1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1992 Rick Sladkey
7 * nfs directory handling functions
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
42 #include "delegation.h"
49 /* #define NFS_DEBUG_VERBOSE 1 */
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
58 const struct file_operations nfs_dir_operations = {
59 .llseek = nfs_llseek_dir,
60 .read = generic_read_dir,
61 .iterate_shared = nfs_readdir,
63 .release = nfs_closedir,
64 .fsync = nfs_fsync_dir,
67 const struct address_space_operations nfs_dir_aops = {
68 .freepage = nfs_readdir_clear_array,
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
73 struct nfs_inode *nfsi = NFS_I(dir);
74 struct nfs_open_dir_context *ctx;
75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
78 ctx->attr_gencount = nfsi->attr_gencount;
81 ctx->cred = get_cred(cred);
82 spin_lock(&dir->i_lock);
83 if (list_empty(&nfsi->open_files) &&
84 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 nfsi->cache_validity |= NFS_INO_INVALID_DATA |
87 list_add(&ctx->list, &nfsi->open_files);
88 spin_unlock(&dir->i_lock);
91 return ERR_PTR(-ENOMEM);
94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
96 spin_lock(&dir->i_lock);
98 spin_unlock(&dir->i_lock);
107 nfs_opendir(struct inode *inode, struct file *filp)
110 struct nfs_open_dir_context *ctx;
112 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
114 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
116 ctx = alloc_nfs_open_dir_context(inode, current_cred());
121 filp->private_data = ctx;
127 nfs_closedir(struct inode *inode, struct file *filp)
129 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
133 struct nfs_cache_array_entry {
137 unsigned char d_type;
140 struct nfs_cache_array {
144 struct nfs_cache_array_entry array[];
150 struct dir_context *ctx;
151 unsigned long page_index;
154 loff_t current_index;
157 unsigned long dir_verifier;
158 unsigned long timestamp;
159 unsigned long gencount;
160 unsigned int cache_entry_index;
163 } nfs_readdir_descriptor_t;
166 void nfs_readdir_init_array(struct page *page)
168 struct nfs_cache_array *array;
170 array = kmap_atomic(page);
171 memset(array, 0, sizeof(struct nfs_cache_array));
172 array->eof_index = -1;
173 kunmap_atomic(array);
177 * we are freeing strings created by nfs_add_to_readdir_array()
180 void nfs_readdir_clear_array(struct page *page)
182 struct nfs_cache_array *array;
185 array = kmap_atomic(page);
186 for (i = 0; i < array->size; i++)
187 kfree(array->array[i].string.name);
189 kunmap_atomic(array);
193 * the caller is responsible for freeing qstr.name
194 * when called by nfs_readdir_add_to_array, the strings will be freed in
195 * nfs_clear_readdir_array()
198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
201 string->name = kmemdup_nul(name, len, GFP_KERNEL);
202 if (string->name == NULL)
205 * Avoid a kmemleak false positive. The pointer to the name is stored
206 * in a page cache page which kmemleak does not scan.
208 kmemleak_not_leak(string->name);
209 string->hash = full_name_hash(NULL, name, len);
214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
216 struct nfs_cache_array *array = kmap(page);
217 struct nfs_cache_array_entry *cache_entry;
220 cache_entry = &array->array[array->size];
222 /* Check that this entry lies within the page bounds */
224 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
227 cache_entry->cookie = entry->prev_cookie;
228 cache_entry->ino = entry->ino;
229 cache_entry->d_type = entry->d_type;
230 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
233 array->last_cookie = entry->cookie;
236 array->eof_index = array->size;
243 int is_32bit_api(void)
246 return in_compat_syscall();
248 return (BITS_PER_LONG == 32);
253 bool nfs_readdir_use_cookie(const struct file *filp)
255 if ((filp->f_mode & FMODE_32BITHASH) ||
256 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
264 loff_t diff = desc->ctx->pos - desc->current_index;
269 if (diff >= array->size) {
270 if (array->eof_index >= 0)
275 index = (unsigned int)diff;
276 *desc->dir_cookie = array->array[index].cookie;
277 desc->cache_entry_index = index;
285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
298 int status = -EAGAIN;
300 for (i = 0; i < array->size; i++) {
301 if (array->array[i].cookie == *desc->dir_cookie) {
302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 struct nfs_open_dir_context *ctx = desc->file->private_data;
305 new_pos = desc->current_index + i;
306 if (ctx->attr_gencount != nfsi->attr_gencount ||
307 !nfs_readdir_inode_mapping_valid(nfsi)) {
309 ctx->attr_gencount = nfsi->attr_gencount;
310 } else if (new_pos < desc->prev_index) {
312 && ctx->dup_cookie == *desc->dir_cookie) {
313 if (printk_ratelimit()) {
314 pr_notice("NFS: directory %pD2 contains a readdir loop."
315 "Please contact your server vendor. "
316 "The file: %.*s has duplicate cookie %llu\n",
317 desc->file, array->array[i].string.len,
318 array->array[i].string.name, *desc->dir_cookie);
323 ctx->dup_cookie = *desc->dir_cookie;
326 if (nfs_readdir_use_cookie(desc->file))
327 desc->ctx->pos = *desc->dir_cookie;
329 desc->ctx->pos = new_pos;
330 desc->prev_index = new_pos;
331 desc->cache_entry_index = i;
335 if (array->eof_index >= 0) {
336 status = -EBADCOOKIE;
337 if (*desc->dir_cookie == array->last_cookie)
345 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
347 struct nfs_cache_array *array;
350 array = kmap(desc->page);
352 if (*desc->dir_cookie == 0)
353 status = nfs_readdir_search_for_pos(array, desc);
355 status = nfs_readdir_search_for_cookie(array, desc);
357 if (status == -EAGAIN) {
358 desc->last_cookie = array->last_cookie;
359 desc->current_index += array->size;
366 /* Fill a page with xdr information before transferring to the cache page */
368 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
369 struct nfs_entry *entry, struct file *file, struct inode *inode)
371 struct nfs_open_dir_context *ctx = file->private_data;
372 const struct cred *cred = ctx->cred;
373 unsigned long timestamp, gencount;
378 gencount = nfs_inc_attr_generation_counter();
379 desc->dir_verifier = nfs_save_change_attribute(inode);
380 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
381 NFS_SERVER(inode)->dtsize, desc->plus);
383 /* We requested READDIRPLUS, but the server doesn't grok it */
384 if (error == -ENOTSUPP && desc->plus) {
385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
392 desc->timestamp = timestamp;
393 desc->gencount = gencount;
398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 struct nfs_entry *entry, struct xdr_stream *xdr)
401 struct inode *inode = file_inode(desc->file);
404 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
407 entry->fattr->time_start = desc->timestamp;
408 entry->fattr->gencount = desc->gencount;
412 /* Match file and dirent using either filehandle or fileid
413 * Note: caller is responsible for checking the fsid
416 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
419 struct nfs_inode *nfsi;
421 if (d_really_is_negative(dentry))
424 inode = d_inode(dentry);
425 if (is_bad_inode(inode) || NFS_STALE(inode))
429 if (entry->fattr->fileid != nfsi->fileid)
431 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
437 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
439 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
441 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
449 * This function is called by the lookup and getattr code to request the
450 * use of readdirplus to accelerate any future lookups in the same
453 void nfs_advise_use_readdirplus(struct inode *dir)
455 struct nfs_inode *nfsi = NFS_I(dir);
457 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
458 !list_empty(&nfsi->open_files))
459 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
463 * This function is mainly for use by nfs_getattr().
