1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * #!-checking implemented by tytso.
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 #include <linux/ksm.h>
72 #include <linux/uaccess.h>
73 #include <asm/mmu_context.h>
76 #include <trace/events/task.h>
79 #include <trace/events/sched.h>
81 static int bprm_creds_from_file(struct linux_binprm *bprm);
83 int suid_dumpable = 0;
85 static LIST_HEAD(formats);
86 static DEFINE_RWLOCK(binfmt_lock);
88 void __register_binfmt(struct linux_binfmt * fmt, int insert)
90 write_lock(&binfmt_lock);
91 insert ? list_add(&fmt->lh, &formats) :
92 list_add_tail(&fmt->lh, &formats);
93 write_unlock(&binfmt_lock);
96 EXPORT_SYMBOL(__register_binfmt);
98 void unregister_binfmt(struct linux_binfmt * fmt)
100 write_lock(&binfmt_lock);
102 write_unlock(&binfmt_lock);
105 EXPORT_SYMBOL(unregister_binfmt);
107 static inline void put_binfmt(struct linux_binfmt * fmt)
109 module_put(fmt->module);
112 bool path_noexec(const struct path *path)
114 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
120 * Note that a shared library must be both readable and executable due to
123 * Also note that we take the address to load from the file itself.
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
127 struct linux_binfmt *fmt;
129 struct filename *tmp = getname(library);
130 int error = PTR_ERR(tmp);
131 static const struct open_flags uselib_flags = {
132 .open_flag = O_LARGEFILE | O_RDONLY,
133 .acc_mode = MAY_READ | MAY_EXEC,
134 .intent = LOOKUP_OPEN,
135 .lookup_flags = LOOKUP_FOLLOW,
141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
143 error = PTR_ERR(file);
148 * may_open() has already checked for this, so it should be
149 * impossible to trip now. But we need to be extra cautious
150 * and check again at the very end too.
153 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154 path_noexec(&file->f_path)))
159 read_lock(&binfmt_lock);
160 list_for_each_entry(fmt, &formats, lh) {
161 if (!fmt->load_shlib)
163 if (!try_module_get(fmt->module))
165 read_unlock(&binfmt_lock);
166 error = fmt->load_shlib(file);
167 read_lock(&binfmt_lock);
169 if (error != -ENOEXEC)
172 read_unlock(&binfmt_lock);
178 #endif /* #ifdef CONFIG_USELIB */
182 * The nascent bprm->mm is not visible until exec_mmap() but it can
183 * use a lot of memory, account these pages in current->mm temporary
184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185 * change the counter back via acct_arg_size(0).
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
189 struct mm_struct *mm = current->mm;
190 long diff = (long)(pages - bprm->vma_pages);
195 bprm->vma_pages = pages;
196 add_mm_counter(mm, MM_ANONPAGES, diff);
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
203 struct vm_area_struct *vma = bprm->vma;
204 struct mm_struct *mm = bprm->mm;
208 * Avoid relying on expanding the stack down in GUP (which
209 * does not work for STACK_GROWSUP anyway), and just do it
210 * by hand ahead of time.
212 if (write && pos < vma->vm_start) {
214 ret = expand_downwards(vma, pos);
215 if (unlikely(ret < 0)) {
216 mmap_write_unlock(mm);
219 mmap_write_downgrade(mm);
224 * We are doing an exec(). 'current' is the process
225 * doing the exec and 'mm' is the new process's mm.
227 ret = get_user_pages_remote(mm, pos, 1,
228 write ? FOLL_WRITE : 0,
230 mmap_read_unlock(mm);
235 acct_arg_size(bprm, vma_pages(vma));
240 static void put_arg_page(struct page *page)
245 static void free_arg_pages(struct linux_binprm *bprm)
249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
252 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
255 static int __bprm_mm_init(struct linux_binprm *bprm)
258 struct vm_area_struct *vma = NULL;
259 struct mm_struct *mm = bprm->mm;
261 bprm->vma = vma = vm_area_alloc(mm);
264 vma_set_anonymous(vma);
266 if (mmap_write_lock_killable(mm)) {
272 * Need to be called with mmap write lock
273 * held, to avoid race with ksmd.
