1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include <linux/iomap.h>
23 #include "transaction.h"
24 #include "btrfs_inode.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
33 #include "accessors.h"
34 #include "extent-tree.h"
35 #include "file-item.h"
40 /* simple helper to fault in pages and copy. This should go away
41 * and be replaced with calls into generic code.
43 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
44 struct page **prepared_pages,
48 size_t total_copied = 0;
50 int offset = offset_in_page(pos);
52 while (write_bytes > 0) {
53 size_t count = min_t(size_t,
54 PAGE_SIZE - offset, write_bytes);
55 struct page *page = prepared_pages[pg];
57 * Copy data from userspace to the current page
59 copied = copy_page_from_iter_atomic(page, offset, count, i);
61 /* Flush processor's dcache for this page */
62 flush_dcache_page(page);
65 * if we get a partial write, we can end up with
66 * partially up to date pages. These add
67 * a lot of complexity, so make sure they don't
68 * happen by forcing this copy to be retried.
70 * The rest of the btrfs_file_write code will fall
71 * back to page at a time copies after we return 0.
73 if (unlikely(copied < count)) {
74 if (!PageUptodate(page)) {
75 iov_iter_revert(i, copied);
82 write_bytes -= copied;
83 total_copied += copied;
85 if (offset == PAGE_SIZE) {
94 * unlocks pages after btrfs_file_write is done with them
96 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
97 struct page **pages, size_t num_pages,
101 u64 block_start = round_down(pos, fs_info->sectorsize);
102 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
104 ASSERT(block_len <= U32_MAX);
105 for (i = 0; i < num_pages; i++) {
106 /* page checked is some magic around finding pages that
107 * have been modified without going through btrfs_set_page_dirty
108 * clear it here. There should be no need to mark the pages
109 * accessed as prepare_pages should have marked them accessed
110 * in prepare_pages via find_or_create_page()
112 btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]),
113 block_start, block_len);
114 unlock_page(pages[i]);
120 * After btrfs_copy_from_user(), update the following things for delalloc:
121 * - Mark newly dirtied pages as DELALLOC in the io tree.
122 * Used to advise which range is to be written back.
123 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
124 * - Update inode size for past EOF write
126 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
127 size_t num_pages, loff_t pos, size_t write_bytes,
128 struct extent_state **cached, bool noreserve)
130 struct btrfs_fs_info *fs_info = inode->root->fs_info;
135 u64 end_of_last_block;
136 u64 end_pos = pos + write_bytes;
137 loff_t isize = i_size_read(&inode->vfs_inode);
138 unsigned int extra_bits = 0;
140 if (write_bytes == 0)
144 extra_bits |= EXTENT_NORESERVE;
146 start_pos = round_down(pos, fs_info->sectorsize);
147 num_bytes = round_up(write_bytes + pos - start_pos,
148 fs_info->sectorsize);
149 ASSERT(num_bytes <= U32_MAX);
151 end_of_last_block = start_pos + num_bytes - 1;
154 * The pages may have already been dirty, clear out old accounting so
155 * we can set things up properly
157 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
158 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
161 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
166 for (i = 0; i < num_pages; i++) {
167 struct page *p = pages[i];
169 btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p),
170 start_pos, num_bytes);
171 btrfs_folio_clamp_clear_checked(fs_info, page_folio(p),
172 start_pos, num_bytes);
173 btrfs_folio_clamp_set_dirty(fs_info, page_folio(p),
174 start_pos, num_bytes);
178 * we've only changed i_size in ram, and we haven't updated
179 * the disk i_size. There is no need to log the inode
183 i_size_write(&inode->vfs_inode, end_pos);
188 * this is very complex, but the basic idea is to drop all extents
189 * in the range start - end. hint_block is filled in with a block number
190 * that would be a good hint to the block allocator for this file.
192 * If an extent intersects the range but is not entirely inside the range
193 * it is either truncated or split. Anything entirely inside the range
194 * is deleted from the tree.
196 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
197 * to deal with that. We set the field 'bytes_found' of the arguments structure
198 * with the number of allocated bytes found in the target range, so that the
199 * caller can update the inode's number of bytes in an atomic way when
200 * replacing extents in a range to avoid races with stat(2).
202 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
203 struct btrfs_root *root, struct btrfs_inode *inode,
204 struct btrfs_drop_extents_args *args)
206 struct btrfs_fs_info *fs_info = root->fs_info;
207 struct extent_buffer *leaf;
208 struct btrfs_file_extent_item *fi;
209 struct btrfs_key key;
210 struct btrfs_key new_key;
211 u64 ino = btrfs_ino(inode);
212 u64 search_start = args->start;
215 u64 extent_offset = 0;
217 u64 last_end = args->start;
223 int modify_tree = -1;
226 struct btrfs_path *path = args->path;
228 args->bytes_found = 0;
229 args->extent_inserted = false;
231 /* Must always have a path if ->replace_extent is true */
232 ASSERT(!(args->replace_extent && !args->path));
235 path = btrfs_alloc_path();
242 if (args->drop_cache)
243 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
245 if (args->start >= inode->disk_i_size && !args->replace_extent)
248 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
251 ret = btrfs_lookup_file_extent(trans, root, path, ino,
252 search_start, modify_tree);
255 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
256 leaf = path->nodes[0];
257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
258 if (key.objectid == ino &&
259 key.type == BTRFS_EXTENT_DATA_KEY)
264 leaf = path->nodes[0];
265 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
267 ret = btrfs_next_leaf(root, path);
274 leaf = path->nodes[0];
278 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
280 if (key.objectid > ino)
282 if (WARN_ON_ONCE(key.objectid < ino) ||
283 key.type < BTRFS_EXTENT_DATA_KEY) {
288 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
291 fi = btrfs_item_ptr(leaf, path->slots[0],
292 struct btrfs_file_extent_item);
293 extent_type = btrfs_file_extent_type(leaf, fi);
295 if (extent_type == BTRFS_FILE_EXTENT_REG ||
296 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
297 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
298 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
299 extent_offset = btrfs_file_extent_offset(leaf, fi);
300 extent_end = key.offset +
301 btrfs_file_extent_num_bytes(leaf, fi);
302 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
303 extent_end = key.offset +
304 btrfs_file_extent_ram_bytes(leaf, fi);
311 * Don't skip extent items representing 0 byte lengths. They
312 * used to be created (bug) if while punching holes we hit
313 * -ENOSPC condition. So if we find one here, just ensure we
314 * delete it, otherwise we would insert a new file extent item
315 * with the same key (offset) as that 0 bytes length file
316 * extent item in the call to setup_items_for_insert() later
319 if (extent_end == key.offset && extent_end >= search_start) {
320 last_end = extent_end;
321 goto delete_extent_item;
324 if (extent_end <= search_start) {
330 search_start = max(key.offset, args->start);
331 if (recow || !modify_tree) {
333 btrfs_release_path(path);
338 * | - range to drop - |
339 * | -------- extent -------- |
341 if (args->start > key.offset && args->end < extent_end) {
343 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
348 memcpy(&new_key, &key, sizeof(new_key));
349 new_key.offset = args->start;
350 ret = btrfs_duplicate_item(trans, root, path,
352 if (ret == -EAGAIN) {
353 btrfs_release_path(path);
359 leaf = path->nodes[0];
360 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
361 struct btrfs_file_extent_item);
362 btrfs_set_file_extent_num_bytes(leaf, fi,
363 args->start - key.offset);
365 fi = btrfs_item_ptr(leaf, path->slots[0],
366 struct btrfs_file_extent_item);
368 extent_offset += args->start - key.offset;
369 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
370 btrfs_set_file_extent_num_bytes(leaf, fi,
371 extent_end - args->start);
372 btrfs_mark_buffer_dirty(trans, leaf);
374 if (update_refs && disk_bytenr > 0) {
375 struct btrfs_ref ref = {
376 .action = BTRFS_ADD_DELAYED_REF,
377 .bytenr = disk_bytenr,
378 .num_bytes = num_bytes,
380 .owning_root = btrfs_root_id(root),
381 .ref_root = btrfs_root_id(root),
383 btrfs_init_data_ref(&ref, new_key.objectid,
384 args->start - extent_offset,
386 ret = btrfs_inc_extent_ref(trans, &ref);
388 btrfs_abort_transaction(trans, ret);
392 key.offset = args->start;
395 * From here on out we will have actually dropped something, so
396 * last_end can be updated.
398 last_end = extent_end;
401 * | ---- range to drop ----- |
402 * | -------- extent -------- |
404 if (args->start <= key.offset && args->end < extent_end) {
405 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
410 memcpy(&new_key, &key, sizeof(new_key));
411 new_key.offset = args->end;
412 btrfs_set_item_key_safe(trans, path, &new_key);
414 extent_offset += args->end - key.offset;
415 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
416 btrfs_set_file_extent_num_bytes(leaf, fi,
417 extent_end - args->end);
418 btrfs_mark_buffer_dirty(trans, leaf);
419 if (update_refs && disk_bytenr > 0)
420 args->bytes_found += args->end - key.offset;
424 search_start = extent_end;
426 * | ---- range to drop ----- |
427 * | -------- extent -------- |
429 if (args->start > key.offset && args->end >= extent_end) {
431 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
436 btrfs_set_file_extent_num_bytes(leaf, fi,
437 args->start - key.offset);
438 btrfs_mark_buffer_dirty(trans, leaf);
439 if (update_refs && disk_bytenr > 0)
440 args->bytes_found += extent_end - args->start;
441 if (args->end == extent_end)
449 * | ---- range to drop ----- |
450 * | ------ extent ------ |
452 if (args->start <= key.offset && args->end >= extent_end) {
455 del_slot = path->slots[0];
458 BUG_ON(del_slot + del_nr != path->slots[0]);
463 extent_type == BTRFS_FILE_EXTENT_INLINE) {
464 args->bytes_found += extent_end - key.offset;
465 extent_end = ALIGN(extent_end,
466 fs_info->sectorsize);
467 } else if (update_refs && disk_bytenr > 0) {
468 struct btrfs_ref ref = {
469 .action = BTRFS_DROP_DELAYED_REF,
470 .bytenr = disk_bytenr,
471 .num_bytes = num_bytes,
473 .owning_root = btrfs_root_id(root),
474 .ref_root = btrfs_root_id(root),
476 btrfs_init_data_ref(&ref, key.objectid,
477 key.offset - extent_offset,
479 ret = btrfs_free_extent(trans, &ref);
481 btrfs_abort_transaction(trans, ret);
484 args->bytes_found += extent_end - key.offset;
487 if (args->end == extent_end)
490 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
495 ret = btrfs_del_items(trans, root, path, del_slot,
498 btrfs_abort_transaction(trans, ret);
505 btrfs_release_path(path);
512 if (!ret && del_nr > 0) {
514 * Set path->slots[0] to first slot, so that after the delete
515 * if items are move off from our leaf to its immediate left or
516 * right neighbor leafs, we end up with a correct and adjusted
517 * path->slots[0] for our insertion (if args->replace_extent).