465 * If this is an 'ls -l', we want to force use of readdirplus.
466 * Do this by checking if there is an active file descriptor
467 * and calling nfs_advise_use_readdirplus, then forcing a
470 void nfs_force_use_readdirplus(struct inode *dir)
472 struct nfs_inode *nfsi = NFS_I(dir);
474 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
475 !list_empty(&nfsi->open_files)) {
476 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
477 invalidate_mapping_pages(dir->i_mapping,
478 nfsi->page_index + 1, -1);
483 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
484 unsigned long dir_verifier)
486 struct qstr filename = QSTR_INIT(entry->name, entry->len);
487 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
488 struct dentry *dentry;
489 struct dentry *alias;
493 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
495 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
497 if (filename.len == 0)
499 /* Validate that the name doesn't contain any illegal '\0' */
500 if (strnlen(filename.name, filename.len) != filename.len)
503 if (strnchr(filename.name, filename.len, '/'))
505 if (filename.name[0] == '.') {
506 if (filename.len == 1)
508 if (filename.len == 2 && filename.name[1] == '.')
511 filename.hash = full_name_hash(parent, filename.name, filename.len);
513 dentry = d_lookup(parent, &filename);
516 dentry = d_alloc_parallel(parent, &filename, &wq);
520 if (!d_in_lookup(dentry)) {
521 /* Is there a mountpoint here? If so, just exit */
522 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
523 &entry->fattr->fsid))
525 if (nfs_same_file(dentry, entry)) {
526 if (!entry->fh->size)
528 nfs_set_verifier(dentry, dir_verifier);
529 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
531 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
534 d_invalidate(dentry);
540 if (!entry->fh->size) {
541 d_lookup_done(dentry);
545 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
546 alias = d_splice_alias(inode, dentry);
547 d_lookup_done(dentry);
554 nfs_set_verifier(dentry, dir_verifier);
559 /* Perform conversion from xdr to cache array */
561 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
562 struct page **xdr_pages, struct page *page, unsigned int buflen)
564 struct xdr_stream stream;
566 struct page *scratch;
567 struct nfs_cache_array *array;
568 unsigned int count = 0;
571 scratch = alloc_page(GFP_KERNEL);
578 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
579 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
583 entry->label->len = NFS4_MAXLABELLEN;
585 status = xdr_decode(desc, entry, &stream);
587 if (status == -EAGAIN)
595 nfs_prime_dcache(file_dentry(desc->file), entry,
598 status = nfs_readdir_add_to_array(entry, page);
601 } while (!entry->eof);
604 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
606 array->eof_index = array->size;
616 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
619 for (i = 0; i < npages; i++)
624 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
625 * to nfs_readdir_free_pages()
628 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
632 for (i = 0; i < npages; i++) {
633 struct page *page = alloc_page(GFP_KERNEL);
641 nfs_readdir_free_pages(pages, i);
646 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
648 struct page *pages[NFS_MAX_READDIR_PAGES];
649 struct nfs_entry entry;
650 struct file *file = desc->file;
651 struct nfs_cache_array *array;
652 int status = -ENOMEM;
653 unsigned int array_size = ARRAY_SIZE(pages);
655 nfs_readdir_init_array(page);
657 entry.prev_cookie = 0;
658 entry.cookie = desc->last_cookie;
660 entry.fh = nfs_alloc_fhandle();
661 entry.fattr = nfs_alloc_fattr();
662 entry.server = NFS_SERVER(inode);
663 if (entry.fh == NULL || entry.fattr == NULL)
666 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
667 if (IS_ERR(entry.label)) {
668 status = PTR_ERR(entry.label);
674 status = nfs_readdir_alloc_pages(pages, array_size);
676 goto out_release_array;
679 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
684 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
686 if (status == -ENOSPC)
690 } while (array->eof_index < 0);
692 nfs_readdir_free_pages(pages, array_size);
695 nfs4_label_free(entry.label);
697 nfs_free_fattr(entry.fattr);
698 nfs_free_fhandle(entry.fh);
703 * Now we cache directories properly, by converting xdr information
704 * to an array that can be used for lookups later. This results in
705 * fewer cache pages, since we can store more information on each page.
706 * We only need to convert from xdr once so future lookups are much simpler
709 int nfs_readdir_filler(void *data, struct page* page)
711 nfs_readdir_descriptor_t *desc = data;
712 struct inode *inode = file_inode(desc->file);
715 ret = nfs_readdir_xdr_to_array(desc, page, inode);
718 SetPageUptodate(page);
720 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
721 /* Should never happen */
722 nfs_zap_mapping(inode, inode->i_mapping);
727 nfs_readdir_clear_array(page);
733 void cache_page_release(nfs_readdir_descriptor_t *desc)
735 put_page(desc->page);
740 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
742 return read_cache_page(desc->file->f_mapping, desc->page_index,
743 nfs_readdir_filler, desc);
747 * Returns 0 if desc->dir_cookie was found on page desc->page_index
748 * and locks the page to prevent removal from the page cache.
751 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
753 struct inode *inode = file_inode(desc->file);
754 struct nfs_inode *nfsi = NFS_I(inode);
757 desc->page = get_cache_page(desc);
758 if (IS_ERR(desc->page))
759 return PTR_ERR(desc->page);
760 res = lock_page_killable(desc->page);
764 if (desc->page->mapping != NULL) {
765 res = nfs_readdir_search_array(desc);
767 nfsi->page_index = desc->page_index;
771 unlock_page(desc->page);
773 cache_page_release(desc);
777 /* Search for desc->dir_cookie from the beginning of the page cache */
779 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
783 if (desc->page_index == 0) {
784 desc->current_index = 0;
785 desc->prev_index = 0;
786 desc->last_cookie = 0;
789 res = find_and_lock_cache_page(desc);
790 } while (res == -EAGAIN);
795 * Once we've found the start of the dirent within a page: fill 'er up...
