2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
32 #define DM_MSG_PREFIX "core"
35 * Cookies are numeric values sent with CHANGE and REMOVE
36 * uevents while resuming, removing or renaming the device.
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
41 static const char *_name = DM_NAME;
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
46 static DEFINE_IDR(_minor_idr);
48 static DEFINE_SPINLOCK(_minor_lock);
50 static void do_deferred_remove(struct work_struct *w);
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
54 static struct workqueue_struct *deferred_remove_workqueue;
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
59 void dm_issue_global_event(void)
61 atomic_inc(&dm_global_event_nr);
62 wake_up(&dm_global_eventq);
66 * One of these is allocated (on-stack) per original bio.
73 unsigned sector_count;
77 * One of these is allocated per clone bio.
79 #define DM_TIO_MAGIC 7282014
84 unsigned target_bio_nr;
91 * One of these is allocated per original bio.
92 * It contains the first clone used for that original.
94 #define DM_IO_MAGIC 5191977
97 struct mapped_device *md;
100 struct bio *orig_bio;
101 unsigned long start_time;
102 spinlock_t endio_lock;
103 struct dm_stats_aux stats_aux;
104 /* last member of dm_target_io is 'struct bio' */
105 struct dm_target_io tio;
108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
110 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 if (!tio->inside_dm_io)
112 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
119 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 if (io->magic == DM_IO_MAGIC)
121 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 BUG_ON(io->magic != DM_TIO_MAGIC);
123 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
129 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
133 #define MINOR_ALLOCED ((void *)-1)
136 * Bits for the md->flags field.
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node = DM_NUMA_NODE;
152 * For mempools pre-allocation at the table loading time.
154 struct dm_md_mempools {
156 struct bio_set io_bs;
159 struct table_device {
160 struct list_head list;
162 struct dm_dev dm_dev;
166 * Bio-based DM's mempools' reserved IOs set by the user.
168 #define RESERVED_BIO_BASED_IOS 16
169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
171 static int __dm_get_module_param_int(int *module_param, int min, int max)
173 int param = READ_ONCE(*module_param);
174 int modified_param = 0;
175 bool modified = true;
178 modified_param = min;
179 else if (param > max)
180 modified_param = max;
185 (void)cmpxchg(module_param, param, modified_param);
186 param = modified_param;
192 unsigned __dm_get_module_param(unsigned *module_param,
193 unsigned def, unsigned max)
195 unsigned param = READ_ONCE(*module_param);
196 unsigned modified_param = 0;
199 modified_param = def;
200 else if (param > max)
201 modified_param = max;
203 if (modified_param) {
204 (void)cmpxchg(module_param, param, modified_param);
205 param = modified_param;
211 unsigned dm_get_reserved_bio_based_ios(void)
213 return __dm_get_module_param(&reserved_bio_based_ios,
214 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
218 static unsigned dm_get_numa_node(void)
220 return __dm_get_module_param_int(&dm_numa_node,
221 DM_NUMA_NODE, num_online_nodes() - 1);
224 static int __init local_init(void)
228 r = dm_uevent_init();
232 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
233 if (!deferred_remove_workqueue) {
235 goto out_uevent_exit;
239 r = register_blkdev(_major, _name);
241 goto out_free_workqueue;
249 destroy_workqueue(deferred_remove_workqueue);
256 static void local_exit(void)
258 flush_scheduled_work();
259 destroy_workqueue(deferred_remove_workqueue);
261 unregister_blkdev(_major, _name);
266 DMINFO("cleaned up");
269 static int (*_inits[])(void) __initdata = {
280 static void (*_exits[])(void) = {
291 static int __init dm_init(void)
293 const int count = ARRAY_SIZE(_inits);
297 for (i = 0; i < count; i++) {
312 static void __exit dm_exit(void)
314 int i = ARRAY_SIZE(_exits);
320 * Should be empty by this point.
322 idr_destroy(&_minor_idr);
326 * Block device functions
328 int dm_deleting_md(struct mapped_device *md)
330 return test_bit(DMF_DELETING, &md->flags);
333 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
335 struct mapped_device *md;
337 spin_lock(&_minor_lock);
339 md = bdev->bd_disk->private_data;
343 if (test_bit(DMF_FREEING, &md->flags) ||
344 dm_deleting_md(md)) {
350 atomic_inc(&md->open_count);
352 spin_unlock(&_minor_lock);
354 return md ? 0 : -ENXIO;
357 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
359 struct mapped_device *md;
361 spin_lock(&_minor_lock);
363 md = disk->private_data;
367 if (atomic_dec_and_test(&md->open_count) &&
368 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
369 queue_work(deferred_remove_workqueue, &deferred_remove_work);
373 spin_unlock(&_minor_lock);
376 int dm_open_count(struct mapped_device *md)
378 return atomic_read(&md->open_count);
382 * Guarantees nothing is using the device before it's deleted.
384 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
388 spin_lock(&_minor_lock);
390 if (dm_open_count(md)) {
393 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
397 set_bit(DMF_DELETING, &md->flags);
399 spin_unlock(&_minor_lock);
404 int dm_cancel_deferred_remove(struct mapped_device *md)
408 spin_lock(&_minor_lock);
410 if (test_bit(DMF_DELETING, &md->flags))
413 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
415 spin_unlock(&_minor_lock);
420 static void do_deferred_remove(struct work_struct *w)
422 dm_deferred_remove();
425 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
427 struct mapped_device *md = bdev->bd_disk->private_data;
429 return dm_get_geometry(md, geo);
432 #ifdef CONFIG_BLK_DEV_ZONED
433 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
435 struct dm_report_zones_args *args = data;
436 sector_t sector_diff = args->tgt->begin - args->start;
439 * Ignore zones beyond the target range.
441 if (zone->start >= args->start + args->tgt->len)
445 * Remap the start sector and write pointer position of the zone
446 * to match its position in the target range.
448 zone->start += sector_diff;
449 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
450 if (zone->cond == BLK_ZONE_COND_FULL)
451 zone->wp = zone->start + zone->len;
452 else if (zone->cond == BLK_ZONE_COND_EMPTY)
453 zone->wp = zone->start;
455 zone->wp += sector_diff;
458 args->next_sector = zone->start + zone->len;
459 return args->orig_cb(zone, args->zone_idx++, args->orig_data);
461 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
463 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
464 unsigned int nr_zones, report_zones_cb cb, void *data)
466 struct mapped_device *md = disk->private_data;
467 struct dm_table *map;
469 struct dm_report_zones_args args = {
470 .next_sector = sector,
475 if (dm_suspended_md(md))
478 map = dm_get_live_table(md, &srcu_idx);
483 struct dm_target *tgt;
485 tgt = dm_table_find_target(map, args.next_sector);
486 if (WARN_ON_ONCE(!tgt->type->report_zones)) {
492 ret = tgt->type->report_zones(tgt, &args,
493 nr_zones - args.zone_idx);
496 } while (args.zone_idx < nr_zones &&
497 args.next_sector < get_capacity(disk));
501 dm_put_live_table(md, srcu_idx);
505 #define dm_blk_report_zones NULL
506 #endif /* CONFIG_BLK_DEV_ZONED */
508 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
509 struct block_device **bdev)
510 __acquires(md->io_barrier)
512 struct dm_target *tgt;
513 struct dm_table *map;
518 map = dm_get_live_table(md, srcu_idx);
519 if (!map || !dm_table_get_size(map))
522 /* We only support devices that have a single target */
523 if (dm_table_get_num_targets(map) != 1)
526 tgt = dm_table_get_target(map, 0);
527 if (!tgt->type->prepare_ioctl)
530 if (dm_suspended_md(md))
533 r = tgt->type->prepare_ioctl(tgt, bdev);
534 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
535 dm_put_live_table(md, *srcu_idx);
543 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
544 __releases(md->io_barrier)
546 dm_put_live_table(md, srcu_idx);
549 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
550 unsigned int cmd, unsigned long arg)
552 struct mapped_device *md = bdev->bd_disk->private_data;
555 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
561 * Target determined this ioctl is being issued against a
562 * subset of the parent bdev; require extra privileges.
