]> Git Repo - linux.git/blob - drivers/gpu/drm/vc4/vc4_kms.c
Merge tag 'nfsd-6.2-3' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux
[linux.git] / drivers / gpu / drm / vc4 / vc4_kms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 KMS
8  *
9  * This is the general code for implementing KMS mode setting that
10  * doesn't clearly associate with any of the other objects (plane,
11  * crtc, HDMI encoder).
12  */
13
14 #include <linux/clk.h>
15
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_fourcc.h>
20 #include <drm/drm_gem_framebuffer_helper.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_vblank.h>
23
24 #include "vc4_drv.h"
25 #include "vc4_regs.h"
26
27 #define HVS_NUM_CHANNELS 3
28
29 struct vc4_ctm_state {
30         struct drm_private_state base;
31         struct drm_color_ctm *ctm;
32         int fifo;
33 };
34
35 static struct vc4_ctm_state *
36 to_vc4_ctm_state(const struct drm_private_state *priv)
37 {
38         return container_of(priv, struct vc4_ctm_state, base);
39 }
40
41 struct vc4_hvs_state {
42         struct drm_private_state base;
43         unsigned long core_clock_rate;
44
45         struct {
46                 unsigned in_use: 1;
47                 unsigned long fifo_load;
48                 struct drm_crtc_commit *pending_commit;
49         } fifo_state[HVS_NUM_CHANNELS];
50 };
51
52 static struct vc4_hvs_state *
53 to_vc4_hvs_state(const struct drm_private_state *priv)
54 {
55         return container_of(priv, struct vc4_hvs_state, base);
56 }
57
58 struct vc4_load_tracker_state {
59         struct drm_private_state base;
60         u64 hvs_load;
61         u64 membus_load;
62 };
63
64 static struct vc4_load_tracker_state *
65 to_vc4_load_tracker_state(const struct drm_private_state *priv)
66 {
67         return container_of(priv, struct vc4_load_tracker_state, base);
68 }
69
70 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
71                                                struct drm_private_obj *manager)
72 {
73         struct drm_device *dev = state->dev;
74         struct vc4_dev *vc4 = to_vc4_dev(dev);
75         struct drm_private_state *priv_state;
76         int ret;
77
78         ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
79         if (ret)
80                 return ERR_PTR(ret);
81
82         priv_state = drm_atomic_get_private_obj_state(state, manager);
83         if (IS_ERR(priv_state))
84                 return ERR_CAST(priv_state);
85
86         return to_vc4_ctm_state(priv_state);
87 }
88
89 static struct drm_private_state *
90 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
91 {
92         struct vc4_ctm_state *state;
93
94         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
95         if (!state)
96                 return NULL;
97
98         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
99
100         return &state->base;
101 }
102
103 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
104                                   struct drm_private_state *state)
105 {
106         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
107
108         kfree(ctm_state);
109 }
110
111 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
112         .atomic_duplicate_state = vc4_ctm_duplicate_state,
113         .atomic_destroy_state = vc4_ctm_destroy_state,
114 };
115
116 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
117 {
118         struct vc4_dev *vc4 = to_vc4_dev(dev);
119
120         drm_atomic_private_obj_fini(&vc4->ctm_manager);
121 }
122
123 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
124 {
125         struct vc4_ctm_state *ctm_state;
126
127         drm_modeset_lock_init(&vc4->ctm_state_lock);
128
129         ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
130         if (!ctm_state)
131                 return -ENOMEM;
132
133         drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
134                                     &vc4_ctm_state_funcs);
135
136         return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
137 }
138
139 /* Converts a DRM S31.32 value to the HW S0.9 format. */
140 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
141 {
142         u16 r;
143
144         /* Sign bit. */
145         r = in & BIT_ULL(63) ? BIT(9) : 0;
146
147         if ((in & GENMASK_ULL(62, 32)) > 0) {
148                 /* We have zero integer bits so we can only saturate here. */
149                 r |= GENMASK(8, 0);
150         } else {
151                 /* Otherwise take the 9 most important fractional bits. */
