct extent_buffer *left = path->nodes[0];
3187 struct extent_buffer *right;
3188 struct extent_buffer *upper;
3194 if (!path->nodes[1])
3197 slot = path->slots[1];
3198 upper = path->nodes[1];
3199 if (slot >= btrfs_header_nritems(upper) - 1)
3202 btrfs_assert_tree_write_locked(path->nodes[1]);
3204 right = btrfs_read_node_slot(upper, slot + 1);
3206 * slot + 1 is not valid or we fail to read the right node,
3207 * no big deal, just return.
3212 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3214 free_space = btrfs_leaf_free_space(right);
3215 if (free_space < data_size)
3218 ret = btrfs_cow_block(trans, root, right, upper,
3219 slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3223 left_nritems = btrfs_header_nritems(left);
3224 if (left_nritems == 0)
3227 if (check_sibling_keys(left, right)) {
3229 btrfs_tree_unlock(right);
3230 free_extent_buffer(right);
3233 if (path->slots[0] == left_nritems && !empty) {
3234 /* Key greater than all keys in the leaf, right neighbor has
3235 * enough room for it and we're not emptying our leaf to delete
3236 * it, therefore use right neighbor to insert the new item and
3237 * no need to touch/dirty our left leaf. */
3238 btrfs_tree_unlock(left);
3239 free_extent_buffer(left);
3240 path->nodes[0] = right;
3246 return __push_leaf_right(path, min_data_size, empty,
3247 right, free_space, left_nritems, min_slot);
3249 btrfs_tree_unlock(right);
3250 free_extent_buffer(right);
3255 * push some data in the path leaf to the left, trying to free up at
3256 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3258 * max_slot can put a limit on how far into the leaf we'll push items. The
3259 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3262 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3263 int empty, struct extent_buffer *left,
3264 int free_space, u32 right_nritems,
3267 struct btrfs_fs_info *fs_info = left->fs_info;
3268 struct btrfs_disk_key disk_key;
3269 struct extent_buffer *right = path->nodes[0];
3273 u32 old_left_nritems;
3277 u32 old_left_item_size;
3278 struct btrfs_map_token token;
3281 nr = min(right_nritems, max_slot);
3283 nr = min(right_nritems - 1, max_slot);
3285 for (i = 0; i < nr; i++) {
3286 if (!empty && push_items > 0) {
3287 if (path->slots[0] < i)
3289 if (path->slots[0] == i) {
3290 int space = btrfs_leaf_free_space(right);
3292 if (space + push_space * 2 > free_space)
3297 if (path->slots[0] == i)
3298 push_space += data_size;
3300 this_item_size = btrfs_item_size(right, i);
3301 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3306 push_space += this_item_size + sizeof(struct btrfs_item);
3309 if (push_items == 0) {
3313 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3315 /* push data from right to left */
3316 copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3318 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3319 btrfs_item_offset(right, push_items - 1);
3321 copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3322 btrfs_item_offset(right, push_items - 1), push_space);
3323 old_left_nritems = btrfs_header_nritems(left);
3324 BUG_ON(old_left_nritems <= 0);
3326 btrfs_init_map_token(&token, left);
3327 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3328 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3331 ioff = btrfs_token_item_offset(&token, i);
3332 btrfs_set_token_item_offset(&token, i,
3333 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3335 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3337 /* fixup right node */
3338 if (push_items > right_nritems)
3339 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3342 if (push_items < right_nritems) {
3343 push_space = btrfs_item_offset(right, push_items - 1) -
3344 leaf_data_end(right);
3345 memmove_leaf_data(right,
3346 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3347 leaf_data_end(right), push_space);
3349 memmove_leaf_items(right, 0, push_items,
3350 btrfs_header_nritems(right) - push_items);
3353 btrfs_init_map_token(&token, right);
3354 right_nritems -= push_items;
3355 btrfs_set_header_nritems(right, right_nritems);
3356 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3357 for (i = 0; i < right_nritems; i++) {
3358 push_space = push_space - btrfs_token_item_size(&token, i);
3359 btrfs_set_token_item_offset(&token, i, push_space);
3362 btrfs_mark_buffer_dirty(left);
3364 btrfs_mark_buffer_dirty(right);
3366 btrfs_clean_tree_block(right);
3368 btrfs_item_key(right, &disk_key, 0);
3369 fixup_low_keys(path, &disk_key, 1);
3371 /* then fixup the leaf pointer in the path */
3372 if (path->slots[0] < push_items) {
3373 path->slots[0] += old_left_nritems;
3374 btrfs_tree_unlock(path->nodes[0]);
3375 free_extent_buffer(path->nodes[0]);
3376 path->nodes[0] = left;
3377 path->slots[1] -= 1;
3379 btrfs_tree_unlock(left);
3380 free_extent_buffer(left);
3381 path->slots[0] -= push_items;
3383 BUG_ON(path->slots[0] < 0);
3386 btrfs_tree_unlock(left);
3387 free_extent_buffer(left);
3392 * push some data in the path leaf to the left, trying to free up at
3393 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3395 * max_slot can put a limit on how far into the leaf we'll push items. The
3396 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3399 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3400 *root, struct btrfs_path *path, int min_data_size,
3401 int data_size, int empty, u32 max_slot)
3403 struct extent_buffer *right = path->nodes[0];
3404 struct extent_buffer *left;
3410 slot = path->slots[1];
3413 if (!path->nodes[1])
3416 right_nritems = btrfs_header_nritems(right);
3417 if (right_nritems == 0)
3420 btrfs_assert_tree_write_locked(path->nodes[1]);
3422 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3424 * slot - 1 is not valid or we fail to read the left node,
3425 * no big deal, just return.