564 if (!capable(CAP_SYS_RAWIO)) {
566 "%s: sending ioctl %x to DM device without required privilege.",
573 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
575 dm_unprepare_ioctl(md, srcu_idx);
579 u64 dm_start_time_ns_from_clone(struct bio *bio)
581 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
582 struct dm_io *io = tio->io;
584 return jiffies_to_nsecs(io->start_time);
586 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
588 static void start_io_acct(struct dm_io *io)
590 struct mapped_device *md = io->md;
591 struct bio *bio = io->orig_bio;
593 io->start_time = bio_start_io_acct(bio);
594 if (unlikely(dm_stats_used(&md->stats)))
595 dm_stats_account_io(&md->stats, bio_data_dir(bio),
596 bio->bi_iter.bi_sector, bio_sectors(bio),
597 false, 0, &io->stats_aux);
600 static void end_io_acct(struct dm_io *io)
602 struct mapped_device *md = io->md;
603 struct bio *bio = io->orig_bio;
604 unsigned long duration = jiffies - io->start_time;
606 bio_end_io_acct(bio, io->start_time);
608 if (unlikely(dm_stats_used(&md->stats)))
609 dm_stats_account_io(&md->stats, bio_data_dir(bio),
610 bio->bi_iter.bi_sector, bio_sectors(bio),
611 true, duration, &io->stats_aux);
613 /* nudge anyone waiting on suspend queue */
614 if (unlikely(wq_has_sleeper(&md->wait)))
618 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
621 struct dm_target_io *tio;
624 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
628 tio = container_of(clone, struct dm_target_io, clone);
629 tio->inside_dm_io = true;
632 io = container_of(tio, struct dm_io, tio);
633 io->magic = DM_IO_MAGIC;
635 atomic_set(&io->io_count, 1);
638 spin_lock_init(&io->endio_lock);
645 static void free_io(struct mapped_device *md, struct dm_io *io)
647 bio_put(&io->tio.clone);
650 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
651 unsigned target_bio_nr, gfp_t gfp_mask)
653 struct dm_target_io *tio;
655 if (!ci->io->tio.io) {
656 /* the dm_target_io embedded in ci->io is available */
659 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
663 tio = container_of(clone, struct dm_target_io, clone);
664 tio->inside_dm_io = false;
667 tio->magic = DM_TIO_MAGIC;
670 tio->target_bio_nr = target_bio_nr;
675 static void free_tio(struct dm_target_io *tio)
677 if (tio->inside_dm_io)
679 bio_put(&tio->clone);
683 * Add the bio to the list of deferred io.
685 static void queue_io(struct mapped_device *md, struct bio *bio)
689 spin_lock_irqsave(&md->deferred_lock, flags);
690 bio_list_add(&md->deferred, bio);
691 spin_unlock_irqrestore(&md->deferred_lock, flags);
692 queue_work(md->wq, &md->work);
696 * Everyone (including functions in this file), should use this
697 * function to access the md->map field, and make sure they call
698 * dm_put_live_table() when finished.
700 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
702 *srcu_idx = srcu_read_lock(&md->io_barrier);
704 return srcu_dereference(md->map, &md->io_barrier);
707 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
709 srcu_read_unlock(&md->io_barrier, srcu_idx);
712 void dm_sync_table(struct mapped_device *md)
714 synchronize_srcu(&md->io_barrier);
715 synchronize_rcu_expedited();
719 * A fast alternative to dm_get_live_table/dm_put_live_table.
720 * The caller must not block between these two functions.
722 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
725 return rcu_dereference(md->map);
728 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
733 static char *_dm_claim_ptr = "I belong to device-mapper";
736 * Open a table device so we can use it as a map destination.
738 static int open_table_device(struct table_device *td, dev_t dev,
739 struct mapped_device *md)
741 struct block_device *bdev;
745 BUG_ON(td->dm_dev.bdev);
747 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
749 return PTR_ERR(bdev);
751 r = bd_link_disk_holder(bdev, dm_disk(md));
753 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
757 td->dm_dev.bdev = bdev;
758 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
763 * Close a table device that we've been using.
765 static void close_table_device(struct table_device *td, struct mapped_device *md)
767 if (!td->dm_dev.bdev)
770 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
771 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
772 put_dax(td->dm_dev.dax_dev);
773 td->dm_dev.bdev = NULL;
774 td->dm_dev.dax_dev = NULL;
777 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
780 struct table_device *td;
782 list_for_each_entry(td, l, list)
783 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
790 struct dm_dev **result)
793 struct table_device *td;
795 mutex_lock(&md->table_devices_lock);
796 td = find_table_device(&md->table_devices, dev, mode);
798 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
800 mutex_unlock(&md->table_devices_lock);
804 td->dm_dev.mode = mode;
805 td->dm_dev.bdev = NULL;
807 if ((r = open_table_device(td, dev, md))) {
808 mutex_unlock(&md->table_devices_lock);
813 format_dev_t(td->dm_dev.name, dev);
815 refcount_set(&td->count, 1);
816 list_add(&td->list, &md->table_devices);
818 refcount_inc(&td->count);
820 mutex_unlock(&md->table_devices_lock);
822 *result = &td->dm_dev;
825 EXPORT_SYMBOL_GPL(dm_get_table_device);
827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
829 struct table_device *td = container_of(d, struct table_device, dm_dev);
831 mutex_lock(&md->table_devices_lock);
832 if (refcount_dec_and_test(&td->count)) {
833 close_table_device(td, md);
837 mutex_unlock(&md->table_devices_lock);
839 EXPORT_SYMBOL(dm_put_table_device);
841 static void free_table_devices(struct list_head *devices)
843 struct list_head *tmp, *next;
845 list_for_each_safe(tmp, next, devices) {
846 struct table_device *td = list_entry(tmp, struct table_device, list);
848 DMWARN("dm_destroy: %s still exists with %d references",
849 td->dm_dev.name, refcount_read(&td->count));
855 * Get the geometry associated with a dm device
857 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
865 * Set the geometry of a device.
867 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
869 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
871 if (geo->start > sz) {
872 DMWARN("Start sector is beyond the geometry limits.");
881 static int __noflush_suspending(struct mapped_device *md)
883 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
887 * Decrements the number of outstanding ios that a bio has been
888 * cloned into, completing the original io if necc.
890 static void dec_pending(struct dm_io *io, blk_status_t error)
893 blk_status_t io_error;
895 struct mapped_device *md = io->md;
897 /* Push-back supersedes any I/O errors */
898 if (unlikely(error)) {
899 spin_lock_irqsave(&io->endio_lock, flags);
900 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
902 spin_unlock_irqrestore(&io->endio_lock, flags);
905 if (atomic_dec_and_test(&io->io_count)) {
906 if (io->status == BLK_STS_DM_REQUEUE) {
908 * Target requested pushing back the I/O.
