1 // SPDX-License-Identifier: GPL-2.0
3 * cfg80211 scan result handling
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
25 #include "wext-compat.h"
29 * DOC: BSS tree/list structure
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
80 * struct cfg80211_colocated_ap - colocated AP information
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
101 struct cfg80211_colocated_ap {
102 struct list_head list;
104 u8 ssid[IEEE80211_MAX_SSID_LEN];
108 u8 unsolicited_probe:1,
118 static void bss_free(struct cfg80211_internal_bss *bss)
120 struct cfg80211_bss_ies *ies;
122 if (WARN_ON(atomic_read(&bss->hold)))
125 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
126 if (ies && !bss->pub.hidden_beacon_bss)
127 kfree_rcu(ies, rcu_head);
128 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
130 kfree_rcu(ies, rcu_head);
133 * This happens when the module is removed, it doesn't
134 * really matter any more save for completeness
136 if (!list_empty(&bss->hidden_list))
137 list_del(&bss->hidden_list);
142 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
143 struct cfg80211_internal_bss *bss)
145 lockdep_assert_held(&rdev->bss_lock);
149 if (bss->pub.hidden_beacon_bss)
150 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
152 if (bss->pub.transmitted_bss)
153 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
156 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
157 struct cfg80211_internal_bss *bss)
159 lockdep_assert_held(&rdev->bss_lock);
161 if (bss->pub.hidden_beacon_bss) {
162 struct cfg80211_internal_bss *hbss;
164 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
166 if (hbss->refcount == 0)
170 if (bss->pub.transmitted_bss) {
171 struct cfg80211_internal_bss *tbss;
173 tbss = bss_from_pub(bss->pub.transmitted_bss);
175 if (tbss->refcount == 0)
180 if (bss->refcount == 0)
184 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
185 struct cfg80211_internal_bss *bss)
187 lockdep_assert_held(&rdev->bss_lock);
189 if (!list_empty(&bss->hidden_list)) {
191 * don't remove the beacon entry if it has
192 * probe responses associated with it
194 if (!bss->pub.hidden_beacon_bss)
197 * if it's a probe response entry break its
198 * link to the other entries in the group
200 list_del_init(&bss->hidden_list);
203 list_del_init(&bss->list);
204 list_del_init(&bss->pub.nontrans_list);
205 rb_erase(&bss->rbn, &rdev->bss_tree);
207 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
208 "rdev bss entries[%d]/list[empty:%d] corruption\n",
209 rdev->bss_entries, list_empty(&rdev->bss_list));
210 bss_ref_put(rdev, bss);
214 bool cfg80211_is_element_inherited(const struct element *elem,
215 const struct element *non_inherit_elem)
217 u8 id_len, ext_id_len, i, loop_len, id;
220 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
223 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
224 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
227 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231 * non inheritance element format is:
232 * ext ID (56) | IDs list len | list | extension IDs list len | list
233 * Both lists are optional. Both lengths are mandatory.
234 * This means valid length is:
235 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
237 id_len = non_inherit_elem->data[1];
238 if (non_inherit_elem->datalen < 3 + id_len)
241 ext_id_len = non_inherit_elem->data[2 + id_len];
242 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
245 if (elem->id == WLAN_EID_EXTENSION) {
248 loop_len = ext_id_len;
249 list = &non_inherit_elem->data[3 + id_len];
255 list = &non_inherit_elem->data[2];
259 for (i = 0; i < loop_len; i++) {
266 EXPORT_SYMBOL(cfg80211_is_element_inherited);
268 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
269 const u8 *ie, size_t ie_len,
270 u8 **pos, u8 *buf, size_t buf_len)
272 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
273 elem->data + elem->datalen > ie + ie_len))
276 if (elem->datalen + 2 > buf + buf_len - *pos)
279 memcpy(*pos, elem, elem->datalen + 2);
280 *pos += elem->datalen + 2;
282 /* Finish if it is not fragmented */
283 if (elem->datalen != 255)
286 ie_len = ie + ie_len - elem->data - elem->datalen;
287 ie = (const u8 *)elem->data + elem->datalen;
289 for_each_element(elem, ie, ie_len) {
290 if (elem->id != WLAN_EID_FRAGMENT)
293 if (elem->datalen + 2 > buf + buf_len - *pos)
296 memcpy(*pos, elem, elem->datalen + 2);
297 *pos += elem->datalen + 2;
299 if (elem->datalen != 255)
306 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
307 const u8 *subie, size_t subie_len,
308 u8 *new_ie, size_t new_ie_len)
310 const struct element *non_inherit_elem, *parent, *sub;
313 unsigned int match_len;
315 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
318 /* We copy the elements one by one from the parent to the generated
320 * If they are not inherited (included in subie or in the non
321 * inheritance element), then we copy all occurrences the first time
322 * we see this element type.
324 for_each_element(parent, ie, ielen) {
325 if (parent->id == WLAN_EID_FRAGMENT)
328 if (parent->id == WLAN_EID_EXTENSION) {
329 if (parent->datalen < 1)
332 id = WLAN_EID_EXTENSION;
333 ext_id = parent->data[0];
340 /* Find first occurrence in subie */
341 sub = cfg80211_find_elem_match(id, subie, subie_len,
342 &ext_id, match_len, 0);
344 /* Copy from parent if not in subie and inherited */
346 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
347 if (!cfg80211_copy_elem_with_frags(parent,
356 /* Already copied if an earlier element had the same type */
357 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
358 &ext_id, match_len, 0))
361 /* Not inheriting, copy all similar elements from subie */
363 if (!cfg80211_copy_elem_with_frags(sub,
369 sub = cfg80211_find_elem_match(id,
370 sub->data + sub->datalen,
374 &ext_id, match_len, 0);
378 /* The above misses elements that are included in subie but not in the
379 * parent, so do a pass over subie and append those.
380 * Skip the non-tx BSSID caps and non-inheritance element.
382 for_each_element(sub, subie, subie_len) {
383 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
386 if (sub->id == WLAN_EID_FRAGMENT)
389 if (sub->id == WLAN_EID_EXTENSION) {
390 if (sub->datalen < 1)
393 id = WLAN_EID_EXTENSION;
394 ext_id = sub->data[0];
397 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
404 /* Processed if one was included in the parent */
405 if (cfg80211_find_elem_match(id, ie, ielen,
406 &ext_id, match_len, 0))
409 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
410 &pos, new_ie, new_ie_len))
417 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
418 const u8 *ssid, size_t ssid_len)
420 const struct cfg80211_bss_ies *ies;
421 const struct element *ssid_elem;
423 if (bssid && !ether_addr_equal(a->bssid, bssid))
429 ies = rcu_access_pointer(a->ies);
432 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
435 if (ssid_elem->datalen != ssid_len)
437 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
441 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
442 struct cfg80211_bss *nontrans_bss)
444 const struct element *ssid_elem;
445 struct cfg80211_bss *bss = NULL;
448 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
454 /* check if nontrans_bss is in the list */
455 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
456 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
457 ssid_elem->datalen)) {
466 * This is a bit weird - it's not on the list, but already on another
467 * one! The only way that could happen is if there's some BSSID/SSID
468 * shared by multiple APs in their multi-BSSID profiles, potentially
469 * with hidden SSID mixed in ... ignore it.