152                 r |= (in >> 23) & GENMASK(8, 0);
153         }
154
155         return r;
156 }
157
158 static void
159 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
160 {
161         struct vc4_hvs *hvs = vc4->hvs;
162         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
163         struct drm_color_ctm *ctm = ctm_state->ctm;
164
165         if (ctm_state->fifo) {
166                 HVS_WRITE(SCALER_OLEDCOEF2,
167                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
168                                         SCALER_OLEDCOEF2_R_TO_R) |
169                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
170                                         SCALER_OLEDCOEF2_R_TO_G) |
171                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
172                                         SCALER_OLEDCOEF2_R_TO_B));
173                 HVS_WRITE(SCALER_OLEDCOEF1,
174                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
175                                         SCALER_OLEDCOEF1_G_TO_R) |
176                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
177                                         SCALER_OLEDCOEF1_G_TO_G) |
178                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
179                                         SCALER_OLEDCOEF1_G_TO_B));
180                 HVS_WRITE(SCALER_OLEDCOEF0,
181                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
182                                         SCALER_OLEDCOEF0_B_TO_R) |
183                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
184                                         SCALER_OLEDCOEF0_B_TO_G) |
185                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
186                                         SCALER_OLEDCOEF0_B_TO_B));
187         }
188
189         HVS_WRITE(SCALER_OLEDOFFS,
190                   VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
191 }
192
193 static struct vc4_hvs_state *
194 vc4_hvs_get_new_global_state(struct drm_atomic_state *state)
195 {
196         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
197         struct drm_private_state *priv_state;
198
199         priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
200         if (!priv_state)
201                 return ERR_PTR(-EINVAL);
202
203         return to_vc4_hvs_state(priv_state);
204 }
205
206 static struct vc4_hvs_state *
207 vc4_hvs_get_old_global_state(struct drm_atomic_state *state)
208 {
209         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
210         struct drm_private_state *priv_state;
211
212         priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
213         if (!priv_state)
214                 return ERR_PTR(-EINVAL);
215
216         return to_vc4_hvs_state(priv_state);
217 }
218
219 static struct vc4_hvs_state *
220 vc4_hvs_get_global_state(struct drm_atomic_state *state)
221 {
222         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
223         struct drm_private_state *priv_state;
224
225         priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
226         if (IS_ERR(priv_state))
227                 return ERR_CAST(priv_state);
228
229         return to_vc4_hvs_state(priv_state);
230 }
231
232 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
233                                      struct drm_atomic_state *state)
234 {
235         struct vc4_hvs *hvs = vc4->hvs;
236         struct drm_crtc_state *crtc_state;
237         struct drm_crtc *crtc;
238         unsigned int i;
239
240         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
241                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
242                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
243                 u32 dispctrl;
244                 u32 dsp3_mux;
245
246                 if (!crtc_state->active)
247                         continue;
248
249                 if (vc4_state->assigned_channel != 2)
250                         continue;
251
252                 /*
253                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
254                  * FIFO X'.
255                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
256                  *
257                  * DSP3 is connected to FIFO2 unless the transposer is
258                  * enabled. In this case, FIFO 2 is directly accessed by the
259                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
260                  * route.