519 path->slots[0] = del_slot;
520 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
522 btrfs_abort_transaction(trans, ret);
525 leaf = path->nodes[0];
527 * If btrfs_del_items() was called, it might have deleted a leaf, in
528 * which case it unlocked our path, so check path->locks[0] matches a
531 if (!ret && args->replace_extent &&
532 path->locks[0] == BTRFS_WRITE_LOCK &&
533 btrfs_leaf_free_space(leaf) >=
534 sizeof(struct btrfs_item) + args->extent_item_size) {
537 key.type = BTRFS_EXTENT_DATA_KEY;
538 key.offset = args->start;
539 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
540 struct btrfs_key slot_key;
542 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
543 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
546 btrfs_setup_item_for_insert(trans, root, path, &key,
547 args->extent_item_size);
548 args->extent_inserted = true;
552 btrfs_free_path(path);
553 else if (!args->extent_inserted)
554 btrfs_release_path(path);
556 args->drop_end = found ? min(args->end, last_end) : args->end;
561 static int extent_mergeable(struct extent_buffer *leaf, int slot,
562 u64 objectid, u64 bytenr, u64 orig_offset,
563 u64 *start, u64 *end)
565 struct btrfs_file_extent_item *fi;
566 struct btrfs_key key;
569 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
572 btrfs_item_key_to_cpu(leaf, &key, slot);
573 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
576 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
577 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
578 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
579 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
580 btrfs_file_extent_compression(leaf, fi) ||
581 btrfs_file_extent_encryption(leaf, fi) ||
582 btrfs_file_extent_other_encoding(leaf, fi))
585 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
586 if ((*start && *start != key.offset) || (*end && *end != extent_end))
595 * Mark extent in the range start - end as written.
597 * This changes extent type from 'pre-allocated' to 'regular'. If only
598 * part of extent is marked as written, the extent will be split into
601 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
602 struct btrfs_inode *inode, u64 start, u64 end)
604 struct btrfs_root *root = inode->root;
605 struct extent_buffer *leaf;
606 struct btrfs_path *path;
607 struct btrfs_file_extent_item *fi;
608 struct btrfs_ref ref = { 0 };
609 struct btrfs_key key;
610 struct btrfs_key new_key;
622 u64 ino = btrfs_ino(inode);
624 path = btrfs_alloc_path();
631 key.type = BTRFS_EXTENT_DATA_KEY;
634 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
637 if (ret > 0 && path->slots[0] > 0)
640 leaf = path->nodes[0];
641 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
642 if (key.objectid != ino ||
643 key.type != BTRFS_EXTENT_DATA_KEY) {
645 btrfs_abort_transaction(trans, ret);
648 fi = btrfs_item_ptr(leaf, path->slots[0],
649 struct btrfs_file_extent_item);
650 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
652 btrfs_abort_transaction(trans, ret);
655 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
656 if (key.offset > start || extent_end < end) {
658 btrfs_abort_transaction(trans, ret);
662 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
663 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
664 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
665 memcpy(&new_key, &key, sizeof(new_key));
667 if (start == key.offset && end < extent_end) {
670 if (extent_mergeable(leaf, path->slots[0] - 1,
671 ino, bytenr, orig_offset,
672 &other_start, &other_end)) {
673 new_key.offset = end;
674 btrfs_set_item_key_safe(trans, path, &new_key);
675 fi = btrfs_item_ptr(leaf, path->slots[0],
676 struct btrfs_file_extent_item);
677 btrfs_set_file_extent_generation(leaf, fi,
679 btrfs_set_file_extent_num_bytes(leaf, fi,
681 btrfs_set_file_extent_offset(leaf, fi,
683 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
684 struct btrfs_file_extent_item);
685 btrfs_set_file_extent_generation(leaf, fi,
687 btrfs_set_file_extent_num_bytes(leaf, fi,
689 btrfs_mark_buffer_dirty(trans, leaf);
694 if (start > key.offset && end == extent_end) {
697 if (extent_mergeable(leaf, path->slots[0] + 1,
698 ino, bytenr, orig_offset,
699 &other_start, &other_end)) {
700 fi = btrfs_item_ptr(leaf, path->slots[0],
701 struct btrfs_file_extent_item);
702 btrfs_set_file_extent_num_bytes(leaf, fi,
704 btrfs_set_file_extent_generation(leaf, fi,
707 new_key.offset = start;
708 btrfs_set_item_key_safe(trans, path, &new_key);
710 fi = btrfs_item_ptr(leaf, path->slots[0],
711 struct btrfs_file_extent_item);
712 btrfs_set_file_extent_generation(leaf, fi,
714 btrfs_set_file_extent_num_bytes(leaf, fi,
716 btrfs_set_file_extent_offset(leaf, fi,
717 start - orig_offset);
718 btrfs_mark_buffer_dirty(trans, leaf);
723 while (start > key.offset || end < extent_end) {
724 if (key.offset == start)
727 new_key.offset = split;
728 ret = btrfs_duplicate_item(trans, root, path, &new_key);
729 if (ret == -EAGAIN) {
730 btrfs_release_path(path);
734 btrfs_abort_transaction(trans, ret);
738 leaf = path->nodes[0];
739 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
740 struct btrfs_file_extent_item);
741 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
742 btrfs_set_file_extent_num_bytes(leaf, fi,
745 fi = btrfs_item_ptr(leaf, path->slots[0],
746 struct btrfs_file_extent_item);
748 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
749 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
750 btrfs_set_file_extent_num_bytes(leaf, fi,
752 btrfs_mark_buffer_dirty(trans, leaf);
754 ref.action = BTRFS_ADD_DELAYED_REF;
756 ref.num_bytes = num_bytes;
758 ref.owning_root = btrfs_root_id(root);
759 ref.ref_root = btrfs_root_id(root);
760 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
761 ret = btrfs_inc_extent_ref(trans, &ref);
763 btrfs_abort_transaction(trans, ret);
767 if (split == start) {
770 if (start != key.offset) {
772 btrfs_abort_transaction(trans, ret);
784 ref.action = BTRFS_DROP_DELAYED_REF;
786 ref.num_bytes = num_bytes;
788 ref.owning_root = btrfs_root_id(root);
789 ref.ref_root = btrfs_root_id(root);
790 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
791 if (extent_mergeable(leaf, path->slots[0] + 1,
792 ino, bytenr, orig_offset,
793 &other_start, &other_end)) {
795 btrfs_release_path(path);
798 extent_end = other_end;
799 del_slot = path->slots[0] + 1;
801 ret = btrfs_free_extent(trans, &ref);
803 btrfs_abort_transaction(trans, ret);
809 if (extent_mergeable(leaf, path->slots[0] - 1,
810 ino, bytenr, orig_offset,
811 &other_start, &other_end)) {
813 btrfs_release_path(path);
816 key.offset = other_start;
817 del_slot = path->slots[0];
819 ret = btrfs_free_extent(trans, &ref);
821 btrfs_abort_transaction(trans, ret);
826 fi = btrfs_item_ptr(leaf, path->slots[0],
827 struct btrfs_file_extent_item);
828 btrfs_set_file_extent_type(leaf, fi,
829 BTRFS_FILE_EXTENT_REG);
830 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
831 btrfs_mark_buffer_dirty(trans, leaf);
833 fi = btrfs_item_ptr(leaf, del_slot - 1,
834 struct btrfs_file_extent_item);
835 btrfs_set_file_extent_type(leaf, fi,
836 BTRFS_FILE_EXTENT_REG);
837 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
838 btrfs_set_file_extent_num_bytes(leaf, fi,
839 extent_end - key.offset);
840 btrfs_mark_buffer_dirty(trans, leaf);
842 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
844 btrfs_abort_transaction(trans, ret);
849 btrfs_free_path(path);
854 * on error we return an unlocked page and the error value
855 * on success we return a locked page and 0
857 static int prepare_uptodate_page(struct inode *inode,
858 struct page *page, u64 pos,
861 struct folio *folio = page_folio(page);
864 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
865 !PageUptodate(page)) {
866 ret = btrfs_read_folio(NULL, folio);
870 if (!PageUptodate(page)) {
876 * Since btrfs_read_folio() will unlock the folio before it
877 * returns, there is a window where btrfs_release_folio() can be
878 * called to release the page. Here we check both inode
879 * mapping and PagePrivate() to make sure the page was not
882 * The private flag check is essential for subpage as we need
883 * to store extra bitmap using folio private.
885 if (page->mapping != inode->i_mapping || !folio_test_private(folio)) {
893 static fgf_t get_prepare_fgp_flags(bool nowait)
895 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
898 fgp_flags |= FGP_NOWAIT;
903 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
907 gfp = btrfs_alloc_write_mask(inode->i_mapping);
909 gfp &= ~__GFP_DIRECT_RECLAIM;
917 * this just gets pages into the page cache and locks them down.
919 static noinline int prepare_pages(struct inode *inode, struct page **pages,
920 size_t num_pages, loff_t pos,
921 size_t write_bytes, bool force_uptodate,
925 unsigned long index = pos >> PAGE_SHIFT;
926 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
927 fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
931 for (i = 0; i < num_pages; i++) {
933 pages[i] = pagecache_get_page(inode->i_mapping, index + i,
934 fgp_flags, mask | __GFP_WRITE);
944 ret = set_page_extent_mapped(pages[i]);
951 ret = prepare_uptodate_page(inode, pages[i], pos,
953 if (!ret && i == num_pages - 1)
954 ret = prepare_uptodate_page(inode, pages[i],
955 pos + write_bytes, false);
958 if (!nowait && ret == -EAGAIN) {
965 wait_on_page_writeback(pages[i]);
971 unlock_page(pages[faili]);
972 put_page(pages[faili]);
980 * This function locks the extent and properly waits for data=ordered extents
981 * to finish before allowing the pages to be modified if need.
984 * 1 - the extent is locked
985 * 0 - the extent is not locked, and everything is OK
986 * -EAGAIN - need re-prepare the pages
987 * the other < 0 number - Something wrong happens
990 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
991 size_t num_pages, loff_t pos,
993 u64 *lockstart, u64 *lockend, bool nowait,
994 struct extent_state **cached_state)
996 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1002 start_pos = round_down(pos, fs_info->sectorsize);
1003 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1005 if (start_pos < inode->vfs_inode.i_size) {
1006 struct btrfs_ordered_extent *ordered;
1009 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
1011 for (i = 0; i < num_pages; i++) {
1012 unlock_page(pages[i]);
1020 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1023 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1024 last_pos - start_pos + 1);
1026 ordered->file_offset + ordered->num_bytes > start_pos &&
1027 ordered->file_offset <= last_pos) {
1028 unlock_extent(&inode->io_tree, start_pos, last_pos,
1030 for (i = 0; i < num_pages; i++) {
1031 unlock_page(pages[i]);
1034 btrfs_start_ordered_extent(ordered);
1035 btrfs_put_ordered_extent(ordered);
1039 btrfs_put_ordered_extent(ordered);
1041 *lockstart = start_pos;
1042 *lockend = last_pos;
1047 * We should be called after prepare_pages() which should have locked
1048 * all pages in the range.
1050 for (i = 0; i < num_pages; i++)
1051 WARN_ON(!PageLocked(pages[i]));
1057 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1059 * @pos: File offset.
1060 * @write_bytes: The length to write, will be updated to the nocow writeable
1063 * This function will flush ordered extents in the range to ensure proper
1067 * > 0 If we can nocow, and updates @write_bytes.
1068 * 0 If we can't do a nocow write.
1069 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
1070 * root is in progress.
1071 * < 0 If an error happened.