471 if (!list_empty(&nontrans_bss->nontrans_list))
474 /* add to the list */
475 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
479 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
480 unsigned long expire_time)
482 struct cfg80211_internal_bss *bss, *tmp;
483 bool expired = false;
485 lockdep_assert_held(&rdev->bss_lock);
487 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
488 if (atomic_read(&bss->hold))
490 if (!time_after(expire_time, bss->ts))
493 if (__cfg80211_unlink_bss(rdev, bss))
498 rdev->bss_generation++;
501 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
503 struct cfg80211_internal_bss *bss, *oldest = NULL;
506 lockdep_assert_held(&rdev->bss_lock);
508 list_for_each_entry(bss, &rdev->bss_list, list) {
509 if (atomic_read(&bss->hold))
512 if (!list_empty(&bss->hidden_list) &&
513 !bss->pub.hidden_beacon_bss)
516 if (oldest && time_before(oldest->ts, bss->ts))
521 if (WARN_ON(!oldest))
525 * The callers make sure to increase rdev->bss_generation if anything
526 * gets removed (and a new entry added), so there's no need to also do
530 ret = __cfg80211_unlink_bss(rdev, oldest);
535 static u8 cfg80211_parse_bss_param(u8 data,
536 struct cfg80211_colocated_ap *coloc_ap)
538 coloc_ap->oct_recommended =
539 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
540 coloc_ap->same_ssid =
541 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
542 coloc_ap->multi_bss =
543 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
544 coloc_ap->transmitted_bssid =
545 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
546 coloc_ap->unsolicited_probe =
547 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
548 coloc_ap->colocated_ess =
549 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
551 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
554 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
555 const struct element **elem, u32 *s_ssid)
558 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
559 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
562 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
566 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
568 struct cfg80211_colocated_ap *ap, *tmp_ap;
570 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
576 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
577 const u8 *pos, u8 length,
578 const struct element *ssid_elem,
583 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
585 /* The length is already verified by the caller to contain bss_params */
586 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
587 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
589 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
590 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
591 entry->short_ssid_valid = true;
593 bss_params = tbtt_info->bss_params;
595 /* Ignore disabled links */
596 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
597 if (le16_get_bits(tbtt_info->mld_params.params,
598 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
602 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
604 entry->psd_20 = tbtt_info->psd_20;
606 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
608 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
610 bss_params = tbtt_info->bss_params;
612 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
614 entry->psd_20 = tbtt_info->psd_20;
617 /* ignore entries with invalid BSSID */
618 if (!is_valid_ether_addr(entry->bssid))
621 /* skip non colocated APs */
622 if (!cfg80211_parse_bss_param(bss_params, entry))
625 /* no information about the short ssid. Consider the entry valid
626 * for now. It would later be dropped in case there are explicit
627 * SSIDs that need to be matched
629 if (!entry->same_ssid && !entry->short_ssid_valid)
632 if (entry->same_ssid) {
633 entry->short_ssid = s_ssid_tmp;
634 entry->short_ssid_valid = true;
637 * This is safe because we validate datalen in
638 * cfg80211_parse_colocated_ap(), before calling this
641 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
642 entry->ssid_len = ssid_elem->datalen;
648 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
649 struct list_head *list)
651 struct ieee80211_neighbor_ap_info *ap_info;
652 const struct element *elem, *ssid_elem;
655 int n_coloc = 0, ret;
658 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
662 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
663 ies->data, ies->len) {
665 end = elem->data + elem->datalen;
667 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
668 while (pos + sizeof(*ap_info) <= end) {
669 enum nl80211_band band;
673 ap_info = (void *)pos;
674 count = u8_get_bits(ap_info->tbtt_info_hdr,
675 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
676 length = ap_info->tbtt_info_len;
678 pos += sizeof(*ap_info);
680 if (!ieee80211_operating_class_to_band(ap_info->op_class,
684 freq = ieee80211_channel_to_frequency(ap_info->channel,
687 if (end - pos < count * length)
690 if (u8_get_bits(ap_info->tbtt_info_hdr,
691 IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
692 IEEE80211_TBTT_INFO_TYPE_TBTT) {
693 pos += count * length;
697 /* TBTT info must include bss param + BSSID +
698 * (short SSID or same_ssid bit to be set).
699 * ignore other options, and move to the
702 if (band != NL80211_BAND_6GHZ ||
703 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
705 length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
706 length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
708 pos += count * length;
712 for (i = 0; i < count; i++) {
713 struct cfg80211_colocated_ap *entry;
715 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
721 entry->center_freq = freq;
723 if (!cfg80211_parse_ap_info(entry, pos, length,
727 list_add_tail(&entry->list, &ap_list);
738 cfg80211_free_coloc_ap_list(&ap_list);
743 list_splice_tail(&ap_list, list);
747 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
748 struct ieee80211_channel *chan,
752 u32 n_channels = request->n_channels;
753 struct cfg80211_scan_6ghz_params *params =
754 &request->scan_6ghz_params[request->n_6ghz_params];
756 for (i = 0; i < n_channels; i++) {
757 if (request->channels[i] == chan) {
759 params->channel_idx = i;
764 request->channels[n_channels] = chan;
766 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
769 request->n_channels++;
772 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
773 struct cfg80211_scan_request *request)
778 for (i = 0; i < request->n_ssids; i++) {
779 /* wildcard ssid in the scan request */
780 if (!request->ssids[i].ssid_len) {
781 if (ap->multi_bss && !ap->transmitted_bssid)
788 ap->ssid_len == request->ssids[i].ssid_len) {
789 if (!memcmp(request->ssids[i].ssid, ap->ssid,
792 } else if (ap->short_ssid_valid) {
793 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
794 request->ssids[i].ssid_len);
796 if (ap->short_ssid == s_ssid)
804 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
807 struct cfg80211_colocated_ap *ap;
808 int n_channels, count = 0, err;
809 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
810 LIST_HEAD(coloc_ap_list);
811 bool need_scan_psc = true;
812 const struct ieee80211_sband_iftype_data *iftd;
814 rdev_req->scan_6ghz = true;
816 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
819 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
820 rdev_req->wdev->iftype);
821 if (!iftd || !iftd->he_cap.has_he)
824 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
826 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
827 struct cfg80211_internal_bss *intbss;
829 spin_lock_bh(&rdev->bss_lock);
830 list_for_each_entry(intbss, &rdev->bss_list, list) {
831 struct cfg80211_bss *res = &intbss->pub;
832 const struct cfg80211_bss_ies *ies;
834 ies = rcu_access_pointer(res->ies);
835 count += cfg80211_parse_colocated_ap(ies,
838 spin_unlock_bh(&rdev->bss_lock);
841 request = kzalloc(struct_size(request, channels, n_channels) +
842 sizeof(*request->scan_6ghz_params) * count +
843 sizeof(*request->ssids) * rdev_req->n_ssids,
846 cfg80211_free_coloc_ap_list(&coloc_ap_list);
850 *request = *rdev_req;
851 request->n_channels = 0;
852 request->scan_6ghz_params =
853 (void *)&request->channels[n_channels];
856 * PSC channels should not be scanned in case of direct scan with 1 SSID
857 * and at least one of the reported co-located APs with same SSID
858 * indicating that all APs in the same ESS are co-located
860 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
861 list_for_each_entry(ap, &coloc_ap_list, list) {
862 if (ap->colocated_ess &&
863 cfg80211_find_ssid_match(ap, request)) {
864 need_scan_psc = false;
871 * add to the scan request the channels that need to be scanned
872 * regardless of the collocated APs (PSC channels or all channels
873 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
875 for (i = 0; i < rdev_req->n_channels; i++) {
876 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
878 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
879 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
880 cfg80211_scan_req_add_chan(request,
881 rdev_req->channels[i],
886 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
889 list_for_each_entry(ap, &coloc_ap_list, list) {
891 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
892 &request->scan_6ghz_params[request->n_6ghz_params];
893 struct ieee80211_channel *chan =
894 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
896 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
899 for (i = 0; i < rdev_req->n_channels; i++) {
900 if (rdev_req->channels[i] == chan)
907 if (request->n_ssids > 0 &&
908 !cfg80211_find_ssid_match(ap, request))
911 if (!is_broadcast_ether_addr(request->bssid) &&
912 !ether_addr_equal(request->bssid, ap->bssid))
915 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
918 cfg80211_scan_req_add_chan(request, chan, true);
919 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
920 scan_6ghz_params->short_ssid = ap->short_ssid;
921 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
922 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
923 scan_6ghz_params->psd_20 = ap->psd_20;
926 * If a PSC channel is added to the scan and 'need_scan_psc' is
927 * set to false, then all the APs that the scan logic is
928 * interested with on the channel are collocated and thus there
929 * is no need to perform the initial PSC channel listen.
931 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
932 scan_6ghz_params->psc_no_listen = true;
934 request->n_6ghz_params++;
938 cfg80211_free_coloc_ap_list(&coloc_ap_list);
940 if (request->n_channels) {
941 struct cfg80211_scan_request *old = rdev->int_scan_req;
942 rdev->int_scan_req = request;
945 * Add the ssids from the parent scan request to the new scan
946 * request, so the driver would be able to use them in its
947 * probe requests to discover hidden APs on PSC channels.
949 request->ssids = (void *)&request->channels[request->n_channels];
950 request->n_ssids = rdev_req->n_ssids;
951 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
955 * If this scan follows a previous scan, save the scan start
956 * info from the first part of the scan
959 rdev->int_scan_req->info = old->info;
961 err = rdev_scan(rdev, request);
963 rdev->int_scan_req = old;
976 int cfg80211_scan(struct cfg80211_registered_device *rdev)
978 struct cfg80211_scan_request *request;
979 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
980 u32 n_channels = 0, idx, i;
982 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
983 return rdev_scan(rdev, rdev_req);
985 for (i = 0; i < rdev_req->n_channels; i++) {
986 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
991 return cfg80211_scan_6ghz(rdev);
993 request = kzalloc(struct_size(request, channels, n_channels),
998 *request = *rdev_req;
999 request->n_channels = n_channels;
1001 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1002 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1003 request->channels[idx++] = rdev_req->channels[i];
1006 rdev_req->scan_6ghz = false;
1007 rdev->int_scan_req = request;
1008 return rdev_scan(rdev, request);
1011 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1014 struct cfg80211_scan_request *request, *rdev_req;
1015 struct wireless_dev *wdev;
1016 struct sk_buff *msg;
1017 #ifdef CONFIG_CFG80211_WEXT
1018 union iwreq_data wrqu;
1021 lockdep_assert_held(&rdev->wiphy.mtx);
1023 if (rdev->scan_msg) {
1024 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1025 rdev->scan_msg = NULL;
1029 rdev_req = rdev->scan_req;
1033 wdev = rdev_req->wdev;
1034 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1036 if (wdev_running(wdev) &&
1037 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1038 !rdev_req->scan_6ghz && !request->info.aborted &&
1039 !cfg80211_scan_6ghz(rdev))
1043 * This must be before sending the other events!