275 err = ksm_execve(mm);
280 * Place the stack at the largest stack address the architecture
281 * supports. Later, we'll move this to an appropriate place. We don't
282 * use STACK_TOP because that can depend on attributes which aren't
285 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286 vma->vm_end = STACK_TOP_MAX;
287 vma->vm_start = vma->vm_end - PAGE_SIZE;
288 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
289 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
291 err = insert_vm_struct(mm, vma);
295 mm->stack_vm = mm->total_vm = 1;
296 mmap_write_unlock(mm);
297 bprm->p = vma->vm_end - sizeof(void *);
302 mmap_write_unlock(mm);
309 static bool valid_arg_len(struct linux_binprm *bprm, long len)
311 return len <= MAX_ARG_STRLEN;
316 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
320 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
325 page = bprm->page[pos / PAGE_SIZE];
326 if (!page && write) {
327 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
330 bprm->page[pos / PAGE_SIZE] = page;
336 static void put_arg_page(struct page *page)
340 static void free_arg_page(struct linux_binprm *bprm, int i)
343 __free_page(bprm->page[i]);
344 bprm->page[i] = NULL;
348 static void free_arg_pages(struct linux_binprm *bprm)
352 for (i = 0; i < MAX_ARG_PAGES; i++)
353 free_arg_page(bprm, i);
356 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
361 static int __bprm_mm_init(struct linux_binprm *bprm)
363 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
367 static bool valid_arg_len(struct linux_binprm *bprm, long len)
369 return len <= bprm->p;
372 #endif /* CONFIG_MMU */
375 * Create a new mm_struct and populate it with a temporary stack
376 * vm_area_struct. We don't have enough context at this point to set the stack
377 * flags, permissions, and offset, so we use temporary values. We'll update
378 * them later in setup_arg_pages().
380 static int bprm_mm_init(struct linux_binprm *bprm)
383 struct mm_struct *mm = NULL;
385 bprm->mm = mm = mm_alloc();
390 /* Save current stack limit for all calculations made during exec. */
391 task_lock(current->group_leader);
392 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
393 task_unlock(current->group_leader);
395 err = __bprm_mm_init(bprm);
410 struct user_arg_ptr {
415 const char __user *const __user *native;
417 const compat_uptr_t __user *compat;
422 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
424 const char __user *native;
427 if (unlikely(argv.is_compat)) {
428 compat_uptr_t compat;
430 if (get_user(compat, argv.ptr.compat + nr))
431 return ERR_PTR(-EFAULT);
433 return compat_ptr(compat);
437 if (get_user(native, argv.ptr.native + nr))
438 return ERR_PTR(-EFAULT);
444 * count() counts the number of strings in array ARGV.
446 static int count(struct user_arg_ptr argv, int max)
450 if (argv.ptr.native != NULL) {
452 const char __user *p = get_user_arg_ptr(argv, i);
464 if (fatal_signal_pending(current))
465 return -ERESTARTNOHAND;
472 static int count_strings_kernel(const char *const *argv)
479 for (i = 0; argv[i]; ++i) {
480 if (i >= MAX_ARG_STRINGS)
482 if (fatal_signal_pending(current))
483 return -ERESTARTNOHAND;
489 static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
493 /* Avoid a pathological bprm->p. */
496 bprm->argmin = bprm->p - limit;
500 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
503 return bprm->p < bprm->argmin;
510 * Calculate bprm->argmin from:
513 * - bprm->rlim_stack.rlim_cur
518 static int bprm_stack_limits(struct linux_binprm *bprm)
520 unsigned long limit, ptr_size;
523 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
524 * (whichever is smaller) for the argv+env strings.
526 * - the remaining binfmt code will not run out of stack space,
527 * - the program will have a reasonable amount of stack left
530 limit = _STK_LIM / 4 * 3;
531 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
533 * We've historically supported up to 32 pages (ARG_MAX)
534 * of argument strings even with small stacks
536 limit = max_t(unsigned long, limit, ARG_MAX);
537 /* Reject totally pathological counts. */
538 if (bprm->argc < 0 || bprm->envc < 0)
541 * We must account for the size of all the argv and envp pointers to
542 * the argv and envp strings, since they will also take up space in
543 * the stack. They aren't stored until much later when we can't
544 * signal to the parent that the child has run out of stack space.
545 * Instead, calculate it here so it's possible to fail gracefully.