1073 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1075 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1076 size_t *write_bytes, bool nowait)
1078 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1079 struct btrfs_root *root = inode->root;
1080 struct extent_state *cached_state = NULL;
1081 u64 lockstart, lockend;
1085 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1088 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1091 lockstart = round_down(pos, fs_info->sectorsize);
1092 lockend = round_up(pos + *write_bytes,
1093 fs_info->sectorsize) - 1;
1094 num_bytes = lockend - lockstart + 1;
1097 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1099 btrfs_drew_write_unlock(&root->snapshot_lock);
1103 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1106 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1107 NULL, NULL, NULL, nowait, false);
1109 btrfs_drew_write_unlock(&root->snapshot_lock);
1111 *write_bytes = min_t(size_t, *write_bytes ,
1112 num_bytes - pos + lockstart);
1113 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1118 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1120 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1123 static void update_time_for_write(struct inode *inode)
1125 struct timespec64 now, ts;
1127 if (IS_NOCMTIME(inode))
1130 now = current_time(inode);
1131 ts = inode_get_mtime(inode);
1132 if (!timespec64_equal(&ts, &now))
1133 inode_set_mtime_to_ts(inode, now);
1135 ts = inode_get_ctime(inode);
1136 if (!timespec64_equal(&ts, &now))
1137 inode_set_ctime_to_ts(inode, now);
1139 if (IS_I_VERSION(inode))
1140 inode_inc_iversion(inode);
1143 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1146 struct file *file = iocb->ki_filp;
1147 struct inode *inode = file_inode(file);
1148 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1149 loff_t pos = iocb->ki_pos;
1155 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1156 * prealloc flags, as without those flags we always have to COW. We will
1157 * later check if we can really COW into the target range (using
1158 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1160 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1161 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1164 ret = file_remove_privs(file);
1169 * We reserve space for updating the inode when we reserve space for the
1170 * extent we are going to write, so we will enospc out there. We don't
1171 * need to start yet another transaction to update the inode as we will
1172 * update the inode when we finish writing whatever data we write.
1174 update_time_for_write(inode);
1176 start_pos = round_down(pos, fs_info->sectorsize);
1177 oldsize = i_size_read(inode);
1178 if (start_pos > oldsize) {
1179 /* Expand hole size to cover write data, preventing empty gap */
1180 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1182 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1190 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1193 struct file *file = iocb->ki_filp;
1195 struct inode *inode = file_inode(file);
1196 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1197 struct page **pages = NULL;
1198 struct extent_changeset *data_reserved = NULL;
1199 u64 release_bytes = 0;
1202 size_t num_written = 0;
1205 bool only_release_metadata = false;
1206 bool force_page_uptodate = false;
1207 loff_t old_isize = i_size_read(inode);
1208 unsigned int ilock_flags = 0;
1209 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1210 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1213 ilock_flags |= BTRFS_ILOCK_TRY;
1215 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1219 ret = generic_write_checks(iocb, i);
1223 ret = btrfs_write_check(iocb, i, ret);
1228 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1229 PAGE_SIZE / (sizeof(struct page *)));
1230 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1231 nrptrs = max(nrptrs, 8);
1232 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1238 while (iov_iter_count(i) > 0) {
1239 struct extent_state *cached_state = NULL;
1240 size_t offset = offset_in_page(pos);
1241 size_t sector_offset;
1242 size_t write_bytes = min(iov_iter_count(i),
1243 nrptrs * (size_t)PAGE_SIZE -
1246 size_t reserve_bytes;
1249 size_t dirty_sectors;
1254 * Fault pages before locking them in prepare_pages
1255 * to avoid recursive lock
1257 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1262 only_release_metadata = false;
1263 sector_offset = pos & (fs_info->sectorsize - 1);
1265 extent_changeset_release(data_reserved);
1266 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1267 &data_reserved, pos,
1268 write_bytes, nowait);
1272 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1278 * If we don't have to COW at the offset, reserve
1279 * metadata only. write_bytes may get smaller than
1282 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1283 &write_bytes, nowait);
1290 only_release_metadata = true;
1293 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1294 WARN_ON(num_pages > nrptrs);
1295 reserve_bytes = round_up(write_bytes + sector_offset,
1296 fs_info->sectorsize);
1297 WARN_ON(reserve_bytes == 0);
1298 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1300 reserve_bytes, nowait);
1302 if (!only_release_metadata)
1303 btrfs_free_reserved_data_space(BTRFS_I(inode),
1307 btrfs_check_nocow_unlock(BTRFS_I(inode));
1309 if (nowait && ret == -ENOSPC)
1314 release_bytes = reserve_bytes;
1316 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1318 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1323 * This is going to setup the pages array with the number of
1324 * pages we want, so we don't really need to worry about the
1325 * contents of pages from loop to loop
1327 ret = prepare_pages(inode, pages, num_pages,
1328 pos, write_bytes, force_page_uptodate, false);
1330 btrfs_delalloc_release_extents(BTRFS_I(inode),
1335 extents_locked = lock_and_cleanup_extent_if_need(
1336 BTRFS_I(inode), pages,
1337 num_pages, pos, write_bytes, &lockstart,
1338 &lockend, nowait, &cached_state);
1339 if (extents_locked < 0) {
1340 if (!nowait && extents_locked == -EAGAIN)
1343 btrfs_delalloc_release_extents(BTRFS_I(inode),
1345 ret = extents_locked;
1349 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1351 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1352 dirty_sectors = round_up(copied + sector_offset,
1353 fs_info->sectorsize);
1354 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1357 * if we have trouble faulting in the pages, fall
1358 * back to one page at a time
1360 if (copied < write_bytes)
1364 force_page_uptodate = true;
1368 force_page_uptodate = false;
1369 dirty_pages = DIV_ROUND_UP(copied + offset,
1373 if (num_sectors > dirty_sectors) {
1374 /* release everything except the sectors we dirtied */
1375 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1376 if (only_release_metadata) {
1377 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1378 release_bytes, true);
1382 __pos = round_down(pos,
1383 fs_info->sectorsize) +
1384 (dirty_pages << PAGE_SHIFT);
1385 btrfs_delalloc_release_space(BTRFS_I(inode),
1386 data_reserved, __pos,
1387 release_bytes, true);
1391 release_bytes = round_up(copied + sector_offset,
1392 fs_info->sectorsize);
1394 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1395 dirty_pages, pos, copied,
1396 &cached_state, only_release_metadata);
1399 * If we have not locked the extent range, because the range's
1400 * start offset is >= i_size, we might still have a non-NULL
1401 * cached extent state, acquired while marking the extent range
1402 * as delalloc through btrfs_dirty_pages(). Therefore free any
1403 * possible cached extent state to avoid a memory leak.
1406 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1407 lockend, &cached_state);
1409 free_extent_state(cached_state);
1411 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1413 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1418 if (only_release_metadata)
1419 btrfs_check_nocow_unlock(BTRFS_I(inode));
1421 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1426 num_written += copied;
1431 if (release_bytes) {
1432 if (only_release_metadata) {
1433 btrfs_check_nocow_unlock(BTRFS_I(inode));
1434 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1435 release_bytes, true);
1437 btrfs_delalloc_release_space(BTRFS_I(inode),
1439 round_down(pos, fs_info->sectorsize),
1440 release_bytes, true);
1444 extent_changeset_free(data_reserved);
1445 if (num_written > 0) {
1446 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1447 iocb->ki_pos += num_written;
1450 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1451 return num_written ? num_written : ret;
1454 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1455 const struct iov_iter *iter, loff_t offset)
1457 const u32 blocksize_mask = fs_info->sectorsize - 1;
1459 if (offset & blocksize_mask)
1462 if (iov_iter_alignment(iter) & blocksize_mask)
1468 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1470 struct file *file = iocb->ki_filp;
1471 struct inode *inode = file_inode(file);
1472 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1474 ssize_t written = 0;
1475 ssize_t written_buffered;
1476 size_t prev_left = 0;
1479 unsigned int ilock_flags = 0;
1480 struct iomap_dio *dio;
1482 if (iocb->ki_flags & IOCB_NOWAIT)
1483 ilock_flags |= BTRFS_ILOCK_TRY;
1486 * If the write DIO is within EOF, use a shared lock and also only if
1487 * security bits will likely not be dropped by file_remove_privs() called
1488 * from btrfs_write_check(). Either will need to be rechecked after the
1489 * lock was acquired.
1491 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
1492 ilock_flags |= BTRFS_ILOCK_SHARED;
1495 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1499 /* Shared lock cannot be used with security bits set. */
1500 if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1501 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1502 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1506 ret = generic_write_checks(iocb, from);
1508 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1512 ret = btrfs_write_check(iocb, from, ret);
1514 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1520 * Re-check since file size may have changed just before taking the
1521 * lock or pos may have changed because of O_APPEND in generic_write_check()
1523 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1524 pos + iov_iter_count(from) > i_size_read(inode)) {
1525 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1526 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1530 if (check_direct_IO(fs_info, from, pos)) {
1531 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1536 * The iov_iter can be mapped to the same file range we are writing to.
1537 * If that's the case, then we will deadlock in the iomap code, because
1538 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1539 * an ordered extent, and after that it will fault in the pages that the
1540 * iov_iter refers to. During the fault in we end up in the readahead
1541 * pages code (starting at btrfs_readahead()), which will lock the range,
1542 * find that ordered extent and then wait for it to complete (at
1543 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1544 * obviously the ordered extent can never complete as we didn't submit
1545 * yet the respective bio(s). This always happens when the buffer is
1546 * memory mapped to the same file range, since the iomap DIO code always
1547 * invalidates pages in the target file range (after starting and waiting
1548 * for any writeback).
1550 * So here we disable page faults in the iov_iter and then retry if we
1551 * got -EFAULT, faulting in the pages before the retry.
1553 from->nofault = true;
1554 dio = btrfs_dio_write(iocb, from, written);
1555 from->nofault = false;
1558 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1559 * iocb, and that needs to lock the inode. So unlock it before calling
1560 * iomap_dio_complete() to avoid a deadlock.
1562 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1564 if (IS_ERR_OR_NULL(dio))
1565 ret = PTR_ERR_OR_ZERO(dio);
1567 ret = iomap_dio_complete(dio);
1569 /* No increment (+=) because iomap returns a cumulative value. */
1573 if (iov_iter_count(from) > 0 && (ret == -EFAULT || ret > 0)) {
1574 const size_t left = iov_iter_count(from);
1576 * We have more data left to write. Try to fault in as many as
1577 * possible of the remainder pages and retry. We do this without
1578 * releasing and locking again the inode, to prevent races with
1581 * Also, in case the iov refers to pages in the file range of the
1582 * file we want to write to (due to a mmap), we could enter an
1583 * infinite loop if we retry after faulting the pages in, since
1584 * iomap will invalidate any pages in the range early on, before
1585 * it tries to fault in the pages of the iov. So we keep track of
1586 * how much was left of iov in the previous EFAULT and fallback
1587 * to buffered IO in case we haven't made any progress.
1589 if (left == prev_left) {
1592 fault_in_iov_iter_readable(from, left);
1599 * If 'ret' is -ENOTBLK or we have not written all data, then it means
1600 * we must fallback to buffered IO.
1602 if ((ret < 0 && ret != -ENOTBLK) || !iov_iter_count(from))
1607 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1608 * it must retry the operation in a context where blocking is acceptable,
1609 * because even if we end up not blocking during the buffered IO attempt
1610 * below, we will block when flushing and waiting for the IO.
1612 if (iocb->ki_flags & IOCB_NOWAIT) {
1618 written_buffered = btrfs_buffered_write(iocb, from);
1619 if (written_buffered < 0) {
1620 ret = written_buffered;
1624 * Ensure all data is persisted. We want the next direct IO read to be
1625 * able to read what was just written.
