1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/file.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * ext4 fs regular file handling primitives
18 * 64-bit file support on 64-bit platforms by Jakub Jelinek
22 #include <linux/time.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
34 #include "ext4_jbd2.h"
39 static bool ext4_dio_supported(struct inode *inode)
41 if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode))
43 if (fsverity_active(inode))
45 if (ext4_should_journal_data(inode))
47 if (ext4_has_inline_data(inode))
52 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
55 struct inode *inode = file_inode(iocb->ki_filp);
57 if (iocb->ki_flags & IOCB_NOWAIT) {
58 if (!inode_trylock_shared(inode))
61 inode_lock_shared(inode);
64 if (!ext4_dio_supported(inode)) {
65 inode_unlock_shared(inode);
67 * Fallback to buffered I/O if the operation being performed on
68 * the inode is not supported by direct I/O. The IOCB_DIRECT
69 * flag needs to be cleared here in order to ensure that the
70 * direct I/O path within generic_file_read_iter() is not
73 iocb->ki_flags &= ~IOCB_DIRECT;
74 return generic_file_read_iter(iocb, to);
77 ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL,
79 inode_unlock_shared(inode);
81 file_accessed(iocb->ki_filp);
86 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
88 struct inode *inode = file_inode(iocb->ki_filp);
91 if (iocb->ki_flags & IOCB_NOWAIT) {
92 if (!inode_trylock_shared(inode))
95 inode_lock_shared(inode);
98 * Recheck under inode lock - at this point we are sure it cannot
101 if (!IS_DAX(inode)) {
102 inode_unlock_shared(inode);
103 /* Fallback to buffered IO in case we cannot support DAX */
104 return generic_file_read_iter(iocb, to);
106 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
107 inode_unlock_shared(inode);
109 file_accessed(iocb->ki_filp);
114 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
116 struct inode *inode = file_inode(iocb->ki_filp);
118 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
121 if (!iov_iter_count(to))
122 return 0; /* skip atime */
126 return ext4_dax_read_iter(iocb, to);
128 if (iocb->ki_flags & IOCB_DIRECT)
129 return ext4_dio_read_iter(iocb, to);
131 return generic_file_read_iter(iocb, to);
135 * Called when an inode is released. Note that this is different
136 * from ext4_file_open: open gets called at every open, but release
137 * gets called only when /all/ the files are closed.
139 static int ext4_release_file(struct inode *inode, struct file *filp)
141 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
142 ext4_alloc_da_blocks(inode);
143 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
145 /* if we are the last writer on the inode, drop the block reservation */
146 if ((filp->f_mode & FMODE_WRITE) &&
147 (atomic_read(&inode->i_writecount) == 1) &&
148 !EXT4_I(inode)->i_reserved_data_blocks) {
149 down_write(&EXT4_I(inode)->i_data_sem);
150 ext4_discard_preallocations(inode, 0);
151 up_write(&EXT4_I(inode)->i_data_sem);
153 if (is_dx(inode) && filp->private_data)
154 ext4_htree_free_dir_info(filp->private_data);
160 * This tests whether the IO in question is block-aligned or not.
161 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
162 * are converted to written only after the IO is complete. Until they are
163 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
164 * it needs to zero out portions of the start and/or end block. If 2 AIO
165 * threads are at work on the same unwritten block, they must be synchronized
166 * or one thread will zero the other's data, causing corruption.
169 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
171 struct super_block *sb = inode->i_sb;
172 unsigned long blockmask = sb->s_blocksize - 1;
174 if ((pos | iov_iter_alignment(from)) & blockmask)
181 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
183 if (offset + len > i_size_read(inode) ||
184 offset + len > EXT4_I(inode)->i_disksize)
189 /* Is IO overwriting allocated and initialized blocks? */
190 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
192 struct ext4_map_blocks map;
193 unsigned int blkbits = inode->i_blkbits;
196 if (pos + len > i_size_read(inode))
199 map.m_lblk = pos >> blkbits;
200 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
203 err = ext4_map_blocks(NULL, inode, &map, 0);
205 * 'err==len' means that all of the blocks have been preallocated,
206 * regardless of whether they have been initialized or not. To exclude
207 * unwritten extents, we need to check m_flags.
209 return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
212 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
213 struct iov_iter *from)
215 struct inode *inode = file_inode(iocb->ki_filp);
218 if (unlikely(IS_IMMUTABLE(inode)))
221 ret = generic_write_checks(iocb, from);
226 * If we have encountered a bitmap-format file, the size limit
227 * is smaller than s_maxbytes, which is for extent-mapped files.
