4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
38 #include "delegation.h"
42 /* #define NFS_DEBUG_VERBOSE 1 */
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59 const struct file_operations nfs_dir_operations = {
60 .llseek = nfs_llseek_dir,
61 .read = generic_read_dir,
62 .readdir = nfs_readdir,
64 .release = nfs_release,
65 .fsync = nfs_fsync_dir,
68 const struct inode_operations nfs_dir_inode_operations = {
73 .symlink = nfs_symlink,
78 .permission = nfs_permission,
79 .getattr = nfs_getattr,
80 .setattr = nfs_setattr,
84 const struct inode_operations nfs3_dir_inode_operations = {
89 .symlink = nfs_symlink,
94 .permission = nfs_permission,
95 .getattr = nfs_getattr,
96 .setattr = nfs_setattr,
97 .listxattr = nfs3_listxattr,
98 .getxattr = nfs3_getxattr,
99 .setxattr = nfs3_setxattr,
100 .removexattr = nfs3_removexattr,
102 #endif /* CONFIG_NFS_V3 */
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 .create = nfs_create,
109 .lookup = nfs_atomic_lookup,
111 .unlink = nfs_unlink,
112 .symlink = nfs_symlink,
116 .rename = nfs_rename,
117 .permission = nfs_permission,
118 .getattr = nfs_getattr,
119 .setattr = nfs_setattr,
120 .getxattr = nfs4_getxattr,
121 .setxattr = nfs4_setxattr,
122 .listxattr = nfs4_listxattr,
125 #endif /* CONFIG_NFS_V4 */
131 nfs_opendir(struct inode *inode, struct file *filp)
135 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
136 filp->f_path.dentry->d_parent->d_name.name,
137 filp->f_path.dentry->d_name.name);
139 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
141 /* Call generic open code in order to cache credentials */
142 res = nfs_open(inode, filp);
146 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
150 unsigned long page_index;
153 loff_t current_index;
154 struct nfs_entry *entry;
155 decode_dirent_t decode;
157 unsigned long timestamp;
158 unsigned long gencount;
160 } nfs_readdir_descriptor_t;
162 /* Now we cache directories properly, by stuffing the dirent
163 * data directly in the page cache.
165 * Inode invalidation due to refresh etc. takes care of
166 * _everything_, no sloppy entry flushing logic, no extraneous
167 * copying, network direct to page cache, the way it was meant
170 * NOTE: Dirent information verification is done always by the
171 * page-in of the RPC reply, nowhere else, this simplies
172 * things substantially.
175 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
177 struct file *file = desc->file;
178 struct inode *inode = file->f_path.dentry->d_inode;
179 struct rpc_cred *cred = nfs_file_cred(file);
180 unsigned long timestamp, gencount;
183 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
184 __func__, (long long)desc->entry->cookie,
189 gencount = nfs_inc_attr_generation_counter();
190 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
191 NFS_SERVER(inode)->dtsize, desc->plus);
193 /* We requested READDIRPLUS, but the server doesn't grok it */
194 if (error == -ENOTSUPP && desc->plus) {
195 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
196 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
202 desc->timestamp = timestamp;
203 desc->gencount = gencount;
204 desc->timestamp_valid = 1;
205 SetPageUptodate(page);
206 /* Ensure consistent page alignment of the data.
207 * Note: assumes we have exclusive access to this mapping either
208 * through inode->i_mutex or some other mechanism.
210 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
211 /* Should never happen */
212 nfs_zap_mapping(inode, inode->i_mapping);
222 int dir_decode(nfs_readdir_descriptor_t *desc)
224 __be32 *p = desc->ptr;
225 p = desc->decode(p, desc->entry, desc->plus);
229 if (desc->timestamp_valid) {
230 desc->entry->fattr->time_start = desc->timestamp;
231 desc->entry->fattr->gencount = desc->gencount;
233 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
238 void dir_page_release(nfs_readdir_descriptor_t *desc)
241 page_cache_release(desc->page);
247 * Given a pointer to a buffer that has already been filled by a call
248 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
250 * If the end of the buffer has been reached, return -EAGAIN, if not,
251 * return the offset within the buffer of the next entry to be
255 int find_dirent(nfs_readdir_descriptor_t *desc)
257 struct nfs_entry *entry = desc->entry;
261 while((status = dir_decode(desc)) == 0) {
262 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
263 __func__, (unsigned long long)entry->cookie);
264 if (entry->prev_cookie == *desc->dir_cookie)
266 if (loop_count++ > 200) {
275 * Given a pointer to a buffer that has already been filled by a call
276 * to readdir, find the entry at offset 'desc->file->f_pos'.
278 * If the end of the buffer has been reached, return -EAGAIN, if not,
279 * return the offset within the buffer of the next entry to be
283 int find_dirent_index(nfs_readdir_descriptor_t *desc)
285 struct nfs_entry *entry = desc->entry;
290 status = dir_decode(desc);
294 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
295 (unsigned long long)entry->cookie, desc->current_index);
297 if (desc->file->f_pos == desc->current_index) {
298 *desc->dir_cookie = entry->cookie;
301 desc->current_index++;
302 if (loop_count++ > 200) {
311 * Find the given page, and call find_dirent() or find_dirent_index in
312 * order to try to return the next entry.