1044 * Otherwise, wpa_supplicant gets completely confused with
1048 cfg80211_sme_scan_done(wdev->netdev);
1050 if (!request->info.aborted &&
1051 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1052 /* flush entries from previous scans */
1053 spin_lock_bh(&rdev->bss_lock);
1054 __cfg80211_bss_expire(rdev, request->scan_start);
1055 spin_unlock_bh(&rdev->bss_lock);
1058 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1060 #ifdef CONFIG_CFG80211_WEXT
1061 if (wdev->netdev && !request->info.aborted) {
1062 memset(&wrqu, 0, sizeof(wrqu));
1064 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1068 dev_put(wdev->netdev);
1070 kfree(rdev->int_scan_req);
1071 rdev->int_scan_req = NULL;
1073 kfree(rdev->scan_req);
1074 rdev->scan_req = NULL;
1077 rdev->scan_msg = msg;
1079 nl80211_send_scan_msg(rdev, msg);
1082 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1084 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1087 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1088 struct cfg80211_scan_info *info)
1090 struct cfg80211_scan_info old_info = request->info;
1092 trace_cfg80211_scan_done(request, info);
1093 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1094 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1096 request->info = *info;
1099 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1100 * be of the first part. In such a case old_info.scan_start_tsf should
1103 if (request->scan_6ghz && old_info.scan_start_tsf) {
1104 request->info.scan_start_tsf = old_info.scan_start_tsf;
1105 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1106 sizeof(request->info.tsf_bssid));
1109 request->notified = true;
1110 wiphy_work_queue(request->wiphy,
1111 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1113 EXPORT_SYMBOL(cfg80211_scan_done);
1115 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1116 struct cfg80211_sched_scan_request *req)
1118 lockdep_assert_held(&rdev->wiphy.mtx);
1120 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1123 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1124 struct cfg80211_sched_scan_request *req)
1126 lockdep_assert_held(&rdev->wiphy.mtx);
1128 list_del_rcu(&req->list);
1129 kfree_rcu(req, rcu_head);
1132 static struct cfg80211_sched_scan_request *
1133 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1135 struct cfg80211_sched_scan_request *pos;
1137 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1138 lockdep_is_held(&rdev->wiphy.mtx)) {
1139 if (pos->reqid == reqid)
1146 * Determines if a scheduled scan request can be handled. When a legacy
1147 * scheduled scan is running no other scheduled scan is allowed regardless
1148 * whether the request is for legacy or multi-support scan. When a multi-support
1149 * scheduled scan is running a request for legacy scan is not allowed. In this
1150 * case a request for multi-support scan can be handled if resources are
1151 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1153 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1156 struct cfg80211_sched_scan_request *pos;
1159 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1160 /* request id zero means legacy in progress */
1161 if (!i && !pos->reqid)
1162 return -EINPROGRESS;
1167 /* no legacy allowed when multi request(s) are active */
1169 return -EINPROGRESS;
1171 /* resource limit reached */
1172 if (i == rdev->wiphy.max_sched_scan_reqs)
1178 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1180 struct cfg80211_registered_device *rdev;
1181 struct cfg80211_sched_scan_request *req, *tmp;
1183 rdev = container_of(work, struct cfg80211_registered_device,
1186 wiphy_lock(&rdev->wiphy);
1187 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1188 if (req->report_results) {
1189 req->report_results = false;
1190 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1191 /* flush entries from previous scans */
1192 spin_lock_bh(&rdev->bss_lock);
1193 __cfg80211_bss_expire(rdev, req->scan_start);
1194 spin_unlock_bh(&rdev->bss_lock);
1195 req->scan_start = jiffies;
1197 nl80211_send_sched_scan(req,
1198 NL80211_CMD_SCHED_SCAN_RESULTS);
1201 wiphy_unlock(&rdev->wiphy);
1204 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1206 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1207 struct cfg80211_sched_scan_request *request;
1209 trace_cfg80211_sched_scan_results(wiphy, reqid);
1210 /* ignore if we're not scanning */
1213 request = cfg80211_find_sched_scan_req(rdev, reqid);
1215 request->report_results = true;
1216 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1220 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1222 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1224 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1226 lockdep_assert_held(&wiphy->mtx);
1228 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1230 __cfg80211_stop_sched_scan(rdev, reqid, true);
1232 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1234 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1237 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1238 wiphy_unlock(wiphy);
1240 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1242 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1243 struct cfg80211_sched_scan_request *req,
1244 bool driver_initiated)
1246 lockdep_assert_held(&rdev->wiphy.mtx);
1248 if (!driver_initiated) {
1249 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1254 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1256 cfg80211_del_sched_scan_req(rdev, req);
1261 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1262 u64 reqid, bool driver_initiated)
1264 struct cfg80211_sched_scan_request *sched_scan_req;
1266 lockdep_assert_held(&rdev->wiphy.mtx);
1268 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1269 if (!sched_scan_req)
1272 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1276 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1277 unsigned long age_secs)
1279 struct cfg80211_internal_bss *bss;
1280 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1282 spin_lock_bh(&rdev->bss_lock);
1283 list_for_each_entry(bss, &rdev->bss_list, list)
1284 bss->ts -= age_jiffies;
1285 spin_unlock_bh(&rdev->bss_lock);
1288 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1290 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1293 void cfg80211_bss_flush(struct wiphy *wiphy)
1295 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1297 spin_lock_bh(&rdev->bss_lock);
1298 __cfg80211_bss_expire(rdev, jiffies);
1299 spin_unlock_bh(&rdev->bss_lock);
1301 EXPORT_SYMBOL(cfg80211_bss_flush);
1303 const struct element *
1304 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1305 const u8 *match, unsigned int match_len,
1306 unsigned int match_offset)
1308 const struct element *elem;
1310 for_each_element_id(elem, eid, ies, len) {
1311 if (elem->datalen >= match_offset + match_len &&
1312 !memcmp(elem->data + match_offset, match, match_len))
1318 EXPORT_SYMBOL(cfg80211_find_elem_match);
1320 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1324 const struct element *elem;
1325 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1326 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1328 if (WARN_ON(oui_type > 0xff))
1331 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1332 match, match_len, 0);
1334 if (!elem || elem->datalen < 4)
1339 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1342 * enum bss_compare_mode - BSS compare mode
1343 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1344 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1345 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1347 enum bss_compare_mode {
1353 static int cmp_bss(struct cfg80211_bss *a,
1354 struct cfg80211_bss *b,
1355 enum bss_compare_mode mode)
1357 const struct cfg80211_bss_ies *a_ies, *b_ies;
1358 const u8 *ie1 = NULL;
1359 const u8 *ie2 = NULL;
1362 if (a->channel != b->channel)
1363 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1364 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1366 a_ies = rcu_access_pointer(a->ies);
1369 b_ies = rcu_access_pointer(b->ies);
1373 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1374 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1375 a_ies->data, a_ies->len);
1376 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1377 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1378 b_ies->data, b_ies->len);
1382 if (ie1[1] == ie2[1])
1383 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1385 mesh_id_cmp = ie2[1] - ie1[1];
1387 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1388 a_ies->data, a_ies->len);
1389 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1390 b_ies->data, b_ies->len);
1394 if (ie1[1] != ie2[1])
1395 return ie2[1] - ie1[1];
1396 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1400 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1404 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1405 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1411 * Note that with "hide_ssid", the function returns a match if
1412 * the already-present BSS ("b") is a hidden SSID beacon for
1413 * the new BSS ("a").
1416 /* sort missing IE before (left of) present IE */
1423 case BSS_CMP_HIDE_ZLEN:
1425 * In ZLEN mode we assume the BSS entry we're
1426 * looking for has a zero-length SSID. So if
1427 * the one we're looking at right now has that,
1428 * return 0. Otherwise, return the difference
1429 * in length, but since we're looking for the
1430 * 0-length it's really equivalent to returning
1431 * the length of the one we're looking at.
1433 * No content comparison is needed as we assume
1434 * the content length is zero.