798 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
800 struct file *file = desc->file;
803 struct nfs_cache_array *array = NULL;
804 struct nfs_open_dir_context *ctx = file->private_data;
806 array = kmap(desc->page);
807 for (i = desc->cache_entry_index; i < array->size; i++) {
808 struct nfs_cache_array_entry *ent;
810 ent = &array->array[i];
811 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
812 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
816 if (i < (array->size-1))
817 *desc->dir_cookie = array->array[i+1].cookie;
819 *desc->dir_cookie = array->last_cookie;
820 if (nfs_readdir_use_cookie(file))
821 desc->ctx->pos = *desc->dir_cookie;
827 if (array->eof_index >= 0)
831 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
832 (unsigned long long)*desc->dir_cookie, res);
837 * If we cannot find a cookie in our cache, we suspect that this is
838 * because it points to a deleted file, so we ask the server to return
839 * whatever it thinks is the next entry. We then feed this to filldir.
840 * If all goes well, we should then be able to find our way round the
841 * cache on the next call to readdir_search_pagecache();
843 * NOTE: we cannot add the anonymous page to the pagecache because
844 * the data it contains might not be page aligned. Besides,
845 * we should already have a complete representation of the
846 * directory in the page cache by the time we get here.
849 int uncached_readdir(nfs_readdir_descriptor_t *desc)
851 struct page *page = NULL;
853 struct inode *inode = file_inode(desc->file);
854 struct nfs_open_dir_context *ctx = desc->file->private_data;
856 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
857 (unsigned long long)*desc->dir_cookie);
859 page = alloc_page(GFP_HIGHUSER);
865 desc->page_index = 0;
866 desc->last_cookie = *desc->dir_cookie;
870 status = nfs_readdir_xdr_to_array(desc, page, inode);
874 status = nfs_do_filldir(desc);
877 nfs_readdir_clear_array(desc->page);
878 cache_page_release(desc);
880 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
885 /* The file offset position represents the dirent entry number. A
886 last cookie cache takes care of the common case of reading the
889 static int nfs_readdir(struct file *file, struct dir_context *ctx)
891 struct dentry *dentry = file_dentry(file);
892 struct inode *inode = d_inode(dentry);
893 struct nfs_open_dir_context *dir_ctx = file->private_data;
894 nfs_readdir_descriptor_t my_desc = {
897 .dir_cookie = &dir_ctx->dir_cookie,
898 .plus = nfs_use_readdirplus(inode, ctx),
903 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
904 file, (long long)ctx->pos);
905 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
908 * ctx->pos points to the dirent entry number.
909 * *desc->dir_cookie has the cookie for the next entry. We have
910 * to either find the entry with the appropriate number or
911 * revalidate the cookie.
913 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
914 res = nfs_revalidate_mapping(inode, file->f_mapping);
919 res = readdir_search_pagecache(desc);
921 if (res == -EBADCOOKIE) {
923 /* This means either end of directory */
924 if (*desc->dir_cookie && !desc->eof) {
925 /* Or that the server has 'lost' a cookie */
926 res = uncached_readdir(desc);
932 if (res == -ETOOSMALL && desc->plus) {
933 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
934 nfs_zap_caches(inode);
935 desc->page_index = 0;
943 res = nfs_do_filldir(desc);
944 unlock_page(desc->page);
945 cache_page_release(desc);
948 } while (!desc->eof);
952 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
956 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
958 struct inode *inode = file_inode(filp);
959 struct nfs_open_dir_context *dir_ctx = filp->private_data;
961 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
962 filp, offset, whence);
976 offset += filp->f_pos;
982 if (offset != filp->f_pos) {
983 filp->f_pos = offset;
984 if (nfs_readdir_use_cookie(filp))
985 dir_ctx->dir_cookie = offset;
987 dir_ctx->dir_cookie = 0;
995 * All directory operations under NFS are synchronous, so fsync()
996 * is a dummy operation.
998 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1001 struct inode *inode = file_inode(filp);
1003 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1006 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1007 inode_unlock(inode);
1012 * nfs_force_lookup_revalidate - Mark the directory as having changed
1013 * @dir: pointer to directory inode
1015 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1016 * full lookup on all child dentries of 'dir' whenever a change occurs
1017 * on the server that might have invalidated our dcache.
1019 * Note that we reserve bit '0' as a tag to let us know when a dentry
1020 * was revalidated while holding a delegation on its inode.
1022 * The caller should be holding dir->i_lock
1024 void nfs_force_lookup_revalidate(struct inode *dir)
1026 NFS_I(dir)->cache_change_attribute += 2;
1028 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1031 * nfs_verify_change_attribute - Detects NFS remote directory changes
1032 * @dir: pointer to parent directory inode
1033 * @verf: previously saved change attribute
1035 * Return "false" if the verifiers doesn't match the change attribute.
1036 * This would usually indicate that the directory contents have changed on
1037 * the server, and that any dentries need revalidating.
1039 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1041 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1044 static void nfs_set_verifier_delegated(unsigned long *verf)
1049 #if IS_ENABLED(CONFIG_NFS_V4)
1050 static void nfs_unset_verifier_delegated(unsigned long *verf)
1054 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1056 static bool nfs_test_verifier_delegated(unsigned long verf)
1061 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1063 return nfs_test_verifier_delegated(dentry->d_time);
1066 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1068 struct inode *inode = d_inode(dentry);
1070 if (!nfs_verifier_is_delegated(dentry) &&
1071 !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1073 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1074 nfs_set_verifier_delegated(&verf);
1076 dentry->d_time = verf;
1080 * nfs_set_verifier - save a parent directory verifier in the dentry
1081 * @dentry: pointer to dentry
1082 * @verf: verifier to save
1084 * Saves the parent directory verifier in @dentry. If the inode has
1085 * a delegation, we also tag the dentry as having been revalidated
1086 * while holding a delegation so that we know we don't have to
1087 * look it up again after a directory change.
1089 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1092 spin_lock(&dentry->d_lock);
1093 nfs_set_verifier_locked(dentry, verf);
1094 spin_unlock(&dentry->d_lock);
1096 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1098 #if IS_ENABLED(CONFIG_NFS_V4)
1100 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1101 * @inode: pointer to inode
1103 * Iterates through the dentries in the inode alias list and clears
1104 * the tag used to indicate that the dentry has been revalidated
1105 * while holding a delegation.
1106 * This function is intended for use when the delegation is being
1107 * returned or revoked.
1109 void nfs_clear_verifier_delegated(struct inode *inode)
1111 struct dentry *alias;
1115 spin_lock(&inode->i_lock);
1116 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1117 spin_lock(&alias->d_lock);
1118 nfs_unset_verifier_delegated(&alias->d_time);
1119 spin_unlock(&alias->d_lock);
1121 spin_unlock(&inode->i_lock);
1123 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1124 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1127 * A check for whether or not the parent directory has changed.