3430 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3432 free_space = btrfs_leaf_free_space(left);
3433 if (free_space < data_size) {
3438 ret = btrfs_cow_block(trans, root, left,
3439 path->nodes[1], slot - 1, &left,
3440 BTRFS_NESTING_LEFT_COW);
3442 /* we hit -ENOSPC, but it isn't fatal here */
3448 if (check_sibling_keys(left, right)) {
3452 return __push_leaf_left(path, min_data_size,
3453 empty, left, free_space, right_nritems,
3456 btrfs_tree_unlock(left);
3457 free_extent_buffer(left);
3462 * split the path's leaf in two, making sure there is at least data_size
3463 * available for the resulting leaf level of the path.
3465 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3466 struct btrfs_path *path,
3467 struct extent_buffer *l,
3468 struct extent_buffer *right,
3469 int slot, int mid, int nritems)
3471 struct btrfs_fs_info *fs_info = trans->fs_info;
3475 struct btrfs_disk_key disk_key;
3476 struct btrfs_map_token token;
3478 nritems = nritems - mid;
3479 btrfs_set_header_nritems(right, nritems);
3480 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3482 copy_leaf_items(right, l, 0, mid, nritems);
3484 copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3485 leaf_data_end(l), data_copy_size);
3487 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3489 btrfs_init_map_token(&token, right);
3490 for (i = 0; i < nritems; i++) {
3493 ioff = btrfs_token_item_offset(&token, i);
3494 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3497 btrfs_set_header_nritems(l, mid);
3498 btrfs_item_key(right, &disk_key, 0);
3499 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3501 btrfs_mark_buffer_dirty(right);
3502 btrfs_mark_buffer_dirty(l);
3503 BUG_ON(path->slots[0] != slot);
3506 btrfs_tree_unlock(path->nodes[0]);
3507 free_extent_buffer(path->nodes[0]);
3508 path->nodes[0] = right;
3509 path->slots[0] -= mid;
3510 path->slots[1] += 1;
3512 btrfs_tree_unlock(right);
3513 free_extent_buffer(right);
3516 BUG_ON(path->slots[0] < 0);
3520 * double splits happen when we need to insert a big item in the middle
3521 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3522 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3525 * We avoid this by trying to push the items on either side of our target
3526 * into the adjacent leaves. If all goes well we can avoid the double split
3529 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3530 struct btrfs_root *root,
3531 struct btrfs_path *path,
3538 int space_needed = data_size;
3540 slot = path->slots[0];
3541 if (slot < btrfs_header_nritems(path->nodes[0]))
3542 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3545 * try to push all the items after our slot into the
3548 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3555 nritems = btrfs_header_nritems(path->nodes[0]);
3557 * our goal is to get our slot at the start or end of a leaf. If
3558 * we've done so we're done
3560 if (path->slots[0] == 0 || path->slots[0] == nritems)
3563 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3566 /* try to push all the items before our slot into the next leaf */
3567 slot = path->slots[0];
3568 space_needed = data_size;
3570 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3571 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3584 * split the path's leaf in two, making sure there is at least data_size
3585 * available for the resulting leaf level of the path.
3587 * returns 0 if all went well and < 0 on failure.
3589 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3590 struct btrfs_root *root,
3591 const struct btrfs_key *ins_key,
3592 struct btrfs_path *path, int data_size,
3595 struct btrfs_disk_key disk_key;
3596 struct extent_buffer *l;
3600 struct extent_buffer *right;
3601 struct btrfs_fs_info *fs_info = root->fs_info;
3605 int num_doubles = 0;
3606 int tried_avoid_double = 0;
3609 slot = path->slots[0];
3610 if (extend && data_size + btrfs_item_size(l, slot) +
3611 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3614 /* first try to make some room by pushing left and right */
3615 if (data_size && path->nodes[1]) {
3616 int space_needed = data_size;
3618 if (slot < btrfs_header_nritems(l))
3619 space_needed -= btrfs_leaf_free_space(l);
3621 wret = push_leaf_right(trans, root, path, space_needed,
3622 space_needed, 0, 0);
3626 space_needed = data_size;
3628 space_needed -= btrfs_leaf_free_space(l);
3629 wret = push_leaf_left(trans, root, path, space_needed,
3630 space_needed, 0, (u32)-1);
3636 /* did the pushes work? */
3637 if (btrfs_leaf_free_space(l) >= data_size)
3641 if (!path->nodes[1]) {
3642 ret = insert_new_root(trans, root, path, 1);
3649 slot = path->slots[0];
3650 nritems = btrfs_header_nritems(l);
3651 mid = (nritems + 1) / 2;
3655 leaf_space_used(l, mid, nritems - mid) + data_size >
3656 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3657 if (slot >= nritems) {
3661 if (mid != nritems &&
3662 leaf_space_used(l, mid, nritems - mid) +
3663 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3664 if (data_size && !tried_avoid_double)
3665 goto push_for_double;
3671 if (leaf_space_used(l, 0, mid) + data_size >
3672 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3673 if (!extend && data_size && slot == 0) {
3675 } else if ((extend || !data_size) && slot == 0) {
3679 if (mid != nritems &&
3680 leaf_space_used(l, mid, nritems - mid) +
3681 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3682 if (data_size && !tried_avoid_double)
3683 goto push_for_double;
3691 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3693 btrfs_item_key(l, &disk_key, mid);
3696 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3697 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3698 * subclasses, which is 8 at the time of this patch, and we've maxed it
3699 * out. In the future we could add a
3700 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3701 * use BTRFS_NESTING_NEW_ROOT.