315 int find_dirent_page(nfs_readdir_descriptor_t *desc)
317 struct inode *inode = desc->file->f_path.dentry->d_inode;
321 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
322 __func__, desc->page_index,
323 (long long) *desc->dir_cookie);
325 /* If we find the page in the page_cache, we cannot be sure
326 * how fresh the data is, so we will ignore readdir_plus attributes.
328 desc->timestamp_valid = 0;
329 page = read_cache_page(inode->i_mapping, desc->page_index,
330 (filler_t *)nfs_readdir_filler, desc);
332 status = PTR_ERR(page);
336 /* NOTE: Someone else may have changed the READDIRPLUS flag */
338 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
339 if (*desc->dir_cookie != 0)
340 status = find_dirent(desc);
342 status = find_dirent_index(desc);
344 dir_page_release(desc);
346 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
351 * Recurse through the page cache pages, and return a
352 * filled nfs_entry structure of the next directory entry if possible.
354 * The target for the search is '*desc->dir_cookie' if non-0,
355 * 'desc->file->f_pos' otherwise
358 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
363 /* Always search-by-index from the beginning of the cache */
364 if (*desc->dir_cookie == 0) {
365 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
366 (long long)desc->file->f_pos);
367 desc->page_index = 0;
368 desc->entry->cookie = desc->entry->prev_cookie = 0;
369 desc->entry->eof = 0;
370 desc->current_index = 0;
372 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
373 (unsigned long long)*desc->dir_cookie);
376 res = find_dirent_page(desc);
379 /* Align to beginning of next page */
381 if (loop_count++ > 200) {
387 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
391 static inline unsigned int dt_type(struct inode *inode)
393 return (inode->i_mode >> 12) & 15;
396 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
399 * Once we've found the start of the dirent within a page: fill 'er up...
402 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
405 struct file *file = desc->file;
406 struct nfs_entry *entry = desc->entry;
407 struct dentry *dentry = NULL;
412 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
413 (unsigned long long)entry->cookie);
416 unsigned d_type = DT_UNKNOWN;
417 /* Note: entry->prev_cookie contains the cookie for
418 * retrieving the current dirent on the server */
421 /* Get a dentry if we have one */
424 dentry = nfs_readdir_lookup(desc);
426 /* Use readdirplus info */
427 if (dentry != NULL && dentry->d_inode != NULL) {
428 d_type = dt_type(dentry->d_inode);
429 fileid = NFS_FILEID(dentry->d_inode);
432 res = filldir(dirent, entry->name, entry->len,
433 file->f_pos, nfs_compat_user_ino64(fileid),
438 *desc->dir_cookie = entry->cookie;
439 if (dir_decode(desc) != 0) {
443 if (loop_count++ > 200) {
448 dir_page_release(desc);
451 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
452 (unsigned long long)*desc->dir_cookie, res);
457 * If we cannot find a cookie in our cache, we suspect that this is
458 * because it points to a deleted file, so we ask the server to return
459 * whatever it thinks is the next entry. We then feed this to filldir.
460 * If all goes well, we should then be able to find our way round the
461 * cache on the next call to readdir_search_pagecache();
463 * NOTE: we cannot add the anonymous page to the pagecache because
464 * the data it contains might not be page aligned. Besides,
465 * we should already have a complete representation of the
466 * directory in the page cache by the time we get here.
469 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
472 struct file *file = desc->file;
473 struct inode *inode = file->f_path.dentry->d_inode;
474 struct rpc_cred *cred = nfs_file_cred(file);
475 struct page *page = NULL;
477 unsigned long timestamp, gencount;
479 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
480 (unsigned long long)*desc->dir_cookie);
482 page = alloc_page(GFP_HIGHUSER);
488 gencount = nfs_inc_attr_generation_counter();
489 status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
490 *desc->dir_cookie, page,
491 NFS_SERVER(inode)->dtsize,
494 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
496 desc->timestamp = timestamp;
497 desc->gencount = gencount;
498 desc->timestamp_valid = 1;
499 if ((status = dir_decode(desc)) == 0)
500 desc->entry->prev_cookie = *desc->dir_cookie;
506 status = nfs_do_filldir(desc, dirent, filldir);
508 /* Reset read descriptor so it searches the page cache from
509 * the start upon the next call to readdir_search_pagecache() */
510 desc->page_index = 0;
511 desc->entry->cookie = desc->entry->prev_cookie = 0;
512 desc->entry->eof = 0;
514 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
518 dir_page_release(desc);
522 /* The file offset position represents the dirent entry number. A
523 last cookie cache takes care of the common case of reading the
526 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
528 struct dentry *dentry = filp->f_path.dentry;
529 struct inode *inode = dentry->d_inode;
530 nfs_readdir_descriptor_t my_desc,
532 struct nfs_entry my_entry;
535 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
536 dentry->d_parent->d_name.name, dentry->d_name.name,
537 (long long)filp->f_pos);
538 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
541 * filp->f_pos points to the dirent entry number.