1128 * In the case it has, we assume that the dentries are untrustworthy
1129 * and may need to be looked up again.
1130 * If rcu_walk prevents us from performing a full check, return 0.
1132 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1135 if (IS_ROOT(dentry))
1137 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1139 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1141 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1142 if (nfs_mapping_need_revalidate_inode(dir)) {
1145 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1148 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1154 * Use intent information to check whether or not we're going to do
1155 * an O_EXCL create using this path component.
1157 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1159 if (NFS_PROTO(dir)->version == 2)
1161 return flags & LOOKUP_EXCL;
1165 * Inode and filehandle revalidation for lookups.
1167 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1168 * or if the intent information indicates that we're about to open this
1169 * particular file and the "nocto" mount flag is not set.
1173 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1175 struct nfs_server *server = NFS_SERVER(inode);
1178 if (IS_AUTOMOUNT(inode))
1181 if (flags & LOOKUP_OPEN) {
1182 switch (inode->i_mode & S_IFMT) {
1184 /* A NFSv4 OPEN will revalidate later */
1185 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1189 if (server->flags & NFS_MOUNT_NOCTO)
1191 /* NFS close-to-open cache consistency validation */
1196 /* VFS wants an on-the-wire revalidation */
1197 if (flags & LOOKUP_REVAL)
1200 return (inode->i_nlink == 0) ? -ESTALE : 0;
1202 if (flags & LOOKUP_RCU)
1204 ret = __nfs_revalidate_inode(server, inode);
1211 * We judge how long we want to trust negative
1212 * dentries by looking at the parent inode mtime.
1214 * If parent mtime has changed, we revalidate, else we wait for a
1215 * period corresponding to the parent's attribute cache timeout value.
1217 * If LOOKUP_RCU prevents us from performing a full check, return 1
1218 * suggesting a reval is needed.
1220 * Note that when creating a new file, or looking up a rename target,
1221 * then it shouldn't be necessary to revalidate a negative dentry.
1224 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1227 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1229 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1231 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1235 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1236 struct inode *inode, int error)
1240 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1244 nfs_mark_for_revalidate(dir);
1245 if (inode && S_ISDIR(inode->i_mode)) {
1246 /* Purge readdir caches. */
1247 nfs_zap_caches(inode);
1249 * We can't d_drop the root of a disconnected tree:
1250 * its d_hash is on the s_anon list and d_drop() would hide
1251 * it from shrink_dcache_for_unmount(), leading to busy
1252 * inodes on unmount and further oopses.
1254 if (IS_ROOT(dentry))
1257 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1261 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1262 __func__, dentry, error);
1267 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1271 if (nfs_neg_need_reval(dir, dentry, flags)) {
1272 if (flags & LOOKUP_RCU)
1276 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1280 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1281 struct inode *inode)
1283 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1284 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1288 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1289 struct inode *inode)
1291 struct nfs_fh *fhandle;
1292 struct nfs_fattr *fattr;
1293 struct nfs4_label *label;
1294 unsigned long dir_verifier;
1298 fhandle = nfs_alloc_fhandle();
1299 fattr = nfs_alloc_fattr();
1300 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1301 if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1304 dir_verifier = nfs_save_change_attribute(dir);
1305 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1313 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1319 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1321 if (nfs_refresh_inode(inode, fattr) < 0)
1324 nfs_setsecurity(inode, fattr, label);
1325 nfs_set_verifier(dentry, dir_verifier);
1327 /* set a readdirplus hint that we had a cache miss */
1328 nfs_force_use_readdirplus(dir);
1331 nfs_free_fattr(fattr);
1332 nfs_free_fhandle(fhandle);
1333 nfs4_label_free(label);
1334 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1338 * This is called every time the dcache has a lookup hit,
1339 * and we should check whether we can really trust that
1342 * NOTE! The hit can be a negative hit too, don't assume
1345 * If the parent directory is seen to have changed, we throw out the
1346 * cached dentry and do a new lookup.
1349 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1352 struct inode *inode;
1355 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1356 inode = d_inode(dentry);
1359 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1361 if (is_bad_inode(inode)) {
1362 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1367 if (nfs_verifier_is_delegated(dentry))
1368 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1370 /* Force a full look up iff the parent directory has changed */
1371 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1372 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1373 error = nfs_lookup_verify_inode(inode, flags);
1375 if (error == -ESTALE)
1376 nfs_zap_caches(dir);
1379 nfs_advise_use_readdirplus(dir);
1383 if (flags & LOOKUP_RCU)
1386 if (NFS_STALE(inode))
1389 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1390 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1391 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1394 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1396 if (flags & LOOKUP_RCU)
1398 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1402 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1403 int (*reval)(struct inode *, struct dentry *, unsigned int))
1405 struct dentry *parent;
1409 if (flags & LOOKUP_RCU) {
1410 parent = READ_ONCE(dentry->d_parent);
1411 dir = d_inode_rcu(parent);
1414 ret = reval(dir, dentry, flags);
1415 if (parent != READ_ONCE(dentry->d_parent))
1418 parent = dget_parent(dentry);
1419 ret = reval(d_inode(parent), dentry, flags);
1425 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1427 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1431 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1432 * when we don't really care about the dentry name. This is called when a
1433 * pathwalk ends on a dentry that was not found via a normal lookup in the
1434 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1436 * In this situation, we just want to verify that the inode itself is OK
1437 * since the dentry might have changed on the server.
1439 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1441 struct inode *inode = d_inode(dentry);
1445 * I believe we can only get a negative dentry here in the case of a
1446 * procfs-style symlink. Just assume it's correct for now, but we may
1447 * eventually need to do something more here.
1450 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1455 if (is_bad_inode(inode)) {
1456 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1461 error = nfs_lookup_verify_inode(inode, flags);
1462 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1463 __func__, inode->i_ino, error ? "invalid" : "valid");
1468 * This is called from dput() when d_count is going to 0.
1470 static int nfs_dentry_delete(const struct dentry *dentry)
1472 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1473 dentry, dentry->d_flags);
1475 /* Unhash any dentry with a stale inode */
1476 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1479 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1480 /* Unhash it, so that ->d_iput() would be called */
1483 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1484 /* Unhash it, so that ancestors of killed async unlink
1485 * files will be cleaned up during umount */
1492 /* Ensure that we revalidate inode->i_nlink */
1493 static void nfs_drop_nlink(struct inode *inode)
1495 spin_lock(&inode->i_lock);
1496 /* drop the inode if we're reasonably sure this is the last link */
1497 if (inode->i_nlink > 0)
1499 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1500 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1501 | NFS_INO_INVALID_CTIME
1502 | NFS_INO_INVALID_OTHER
1503 | NFS_INO_REVAL_FORCED;
1504 spin_unlock(&inode->i_lock);
1508 * Called when the dentry loses inode.