1627 endbyte = pos + written_buffered - 1;
1628 ret = btrfs_fdatawrite_range(inode, pos, endbyte);
1631 ret = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1634 written += written_buffered;
1635 iocb->ki_pos = pos + written_buffered;
1636 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1637 endbyte >> PAGE_SHIFT);
1639 return ret < 0 ? ret : written;
1642 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1643 const struct btrfs_ioctl_encoded_io_args *encoded)
1645 struct file *file = iocb->ki_filp;
1646 struct inode *inode = file_inode(file);
1650 btrfs_inode_lock(BTRFS_I(inode), 0);
1651 count = encoded->len;
1652 ret = generic_write_checks_count(iocb, &count);
1653 if (ret == 0 && count != encoded->len) {
1655 * The write got truncated by generic_write_checks_count(). We
1656 * can't do a partial encoded write.
1660 if (ret || encoded->len == 0)
1663 ret = btrfs_write_check(iocb, from, encoded->len);
1667 ret = btrfs_do_encoded_write(iocb, from, encoded);
1669 btrfs_inode_unlock(BTRFS_I(inode), 0);
1673 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1674 const struct btrfs_ioctl_encoded_io_args *encoded)
1676 struct file *file = iocb->ki_filp;
1677 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1678 ssize_t num_written, num_sync;
1681 * If the fs flips readonly due to some impossible error, although we
1682 * have opened a file as writable, we have to stop this write operation
1683 * to ensure consistency.
1685 if (BTRFS_FS_ERROR(inode->root->fs_info))
1688 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1692 num_written = btrfs_encoded_write(iocb, from, encoded);
1693 num_sync = encoded->len;
1694 } else if (iocb->ki_flags & IOCB_DIRECT) {
1695 num_written = btrfs_direct_write(iocb, from);
1696 num_sync = num_written;
1698 num_written = btrfs_buffered_write(iocb, from);
1699 num_sync = num_written;
1702 btrfs_set_inode_last_sub_trans(inode);
1705 num_sync = generic_write_sync(iocb, num_sync);
1707 num_written = num_sync;
1713 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1715 return btrfs_do_write_iter(iocb, from, NULL);
1718 int btrfs_release_file(struct inode *inode, struct file *filp)
1720 struct btrfs_file_private *private = filp->private_data;
1723 kfree(private->filldir_buf);
1724 free_extent_state(private->llseek_cached_state);
1726 filp->private_data = NULL;
1730 * Set by setattr when we are about to truncate a file from a non-zero
1731 * size to a zero size. This tries to flush down new bytes that may
1732 * have been written if the application were using truncate to replace
1735 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1736 &BTRFS_I(inode)->runtime_flags))
1737 filemap_flush(inode->i_mapping);
1741 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1744 struct blk_plug plug;
1747 * This is only called in fsync, which would do synchronous writes, so
1748 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1749 * multiple disks using raid profile, a large IO can be split to
1750 * several segments of stripe length (currently 64K).
1752 blk_start_plug(&plug);
1753 ret = btrfs_fdatawrite_range(inode, start, end);
1754 blk_finish_plug(&plug);
1759 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1761 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1762 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1764 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1765 list_empty(&ctx->ordered_extents))
1769 * If we are doing a fast fsync we can not bail out if the inode's
1770 * last_trans is <= then the last committed transaction, because we only
1771 * update the last_trans of the inode during ordered extent completion,
1772 * and for a fast fsync we don't wait for that, we only wait for the
1773 * writeback to complete.
1775 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1776 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1777 list_empty(&ctx->ordered_extents)))
1784 * fsync call for both files and directories. This logs the inode into
1785 * the tree log instead of forcing full commits whenever possible.
1787 * It needs to call filemap_fdatawait so that all ordered extent updates are
1788 * in the metadata btree are up to date for copying to the log.
1790 * It drops the inode mutex before doing the tree log commit. This is an
1791 * important optimization for directories because holding the mutex prevents
1792 * new operations on the dir while we write to disk.
1794 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1796 struct dentry *dentry = file_dentry(file);
1797 struct inode *inode = d_inode(dentry);
1798 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1799 struct btrfs_root *root = BTRFS_I(inode)->root;
1800 struct btrfs_trans_handle *trans;
1801 struct btrfs_log_ctx ctx;
1806 trace_btrfs_sync_file(file, datasync);
1808 btrfs_init_log_ctx(&ctx, inode);
1811 * Always set the range to a full range, otherwise we can get into
1812 * several problems, from missing file extent items to represent holes
1813 * when not using the NO_HOLES feature, to log tree corruption due to
1814 * races between hole detection during logging and completion of ordered
1815 * extents outside the range, to missing checksums due to ordered extents
1816 * for which we flushed only a subset of their pages.
1820 len = (u64)LLONG_MAX + 1;
1823 * We write the dirty pages in the range and wait until they complete
1824 * out of the ->i_mutex. If so, we can flush the dirty pages by
1825 * multi-task, and make the performance up. See
1826 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1828 ret = start_ordered_ops(inode, start, end);
1832 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1834 atomic_inc(&root->log_batch);
1837 * Before we acquired the inode's lock and the mmap lock, someone may
1838 * have dirtied more pages in the target range. We need to make sure
1839 * that writeback for any such pages does not start while we are logging
1840 * the inode, because if it does, any of the following might happen when
1841 * we are not doing a full inode sync:
1843 * 1) We log an extent after its writeback finishes but before its
1844 * checksums are added to the csum tree, leading to -EIO errors
1845 * when attempting to read the extent after a log replay.
1847 * 2) We can end up logging an extent before its writeback finishes.
1848 * Therefore after the log replay we will have a file extent item
1849 * pointing to an unwritten extent (and no data checksums as well).
1851 * So trigger writeback for any eventual new dirty pages and then we
1852 * wait for all ordered extents to complete below.
1854 ret = start_ordered_ops(inode, start, end);
1856 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1861 * Always check for the full sync flag while holding the inode's lock,
1862 * to avoid races with other tasks. The flag must be either set all the
1863 * time during logging or always off all the time while logging.
1864 * We check the flag here after starting delalloc above, because when
1865 * running delalloc the full sync flag may be set if we need to drop
1866 * extra extent map ranges due to temporary memory allocation failures.
1868 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1869 &BTRFS_I(inode)->runtime_flags);
1872 * We have to do this here to avoid the priority inversion of waiting on
1873 * IO of a lower priority task while holding a transaction open.
1875 * For a full fsync we wait for the ordered extents to complete while
1876 * for a fast fsync we wait just for writeback to complete, and then
1877 * attach the ordered extents to the transaction so that a transaction
1878 * commit waits for their completion, to avoid data loss if we fsync,
1879 * the current transaction commits before the ordered extents complete
1880 * and a power failure happens right after that.
1882 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1883 * logical address recorded in the ordered extent may change. We need
1884 * to wait for the IO to stabilize the logical address.
1886 if (full_sync || btrfs_is_zoned(fs_info)) {
1887 ret = btrfs_wait_ordered_range(inode, start, len);
1890 * Get our ordered extents as soon as possible to avoid doing
1891 * checksum lookups in the csum tree, and use instead the
1892 * checksums attached to the ordered extents.
1894 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1895 &ctx.ordered_extents);
1896 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
1900 goto out_release_extents;
1902 atomic_inc(&root->log_batch);
1904 if (skip_inode_logging(&ctx)) {
1906 * We've had everything committed since the last time we were
1907 * modified so clear this flag in case it was set for whatever
1908 * reason, it's no longer relevant.
1910 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1911 &BTRFS_I(inode)->runtime_flags);
1913 * An ordered extent might have started before and completed
1914 * already with io errors, in which case the inode was not
1915 * updated and we end up here. So check the inode's mapping
1916 * for any errors that might have happened since we last
1917 * checked called fsync.
1919 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1920 goto out_release_extents;
1923 btrfs_init_log_ctx_scratch_eb(&ctx);
1926 * We use start here because we will need to wait on the IO to complete
1927 * in btrfs_sync_log, which could require joining a transaction (for
1928 * example checking cross references in the nocow path). If we use join
1929 * here we could get into a situation where we're waiting on IO to
1930 * happen that is blocked on a transaction trying to commit. With start
1931 * we inc the extwriter counter, so we wait for all extwriters to exit
1932 * before we start blocking joiners. This comment is to keep somebody
1933 * from thinking they are super smart and changing this to
1934 * btrfs_join_transaction *cough*Josef*cough*.
1936 trans = btrfs_start_transaction(root, 0);
1937 if (IS_ERR(trans)) {
1938 ret = PTR_ERR(trans);
1939 goto out_release_extents;
1941 trans->in_fsync = true;
1943 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1945 * Scratch eb no longer needed, release before syncing log or commit
1946 * transaction, to avoid holding unnecessary memory during such long
1949 if (ctx.scratch_eb) {
1950 free_extent_buffer(ctx.scratch_eb);
1951 ctx.scratch_eb = NULL;
1953 btrfs_release_log_ctx_extents(&ctx);
1955 /* Fallthrough and commit/free transaction. */
1956 ret = BTRFS_LOG_FORCE_COMMIT;
1959 /* we've logged all the items and now have a consistent
1960 * version of the file in the log. It is possible that
1961 * someone will come in and modify the file, but that's
1962 * fine because the log is consistent on disk, and we
1963 * have references to all of the file's extents
1965 * It is possible that someone will come in and log the
1966 * file again, but that will end up using the synchronization
1967 * inside btrfs_sync_log to keep things safe.
1969 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1971 if (ret == BTRFS_NO_LOG_SYNC) {
1972 ret = btrfs_end_transaction(trans);
1976 /* We successfully logged the inode, attempt to sync the log. */
1978 ret = btrfs_sync_log(trans, root, &ctx);
1980 ret = btrfs_end_transaction(trans);
1986 * At this point we need to commit the transaction because we had
1987 * btrfs_need_log_full_commit() or some other error.
1989 * If we didn't do a full sync we have to stop the trans handle, wait on
1990 * the ordered extents, start it again and commit the transaction. If
1991 * we attempt to wait on the ordered extents here we could deadlock with
1992 * something like fallocate() that is holding the extent lock trying to
1993 * start a transaction while some other thread is trying to commit the
1994 * transaction while we (fsync) are currently holding the transaction
1998 ret = btrfs_end_transaction(trans);
2001 ret = btrfs_wait_ordered_range(inode, start, len);
2006 * This is safe to use here because we're only interested in
2007 * making sure the transaction that had the ordered extents is
2008 * committed. We aren't waiting on anything past this point,
2009 * we're purely getting the transaction and committing it.
2011 trans = btrfs_attach_transaction_barrier(root);
2012 if (IS_ERR(trans)) {
2013 ret = PTR_ERR(trans);
2016 * We committed the transaction and there's no currently
2017 * running transaction, this means everything we care
2018 * about made it to disk and we are done.
2026 ret = btrfs_commit_transaction(trans);
2028 free_extent_buffer(ctx.scratch_eb);
2029 ASSERT(list_empty(&ctx.list));
2030 ASSERT(list_empty(&ctx.conflict_inodes));
2031 err = file_check_and_advance_wb_err(file);
2034 return ret > 0 ? -EIO : ret;
2036 out_release_extents:
2037 btrfs_release_log_ctx_extents(&ctx);
2038 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2043 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
2044 * called from a page fault handler when a page is first dirtied. Hence we must
2045 * be careful to check for EOF conditions here. We set the page up correctly
2046 * for a written page which means we get ENOSPC checking when writing into
2047 * holes and correct delalloc and unwritten extent mapping on filesystems that
2048 * support these features.