3703 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3704 &disk_key, 0, l->start, 0,
3705 num_doubles ? BTRFS_NESTING_NEW_ROOT :
3706 BTRFS_NESTING_SPLIT);
3708 return PTR_ERR(right);
3710 root_add_used(root, fs_info->nodesize);
3714 btrfs_set_header_nritems(right, 0);
3715 insert_ptr(trans, path, &disk_key,
3716 right->start, path->slots[1] + 1, 1);
3717 btrfs_tree_unlock(path->nodes[0]);
3718 free_extent_buffer(path->nodes[0]);
3719 path->nodes[0] = right;
3721 path->slots[1] += 1;
3723 btrfs_set_header_nritems(right, 0);
3724 insert_ptr(trans, path, &disk_key,
3725 right->start, path->slots[1], 1);
3726 btrfs_tree_unlock(path->nodes[0]);
3727 free_extent_buffer(path->nodes[0]);
3728 path->nodes[0] = right;
3730 if (path->slots[1] == 0)
3731 fixup_low_keys(path, &disk_key, 1);
3734 * We create a new leaf 'right' for the required ins_len and
3735 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3736 * the content of ins_len to 'right'.
3741 copy_for_split(trans, path, l, right, slot, mid, nritems);
3744 BUG_ON(num_doubles != 0);
3752 push_for_double_split(trans, root, path, data_size);
3753 tried_avoid_double = 1;
3754 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3759 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3760 struct btrfs_root *root,
3761 struct btrfs_path *path, int ins_len)
3763 struct btrfs_key key;
3764 struct extent_buffer *leaf;
3765 struct btrfs_file_extent_item *fi;
3770 leaf = path->nodes[0];
3771 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3773 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3774 key.type != BTRFS_EXTENT_CSUM_KEY);
3776 if (btrfs_leaf_free_space(leaf) >= ins_len)
3779 item_size = btrfs_item_size(leaf, path->slots[0]);
3780 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3781 fi = btrfs_item_ptr(leaf, path->slots[0],
3782 struct btrfs_file_extent_item);
3783 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3785 btrfs_release_path(path);
3787 path->keep_locks = 1;
3788 path->search_for_split = 1;
3789 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3790 path->search_for_split = 0;
3797 leaf = path->nodes[0];
3798 /* if our item isn't there, return now */
3799 if (item_size != btrfs_item_size(leaf, path->slots[0]))
3802 /* the leaf has changed, it now has room. return now */
3803 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3806 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3807 fi = btrfs_item_ptr(leaf, path->slots[0],
3808 struct btrfs_file_extent_item);
3809 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3813 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3817 path->keep_locks = 0;
3818 btrfs_unlock_up_safe(path, 1);
3821 path->keep_locks = 0;
3825 static noinline int split_item(struct btrfs_path *path,
3826 const struct btrfs_key *new_key,
3827 unsigned long split_offset)
3829 struct extent_buffer *leaf;
3830 int orig_slot, slot;
3835 struct btrfs_disk_key disk_key;
3837 leaf = path->nodes[0];
3838 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3840 orig_slot = path->slots[0];
3841 orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3842 item_size = btrfs_item_size(leaf, path->slots[0]);
3844 buf = kmalloc(item_size, GFP_NOFS);
3848 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3849 path->slots[0]), item_size);
3851 slot = path->slots[0] + 1;
3852 nritems = btrfs_header_nritems(leaf);
3853 if (slot != nritems) {
3854 /* shift the items */
3855 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3858 btrfs_cpu_key_to_disk(&disk_key, new_key);
3859 btrfs_set_item_key(leaf, &disk_key, slot);
3861 btrfs_set_item_offset(leaf, slot, orig_offset);
3862 btrfs_set_item_size(leaf, slot, item_size - split_offset);
3864 btrfs_set_item_offset(leaf, orig_slot,
3865 orig_offset + item_size - split_offset);
3866 btrfs_set_item_size(leaf, orig_slot, split_offset);
3868 btrfs_set_header_nritems(leaf, nritems + 1);
3870 /* write the data for the start of the original item */
3871 write_extent_buffer(leaf, buf,
3872 btrfs_item_ptr_offset(leaf, path->slots[0]),
3875 /* write the data for the new item */
3876 write_extent_buffer(leaf, buf + split_offset,
3877 btrfs_item_ptr_offset(leaf, slot),
3878 item_size - split_offset);
3879 btrfs_mark_buffer_dirty(leaf);
3881 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3887 * This function splits a single item into two items,
3888 * giving 'new_key' to the new item and splitting the
3889 * old one at split_offset (from the start of the item).
3891 * The path may be released by this operation. After
3892 * the split, the path is pointing to the old item. The
3893 * new item is going to be in the same node as the old one.
3895 * Note, the item being split must be smaller enough to live alone on
3896 * a tree block with room for one extra struct btrfs_item
3898 * This allows us to split the item in place, keeping a lock on the
3899 * leaf the entire time.