1509 * We use it to clean up silly-renamed files.
1511 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1513 if (S_ISDIR(inode->i_mode))
1514 /* drop any readdir cache as it could easily be old */
1515 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1517 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1518 nfs_complete_unlink(dentry, inode);
1519 nfs_drop_nlink(inode);
1524 static void nfs_d_release(struct dentry *dentry)
1526 /* free cached devname value, if it survived that far */
1527 if (unlikely(dentry->d_fsdata)) {
1528 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1531 kfree(dentry->d_fsdata);
1535 const struct dentry_operations nfs_dentry_operations = {
1536 .d_revalidate = nfs_lookup_revalidate,
1537 .d_weak_revalidate = nfs_weak_revalidate,
1538 .d_delete = nfs_dentry_delete,
1539 .d_iput = nfs_dentry_iput,
1540 .d_automount = nfs_d_automount,
1541 .d_release = nfs_d_release,
1543 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1545 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1548 struct inode *inode = NULL;
1549 struct nfs_fh *fhandle = NULL;
1550 struct nfs_fattr *fattr = NULL;
1551 struct nfs4_label *label = NULL;
1552 unsigned long dir_verifier;
1555 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1556 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1558 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1559 return ERR_PTR(-ENAMETOOLONG);
1562 * If we're doing an exclusive create, optimize away the lookup
1563 * but don't hash the dentry.
1565 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1568 res = ERR_PTR(-ENOMEM);
1569 fhandle = nfs_alloc_fhandle();
1570 fattr = nfs_alloc_fattr();
1571 if (fhandle == NULL || fattr == NULL)
1574 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1578 dir_verifier = nfs_save_change_attribute(dir);
1579 trace_nfs_lookup_enter(dir, dentry, flags);
1580 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1581 if (error == -ENOENT)
1584 res = ERR_PTR(error);
1587 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1588 res = ERR_CAST(inode);
1592 /* Notify readdir to use READDIRPLUS */
1593 nfs_force_use_readdirplus(dir);
1596 res = d_splice_alias(inode, dentry);
1602 nfs_set_verifier(dentry, dir_verifier);
1604 trace_nfs_lookup_exit(dir, dentry, flags, error);
1605 nfs4_label_free(label);
1607 nfs_free_fattr(fattr);
1608 nfs_free_fhandle(fhandle);
1611 EXPORT_SYMBOL_GPL(nfs_lookup);
1613 #if IS_ENABLED(CONFIG_NFS_V4)
1614 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1616 const struct dentry_operations nfs4_dentry_operations = {
1617 .d_revalidate = nfs4_lookup_revalidate,
1618 .d_weak_revalidate = nfs_weak_revalidate,
1619 .d_delete = nfs_dentry_delete,
1620 .d_iput = nfs_dentry_iput,
1621 .d_automount = nfs_d_automount,
1622 .d_release = nfs_d_release,
1624 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1626 static fmode_t flags_to_mode(int flags)
1628 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1629 if ((flags & O_ACCMODE) != O_WRONLY)
1631 if ((flags & O_ACCMODE) != O_RDONLY)
1636 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1638 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1641 static int do_open(struct inode *inode, struct file *filp)
1643 nfs_fscache_open_file(inode, filp);
1647 static int nfs_finish_open(struct nfs_open_context *ctx,
1648 struct dentry *dentry,
1649 struct file *file, unsigned open_flags)
1653 err = finish_open(file, dentry, do_open);
1656 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1657 nfs_file_set_open_context(file, ctx);
1664 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1665 struct file *file, unsigned open_flags,
1668 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1669 struct nfs_open_context *ctx;
1671 struct iattr attr = { .ia_valid = ATTR_OPEN };
1672 struct inode *inode;
1673 unsigned int lookup_flags = 0;
1674 bool switched = false;
1678 /* Expect a negative dentry */
1679 BUG_ON(d_inode(dentry));
1681 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1682 dir->i_sb->s_id, dir->i_ino, dentry);
1684 err = nfs_check_flags(open_flags);
1688 /* NFS only supports OPEN on regular files */
1689 if ((open_flags & O_DIRECTORY)) {
1690 if (!d_in_lookup(dentry)) {
1692 * Hashed negative dentry with O_DIRECTORY: dentry was
1693 * revalidated and is fine, no need to perform lookup
1698 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1702 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1703 return -ENAMETOOLONG;
1705 if (open_flags & O_CREAT) {
1706 struct nfs_server *server = NFS_SERVER(dir);
1708 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1709 mode &= ~current_umask();
1711 attr.ia_valid |= ATTR_MODE;
1712 attr.ia_mode = mode;
1714 if (open_flags & O_TRUNC) {
1715 attr.ia_valid |= ATTR_SIZE;
1719 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1722 dentry = d_alloc_parallel(dentry->d_parent,
1723 &dentry->d_name, &wq);
1725 return PTR_ERR(dentry);
1726 if (unlikely(!d_in_lookup(dentry)))
1727 return finish_no_open(file, dentry);
1730 ctx = create_nfs_open_context(dentry, open_flags, file);
1735 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1736 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1738 file->f_mode |= FMODE_CREATED;
1739 if (IS_ERR(inode)) {
1740 err = PTR_ERR(inode);
1741 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1742 put_nfs_open_context(ctx);
1746 d_splice_alias(NULL, dentry);
1747 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1753 if (!(open_flags & O_NOFOLLOW))
1763 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1764 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1765 put_nfs_open_context(ctx);
1767 if (unlikely(switched)) {
1768 d_lookup_done(dentry);
1774 res = nfs_lookup(dir, dentry, lookup_flags);
1776 d_lookup_done(dentry);
1783 return PTR_ERR(res);
1784 return finish_no_open(file, res);
1786 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1789 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1792 struct inode *inode;
1794 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1796 if (d_mountpoint(dentry))
1799 inode = d_inode(dentry);
1801 /* We can't create new files in nfs_open_revalidate(), so we
1802 * optimize away revalidation of negative dentries.