261                  */
262                 if (vc4_crtc->feeds_txp)
263                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
264                 else
265                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
266
267                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
268                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
269                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
270         }
271 }
272
273 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
274                                      struct drm_atomic_state *state)
275 {
276         struct vc4_hvs *hvs = vc4->hvs;
277         struct drm_crtc_state *crtc_state;
278         struct drm_crtc *crtc;
279         unsigned char mux;
280         unsigned int i;
281         u32 reg;
282
283         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
284                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
285                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
286                 unsigned int channel = vc4_state->assigned_channel;
287
288                 if (!vc4_state->update_muxing)
289                         continue;
290
291                 switch (vc4_crtc->data->hvs_output) {
292                 case 2:
293                         drm_WARN_ON(&vc4->base,
294                                     VC4_GET_FIELD(HVS_READ(SCALER_DISPCTRL),
295                                                   SCALER_DISPCTRL_DSP3_MUX) == channel);
296
297                         mux = (channel == 2) ? 0 : 1;
298                         reg = HVS_READ(SCALER_DISPECTRL);
299                         HVS_WRITE(SCALER_DISPECTRL,
300                                   (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
301                                   VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
302                         break;
303
304                 case 3:
305                         if (channel == VC4_HVS_CHANNEL_DISABLED)
306                                 mux = 3;
307                         else
308                                 mux = channel;
309
310                         reg = HVS_READ(SCALER_DISPCTRL);
311                         HVS_WRITE(SCALER_DISPCTRL,
312                                   (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
313                                   VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
314                         break;
315
316                 case 4:
317                         if (channel == VC4_HVS_CHANNEL_DISABLED)
318                                 mux = 3;
319                         else
320                                 mux = channel;
321
322                         reg = HVS_READ(SCALER_DISPEOLN);
323                         HVS_WRITE(SCALER_DISPEOLN,
324                                   (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
325                                   VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
326
327                         break;
328
329                 case 5:
330                         if (channel == VC4_HVS_CHANNEL_DISABLED)
331                                 mux = 3;
332                         else
333                                 mux = channel;
334
335                         reg = HVS_READ(SCALER_DISPDITHER);
336                         HVS_WRITE(SCALER_DISPDITHER,
337                                   (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
338                                   VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
339                         break;
340
341                 default:
342                         break;
343                 }
344         }
345 }
346
347 static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
348 {
349         struct drm_device *dev = state->dev;
350         struct vc4_dev *vc4 = to_vc4_dev(dev);
351         struct vc4_hvs *hvs = vc4->hvs;
352         struct drm_crtc_state *new_crtc_state;
353         struct vc4_hvs_state *new_hvs_state;
354         struct drm_crtc *crtc;
355         struct vc4_hvs_state *old_hvs_state;
356         unsigned int channel;
357         int i;
358
359         old_hvs_state = vc4_hvs_get_old_global_state(state);
360         if (WARN_ON(IS_ERR(old_hvs_state)))
361                 return;
362
363         new_hvs_state = vc4_hvs_get_new_global_state(state);
364         if (WARN_ON(IS_ERR(new_hvs_state)))
365                 return;
366
367         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
368                 struct vc4_crtc_state *vc4_crtc_state;
369
370                 if (!new_crtc_state->commit)
371                         continue;
372
373                 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
374                 vc4_hvs_mask_underrun(hvs, vc4_crtc_state->assigned_channel);
375         }
376
377         for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
378                 struct drm_crtc_commit *commit;
379                 int ret;
380
381                 if (!old_hvs_state->fifo_state[channel].in_use)
382                         continue;
383
384                 commit = old_hvs_state->fifo_state[channel].pending_commit;
385                 if (!commit)
386                         continue;
387
388                 ret = drm_crtc_commit_wait(commit);
389                 if (ret)
390                         drm_err(dev, "Timed out waiting for commit\n");
391
392                 drm_crtc_commit_put(commit);
393                 old_hvs_state->fifo_state[channel].pending_commit = NULL;
394         }
395
396         if (vc4->is_vc5) {
397                 unsigned long state_rate = max(old_hvs_state->core_clock_rate,
398                                                new_hvs_state->core_clock_rate);
399                 unsigned long core_rate = clamp_t(unsigned long, state_rate,
400                                                   500000000, hvs->max_core_rate);
401
402                 drm_dbg(dev, "Raising the core clock at %lu Hz\n", core_rate);
403
404                 /*
405                  * Do a temporary request on the core clock during the
406                  * modeset.
407                  */
408                 WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
409         }
410
411         drm_atomic_helper_commit_modeset_disables(dev, state);
412
413         vc4_ctm_commit(vc4, state);
414
415         if (vc4->is_vc5)
416                 vc5_hvs_pv_muxing_commit(vc4, state);
417         else
418                 vc4_hvs_pv_muxing_commit(vc4, state);
419
420         drm_atomic_helper_commit_planes(dev, state,
421                                         DRM_PLANE_COMMIT_ACTIVE_ONLY);
422
423         drm_atomic_helper_commit_modeset_enables(dev, state);
424
425         drm_atomic_helper_fake_vblank(state);
426
427         drm_atomic_helper_commit_hw_done(state);
428
429         drm_atomic_helper_wait_for_flip_done(dev, state);
430
431         drm_atomic_helper_cleanup_planes(dev, state);
432
433         if (vc4->is_vc5) {
434                 unsigned long core_rate = min_t(unsigned long,
435                                                 hvs->max_core_rate,
436                                                 new_hvs_state->core_clock_rate);
437
438                 drm_dbg(dev, "Running the core clock at %lu Hz\n", core_rate);
439
440                 /*
441                  * Request a clock rate based on the current HVS
442                  * requirements.