542 * *desc->dir_cookie has the cookie for the next entry. We have
543 * to either find the entry with the appropriate number or
544 * revalidate the cookie.
546 memset(desc, 0, sizeof(*desc));
549 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
550 desc->decode = NFS_PROTO(inode)->decode_dirent;
551 desc->plus = NFS_USE_READDIRPLUS(inode);
553 my_entry.cookie = my_entry.prev_cookie = 0;
555 my_entry.fh = nfs_alloc_fhandle();
556 my_entry.fattr = nfs_alloc_fattr();
557 if (my_entry.fh == NULL || my_entry.fattr == NULL)
558 goto out_alloc_failed;
560 desc->entry = &my_entry;
562 nfs_block_sillyrename(dentry);
563 res = nfs_revalidate_mapping(inode, filp->f_mapping);
567 while(!desc->entry->eof) {
568 res = readdir_search_pagecache(desc);
570 if (res == -EBADCOOKIE) {
571 /* This means either end of directory */
572 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
573 /* Or that the server has 'lost' a cookie */
574 res = uncached_readdir(desc, dirent, filldir);
581 if (res == -ETOOSMALL && desc->plus) {
582 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
583 nfs_zap_caches(inode);
585 desc->entry->eof = 0;
591 res = nfs_do_filldir(desc, dirent, filldir);
598 nfs_unblock_sillyrename(dentry);
602 nfs_free_fattr(my_entry.fattr);
603 nfs_free_fhandle(my_entry.fh);
604 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
605 dentry->d_parent->d_name.name, dentry->d_name.name,
610 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
612 struct dentry *dentry = filp->f_path.dentry;
613 struct inode *inode = dentry->d_inode;
615 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
616 dentry->d_parent->d_name.name,
620 mutex_lock(&inode->i_mutex);
623 offset += filp->f_pos;
631 if (offset != filp->f_pos) {
632 filp->f_pos = offset;
633 nfs_file_open_context(filp)->dir_cookie = 0;
636 mutex_unlock(&inode->i_mutex);
641 * All directory operations under NFS are synchronous, so fsync()
642 * is a dummy operation.
644 static int nfs_fsync_dir(struct file *filp, int datasync)
646 struct dentry *dentry = filp->f_path.dentry;
648 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
649 dentry->d_parent->d_name.name, dentry->d_name.name,
652 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
657 * nfs_force_lookup_revalidate - Mark the directory as having changed
658 * @dir - pointer to directory inode
660 * This forces the revalidation code in nfs_lookup_revalidate() to do a
661 * full lookup on all child dentries of 'dir' whenever a change occurs
662 * on the server that might have invalidated our dcache.
664 * The caller should be holding dir->i_lock
666 void nfs_force_lookup_revalidate(struct inode *dir)
668 NFS_I(dir)->cache_change_attribute++;
672 * A check for whether or not the parent directory has changed.
673 * In the case it has, we assume that the dentries are untrustworthy
674 * and may need to be looked up again.
676 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
680 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
682 if (!nfs_verify_change_attribute(dir, dentry->d_time))
684 /* Revalidate nfsi->cache_change_attribute before we declare a match */
685 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
687 if (!nfs_verify_change_attribute(dir, dentry->d_time))
693 * Return the intent data that applies to this particular path component
695 * Note that the current set of intents only apply to the very last
696 * component of the path.
697 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
699 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
701 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
703 return nd->flags & mask;
707 * Use intent information to check whether or not we're going to do
708 * an O_EXCL create using this path component.
710 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
712 if (NFS_PROTO(dir)->version == 2)
714 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
718 * Inode and filehandle revalidation for lookups.
720 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
721 * or if the intent information indicates that we're about to open this
722 * particular file and the "nocto" mount flag is not set.
726 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
728 struct nfs_server *server = NFS_SERVER(inode);
730 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
733 /* VFS wants an on-the-wire revalidation */
734 if (nd->flags & LOOKUP_REVAL)
736 /* This is an open(2) */
737 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
738 !(server->flags & NFS_MOUNT_NOCTO) &&
739 (S_ISREG(inode->i_mode) ||
740 S_ISDIR(inode->i_mode)))
744 return nfs_revalidate_inode(server, inode);
746 return __nfs_revalidate_inode(server, inode);
750 * We judge how long we want to trust negative
751 * dentries by looking at the parent inode mtime.
753 * If parent mtime has changed, we revalidate, else we wait for a
754 * period corresponding to the parent's attribute cache timeout value.
757 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
758 struct nameidata *nd)
760 /* Don't revalidate a negative dentry if we're creating a new file */
761 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
763 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
765 return !nfs_check_verifier(dir, dentry);
769 * This is called every time the dcache has a lookup hit,
770 * and we should check whether we can really trust that
773 * NOTE! The hit can be a negative hit too, don't assume
776 * If the parent directory is seen to have changed, we throw out the
777 * cached dentry and do a new lookup.