1807 if (nfs_verifier_is_delegated(dentry))
1808 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1810 /* NFS only supports OPEN on regular files */
1811 if (!S_ISREG(inode->i_mode))
1814 /* We cannot do exclusive creation on a positive dentry */
1815 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1818 /* Check if the directory changed */
1819 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1822 /* Let f_op->open() actually open (and revalidate) the file */
1825 if (flags & LOOKUP_RCU)
1827 return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1830 return nfs_do_lookup_revalidate(dir, dentry, flags);
1833 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1835 return __nfs_lookup_revalidate(dentry, flags,
1836 nfs4_do_lookup_revalidate);
1839 #endif /* CONFIG_NFSV4 */
1842 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1843 struct nfs_fattr *fattr,
1844 struct nfs4_label *label)
1846 struct dentry *parent = dget_parent(dentry);
1847 struct inode *dir = d_inode(parent);
1848 struct inode *inode;
1854 if (fhandle->size == 0) {
1855 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1859 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1860 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1861 struct nfs_server *server = NFS_SB(dentry->d_sb);
1862 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1867 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1868 d = d_splice_alias(inode, dentry);
1873 nfs_mark_for_revalidate(dir);
1877 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1880 * Code common to create, mkdir, and mknod.
1882 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1883 struct nfs_fattr *fattr,
1884 struct nfs4_label *label)
1888 d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1892 /* Callers don't care */
1896 EXPORT_SYMBOL_GPL(nfs_instantiate);
1899 * Following a failed create operation, we drop the dentry rather
1900 * than retain a negative dentry. This avoids a problem in the event
1901 * that the operation succeeded on the server, but an error in the
1902 * reply path made it appear to have failed.
1904 int nfs_create(struct inode *dir, struct dentry *dentry,
1905 umode_t mode, bool excl)
1908 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1911 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1912 dir->i_sb->s_id, dir->i_ino, dentry);
1914 attr.ia_mode = mode;
1915 attr.ia_valid = ATTR_MODE;
1917 trace_nfs_create_enter(dir, dentry, open_flags);
1918 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1919 trace_nfs_create_exit(dir, dentry, open_flags, error);
1927 EXPORT_SYMBOL_GPL(nfs_create);
1930 * See comments for nfs_proc_create regarding failed operations.
1933 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1938 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1939 dir->i_sb->s_id, dir->i_ino, dentry);
1941 attr.ia_mode = mode;
1942 attr.ia_valid = ATTR_MODE;
1944 trace_nfs_mknod_enter(dir, dentry);
1945 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1946 trace_nfs_mknod_exit(dir, dentry, status);
1954 EXPORT_SYMBOL_GPL(nfs_mknod);
1957 * See comments for nfs_proc_create regarding failed operations.
1959 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1964 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1965 dir->i_sb->s_id, dir->i_ino, dentry);
1967 attr.ia_valid = ATTR_MODE;
1968 attr.ia_mode = mode | S_IFDIR;
1970 trace_nfs_mkdir_enter(dir, dentry);
1971 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1972 trace_nfs_mkdir_exit(dir, dentry, error);
1980 EXPORT_SYMBOL_GPL(nfs_mkdir);
1982 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1984 if (simple_positive(dentry))
1988 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1992 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1993 dir->i_sb->s_id, dir->i_ino, dentry);
1995 trace_nfs_rmdir_enter(dir, dentry);
1996 if (d_really_is_positive(dentry)) {
1997 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1998 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1999 /* Ensure the VFS deletes this inode */
2002 clear_nlink(d_inode(dentry));
2005 nfs_dentry_handle_enoent(dentry);
2007 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2009 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2010 trace_nfs_rmdir_exit(dir, dentry, error);
2014 EXPORT_SYMBOL_GPL(nfs_rmdir);
2017 * Remove a file after making sure there are no pending writes,
2018 * and after checking that the file has only one user.
2020 * We invalidate the attribute cache and free the inode prior to the operation
2021 * to avoid possible races if the server reuses the inode.
2023 static int nfs_safe_remove(struct dentry *dentry)
2025 struct inode *dir = d_inode(dentry->d_parent);
2026 struct inode *inode = d_inode(dentry);
2029 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2031 /* If the dentry was sillyrenamed, we simply call d_delete() */
2032 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2037 trace_nfs_remove_enter(dir, dentry);
2038 if (inode != NULL) {
2039 error = NFS_PROTO(dir)->remove(dir, dentry);
2041 nfs_drop_nlink(inode);
2043 error = NFS_PROTO(dir)->remove(dir, dentry);
2044 if (error == -ENOENT)
2045 nfs_dentry_handle_enoent(dentry);
2046 trace_nfs_remove_exit(dir, dentry, error);
2051 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2052 * belongs to an active ".nfs..." file and we return -EBUSY.
2054 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2056 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2059 int need_rehash = 0;
2061 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2062 dir->i_ino, dentry);
2064 trace_nfs_unlink_enter(dir, dentry);
2065 spin_lock(&dentry->d_lock);
2066 if (d_count(dentry) > 1) {
2067 spin_unlock(&dentry->d_lock);
2068 /* Start asynchronous writeout of the inode */
2069 write_inode_now(d_inode(dentry), 0);
2070 error = nfs_sillyrename(dir, dentry);
2073 if (!d_unhashed(dentry)) {
2077 spin_unlock(&dentry->d_lock);
2078 error = nfs_safe_remove(dentry);
2079 if (!error || error == -ENOENT) {
2080 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2081 } else if (need_rehash)
2084 trace_nfs_unlink_exit(dir, dentry, error);
2087 EXPORT_SYMBOL_GPL(nfs_unlink);
2090 * To create a symbolic link, most file systems instantiate a new inode,
2091 * add a page to it containing the path, then write it out to the disk
2092 * using prepare_write/commit_write.
2094 * Unfortunately the NFS client can't create the in-core inode first
2095 * because it needs a file handle to create an in-core inode (see
2096 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2097 * symlink request has completed on the server.
2099 * So instead we allocate a raw page, copy the symname into it, then do
2100 * the SYMLINK request with the page as the buffer. If it succeeds, we
2101 * now have a new file handle and can instantiate an in-core NFS inode
2102 * and move the raw page into its mapping.
2104 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2109 unsigned int pathlen = strlen(symname);
2112 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2113 dir->i_ino, dentry, symname);
2115 if (pathlen > PAGE_SIZE)
2116 return -ENAMETOOLONG;
2118 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2119 attr.ia_valid = ATTR_MODE;
2121 page = alloc_page(GFP_USER);
2125 kaddr = page_address(page);
2126 memcpy(kaddr, symname, pathlen);
2127 if (pathlen < PAGE_SIZE)
2128 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2130 trace_nfs_symlink_enter(dir, dentry);
2131 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2132 trace_nfs_symlink_exit(dir, dentry, error);
2134 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2135 dir->i_sb->s_id, dir->i_ino,
2136 dentry, symname, error);
2143 * No big deal if we can't add this page to the page cache here.
2144 * READLINK will get the missing page from the server if needed.
2146 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2148 SetPageUptodate(page);
2151 * add_to_page_cache_lru() grabs an extra page refcount.