443                  */
444                 WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
445
446                 drm_dbg(dev, "Core clock actual rate: %lu Hz\n",
447                         clk_get_rate(hvs->core_clk));
448         }
449 }
450
451 static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
452 {
453         struct drm_crtc_state *crtc_state;
454         struct vc4_hvs_state *hvs_state;
455         struct drm_crtc *crtc;
456         unsigned int i;
457
458         hvs_state = vc4_hvs_get_new_global_state(state);
459         if (WARN_ON(IS_ERR(hvs_state)))
460                 return PTR_ERR(hvs_state);
461
462         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
463                 struct vc4_crtc_state *vc4_crtc_state =
464                         to_vc4_crtc_state(crtc_state);
465                 unsigned int channel =
466                         vc4_crtc_state->assigned_channel;
467
468                 if (channel == VC4_HVS_CHANNEL_DISABLED)
469                         continue;
470
471                 if (!hvs_state->fifo_state[channel].in_use)
472                         continue;
473
474                 hvs_state->fifo_state[channel].pending_commit =
475                         drm_crtc_commit_get(crtc_state->commit);
476         }
477
478         return 0;
479 }
480
481 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
482                                              struct drm_file *file_priv,
483                                              const struct drm_mode_fb_cmd2 *mode_cmd)
484 {
485         struct vc4_dev *vc4 = to_vc4_dev(dev);
486         struct drm_mode_fb_cmd2 mode_cmd_local;
487
488         if (WARN_ON_ONCE(vc4->is_vc5))
489                 return ERR_PTR(-ENODEV);
490
491         /* If the user didn't specify a modifier, use the
492          * vc4_set_tiling_ioctl() state for the BO.
493          */
494         if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
495                 struct drm_gem_object *gem_obj;
496                 struct vc4_bo *bo;
497
498                 gem_obj = drm_gem_object_lookup(file_priv,
499                                                 mode_cmd->handles[0]);
500                 if (!gem_obj) {
501                         DRM_DEBUG("Failed to look up GEM BO %d\n",
502                                   mode_cmd->handles[0]);
503                         return ERR_PTR(-ENOENT);
504                 }
505                 bo = to_vc4_bo(gem_obj);
506
507                 mode_cmd_local = *mode_cmd;
508
509                 if (bo->t_format) {
510                         mode_cmd_local.modifier[0] =
511                                 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
512                 } else {
513                         mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
514                 }
515
516                 drm_gem_object_put(gem_obj);
517
518                 mode_cmd = &mode_cmd_local;
519         }
520
521         return drm_gem_fb_create(dev, file_priv, mode_cmd);
522 }
523
524 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
525  * at a time and the HW only supports S0.9 scalars. To account for the latter,
526  * we don't allow userland to set a CTM that we have no hope of approximating.
527  */
528 static int
529 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
530 {
531         struct vc4_dev *vc4 = to_vc4_dev(dev);
532         struct vc4_ctm_state *ctm_state = NULL;
533         struct drm_crtc *crtc;
534         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
535         struct drm_color_ctm *ctm;
536         int i;
537
538         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
539                 /* CTM is being disabled. */
540                 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
541                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
542                         if (IS_ERR(ctm_state))
543                                 return PTR_ERR(ctm_state);
544                         ctm_state->fifo = 0;
545                 }
546         }
547
548         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
549                 if (new_crtc_state->ctm == old_crtc_state->ctm)
550                         continue;
551
552                 if (!ctm_state) {
553                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
554                         if (IS_ERR(ctm_state))
555                                 return PTR_ERR(ctm_state);
556                 }
557
558                 /* CTM is being enabled or the matrix changed. */
559                 if (new_crtc_state->ctm) {
560                         struct vc4_crtc_state *vc4_crtc_state =
561                                 to_vc4_crtc_state(new_crtc_state);
562
563                         /* fifo is 1-based since 0 disables CTM. */
564                         int fifo = vc4_crtc_state->assigned_channel + 1;
565
566                         /* Check userland isn't trying to turn on CTM for more
567                          * than one CRTC at a time.