229 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
230 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
232 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
234 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
237 return iov_iter_count(from);
240 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
244 count = ext4_generic_write_checks(iocb, from);
248 ret = file_modified(iocb->ki_filp);
254 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
255 struct iov_iter *from)
258 struct inode *inode = file_inode(iocb->ki_filp);
260 if (iocb->ki_flags & IOCB_NOWAIT)
263 ext4_fc_start_update(inode);
265 ret = ext4_write_checks(iocb, from);
269 current->backing_dev_info = inode_to_bdi(inode);
270 ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
271 current->backing_dev_info = NULL;
275 ext4_fc_stop_update(inode);
276 if (likely(ret > 0)) {
278 ret = generic_write_sync(iocb, ret);
284 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
285 ssize_t written, size_t count)
288 bool truncate = false;
289 u8 blkbits = inode->i_blkbits;
290 ext4_lblk_t written_blk, end_blk;
294 * Note that EXT4_I(inode)->i_disksize can get extended up to
295 * inode->i_size while the I/O was running due to writeback of delalloc
296 * blocks. But, the code in ext4_iomap_alloc() is careful to use
297 * zeroed/unwritten extents if this is possible; thus we won't leave
298 * uninitialized blocks in a file even if we didn't succeed in writing
299 * as much as we intended.
301 WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
302 if (offset + count <= EXT4_I(inode)->i_disksize) {
304 * We need to ensure that the inode is removed from the orphan
305 * list if it has been added prematurely, due to writeback of
308 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
309 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
311 if (IS_ERR(handle)) {
312 ext4_orphan_del(NULL, inode);
313 return PTR_ERR(handle);
316 ext4_orphan_del(handle, inode);
317 ext4_journal_stop(handle);
326 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
327 if (IS_ERR(handle)) {
328 written = PTR_ERR(handle);
332 if (ext4_update_inode_size(inode, offset + written)) {
333 ret = ext4_mark_inode_dirty(handle, inode);
336 ext4_journal_stop(handle);
342 * We may need to truncate allocated but not written blocks beyond EOF.
344 written_blk = ALIGN(offset + written, 1 << blkbits);
345 end_blk = ALIGN(offset + count, 1 << blkbits);
346 if (written_blk < end_blk && ext4_can_truncate(inode))
350 * Remove the inode from the orphan list if it has been extended and
351 * everything went OK.
353 if (!truncate && inode->i_nlink)
354 ext4_orphan_del(handle, inode);
355 ext4_journal_stop(handle);
359 ext4_truncate_failed_write(inode);
361 * If the truncate operation failed early, then the inode may
362 * still be on the orphan list. In that case, we need to try
363 * remove the inode from the in-memory linked list.
366 ext4_orphan_del(NULL, inode);
372 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
373 int error, unsigned int flags)
375 loff_t offset = iocb->ki_pos;
376 struct inode *inode = file_inode(iocb->ki_filp);
381 if (size && flags & IOMAP_DIO_UNWRITTEN)
382 return ext4_convert_unwritten_extents(NULL, inode,
388 static const struct iomap_dio_ops ext4_dio_write_ops = {
389 .end_io = ext4_dio_write_end_io,
393 * The intention here is to start with shared lock acquired then see if any
394 * condition requires an exclusive inode lock. If yes, then we restart the
395 * whole operation by releasing the shared lock and acquiring exclusive lock.
397 * - For unaligned_io we never take shared lock as it may cause data corruption
398 * when two unaligned IO tries to modify the same block e.g. while zeroing.
400 * - For extending writes case we don't take the shared lock, since it requires
401 * updating inode i_disksize and/or orphan handling with exclusive lock.
403 * - shared locking will only be true mostly with overwrites. Otherwise we will
404 * switch to exclusive i_rwsem lock.
406 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
407 bool *ilock_shared, bool *extend)
409 struct file *file = iocb->ki_filp;
410 struct inode *inode = file_inode(file);
416 ret = ext4_generic_write_checks(iocb, from);
420 offset = iocb->ki_pos;
422 if (ext4_extending_io(inode, offset, count))
425 * Determine whether the IO operation will overwrite allocated
426 * and initialized blocks.
427 * We need exclusive i_rwsem for changing security info
428 * in file_modified().
430 if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
431 !ext4_overwrite_io(inode, offset, count))) {
432 if (iocb->ki_flags & IOCB_NOWAIT) {
436 inode_unlock_shared(inode);
437 *ilock_shared = false;
442 ret = file_modified(file);
449 inode_unlock_shared(inode);
455 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
459 struct inode *inode = file_inode(iocb->ki_filp);
460 loff_t offset = iocb->ki_pos;
461 size_t count = iov_iter_count(from);
462 const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
463 bool extend = false, unaligned_io = false;
464 bool ilock_shared = true;
467 * We initially start with shared inode lock unless it is
468 * unaligned IO which needs exclusive lock anyways.