547 * In the case of argc = 0, make sure there is space for adding a
548 * empty string (which will bump argc to 1), to ensure confused
549 * userspace programs don't start processing from argv[1], thinking
550 * argc can never be 0, to keep them from walking envp by accident.
551 * See do_execveat_common().
553 if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
554 check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
556 if (limit <= ptr_size)
560 return bprm_set_stack_limit(bprm, limit);
564 * 'copy_strings()' copies argument/environment strings from the old
565 * processes's memory to the new process's stack. The call to get_user_pages()
566 * ensures the destination page is created and not swapped out.
568 static int copy_strings(int argc, struct user_arg_ptr argv,
569 struct linux_binprm *bprm)
571 struct page *kmapped_page = NULL;
573 unsigned long kpos = 0;
577 const char __user *str;
582 str = get_user_arg_ptr(argv, argc);
586 len = strnlen_user(str, MAX_ARG_STRLEN);
591 if (!valid_arg_len(bprm, len))
594 /* We're going to work our way backwards. */
598 if (bprm_hit_stack_limit(bprm))
602 int offset, bytes_to_copy;
604 if (fatal_signal_pending(current)) {
605 ret = -ERESTARTNOHAND;
610 offset = pos % PAGE_SIZE;
614 bytes_to_copy = offset;
615 if (bytes_to_copy > len)
618 offset -= bytes_to_copy;
619 pos -= bytes_to_copy;
620 str -= bytes_to_copy;
621 len -= bytes_to_copy;
623 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
626 page = get_arg_page(bprm, pos, 1);
633 flush_dcache_page(kmapped_page);
635 put_arg_page(kmapped_page);
638 kaddr = kmap_local_page(kmapped_page);
639 kpos = pos & PAGE_MASK;
640 flush_arg_page(bprm, kpos, kmapped_page);
642 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
651 flush_dcache_page(kmapped_page);
653 put_arg_page(kmapped_page);
659 * Copy and argument/environment string from the kernel to the processes stack.
661 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
663 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
664 unsigned long pos = bprm->p;
668 if (!valid_arg_len(bprm, len))
671 /* We're going to work our way backwards. */
674 if (bprm_hit_stack_limit(bprm))
678 unsigned int bytes_to_copy = min_t(unsigned int, len,
679 min_not_zero(offset_in_page(pos), PAGE_SIZE));
682 pos -= bytes_to_copy;
683 arg -= bytes_to_copy;
684 len -= bytes_to_copy;
686 page = get_arg_page(bprm, pos, 1);
689 flush_arg_page(bprm, pos & PAGE_MASK, page);
690 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
696 EXPORT_SYMBOL(copy_string_kernel);
698 static int copy_strings_kernel(int argc, const char *const *argv,
699 struct linux_binprm *bprm)
702 int ret = copy_string_kernel(argv[argc], bprm);
705 if (fatal_signal_pending(current))
706 return -ERESTARTNOHAND;
715 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
716 * the binfmt code determines where the new stack should reside, we shift it to
717 * its final location. The process proceeds as follows:
719 * 1) Use shift to calculate the new vma endpoints.
720 * 2) Extend vma to cover both the old and new ranges. This ensures the
721 * arguments passed to subsequent functions are consistent.
722 * 3) Move vma's page tables to the new range.
723 * 4) Free up any cleared pgd range.
724 * 5) Shrink the vma to cover only the new range.
726 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
728 struct mm_struct *mm = vma->vm_mm;
729 unsigned long old_start = vma->vm_start;
730 unsigned long old_end = vma->vm_end;
731 unsigned long length = old_end - old_start;
732 unsigned long new_start = old_start - shift;
733 unsigned long new_end = old_end - shift;
734 VMA_ITERATOR(vmi, mm, new_start);
735 struct vm_area_struct *next;
736 struct mmu_gather tlb;
738 BUG_ON(new_start > new_end);
741 * ensure there are no vmas between where we want to go
744 if (vma != vma_next(&vmi))
747 vma_iter_prev_range(&vmi);
749 * cover the whole range: [new_start, old_end)
751 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
755 * move the page tables downwards, on failure we rely on
756 * process cleanup to remove whatever mess we made.
758 if (length != move_page_tables(vma, old_start,
759 vma, new_start, length, false, true))
763 tlb_gather_mmu(&tlb, mm);
764 next = vma_next(&vmi);
765 if (new_end > old_start) {
767 * when the old and new regions overlap clear from new_end.