568                          */
569                         if (ctm_state->fifo && ctm_state->fifo != fifo) {
570                                 DRM_DEBUG_DRIVER("Too many CTM configured\n");
571                                 return -EINVAL;
572                         }
573
574                         /* Check we can approximate the specified CTM.
575                          * We disallow scalars |c| > 1.0 since the HW has
576                          * no integer bits.
577                          */
578                         ctm = new_crtc_state->ctm->data;
579                         for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
580                                 u64 val = ctm->matrix[i];
581
582                                 val &= ~BIT_ULL(63);
583                                 if (val > BIT_ULL(32))
584                                         return -EINVAL;
585                         }
586
587                         ctm_state->fifo = fifo;
588                         ctm_state->ctm = ctm;
589                 }
590         }
591
592         return 0;
593 }
594
595 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
596 {
597         struct drm_plane_state *old_plane_state, *new_plane_state;
598         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
599         struct vc4_load_tracker_state *load_state;
600         struct drm_private_state *priv_state;
601         struct drm_plane *plane;
602         int i;
603
604         priv_state = drm_atomic_get_private_obj_state(state,
605                                                       &vc4->load_tracker);
606         if (IS_ERR(priv_state))
607                 return PTR_ERR(priv_state);
608
609         load_state = to_vc4_load_tracker_state(priv_state);
610         for_each_oldnew_plane_in_state(state, plane, old_plane_state,
611                                        new_plane_state, i) {
612                 struct vc4_plane_state *vc4_plane_state;
613
614                 if (old_plane_state->fb && old_plane_state->crtc) {
615                         vc4_plane_state = to_vc4_plane_state(old_plane_state);
616                         load_state->membus_load -= vc4_plane_state->membus_load;
617                         load_state->hvs_load -= vc4_plane_state->hvs_load;
618                 }
619
620                 if (new_plane_state->fb && new_plane_state->crtc) {
621                         vc4_plane_state = to_vc4_plane_state(new_plane_state);
622                         load_state->membus_load += vc4_plane_state->membus_load;
623                         load_state->hvs_load += vc4_plane_state->hvs_load;
624                 }
625         }
626
627         /* Don't check the load when the tracker is disabled. */
628         if (!vc4->load_tracker_enabled)
629                 return 0;
630
631         /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
632          * the system work when other blocks are accessing the memory.
633          */
634         if (load_state->membus_load > SZ_1G + SZ_512M)
635                 return -ENOSPC;
636
637         /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
638          * consider the maximum number of cycles is 240M.
639          */
640         if (load_state->hvs_load > 240000000ULL)
641                 return -ENOSPC;
642
643         return 0;
644 }
645
646 static struct drm_private_state *
647 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
648 {
649         struct vc4_load_tracker_state *state;
650
651         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
652         if (!state)
653                 return NULL;
654
655         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
656
657         return &state->base;
658 }
659
660 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
661                                            struct drm_private_state *state)
662 {
663         struct vc4_load_tracker_state *load_state;
664
665         load_state = to_vc4_load_tracker_state(state);
666         kfree(load_state);
667 }
668
669 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
670         .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
671         .atomic_destroy_state = vc4_load_tracker_destroy_state,
672 };
673
674 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
675 {
676         struct vc4_dev *vc4 = to_vc4_dev(dev);
677
678         drm_atomic_private_obj_fini(&vc4->load_tracker);
679 }
680
681 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
682 {
683         struct vc4_load_tracker_state *load_state;
684
685         load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
686         if (!load_state)
687                 return -ENOMEM;
688
689         drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
690                                     &load_state->base,