470 if (ext4_unaligned_io(inode, from, offset)) {
472 ilock_shared = false;
475 * Quick check here without any i_rwsem lock to see if it is extending
476 * IO. A more reliable check is done in ext4_dio_write_checks() with
477 * proper locking in place.
479 if (offset + count > i_size_read(inode))
480 ilock_shared = false;
482 if (iocb->ki_flags & IOCB_NOWAIT) {
484 if (!inode_trylock_shared(inode))
487 if (!inode_trylock(inode))
492 inode_lock_shared(inode);
497 /* Fallback to buffered I/O if the inode does not support direct I/O. */
498 if (!ext4_dio_supported(inode)) {
500 inode_unlock_shared(inode);
503 return ext4_buffered_write_iter(iocb, from);
506 ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
510 /* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
511 if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
516 offset = iocb->ki_pos;
520 * Unaligned direct IO must be serialized among each other as zeroing
521 * of partial blocks of two competing unaligned IOs can result in data
524 * So we make sure we don't allow any unaligned IO in flight.
525 * For IOs where we need not wait (like unaligned non-AIO DIO),
526 * below inode_dio_wait() may anyway become a no-op, since we start
527 * with exclusive lock.
530 inode_dio_wait(inode);
533 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
534 if (IS_ERR(handle)) {
535 ret = PTR_ERR(handle);
539 ext4_fc_start_update(inode);
540 ret = ext4_orphan_add(handle, inode);
541 ext4_fc_stop_update(inode);
543 ext4_journal_stop(handle);
547 ext4_journal_stop(handle);
551 iomap_ops = &ext4_iomap_overwrite_ops;
552 ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
553 is_sync_kiocb(iocb) || unaligned_io || extend);
558 ret = ext4_handle_inode_extension(inode, offset, ret, count);
562 inode_unlock_shared(inode);
566 if (ret >= 0 && iov_iter_count(from)) {
570 offset = iocb->ki_pos;
571 err = ext4_buffered_write_iter(iocb, from);
576 * We need to ensure that the pages within the page cache for
577 * the range covered by this I/O are written to disk and
578 * invalidated. This is in attempt to preserve the expected
579 * direct I/O semantics in the case we fallback to buffered I/O
580 * to complete off the I/O request.
583 endbyte = offset + err - 1;
584 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
587 invalidate_mapping_pages(iocb->ki_filp->f_mapping,
588 offset >> PAGE_SHIFT,
589 endbyte >> PAGE_SHIFT);
597 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
604 struct inode *inode = file_inode(iocb->ki_filp);
606 if (iocb->ki_flags & IOCB_NOWAIT) {
607 if (!inode_trylock(inode))
613 ret = ext4_write_checks(iocb, from);
617 offset = iocb->ki_pos;
618 count = iov_iter_count(from);
620 if (offset + count > EXT4_I(inode)->i_disksize) {
621 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
622 if (IS_ERR(handle)) {
623 ret = PTR_ERR(handle);
627 ret = ext4_orphan_add(handle, inode);
629 ext4_journal_stop(handle);
634 ext4_journal_stop(handle);
637 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
640 ret = ext4_handle_inode_extension(inode, offset, ret, count);
644 ret = generic_write_sync(iocb, ret);
650 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
652 struct inode *inode = file_inode(iocb->ki_filp);
654 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
659 return ext4_dax_write_iter(iocb, from);
661 if (iocb->ki_flags & IOCB_DIRECT)
662 return ext4_dio_write_iter(iocb, from);
664 return ext4_buffered_write_iter(iocb, from);
668 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
669 enum page_entry_size pe_size)
674 handle_t *handle = NULL;
675 struct inode *inode = file_inode(vmf->vma->vm_file);
676 struct super_block *sb = inode->i_sb;
679 * We have to distinguish real writes from writes which will result in a
680 * COW page; COW writes should *not* poke the journal (the file will not
681 * be changed). Doing so would cause unintended failures when mounted
684 * We check for VM_SHARED rather than vmf->cow_page since the latter is
685 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
686 * other sizes, dax_iomap_fault will handle splitting / fallback so that
687 * we eventually come back with a COW page.