779 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
783 struct dentry *parent;
784 struct nfs_fh *fhandle = NULL;
785 struct nfs_fattr *fattr = NULL;
788 parent = dget_parent(dentry);
789 dir = parent->d_inode;
790 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
791 inode = dentry->d_inode;
794 if (nfs_neg_need_reval(dir, dentry, nd))
799 if (is_bad_inode(inode)) {
800 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
801 __func__, dentry->d_parent->d_name.name,
802 dentry->d_name.name);
806 if (nfs_have_delegation(inode, FMODE_READ))
807 goto out_set_verifier;
809 /* Force a full look up iff the parent directory has changed */
810 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
811 if (nfs_lookup_verify_inode(inode, nd))
816 if (NFS_STALE(inode))
820 fhandle = nfs_alloc_fhandle();
821 fattr = nfs_alloc_fattr();
822 if (fhandle == NULL || fattr == NULL)
825 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
828 if (nfs_compare_fh(NFS_FH(inode), fhandle))
830 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
833 nfs_free_fattr(fattr);
834 nfs_free_fhandle(fhandle);
836 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
839 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
840 __func__, dentry->d_parent->d_name.name,
841 dentry->d_name.name);
846 nfs_mark_for_revalidate(dir);
847 if (inode && S_ISDIR(inode->i_mode)) {
848 /* Purge readdir caches. */
849 nfs_zap_caches(inode);
850 /* If we have submounts, don't unhash ! */
851 if (have_submounts(dentry))
853 if (dentry->d_flags & DCACHE_DISCONNECTED)
855 shrink_dcache_parent(dentry);
858 nfs_free_fattr(fattr);
859 nfs_free_fhandle(fhandle);
861 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
862 __func__, dentry->d_parent->d_name.name,
863 dentry->d_name.name);
866 nfs_free_fattr(fattr);
867 nfs_free_fhandle(fhandle);
869 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
870 __func__, dentry->d_parent->d_name.name,
871 dentry->d_name.name, error);
876 * This is called from dput() when d_count is going to 0.
878 static int nfs_dentry_delete(struct dentry *dentry)
880 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
881 dentry->d_parent->d_name.name, dentry->d_name.name,
884 /* Unhash any dentry with a stale inode */
885 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
888 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
889 /* Unhash it, so that ->d_iput() would be called */
892 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
893 /* Unhash it, so that ancestors of killed async unlink
894 * files will be cleaned up during umount */
901 static void nfs_drop_nlink(struct inode *inode)
903 spin_lock(&inode->i_lock);
904 if (inode->i_nlink > 0)
906 spin_unlock(&inode->i_lock);
910 * Called when the dentry loses inode.
911 * We use it to clean up silly-renamed files.
913 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
915 if (S_ISDIR(inode->i_mode))
916 /* drop any readdir cache as it could easily be old */
917 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
919 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
921 nfs_complete_unlink(dentry, inode);
926 const struct dentry_operations nfs_dentry_operations = {
927 .d_revalidate = nfs_lookup_revalidate,
928 .d_delete = nfs_dentry_delete,
929 .d_iput = nfs_dentry_iput,
932 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
935 struct dentry *parent;
936 struct inode *inode = NULL;
937 struct nfs_fh *fhandle = NULL;
938 struct nfs_fattr *fattr = NULL;
941 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
942 dentry->d_parent->d_name.name, dentry->d_name.name);
943 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
945 res = ERR_PTR(-ENAMETOOLONG);
946 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
949 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
952 * If we're doing an exclusive create, optimize away the lookup
953 * but don't hash the dentry.
955 if (nfs_is_exclusive_create(dir, nd)) {
956 d_instantiate(dentry, NULL);
961 res = ERR_PTR(-ENOMEM);
962 fhandle = nfs_alloc_fhandle();
963 fattr = nfs_alloc_fattr();
964 if (fhandle == NULL || fattr == NULL)
967 parent = dentry->d_parent;
968 /* Protect against concurrent sillydeletes */
969 nfs_block_sillyrename(parent);
970 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
971 if (error == -ENOENT)
974 res = ERR_PTR(error);
975 goto out_unblock_sillyrename;
977 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
978 res = (struct dentry *)inode;
980 goto out_unblock_sillyrename;
983 res = d_materialise_unique(dentry, inode);
986 goto out_unblock_sillyrename;
989 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
990 out_unblock_sillyrename:
991 nfs_unblock_sillyrename(parent);
993 nfs_free_fattr(fattr);
994 nfs_free_fhandle(fhandle);
999 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1001 const struct dentry_operations nfs4_dentry_operations = {
1002 .d_revalidate = nfs_open_revalidate,
1003 .d_delete = nfs_dentry_delete,
1004 .d_iput = nfs_dentry_iput,
1008 * Use intent information to determine whether we need to substitute
1009 * the NFSv4-style stateful OPEN for the LOOKUP call
1011 static int is_atomic_open(struct nameidata *nd)
1013 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1015 /* NFS does not (yet) have a stateful open for directories */
1016 if (nd->flags & LOOKUP_DIRECTORY)
1018 /* Are we trying to write to a read only partition? */
1019 if (__mnt_is_readonly(nd->path.mnt) &&
1020 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1025 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1027 struct dentry *res = NULL;
1030 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1031 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1033 /* Check that we are indeed trying to open this file */
1034 if (!is_atomic_open(nd))
1037 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1038 res = ERR_PTR(-ENAMETOOLONG);
1041 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1043 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1045 if (nd->flags & LOOKUP_EXCL) {
1046 d_instantiate(dentry, NULL);
1050 /* Open the file on the server */
1051 res = nfs4_atomic_open(dir, dentry, nd);
1053 error = PTR_ERR(res);
1055 /* Make a negative dentry */
1059 /* This turned out not to be a regular file */
1064 if (!(nd->intent.open.flags & O_NOFOLLOW))
1070 } else if (res != NULL)
1075 return nfs_lookup(dir, dentry, nd);
1078 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1080 struct dentry *parent = NULL;
1081 struct inode *inode = dentry->d_inode;
1083 int openflags, ret = 0;
1085 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1087 parent = dget_parent(dentry);
1088 dir = parent->d_inode;
1089 /* We can't create new files in nfs_open_revalidate(), so we
1090 * optimize away revalidation of negative dentries.