2152 * Drop it here to avoid leaking this page later.
2160 EXPORT_SYMBOL_GPL(nfs_symlink);
2163 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2165 struct inode *inode = d_inode(old_dentry);
2168 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2169 old_dentry, dentry);
2171 trace_nfs_link_enter(inode, dir, dentry);
2173 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2176 d_add(dentry, inode);
2178 trace_nfs_link_exit(inode, dir, dentry, error);
2181 EXPORT_SYMBOL_GPL(nfs_link);
2185 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2186 * different file handle for the same inode after a rename (e.g. when
2187 * moving to a different directory). A fail-safe method to do so would
2188 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2189 * rename the old file using the sillyrename stuff. This way, the original
2190 * file in old_dir will go away when the last process iput()s the inode.
2194 * It actually works quite well. One needs to have the possibility for
2195 * at least one ".nfs..." file in each directory the file ever gets
2196 * moved or linked to which happens automagically with the new
2197 * implementation that only depends on the dcache stuff instead of
2198 * using the inode layer
2200 * Unfortunately, things are a little more complicated than indicated
2201 * above. For a cross-directory move, we want to make sure we can get
2202 * rid of the old inode after the operation. This means there must be
2203 * no pending writes (if it's a file), and the use count must be 1.
2204 * If these conditions are met, we can drop the dentries before doing
2207 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2208 struct inode *new_dir, struct dentry *new_dentry,
2211 struct inode *old_inode = d_inode(old_dentry);
2212 struct inode *new_inode = d_inode(new_dentry);
2213 struct dentry *dentry = NULL, *rehash = NULL;
2214 struct rpc_task *task;
2220 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2221 old_dentry, new_dentry,
2222 d_count(new_dentry));
2224 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2226 * For non-directories, check whether the target is busy and if so,
2227 * make a copy of the dentry and then do a silly-rename. If the
2228 * silly-rename succeeds, the copied dentry is hashed and becomes
2231 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2233 * To prevent any new references to the target during the
2234 * rename, we unhash the dentry in advance.
2236 if (!d_unhashed(new_dentry)) {
2238 rehash = new_dentry;
2241 if (d_count(new_dentry) > 2) {
2244 /* copy the target dentry's name */
2245 dentry = d_alloc(new_dentry->d_parent,
2246 &new_dentry->d_name);
2250 /* silly-rename the existing target ... */
2251 err = nfs_sillyrename(new_dir, new_dentry);
2255 new_dentry = dentry;
2261 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2263 error = PTR_ERR(task);
2267 error = rpc_wait_for_completion_task(task);
2269 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2270 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2273 error = task->tk_status;
2275 /* Ensure the inode attributes are revalidated */
2277 spin_lock(&old_inode->i_lock);
2278 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2279 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2280 | NFS_INO_INVALID_CTIME
2281 | NFS_INO_REVAL_FORCED;
2282 spin_unlock(&old_inode->i_lock);
2287 trace_nfs_rename_exit(old_dir, old_dentry,
2288 new_dir, new_dentry, error);
2290 if (new_inode != NULL)
2291 nfs_drop_nlink(new_inode);
2293 * The d_move() should be here instead of in an async RPC completion
2294 * handler because we need the proper locks to move the dentry. If
2295 * we're interrupted by a signal, the async RPC completion handler
2296 * should mark the directories for revalidation.
2298 d_move(old_dentry, new_dentry);
2299 nfs_set_verifier(old_dentry,
2300 nfs_save_change_attribute(new_dir));
2301 } else if (error == -ENOENT)
2302 nfs_dentry_handle_enoent(old_dentry);
2304 /* new dentry created? */
2309 EXPORT_SYMBOL_GPL(nfs_rename);
2311 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2312 static LIST_HEAD(nfs_access_lru_list);
2313 static atomic_long_t nfs_access_nr_entries;
2315 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2316 module_param(nfs_access_max_cachesize, ulong, 0644);
2317 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2319 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2321 put_cred(entry->cred);
2322 kfree_rcu(entry, rcu_head);
2323 smp_mb__before_atomic();
2324 atomic_long_dec(&nfs_access_nr_entries);
2325 smp_mb__after_atomic();
2328 static void nfs_access_free_list(struct list_head *head)
2330 struct nfs_access_entry *cache;
2332 while (!list_empty(head)) {
2333 cache = list_entry(head->next, struct nfs_access_entry, lru);
2334 list_del(&cache->lru);
2335 nfs_access_free_entry(cache);
2339 static unsigned long
2340 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2343 struct nfs_inode *nfsi, *next;
2344 struct nfs_access_entry *cache;
2347 spin_lock(&nfs_access_lru_lock);
2348 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2349 struct inode *inode;
2351 if (nr_to_scan-- == 0)
2353 inode = &nfsi->vfs_inode;
2354 spin_lock(&inode->i_lock);
2355 if (list_empty(&nfsi->access_cache_entry_lru))
2356 goto remove_lru_entry;
2357 cache = list_entry(nfsi->access_cache_entry_lru.next,
2358 struct nfs_access_entry, lru);
2359 list_move(&cache->lru, &head);
2360 rb_erase(&cache->rb_node, &nfsi->access_cache);
2362 if (!list_empty(&nfsi->access_cache_entry_lru))
2363 list_move_tail(&nfsi->access_cache_inode_lru,
2364 &nfs_access_lru_list);
2367 list_del_init(&nfsi->access_cache_inode_lru);
2368 smp_mb__before_atomic();
2369 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2370 smp_mb__after_atomic();
2372 spin_unlock(&inode->i_lock);
2374 spin_unlock(&nfs_access_lru_lock);
2375 nfs_access_free_list(&head);
2380 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2382 int nr_to_scan = sc->nr_to_scan;
2383 gfp_t gfp_mask = sc->gfp_mask;
2385 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2387 return nfs_do_access_cache_scan(nr_to_scan);
2392 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2394 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2398 nfs_access_cache_enforce_limit(void)
2400 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2402 unsigned int nr_to_scan;
2404 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2407 diff = nr_entries - nfs_access_max_cachesize;
2408 if (diff < nr_to_scan)
2410 nfs_do_access_cache_scan(nr_to_scan);
2413 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2415 struct rb_root *root_node = &nfsi->access_cache;
2417 struct nfs_access_entry *entry;
2419 /* Unhook entries from the cache */
2420 while ((n = rb_first(root_node)) != NULL) {
2421 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2422 rb_erase(n, root_node);
2423 list_move(&entry->lru, head);
2425 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2428 void nfs_access_zap_cache(struct inode *inode)
2432 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2434 /* Remove from global LRU init */
2435 spin_lock(&nfs_access_lru_lock);
2436 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2437 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2439 spin_lock(&inode->i_lock);
2440 __nfs_access_zap_cache(NFS_I(inode), &head);
2441 spin_unlock(&inode->i_lock);
2442 spin_unlock(&nfs_access_lru_lock);
2443 nfs_access_free_list(&head);
2445 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2447 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2449 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2452 struct nfs_access_entry *entry =
2453 rb_entry(n, struct nfs_access_entry, rb_node);
2454 int cmp = cred_fscmp(cred, entry->cred);
2466 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2468 struct nfs_inode *nfsi = NFS_I(inode);
2469 struct nfs_access_entry *cache;
2473 spin_lock(&inode->i_lock);
2475 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2477 cache = nfs_access_search_rbtree(inode, cred);
2481 /* Found an entry, is our attribute cache valid? */
2482 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2489 spin_unlock(&inode->i_lock);
2490 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2493 spin_lock(&inode->i_lock);
2496 res->cred = cache->cred;
2497 res->mask = cache->mask;
2498 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2501 spin_unlock(&inode->i_lock);
2504 spin_unlock(&inode->i_lock);
2505 nfs_access_zap_cache(inode);
2509 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2511 /* Only check the most recently returned cache entry,
2512 * but do it without locking.