910 spin_lock_irqsave(&md->deferred_lock, flags);
911 if (__noflush_suspending(md))
912 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
913 bio_list_add_head(&md->deferred, io->orig_bio);
915 /* noflush suspend was interrupted. */
916 io->status = BLK_STS_IOERR;
917 spin_unlock_irqrestore(&md->deferred_lock, flags);
920 io_error = io->status;
925 if (io_error == BLK_STS_DM_REQUEUE)
928 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
930 * Preflush done for flush with data, reissue
931 * without REQ_PREFLUSH.
933 bio->bi_opf &= ~REQ_PREFLUSH;
936 /* done with normal IO or empty flush */
938 bio->bi_status = io_error;
944 void disable_discard(struct mapped_device *md)
946 struct queue_limits *limits = dm_get_queue_limits(md);
948 /* device doesn't really support DISCARD, disable it */
949 limits->max_discard_sectors = 0;
950 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
953 void disable_write_same(struct mapped_device *md)
955 struct queue_limits *limits = dm_get_queue_limits(md);
957 /* device doesn't really support WRITE SAME, disable it */
958 limits->max_write_same_sectors = 0;
961 void disable_write_zeroes(struct mapped_device *md)
963 struct queue_limits *limits = dm_get_queue_limits(md);
965 /* device doesn't really support WRITE ZEROES, disable it */
966 limits->max_write_zeroes_sectors = 0;
969 static void clone_endio(struct bio *bio)
971 blk_status_t error = bio->bi_status;
972 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
973 struct dm_io *io = tio->io;
974 struct mapped_device *md = tio->io->md;
975 dm_endio_fn endio = tio->ti->type->end_io;
976 struct bio *orig_bio = io->orig_bio;
978 if (unlikely(error == BLK_STS_TARGET)) {
979 if (bio_op(bio) == REQ_OP_DISCARD &&
980 !bio->bi_disk->queue->limits.max_discard_sectors)
982 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
983 !bio->bi_disk->queue->limits.max_write_same_sectors)
984 disable_write_same(md);
985 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
986 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
987 disable_write_zeroes(md);
991 * For zone-append bios get offset in zone of the written
992 * sector and add that to the original bio sector pos.
994 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
995 sector_t written_sector = bio->bi_iter.bi_sector;
996 struct request_queue *q = orig_bio->bi_disk->queue;
997 u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
999 orig_bio->bi_iter.bi_sector += written_sector & mask;
1003 int r = endio(tio->ti, bio, &error);
1005 case DM_ENDIO_REQUEUE:
1006 error = BLK_STS_DM_REQUEUE;
1010 case DM_ENDIO_INCOMPLETE:
1011 /* The target will handle the io */
1014 DMWARN("unimplemented target endio return value: %d", r);
1020 dec_pending(io, error);
1024 * Return maximum size of I/O possible at the supplied sector up to the current
1027 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1028 sector_t target_offset)
1030 return ti->len - target_offset;
1033 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1035 sector_t target_offset = dm_target_offset(ti, sector);
1036 sector_t len = max_io_len_target_boundary(ti, target_offset);
1040 * Does the target need to split even further?
1041 * - q->limits.chunk_sectors reflects ti->max_io_len so
1042 * blk_max_size_offset() provides required splitting.
1043 * - blk_max_size_offset() also respects q->limits.max_sectors
1045 max_len = blk_max_size_offset(ti->table->md->queue,
1053 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1055 if (len > UINT_MAX) {
1056 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1057 (unsigned long long)len, UINT_MAX);
1058 ti->error = "Maximum size of target IO is too large";
1062 ti->max_io_len = (uint32_t) len;
1066 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1068 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1069 sector_t sector, int *srcu_idx)
1070 __acquires(md->io_barrier)
1072 struct dm_table *map;
1073 struct dm_target *ti;
1075 map = dm_get_live_table(md, srcu_idx);
1079 ti = dm_table_find_target(map, sector);
1086 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1087 long nr_pages, void **kaddr, pfn_t *pfn)
1089 struct mapped_device *md = dax_get_private(dax_dev);
1090 sector_t sector = pgoff * PAGE_SECTORS;
1091 struct dm_target *ti;
1092 long len, ret = -EIO;
1095 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1099 if (!ti->type->direct_access)
1101 len = max_io_len(ti, sector) / PAGE_SECTORS;
1104 nr_pages = min(len, nr_pages);
1105 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1108 dm_put_live_table(md, srcu_idx);
1113 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1114 int blocksize, sector_t start, sector_t len)
1116 struct mapped_device *md = dax_get_private(dax_dev);
1117 struct dm_table *map;
1121 map = dm_get_live_table(md, &srcu_idx);
1125 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1128 dm_put_live_table(md, srcu_idx);
1133 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1134 void *addr, size_t bytes, struct iov_iter *i)
1136 struct mapped_device *md = dax_get_private(dax_dev);
1137 sector_t sector = pgoff * PAGE_SECTORS;
1138 struct dm_target *ti;
1142 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1146 if (!ti->type->dax_copy_from_iter) {
1147 ret = copy_from_iter(addr, bytes, i);
1150 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1152 dm_put_live_table(md, srcu_idx);
1157 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1158 void *addr, size_t bytes, struct iov_iter *i)
1160 struct mapped_device *md = dax_get_private(dax_dev);
1161 sector_t sector = pgoff * PAGE_SECTORS;
1162 struct dm_target *ti;
1166 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1170 if (!ti->type->dax_copy_to_iter) {
1171 ret = copy_to_iter(addr, bytes, i);
1174 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1176 dm_put_live_table(md, srcu_idx);
1181 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1184 struct mapped_device *md = dax_get_private(dax_dev);
1185 sector_t sector = pgoff * PAGE_SECTORS;
1186 struct dm_target *ti;
1190 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1194 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1196 * ->zero_page_range() is mandatory dax operation. If we are
1197 * here, something is wrong.
1199 dm_put_live_table(md, srcu_idx);
1202 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1205 dm_put_live_table(md, srcu_idx);
1211 * A target may call dm_accept_partial_bio only from the map routine. It is
1212 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1213 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1215 * dm_accept_partial_bio informs the dm that the target only wants to process
1216 * additional n_sectors sectors of the bio and the rest of the data should be
1217 * sent in a next bio.
1219 * A diagram that explains the arithmetics:
1220 * +--------------------+---------------+-------+
1222 * +--------------------+---------------+-------+
1224 * <-------------- *tio->len_ptr --------------->
1225 * <------- bi_size ------->
1228 * Region 1 was already iterated over with bio_advance or similar function.
1229 * (it may be empty if the target doesn't use bio_advance)
1230 * Region 2 is the remaining bio size that the target wants to process.
1231 * (it may be empty if region 1 is non-empty, although there is no reason
1233 * The target requires that region 3 is to be sent in the next bio.
1235 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1236 * the partially processed part (the sum of regions 1+2) must be the same for all
1237 * copies of the bio.
1239 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1241 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1242 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1243 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1244 BUG_ON(bi_size > *tio->len_ptr);
1245 BUG_ON(n_sectors > bi_size);
1246 *tio->len_ptr -= bi_size - n_sectors;
1247 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1249 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1251 static blk_qc_t __map_bio(struct dm_target_io *tio)
1255 struct bio *clone = &tio->clone;
1256 struct dm_io *io = tio->io;
1257 struct dm_target *ti = tio->ti;
1258 blk_qc_t ret = BLK_QC_T_NONE;
1260 clone->bi_end_io = clone_endio;
1263 * Map the clone. If r == 0 we don't need to do
1264 * anything, the target has assumed ownership of
1267 atomic_inc(&io->io_count);
1268 sector = clone->bi_iter.bi_sector;
1270 r = ti->type->map(ti, clone);
1272 case DM_MAPIO_SUBMITTED:
1274 case DM_MAPIO_REMAPPED:
1275 /* the bio has been remapped so dispatch it */
1276 trace_block_bio_remap(clone->bi_disk->queue, clone,
1277 bio_dev(io->orig_bio), sector);
1278 ret = submit_bio_noacct(clone);
1282 dec_pending(io, BLK_STS_IOERR);
1284 case DM_MAPIO_REQUEUE:
1286 dec_pending(io, BLK_STS_DM_REQUEUE);
1289 DMWARN("unimplemented target map return value: %d", r);
1296 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1298 bio->bi_iter.bi_sector = sector;
1299 bio->bi_iter.bi_size = to_bytes(len);
1303 * Creates a bio that consists of range of complete bvecs.