691                                     &vc4_load_tracker_state_funcs);
692
693         return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
694 }
695
696 static struct drm_private_state *
697 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
698 {
699         struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
700         struct vc4_hvs_state *state;
701         unsigned int i;
702
703         state = kzalloc(sizeof(*state), GFP_KERNEL);
704         if (!state)
705                 return NULL;
706
707         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
708
709         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
710                 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
711                 state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load;
712         }
713
714         state->core_clock_rate = old_state->core_clock_rate;
715
716         return &state->base;
717 }
718
719 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
720                                            struct drm_private_state *state)
721 {
722         struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
723         unsigned int i;
724
725         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
726                 if (!hvs_state->fifo_state[i].pending_commit)
727                         continue;
728
729                 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
730         }
731
732         kfree(hvs_state);
733 }
734
735 static void vc4_hvs_channels_print_state(struct drm_printer *p,
736                                          const struct drm_private_state *state)
737 {
738         struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
739         unsigned int i;
740
741         drm_printf(p, "HVS State\n");
742         drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate);
743
744         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
745                 drm_printf(p, "\tChannel %d\n", i);
746                 drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use);
747                 drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load);
748         }
749 }
750
751 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
752         .atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
753         .atomic_destroy_state = vc4_hvs_channels_destroy_state,
754         .atomic_print_state = vc4_hvs_channels_print_state,
755 };
756
757 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
758 {
759         struct vc4_dev *vc4 = to_vc4_dev(dev);
760
761         drm_atomic_private_obj_fini(&vc4->hvs_channels);
762 }
763
764 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
765 {
766         struct vc4_hvs_state *state;
767
768         state = kzalloc(sizeof(*state), GFP_KERNEL);
769         if (!state)
770                 return -ENOMEM;
771
772         drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
773                                     &state->base,
774                                     &vc4_hvs_state_funcs);
775
776         return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
777 }
778
779 /*
780  * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
781  * the TXP (and therefore all the CRTCs found on that platform).
782  *
783  * The naive (and our initial) implementation would just iterate over
784  * all the active CRTCs, try to find a suitable FIFO, and then remove it
785  * from the pool of available FIFOs. However, there are a few corner
786  * cases that need to be considered:
787  *
788  * - When running in a dual-display setup (so with two CRTCs involved),
789  *   we can update the state of a single CRTC (for example by changing
790  *   its mode using xrandr under X11) without affecting the other. In
791  *   this case, the other CRTC wouldn't be in the state at all, so we
792  *   need to consider all the running CRTCs in the DRM device to assign
793  *   a FIFO, not just the one in the state.
794  *
795  * - To fix the above, we can't use drm_atomic_get_crtc_state on all
796  *   enabled CRTCs to pull their CRTC state into the global state, since
797  *   a page flip would start considering their vblank to complete. Since
798  *   we don't have a guarantee that they are actually active, that
799  *   vblank might never happen, and shouldn't even be considered if we
800  *   want to do a page flip on a single CRTC. That can be tested by
801  *   doing a modetest -v first on HDMI1 and then on HDMI0.
802  *
803  * - Since we need the pixelvalve to be disabled and enabled back when
804  *   the FIFO is changed, we should keep the FIFO assigned for as long
805  *   as the CRTC is enabled, only considering it free again once that
806  *   CRTC has been disabled. This can be tested by booting X11 on a
807  *   single display, and changing the resolution down and then back up.