3901 int btrfs_split_item(struct btrfs_trans_handle *trans,
3902 struct btrfs_root *root,
3903 struct btrfs_path *path,
3904 const struct btrfs_key *new_key,
3905 unsigned long split_offset)
3908 ret = setup_leaf_for_split(trans, root, path,
3909 sizeof(struct btrfs_item));
3913 ret = split_item(path, new_key, split_offset);
3918 * make the item pointed to by the path smaller. new_size indicates
3919 * how small to make it, and from_end tells us if we just chop bytes
3920 * off the end of the item or if we shift the item to chop bytes off
3923 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3926 struct extent_buffer *leaf;
3928 unsigned int data_end;
3929 unsigned int old_data_start;
3930 unsigned int old_size;
3931 unsigned int size_diff;
3933 struct btrfs_map_token token;
3935 leaf = path->nodes[0];
3936 slot = path->slots[0];
3938 old_size = btrfs_item_size(leaf, slot);
3939 if (old_size == new_size)
3942 nritems = btrfs_header_nritems(leaf);
3943 data_end = leaf_data_end(leaf);
3945 old_data_start = btrfs_item_offset(leaf, slot);
3947 size_diff = old_size - new_size;
3950 BUG_ON(slot >= nritems);
3953 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3955 /* first correct the data pointers */
3956 btrfs_init_map_token(&token, leaf);
3957 for (i = slot; i < nritems; i++) {
3960 ioff = btrfs_token_item_offset(&token, i);
3961 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3964 /* shift the data */
3966 memmove_leaf_data(leaf, data_end + size_diff, data_end,
3967 old_data_start + new_size - data_end);
3969 struct btrfs_disk_key disk_key;
3972 btrfs_item_key(leaf, &disk_key, slot);
3974 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3976 struct btrfs_file_extent_item *fi;
3978 fi = btrfs_item_ptr(leaf, slot,
3979 struct btrfs_file_extent_item);
3980 fi = (struct btrfs_file_extent_item *)(
3981 (unsigned long)fi - size_diff);
3983 if (btrfs_file_extent_type(leaf, fi) ==
3984 BTRFS_FILE_EXTENT_INLINE) {
3985 ptr = btrfs_item_ptr_offset(leaf, slot);
3986 memmove_extent_buffer(leaf, ptr,
3988 BTRFS_FILE_EXTENT_INLINE_DATA_START);
3992 memmove_leaf_data(leaf, data_end + size_diff, data_end,
3993 old_data_start - data_end);
3995 offset = btrfs_disk_key_offset(&disk_key);
3996 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3997 btrfs_set_item_key(leaf, &disk_key, slot);
3999 fixup_low_keys(path, &disk_key, 1);
4002 btrfs_set_item_size(leaf, slot, new_size);
4003 btrfs_mark_buffer_dirty(leaf);
4005 if (btrfs_leaf_free_space(leaf) < 0) {
4006 btrfs_print_leaf(leaf);
4012 * make the item pointed to by the path bigger, data_size is the added size.
4014 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4017 struct extent_buffer *leaf;
4019 unsigned int data_end;
4020 unsigned int old_data;
4021 unsigned int old_size;
4023 struct btrfs_map_token token;
4025 leaf = path->nodes[0];
4027 nritems = btrfs_header_nritems(leaf);
4028 data_end = leaf_data_end(leaf);
4030 if (btrfs_leaf_free_space(leaf) < data_size) {
4031 btrfs_print_leaf(leaf);
4034 slot = path->slots[0];
4035 old_data = btrfs_item_data_end(leaf, slot);
4038 if (slot >= nritems) {
4039 btrfs_print_leaf(leaf);
4040 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4046 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4048 /* first correct the data pointers */
4049 btrfs_init_map_token(&token, leaf);
4050 for (i = slot; i < nritems; i++) {
4053 ioff = btrfs_token_item_offset(&token, i);
4054 btrfs_set_token_item_offset(&token, i, ioff - data_size);
4057 /* shift the data */
4058 memmove_leaf_data(leaf, data_end - data_size, data_end,
4059 old_data - data_end);
4061 data_end = old_data;
4062 old_size = btrfs_item_size(leaf, slot);
4063 btrfs_set_item_size(leaf, slot, old_size + data_size);
4064 btrfs_mark_buffer_dirty(leaf);
4066 if (btrfs_leaf_free_space(leaf) < 0) {
4067 btrfs_print_leaf(leaf);
4073 * Make space in the node before inserting one or more items.
4075 * @root: root we are inserting items to
4076 * @path: points to the leaf/slot where we are going to insert new items
4077 * @batch: information about the batch of items to insert
4079 * Main purpose is to save stack depth by doing the bulk of the work in a
4080 * function that doesn't call btrfs_search_slot
4082 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4083 const struct btrfs_item_batch *batch)
4085 struct btrfs_fs_info *fs_info = root->fs_info;
4088 unsigned int data_end;
4089 struct btrfs_disk_key disk_key;
4090 struct extent_buffer *leaf;
4092 struct btrfs_map_token token;
4096 * Before anything else, update keys in the parent and other ancestors
4097 * if needed, then release the write locks on them, so that other tasks
4098 * can use them while we modify the leaf.