769 free_pgd_range(&tlb, new_end, old_end, new_end,
770 next ? next->vm_start : USER_PGTABLES_CEILING);
773 * otherwise, clean from old_start; this is done to not touch
774 * the address space in [new_end, old_start) some architectures
775 * have constraints on va-space that make this illegal (IA64) -
776 * for the others its just a little faster.
778 free_pgd_range(&tlb, old_start, old_end, new_end,
779 next ? next->vm_start : USER_PGTABLES_CEILING);
781 tlb_finish_mmu(&tlb);
784 /* Shrink the vma to just the new range */
785 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
789 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
790 * the stack is optionally relocated, and some extra space is added.
792 int setup_arg_pages(struct linux_binprm *bprm,
793 unsigned long stack_top,
794 int executable_stack)
797 unsigned long stack_shift;
798 struct mm_struct *mm = current->mm;
799 struct vm_area_struct *vma = bprm->vma;
800 struct vm_area_struct *prev = NULL;
801 unsigned long vm_flags;
802 unsigned long stack_base;
803 unsigned long stack_size;
804 unsigned long stack_expand;
805 unsigned long rlim_stack;
806 struct mmu_gather tlb;
807 struct vma_iterator vmi;
809 #ifdef CONFIG_STACK_GROWSUP
810 /* Limit stack size */
811 stack_base = bprm->rlim_stack.rlim_max;
813 stack_base = calc_max_stack_size(stack_base);
815 /* Add space for stack randomization. */
816 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
818 /* Make sure we didn't let the argument array grow too large. */
819 if (vma->vm_end - vma->vm_start > stack_base)
822 stack_base = PAGE_ALIGN(stack_top - stack_base);
824 stack_shift = vma->vm_start - stack_base;
825 mm->arg_start = bprm->p - stack_shift;
826 bprm->p = vma->vm_end - stack_shift;
828 stack_top = arch_align_stack(stack_top);
829 stack_top = PAGE_ALIGN(stack_top);
831 if (unlikely(stack_top < mmap_min_addr) ||
832 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
835 stack_shift = vma->vm_end - stack_top;
837 bprm->p -= stack_shift;
838 mm->arg_start = bprm->p;
842 bprm->loader -= stack_shift;
843 bprm->exec -= stack_shift;
845 if (mmap_write_lock_killable(mm))
848 vm_flags = VM_STACK_FLAGS;
851 * Adjust stack execute permissions; explicitly enable for
852 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
853 * (arch default) otherwise.
855 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
857 else if (executable_stack == EXSTACK_DISABLE_X)
858 vm_flags &= ~VM_EXEC;
859 vm_flags |= mm->def_flags;
860 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
862 vma_iter_init(&vmi, mm, vma->vm_start);
864 tlb_gather_mmu(&tlb, mm);
865 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
867 tlb_finish_mmu(&tlb);
873 if (unlikely(vm_flags & VM_EXEC)) {
874 pr_warn_once("process '%pD4' started with executable stack\n",
878 /* Move stack pages down in memory. */
880 ret = shift_arg_pages(vma, stack_shift);
885 /* mprotect_fixup is overkill to remove the temporary stack flags */
886 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
888 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
889 stack_size = vma->vm_end - vma->vm_start;
891 * Align this down to a page boundary as expand_stack
894 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
896 stack_expand = min(rlim_stack, stack_size + stack_expand);
898 #ifdef CONFIG_STACK_GROWSUP
899 stack_base = vma->vm_start + stack_expand;
901 stack_base = vma->vm_end - stack_expand;
903 current->mm->start_stack = bprm->p;
904 ret = expand_stack_locked(vma, stack_base);
909 mmap_write_unlock(mm);
912 EXPORT_SYMBOL(setup_arg_pages);
917 * Transfer the program arguments and environment from the holding pages
918 * onto the stack. The provided stack pointer is adjusted accordingly.
920 int transfer_args_to_stack(struct linux_binprm *bprm,
921 unsigned long *sp_location)
923 unsigned long index, stop, sp;
926 stop = bprm->p >> PAGE_SHIFT;
929 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
930 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
931 char *src = kmap_local_page(bprm->page[index]) + offset;
932 sp -= PAGE_SIZE - offset;
933 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
940 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
946 EXPORT_SYMBOL(transfer_args_to_stack);
948 #endif /* CONFIG_MMU */
951 * On success, caller must call do_close_execat() on the returned
952 * struct file to close it.