1437 case BSS_CMP_REGULAR:
1439 /* sort by length first, then by contents */
1440 if (ie1[1] != ie2[1])
1441 return ie2[1] - ie1[1];
1442 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1443 case BSS_CMP_HIDE_NUL:
1444 if (ie1[1] != ie2[1])
1445 return ie2[1] - ie1[1];
1446 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1447 for (i = 0; i < ie2[1]; i++)
1454 static bool cfg80211_bss_type_match(u16 capability,
1455 enum nl80211_band band,
1456 enum ieee80211_bss_type bss_type)
1461 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1464 if (band == NL80211_BAND_60GHZ) {
1465 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1467 case IEEE80211_BSS_TYPE_ESS:
1468 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1470 case IEEE80211_BSS_TYPE_PBSS:
1471 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1473 case IEEE80211_BSS_TYPE_IBSS:
1474 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1480 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1482 case IEEE80211_BSS_TYPE_ESS:
1483 val = WLAN_CAPABILITY_ESS;
1485 case IEEE80211_BSS_TYPE_IBSS:
1486 val = WLAN_CAPABILITY_IBSS;
1488 case IEEE80211_BSS_TYPE_MBSS:
1496 ret = ((capability & mask) == val);
1500 /* Returned bss is reference counted and must be cleaned up appropriately. */
1501 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1502 struct ieee80211_channel *channel,
1504 const u8 *ssid, size_t ssid_len,
1505 enum ieee80211_bss_type bss_type,
1506 enum ieee80211_privacy privacy)
1508 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1509 struct cfg80211_internal_bss *bss, *res = NULL;
1510 unsigned long now = jiffies;
1513 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1516 spin_lock_bh(&rdev->bss_lock);
1518 list_for_each_entry(bss, &rdev->bss_list, list) {
1519 if (!cfg80211_bss_type_match(bss->pub.capability,
1520 bss->pub.channel->band, bss_type))
1523 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1524 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1525 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1527 if (channel && bss->pub.channel != channel)
1529 if (!is_valid_ether_addr(bss->pub.bssid))
1531 /* Don't get expired BSS structs */
1532 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1533 !atomic_read(&bss->hold))
1535 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1537 bss_ref_get(rdev, res);
1542 spin_unlock_bh(&rdev->bss_lock);
1545 trace_cfg80211_return_bss(&res->pub);
1548 EXPORT_SYMBOL(cfg80211_get_bss);
1550 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1551 struct cfg80211_internal_bss *bss)
1553 struct rb_node **p = &rdev->bss_tree.rb_node;
1554 struct rb_node *parent = NULL;
1555 struct cfg80211_internal_bss *tbss;
1560 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1562 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1564 if (WARN_ON(!cmp)) {
1565 /* will sort of leak this BSS */
1572 p = &(*p)->rb_right;
1575 rb_link_node(&bss->rbn, parent, p);
1576 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1579 static struct cfg80211_internal_bss *
1580 rb_find_bss(struct cfg80211_registered_device *rdev,
1581 struct cfg80211_internal_bss *res,
1582 enum bss_compare_mode mode)
1584 struct rb_node *n = rdev->bss_tree.rb_node;
1585 struct cfg80211_internal_bss *bss;
1589 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1590 r = cmp_bss(&res->pub, &bss->pub, mode);
1603 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1604 struct cfg80211_internal_bss *new)
1606 const struct cfg80211_bss_ies *ies;
1607 struct cfg80211_internal_bss *bss;
1613 ies = rcu_access_pointer(new->pub.beacon_ies);
1617 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1624 for (i = 0; i < ssidlen; i++)
1628 /* not a hidden SSID */
1632 /* This is the bad part ... */
1634 list_for_each_entry(bss, &rdev->bss_list, list) {
1636 * we're iterating all the entries anyway, so take the
1637 * opportunity to validate the list length accounting
1641 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1643 if (bss->pub.channel != new->pub.channel)
1645 if (rcu_access_pointer(bss->pub.beacon_ies))
1647 ies = rcu_access_pointer(bss->pub.ies);
1650 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1653 if (ssidlen && ie[1] != ssidlen)
1655 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1657 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1658 list_del(&bss->hidden_list);
1660 list_add(&bss->hidden_list, &new->hidden_list);
1661 bss->pub.hidden_beacon_bss = &new->pub;
1662 new->refcount += bss->refcount;
1663 rcu_assign_pointer(bss->pub.beacon_ies,
1664 new->pub.beacon_ies);
1667 WARN_ONCE(n_entries != rdev->bss_entries,
1668 "rdev bss entries[%d]/list[len:%d] corruption\n",
1669 rdev->bss_entries, n_entries);
1674 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1675 const struct cfg80211_bss_ies *new_ies,
1676 const struct cfg80211_bss_ies *old_ies)
1678 struct cfg80211_internal_bss *bss;
1680 /* Assign beacon IEs to all sub entries */
1681 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1682 const struct cfg80211_bss_ies *ies;
1684 ies = rcu_access_pointer(bss->pub.beacon_ies);
1685 WARN_ON(ies != old_ies);
1687 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1692 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1693 struct cfg80211_internal_bss *known,
1694 struct cfg80211_internal_bss *new,
1697 lockdep_assert_held(&rdev->bss_lock);
1700 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1701 const struct cfg80211_bss_ies *old;
1703 old = rcu_access_pointer(known->pub.proberesp_ies);
1705 rcu_assign_pointer(known->pub.proberesp_ies,
1706 new->pub.proberesp_ies);
1707 /* Override possible earlier Beacon frame IEs */
1708 rcu_assign_pointer(known->pub.ies,
1709 new->pub.proberesp_ies);
1711 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1712 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1713 const struct cfg80211_bss_ies *old;
1715 if (known->pub.hidden_beacon_bss &&
1716 !list_empty(&known->hidden_list)) {
1717 const struct cfg80211_bss_ies *f;
1719 /* The known BSS struct is one of the probe
1720 * response members of a group, but we're
1721 * receiving a beacon (beacon_ies in the new
1722 * bss is used). This can only mean that the
1723 * AP changed its beacon from not having an
1724 * SSID to showing it, which is confusing so
1725 * drop this information.
1728 f = rcu_access_pointer(new->pub.beacon_ies);
1729 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1733 old = rcu_access_pointer(known->pub.beacon_ies);
1735 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1737 /* Override IEs if they were from a beacon before */
1738 if (old == rcu_access_pointer(known->pub.ies))
1739 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1741 cfg80211_update_hidden_bsses(known,
1742 rcu_access_pointer(new->pub.beacon_ies),
1746 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1749 known->pub.beacon_interval = new->pub.beacon_interval;
1751 /* don't update the signal if beacon was heard on
1755 known->pub.signal = new->pub.signal;
1756 known->pub.capability = new->pub.capability;
1757 known->ts = new->ts;
1758 known->ts_boottime = new->ts_boottime;
1759 known->parent_tsf = new->parent_tsf;
1760 known->pub.chains = new->pub.chains;
1761 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1762 IEEE80211_MAX_CHAINS);
1763 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1764 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1765 known->pub.bssid_index = new->pub.bssid_index;
1770 /* Returned bss is reference counted and must be cleaned up appropriately. */
1771 static struct cfg80211_internal_bss *
1772 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1773 struct cfg80211_internal_bss *tmp,
1774 bool signal_valid, unsigned long ts)
1776 struct cfg80211_internal_bss *found = NULL;
1778 if (WARN_ON(!tmp->pub.channel))
1783 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1787 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1790 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1793 struct cfg80211_internal_bss *new;
1794 struct cfg80211_internal_bss *hidden;
1795 struct cfg80211_bss_ies *ies;
1798 * create a copy -- the "res" variable that is passed in
1799 * is allocated on the stack since it's not needed in the
1800 * more common case of an update
1802 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1805 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1807 kfree_rcu(ies, rcu_head);
1808 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1810 kfree_rcu(ies, rcu_head);
1813 memcpy(new, tmp, sizeof(*new));
1815 INIT_LIST_HEAD(&new->hidden_list);
1816 INIT_LIST_HEAD(&new->pub.nontrans_list);
1817 /* we'll set this later if it was non-NULL */
1818 new->pub.transmitted_bss = NULL;
1820 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1821 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1823 hidden = rb_find_bss(rdev, tmp,
1826 new->pub.hidden_beacon_bss = &hidden->pub;
1827 list_add(&new->hidden_list,
1828 &hidden->hidden_list);
1830 rcu_assign_pointer(new->pub.beacon_ies,
1831 hidden->pub.beacon_ies);
1835 * Ok so we found a beacon, and don't have an entry. If
1836 * it's a beacon with hidden SSID, we might be in for an
1837 * expensive search for any probe responses that should
1838 * be grouped with this beacon for updates ...
1840 if (!cfg80211_combine_bsses(rdev, new)) {
1841 bss_ref_put(rdev, new);
1846 if (rdev->bss_entries >= bss_entries_limit &&
1847 !cfg80211_bss_expire_oldest(rdev)) {
1848 bss_ref_put(rdev, new);
1852 /* This must be before the call to bss_ref_get */
1853 if (tmp->pub.transmitted_bss) {
1854 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1855 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1858 list_add_tail(&new->list, &rdev->bss_list);
1859 rdev->bss_entries++;
1860 rb_insert_bss(rdev, new);
1864 rdev->bss_generation++;
1865 bss_ref_get(rdev, found);
1870 struct cfg80211_internal_bss *
1871 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1872 struct cfg80211_internal_bss *tmp,
1873 bool signal_valid, unsigned long ts)
1875 struct cfg80211_internal_bss *res;
1877 spin_lock_bh(&rdev->bss_lock);
1878 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1879 spin_unlock_bh(&rdev->bss_lock);
1884 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1885 enum nl80211_band band)
1887 const struct element *tmp;
1889 if (band == NL80211_BAND_6GHZ) {
1890 struct ieee80211_he_operation *he_oper;
1892 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1894 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1895 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1896 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1898 he_oper = (void *)&tmp->data[1];
1900 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1904 return he_6ghz_oper->primary;
1906 } else if (band == NL80211_BAND_S1GHZ) {
1907 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1908 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1909 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1911 return s1gop->oper_ch;
1914 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1915 if (tmp && tmp->datalen == 1)
1916 return tmp->data[0];
1918 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1920 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1921 struct ieee80211_ht_operation *htop = (void *)tmp->data;
1923 return htop->primary_chan;
1929 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1932 * Update RX channel information based on the available frame payload
1933 * information. This is mainly for the 2.4 GHz band where frames can be received
1934 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1935 * element to indicate the current (transmitting) channel, but this might also
1936 * be needed on other bands if RX frequency does not match with the actual
1937 * operating channel of a BSS, or if the AP reports a different primary channel.