2514 struct nfs_inode *nfsi = NFS_I(inode);
2515 struct nfs_access_entry *cache;
2517 struct list_head *lh;
2520 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2522 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2523 cache = list_entry(lh, struct nfs_access_entry, lru);
2524 if (lh == &nfsi->access_cache_entry_lru ||
2525 cred_fscmp(cred, cache->cred) != 0)
2529 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2531 res->cred = cache->cred;
2532 res->mask = cache->mask;
2539 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2540 nfs_access_entry *res, bool may_block)
2544 status = nfs_access_get_cached_rcu(inode, cred, res);
2546 status = nfs_access_get_cached_locked(inode, cred, res,
2551 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2553 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2555 struct nfs_inode *nfsi = NFS_I(inode);
2556 struct rb_root *root_node = &nfsi->access_cache;
2557 struct rb_node **p = &root_node->rb_node;
2558 struct rb_node *parent = NULL;
2559 struct nfs_access_entry *entry;
2562 spin_lock(&inode->i_lock);
2563 while (*p != NULL) {
2565 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2566 cmp = cred_fscmp(set->cred, entry->cred);
2569 p = &parent->rb_left;
2571 p = &parent->rb_right;
2575 rb_link_node(&set->rb_node, parent, p);
2576 rb_insert_color(&set->rb_node, root_node);
2577 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2578 spin_unlock(&inode->i_lock);
2581 rb_replace_node(parent, &set->rb_node, root_node);
2582 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2583 list_del(&entry->lru);
2584 spin_unlock(&inode->i_lock);
2585 nfs_access_free_entry(entry);
2588 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2590 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2593 RB_CLEAR_NODE(&cache->rb_node);
2594 cache->cred = get_cred(set->cred);
2595 cache->mask = set->mask;
2597 /* The above field assignments must be visible
2598 * before this item appears on the lru. We cannot easily
2599 * use rcu_assign_pointer, so just force the memory barrier.
2602 nfs_access_add_rbtree(inode, cache);
2604 /* Update accounting */
2605 smp_mb__before_atomic();
2606 atomic_long_inc(&nfs_access_nr_entries);
2607 smp_mb__after_atomic();
2609 /* Add inode to global LRU list */
2610 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2611 spin_lock(&nfs_access_lru_lock);
2612 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2613 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2614 &nfs_access_lru_list);
2615 spin_unlock(&nfs_access_lru_lock);
2617 nfs_access_cache_enforce_limit();
2619 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2621 #define NFS_MAY_READ (NFS_ACCESS_READ)
2622 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2623 NFS_ACCESS_EXTEND | \
2625 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2627 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2628 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2629 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2631 nfs_access_calc_mask(u32 access_result, umode_t umode)
2635 if (access_result & NFS_MAY_READ)
2637 if (S_ISDIR(umode)) {
2638 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2640 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2642 } else if (S_ISREG(umode)) {
2643 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2645 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2647 } else if (access_result & NFS_MAY_WRITE)
2652 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2654 entry->mask = access_result;
2656 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2658 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2660 struct nfs_access_entry cache;
2661 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2662 int cache_mask = -1;
2665 trace_nfs_access_enter(inode);
2667 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2676 * Determine which access bits we want to ask for...
2678 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2679 if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2680 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2683 if (S_ISDIR(inode->i_mode))
2684 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2686 cache.mask |= NFS_ACCESS_EXECUTE;
2688 status = NFS_PROTO(inode)->access(inode, &cache);
2690 if (status == -ESTALE) {
2691 if (!S_ISDIR(inode->i_mode))
2692 nfs_set_inode_stale(inode);
2694 nfs_zap_caches(inode);
2698 nfs_access_add_cache(inode, &cache);
2700 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2701 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2704 trace_nfs_access_exit(inode, mask, cache_mask, status);
2708 static int nfs_open_permission_mask(int openflags)
2712 if (openflags & __FMODE_EXEC) {
2713 /* ONLY check exec rights */
2716 if ((openflags & O_ACCMODE) != O_WRONLY)
2718 if ((openflags & O_ACCMODE) != O_RDONLY)
2725 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2727 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2729 EXPORT_SYMBOL_GPL(nfs_may_open);
2731 static int nfs_execute_ok(struct inode *inode, int mask)
2733 struct nfs_server *server = NFS_SERVER(inode);
2736 if (S_ISDIR(inode->i_mode))
2738 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2739 if (mask & MAY_NOT_BLOCK)
2741 ret = __nfs_revalidate_inode(server, inode);
2743 if (ret == 0 && !execute_ok(inode))
2748 int nfs_permission(struct inode *inode, int mask)
2750 const struct cred *cred = current_cred();
2753 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2755 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2757 /* Is this sys_access() ? */
2758 if (mask & (MAY_ACCESS | MAY_CHDIR))
2761 switch (inode->i_mode & S_IFMT) {
2765 if ((mask & MAY_OPEN) &&
2766 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2771 * Optimize away all write operations, since the server
2772 * will check permissions when we perform the op.
2774 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2779 if (!NFS_PROTO(inode)->access)
2782 res = nfs_do_access(inode, cred, mask);
2784 if (!res && (mask & MAY_EXEC))
2785 res = nfs_execute_ok(inode, mask);
2787 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2788 inode->i_sb->s_id, inode->i_ino, mask, res);
2791 if (mask & MAY_NOT_BLOCK)
2794 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2796 res = generic_permission(inode, mask);
2799 EXPORT_SYMBOL_GPL(nfs_permission);
2803 * version-control: t
2804 * kept-new-versions: 5