4100 if (path->slots[0] == 0) {
4101 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4102 fixup_low_keys(path, &disk_key, 1);
4104 btrfs_unlock_up_safe(path, 1);
4106 leaf = path->nodes[0];
4107 slot = path->slots[0];
4109 nritems = btrfs_header_nritems(leaf);
4110 data_end = leaf_data_end(leaf);
4111 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4113 if (btrfs_leaf_free_space(leaf) < total_size) {
4114 btrfs_print_leaf(leaf);
4115 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4116 total_size, btrfs_leaf_free_space(leaf));
4120 btrfs_init_map_token(&token, leaf);
4121 if (slot != nritems) {
4122 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4124 if (old_data < data_end) {
4125 btrfs_print_leaf(leaf);
4127 "item at slot %d with data offset %u beyond data end of leaf %u",
4128 slot, old_data, data_end);
4132 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4134 /* first correct the data pointers */
4135 for (i = slot; i < nritems; i++) {
4138 ioff = btrfs_token_item_offset(&token, i);
4139 btrfs_set_token_item_offset(&token, i,
4140 ioff - batch->total_data_size);
4142 /* shift the items */
4143 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4145 /* shift the data */
4146 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4147 data_end, old_data - data_end);
4148 data_end = old_data;
4151 /* setup the item for the new data */
4152 for (i = 0; i < batch->nr; i++) {
4153 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4154 btrfs_set_item_key(leaf, &disk_key, slot + i);
4155 data_end -= batch->data_sizes[i];
4156 btrfs_set_token_item_offset(&token, slot + i, data_end);
4157 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4160 btrfs_set_header_nritems(leaf, nritems + batch->nr);
4161 btrfs_mark_buffer_dirty(leaf);
4163 if (btrfs_leaf_free_space(leaf) < 0) {
4164 btrfs_print_leaf(leaf);
4170 * Insert a new item into a leaf.
4172 * @root: The root of the btree.
4173 * @path: A path pointing to the target leaf and slot.
4174 * @key: The key of the new item.
4175 * @data_size: The size of the data associated with the new key.
4177 void btrfs_setup_item_for_insert(struct btrfs_root *root,
4178 struct btrfs_path *path,
4179 const struct btrfs_key *key,
4182 struct btrfs_item_batch batch;
4185 batch.data_sizes = &data_size;
4186 batch.total_data_size = data_size;
4189 setup_items_for_insert(root, path, &batch);
4193 * Given a key and some data, insert items into the tree.
4194 * This does all the path init required, making room in the tree if needed.
4196 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4197 struct btrfs_root *root,
4198 struct btrfs_path *path,
4199 const struct btrfs_item_batch *batch)
4205 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4206 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4212 slot = path->slots[0];
4215 setup_items_for_insert(root, path, batch);
4220 * Given a key and some data, insert an item into the tree.
4221 * This does all the path init required, making room in the tree if needed.
4223 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4224 const struct btrfs_key *cpu_key, void *data,
4228 struct btrfs_path *path;
4229 struct extent_buffer *leaf;
4232 path = btrfs_alloc_path();
4235 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4237 leaf = path->nodes[0];
4238 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4239 write_extent_buffer(leaf, data, ptr, data_size);
4240 btrfs_mark_buffer_dirty(leaf);
4242 btrfs_free_path(path);
4247 * This function duplicates an item, giving 'new_key' to the new item.
4248 * It guarantees both items live in the same tree leaf and the new item is
4249 * contiguous with the original item.
4251 * This allows us to split a file extent in place, keeping a lock on the leaf
4254 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4255 struct btrfs_root *root,
4256 struct btrfs_path *path,
4257 const struct btrfs_key *new_key)
4259 struct extent_buffer *leaf;
4263 leaf = path->nodes[0];
4264 item_size = btrfs_item_size(leaf, path->slots[0]);
4265 ret = setup_leaf_for_split(trans, root, path,
4266 item_size + sizeof(struct btrfs_item));
4271 btrfs_setup_item_for_insert(root, path, new_key, item_size);
4272 leaf = path->nodes[0];
4273 memcpy_extent_buffer(leaf,
4274 btrfs_item_ptr_offset(leaf, path->slots[0]),
4275 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4281 * delete the pointer from a given node.
4283 * the tree should have been previously balanced so the deletion does not
4286 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4287 int level, int slot)
4289 struct extent_buffer *parent = path->nodes[level];
4293 nritems = btrfs_header_nritems(parent);
4294 if (slot != nritems - 1) {
4296 ret = btrfs_tree_mod_log_insert_move(parent, slot,
4297 slot + 1, nritems - slot - 1);
4300 memmove_extent_buffer(parent,
4301 btrfs_node_key_ptr_offset(parent, slot),
4302 btrfs_node_key_ptr_offset(parent, slot + 1),
4303 sizeof(struct btrfs_key_ptr) *
4304 (nritems - slot - 1));
4306 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4307 BTRFS_MOD_LOG_KEY_REMOVE);
4312 btrfs_set_header_nritems(parent, nritems);
4313 if (nritems == 0 && parent == root->node) {
4314 BUG_ON(btrfs_header_level(root->node) != 1);
4315 /* just turn the root into a leaf and break */
4316 btrfs_set_header_level(root->node, 0);
4317 } else if (slot == 0) {
4318 struct btrfs_disk_key disk_key;
4320 btrfs_node_key(parent, &disk_key, 0);
4321 fixup_low_keys(path, &disk_key, level + 1);
4323 btrfs_mark_buffer_dirty(parent);
4327 * a helper function to delete the leaf pointed to by path->slots[1] and
4330 * This deletes the pointer in path->nodes[1] and frees the leaf
4331 * block extent. zero is returned if it all worked out, < 0 otherwise.