954 static struct file *do_open_execat(int fd, struct filename *name, int flags)
958 struct open_flags open_exec_flags = {
959 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
960 .acc_mode = MAY_EXEC,
961 .intent = LOOKUP_OPEN,
962 .lookup_flags = LOOKUP_FOLLOW,
965 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
966 return ERR_PTR(-EINVAL);
967 if (flags & AT_SYMLINK_NOFOLLOW)
968 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
969 if (flags & AT_EMPTY_PATH)
970 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
972 file = do_filp_open(fd, name, &open_exec_flags);
977 * may_open() has already checked for this, so it should be
978 * impossible to trip now. But we need to be extra cautious
979 * and check again at the very end too.
982 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
983 path_noexec(&file->f_path)))
995 * open_exec - Open a path name for execution
997 * @name: path name to open with the intent of executing it.
999 * Returns ERR_PTR on failure or allocated struct file on success.
1001 * As this is a wrapper for the internal do_open_execat(). Also see
1002 * do_close_execat().
1004 struct file *open_exec(const char *name)
1006 struct filename *filename = getname_kernel(name);
1007 struct file *f = ERR_CAST(filename);
1009 if (!IS_ERR(filename)) {
1010 f = do_open_execat(AT_FDCWD, filename, 0);
1015 EXPORT_SYMBOL(open_exec);
1017 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
1018 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1020 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1022 flush_icache_user_range(addr, addr + len);
1025 EXPORT_SYMBOL(read_code);
1029 * Maps the mm_struct mm into the current task struct.
1030 * On success, this function returns with exec_update_lock
1033 static int exec_mmap(struct mm_struct *mm)
1035 struct task_struct *tsk;
1036 struct mm_struct *old_mm, *active_mm;
1039 /* Notify parent that we're no longer interested in the old VM */
1041 old_mm = current->mm;
1042 exec_mm_release(tsk, old_mm);
1044 ret = down_write_killable(&tsk->signal->exec_update_lock);
1050 * If there is a pending fatal signal perhaps a signal
1051 * whose default action is to create a coredump get
1052 * out and die instead of going through with the exec.
1054 ret = mmap_read_lock_killable(old_mm);
1056 up_write(&tsk->signal->exec_update_lock);
1062 membarrier_exec_mmap(mm);
1064 local_irq_disable();
1065 active_mm = tsk->active_mm;
1066 tsk->active_mm = mm;
1070 * This prevents preemption while active_mm is being loaded and
1071 * it and mm are being updated, which could cause problems for
1072 * lazy tlb mm refcounting when these are updated by context
1073 * switches. Not all architectures can handle irqs off over
1076 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1078 activate_mm(active_mm, mm);
1079 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1085 mmap_read_unlock(old_mm);
1086 BUG_ON(active_mm != old_mm);
1087 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1088 mm_update_next_owner(old_mm);
1092 mmdrop_lazy_tlb(active_mm);
1096 static int de_thread(struct task_struct *tsk)
1098 struct signal_struct *sig = tsk->signal;
1099 struct sighand_struct *oldsighand = tsk->sighand;
1100 spinlock_t *lock = &oldsighand->siglock;
1102 if (thread_group_empty(tsk))
1103 goto no_thread_group;
1106 * Kill all other threads in the thread group.
1108 spin_lock_irq(lock);
1109 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1111 * Another group action in progress, just
1112 * return so that the signal is processed.
1114 spin_unlock_irq(lock);
1118 sig->group_exec_task = tsk;
1119 sig->notify_count = zap_other_threads(tsk);
1120 if (!thread_group_leader(tsk))
1121 sig->notify_count--;
1123 while (sig->notify_count) {
1124 __set_current_state(TASK_KILLABLE);
1125 spin_unlock_irq(lock);
1127 if (__fatal_signal_pending(tsk))
1129 spin_lock_irq(lock);
1131 spin_unlock_irq(lock);
1134 * At this point all other threads have exited, all we have to
1135 * do is to wait for the thread group leader to become inactive,
1136 * and to assume its PID:
1138 if (!thread_group_leader(tsk)) {
1139 struct task_struct *leader = tsk->group_leader;
1142 cgroup_threadgroup_change_begin(tsk);
1143 write_lock_irq(&tasklist_lock);
1145 * Do this under tasklist_lock to ensure that
1146 * exit_notify() can't miss ->group_exec_task
1148 sig->notify_count = -1;
1149 if (likely(leader->exit_state))
1151 __set_current_state(TASK_KILLABLE);
1152 write_unlock_irq(&tasklist_lock);
1153 cgroup_threadgroup_change_end(tsk);
1155 if (__fatal_signal_pending(tsk))
1160 * The only record we have of the real-time age of a
1161 * process, regardless of execs it's done, is start_time.