1305 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1306 sector_t sector, unsigned len)
1308 struct bio *clone = &tio->clone;
1311 __bio_clone_fast(clone, bio);
1313 r = bio_crypt_clone(clone, bio, GFP_NOIO);
1317 if (bio_integrity(bio)) {
1318 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1319 !dm_target_passes_integrity(tio->ti->type))) {
1320 DMWARN("%s: the target %s doesn't support integrity data.",
1321 dm_device_name(tio->io->md),
1322 tio->ti->type->name);
1326 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1331 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1332 clone->bi_iter.bi_size = to_bytes(len);
1334 if (bio_integrity(bio))
1335 bio_integrity_trim(clone);
1340 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1341 struct dm_target *ti, unsigned num_bios)
1343 struct dm_target_io *tio;
1349 if (num_bios == 1) {
1350 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1351 bio_list_add(blist, &tio->clone);
1355 for (try = 0; try < 2; try++) {
1360 mutex_lock(&ci->io->md->table_devices_lock);
1361 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1362 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1366 bio_list_add(blist, &tio->clone);
1369 mutex_unlock(&ci->io->md->table_devices_lock);
1370 if (bio_nr == num_bios)
1373 while ((bio = bio_list_pop(blist))) {
1374 tio = container_of(bio, struct dm_target_io, clone);
1380 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1381 struct dm_target_io *tio, unsigned *len)
1383 struct bio *clone = &tio->clone;
1387 __bio_clone_fast(clone, ci->bio);
1389 bio_setup_sector(clone, ci->sector, *len);
1391 return __map_bio(tio);
1394 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1395 unsigned num_bios, unsigned *len)
1397 struct bio_list blist = BIO_EMPTY_LIST;
1399 struct dm_target_io *tio;
1401 alloc_multiple_bios(&blist, ci, ti, num_bios);
1403 while ((bio = bio_list_pop(&blist))) {
1404 tio = container_of(bio, struct dm_target_io, clone);
1405 (void) __clone_and_map_simple_bio(ci, tio, len);
1409 static int __send_empty_flush(struct clone_info *ci)
1411 unsigned target_nr = 0;
1412 struct dm_target *ti;
1413 struct bio flush_bio;
1416 * Use an on-stack bio for this, it's safe since we don't
1417 * need to reference it after submit. It's just used as
1418 * the basis for the clone(s).
1420 bio_init(&flush_bio, NULL, 0);
1421 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1422 ci->bio = &flush_bio;
1423 ci->sector_count = 0;
1426 * Empty flush uses a statically initialized bio, as the base for
1427 * cloning. However, blkg association requires that a bdev is
1428 * associated with a gendisk, which doesn't happen until the bdev is
1429 * opened. So, blkg association is done at issue time of the flush
1430 * rather than when the device is created in alloc_dev().
1432 bio_set_dev(ci->bio, ci->io->md->bdev);
1434 BUG_ON(bio_has_data(ci->bio));
1435 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1436 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1438 bio_uninit(ci->bio);
1442 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1443 sector_t sector, unsigned *len)
1445 struct bio *bio = ci->bio;
1446 struct dm_target_io *tio;
1449 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1451 r = clone_bio(tio, bio, sector, *len);
1456 (void) __map_bio(tio);
1461 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1467 * Even though the device advertised support for this type of
1468 * request, that does not mean every target supports it, and
1469 * reconfiguration might also have changed that since the
1470 * check was performed.
1475 len = min_t(sector_t, ci->sector_count,
1476 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1478 __send_duplicate_bios(ci, ti, num_bios, &len);
1481 ci->sector_count -= len;
1486 static bool is_abnormal_io(struct bio *bio)
1490 switch (bio_op(bio)) {
1491 case REQ_OP_DISCARD:
1492 case REQ_OP_SECURE_ERASE:
1493 case REQ_OP_WRITE_SAME:
1494 case REQ_OP_WRITE_ZEROES:
1502 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1505 struct bio *bio = ci->bio;
1506 unsigned num_bios = 0;
1508 switch (bio_op(bio)) {
1509 case REQ_OP_DISCARD:
1510 num_bios = ti->num_discard_bios;
1512 case REQ_OP_SECURE_ERASE:
1513 num_bios = ti->num_secure_erase_bios;
1515 case REQ_OP_WRITE_SAME:
1516 num_bios = ti->num_write_same_bios;
1518 case REQ_OP_WRITE_ZEROES:
1519 num_bios = ti->num_write_zeroes_bios;
1525 *result = __send_changing_extent_only(ci, ti, num_bios);
1530 * Select the correct strategy for processing a non-flush bio.
1532 static int __split_and_process_non_flush(struct clone_info *ci)
1534 struct dm_target *ti;
1538 ti = dm_table_find_target(ci->map, ci->sector);
1542 if (__process_abnormal_io(ci, ti, &r))
1545 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1547 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1552 ci->sector_count -= len;
1557 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1558 struct dm_table *map, struct bio *bio)
1561 ci->io = alloc_io(md, bio);
1562 ci->sector = bio->bi_iter.bi_sector;
1565 #define __dm_part_stat_sub(part, field, subnd) \
1566 (part_stat_get(part, field) -= (subnd))
1569 * Entry point to split a bio into clones and submit them to the targets.
1571 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1572 struct dm_table *map, struct bio *bio)
1574 struct clone_info ci;
1575 blk_qc_t ret = BLK_QC_T_NONE;
1578 init_clone_info(&ci, md, map, bio);
1580 if (bio->bi_opf & REQ_PREFLUSH) {
1581 error = __send_empty_flush(&ci);
1582 /* dec_pending submits any data associated with flush */
1583 } else if (op_is_zone_mgmt(bio_op(bio))) {
1585 ci.sector_count = 0;
1586 error = __split_and_process_non_flush(&ci);
1589 ci.sector_count = bio_sectors(bio);
1590 while (ci.sector_count && !error) {
1591 error = __split_and_process_non_flush(&ci);
1592 if (current->bio_list && ci.sector_count && !error) {
1594 * Remainder must be passed to submit_bio_noacct()
1595 * so that it gets handled *after* bios already submitted
1596 * have been completely processed.
1597 * We take a clone of the original to store in
1598 * ci.io->orig_bio to be used by end_io_acct() and
1599 * for dec_pending to use for completion handling.
1601 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1602 GFP_NOIO, &md->queue->bio_split);
1603 ci.io->orig_bio = b;
1606 * Adjust IO stats for each split, otherwise upon queue
1607 * reentry there will be redundant IO accounting.