1939 static struct ieee80211_channel *
1940 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1941 struct ieee80211_channel *channel)
1945 struct ieee80211_channel *alt_channel;
1947 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1950 if (channel_number < 0) {
1951 /* No channel information in frame payload */
1955 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1958 * Frame info (beacon/prob res) is the same as received channel,
1959 * no need for further processing.
1961 if (freq == ieee80211_channel_to_khz(channel))
1964 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1966 if (channel->band == NL80211_BAND_2GHZ ||
1967 channel->band == NL80211_BAND_6GHZ) {
1969 * Better not allow unexpected channels when that could
1970 * be going beyond the 1-11 range (e.g., discovering
1971 * BSS on channel 12 when radio is configured for
1972 * channel 11) or beyond the 6 GHz channel range.
1977 /* No match for the payload channel number - ignore it */
1982 * Use the channel determined through the payload channel number
1983 * instead of the RX channel reported by the driver.
1985 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1990 struct cfg80211_inform_single_bss_data {
1991 struct cfg80211_inform_bss *drv_data;
1992 enum cfg80211_bss_frame_type ftype;
1993 struct ieee80211_channel *channel;
1997 u16 beacon_interval;
2002 BSS_SOURCE_DIRECT = 0,
2004 BSS_SOURCE_STA_PROFILE,
2006 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2007 struct cfg80211_bss *source_bss;
2008 u8 max_bssid_indicator;
2012 /* Returned bss is reference counted and must be cleaned up appropriately. */
2013 static struct cfg80211_bss *
2014 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2015 struct cfg80211_inform_single_bss_data *data,
2018 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2019 struct cfg80211_inform_bss *drv_data = data->drv_data;
2020 struct cfg80211_bss_ies *ies;
2021 struct ieee80211_channel *channel;
2022 struct cfg80211_internal_bss tmp = {}, *res;
2027 if (WARN_ON(!wiphy))
2030 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2031 (drv_data->signal < 0 || drv_data->signal > 100)))
2034 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2037 channel = data->channel;
2039 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2044 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2045 tmp.pub.channel = channel;
2046 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2047 tmp.pub.signal = drv_data->signal;
2050 tmp.pub.beacon_interval = data->beacon_interval;
2051 tmp.pub.capability = data->capability;
2052 tmp.ts_boottime = drv_data->boottime_ns;
2053 tmp.parent_tsf = drv_data->parent_tsf;
2054 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2056 if (data->bss_source != BSS_SOURCE_DIRECT) {
2057 tmp.pub.transmitted_bss = data->source_bss;
2058 ts = bss_from_pub(data->source_bss)->ts;
2059 tmp.pub.bssid_index = data->bssid_index;
2060 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2064 if (channel->band == NL80211_BAND_60GHZ) {
2065 bss_type = data->capability &
2066 WLAN_CAPABILITY_DMG_TYPE_MASK;
2067 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2068 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2069 regulatory_hint_found_beacon(wiphy, channel,
2072 if (data->capability & WLAN_CAPABILITY_ESS)
2073 regulatory_hint_found_beacon(wiphy, channel,
2079 * If we do not know here whether the IEs are from a Beacon or Probe
2080 * Response frame, we need to pick one of the options and only use it
2081 * with the driver that does not provide the full Beacon/Probe Response
2082 * frame. Use Beacon frame pointer to avoid indicating that this should
2083 * override the IEs pointer should we have received an earlier
2084 * indication of Probe Response data.
2086 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2089 ies->len = data->ielen;
2090 ies->tsf = data->tsf;
2091 ies->from_beacon = false;
2092 memcpy(ies->data, data->ie, data->ielen);
2094 switch (data->ftype) {
2095 case CFG80211_BSS_FTYPE_BEACON:
2096 ies->from_beacon = true;
2098 case CFG80211_BSS_FTYPE_UNKNOWN:
2099 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2101 case CFG80211_BSS_FTYPE_PRESP:
2102 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2105 rcu_assign_pointer(tmp.pub.ies, ies);
2107 signal_valid = drv_data->chan == channel;
2108 spin_lock_bh(&rdev->bss_lock);
2109 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2113 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
2115 if (data->bss_source == BSS_SOURCE_MBSSID) {
2116 /* this is a nontransmitting bss, we need to add it to
2117 * transmitting bss' list if it is not there
2119 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2120 if (__cfg80211_unlink_bss(rdev, res)) {
2121 rdev->bss_generation++;
2129 spin_unlock_bh(&rdev->bss_lock);
2131 trace_cfg80211_return_bss(&res->pub);
2132 /* __cfg80211_bss_update gives us a referenced result */
2136 spin_unlock_bh(&rdev->bss_lock);
2140 static const struct element
2141 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2142 const struct element *mbssid_elem,
2143 const struct element *sub_elem)
2145 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2146 const struct element *next_mbssid;
2147 const struct element *next_sub;
2149 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2151 ielen - (mbssid_end - ie));
2154 * If it is not the last subelement in current MBSSID IE or there isn't
2155 * a next MBSSID IE - profile is complete.
2157 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2161 /* For any length error, just return NULL */
2163 if (next_mbssid->datalen < 4)
2166 next_sub = (void *)&next_mbssid->data[1];
2168 if (next_mbssid->data + next_mbssid->datalen <
2169 next_sub->data + next_sub->datalen)
2172 if (next_sub->id != 0 || next_sub->datalen < 2)
2176 * Check if the first element in the next sub element is a start
2179 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2183 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2184 const struct element *mbssid_elem,
2185 const struct element *sub_elem,
2186 u8 *merged_ie, size_t max_copy_len)
2188 size_t copied_len = sub_elem->datalen;
2189 const struct element *next_mbssid;
2191 if (sub_elem->datalen > max_copy_len)
2194 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2196 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2199 const struct element *next_sub = (void *)&next_mbssid->data[1];
2201 if (copied_len + next_sub->datalen > max_copy_len)
2203 memcpy(merged_ie + copied_len, next_sub->data,
2205 copied_len += next_sub->datalen;
2210 EXPORT_SYMBOL(cfg80211_merge_profile);
2213 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2214 struct cfg80211_inform_single_bss_data *tx_data,
2215 struct cfg80211_bss *source_bss,
2218 struct cfg80211_inform_single_bss_data data = {
2219 .drv_data = tx_data->drv_data,
2220 .ftype = tx_data->ftype,
2221 .tsf = tx_data->tsf,
2222 .beacon_interval = tx_data->beacon_interval,
2223 .source_bss = source_bss,
2224 .bss_source = BSS_SOURCE_MBSSID,
2226 const u8 *mbssid_index_ie;
2227 const struct element *elem, *sub;
2228 u8 *new_ie, *profile;
2229 u64 seen_indices = 0;
2230 struct cfg80211_bss *bss;
2234 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2235 tx_data->ie, tx_data->ielen))
2237 if (!wiphy->support_mbssid)
2239 if (wiphy->support_only_he_mbssid &&
2240 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2241 tx_data->ie, tx_data->ielen))
2244 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2248 profile = kmalloc(tx_data->ielen, gfp);
2252 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2253 tx_data->ie, tx_data->ielen) {
2254 if (elem->datalen < 4)
2256 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2258 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2261 if (sub->id != 0 || sub->datalen < 4) {
2262 /* not a valid BSS profile */
2266 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2267 sub->data[1] != 2) {
2268 /* The first element within the Nontransmitted
2269 * BSSID Profile is not the Nontransmitted
2270 * BSSID Capability element.