808  */
809 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
810                                       struct drm_atomic_state *state)
811 {
812         struct vc4_hvs_state *hvs_new_state;
813         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
814         struct drm_crtc *crtc;
815         unsigned int unassigned_channels = 0;
816         unsigned int i;
817
818         hvs_new_state = vc4_hvs_get_global_state(state);
819         if (IS_ERR(hvs_new_state))
820                 return PTR_ERR(hvs_new_state);
821
822         for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
823                 if (!hvs_new_state->fifo_state[i].in_use)
824                         unassigned_channels |= BIT(i);
825
826         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
827                 struct vc4_crtc_state *old_vc4_crtc_state =
828                         to_vc4_crtc_state(old_crtc_state);
829                 struct vc4_crtc_state *new_vc4_crtc_state =
830                         to_vc4_crtc_state(new_crtc_state);
831                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
832                 unsigned int matching_channels;
833                 unsigned int channel;
834
835                 drm_dbg(dev, "%s: Trying to find a channel.\n", crtc->name);
836
837                 /* Nothing to do here, let's skip it */
838                 if (old_crtc_state->enable == new_crtc_state->enable) {
839                         if (new_crtc_state->enable)
840                                 drm_dbg(dev, "%s: Already enabled, reusing channel %d.\n",
841                                         crtc->name, new_vc4_crtc_state->assigned_channel);
842                         else
843                                 drm_dbg(dev, "%s: Disabled, ignoring.\n", crtc->name);
844
845                         continue;
846                 }
847
848                 /* Muxing will need to be modified, mark it as such */
849                 new_vc4_crtc_state->update_muxing = true;
850
851                 /* If we're disabling our CRTC, we put back our channel */
852                 if (!new_crtc_state->enable) {
853                         channel = old_vc4_crtc_state->assigned_channel;
854
855                         drm_dbg(dev, "%s: Disabling, Freeing channel %d\n",
856                                 crtc->name, channel);
857
858                         hvs_new_state->fifo_state[channel].in_use = false;
859                         new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
860                         continue;
861                 }
862
863                 /*
864                  * The problem we have to solve here is that we have
865                  * up to 7 encoders, connected to up to 6 CRTCs.
866                  *
867                  * Those CRTCs, depending on the instance, can be
868                  * routed to 1, 2 or 3 HVS FIFOs, and we need to set
869                  * the change the muxing between FIFOs and outputs in
870                  * the HVS accordingly.
871                  *
872                  * It would be pretty hard to come up with an
873                  * algorithm that would generically solve
874                  * this. However, the current routing trees we support
875                  * allow us to simplify a bit the problem.
876                  *
877                  * Indeed, with the current supported layouts, if we
878                  * try to assign in the ascending crtc index order the
879                  * FIFOs, we can't fall into the situation where an
880                  * earlier CRTC that had multiple routes is assigned
881                  * one that was the only option for a later CRTC.
882                  *
883                  * If the layout changes and doesn't give us that in
884                  * the future, we will need to have something smarter,
885                  * but it works so far.
886                  */
887                 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
888                 if (!matching_channels)
889                         return -EINVAL;
890
891                 channel = ffs(matching_channels) - 1;
892
893                 drm_dbg(dev, "Assigned HVS channel %d to CRTC %s\n", channel, crtc->name);
894                 new_vc4_crtc_state->assigned_channel = channel;
895                 unassigned_channels &= ~BIT(channel);
896                 hvs_new_state->fifo_state[channel].in_use = true;
897         }
898
899         return 0;
900 }
901
902 static int
903 vc4_core_clock_atomic_check(struct drm_atomic_state *state)
904 {
905         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
906         struct drm_private_state *priv_state;
907         struct vc4_hvs_state *hvs_new_state;
908         struct vc4_load_tracker_state *load_state;
909         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
910         struct drm_crtc *crtc;
911         unsigned int num_outputs;
912         unsigned long pixel_rate;
913         unsigned long cob_rate;
914         unsigned int i;
915
916         priv_state = drm_atomic_get_private_obj_state(state,
917                                                       &vc4->load_tracker);
918         if (IS_ERR(priv_state))
919                 return PTR_ERR(priv_state);
920
921         load_state = to_vc4_load_tracker_state(priv_state);