1608 * NOTE: this is a stop-gap fix, a proper fix involves
1609 * significant refactoring of DM core's bio splitting
1610 * (by eliminating DM's splitting and just using bio_split)
1613 __dm_part_stat_sub(&dm_disk(md)->part0,
1614 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1618 trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1619 ret = submit_bio_noacct(bio);
1625 /* drop the extra reference count */
1626 dec_pending(ci.io, errno_to_blk_status(error));
1630 static blk_qc_t dm_submit_bio(struct bio *bio)
1632 struct mapped_device *md = bio->bi_disk->private_data;
1633 blk_qc_t ret = BLK_QC_T_NONE;
1635 struct dm_table *map;
1637 map = dm_get_live_table(md, &srcu_idx);
1638 if (unlikely(!map)) {
1639 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1640 dm_device_name(md));
1645 /* If suspended, queue this IO for later */
1646 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1647 if (bio->bi_opf & REQ_NOWAIT)
1648 bio_wouldblock_error(bio);
1649 else if (bio->bi_opf & REQ_RAHEAD)
1657 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1658 * otherwise associated queue_limits won't be imposed.
1660 if (is_abnormal_io(bio))
1661 blk_queue_split(&bio);
1663 ret = __split_and_process_bio(md, map, bio);
1665 dm_put_live_table(md, srcu_idx);
1669 /*-----------------------------------------------------------------
1670 * An IDR is used to keep track of allocated minor numbers.
1671 *---------------------------------------------------------------*/
1672 static void free_minor(int minor)
1674 spin_lock(&_minor_lock);
1675 idr_remove(&_minor_idr, minor);
1676 spin_unlock(&_minor_lock);
1680 * See if the device with a specific minor # is free.
1682 static int specific_minor(int minor)
1686 if (minor >= (1 << MINORBITS))
1689 idr_preload(GFP_KERNEL);
1690 spin_lock(&_minor_lock);
1692 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1694 spin_unlock(&_minor_lock);
1697 return r == -ENOSPC ? -EBUSY : r;
1701 static int next_free_minor(int *minor)
1705 idr_preload(GFP_KERNEL);
1706 spin_lock(&_minor_lock);
1708 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1710 spin_unlock(&_minor_lock);
1718 static const struct block_device_operations dm_blk_dops;
1719 static const struct block_device_operations dm_rq_blk_dops;
1720 static const struct dax_operations dm_dax_ops;
1722 static void dm_wq_work(struct work_struct *work);
1724 static void cleanup_mapped_device(struct mapped_device *md)
1727 destroy_workqueue(md->wq);
1728 bioset_exit(&md->bs);
1729 bioset_exit(&md->io_bs);
1732 kill_dax(md->dax_dev);
1733 put_dax(md->dax_dev);
1738 spin_lock(&_minor_lock);
1739 md->disk->private_data = NULL;
1740 spin_unlock(&_minor_lock);
1741 del_gendisk(md->disk);
1746 blk_cleanup_queue(md->queue);
1748 cleanup_srcu_struct(&md->io_barrier);
1755 mutex_destroy(&md->suspend_lock);
1756 mutex_destroy(&md->type_lock);
1757 mutex_destroy(&md->table_devices_lock);
1759 dm_mq_cleanup_mapped_device(md);
1763 * Allocate and initialise a blank device with a given minor.
1765 static struct mapped_device *alloc_dev(int minor)
1767 int r, numa_node_id = dm_get_numa_node();
1768 struct mapped_device *md;
1771 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1773 DMWARN("unable to allocate device, out of memory.");
1777 if (!try_module_get(THIS_MODULE))
1778 goto bad_module_get;
1780 /* get a minor number for the dev */
1781 if (minor == DM_ANY_MINOR)
1782 r = next_free_minor(&minor);
1784 r = specific_minor(minor);
1788 r = init_srcu_struct(&md->io_barrier);
1790 goto bad_io_barrier;
1792 md->numa_node_id = numa_node_id;
1793 md->init_tio_pdu = false;
1794 md->type = DM_TYPE_NONE;
1795 mutex_init(&md->suspend_lock);
1796 mutex_init(&md->type_lock);
1797 mutex_init(&md->table_devices_lock);
1798 spin_lock_init(&md->deferred_lock);
1799 atomic_set(&md->holders, 1);
1800 atomic_set(&md->open_count, 0);
1801 atomic_set(&md->event_nr, 0);
1802 atomic_set(&md->uevent_seq, 0);
1803 INIT_LIST_HEAD(&md->uevent_list);
1804 INIT_LIST_HEAD(&md->table_devices);
1805 spin_lock_init(&md->uevent_lock);
1808 * default to bio-based until DM table is loaded and md->type
1809 * established. If request-based table is loaded: blk-mq will
1810 * override accordingly.
1812 md->queue = blk_alloc_queue(numa_node_id);
1816 md->disk = alloc_disk_node(1, md->numa_node_id);
1820 init_waitqueue_head(&md->wait);
1821 INIT_WORK(&md->work, dm_wq_work);
1822 init_waitqueue_head(&md->eventq);
1823 init_completion(&md->kobj_holder.completion);
1825 md->disk->major = _major;
1826 md->disk->first_minor = minor;
1827 md->disk->fops = &dm_blk_dops;
1828 md->disk->queue = md->queue;
1829 md->disk->private_data = md;
1830 sprintf(md->disk->disk_name, "dm-%d", minor);
1832 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1833 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1835 if (IS_ERR(md->dax_dev))
1839 add_disk_no_queue_reg(md->disk);
1840 format_dev_t(md->name, MKDEV(_major, minor));
1842 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1846 md->bdev = bdget_disk(md->disk, 0);
1850 dm_stats_init(&md->stats);
1852 /* Populate the mapping, nobody knows we exist yet */
1853 spin_lock(&_minor_lock);
1854 old_md = idr_replace(&_minor_idr, md, minor);
1855 spin_unlock(&_minor_lock);
1857 BUG_ON(old_md != MINOR_ALLOCED);
1862 cleanup_mapped_device(md);
1866 module_put(THIS_MODULE);
1872 static void unlock_fs(struct mapped_device *md);
1874 static void free_dev(struct mapped_device *md)
1876 int minor = MINOR(disk_devt(md->disk));
1880 cleanup_mapped_device(md);
1882 free_table_devices(&md->table_devices);
1883 dm_stats_cleanup(&md->stats);
1886 module_put(THIS_MODULE);
1890 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1892 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1895 if (dm_table_bio_based(t)) {
1897 * The md may already have mempools that need changing.
1898 * If so, reload bioset because front_pad may have changed
1899 * because a different table was loaded.
1901 bioset_exit(&md->bs);
1902 bioset_exit(&md->io_bs);
1904 } else if (bioset_initialized(&md->bs)) {
1906 * There's no need to reload with request-based dm
1907 * because the size of front_pad doesn't change.
1908 * Note for future: If you are to reload bioset,
1909 * prep-ed requests in the queue may refer
1910 * to bio from the old bioset, so you must walk
1911 * through the queue to unprep.
1917 bioset_initialized(&md->bs) ||
1918 bioset_initialized(&md->io_bs));
1920 ret = bioset_init_from_src(&md->bs, &p->bs);
1923 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1925 bioset_exit(&md->bs);
1927 /* mempool bind completed, no longer need any mempools in the table */
1928 dm_table_free_md_mempools(t);
1933 * Bind a table to the device.
1935 static void event_callback(void *context)
1937 unsigned long flags;
1939 struct mapped_device *md = (struct mapped_device *) context;
1941 spin_lock_irqsave(&md->uevent_lock, flags);
1942 list_splice_init(&md->uevent_list, &uevents);
1943 spin_unlock_irqrestore(&md->uevent_lock, flags);
1945 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1947 atomic_inc(&md->event_nr);
1948 wake_up(&md->eventq);
1949 dm_issue_global_event();
1953 * Returns old map, which caller must destroy.