2275 memset(profile, 0, tx_data->ielen);
2276 profile_len = cfg80211_merge_profile(tx_data->ie,
2283 /* found a Nontransmitted BSSID Profile */
2284 mbssid_index_ie = cfg80211_find_ie
2285 (WLAN_EID_MULTI_BSSID_IDX,
2286 profile, profile_len);
2287 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2288 mbssid_index_ie[2] == 0 ||
2289 mbssid_index_ie[2] > 46) {
2290 /* No valid Multiple BSSID-Index element */
2294 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2295 /* We don't support legacy split of a profile */
2296 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2297 mbssid_index_ie[2]);
2299 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2301 data.bssid_index = mbssid_index_ie[2];
2302 data.max_bssid_indicator = elem->data[0];
2304 cfg80211_gen_new_bssid(tx_data->bssid,
2305 data.max_bssid_indicator,
2309 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2311 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2316 IEEE80211_MAX_DATA_LEN);
2320 data.capability = get_unaligned_le16(profile + 2);
2321 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2324 cfg80211_put_bss(wiphy, bss);
2333 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2334 size_t ieslen, u8 *data, size_t data_len,
2337 const struct element *next;
2344 /* elem might be invalid after the memmove */
2345 next = (void *)(elem->data + elem->datalen);
2346 elem_datalen = elem->datalen;
2348 if (elem->id == WLAN_EID_EXTENSION) {
2349 copied = elem->datalen - 1;
2350 if (copied > data_len)
2353 memmove(data, elem->data + 1, copied);
2355 copied = elem->datalen;
2356 if (copied > data_len)
2359 memmove(data, elem->data, copied);
2362 /* Fragmented elements must have 255 bytes */
2363 if (elem_datalen < 255)
2367 elem->data < ies + ieslen &&
2368 elem->data + elem->datalen <= ies + ieslen;
2370 /* elem might be invalid after the memmove */
2371 next = (void *)(elem->data + elem->datalen);
2373 if (elem->id != frag_id)
2376 elem_datalen = elem->datalen;
2378 if (copied + elem_datalen > data_len)
2381 memmove(data + copied, elem->data, elem_datalen);
2382 copied += elem_datalen;
2384 /* Only the last fragment may be short */
2385 if (elem_datalen != 255)
2391 EXPORT_SYMBOL(cfg80211_defragment_element);
2393 struct cfg80211_mle {
2394 struct ieee80211_multi_link_elem *mle;
2395 struct ieee80211_mle_per_sta_profile
2396 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2397 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2402 static struct cfg80211_mle *
2403 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2406 const struct element *elem;
2407 struct cfg80211_mle *res;
2410 u8 common_size, idx;
2412 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2415 /* Required length for first defragmentation */
2416 buf_len = mle->datalen - 1;
2417 for_each_element(elem, mle->data + mle->datalen,
2418 ielen - sizeof(*mle) + mle->datalen) {
2419 if (elem->id != WLAN_EID_FRAGMENT)
2422 buf_len += elem->datalen;
2425 res = kzalloc(struct_size(res, data, buf_len), gfp);
2429 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2435 res->mle = (void *)res->data;
2437 /* Find the sub-element area in the buffer */
2438 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2439 ie = res->data + common_size;
2440 ielen = mle_len - common_size;
2443 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2445 res->sta_prof[idx] = (void *)elem->data;
2446 res->sta_prof_len[idx] = elem->datalen;
2449 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2452 if (!for_each_element_completed(elem, ie, ielen))
2455 /* Defragment sta_info in-place */
2456 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2458 if (res->sta_prof_len[idx] < 255)
2461 elem = (void *)res->sta_prof[idx] - 2;
2463 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2464 res->sta_prof[idx + 1])
2465 buf_len = (u8 *)res->sta_prof[idx + 1] -
2466 (u8 *)res->sta_prof[idx];
2468 buf_len = ielen + ie - (u8 *)elem;
2470 res->sta_prof_len[idx] =
2471 cfg80211_defragment_element(elem,
2472 (u8 *)elem, buf_len,
2473 (u8 *)res->sta_prof[idx],
2475 IEEE80211_MLE_SUBELEM_FRAGMENT);
2476 if (res->sta_prof_len[idx] < 0)
2488 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2489 const struct ieee80211_neighbor_ap_info **ap_info,
2490 const u8 **tbtt_info)
2492 const struct ieee80211_neighbor_ap_info *info;
2493 const struct element *rnr;
2494 const u8 *pos, *end;
2496 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2498 end = rnr->data + rnr->datalen;
2500 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2501 while (sizeof(*info) <= end - pos) {
2502 const struct ieee80211_rnr_mld_params *mld_params;
2504 u8 length, i, count, mld_params_offset;
2508 count = u8_get_bits(info->tbtt_info_hdr,
2509 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2510 length = info->tbtt_info_len;
2512 pos += sizeof(*info);
2514 if (count * length > end - pos)
2517 type = u8_get_bits(info->tbtt_info_hdr,
2518 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2520 /* Only accept full TBTT information. NSTR mobile APs
2521 * use the shortened version, but we ignore them here.
2523 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2525 offsetofend(struct ieee80211_tbtt_info_ge_11,
2528 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2530 pos += count * length;
2534 for (i = 0; i < count; i++) {
2535 mld_params = (void *)pos + mld_params_offset;
2536 params = le16_to_cpu(mld_params->params);
2538 lid = u16_get_bits(params,
2539 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2541 if (mld_id == mld_params->mld_id &&
2557 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2558 struct cfg80211_inform_single_bss_data *tx_data,
2559 struct cfg80211_bss *source_bss,
2562 struct cfg80211_inform_single_bss_data data = {
2563 .drv_data = tx_data->drv_data,
2564 .ftype = tx_data->ftype,
2565 .source_bss = source_bss,
2566 .bss_source = BSS_SOURCE_STA_PROFILE,
2568 struct ieee80211_multi_link_elem *ml_elem;
2569 const struct element *elem;
2570 struct cfg80211_mle *mle;
2573 struct cfg80211_bss *bss;
2582 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2585 elem = cfg80211_find_ext_elem(WLAN_EID_EXT_EHT_MULTI_LINK,
2586 tx_data->ie, tx_data->ielen);
2587 if (!elem || !ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2590 ml_elem = (void *)elem->data + 1;
2591 control = le16_to_cpu(ml_elem->control);
2592 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2593 IEEE80211_ML_CONTROL_TYPE_BASIC)
2596 /* Must be present when transmitted by an AP (in a probe response) */
2597 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2598 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2599 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2602 /* length + MLD MAC address + link ID info + BSS Params Change Count */
2603 pos = ml_elem->variable + 1 + 6 + 1 + 1;
2605 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2607 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2610 /* MLD capabilities and operations */
2613 /* Not included when the (nontransmitted) AP is responding itself,
2614 * but defined to zero then (Draft P802.11be_D3.0, 9.4.2.170.2)
2616 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2623 /* Extended MLD capabilities and operations */
2626 /* Fully defrag the ML element for sta information/profile iteration */
2627 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2631 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2635 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2636 const struct ieee80211_neighbor_ap_info *ap_info;
2637 enum nl80211_band band;
2640 const u8 *tbtt_info;
2641 ssize_t profile_len;
2644 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2645 mle->sta_prof_len[i]))
2648 control = le16_to_cpu(mle->sta_prof[i]->control);
2650 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2653 link_id = u16_get_bits(control,
2654 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2655 if (seen_links & BIT(link_id))
2657 seen_links |= BIT(link_id);
2659 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2660 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2661 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2664 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2665 data.beacon_interval =
2666 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2667 data.tsf = tx_data->tsf +
2668 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2670 /* sta_info_len counts itself */
2671 profile = mle->sta_prof[i]->variable +
2672 mle->sta_prof[i]->sta_info_len - 1;
2673 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2676 if (profile_len < 2)
2679 data.capability = get_unaligned_le16(profile);
2683 /* Find in RNR to look up channel information */
2684 if (!cfg80211_tbtt_info_for_mld_ap(tx_data->ie, tx_data->ielen,
2686 &ap_info, &tbtt_info))
2689 /* We could sanity check the BSSID is included */
2691 if (!ieee80211_operating_class_to_band(ap_info->op_class,
2695 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2696 data.channel = ieee80211_get_channel_khz(wiphy, freq);
2698 /* Generate new elements */
2699 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2701 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2702 profile, profile_len,
2704 IEEE80211_MAX_DATA_LEN);
2708 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2711 cfg80211_put_bss(wiphy, bss);
2719 struct cfg80211_bss *
2720 cfg80211_inform_bss_data(struct wiphy *wiphy,
2721 struct cfg80211_inform_bss *data,
2722 enum cfg80211_bss_frame_type ftype,
2723 const u8 *bssid, u64 tsf, u16 capability,
2724 u16 beacon_interval, const u8 *ie, size_t ielen,
2727 struct cfg80211_inform_single_bss_data inform_data = {
2731 .capability = capability,
2732 .beacon_interval = beacon_interval,
2736 struct cfg80211_bss *res;
2738 memcpy(inform_data.bssid, bssid, ETH_ALEN);
2740 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
2744 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2746 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2750 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2752 /* cfg80211_inform_bss_width_frame helper */
2753 static struct cfg80211_bss *
2754 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2755 struct cfg80211_inform_bss *data,
2756 struct ieee80211_mgmt *mgmt, size_t len,