689 bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
690 (vmf->vma->vm_flags & VM_SHARED);
694 sb_start_pagefault(sb);
695 file_update_time(vmf->vma->vm_file);
696 down_read(&EXT4_I(inode)->i_mmap_sem);
698 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
699 EXT4_DATA_TRANS_BLOCKS(sb));
700 if (IS_ERR(handle)) {
701 up_read(&EXT4_I(inode)->i_mmap_sem);
702 sb_end_pagefault(sb);
703 return VM_FAULT_SIGBUS;
706 down_read(&EXT4_I(inode)->i_mmap_sem);
708 result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
710 ext4_journal_stop(handle);
712 if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
713 ext4_should_retry_alloc(sb, &retries))
715 /* Handling synchronous page fault? */
716 if (result & VM_FAULT_NEEDDSYNC)
717 result = dax_finish_sync_fault(vmf, pe_size, pfn);
718 up_read(&EXT4_I(inode)->i_mmap_sem);
719 sb_end_pagefault(sb);
721 up_read(&EXT4_I(inode)->i_mmap_sem);
727 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
729 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
732 static const struct vm_operations_struct ext4_dax_vm_ops = {
733 .fault = ext4_dax_fault,
734 .huge_fault = ext4_dax_huge_fault,
735 .page_mkwrite = ext4_dax_fault,
736 .pfn_mkwrite = ext4_dax_fault,
739 #define ext4_dax_vm_ops ext4_file_vm_ops
742 static const struct vm_operations_struct ext4_file_vm_ops = {
743 .fault = ext4_filemap_fault,
744 .map_pages = filemap_map_pages,
745 .page_mkwrite = ext4_page_mkwrite,
748 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
750 struct inode *inode = file->f_mapping->host;
751 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
752 struct dax_device *dax_dev = sbi->s_daxdev;
754 if (unlikely(ext4_forced_shutdown(sbi)))
758 * We don't support synchronous mappings for non-DAX files and
759 * for DAX files if underneath dax_device is not synchronous.
761 if (!daxdev_mapping_supported(vma, dax_dev))
764 ext4_fc_start_update(inode);
766 if (IS_DAX(file_inode(file))) {
767 vma->vm_ops = &ext4_dax_vm_ops;
768 vma->vm_flags |= VM_HUGEPAGE;
770 vma->vm_ops = &ext4_file_vm_ops;
772 ext4_fc_stop_update(inode);
776 static int ext4_sample_last_mounted(struct super_block *sb,
777 struct vfsmount *mnt)
779 struct ext4_sb_info *sbi = EXT4_SB(sb);
785 if (likely(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED))
788 if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
791 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
793 * Sample where the filesystem has been mounted and
794 * store it in the superblock for sysadmin convenience
795 * when trying to sort through large numbers of block
796 * devices or filesystem images.
798 memset(buf, 0, sizeof(buf));
800 path.dentry = mnt->mnt_root;
801 cp = d_path(&path, buf, sizeof(buf));
806 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
807 err = PTR_ERR(handle);
810 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
811 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
814 strlcpy(sbi->s_es->s_last_mounted, cp,
815 sizeof(sbi->s_es->s_last_mounted));
816 ext4_handle_dirty_super(handle, sb);
818 ext4_journal_stop(handle);
824 static int ext4_file_open(struct inode *inode, struct file *filp)
828 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
831 ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
835 ret = fscrypt_file_open(inode, filp);
839 ret = fsverity_file_open(inode, filp);
844 * Set up the jbd2_inode if we are opening the inode for
845 * writing and the journal is present
847 if (filp->f_mode & FMODE_WRITE) {
848 ret = ext4_inode_attach_jinode(inode);
853 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
854 return dquot_file_open(inode, filp);
858 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
859 * by calling generic_file_llseek_size() with the appropriate maxbytes
862 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
864 struct inode *inode = file->f_mapping->host;
867 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
868 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
870 maxbytes = inode->i_sb->s_maxbytes;
874 return generic_file_llseek_size(file, offset, whence,
875 maxbytes, i_size_read(inode));
877 inode_lock_shared(inode);
878 offset = iomap_seek_hole(inode, offset,
879 &ext4_iomap_report_ops);
880 inode_unlock_shared(inode);
883 inode_lock_shared(inode);
884 offset = iomap_seek_data(inode, offset,
885 &ext4_iomap_report_ops);
886 inode_unlock_shared(inode);
892 return vfs_setpos(file, offset, maxbytes);
895 const struct file_operations ext4_file_operations = {
896 .llseek = ext4_llseek,
897 .read_iter = ext4_file_read_iter,
898 .write_iter = ext4_file_write_iter,
899 .iopoll = iomap_dio_iopoll,
900 .unlocked_ioctl = ext4_ioctl,
902 .compat_ioctl = ext4_compat_ioctl,
904 .mmap = ext4_file_mmap,
905 .mmap_supported_flags = MAP_SYNC,
906 .open = ext4_file_open,
907 .release = ext4_release_file,
908 .fsync = ext4_sync_file,
909 .get_unmapped_area = thp_get_unmapped_area,
910 .splice_read = generic_file_splice_read,
911 .splice_write = iter_file_splice_write,
912 .fallocate = ext4_fallocate,
915 const struct inode_operations ext4_file_inode_operations = {
916 .setattr = ext4_setattr,
917 .getattr = ext4_file_getattr,
918 .listxattr = ext4_listxattr,
919 .get_acl = ext4_get_acl,
920 .set_acl = ext4_set_acl,
921 .fiemap = ext4_fiemap,