1092 if (inode == NULL) {
1093 if (!nfs_neg_need_reval(dir, dentry, nd))
1098 /* NFS only supports OPEN on regular files */
1099 if (!S_ISREG(inode->i_mode))
1101 openflags = nd->intent.open.flags;
1102 /* We cannot do exclusive creation on a positive dentry */
1103 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1105 /* We can't create new files, or truncate existing ones here */
1106 openflags &= ~(O_CREAT|O_TRUNC);
1109 * Note: we're not holding inode->i_mutex and so may be racing with
1110 * operations that change the directory. We therefore save the
1111 * change attribute *before* we do the RPC call.
1113 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1122 return nfs_lookup_revalidate(dentry, nd);
1124 #endif /* CONFIG_NFSV4 */
1126 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1128 struct dentry *parent = desc->file->f_path.dentry;
1129 struct inode *dir = parent->d_inode;
1130 struct nfs_entry *entry = desc->entry;
1131 struct dentry *dentry, *alias;
1132 struct qstr name = {
1133 .name = entry->name,
1136 struct inode *inode;
1137 unsigned long verf = nfs_save_change_attribute(dir);
1141 if (name.name[0] == '.' && name.name[1] == '.')
1142 return dget_parent(parent);
1145 if (name.name[0] == '.')
1146 return dget(parent);
1149 spin_lock(&dir->i_lock);
1150 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1151 spin_unlock(&dir->i_lock);
1154 spin_unlock(&dir->i_lock);
1156 name.hash = full_name_hash(name.name, name.len);
1157 dentry = d_lookup(parent, &name);
1158 if (dentry != NULL) {
1159 /* Is this a positive dentry that matches the readdir info? */
1160 if (dentry->d_inode != NULL &&
1161 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1162 d_mountpoint(dentry))) {
1163 if (!desc->plus || entry->fh->size == 0)
1165 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1169 /* No, so d_drop to allow one to be created */
1173 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1175 if (name.len > NFS_SERVER(dir)->namelen)
1177 /* Note: caller is already holding the dir->i_mutex! */
1178 dentry = d_alloc(parent, &name);
1181 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1182 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1183 if (IS_ERR(inode)) {
1188 alias = d_materialise_unique(dentry, inode);
1189 if (alias != NULL) {
1197 nfs_set_verifier(dentry, verf);
1202 * Code common to create, mkdir, and mknod.
1204 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1205 struct nfs_fattr *fattr)
1207 struct dentry *parent = dget_parent(dentry);
1208 struct inode *dir = parent->d_inode;
1209 struct inode *inode;
1210 int error = -EACCES;
1214 /* We may have been initialized further down */
1215 if (dentry->d_inode)
1217 if (fhandle->size == 0) {
1218 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1222 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1223 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1224 struct nfs_server *server = NFS_SB(dentry->d_sb);
1225 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1229 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1230 error = PTR_ERR(inode);
1233 d_add(dentry, inode);
1238 nfs_mark_for_revalidate(dir);
1244 * Following a failed create operation, we drop the dentry rather
1245 * than retain a negative dentry. This avoids a problem in the event
1246 * that the operation succeeded on the server, but an error in the
1247 * reply path made it appear to have failed.
1249 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1250 struct nameidata *nd)
1256 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1257 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1259 attr.ia_mode = mode;
1260 attr.ia_valid = ATTR_MODE;
1262 if ((nd->flags & LOOKUP_CREATE) != 0)
1263 open_flags = nd->intent.open.flags;
1265 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1275 * See comments for nfs_proc_create regarding failed operations.
1278 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1283 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1284 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1286 if (!new_valid_dev(rdev))
1289 attr.ia_mode = mode;
1290 attr.ia_valid = ATTR_MODE;
1292 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1302 * See comments for nfs_proc_create regarding failed operations.