1955 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1956 struct queue_limits *limits)
1958 struct dm_table *old_map;
1959 struct request_queue *q = md->queue;
1960 bool request_based = dm_table_request_based(t);
1964 lockdep_assert_held(&md->suspend_lock);
1966 size = dm_table_get_size(t);
1969 * Wipe any geometry if the size of the table changed.
1971 if (size != dm_get_size(md))
1972 memset(&md->geometry, 0, sizeof(md->geometry));
1974 set_capacity(md->disk, size);
1975 bd_set_nr_sectors(md->bdev, size);
1977 dm_table_event_callback(t, event_callback, md);
1980 * The queue hasn't been stopped yet, if the old table type wasn't
1981 * for request-based during suspension. So stop it to prevent
1982 * I/O mapping before resume.
1983 * This must be done before setting the queue restrictions,
1984 * because request-based dm may be run just after the setting.
1989 if (request_based) {
1991 * Leverage the fact that request-based DM targets are
1992 * immutable singletons - used to optimize dm_mq_queue_rq.
1994 md->immutable_target = dm_table_get_immutable_target(t);
1997 ret = __bind_mempools(md, t);
1999 old_map = ERR_PTR(ret);
2003 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2004 rcu_assign_pointer(md->map, (void *)t);
2005 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2007 dm_table_set_restrictions(t, q, limits);
2016 * Returns unbound table for the caller to free.
2018 static struct dm_table *__unbind(struct mapped_device *md)
2020 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2025 dm_table_event_callback(map, NULL, NULL);
2026 RCU_INIT_POINTER(md->map, NULL);
2033 * Constructor for a new device.
2035 int dm_create(int minor, struct mapped_device **result)
2038 struct mapped_device *md;
2040 md = alloc_dev(minor);
2044 r = dm_sysfs_init(md);
2055 * Functions to manage md->type.
2056 * All are required to hold md->type_lock.
2058 void dm_lock_md_type(struct mapped_device *md)
2060 mutex_lock(&md->type_lock);
2063 void dm_unlock_md_type(struct mapped_device *md)
2065 mutex_unlock(&md->type_lock);
2068 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2070 BUG_ON(!mutex_is_locked(&md->type_lock));
2074 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2079 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2081 return md->immutable_target_type;
2085 * The queue_limits are only valid as long as you have a reference
2088 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2090 BUG_ON(!atomic_read(&md->holders));
2091 return &md->queue->limits;
2093 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2096 * Setup the DM device's queue based on md's type
2098 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2101 struct queue_limits limits;
2102 enum dm_queue_mode type = dm_get_md_type(md);
2105 case DM_TYPE_REQUEST_BASED:
2106 md->disk->fops = &dm_rq_blk_dops;
2107 r = dm_mq_init_request_queue(md, t);
2109 DMERR("Cannot initialize queue for request-based dm mapped device");
2113 case DM_TYPE_BIO_BASED:
2114 case DM_TYPE_DAX_BIO_BASED:
2121 r = dm_calculate_queue_limits(t, &limits);
2123 DMERR("Cannot calculate initial queue limits");
2126 dm_table_set_restrictions(t, md->queue, &limits);
2127 blk_register_queue(md->disk);
2132 struct mapped_device *dm_get_md(dev_t dev)
2134 struct mapped_device *md;
2135 unsigned minor = MINOR(dev);
2137 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2140 spin_lock(&_minor_lock);
2142 md = idr_find(&_minor_idr, minor);
2143 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2144 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2150 spin_unlock(&_minor_lock);
2154 EXPORT_SYMBOL_GPL(dm_get_md);
2156 void *dm_get_mdptr(struct mapped_device *md)
2158 return md->interface_ptr;
2161 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2163 md->interface_ptr = ptr;
2166 void dm_get(struct mapped_device *md)
2168 atomic_inc(&md->holders);
2169 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2172 int dm_hold(struct mapped_device *md)
2174 spin_lock(&_minor_lock);
2175 if (test_bit(DMF_FREEING, &md->flags)) {
2176 spin_unlock(&_minor_lock);
2180 spin_unlock(&_minor_lock);
2183 EXPORT_SYMBOL_GPL(dm_hold);
2185 const char *dm_device_name(struct mapped_device *md)
2189 EXPORT_SYMBOL_GPL(dm_device_name);
2191 static void __dm_destroy(struct mapped_device *md, bool wait)
2193 struct dm_table *map;
2198 spin_lock(&_minor_lock);
2199 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2200 set_bit(DMF_FREEING, &md->flags);
2201 spin_unlock(&_minor_lock);
2203 blk_set_queue_dying(md->queue);
2206 * Take suspend_lock so that presuspend and postsuspend methods
2207 * do not race with internal suspend.
2209 mutex_lock(&md->suspend_lock);
2210 map = dm_get_live_table(md, &srcu_idx);
2211 if (!dm_suspended_md(md)) {
2212 dm_table_presuspend_targets(map);
2213 set_bit(DMF_SUSPENDED, &md->flags);
2214 set_bit(DMF_POST_SUSPENDING, &md->flags);
2215 dm_table_postsuspend_targets(map);
2217 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2218 dm_put_live_table(md, srcu_idx);
2219 mutex_unlock(&md->suspend_lock);
2222 * Rare, but there may be I/O requests still going to complete,
2223 * for example. Wait for all references to disappear.
2224 * No one should increment the reference count of the mapped_device,
2225 * after the mapped_device state becomes DMF_FREEING.
2228 while (atomic_read(&md->holders))
2230 else if (atomic_read(&md->holders))
2231 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2232 dm_device_name(md), atomic_read(&md->holders));
2235 dm_table_destroy(__unbind(md));
2239 void dm_destroy(struct mapped_device *md)
2241 __dm_destroy(md, true);
2244 void dm_destroy_immediate(struct mapped_device *md)
2246 __dm_destroy(md, false);
2249 void dm_put(struct mapped_device *md)
2251 atomic_dec(&md->holders);
2253 EXPORT_SYMBOL_GPL(dm_put);
2255 static bool md_in_flight_bios(struct mapped_device *md)
2258 struct hd_struct *part = &dm_disk(md)->part0;
2261 for_each_possible_cpu(cpu) {
2262 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2263 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2269 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2275 prepare_to_wait(&md->wait, &wait, task_state);
2277 if (!md_in_flight_bios(md))
2280 if (signal_pending_state(task_state, current)) {
2287 finish_wait(&md->wait, &wait);
2292 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2296 if (!queue_is_mq(md->queue))
2297 return dm_wait_for_bios_completion(md, task_state);
2300 if (!blk_mq_queue_inflight(md->queue))
2303 if (signal_pending_state(task_state, current)) {
2315 * Process the deferred bios
2317 static void dm_wq_work(struct work_struct *work)
2319 struct mapped_device *md = container_of(work, struct mapped_device, work);
2322 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2323 spin_lock_irq(&md->deferred_lock);
2324 bio = bio_list_pop(&md->deferred);
2325 spin_unlock_irq(&md->deferred_lock);
2330 submit_bio_noacct(bio);
2334 static void dm_queue_flush(struct mapped_device *md)
2336 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2337 smp_mb__after_atomic();
2338 queue_work(md->wq, &md->work);
2342 * Swap in a new table, returning the old one for the caller to destroy.
2344 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2346 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2347 struct queue_limits limits;
2350 mutex_lock(&md->suspend_lock);
2352 /* device must be suspended */
2353 if (!dm_suspended_md(md))
2357 * If the new table has no data devices, retain the existing limits.