2050 * We are not allowed to take the i_mutex here so we have to play games to
2051 * protect against truncate races as the page could now be beyond EOF. Because
2052 * truncate_setsize() writes the inode size before removing pages, once we have
2053 * the page lock we can determine safely if the page is beyond EOF. If it is not
2054 * beyond EOF, then the page is guaranteed safe against truncation until we
2057 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
2059 struct page *page = vmf->page;
2060 struct folio *folio = page_folio(page);
2061 struct inode *inode = file_inode(vmf->vma->vm_file);
2062 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2063 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2064 struct btrfs_ordered_extent *ordered;
2065 struct extent_state *cached_state = NULL;
2066 struct extent_changeset *data_reserved = NULL;
2067 unsigned long zero_start;
2077 ASSERT(folio_order(folio) == 0);
2079 reserved_space = PAGE_SIZE;
2081 sb_start_pagefault(inode->i_sb);
2082 page_start = page_offset(page);
2083 page_end = page_start + PAGE_SIZE - 1;
2087 * Reserving delalloc space after obtaining the page lock can lead to
2088 * deadlock. For example, if a dirty page is locked by this function
2089 * and the call to btrfs_delalloc_reserve_space() ends up triggering
2090 * dirty page write out, then the btrfs_writepages() function could
2091 * end up waiting indefinitely to get a lock on the page currently
2092 * being processed by btrfs_page_mkwrite() function.
2094 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
2095 page_start, reserved_space);
2097 ret2 = file_update_time(vmf->vma->vm_file);
2101 ret = vmf_error(ret2);
2107 /* Make the VM retry the fault. */
2108 ret = VM_FAULT_NOPAGE;
2110 down_read(&BTRFS_I(inode)->i_mmap_lock);
2112 size = i_size_read(inode);
2114 if ((page->mapping != inode->i_mapping) ||
2115 (page_start >= size)) {
2116 /* Page got truncated out from underneath us. */
2119 wait_on_page_writeback(page);
2121 lock_extent(io_tree, page_start, page_end, &cached_state);
2122 ret2 = set_page_extent_mapped(page);
2124 ret = vmf_error(ret2);
2125 unlock_extent(io_tree, page_start, page_end, &cached_state);
2130 * We can't set the delalloc bits if there are pending ordered
2131 * extents. Drop our locks and wait for them to finish.
2133 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE);
2135 unlock_extent(io_tree, page_start, page_end, &cached_state);
2137 up_read(&BTRFS_I(inode)->i_mmap_lock);
2138 btrfs_start_ordered_extent(ordered);
2139 btrfs_put_ordered_extent(ordered);
2143 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
2144 reserved_space = round_up(size - page_start, fs_info->sectorsize);
2145 if (reserved_space < PAGE_SIZE) {
2146 end = page_start + reserved_space - 1;
2147 btrfs_delalloc_release_space(BTRFS_I(inode),
2148 data_reserved, page_start,
2149 PAGE_SIZE - reserved_space, true);
2154 * page_mkwrite gets called when the page is firstly dirtied after it's
2155 * faulted in, but write(2) could also dirty a page and set delalloc
2156 * bits, thus in this case for space account reason, we still need to
2157 * clear any delalloc bits within this page range since we have to
2158 * reserve data&meta space before lock_page() (see above comments).
2160 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
2161 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
2162 EXTENT_DEFRAG, &cached_state);
2164 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
2167 unlock_extent(io_tree, page_start, page_end, &cached_state);
2168 ret = VM_FAULT_SIGBUS;
2172 /* Page is wholly or partially inside EOF. */
2173 if (page_start + PAGE_SIZE > size)
2174 zero_start = offset_in_page(size);
2176 zero_start = PAGE_SIZE;
2178 if (zero_start != PAGE_SIZE)
2179 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
2181 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2182 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
2183 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
2185 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
2187 unlock_extent(io_tree, page_start, page_end, &cached_state);
2188 up_read(&BTRFS_I(inode)->i_mmap_lock);
2190 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2191 sb_end_pagefault(inode->i_sb);
2192 extent_changeset_free(data_reserved);
2193 return VM_FAULT_LOCKED;
2197 up_read(&BTRFS_I(inode)->i_mmap_lock);
2199 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2200 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
2201 reserved_space, (ret != 0));
2203 sb_end_pagefault(inode->i_sb);
2204 extent_changeset_free(data_reserved);
2208 static const struct vm_operations_struct btrfs_file_vm_ops = {
2209 .fault = filemap_fault,
2210 .map_pages = filemap_map_pages,
2211 .page_mkwrite = btrfs_page_mkwrite,
2214 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2216 struct address_space *mapping = filp->f_mapping;
2218 if (!mapping->a_ops->read_folio)
2221 file_accessed(filp);
2222 vma->vm_ops = &btrfs_file_vm_ops;
2227 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2228 int slot, u64 start, u64 end)
2230 struct btrfs_file_extent_item *fi;
2231 struct btrfs_key key;
2233 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2236 btrfs_item_key_to_cpu(leaf, &key, slot);
2237 if (key.objectid != btrfs_ino(inode) ||
2238 key.type != BTRFS_EXTENT_DATA_KEY)
2241 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2243 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2246 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2249 if (key.offset == end)
2251 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2256 static int fill_holes(struct btrfs_trans_handle *trans,
2257 struct btrfs_inode *inode,
2258 struct btrfs_path *path, u64 offset, u64 end)
2260 struct btrfs_fs_info *fs_info = trans->fs_info;
2261 struct btrfs_root *root = inode->root;
2262 struct extent_buffer *leaf;
2263 struct btrfs_file_extent_item *fi;
2264 struct extent_map *hole_em;
2265 struct btrfs_key key;
2268 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2271 key.objectid = btrfs_ino(inode);
2272 key.type = BTRFS_EXTENT_DATA_KEY;
2273 key.offset = offset;
2275 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2278 * We should have dropped this offset, so if we find it then
2279 * something has gone horribly wrong.
2286 leaf = path->nodes[0];
2287 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2291 fi = btrfs_item_ptr(leaf, path->slots[0],
2292 struct btrfs_file_extent_item);
2293 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2295 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2296 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2297 btrfs_set_file_extent_offset(leaf, fi, 0);
2298 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2299 btrfs_mark_buffer_dirty(trans, leaf);
2303 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2306 key.offset = offset;
2307 btrfs_set_item_key_safe(trans, path, &key);
2308 fi = btrfs_item_ptr(leaf, path->slots[0],
2309 struct btrfs_file_extent_item);
2310 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2312 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2313 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2314 btrfs_set_file_extent_offset(leaf, fi, 0);
2315 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2316 btrfs_mark_buffer_dirty(trans, leaf);
2319 btrfs_release_path(path);
2321 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2327 btrfs_release_path(path);
2329 hole_em = alloc_extent_map();
2331 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2332 btrfs_set_inode_full_sync(inode);
2334 hole_em->start = offset;
2335 hole_em->len = end - offset;
2336 hole_em->ram_bytes = hole_em->len;
2337 hole_em->orig_start = offset;
2339 hole_em->block_start = EXTENT_MAP_HOLE;
2340 hole_em->block_len = 0;
2341 hole_em->orig_block_len = 0;
2342 hole_em->generation = trans->transid;
2344 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2345 free_extent_map(hole_em);
2347 btrfs_set_inode_full_sync(inode);
2354 * Find a hole extent on given inode and change start/len to the end of hole
2355 * extent.(hole/vacuum extent whose em->start <= start &&
2356 * em->start + em->len > start)
2357 * When a hole extent is found, return 1 and modify start/len.
2359 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2361 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2362 struct extent_map *em;
2365 em = btrfs_get_extent(inode, NULL,
2366 round_down(*start, fs_info->sectorsize),
2367 round_up(*len, fs_info->sectorsize));
2371 /* Hole or vacuum extent(only exists in no-hole mode) */
2372 if (em->block_start == EXTENT_MAP_HOLE) {
2374 *len = em->start + em->len > *start + *len ?
2375 0 : *start + *len - em->start - em->len;
2376 *start = em->start + em->len;
2378 free_extent_map(em);
2382 static void btrfs_punch_hole_lock_range(struct inode *inode,
2383 const u64 lockstart,
2385 struct extent_state **cached_state)
2388 * For subpage case, if the range is not at page boundary, we could
2389 * have pages at the leading/tailing part of the range.
2390 * This could lead to dead loop since filemap_range_has_page()
2391 * will always return true.
2392 * So here we need to do extra page alignment for
2393 * filemap_range_has_page().
2395 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2396 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2399 truncate_pagecache_range(inode, lockstart, lockend);
2401 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2404 * We can't have ordered extents in the range, nor dirty/writeback
2405 * pages, because we have locked the inode's VFS lock in exclusive
2406 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2407 * we have flushed all delalloc in the range and we have waited
2408 * for any ordered extents in the range to complete.
2409 * We can race with anyone reading pages from this range, so after
2410 * locking the range check if we have pages in the range, and if
2411 * we do, unlock the range and retry.
2413 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2417 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2421 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2424 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2425 struct btrfs_inode *inode,
2426 struct btrfs_path *path,
2427 struct btrfs_replace_extent_info *extent_info,
2428 const u64 replace_len,
2429 const u64 bytes_to_drop)
2431 struct btrfs_fs_info *fs_info = trans->fs_info;
2432 struct btrfs_root *root = inode->root;
2433 struct btrfs_file_extent_item *extent;
2434 struct extent_buffer *leaf;
2435 struct btrfs_key key;
2439 if (replace_len == 0)
2442 if (extent_info->disk_offset == 0 &&
2443 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2444 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2448 key.objectid = btrfs_ino(inode);
2449 key.type = BTRFS_EXTENT_DATA_KEY;
2450 key.offset = extent_info->file_offset;
2451 ret = btrfs_insert_empty_item(trans, root, path, &key,
2452 sizeof(struct btrfs_file_extent_item));
2455 leaf = path->nodes[0];
2456 slot = path->slots[0];
2457 write_extent_buffer(leaf, extent_info->extent_buf,
2458 btrfs_item_ptr_offset(leaf, slot),
2459 sizeof(struct btrfs_file_extent_item));
2460 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2461 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2462 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2463 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2464 if (extent_info->is_new_extent)
2465 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2466 btrfs_mark_buffer_dirty(trans, leaf);
2467 btrfs_release_path(path);
2469 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2474 /* If it's a hole, nothing more needs to be done. */
2475 if (extent_info->disk_offset == 0) {
2476 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2480 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2482 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2483 key.objectid = extent_info->disk_offset;
2484 key.type = BTRFS_EXTENT_ITEM_KEY;
2485 key.offset = extent_info->disk_len;
2486 ret = btrfs_alloc_reserved_file_extent(trans, root,
2488 extent_info->file_offset,
2489 extent_info->qgroup_reserved,
2492 struct btrfs_ref ref = {
2493 .action = BTRFS_ADD_DELAYED_REF,
2494 .bytenr = extent_info->disk_offset,
2495 .num_bytes = extent_info->disk_len,
2496 .owning_root = btrfs_root_id(root),
2497 .ref_root = btrfs_root_id(root),
2501 ref_offset = extent_info->file_offset - extent_info->data_offset;
2502 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2503 ret = btrfs_inc_extent_ref(trans, &ref);
2506 extent_info->insertions++;
2512 * The respective range must have been previously locked, as well as the inode.
2513 * The end offset is inclusive (last byte of the range).
2514 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2515 * the file range with an extent.