2759 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2760 struct cfg80211_internal_bss tmp = {}, *res;
2761 struct cfg80211_bss_ies *ies;
2762 struct ieee80211_channel *channel;
2764 struct ieee80211_ext *ext = NULL;
2765 u8 *bssid, *variable;
2766 u16 capability, beacon_int;
2767 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2768 u.probe_resp.variable);
2771 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2772 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2774 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2779 if (WARN_ON(!wiphy))
2782 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2783 (data->signal < 0 || data->signal > 100)))
2786 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2787 ext = (void *) mgmt;
2788 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2789 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2790 min_hdr_len = offsetof(struct ieee80211_ext,
2791 u.s1g_short_beacon.variable);
2794 if (WARN_ON(len < min_hdr_len))
2797 ielen = len - min_hdr_len;
2798 variable = mgmt->u.probe_resp.variable;
2800 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2801 variable = ext->u.s1g_short_beacon.variable;
2803 variable = ext->u.s1g_beacon.variable;
2806 channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan);
2811 const struct ieee80211_s1g_bcn_compat_ie *compat;
2812 const struct element *elem;
2814 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2818 if (elem->datalen < sizeof(*compat))
2820 compat = (void *)elem->data;
2821 bssid = ext->u.s1g_beacon.sa;
2822 capability = le16_to_cpu(compat->compat_info);
2823 beacon_int = le16_to_cpu(compat->beacon_int);
2825 bssid = mgmt->bssid;
2826 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2827 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2830 if (channel->band == NL80211_BAND_60GHZ) {
2831 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2832 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2833 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2834 regulatory_hint_found_beacon(wiphy, channel, gfp);
2836 if (capability & WLAN_CAPABILITY_ESS)
2837 regulatory_hint_found_beacon(wiphy, channel, gfp);
2840 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2844 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2845 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2846 ieee80211_is_s1g_beacon(mgmt->frame_control);
2847 memcpy(ies->data, variable, ielen);
2849 if (ieee80211_is_probe_resp(mgmt->frame_control))
2850 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2852 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2853 rcu_assign_pointer(tmp.pub.ies, ies);
2855 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2856 tmp.pub.beacon_interval = beacon_int;
2857 tmp.pub.capability = capability;
2858 tmp.pub.channel = channel;
2859 tmp.pub.signal = data->signal;
2860 tmp.ts_boottime = data->boottime_ns;
2861 tmp.parent_tsf = data->parent_tsf;
2862 tmp.pub.chains = data->chains;
2863 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2864 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2866 signal_valid = data->chan == channel;
2867 spin_lock_bh(&rdev->bss_lock);
2868 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
2872 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
2874 spin_unlock_bh(&rdev->bss_lock);
2876 trace_cfg80211_return_bss(&res->pub);
2877 /* __cfg80211_bss_update gives us a referenced result */
2881 spin_unlock_bh(&rdev->bss_lock);
2885 struct cfg80211_bss *
2886 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2887 struct cfg80211_inform_bss *data,
2888 struct ieee80211_mgmt *mgmt, size_t len,
2891 struct cfg80211_inform_single_bss_data inform_data = {
2893 .ie = mgmt->u.probe_resp.variable,
2894 .ielen = len - offsetof(struct ieee80211_mgmt,
2895 u.probe_resp.variable),
2897 struct cfg80211_bss *res;
2899 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2904 /* don't do any further MBSSID/ML handling for S1G */
2905 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2908 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2909 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2910 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
2911 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2912 inform_data.beacon_interval =
2913 le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2915 /* process each non-transmitting bss */
2916 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2918 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2922 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2924 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2926 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2931 spin_lock_bh(&rdev->bss_lock);
2932 bss_ref_get(rdev, bss_from_pub(pub));
2933 spin_unlock_bh(&rdev->bss_lock);
2935 EXPORT_SYMBOL(cfg80211_ref_bss);
2937 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2939 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2944 spin_lock_bh(&rdev->bss_lock);
2945 bss_ref_put(rdev, bss_from_pub(pub));
2946 spin_unlock_bh(&rdev->bss_lock);
2948 EXPORT_SYMBOL(cfg80211_put_bss);
2950 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2952 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2953 struct cfg80211_internal_bss *bss, *tmp1;
2954 struct cfg80211_bss *nontrans_bss, *tmp;
2959 bss = bss_from_pub(pub);
2961 spin_lock_bh(&rdev->bss_lock);
2962 if (list_empty(&bss->list))
2965 list_for_each_entry_safe(nontrans_bss, tmp,
2966 &pub->nontrans_list,
2968 tmp1 = bss_from_pub(nontrans_bss);
2969 if (__cfg80211_unlink_bss(rdev, tmp1))
2970 rdev->bss_generation++;
2973 if (__cfg80211_unlink_bss(rdev, bss))
2974 rdev->bss_generation++;
2976 spin_unlock_bh(&rdev->bss_lock);
2978 EXPORT_SYMBOL(cfg80211_unlink_bss);
2980 void cfg80211_bss_iter(struct wiphy *wiphy,
2981 struct cfg80211_chan_def *chandef,
2982 void (*iter)(struct wiphy *wiphy,
2983 struct cfg80211_bss *bss,
2987 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2988 struct cfg80211_internal_bss *bss;
2990 spin_lock_bh(&rdev->bss_lock);
2992 list_for_each_entry(bss, &rdev->bss_list, list) {
2993 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
2995 iter(wiphy, &bss->pub, iter_data);
2998 spin_unlock_bh(&rdev->bss_lock);
3000 EXPORT_SYMBOL(cfg80211_bss_iter);
3002 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3003 unsigned int link_id,
3004 struct ieee80211_channel *chan)
3006 struct wiphy *wiphy = wdev->wiphy;
3007 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3008 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3009 struct cfg80211_internal_bss *new = NULL;
3010 struct cfg80211_internal_bss *bss;
3011 struct cfg80211_bss *nontrans_bss;
3012 struct cfg80211_bss *tmp;
3014 spin_lock_bh(&rdev->bss_lock);
3017 * Some APs use CSA also for bandwidth changes, i.e., without actually
3018 * changing the control channel, so no need to update in such a case.
3020 if (cbss->pub.channel == chan)
3023 /* use transmitting bss */
3024 if (cbss->pub.transmitted_bss)
3025 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3027 cbss->pub.channel = chan;
3029 list_for_each_entry(bss, &rdev->bss_list, list) {
3030 if (!cfg80211_bss_type_match(bss->pub.capability,
3031 bss->pub.channel->band,
3032 wdev->conn_bss_type))
3038 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3045 /* to save time, update IEs for transmitting bss only */
3046 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
3047 new->pub.proberesp_ies = NULL;
3048 new->pub.beacon_ies = NULL;
3051 list_for_each_entry_safe(nontrans_bss, tmp,
3052 &new->pub.nontrans_list,
3054 bss = bss_from_pub(nontrans_bss);
3055 if (__cfg80211_unlink_bss(rdev, bss))
3056 rdev->bss_generation++;
3059 WARN_ON(atomic_read(&new->hold));
3060 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3061 rdev->bss_generation++;
3064 rb_erase(&cbss->rbn, &rdev->bss_tree);
3065 rb_insert_bss(rdev, cbss);
3066 rdev->bss_generation++;
3068 list_for_each_entry_safe(nontrans_bss, tmp,
3069 &cbss->pub.nontrans_list,
3071 bss = bss_from_pub(nontrans_bss);
3072 bss->pub.channel = chan;
3073 rb_erase(&bss->rbn, &rdev->bss_tree);
3074 rb_insert_bss(rdev, bss);
3075 rdev->bss_generation++;
3079 spin_unlock_bh(&rdev->bss_lock);
3082 #ifdef CONFIG_CFG80211_WEXT
3083 static struct cfg80211_registered_device *
3084 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3086 struct cfg80211_registered_device *rdev;
3087 struct net_device *dev;
3091 dev = dev_get_by_index(net, ifindex);
3093 return ERR_PTR(-ENODEV);
3094 if (dev->ieee80211_ptr)
3095 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3097 rdev = ERR_PTR(-ENODEV);
3102 int cfg80211_wext_siwscan(struct net_device *dev,
3103 struct iw_request_info *info,
3104 union iwreq_data *wrqu, char *extra)
3106 struct cfg80211_registered_device *rdev;
3107 struct wiphy *wiphy;
3108 struct iw_scan_req *wreq = NULL;
3109 struct cfg80211_scan_request *creq;
3110 int i, err, n_channels = 0;
3111 enum nl80211_band band;
3113 if (!netif_running(dev))
3116 if (wrqu->data.length == sizeof(struct iw_scan_req))
3117 wreq = (struct iw_scan_req *)extra;
3119 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3122 return PTR_ERR(rdev);
3124 if (rdev->scan_req || rdev->scan_msg)
3127 wiphy = &rdev->wiphy;
3129 /* Determine number of channels, needed to allocate creq */
3130 if (wreq && wreq->num_channels)
3131 n_channels = wreq->num_channels;
3133 n_channels = ieee80211_get_num_supported_channels(wiphy);
3135 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3136 n_channels * sizeof(void *),
3141 creq->wiphy = wiphy;
3142 creq->wdev = dev->ieee80211_ptr;
3143 /* SSIDs come after channels */
3144 creq->ssids = (void *)&creq->channels[n_channels];
3145 creq->n_channels = n_channels;
3147 creq->scan_start = jiffies;
3149 /* translate "Scan on frequencies" request */
3151 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3154 if (!wiphy->bands[band])
3157 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3158 /* ignore disabled channels */
3159 if (wiphy->bands[band]->channels[j].flags &
3160 IEEE80211_CHAN_DISABLED)
3163 /* If we have a wireless request structure and the
3164 * wireless request specifies frequencies, then search
3165 * for the matching hardware channel.