1162 * All the past CPU time is accumulated in signal_struct
1163 * from sister threads now dead. But in this non-leader
1164 * exec, nothing survives from the original leader thread,
1165 * whose birth marks the true age of this process now.
1166 * When we take on its identity by switching to its PID, we
1167 * also take its birthdate (always earlier than our own).
1169 tsk->start_time = leader->start_time;
1170 tsk->start_boottime = leader->start_boottime;
1172 BUG_ON(!same_thread_group(leader, tsk));
1174 * An exec() starts a new thread group with the
1175 * TGID of the previous thread group. Rehash the
1176 * two threads with a switched PID, and release
1177 * the former thread group leader:
1180 /* Become a process group leader with the old leader's pid.
1181 * The old leader becomes a thread of the this thread group.
1183 exchange_tids(tsk, leader);
1184 transfer_pid(leader, tsk, PIDTYPE_TGID);
1185 transfer_pid(leader, tsk, PIDTYPE_PGID);
1186 transfer_pid(leader, tsk, PIDTYPE_SID);
1188 list_replace_rcu(&leader->tasks, &tsk->tasks);
1189 list_replace_init(&leader->sibling, &tsk->sibling);
1191 tsk->group_leader = tsk;
1192 leader->group_leader = tsk;
1194 tsk->exit_signal = SIGCHLD;
1195 leader->exit_signal = -1;
1197 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1198 leader->exit_state = EXIT_DEAD;
1200 * We are going to release_task()->ptrace_unlink() silently,
1201 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1202 * the tracer won't block again waiting for this thread.
1204 if (unlikely(leader->ptrace))
1205 __wake_up_parent(leader, leader->parent);
1206 write_unlock_irq(&tasklist_lock);
1207 cgroup_threadgroup_change_end(tsk);
1209 release_task(leader);
1212 sig->group_exec_task = NULL;
1213 sig->notify_count = 0;
1216 /* we have changed execution domain */
1217 tsk->exit_signal = SIGCHLD;
1219 BUG_ON(!thread_group_leader(tsk));
1223 /* protects against exit_notify() and __exit_signal() */
1224 read_lock(&tasklist_lock);
1225 sig->group_exec_task = NULL;
1226 sig->notify_count = 0;
1227 read_unlock(&tasklist_lock);
1233 * This function makes sure the current process has its own signal table,
1234 * so that flush_signal_handlers can later reset the handlers without
1235 * disturbing other processes. (Other processes might share the signal
1236 * table via the CLONE_SIGHAND option to clone().)
1238 static int unshare_sighand(struct task_struct *me)
1240 struct sighand_struct *oldsighand = me->sighand;
1242 if (refcount_read(&oldsighand->count) != 1) {
1243 struct sighand_struct *newsighand;
1245 * This ->sighand is shared with the CLONE_SIGHAND
1246 * but not CLONE_THREAD task, switch to the new one.
1248 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1252 refcount_set(&newsighand->count, 1);
1254 write_lock_irq(&tasklist_lock);
1255 spin_lock(&oldsighand->siglock);
1256 memcpy(newsighand->action, oldsighand->action,
1257 sizeof(newsighand->action));
1258 rcu_assign_pointer(me->sighand, newsighand);
1259 spin_unlock(&oldsighand->siglock);
1260 write_unlock_irq(&tasklist_lock);
1262 __cleanup_sighand(oldsighand);
1267 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1270 /* Always NUL terminated and zero-padded */
1271 strscpy_pad(buf, tsk->comm, buf_size);
1275 EXPORT_SYMBOL_GPL(__get_task_comm);
1278 * These functions flushes out all traces of the currently running executable
1279 * so that a new one can be started
1282 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1285 trace_task_rename(tsk, buf);
1286 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1288 perf_event_comm(tsk, exec);
1292 * Calling this is the point of no return. None of the failures will be
1293 * seen by userspace since either the process is already taking a fatal
1294 * signal (via de_thread() or coredump), or will have SEGV raised
1295 * (after exec_mmap()) by search_binary_handler (see below).