2516 * When not punching a hole, we don't want to end up in a state where we dropped
2517 * extents without inserting a new one, so we must abort the transaction to avoid
2520 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2521 struct btrfs_path *path, const u64 start,
2523 struct btrfs_replace_extent_info *extent_info,
2524 struct btrfs_trans_handle **trans_out)
2526 struct btrfs_drop_extents_args drop_args = { 0 };
2527 struct btrfs_root *root = inode->root;
2528 struct btrfs_fs_info *fs_info = root->fs_info;
2529 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2530 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2531 struct btrfs_trans_handle *trans = NULL;
2532 struct btrfs_block_rsv *rsv;
2533 unsigned int rsv_count;
2535 u64 len = end - start;
2541 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2546 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2547 rsv->failfast = true;
2550 * 1 - update the inode
2551 * 1 - removing the extents in the range
2552 * 1 - adding the hole extent if no_holes isn't set or if we are
2553 * replacing the range with a new extent
2555 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2560 trans = btrfs_start_transaction(root, rsv_count);
2561 if (IS_ERR(trans)) {
2562 ret = PTR_ERR(trans);
2567 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2571 trans->block_rsv = rsv;
2574 drop_args.path = path;
2575 drop_args.end = end + 1;
2576 drop_args.drop_cache = true;
2577 while (cur_offset < end) {
2578 drop_args.start = cur_offset;
2579 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2580 /* If we are punching a hole decrement the inode's byte count */
2582 btrfs_update_inode_bytes(inode, 0,
2583 drop_args.bytes_found);
2584 if (ret != -ENOSPC) {
2586 * The only time we don't want to abort is if we are
2587 * attempting to clone a partial inline extent, in which
2588 * case we'll get EOPNOTSUPP. However if we aren't
2589 * clone we need to abort no matter what, because if we
2590 * got EOPNOTSUPP via prealloc then we messed up and
2594 (ret != -EOPNOTSUPP ||
2595 (extent_info && extent_info->is_new_extent)))
2596 btrfs_abort_transaction(trans, ret);
2600 trans->block_rsv = &fs_info->trans_block_rsv;
2602 if (!extent_info && cur_offset < drop_args.drop_end &&
2603 cur_offset < ino_size) {
2604 ret = fill_holes(trans, inode, path, cur_offset,
2605 drop_args.drop_end);
2608 * If we failed then we didn't insert our hole
2609 * entries for the area we dropped, so now the
2610 * fs is corrupted, so we must abort the
2613 btrfs_abort_transaction(trans, ret);
2616 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2618 * We are past the i_size here, but since we didn't
2619 * insert holes we need to clear the mapped area so we
2620 * know to not set disk_i_size in this area until a new
2621 * file extent is inserted here.
2623 ret = btrfs_inode_clear_file_extent_range(inode,
2625 drop_args.drop_end - cur_offset);
2628 * We couldn't clear our area, so we could
2629 * presumably adjust up and corrupt the fs, so
2632 btrfs_abort_transaction(trans, ret);
2638 drop_args.drop_end > extent_info->file_offset) {
2639 u64 replace_len = drop_args.drop_end -
2640 extent_info->file_offset;
2642 ret = btrfs_insert_replace_extent(trans, inode, path,
2643 extent_info, replace_len,
2644 drop_args.bytes_found);
2646 btrfs_abort_transaction(trans, ret);
2649 extent_info->data_len -= replace_len;
2650 extent_info->data_offset += replace_len;
2651 extent_info->file_offset += replace_len;
2655 * We are releasing our handle on the transaction, balance the
2656 * dirty pages of the btree inode and flush delayed items, and
2657 * then get a new transaction handle, which may now point to a
2658 * new transaction in case someone else may have committed the
2659 * transaction we used to replace/drop file extent items. So
2660 * bump the inode's iversion and update mtime and ctime except
2661 * if we are called from a dedupe context. This is because a
2662 * power failure/crash may happen after the transaction is
2663 * committed and before we finish replacing/dropping all the
2664 * file extent items we need.
2666 inode_inc_iversion(&inode->vfs_inode);
2668 if (!extent_info || extent_info->update_times)
2669 inode_set_mtime_to_ts(&inode->vfs_inode,
2670 inode_set_ctime_current(&inode->vfs_inode));
2672 ret = btrfs_update_inode(trans, inode);
2676 btrfs_end_transaction(trans);
2677 btrfs_btree_balance_dirty(fs_info);
2679 trans = btrfs_start_transaction(root, rsv_count);
2680 if (IS_ERR(trans)) {
2681 ret = PTR_ERR(trans);
2686 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2687 rsv, min_size, false);
2690 trans->block_rsv = rsv;
2692 cur_offset = drop_args.drop_end;
2693 len = end - cur_offset;
2694 if (!extent_info && len) {
2695 ret = find_first_non_hole(inode, &cur_offset, &len);
2696 if (unlikely(ret < 0))
2706 * If we were cloning, force the next fsync to be a full one since we
2707 * we replaced (or just dropped in the case of cloning holes when
2708 * NO_HOLES is enabled) file extent items and did not setup new extent
2709 * maps for the replacement extents (or holes).
2711 if (extent_info && !extent_info->is_new_extent)
2712 btrfs_set_inode_full_sync(inode);
2717 trans->block_rsv = &fs_info->trans_block_rsv;
2719 * If we are using the NO_HOLES feature we might have had already an
2720 * hole that overlaps a part of the region [lockstart, lockend] and
2721 * ends at (or beyond) lockend. Since we have no file extent items to
2722 * represent holes, drop_end can be less than lockend and so we must
2723 * make sure we have an extent map representing the existing hole (the
2724 * call to __btrfs_drop_extents() might have dropped the existing extent
2725 * map representing the existing hole), otherwise the fast fsync path
2726 * will not record the existence of the hole region
2727 * [existing_hole_start, lockend].
2729 if (drop_args.drop_end <= end)
2730 drop_args.drop_end = end + 1;
2732 * Don't insert file hole extent item if it's for a range beyond eof
2733 * (because it's useless) or if it represents a 0 bytes range (when
2734 * cur_offset == drop_end).
2736 if (!extent_info && cur_offset < ino_size &&
2737 cur_offset < drop_args.drop_end) {
2738 ret = fill_holes(trans, inode, path, cur_offset,
2739 drop_args.drop_end);
2741 /* Same comment as above. */
2742 btrfs_abort_transaction(trans, ret);
2745 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2746 /* See the comment in the loop above for the reasoning here. */
2747 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2748 drop_args.drop_end - cur_offset);
2750 btrfs_abort_transaction(trans, ret);
2756 ret = btrfs_insert_replace_extent(trans, inode, path,
2757 extent_info, extent_info->data_len,
2758 drop_args.bytes_found);
2760 btrfs_abort_transaction(trans, ret);
2769 trans->block_rsv = &fs_info->trans_block_rsv;
2771 btrfs_end_transaction(trans);
2775 btrfs_free_block_rsv(fs_info, rsv);
2780 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2782 struct inode *inode = file_inode(file);
2783 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2784 struct btrfs_root *root = BTRFS_I(inode)->root;
2785 struct extent_state *cached_state = NULL;
2786 struct btrfs_path *path;
2787 struct btrfs_trans_handle *trans = NULL;
2792 u64 orig_start = offset;
2796 bool truncated_block = false;
2797 bool updated_inode = false;
2799 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2801 ret = btrfs_wait_ordered_range(inode, offset, len);
2803 goto out_only_mutex;
2805 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2806 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2808 goto out_only_mutex;
2810 /* Already in a large hole */
2812 goto out_only_mutex;
2815 ret = file_modified(file);
2817 goto out_only_mutex;
2819 lockstart = round_up(offset, fs_info->sectorsize);
2820 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2821 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2822 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2824 * We needn't truncate any block which is beyond the end of the file
2825 * because we are sure there is no data there.
2828 * Only do this if we are in the same block and we aren't doing the
2831 if (same_block && len < fs_info->sectorsize) {
2832 if (offset < ino_size) {
2833 truncated_block = true;
2834 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2839 goto out_only_mutex;
2842 /* zero back part of the first block */
2843 if (offset < ino_size) {
2844 truncated_block = true;
2845 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2847 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2852 /* Check the aligned pages after the first unaligned page,
2853 * if offset != orig_start, which means the first unaligned page
2854 * including several following pages are already in holes,
2855 * the extra check can be skipped */
2856 if (offset == orig_start) {
2857 /* after truncate page, check hole again */
2858 len = offset + len - lockstart;
2860 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2862 goto out_only_mutex;
2865 goto out_only_mutex;
2870 /* Check the tail unaligned part is in a hole */
2871 tail_start = lockend + 1;
2872 tail_len = offset + len - tail_start;
2874 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2875 if (unlikely(ret < 0))
2876 goto out_only_mutex;
2878 /* zero the front end of the last page */
2879 if (tail_start + tail_len < ino_size) {
2880 truncated_block = true;
2881 ret = btrfs_truncate_block(BTRFS_I(inode),
2882 tail_start + tail_len,
2885 goto out_only_mutex;
2890 if (lockend < lockstart) {
2892 goto out_only_mutex;
2895 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2897 path = btrfs_alloc_path();
2903 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2904 lockend, NULL, &trans);
2905 btrfs_free_path(path);
2909 ASSERT(trans != NULL);
2910 inode_inc_iversion(inode);
2911 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2912 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2913 updated_inode = true;
2914 btrfs_end_transaction(trans);
2915 btrfs_btree_balance_dirty(fs_info);
2917 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2920 if (!updated_inode && truncated_block && !ret) {
2922 * If we only end up zeroing part of a page, we still need to
2923 * update the inode item, so that all the time fields are
2924 * updated as well as the necessary btrfs inode in memory fields
2925 * for detecting, at fsync time, if the inode isn't yet in the
2926 * log tree or it's there but not up to date.
2928 struct timespec64 now = inode_set_ctime_current(inode);
2930 inode_inc_iversion(inode);
2931 inode_set_mtime_to_ts(inode, now);
2932 trans = btrfs_start_transaction(root, 1);
2933 if (IS_ERR(trans)) {
2934 ret = PTR_ERR(trans);
2938 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2939 ret2 = btrfs_end_transaction(trans);
2944 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2948 /* Helper structure to record which range is already reserved */
2949 struct falloc_range {
2950 struct list_head list;
2956 * Helper function to add falloc range
2958 * Caller should have locked the larger range of extent containing
2961 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2963 struct falloc_range *range = NULL;
2965 if (!list_empty(head)) {
2967 * As fallocate iterates by bytenr order, we only need to check
2970 range = list_last_entry(head, struct falloc_range, list);
2971 if (range->start + range->len == start) {
2977 range = kmalloc(sizeof(*range), GFP_KERNEL);
2980 range->start = start;
2982 list_add_tail(&range->list, head);
2986 static int btrfs_fallocate_update_isize(struct inode *inode,
2990 struct btrfs_trans_handle *trans;
2991 struct btrfs_root *root = BTRFS_I(inode)->root;
2995 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2998 trans = btrfs_start_transaction(root, 1);
3000 return PTR_ERR(trans);
3002 inode_set_ctime_current(inode);
3003 i_size_write(inode, end);
3004 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3005 ret = btrfs_update_inode(trans, BTRFS_I(inode));
3006 ret2 = btrfs_end_transaction(trans);
3008 return ret ? ret : ret2;
3012 RANGE_BOUNDARY_WRITTEN_EXTENT,
3013 RANGE_BOUNDARY_PREALLOC_EXTENT,
3014 RANGE_BOUNDARY_HOLE,
3017 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3020 const u64 sectorsize = inode->root->fs_info->sectorsize;
3021 struct extent_map *em;
3024 offset = round_down(offset, sectorsize);
3025 em = btrfs_get_extent(inode, NULL, offset, sectorsize);
3029 if (em->block_start == EXTENT_MAP_HOLE)
3030 ret = RANGE_BOUNDARY_HOLE;
3031 else if (em->flags & EXTENT_FLAG_PREALLOC)
3032 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3034 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3036 free_extent_map(em);
3040 static int btrfs_zero_range(struct inode *inode,
3045 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3046 struct extent_map *em;
3047 struct extent_changeset *data_reserved = NULL;
3050 const u64 sectorsize = fs_info->sectorsize;
3051 u64 alloc_start = round_down(offset, sectorsize);
3052 u64 alloc_end = round_up(offset + len, sectorsize);
3053 u64 bytes_to_reserve = 0;
3054 bool space_reserved = false;
3056 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
3057 alloc_end - alloc_start);
3064 * Avoid hole punching and extent allocation for some cases. More cases
3065 * could be considered, but these are unlikely common and we keep things
3066 * as simple as possible for now. Also, intentionally, if the target
3067 * range contains one or more prealloc extents together with regular
3068 * extents and holes, we drop all the existing extents and allocate a
3069 * new prealloc extent, so that we get a larger contiguous disk extent.