3167 if (wreq && wreq->num_channels) {
3169 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3170 for (k = 0; k < wreq->num_channels; k++) {
3171 struct iw_freq *freq =
3172 &wreq->channel_list[k];
3174 cfg80211_wext_freq(freq);
3176 if (wext_freq == wiphy_freq)
3177 goto wext_freq_found;
3179 goto wext_freq_not_found;
3183 creq->channels[i] = &wiphy->bands[band]->channels[j];
3185 wext_freq_not_found: ;
3188 /* No channels found? */
3194 /* Set real number of channels specified in creq->channels[] */
3195 creq->n_channels = i;
3197 /* translate "Scan for SSID" request */
3199 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3200 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3204 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3205 creq->ssids[0].ssid_len = wreq->essid_len;
3207 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3211 for (i = 0; i < NUM_NL80211_BANDS; i++)
3212 if (wiphy->bands[i])
3213 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3215 eth_broadcast_addr(creq->bssid);
3217 wiphy_lock(&rdev->wiphy);
3219 rdev->scan_req = creq;
3220 err = rdev_scan(rdev, creq);
3222 rdev->scan_req = NULL;
3223 /* creq will be freed below */
3225 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3226 /* creq now owned by driver */
3230 wiphy_unlock(&rdev->wiphy);
3235 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3237 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3238 const struct cfg80211_bss_ies *ies,
3239 char *current_ev, char *end_buf)
3241 const u8 *pos, *end, *next;
3242 struct iw_event iwe;
3248 * If needed, fragment the IEs buffer (at IE boundaries) into short
3249 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3252 end = pos + ies->len;
3254 while (end - pos > IW_GENERIC_IE_MAX) {
3255 next = pos + 2 + pos[1];
3256 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3257 next = next + 2 + next[1];
3259 memset(&iwe, 0, sizeof(iwe));
3260 iwe.cmd = IWEVGENIE;
3261 iwe.u.data.length = next - pos;
3262 current_ev = iwe_stream_add_point_check(info, current_ev,
3265 if (IS_ERR(current_ev))
3271 memset(&iwe, 0, sizeof(iwe));
3272 iwe.cmd = IWEVGENIE;
3273 iwe.u.data.length = end - pos;
3274 current_ev = iwe_stream_add_point_check(info, current_ev,
3277 if (IS_ERR(current_ev))
3285 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3286 struct cfg80211_internal_bss *bss, char *current_ev,
3289 const struct cfg80211_bss_ies *ies;
3290 struct iw_event iwe;
3295 bool ismesh = false;
3297 memset(&iwe, 0, sizeof(iwe));
3298 iwe.cmd = SIOCGIWAP;
3299 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3300 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3301 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3303 if (IS_ERR(current_ev))
3306 memset(&iwe, 0, sizeof(iwe));
3307 iwe.cmd = SIOCGIWFREQ;
3308 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3310 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3312 if (IS_ERR(current_ev))
3315 memset(&iwe, 0, sizeof(iwe));
3316 iwe.cmd = SIOCGIWFREQ;
3317 iwe.u.freq.m = bss->pub.channel->center_freq;
3319 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3321 if (IS_ERR(current_ev))
3324 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3325 memset(&iwe, 0, sizeof(iwe));
3327 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3328 IW_QUAL_NOISE_INVALID |
3329 IW_QUAL_QUAL_UPDATED;
3330 switch (wiphy->signal_type) {
3331 case CFG80211_SIGNAL_TYPE_MBM:
3332 sig = bss->pub.signal / 100;
3333 iwe.u.qual.level = sig;
3334 iwe.u.qual.updated |= IW_QUAL_DBM;
3335 if (sig < -110) /* rather bad */
3337 else if (sig > -40) /* perfect */
3339 /* will give a range of 0 .. 70 */
3340 iwe.u.qual.qual = sig + 110;
3342 case CFG80211_SIGNAL_TYPE_UNSPEC:
3343 iwe.u.qual.level = bss->pub.signal;
3344 /* will give range 0 .. 100 */
3345 iwe.u.qual.qual = bss->pub.signal;
3351 current_ev = iwe_stream_add_event_check(info, current_ev,
3354 if (IS_ERR(current_ev))
3358 memset(&iwe, 0, sizeof(iwe));
3359 iwe.cmd = SIOCGIWENCODE;
3360 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3361 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3363 iwe.u.data.flags = IW_ENCODE_DISABLED;
3364 iwe.u.data.length = 0;
3365 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3367 if (IS_ERR(current_ev))
3371 ies = rcu_dereference(bss->pub.ies);
3377 if (ie[1] > rem - 2)
3382 memset(&iwe, 0, sizeof(iwe));
3383 iwe.cmd = SIOCGIWESSID;
3384 iwe.u.data.length = ie[1];
3385 iwe.u.data.flags = 1;
3386 current_ev = iwe_stream_add_point_check(info,
3390 if (IS_ERR(current_ev))
3393 case WLAN_EID_MESH_ID:
3394 memset(&iwe, 0, sizeof(iwe));
3395 iwe.cmd = SIOCGIWESSID;
3396 iwe.u.data.length = ie[1];
3397 iwe.u.data.flags = 1;
3398 current_ev = iwe_stream_add_point_check(info,
3402 if (IS_ERR(current_ev))
3405 case WLAN_EID_MESH_CONFIG:
3407 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3410 memset(&iwe, 0, sizeof(iwe));
3411 iwe.cmd = IWEVCUSTOM;
3412 iwe.u.data.length = sprintf(buf,
3413 "Mesh Network Path Selection Protocol ID: 0x%02X",
3415 current_ev = iwe_stream_add_point_check(info,
3419 if (IS_ERR(current_ev))
3421 iwe.u.data.length = sprintf(buf,
3422 "Path Selection Metric ID: 0x%02X",
3424 current_ev = iwe_stream_add_point_check(info,
3428 if (IS_ERR(current_ev))
3430 iwe.u.data.length = sprintf(buf,
3431 "Congestion Control Mode ID: 0x%02X",
3433 current_ev = iwe_stream_add_point_check(info,
3437 if (IS_ERR(current_ev))
3439 iwe.u.data.length = sprintf(buf,
3440 "Synchronization ID: 0x%02X",
3442 current_ev = iwe_stream_add_point_check(info,
3446 if (IS_ERR(current_ev))
3448 iwe.u.data.length = sprintf(buf,
3449 "Authentication ID: 0x%02X",
3451 current_ev = iwe_stream_add_point_check(info,
3455 if (IS_ERR(current_ev))
3457 iwe.u.data.length = sprintf(buf,
3458 "Formation Info: 0x%02X",
3460 current_ev = iwe_stream_add_point_check(info,
3464 if (IS_ERR(current_ev))
3466 iwe.u.data.length = sprintf(buf,
3467 "Capabilities: 0x%02X",
3469 current_ev = iwe_stream_add_point_check(info,
3473 if (IS_ERR(current_ev))
3476 case WLAN_EID_SUPP_RATES:
3477 case WLAN_EID_EXT_SUPP_RATES:
3478 /* display all supported rates in readable format */
3479 p = current_ev + iwe_stream_lcp_len(info);
3481 memset(&iwe, 0, sizeof(iwe));
3482 iwe.cmd = SIOCGIWRATE;
3483 /* Those two flags are ignored... */
3484 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3486 for (i = 0; i < ie[1]; i++) {
3487 iwe.u.bitrate.value =
3488 ((ie[i + 2] & 0x7f) * 500000);
3490 p = iwe_stream_add_value(info, current_ev, p,
3494 current_ev = ERR_PTR(-E2BIG);
3505 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3507 memset(&iwe, 0, sizeof(iwe));
3508 iwe.cmd = SIOCGIWMODE;
3510 iwe.u.mode = IW_MODE_MESH;
3511 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3512 iwe.u.mode = IW_MODE_MASTER;
3514 iwe.u.mode = IW_MODE_ADHOC;
3515 current_ev = iwe_stream_add_event_check(info, current_ev,
3518 if (IS_ERR(current_ev))
3522 memset(&iwe, 0, sizeof(iwe));
3523 iwe.cmd = IWEVCUSTOM;
3524 iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3525 (unsigned long long)(ies->tsf));
3526 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3528 if (IS_ERR(current_ev))
3530 memset(&iwe, 0, sizeof(iwe));
3531 iwe.cmd = IWEVCUSTOM;
3532 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3533 elapsed_jiffies_msecs(bss->ts));
3534 current_ev = iwe_stream_add_point_check(info, current_ev,
3535 end_buf, &iwe, buf);
3536 if (IS_ERR(current_ev))
3539 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3547 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3548 struct iw_request_info *info,
3549 char *buf, size_t len)
3551 char *current_ev = buf;
3552 char *end_buf = buf + len;
3553 struct cfg80211_internal_bss *bss;
3556 spin_lock_bh(&rdev->bss_lock);
3557 cfg80211_bss_expire(rdev);
3559 list_for_each_entry(bss, &rdev->bss_list, list) {
3560 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3564 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3565 current_ev, end_buf);
3566 if (IS_ERR(current_ev)) {
3567 err = PTR_ERR(current_ev);
3571 spin_unlock_bh(&rdev->bss_lock);
3575 return current_ev - buf;
3579 int cfg80211_wext_giwscan(struct net_device *dev,
3580 struct iw_request_info *info,
3581 union iwreq_data *wrqu, char *extra)
3583 struct iw_point *data = &wrqu->data;
3584 struct cfg80211_registered_device *rdev;
3587 if (!netif_running(dev))
3590 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3593 return PTR_ERR(rdev);
3595 if (rdev->scan_req || rdev->scan_msg)
3598 res = ieee80211_scan_results(rdev, info, extra, data->length);
3607 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);