1304 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1309 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1310 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1312 attr.ia_valid = ATTR_MODE;
1313 attr.ia_mode = mode | S_IFDIR;
1315 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1324 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1326 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1330 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1334 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1335 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1337 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1338 /* Ensure the VFS deletes this inode */
1339 if (error == 0 && dentry->d_inode != NULL)
1340 clear_nlink(dentry->d_inode);
1341 else if (error == -ENOENT)
1342 nfs_dentry_handle_enoent(dentry);
1347 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1349 static unsigned int sillycounter;
1350 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
1351 const int countersize = sizeof(sillycounter)*2;
1352 const int slen = sizeof(".nfs")+fileidsize+countersize-1;
1355 struct dentry *sdentry;
1358 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1359 dentry->d_parent->d_name.name, dentry->d_name.name,
1360 atomic_read(&dentry->d_count));
1361 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1364 * We don't allow a dentry to be silly-renamed twice.
1367 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1370 sprintf(silly, ".nfs%*.*Lx",
1371 fileidsize, fileidsize,
1372 (unsigned long long)NFS_FILEID(dentry->d_inode));
1374 /* Return delegation in anticipation of the rename */
1375 nfs_inode_return_delegation(dentry->d_inode);
1379 char *suffix = silly + slen - countersize;
1383 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1385 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1386 dentry->d_name.name, silly);
1388 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1390 * N.B. Better to return EBUSY here ... it could be
1391 * dangerous to delete the file while it's in use.
1393 if (IS_ERR(sdentry))
1395 } while(sdentry->d_inode != NULL); /* need negative lookup */
1397 qsilly.name = silly;
1398 qsilly.len = strlen(silly);
1399 if (dentry->d_inode) {
1400 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1402 nfs_mark_for_revalidate(dentry->d_inode);
1404 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1407 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1408 d_move(dentry, sdentry);
1409 error = nfs_async_unlink(dir, dentry);
1410 /* If we return 0 we don't unlink */
1418 * Remove a file after making sure there are no pending writes,
1419 * and after checking that the file has only one user.
1421 * We invalidate the attribute cache and free the inode prior to the operation
1422 * to avoid possible races if the server reuses the inode.
1424 static int nfs_safe_remove(struct dentry *dentry)
1426 struct inode *dir = dentry->d_parent->d_inode;
1427 struct inode *inode = dentry->d_inode;
1430 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1431 dentry->d_parent->d_name.name, dentry->d_name.name);
1433 /* If the dentry was sillyrenamed, we simply call d_delete() */
1434 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1439 if (inode != NULL) {
1440 nfs_inode_return_delegation(inode);
1441 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1442 /* The VFS may want to delete this inode */
1444 nfs_drop_nlink(inode);
1445 nfs_mark_for_revalidate(inode);
1447 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1448 if (error == -ENOENT)
1449 nfs_dentry_handle_enoent(dentry);
1454 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1455 * belongs to an active ".nfs..." file and we return -EBUSY.
1457 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1459 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1462 int need_rehash = 0;
1464 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1465 dir->i_ino, dentry->d_name.name);
1467 spin_lock(&dcache_lock);
1468 spin_lock(&dentry->d_lock);
1469 if (atomic_read(&dentry->d_count) > 1) {
1470 spin_unlock(&dentry->d_lock);
1471 spin_unlock(&dcache_lock);
1472 /* Start asynchronous writeout of the inode */
1473 write_inode_now(dentry->d_inode, 0);
1474 error = nfs_sillyrename(dir, dentry);
1477 if (!d_unhashed(dentry)) {
1481 spin_unlock(&dentry->d_lock);
1482 spin_unlock(&dcache_lock);
1483 error = nfs_safe_remove(dentry);
1484 if (!error || error == -ENOENT) {
1485 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1486 } else if (need_rehash)
1492 * To create a symbolic link, most file systems instantiate a new inode,
1493 * add a page to it containing the path, then write it out to the disk
1494 * using prepare_write/commit_write.
1496 * Unfortunately the NFS client can't create the in-core inode first
1497 * because it needs a file handle to create an in-core inode (see
1498 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1499 * symlink request has completed on the server.
1501 * So instead we allocate a raw page, copy the symname into it, then do
1502 * the SYMLINK request with the page as the buffer. If it succeeds, we
1503 * now have a new file handle and can instantiate an in-core NFS inode
1504 * and move the raw page into its mapping.
1506 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1508 struct pagevec lru_pvec;
1512 unsigned int pathlen = strlen(symname);
1515 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1516 dir->i_ino, dentry->d_name.name, symname);
1518 if (pathlen > PAGE_SIZE)
1519 return -ENAMETOOLONG;
1521 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1522 attr.ia_valid = ATTR_MODE;
1524 page = alloc_page(GFP_HIGHUSER);
1528 kaddr = kmap_atomic(page, KM_USER0);
1529 memcpy(kaddr, symname, pathlen);
1530 if (pathlen < PAGE_SIZE)
1531 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1532 kunmap_atomic(kaddr, KM_USER0);
1534 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1536 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1537 dir->i_sb->s_id, dir->i_ino,
1538 dentry->d_name.name, symname, error);
1545 * No big deal if we can't add this page to the page cache here.
1546 * READLINK will get the missing page from the server if needed.