3071 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
3072 const u64 em_end = em->start + em->len;
3074 if (em_end >= offset + len) {
3076 * The whole range is already a prealloc extent,
3077 * do nothing except updating the inode's i_size if
3080 free_extent_map(em);
3081 ret = btrfs_fallocate_update_isize(inode, offset + len,
3086 * Part of the range is already a prealloc extent, so operate
3087 * only on the remaining part of the range.
3089 alloc_start = em_end;
3090 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3091 len = offset + len - alloc_start;
3092 offset = alloc_start;
3093 alloc_hint = em->block_start + em->len;
3095 free_extent_map(em);
3097 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3098 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3099 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
3105 if (em->flags & EXTENT_FLAG_PREALLOC) {
3106 free_extent_map(em);
3107 ret = btrfs_fallocate_update_isize(inode, offset + len,
3111 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3112 free_extent_map(em);
3113 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3116 ret = btrfs_fallocate_update_isize(inode,
3121 free_extent_map(em);
3122 alloc_start = round_down(offset, sectorsize);
3123 alloc_end = alloc_start + sectorsize;
3127 alloc_start = round_up(offset, sectorsize);
3128 alloc_end = round_down(offset + len, sectorsize);
3131 * For unaligned ranges, check the pages at the boundaries, they might
3132 * map to an extent, in which case we need to partially zero them, or
3133 * they might map to a hole, in which case we need our allocation range
3136 if (!IS_ALIGNED(offset, sectorsize)) {
3137 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3141 if (ret == RANGE_BOUNDARY_HOLE) {
3142 alloc_start = round_down(offset, sectorsize);
3144 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3145 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3153 if (!IS_ALIGNED(offset + len, sectorsize)) {
3154 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3158 if (ret == RANGE_BOUNDARY_HOLE) {
3159 alloc_end = round_up(offset + len, sectorsize);
3161 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3162 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3172 if (alloc_start < alloc_end) {
3173 struct extent_state *cached_state = NULL;
3174 const u64 lockstart = alloc_start;
3175 const u64 lockend = alloc_end - 1;
3177 bytes_to_reserve = alloc_end - alloc_start;
3178 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3182 space_reserved = true;
3183 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3185 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3186 alloc_start, bytes_to_reserve);
3188 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3189 lockend, &cached_state);
3192 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3193 alloc_end - alloc_start,
3194 fs_info->sectorsize,
3195 offset + len, &alloc_hint);
3196 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3198 /* btrfs_prealloc_file_range releases reserved space on error */
3200 space_reserved = false;
3204 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3206 if (ret && space_reserved)
3207 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3208 alloc_start, bytes_to_reserve);
3209 extent_changeset_free(data_reserved);
3214 static long btrfs_fallocate(struct file *file, int mode,
3215 loff_t offset, loff_t len)
3217 struct inode *inode = file_inode(file);
3218 struct extent_state *cached_state = NULL;
3219 struct extent_changeset *data_reserved = NULL;
3220 struct falloc_range *range;
3221 struct falloc_range *tmp;
3222 LIST_HEAD(reserve_list);
3230 u64 data_space_needed = 0;
3231 u64 data_space_reserved = 0;
3232 u64 qgroup_reserved = 0;
3233 struct extent_map *em;
3234 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3237 /* Do not allow fallocate in ZONED mode */
3238 if (btrfs_is_zoned(inode_to_fs_info(inode)))
3241 alloc_start = round_down(offset, blocksize);
3242 alloc_end = round_up(offset + len, blocksize);
3243 cur_offset = alloc_start;
3245 /* Make sure we aren't being give some crap mode */
3246 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3247 FALLOC_FL_ZERO_RANGE))
3250 if (mode & FALLOC_FL_PUNCH_HOLE)
3251 return btrfs_punch_hole(file, offset, len);
3253 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3255 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3256 ret = inode_newsize_ok(inode, offset + len);
3261 ret = file_modified(file);
3266 * TODO: Move these two operations after we have checked
3267 * accurate reserved space, or fallocate can still fail but
3268 * with page truncated or size expanded.
3270 * But that's a minor problem and won't do much harm BTW.
3272 if (alloc_start > inode->i_size) {
3273 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3277 } else if (offset + len > inode->i_size) {
3279 * If we are fallocating from the end of the file onward we
3280 * need to zero out the end of the block if i_size lands in the
3281 * middle of a block.
3283 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3289 * We have locked the inode at the VFS level (in exclusive mode) and we
3290 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3291 * locking the file range, flush all dealloc in the range and wait for
3292 * all ordered extents in the range to complete. After this we can lock
3293 * the file range and, due to the previous locking we did, we know there
3294 * can't be more delalloc or ordered extents in the range.
3296 ret = btrfs_wait_ordered_range(inode, alloc_start,
3297 alloc_end - alloc_start);
3301 if (mode & FALLOC_FL_ZERO_RANGE) {
3302 ret = btrfs_zero_range(inode, offset, len, mode);
3303 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3307 locked_end = alloc_end - 1;
3308 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3311 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3313 /* First, check if we exceed the qgroup limit */
3314 while (cur_offset < alloc_end) {
3315 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3316 alloc_end - cur_offset);
3321 last_byte = min(extent_map_end(em), alloc_end);
3322 actual_end = min_t(u64, extent_map_end(em), offset + len);
3323 last_byte = ALIGN(last_byte, blocksize);
3324 if (em->block_start == EXTENT_MAP_HOLE ||
3325 (cur_offset >= inode->i_size &&
3326 !(em->flags & EXTENT_FLAG_PREALLOC))) {
3327 const u64 range_len = last_byte - cur_offset;
3329 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3331 free_extent_map(em);
3334 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3335 &data_reserved, cur_offset, range_len);
3337 free_extent_map(em);
3340 qgroup_reserved += range_len;
3341 data_space_needed += range_len;
3343 free_extent_map(em);
3344 cur_offset = last_byte;
3347 if (!ret && data_space_needed > 0) {
3349 * We are safe to reserve space here as we can't have delalloc
3350 * in the range, see above.
3352 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3355 data_space_reserved = data_space_needed;
3359 * If ret is still 0, means we're OK to fallocate.
3360 * Or just cleanup the list and exit.
3362 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3364 ret = btrfs_prealloc_file_range(inode, mode,
3366 range->len, blocksize,
3367 offset + len, &alloc_hint);
3369 * btrfs_prealloc_file_range() releases space even
3370 * if it returns an error.
3372 data_space_reserved -= range->len;
3373 qgroup_reserved -= range->len;
3374 } else if (data_space_reserved > 0) {
3375 btrfs_free_reserved_data_space(BTRFS_I(inode),
3376 data_reserved, range->start,
3378 data_space_reserved -= range->len;
3379 qgroup_reserved -= range->len;
3380 } else if (qgroup_reserved > 0) {
3381 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3382 range->start, range->len, NULL);
3383 qgroup_reserved -= range->len;
3385 list_del(&range->list);
3392 * We didn't need to allocate any more space, but we still extended the
3393 * size of the file so we need to update i_size and the inode item.
3395 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3397 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3400 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3401 extent_changeset_free(data_reserved);
3406 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3407 * that has unflushed and/or flushing delalloc. There might be other adjacent
3408 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3409 * looping while it gets adjacent subranges, and merging them together.
3411 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3412 struct extent_state **cached_state,
3413 bool *search_io_tree,
3414 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3416 u64 len = end + 1 - start;
3417 u64 delalloc_len = 0;
3418 struct btrfs_ordered_extent *oe;
3423 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3424 * means we have delalloc (dirty pages) for which writeback has not
3427 if (*search_io_tree) {
3428 spin_lock(&inode->lock);
3429 if (inode->delalloc_bytes > 0) {
3430 spin_unlock(&inode->lock);
3431 *delalloc_start_ret = start;
3432 delalloc_len = count_range_bits(&inode->io_tree,
3433 delalloc_start_ret, end,
3434 len, EXTENT_DELALLOC, 1,
3437 spin_unlock(&inode->lock);
3441 if (delalloc_len > 0) {
3443 * If delalloc was found then *delalloc_start_ret has a sector size
3444 * aligned value (rounded down).
3446 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3448 if (*delalloc_start_ret == start) {
3449 /* Delalloc for the whole range, nothing more to do. */
3450 if (*delalloc_end_ret == end)
3452 /* Else trim our search range for ordered extents. */
3453 start = *delalloc_end_ret + 1;
3454 len = end + 1 - start;
3457 /* No delalloc, future calls don't need to search again. */
3458 *search_io_tree = false;
3462 * Now also check if there's any ordered extent in the range.
3463 * We do this because:
3465 * 1) When delalloc is flushed, the file range is locked, we clear the
3466 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3467 * an ordered extent for the write. So we might just have been called
3468 * after delalloc is flushed and before the ordered extent completes
3469 * and inserts the new file extent item in the subvolume's btree;
3471 * 2) We may have an ordered extent created by flushing delalloc for a
3472 * subrange that starts before the subrange we found marked with
3473 * EXTENT_DELALLOC in the io tree.
3475 * We could also use the extent map tree to find such delalloc that is
3476 * being flushed, but using the ordered extents tree is more efficient
3477 * because it's usually much smaller as ordered extents are removed from
3478 * the tree once they complete. With the extent maps, we mau have them
3479 * in the extent map tree for a very long time, and they were either
3480 * created by previous writes or loaded by read operations.
3482 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3484 return (delalloc_len > 0);
3486 /* The ordered extent may span beyond our search range. */
3487 oe_start = max(oe->file_offset, start);
3488 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3490 btrfs_put_ordered_extent(oe);
3492 /* Don't have unflushed delalloc, return the ordered extent range. */
3493 if (delalloc_len == 0) {
3494 *delalloc_start_ret = oe_start;
3495 *delalloc_end_ret = oe_end;
3500 * We have both unflushed delalloc (io_tree) and an ordered extent.
3501 * If the ranges are adjacent returned a combined range, otherwise
3502 * return the leftmost range.
3504 if (oe_start < *delalloc_start_ret) {
3505 if (oe_end < *delalloc_start_ret)
3506 *delalloc_end_ret = oe_end;
3507 *delalloc_start_ret = oe_start;
3508 } else if (*delalloc_end_ret + 1 == oe_start) {
3509 *delalloc_end_ret = oe_end;
3516 * Check if there's delalloc in a given range.
3518 * @inode: The inode.
3519 * @start: The start offset of the range. It does not need to be
3520 * sector size aligned.
3521 * @end: The end offset (inclusive value) of the search range.
3522 * It does not need to be sector size aligned.
3523 * @cached_state: Extent state record used for speeding up delalloc
3524 * searches in the inode's io_tree. Can be NULL.