4333 * The path must have already been setup for deleting the leaf, including
4334 * all the proper balancing. path->nodes[1] must be locked.
4336 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4337 struct btrfs_root *root,
4338 struct btrfs_path *path,
4339 struct extent_buffer *leaf)
4341 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4342 del_ptr(root, path, 1, path->slots[1]);
4345 * btrfs_free_extent is expensive, we want to make sure we
4346 * aren't holding any locks when we call it
4348 btrfs_unlock_up_safe(path, 0);
4350 root_sub_used(root, leaf->len);
4352 atomic_inc(&leaf->refs);
4353 btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4354 free_extent_buffer_stale(leaf);
4357 * delete the item at the leaf level in path. If that empties
4358 * the leaf, remove it from the tree
4360 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4361 struct btrfs_path *path, int slot, int nr)
4363 struct btrfs_fs_info *fs_info = root->fs_info;
4364 struct extent_buffer *leaf;
4369 leaf = path->nodes[0];
4370 nritems = btrfs_header_nritems(leaf);
4372 if (slot + nr != nritems) {
4373 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4374 const int data_end = leaf_data_end(leaf);
4375 struct btrfs_map_token token;
4379 for (i = 0; i < nr; i++)
4380 dsize += btrfs_item_size(leaf, slot + i);
4382 memmove_leaf_data(leaf, data_end + dsize, data_end,
4383 last_off - data_end);
4385 btrfs_init_map_token(&token, leaf);
4386 for (i = slot + nr; i < nritems; i++) {
4389 ioff = btrfs_token_item_offset(&token, i);
4390 btrfs_set_token_item_offset(&token, i, ioff + dsize);
4393 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4395 btrfs_set_header_nritems(leaf, nritems - nr);
4398 /* delete the leaf if we've emptied it */
4400 if (leaf == root->node) {
4401 btrfs_set_header_level(leaf, 0);
4403 btrfs_clean_tree_block(leaf);
4404 btrfs_del_leaf(trans, root, path, leaf);
4407 int used = leaf_space_used(leaf, 0, nritems);
4409 struct btrfs_disk_key disk_key;
4411 btrfs_item_key(leaf, &disk_key, 0);
4412 fixup_low_keys(path, &disk_key, 1);
4416 * Try to delete the leaf if it is mostly empty. We do this by
4417 * trying to move all its items into its left and right neighbours.
4418 * If we can't move all the items, then we don't delete it - it's
4419 * not ideal, but future insertions might fill the leaf with more
4420 * items, or items from other leaves might be moved later into our
4421 * leaf due to deletions on those leaves.
4423 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4426 /* push_leaf_left fixes the path.
4427 * make sure the path still points to our leaf
4428 * for possible call to del_ptr below
4430 slot = path->slots[1];
4431 atomic_inc(&leaf->refs);
4433 * We want to be able to at least push one item to the
4434 * left neighbour leaf, and that's the first item.
4436 min_push_space = sizeof(struct btrfs_item) +
4437 btrfs_item_size(leaf, 0);
4438 wret = push_leaf_left(trans, root, path, 0,
4439 min_push_space, 1, (u32)-1);
4440 if (wret < 0 && wret != -ENOSPC)
4443 if (path->nodes[0] == leaf &&
4444 btrfs_header_nritems(leaf)) {
4446 * If we were not able to push all items from our
4447 * leaf to its left neighbour, then attempt to
4448 * either push all the remaining items to the
4449 * right neighbour or none. There's no advantage
4450 * in pushing only some items, instead of all, as
4451 * it's pointless to end up with a leaf having
4452 * too few items while the neighbours can be full
4455 nritems = btrfs_header_nritems(leaf);
4456 min_push_space = leaf_space_used(leaf, 0, nritems);
4457 wret = push_leaf_right(trans, root, path, 0,
4458 min_push_space, 1, 0);
4459 if (wret < 0 && wret != -ENOSPC)
4463 if (btrfs_header_nritems(leaf) == 0) {
4464 path->slots[1] = slot;
4465 btrfs_del_leaf(trans, root, path, leaf);
4466 free_extent_buffer(leaf);
4469 /* if we're still in the path, make sure
4470 * we're dirty. Otherwise, one of the
4471 * push_leaf functions must have already
4472 * dirtied this buffer
4474 if (path->nodes[0] == leaf)
4475 btrfs_mark_buffer_dirty(leaf);
4476 free_extent_buffer(leaf);
4479 btrfs_mark_buffer_dirty(leaf);
4486 * search the tree again to find a leaf with lesser keys
4487 * returns 0 if it found something or 1 if there are no lesser leaves.
4488 * returns < 0 on io errors.
4490 * This may release the path, and so you may lose any locks held at the
4493 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4495 struct btrfs_key key;
4496 struct btrfs_disk_key found_key;
4499 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4501 if (key.offset > 0) {
4503 } else if (key.type > 0) {
4505 key.offset = (u64)-1;
4506 } else if (key.objectid > 0) {
4509 key.offset = (u64)-1;
4514 btrfs_release_path(path);
4515 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4518 btrfs_item_key(path->nodes[0], &found_key, 0);
4519 ret = comp_keys(&found_key, &key);
4521 * We might have had an item with the previous key in the tree right
4522 * before we released our path. And after we released our path, that
4523 * item might have been pushed to the first slot (0) of the leaf we
4524 * were holding due to a tree balance. Alternatively, an item with the
4525 * previous key can exist as the only element of a leaf (big fat item).