1548 pagevec_init(&lru_pvec, 0);
1549 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1551 pagevec_add(&lru_pvec, page);
1552 pagevec_lru_add_file(&lru_pvec);
1553 SetPageUptodate(page);
1562 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1564 struct inode *inode = old_dentry->d_inode;
1567 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1568 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1569 dentry->d_parent->d_name.name, dentry->d_name.name);
1571 nfs_inode_return_delegation(inode);
1574 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1576 atomic_inc(&inode->i_count);
1577 d_add(dentry, inode);
1584 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1585 * different file handle for the same inode after a rename (e.g. when
1586 * moving to a different directory). A fail-safe method to do so would
1587 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1588 * rename the old file using the sillyrename stuff. This way, the original
1589 * file in old_dir will go away when the last process iput()s the inode.
1593 * It actually works quite well. One needs to have the possibility for
1594 * at least one ".nfs..." file in each directory the file ever gets
1595 * moved or linked to which happens automagically with the new
1596 * implementation that only depends on the dcache stuff instead of
1597 * using the inode layer
1599 * Unfortunately, things are a little more complicated than indicated
1600 * above. For a cross-directory move, we want to make sure we can get
1601 * rid of the old inode after the operation. This means there must be
1602 * no pending writes (if it's a file), and the use count must be 1.
1603 * If these conditions are met, we can drop the dentries before doing
1606 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1607 struct inode *new_dir, struct dentry *new_dentry)
1609 struct inode *old_inode = old_dentry->d_inode;
1610 struct inode *new_inode = new_dentry->d_inode;
1611 struct dentry *dentry = NULL, *rehash = NULL;
1614 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1615 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1616 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1617 atomic_read(&new_dentry->d_count));
1620 * For non-directories, check whether the target is busy and if so,
1621 * make a copy of the dentry and then do a silly-rename. If the
1622 * silly-rename succeeds, the copied dentry is hashed and becomes
1625 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1627 * To prevent any new references to the target during the
1628 * rename, we unhash the dentry in advance.
1630 if (!d_unhashed(new_dentry)) {
1632 rehash = new_dentry;
1635 if (atomic_read(&new_dentry->d_count) > 2) {
1638 /* copy the target dentry's name */
1639 dentry = d_alloc(new_dentry->d_parent,
1640 &new_dentry->d_name);
1644 /* silly-rename the existing target ... */
1645 err = nfs_sillyrename(new_dir, new_dentry);
1649 new_dentry = dentry;
1655 nfs_inode_return_delegation(old_inode);
1656 if (new_inode != NULL)
1657 nfs_inode_return_delegation(new_inode);
1659 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1660 new_dir, &new_dentry->d_name);
1661 nfs_mark_for_revalidate(old_inode);
1666 if (new_inode != NULL)
1667 nfs_drop_nlink(new_inode);
1668 d_move(old_dentry, new_dentry);
1669 nfs_set_verifier(new_dentry,
1670 nfs_save_change_attribute(new_dir));
1671 } else if (error == -ENOENT)
1672 nfs_dentry_handle_enoent(old_dentry);
1674 /* new dentry created? */
1680 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1681 static LIST_HEAD(nfs_access_lru_list);
1682 static atomic_long_t nfs_access_nr_entries;
1684 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1686 put_rpccred(entry->cred);
1688 smp_mb__before_atomic_dec();
1689 atomic_long_dec(&nfs_access_nr_entries);
1690 smp_mb__after_atomic_dec();
1693 static void nfs_access_free_list(struct list_head *head)
1695 struct nfs_access_entry *cache;
1697 while (!list_empty(head)) {
1698 cache = list_entry(head->next, struct nfs_access_entry, lru);
1699 list_del(&cache->lru);
1700 nfs_access_free_entry(cache);
1704 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1707 struct nfs_inode *nfsi;
1708 struct nfs_access_entry *cache;
1710 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1711 return (nr_to_scan == 0) ? 0 : -1;
1713 spin_lock(&nfs_access_lru_lock);
1714 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1715 struct inode *inode;
1717 if (nr_to_scan-- == 0)
1719 inode = &nfsi->vfs_inode;
1720 spin_lock(&inode->i_lock);
1721 if (list_empty(&nfsi->access_cache_entry_lru))
1722 goto remove_lru_entry;
1723 cache = list_entry(nfsi->access_cache_entry_lru.next,
1724 struct nfs_access_entry, lru);
1725 list_move(&cache->lru, &head);
1726 rb_erase(&cache->rb_node, &nfsi->access_cache);
1727 if (!list_empty(&nfsi->access_cache_entry_lru))
1728 list_move_tail(&nfsi->access_cache_inode_lru,
1729 &nfs_access_lru_list);
1732 list_del_init(&nfsi->access_cache_inode_lru);
1733 smp_mb__before_clear_bit();
1734 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1735 smp_mb__after_clear_bit();
1737 spin_unlock(&inode->i_lock);
1739 spin_unlock(&nfs_access_lru_lock);
1740 nfs_access_free_list(&head);
1741 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1744 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1746 struct rb_root *root_node = &nfsi->access_cache;
1748 struct nfs_access_entry *entry;
1750 /* Unhook entries from the cache */