922
923         hvs_new_state = vc4_hvs_get_global_state(state);
924         if (IS_ERR(hvs_new_state))
925                 return PTR_ERR(hvs_new_state);
926
927         for_each_oldnew_crtc_in_state(state, crtc,
928                                       old_crtc_state,
929                                       new_crtc_state,
930                                       i) {
931                 if (old_crtc_state->active) {
932                         struct vc4_crtc_state *old_vc4_state =
933                                 to_vc4_crtc_state(old_crtc_state);
934                         unsigned int channel = old_vc4_state->assigned_channel;
935
936                         hvs_new_state->fifo_state[channel].fifo_load = 0;
937                 }
938
939                 if (new_crtc_state->active) {
940                         struct vc4_crtc_state *new_vc4_state =
941                                 to_vc4_crtc_state(new_crtc_state);
942                         unsigned int channel = new_vc4_state->assigned_channel;
943
944                         hvs_new_state->fifo_state[channel].fifo_load =
945                                 new_vc4_state->hvs_load;
946                 }
947         }
948
949         cob_rate = 0;
950         num_outputs = 0;
951         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
952                 if (!hvs_new_state->fifo_state[i].in_use)
953                         continue;
954
955                 num_outputs++;
956                 cob_rate = max_t(unsigned long,
957                                  hvs_new_state->fifo_state[i].fifo_load,
958                                  cob_rate);
959         }
960
961         pixel_rate = load_state->hvs_load;
962         if (num_outputs > 1) {
963                 pixel_rate = (pixel_rate * 40) / 100;
964         } else {
965                 pixel_rate = (pixel_rate * 60) / 100;
966         }
967
968         hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate);
969
970         return 0;
971 }
972
973
974 static int
975 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
976 {
977         int ret;
978
979         ret = vc4_pv_muxing_atomic_check(dev, state);
980         if (ret)
981                 return ret;
982
983         ret = vc4_ctm_atomic_check(dev, state);
984         if (ret < 0)
985                 return ret;
986
987         ret = drm_atomic_helper_check(dev, state);
988         if (ret)
989                 return ret;
990
991         ret = vc4_load_tracker_atomic_check(state);
992         if (ret)
993                 return ret;
994
995         return vc4_core_clock_atomic_check(state);
996 }
997
998 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
999         .atomic_commit_setup    = vc4_atomic_commit_setup,
1000         .atomic_commit_tail     = vc4_atomic_commit_tail,
1001 };
1002
1003 static const struct drm_mode_config_funcs vc4_mode_funcs = {
1004         .atomic_check = vc4_atomic_check,
1005         .atomic_commit = drm_atomic_helper_commit,
1006         .fb_create = vc4_fb_create,
1007 };
1008
1009 static const struct drm_mode_config_funcs vc5_mode_funcs = {
1010         .atomic_check = vc4_atomic_check,
1011         .atomic_commit = drm_atomic_helper_commit,
1012         .fb_create = drm_gem_fb_create,
1013 };
1014
1015 int vc4_kms_load(struct drm_device *dev)
1016 {
1017         struct vc4_dev *vc4 = to_vc4_dev(dev);
1018         int ret;
1019
1020         /*
1021          * The limits enforced by the load tracker aren't relevant for
1022          * the BCM2711, but the load tracker computations are used for
1023          * the core clock rate calculation.
1024          */
1025         if (!vc4->is_vc5) {
1026                 /* Start with the load tracker enabled. Can be
1027                  * disabled through the debugfs load_tracker file.
1028                  */
1029                 vc4->load_tracker_enabled = true;
1030         }
1031
1032         /* Set support for vblank irq fast disable, before drm_vblank_init() */
1033         dev->vblank_disable_immediate = true;
1034
1035         ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
1036         if (ret < 0) {
1037                 dev_err(dev->dev, "failed to initialize vblank\n");
1038                 return ret;
1039         }
1040
1041         if (vc4->is_vc5) {
1042                 dev->mode_config.max_width = 7680;
1043                 dev->mode_config.max_height = 7680;
1044         } else {
1045                 dev->mode_config.max_width = 2048;
1046                 dev->mode_config.max_height = 2048;
1047         }
1048
1049         dev->mode_config.funcs = vc4->is_vc5 ? &vc5_mode_funcs : &vc4_mode_funcs;
1050         dev->mode_config.helper_private = &vc4_mode_config_helpers;
1051         dev->mode_config.preferred_depth = 24;
1052         dev->mode_config.async_page_flip = true;
1053
1054         ret = vc4_ctm_obj_init(vc4);
1055         if (ret)
1056                 return ret;
1057
1058         ret = vc4_load_tracker_obj_init(vc4);
1059         if (ret)
1060                 return ret;
1061
1062         ret = vc4_hvs_channels_obj_init(vc4);
1063         if (ret)
1064                 return ret;
1065
1066         drm_mode_config_reset(dev);
1067
1068         drm_kms_helper_poll_init(dev);
1069
1070         return 0;
1071 }
This page took 0.0945589999999999 seconds and 4 git commands to generate.