4526 * Therefore account for these 2 cases, so that our callers (like
4527 * btrfs_previous_item) don't miss an existing item with a key matching
4528 * the previous key we computed above.
4536 * A helper function to walk down the tree starting at min_key, and looking
4537 * for nodes or leaves that are have a minimum transaction id.
4538 * This is used by the btree defrag code, and tree logging
4540 * This does not cow, but it does stuff the starting key it finds back
4541 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4542 * key and get a writable path.
4544 * This honors path->lowest_level to prevent descent past a given level
4547 * min_trans indicates the oldest transaction that you are interested
4548 * in walking through. Any nodes or leaves older than min_trans are
4549 * skipped over (without reading them).
4551 * returns zero if something useful was found, < 0 on error and 1 if there
4552 * was nothing in the tree that matched the search criteria.
4554 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4555 struct btrfs_path *path,
4558 struct extent_buffer *cur;
4559 struct btrfs_key found_key;
4565 int keep_locks = path->keep_locks;
4567 ASSERT(!path->nowait);
4568 path->keep_locks = 1;
4570 cur = btrfs_read_lock_root_node(root);
4571 level = btrfs_header_level(cur);
4572 WARN_ON(path->nodes[level]);
4573 path->nodes[level] = cur;
4574 path->locks[level] = BTRFS_READ_LOCK;
4576 if (btrfs_header_generation(cur) < min_trans) {
4581 nritems = btrfs_header_nritems(cur);
4582 level = btrfs_header_level(cur);
4583 sret = btrfs_bin_search(cur, min_key, &slot);
4589 /* at the lowest level, we're done, setup the path and exit */
4590 if (level == path->lowest_level) {
4591 if (slot >= nritems)
4594 path->slots[level] = slot;
4595 btrfs_item_key_to_cpu(cur, &found_key, slot);
4598 if (sret && slot > 0)
4601 * check this node pointer against the min_trans parameters.
4602 * If it is too old, skip to the next one.
4604 while (slot < nritems) {
4607 gen = btrfs_node_ptr_generation(cur, slot);
4608 if (gen < min_trans) {
4616 * we didn't find a candidate key in this node, walk forward
4617 * and find another one
4619 if (slot >= nritems) {
4620 path->slots[level] = slot;
4621 sret = btrfs_find_next_key(root, path, min_key, level,
4624 btrfs_release_path(path);
4630 /* save our key for returning back */
4631 btrfs_node_key_to_cpu(cur, &found_key, slot);
4632 path->slots[level] = slot;
4633 if (level == path->lowest_level) {
4637 cur = btrfs_read_node_slot(cur, slot);
4643 btrfs_tree_read_lock(cur);
4645 path->locks[level - 1] = BTRFS_READ_LOCK;
4646 path->nodes[level - 1] = cur;
4647 unlock_up(path, level, 1, 0, NULL);
4650 path->keep_locks = keep_locks;
4652 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4653 memcpy(min_key, &found_key, sizeof(found_key));
4659 * this is similar to btrfs_next_leaf, but does not try to preserve
4660 * and fixup the path. It looks for and returns the next key in the
4661 * tree based on the current path and the min_trans parameters.
4663 * 0 is returned if another key is found, < 0 if there are any errors
4664 * and 1 is returned if there are no higher keys in the tree
4666 * path->keep_locks should be set to 1 on the search made before
4667 * calling this function.
4669 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4670 struct btrfs_key *key, int level, u64 min_trans)
4673 struct extent_buffer *c;
4675 WARN_ON(!path->keep_locks && !path->skip_locking);
4676 while (level < BTRFS_MAX_LEVEL) {
4677 if (!path->nodes[level])
4680 slot = path->slots[level] + 1;
4681 c = path->nodes[level];
4683 if (slot >= btrfs_header_nritems(c)) {
4686 struct btrfs_key cur_key;
4687 if (level + 1 >= BTRFS_MAX_LEVEL ||
4688 !path->nodes[level + 1])
4691 if (path->locks[level + 1] || path->skip_locking) {
4696 slot = btrfs_header_nritems(c) - 1;
4698 btrfs_item_key_to_cpu(c, &cur_key, slot);
4700 btrfs_node_key_to_cpu(c, &cur_key, slot);
4702 orig_lowest = path->lowest_level;
4703 btrfs_release_path(path);
4704 path->lowest_level = level;
4705 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4707 path->lowest_level = orig_lowest;
4711 c = path->nodes[level];
4712 slot = path->slots[level];
4719 btrfs_item_key_to_cpu(c, key, slot);
4721 u64 gen = btrfs_node_ptr_generation(c, slot);
4723 if (gen < min_trans) {
4727 btrfs_node_key_to_cpu(c, key, slot);
4734 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4739 struct extent_buffer *c;
4740 struct extent_buffer *next;
4741 struct btrfs_fs_info *fs_info = root->fs_info;
4742 struct btrfs_key key;
4743 bool need_commit_sem = false;
4749 * The nowait semantics are used only for write paths, where we don't
4750 * use the tree mod log and sequence numbers.