1751 while ((n = rb_first(root_node)) != NULL) {
1752 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1753 rb_erase(n, root_node);
1754 list_move(&entry->lru, head);
1756 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1759 void nfs_access_zap_cache(struct inode *inode)
1763 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1765 /* Remove from global LRU init */
1766 spin_lock(&nfs_access_lru_lock);
1767 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1768 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1770 spin_lock(&inode->i_lock);
1771 __nfs_access_zap_cache(NFS_I(inode), &head);
1772 spin_unlock(&inode->i_lock);
1773 spin_unlock(&nfs_access_lru_lock);
1774 nfs_access_free_list(&head);
1777 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1779 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1780 struct nfs_access_entry *entry;
1783 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1785 if (cred < entry->cred)
1787 else if (cred > entry->cred)
1795 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1797 struct nfs_inode *nfsi = NFS_I(inode);
1798 struct nfs_access_entry *cache;
1801 spin_lock(&inode->i_lock);
1802 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1804 cache = nfs_access_search_rbtree(inode, cred);
1807 if (!nfs_have_delegated_attributes(inode) &&
1808 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1810 res->jiffies = cache->jiffies;
1811 res->cred = cache->cred;
1812 res->mask = cache->mask;
1813 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1816 spin_unlock(&inode->i_lock);
1819 rb_erase(&cache->rb_node, &nfsi->access_cache);
1820 list_del(&cache->lru);
1821 spin_unlock(&inode->i_lock);
1822 nfs_access_free_entry(cache);
1825 spin_unlock(&inode->i_lock);
1826 nfs_access_zap_cache(inode);
1830 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1832 struct nfs_inode *nfsi = NFS_I(inode);
1833 struct rb_root *root_node = &nfsi->access_cache;
1834 struct rb_node **p = &root_node->rb_node;
1835 struct rb_node *parent = NULL;
1836 struct nfs_access_entry *entry;
1838 spin_lock(&inode->i_lock);
1839 while (*p != NULL) {
1841 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1843 if (set->cred < entry->cred)
1844 p = &parent->rb_left;
1845 else if (set->cred > entry->cred)
1846 p = &parent->rb_right;
1850 rb_link_node(&set->rb_node, parent, p);
1851 rb_insert_color(&set->rb_node, root_node);
1852 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1853 spin_unlock(&inode->i_lock);
1856 rb_replace_node(parent, &set->rb_node, root_node);
1857 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1858 list_del(&entry->lru);
1859 spin_unlock(&inode->i_lock);
1860 nfs_access_free_entry(entry);
1863 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1865 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1868 RB_CLEAR_NODE(&cache->rb_node);
1869 cache->jiffies = set->jiffies;
1870 cache->cred = get_rpccred(set->cred);
1871 cache->mask = set->mask;
1873 nfs_access_add_rbtree(inode, cache);
1875 /* Update accounting */
1876 smp_mb__before_atomic_inc();
1877 atomic_long_inc(&nfs_access_nr_entries);
1878 smp_mb__after_atomic_inc();
1880 /* Add inode to global LRU list */
1881 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1882 spin_lock(&nfs_access_lru_lock);
1883 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1884 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
1885 &nfs_access_lru_list);
1886 spin_unlock(&nfs_access_lru_lock);
1890 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1892 struct nfs_access_entry cache;
1895 status = nfs_access_get_cached(inode, cred, &cache);
1899 /* Be clever: ask server to check for all possible rights */
1900 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1902 cache.jiffies = jiffies;
1903 status = NFS_PROTO(inode)->access(inode, &cache);
1905 if (status == -ESTALE) {
1906 nfs_zap_caches(inode);
1907 if (!S_ISDIR(inode->i_mode))
1908 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
1912 nfs_access_add_cache(inode, &cache);
1914 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1919 static int nfs_open_permission_mask(int openflags)
1923 if (openflags & FMODE_READ)
1925 if (openflags & FMODE_WRITE)
1927 if (openflags & FMODE_EXEC)
1932 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1934 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1937 int nfs_permission(struct inode *inode, int mask)
1939 struct rpc_cred *cred;
1942 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1944 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1946 /* Is this sys_access() ? */
1947 if (mask & (MAY_ACCESS | MAY_CHDIR))
1950 switch (inode->i_mode & S_IFMT) {
1954 /* NFSv4 has atomic_open... */
1955 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1956 && (mask & MAY_OPEN)
1957 && !(mask & MAY_EXEC))
1962 * Optimize away all write operations, since the server
1963 * will check permissions when we perform the op.
1965 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1970 if (!NFS_PROTO(inode)->access)
1973 cred = rpc_lookup_cred();
1974 if (!IS_ERR(cred)) {
1975 res = nfs_do_access(inode, cred, mask);
1978 res = PTR_ERR(cred);
1980 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
1983 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1984 inode->i_sb->s_id, inode->i_ino, mask, res);
1987 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1989 res = generic_permission(inode, mask, NULL);
1995 * version-control: t
1996 * kept-new-versions: 5