2358 * This helps multipath with queue_if_no_path if all paths disappear,
2359 * then new I/O is queued based on these limits, and then some paths
2362 if (dm_table_has_no_data_devices(table)) {
2363 live_map = dm_get_live_table_fast(md);
2365 limits = md->queue->limits;
2366 dm_put_live_table_fast(md);
2370 r = dm_calculate_queue_limits(table, &limits);
2377 map = __bind(md, table, &limits);
2378 dm_issue_global_event();
2381 mutex_unlock(&md->suspend_lock);
2386 * Functions to lock and unlock any filesystem running on the
2389 static int lock_fs(struct mapped_device *md)
2393 WARN_ON(md->frozen_sb);
2395 md->frozen_sb = freeze_bdev(md->bdev);
2396 if (IS_ERR(md->frozen_sb)) {
2397 r = PTR_ERR(md->frozen_sb);
2398 md->frozen_sb = NULL;
2402 set_bit(DMF_FROZEN, &md->flags);
2407 static void unlock_fs(struct mapped_device *md)
2409 if (!test_bit(DMF_FROZEN, &md->flags))
2412 thaw_bdev(md->bdev, md->frozen_sb);
2413 md->frozen_sb = NULL;
2414 clear_bit(DMF_FROZEN, &md->flags);
2418 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2419 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2420 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2422 * If __dm_suspend returns 0, the device is completely quiescent
2423 * now. There is no request-processing activity. All new requests
2424 * are being added to md->deferred list.
2426 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2427 unsigned suspend_flags, long task_state,
2428 int dmf_suspended_flag)
2430 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2431 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2434 lockdep_assert_held(&md->suspend_lock);
2437 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2438 * This flag is cleared before dm_suspend returns.
2441 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2443 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2446 * This gets reverted if there's an error later and the targets
2447 * provide the .presuspend_undo hook.
2449 dm_table_presuspend_targets(map);
2452 * Flush I/O to the device.
2453 * Any I/O submitted after lock_fs() may not be flushed.
2454 * noflush takes precedence over do_lockfs.
2455 * (lock_fs() flushes I/Os and waits for them to complete.)
2457 if (!noflush && do_lockfs) {
2460 dm_table_presuspend_undo_targets(map);
2466 * Here we must make sure that no processes are submitting requests
2467 * to target drivers i.e. no one may be executing
2468 * __split_and_process_bio from dm_submit_bio.
2470 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2471 * we take the write lock. To prevent any process from reentering
2472 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2473 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2474 * flush_workqueue(md->wq).
2476 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2478 synchronize_srcu(&md->io_barrier);
2481 * Stop md->queue before flushing md->wq in case request-based
2482 * dm defers requests to md->wq from md->queue.
2484 if (dm_request_based(md))
2485 dm_stop_queue(md->queue);
2487 flush_workqueue(md->wq);
2490 * At this point no more requests are entering target request routines.
2491 * We call dm_wait_for_completion to wait for all existing requests
2494 r = dm_wait_for_completion(md, task_state);
2496 set_bit(dmf_suspended_flag, &md->flags);
2499 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2501 synchronize_srcu(&md->io_barrier);
2503 /* were we interrupted ? */
2507 if (dm_request_based(md))
2508 dm_start_queue(md->queue);
2511 dm_table_presuspend_undo_targets(map);
2512 /* pushback list is already flushed, so skip flush */
2519 * We need to be able to change a mapping table under a mounted
2520 * filesystem. For example we might want to move some data in
2521 * the background. Before the table can be swapped with
2522 * dm_bind_table, dm_suspend must be called to flush any in
2523 * flight bios and ensure that any further io gets deferred.
2526 * Suspend mechanism in request-based dm.
2528 * 1. Flush all I/Os by lock_fs() if needed.
2529 * 2. Stop dispatching any I/O by stopping the request_queue.
2530 * 3. Wait for all in-flight I/Os to be completed or requeued.
2532 * To abort suspend, start the request_queue.
2534 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2536 struct dm_table *map = NULL;
2540 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2542 if (dm_suspended_md(md)) {
2547 if (dm_suspended_internally_md(md)) {
2548 /* already internally suspended, wait for internal resume */
2549 mutex_unlock(&md->suspend_lock);
2550 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2556 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2558 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2562 set_bit(DMF_POST_SUSPENDING, &md->flags);
2563 dm_table_postsuspend_targets(map);
2564 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2567 mutex_unlock(&md->suspend_lock);
2571 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2574 int r = dm_table_resume_targets(map);
2582 * Flushing deferred I/Os must be done after targets are resumed
2583 * so that mapping of targets can work correctly.
2584 * Request-based dm is queueing the deferred I/Os in its request_queue.
2586 if (dm_request_based(md))
2587 dm_start_queue(md->queue);
2594 int dm_resume(struct mapped_device *md)
2597 struct dm_table *map = NULL;
2601 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2603 if (!dm_suspended_md(md))
2606 if (dm_suspended_internally_md(md)) {
2607 /* already internally suspended, wait for internal resume */
2608 mutex_unlock(&md->suspend_lock);
2609 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2615 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2616 if (!map || !dm_table_get_size(map))
2619 r = __dm_resume(md, map);
2623 clear_bit(DMF_SUSPENDED, &md->flags);
2625 mutex_unlock(&md->suspend_lock);
2631 * Internal suspend/resume works like userspace-driven suspend. It waits
2632 * until all bios finish and prevents issuing new bios to the target drivers.
2633 * It may be used only from the kernel.
2636 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2638 struct dm_table *map = NULL;
2640 lockdep_assert_held(&md->suspend_lock);
2642 if (md->internal_suspend_count++)
2643 return; /* nested internal suspend */
2645 if (dm_suspended_md(md)) {
2646 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2647 return; /* nest suspend */
2650 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2653 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2654 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2655 * would require changing .presuspend to return an error -- avoid this
2656 * until there is a need for more elaborate variants of internal suspend.
2658 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2659 DMF_SUSPENDED_INTERNALLY);
2661 set_bit(DMF_POST_SUSPENDING, &md->flags);
2662 dm_table_postsuspend_targets(map);
2663 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2666 static void __dm_internal_resume(struct mapped_device *md)
2668 BUG_ON(!md->internal_suspend_count);
2670 if (--md->internal_suspend_count)
2671 return; /* resume from nested internal suspend */
2673 if (dm_suspended_md(md))
2674 goto done; /* resume from nested suspend */
2677 * NOTE: existing callers don't need to call dm_table_resume_targets
2678 * (which may fail -- so best to avoid it for now by passing NULL map)
2680 (void) __dm_resume(md, NULL);
2683 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2684 smp_mb__after_atomic();
2685 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2688 void dm_internal_suspend_noflush(struct mapped_device *md)
2690 mutex_lock(&md->suspend_lock);
2691 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2692 mutex_unlock(&md->suspend_lock);
2694 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2696 void dm_internal_resume(struct mapped_device *md)
2698 mutex_lock(&md->suspend_lock);
2699 __dm_internal_resume(md);
2700 mutex_unlock(&md->suspend_lock);
2702 EXPORT_SYMBOL_GPL(dm_internal_resume);
2705 * Fast variants of internal suspend/resume hold md->suspend_lock,
2706 * which prevents interaction with userspace-driven suspend.
2709 void dm_internal_suspend_fast(struct mapped_device *md)
2711 mutex_lock(&md->suspend_lock);
2712 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2715 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2716 synchronize_srcu(&md->io_barrier);
2717 flush_workqueue(md->wq);
2718 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2720 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2722 void dm_internal_resume_fast(struct mapped_device *md)
2724 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2730 mutex_unlock(&md->suspend_lock);
2732 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2734 /*-----------------------------------------------------------------
2735 * Event notification.