3525 * @delalloc_start_ret: Output argument, set to the start offset of the
3526 * subrange found with delalloc (may not be sector size
3528 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3529 * of the subrange found with delalloc.
3531 * Returns true if a subrange with delalloc is found within the given range, and
3532 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3533 * end offsets of the subrange.
3535 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3536 struct extent_state **cached_state,
3537 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3539 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3540 u64 prev_delalloc_end = 0;
3541 bool search_io_tree = true;
3544 while (cur_offset <= end) {
3549 delalloc = find_delalloc_subrange(inode, cur_offset, end,
3550 cached_state, &search_io_tree,
3556 if (prev_delalloc_end == 0) {
3557 /* First subrange found. */
3558 *delalloc_start_ret = max(delalloc_start, start);
3559 *delalloc_end_ret = delalloc_end;
3561 } else if (delalloc_start == prev_delalloc_end + 1) {
3562 /* Subrange adjacent to the previous one, merge them. */
3563 *delalloc_end_ret = delalloc_end;
3565 /* Subrange not adjacent to the previous one, exit. */
3569 prev_delalloc_end = delalloc_end;
3570 cur_offset = delalloc_end + 1;
3578 * Check if there's a hole or delalloc range in a range representing a hole (or
3579 * prealloc extent) found in the inode's subvolume btree.
3581 * @inode: The inode.
3582 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3583 * @start: Start offset of the hole region. It does not need to be sector
3585 * @end: End offset (inclusive value) of the hole region. It does not
3586 * need to be sector size aligned.
3587 * @start_ret: Return parameter, used to set the start of the subrange in the
3588 * hole that matches the search criteria (seek mode), if such
3589 * subrange is found (return value of the function is true).
3590 * The value returned here may not be sector size aligned.
3592 * Returns true if a subrange matching the given seek mode is found, and if one
3593 * is found, it updates @start_ret with the start of the subrange.
3595 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3596 struct extent_state **cached_state,
3597 u64 start, u64 end, u64 *start_ret)
3603 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3604 &delalloc_start, &delalloc_end);
3605 if (delalloc && whence == SEEK_DATA) {
3606 *start_ret = delalloc_start;
3610 if (delalloc && whence == SEEK_HOLE) {
3612 * We found delalloc but it starts after out start offset. So we
3613 * have a hole between our start offset and the delalloc start.
3615 if (start < delalloc_start) {
3620 * Delalloc range starts at our start offset.
3621 * If the delalloc range's length is smaller than our range,
3622 * then it means we have a hole that starts where the delalloc
3625 if (delalloc_end < end) {
3626 *start_ret = delalloc_end + 1;
3630 /* There's delalloc for the whole range. */
3634 if (!delalloc && whence == SEEK_HOLE) {
3640 * No delalloc in the range and we are seeking for data. The caller has
3641 * to iterate to the next extent item in the subvolume btree.
3646 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3648 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3649 struct btrfs_file_private *private = file->private_data;
3650 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3651 struct extent_state *cached_state = NULL;
3652 struct extent_state **delalloc_cached_state;
3653 const loff_t i_size = i_size_read(&inode->vfs_inode);
3654 const u64 ino = btrfs_ino(inode);
3655 struct btrfs_root *root = inode->root;
3656 struct btrfs_path *path;
3657 struct btrfs_key key;
3658 u64 last_extent_end;
3665 if (i_size == 0 || offset >= i_size)
3669 * Quick path. If the inode has no prealloc extents and its number of
3670 * bytes used matches its i_size, then it can not have holes.
3672 if (whence == SEEK_HOLE &&
3673 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3674 inode_get_bytes(&inode->vfs_inode) == i_size)
3678 private = kzalloc(sizeof(*private), GFP_KERNEL);
3680 * No worries if memory allocation failed.
3681 * The private structure is used only for speeding up multiple
3682 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3683 * so everything will still be correct.
3685 file->private_data = private;
3689 delalloc_cached_state = &private->llseek_cached_state;
3691 delalloc_cached_state = NULL;
3694 * offset can be negative, in this case we start finding DATA/HOLE from
3695 * the very start of the file.
3697 start = max_t(loff_t, 0, offset);
3699 lockstart = round_down(start, fs_info->sectorsize);
3700 lockend = round_up(i_size, fs_info->sectorsize);
3701 if (lockend <= lockstart)
3702 lockend = lockstart + fs_info->sectorsize;
3705 path = btrfs_alloc_path();
3708 path->reada = READA_FORWARD;
3711 key.type = BTRFS_EXTENT_DATA_KEY;
3714 last_extent_end = lockstart;
3716 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3718 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3721 } else if (ret > 0 && path->slots[0] > 0) {
3722 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3723 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3727 while (start < i_size) {
3728 struct extent_buffer *leaf = path->nodes[0];
3729 struct btrfs_file_extent_item *extent;
3733 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3734 ret = btrfs_next_leaf(root, path);
3740 leaf = path->nodes[0];
3743 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3744 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3747 extent_end = btrfs_file_extent_end(path);
3750 * In the first iteration we may have a slot that points to an
3751 * extent that ends before our start offset, so skip it.
3753 if (extent_end <= start) {
3758 /* We have an implicit hole, NO_HOLES feature is likely set. */
3759 if (last_extent_end < key.offset) {
3760 u64 search_start = last_extent_end;
3764 * First iteration, @start matches @offset and it's
3767 if (start == offset)
3768 search_start = offset;
3770 found = find_desired_extent_in_hole(inode, whence,
3771 delalloc_cached_state,
3776 start = found_start;
3780 * Didn't find data or a hole (due to delalloc) in the
3781 * implicit hole range, so need to analyze the extent.
3785 extent = btrfs_item_ptr(leaf, path->slots[0],
3786 struct btrfs_file_extent_item);
3787 type = btrfs_file_extent_type(leaf, extent);
3790 * Can't access the extent's disk_bytenr field if this is an
3791 * inline extent, since at that offset, it's where the extent
3794 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3795 (type == BTRFS_FILE_EXTENT_REG &&
3796 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3798 * Explicit hole or prealloc extent, search for delalloc.
3799 * A prealloc extent is treated like a hole.
3801 u64 search_start = key.offset;
3805 * First iteration, @start matches @offset and it's
3808 if (start == offset)
3809 search_start = offset;
3811 found = find_desired_extent_in_hole(inode, whence,
3812 delalloc_cached_state,
3817 start = found_start;
3821 * Didn't find data or a hole (due to delalloc) in the
3822 * implicit hole range, so need to analyze the next
3827 * Found a regular or inline extent.
3828 * If we are seeking for data, adjust the start offset
3829 * and stop, we're done.
3831 if (whence == SEEK_DATA) {
3832 start = max_t(u64, key.offset, offset);
3837 * Else, we are seeking for a hole, check the next file
3843 last_extent_end = extent_end;
3845 if (fatal_signal_pending(current)) {
3852 /* We have an implicit hole from the last extent found up to i_size. */
3853 if (!found && start < i_size) {
3854 found = find_desired_extent_in_hole(inode, whence,
3855 delalloc_cached_state, start,
3856 i_size - 1, &start);
3862 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3863 btrfs_free_path(path);
3868 if (whence == SEEK_DATA && start >= i_size)
3871 return min_t(loff_t, start, i_size);
3874 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3876 struct inode *inode = file->f_mapping->host;
3880 return generic_file_llseek(file, offset, whence);
3883 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3884 offset = find_desired_extent(file, offset, whence);
3885 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3892 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3895 static int btrfs_file_open(struct inode *inode, struct file *filp)
3899 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3901 ret = fsverity_file_open(inode, filp);
3904 return generic_file_open(inode, filp);
3907 static int check_direct_read(struct btrfs_fs_info *fs_info,
3908 const struct iov_iter *iter, loff_t offset)
3913 ret = check_direct_IO(fs_info, iter, offset);
3917 if (!iter_is_iovec(iter))
3920 for (seg = 0; seg < iter->nr_segs; seg++) {
3921 for (i = seg + 1; i < iter->nr_segs; i++) {
3922 const struct iovec *iov1 = iter_iov(iter) + seg;
3923 const struct iovec *iov2 = iter_iov(iter) + i;
3925 if (iov1->iov_base == iov2->iov_base)
3932 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3934 struct inode *inode = file_inode(iocb->ki_filp);
3935 size_t prev_left = 0;
3939 if (fsverity_active(inode))
3942 if (check_direct_read(inode_to_fs_info(inode), to, iocb->ki_pos))
3945 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3948 * This is similar to what we do for direct IO writes, see the comment
3949 * at btrfs_direct_write(), but we also disable page faults in addition
3950 * to disabling them only at the iov_iter level. This is because when
3951 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3952 * which can still trigger page fault ins despite having set ->nofault
3953 * to true of our 'to' iov_iter.
3955 * The difference to direct IO writes is that we deadlock when trying
3956 * to lock the extent range in the inode's tree during he page reads
3957 * triggered by the fault in (while for writes it is due to waiting for
3958 * our own ordered extent). This is because for direct IO reads,
3959 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3960 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3962 pagefault_disable();
3964 ret = btrfs_dio_read(iocb, to, read);
3965 to->nofault = false;
3968 /* No increment (+=) because iomap returns a cumulative value. */
3972 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3973 const size_t left = iov_iter_count(to);
3975 if (left == prev_left) {
3977 * We didn't make any progress since the last attempt,
3978 * fallback to a buffered read for the remainder of the
3979 * range. This is just to avoid any possibility of looping
3985 * We made some progress since the last retry or this is
3986 * the first time we are retrying. Fault in as many pages
3987 * as possible and retry.
3989 fault_in_iov_iter_writeable(to, left);
3994 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3995 return ret < 0 ? ret : read;
3998 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4002 if (iocb->ki_flags & IOCB_DIRECT) {
4003 ret = btrfs_direct_read(iocb, to);
4004 if (ret < 0 || !iov_iter_count(to) ||
4005 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
4009 return filemap_read(iocb, to, ret);
4012 const struct file_operations btrfs_file_operations = {
4013 .llseek = btrfs_file_llseek,
4014 .read_iter = btrfs_file_read_iter,
4015 .splice_read = filemap_splice_read,
4016 .write_iter = btrfs_file_write_iter,
4017 .splice_write = iter_file_splice_write,
4018 .mmap = btrfs_file_mmap,
4019 .open = btrfs_file_open,
4020 .release = btrfs_release_file,
4021 .get_unmapped_area = thp_get_unmapped_area,
4022 .fsync = btrfs_sync_file,
4023 .fallocate = btrfs_fallocate,
4024 .unlocked_ioctl = btrfs_ioctl,
4025 #ifdef CONFIG_COMPAT
4026 .compat_ioctl = btrfs_compat_ioctl,
4028 .remap_file_range = btrfs_remap_file_range,
4029 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
4032 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
4037 * So with compression we will find and lock a dirty page and clear the
4038 * first one as dirty, setup an async extent, and immediately return
4039 * with the entire range locked but with nobody actually marked with
4040 * writeback. So we can't just filemap_write_and_wait_range() and
4041 * expect it to work since it will just kick off a thread to do the
4042 * actual work. So we need to call filemap_fdatawrite_range _again_
4043 * since it will wait on the page lock, which won't be unlocked until
4044 * after the pages have been marked as writeback and so we're good to go
4045 * from there. We have to do this otherwise we'll miss the ordered
4046 * extents and that results in badness. Please Josef, do not think you
4047 * know better and pull this out at some point in the future, it is
4048 * right and you are wrong.
4050 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
4051 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
4052 &BTRFS_I(inode)->runtime_flags))
4053 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);