4753 ASSERT(!path->nowait);
4755 nritems = btrfs_header_nritems(path->nodes[0]);
4759 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4763 btrfs_release_path(path);
4765 path->keep_locks = 1;
4768 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4770 if (path->need_commit_sem) {
4771 path->need_commit_sem = 0;
4772 need_commit_sem = true;
4774 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4779 down_read(&fs_info->commit_root_sem);
4782 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4784 path->keep_locks = 0;
4789 nritems = btrfs_header_nritems(path->nodes[0]);
4791 * by releasing the path above we dropped all our locks. A balance
4792 * could have added more items next to the key that used to be
4793 * at the very end of the block. So, check again here and
4794 * advance the path if there are now more items available.
4796 if (nritems > 0 && path->slots[0] < nritems - 1) {
4803 * So the above check misses one case:
4804 * - after releasing the path above, someone has removed the item that
4805 * used to be at the very end of the block, and balance between leafs
4806 * gets another one with bigger key.offset to replace it.
4808 * This one should be returned as well, or we can get leaf corruption
4809 * later(esp. in __btrfs_drop_extents()).
4811 * And a bit more explanation about this check,
4812 * with ret > 0, the key isn't found, the path points to the slot
4813 * where it should be inserted, so the path->slots[0] item must be the
4816 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4821 while (level < BTRFS_MAX_LEVEL) {
4822 if (!path->nodes[level]) {
4827 slot = path->slots[level] + 1;
4828 c = path->nodes[level];
4829 if (slot >= btrfs_header_nritems(c)) {
4831 if (level == BTRFS_MAX_LEVEL) {
4840 * Our current level is where we're going to start from, and to
4841 * make sure lockdep doesn't complain we need to drop our locks
4842 * and nodes from 0 to our current level.
4844 for (i = 0; i < level; i++) {
4845 if (path->locks[level]) {
4846 btrfs_tree_read_unlock(path->nodes[i]);
4849 free_extent_buffer(path->nodes[i]);
4850 path->nodes[i] = NULL;
4854 ret = read_block_for_search(root, path, &next, level,
4856 if (ret == -EAGAIN && !path->nowait)
4860 btrfs_release_path(path);
4864 if (!path->skip_locking) {
4865 ret = btrfs_try_tree_read_lock(next);
4866 if (!ret && path->nowait) {
4870 if (!ret && time_seq) {
4872 * If we don't get the lock, we may be racing
4873 * with push_leaf_left, holding that lock while
4874 * itself waiting for the leaf we've currently
4875 * locked. To solve this situation, we give up
4876 * on our lock and cycle.
4878 free_extent_buffer(next);
4879 btrfs_release_path(path);
4884 btrfs_tree_read_lock(next);
4888 path->slots[level] = slot;
4891 path->nodes[level] = next;
4892 path->slots[level] = 0;
4893 if (!path->skip_locking)
4894 path->locks[level] = BTRFS_READ_LOCK;
4898 ret = read_block_for_search(root, path, &next, level,
4900 if (ret == -EAGAIN && !path->nowait)
4904 btrfs_release_path(path);
4908 if (!path->skip_locking) {
4910 if (!btrfs_try_tree_read_lock(next)) {
4915 btrfs_tree_read_lock(next);
4921 unlock_up(path, 0, 1, 0, NULL);
4922 if (need_commit_sem) {
4925 path->need_commit_sem = 1;
4926 ret2 = finish_need_commit_sem_search(path);
4927 up_read(&fs_info->commit_root_sem);
4935 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4938 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4939 return btrfs_next_old_leaf(root, path, time_seq);
4944 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4945 * searching until it gets past min_objectid or finds an item of 'type'
4947 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4949 int btrfs_previous_item(struct btrfs_root *root,
4950 struct btrfs_path *path, u64 min_objectid,
4953 struct btrfs_key found_key;
4954 struct extent_buffer *leaf;
4959 if (path->slots[0] == 0) {
4960 ret = btrfs_prev_leaf(root, path);
4966 leaf = path->nodes[0];
4967 nritems = btrfs_header_nritems(leaf);
4970 if (path->slots[0] == nritems)
4973 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4974 if (found_key.objectid < min_objectid)
4976 if (found_key.type == type)
4978 if (found_key.objectid == min_objectid &&
4979 found_key.type < type)
4986 * search in extent tree to find a previous Metadata/Data extent item with
4989 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4991 int btrfs_previous_extent_item(struct btrfs_root *root,
4992 struct btrfs_path *path, u64 min_objectid)
4994 struct btrfs_key found_key;
4995 struct extent_buffer *leaf;
5000 if (path->slots[0] == 0) {
5001 ret = btrfs_prev_leaf(root, path);
5007 leaf = path->nodes[0];
5008 nritems = btrfs_header_nritems(leaf);
5011 if (path->slots[0] == nritems)
5014 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5015 if (found_key.objectid < min_objectid)
5017 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5018 found_key.type == BTRFS_METADATA_ITEM_KEY)
5020 if (found_key.objectid == min_objectid &&
5021 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5027 int __init btrfs_ctree_init(void)
5029 btrfs_path_cachep = kmem_cache_create("btrfs_path",
5030 sizeof(struct btrfs_path), 0,
5031 SLAB_MEM_SPREAD, NULL);
5032 if (!btrfs_path_cachep)
5037 void __cold btrfs_ctree_exit(void)
5039 kmem_cache_destroy(btrfs_path_cachep);