2736 *---------------------------------------------------------------*/
2737 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2742 char udev_cookie[DM_COOKIE_LENGTH];
2743 char *envp[] = { udev_cookie, NULL };
2745 noio_flag = memalloc_noio_save();
2748 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2750 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2751 DM_COOKIE_ENV_VAR_NAME, cookie);
2752 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2756 memalloc_noio_restore(noio_flag);
2761 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2763 return atomic_add_return(1, &md->uevent_seq);
2766 uint32_t dm_get_event_nr(struct mapped_device *md)
2768 return atomic_read(&md->event_nr);
2771 int dm_wait_event(struct mapped_device *md, int event_nr)
2773 return wait_event_interruptible(md->eventq,
2774 (event_nr != atomic_read(&md->event_nr)));
2777 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2779 unsigned long flags;
2781 spin_lock_irqsave(&md->uevent_lock, flags);
2782 list_add(elist, &md->uevent_list);
2783 spin_unlock_irqrestore(&md->uevent_lock, flags);
2787 * The gendisk is only valid as long as you have a reference
2790 struct gendisk *dm_disk(struct mapped_device *md)
2794 EXPORT_SYMBOL_GPL(dm_disk);
2796 struct kobject *dm_kobject(struct mapped_device *md)
2798 return &md->kobj_holder.kobj;
2801 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2803 struct mapped_device *md;
2805 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2807 spin_lock(&_minor_lock);
2808 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2814 spin_unlock(&_minor_lock);
2819 int dm_suspended_md(struct mapped_device *md)
2821 return test_bit(DMF_SUSPENDED, &md->flags);
2824 static int dm_post_suspending_md(struct mapped_device *md)
2826 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2829 int dm_suspended_internally_md(struct mapped_device *md)
2831 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2834 int dm_test_deferred_remove_flag(struct mapped_device *md)
2836 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2839 int dm_suspended(struct dm_target *ti)
2841 return dm_suspended_md(ti->table->md);
2843 EXPORT_SYMBOL_GPL(dm_suspended);
2845 int dm_post_suspending(struct dm_target *ti)
2847 return dm_post_suspending_md(ti->table->md);
2849 EXPORT_SYMBOL_GPL(dm_post_suspending);
2851 int dm_noflush_suspending(struct dm_target *ti)
2853 return __noflush_suspending(ti->table->md);
2855 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2857 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2858 unsigned integrity, unsigned per_io_data_size,
2859 unsigned min_pool_size)
2861 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2862 unsigned int pool_size = 0;
2863 unsigned int front_pad, io_front_pad;
2870 case DM_TYPE_BIO_BASED:
2871 case DM_TYPE_DAX_BIO_BASED:
2872 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2873 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2874 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2875 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2878 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2881 case DM_TYPE_REQUEST_BASED:
2882 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2883 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2884 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2890 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2894 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2900 dm_free_md_mempools(pools);
2905 void dm_free_md_mempools(struct dm_md_mempools *pools)
2910 bioset_exit(&pools->bs);
2911 bioset_exit(&pools->io_bs);
2923 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2926 struct mapped_device *md = bdev->bd_disk->private_data;
2927 struct dm_table *table;
2928 struct dm_target *ti;
2929 int ret = -ENOTTY, srcu_idx;
2931 table = dm_get_live_table(md, &srcu_idx);
2932 if (!table || !dm_table_get_size(table))
2935 /* We only support devices that have a single target */
2936 if (dm_table_get_num_targets(table) != 1)
2938 ti = dm_table_get_target(table, 0);
2941 if (!ti->type->iterate_devices)
2944 ret = ti->type->iterate_devices(ti, fn, data);
2946 dm_put_live_table(md, srcu_idx);
2951 * For register / unregister we need to manually call out to every path.
2953 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2954 sector_t start, sector_t len, void *data)
2956 struct dm_pr *pr = data;
2957 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2959 if (!ops || !ops->pr_register)
2961 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2964 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2975 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2976 if (ret && new_key) {
2977 /* unregister all paths if we failed to register any path */
2978 pr.old_key = new_key;
2981 pr.fail_early = false;
2982 dm_call_pr(bdev, __dm_pr_register, &pr);
2988 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2991 struct mapped_device *md = bdev->bd_disk->private_data;
2992 const struct pr_ops *ops;
2995 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2999 ops = bdev->bd_disk->fops->pr_ops;
3000 if (ops && ops->pr_reserve)
3001 r = ops->pr_reserve(bdev, key, type, flags);
3005 dm_unprepare_ioctl(md, srcu_idx);
3009 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3011 struct mapped_device *md = bdev->bd_disk->private_data;
3012 const struct pr_ops *ops;
3015 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3019 ops = bdev->bd_disk->fops->pr_ops;
3020 if (ops && ops->pr_release)
3021 r = ops->pr_release(bdev, key, type);
3025 dm_unprepare_ioctl(md, srcu_idx);
3029 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3030 enum pr_type type, bool abort)
3032 struct mapped_device *md = bdev->bd_disk->private_data;
3033 const struct pr_ops *ops;
3036 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3040 ops = bdev->bd_disk->fops->pr_ops;
3041 if (ops && ops->pr_preempt)
3042 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3046 dm_unprepare_ioctl(md, srcu_idx);
3050 static int dm_pr_clear(struct block_device *bdev, u64 key)
3052 struct mapped_device *md = bdev->bd_disk->private_data;
3053 const struct pr_ops *ops;
3056 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3060 ops = bdev->bd_disk->fops->pr_ops;
3061 if (ops && ops->pr_clear)
3062 r = ops->pr_clear(bdev, key);
3066 dm_unprepare_ioctl(md, srcu_idx);
3070 static const struct pr_ops dm_pr_ops = {
3071 .pr_register = dm_pr_register,
3072 .pr_reserve = dm_pr_reserve,
3073 .pr_release = dm_pr_release,
3074 .pr_preempt = dm_pr_preempt,
3075 .pr_clear = dm_pr_clear,
3078 static const struct block_device_operations dm_blk_dops = {
3079 .submit_bio = dm_submit_bio,
3080 .open = dm_blk_open,
3081 .release = dm_blk_close,
3082 .ioctl = dm_blk_ioctl,
3083 .getgeo = dm_blk_getgeo,
3084 .report_zones = dm_blk_report_zones,
3085 .pr_ops = &dm_pr_ops,
3086 .owner = THIS_MODULE
3089 static const struct block_device_operations dm_rq_blk_dops = {
3090 .open = dm_blk_open,
3091 .release = dm_blk_close,
3092 .ioctl = dm_blk_ioctl,
3093 .getgeo = dm_blk_getgeo,
3094 .pr_ops = &dm_pr_ops,
3095 .owner = THIS_MODULE
3098 static const struct dax_operations dm_dax_ops = {
3099 .direct_access = dm_dax_direct_access,
3100 .dax_supported = dm_dax_supported,
3101 .copy_from_iter = dm_dax_copy_from_iter,
3102 .copy_to_iter = dm_dax_copy_to_iter,
3103 .zero_page_range = dm_dax_zero_page_range,
3109 module_init(dm_init);
3110 module_exit(dm_exit);
3112 module_param(major, uint, 0);
3113 MODULE_PARM_DESC(major, "The major number of the device mapper");
3115 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3116 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3118 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3119 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3121 MODULE_DESCRIPTION(DM_NAME " driver");
3123 MODULE_LICENSE("GPL");