1297 int begin_new_exec(struct linux_binprm * bprm)
1299 struct task_struct *me = current;
1302 /* Once we are committed compute the creds */
1303 retval = bprm_creds_from_file(bprm);
1308 * This tracepoint marks the point before flushing the old exec where
1309 * the current task is still unchanged, but errors are fatal (point of
1310 * no return). The later "sched_process_exec" tracepoint is called after
1311 * the current task has successfully switched to the new exec.
1313 trace_sched_prepare_exec(current, bprm);
1316 * Ensure all future errors are fatal.
1318 bprm->point_of_no_return = true;
1321 * Make this the only thread in the thread group.
1323 retval = de_thread(me);
1328 * Cancel any io_uring activity across execve
1330 io_uring_task_cancel();
1332 /* Ensure the files table is not shared. */
1333 retval = unshare_files();
1338 * Must be called _before_ exec_mmap() as bprm->mm is
1339 * not visible until then. Doing it here also ensures
1340 * we don't race against replace_mm_exe_file().
1342 retval = set_mm_exe_file(bprm->mm, bprm->file);
1346 /* If the binary is not readable then enforce mm->dumpable=0 */
1347 would_dump(bprm, bprm->file);
1348 if (bprm->have_execfd)
1349 would_dump(bprm, bprm->executable);
1352 * Release all of the old mmap stuff
1354 acct_arg_size(bprm, 0);
1355 retval = exec_mmap(bprm->mm);
1361 retval = exec_task_namespaces();
1365 #ifdef CONFIG_POSIX_TIMERS
1366 spin_lock_irq(&me->sighand->siglock);
1367 posix_cpu_timers_exit(me);
1368 spin_unlock_irq(&me->sighand->siglock);
1370 flush_itimer_signals();
1374 * Make the signal table private.
1376 retval = unshare_sighand(me);
1380 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1381 PF_NOFREEZE | PF_NO_SETAFFINITY);
1383 me->personality &= ~bprm->per_clear;
1385 clear_syscall_work_syscall_user_dispatch(me);
1388 * We have to apply CLOEXEC before we change whether the process is
1389 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1390 * trying to access the should-be-closed file descriptors of a process
1391 * undergoing exec(2).
1393 do_close_on_exec(me->files);
1395 if (bprm->secureexec) {
1396 /* Make sure parent cannot signal privileged process. */
1397 me->pdeath_signal = 0;
1400 * For secureexec, reset the stack limit to sane default to
1401 * avoid bad behavior from the prior rlimits. This has to
1402 * happen before arch_pick_mmap_layout(), which examines
1403 * RLIMIT_STACK, but after the point of no return to avoid
1404 * needing to clean up the change on failure.
1406 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1407 bprm->rlim_stack.rlim_cur = _STK_LIM;
1410 me->sas_ss_sp = me->sas_ss_size = 0;
1413 * Figure out dumpability. Note that this checking only of current
1414 * is wrong, but userspace depends on it. This should be testing
1415 * bprm->secureexec instead.
1417 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1418 !(uid_eq(current_euid(), current_uid()) &&
1419 gid_eq(current_egid(), current_gid())))
1420 set_dumpable(current->mm, suid_dumpable);
1422 set_dumpable(current->mm, SUID_DUMP_USER);
1425 __set_task_comm(me, kbasename(bprm->filename), true);
1427 /* An exec changes our domain. We are no longer part of the thread
1429 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1430 flush_signal_handlers(me, 0);
1432 retval = set_cred_ucounts(bprm->cred);
1437 * install the new credentials for this executable
1439 security_bprm_committing_creds(bprm);
1441 commit_creds(bprm->cred);
1445 * Disable monitoring for regular users
1446 * when executing setuid binaries. Must
1447 * wait until new credentials are committed
1448 * by commit_creds() above
1450 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1451 perf_event_exit_task(me);
1453 * cred_guard_mutex must be held at least to this point to prevent
1454 * ptrace_attach() from altering our determination of the task's
1455 * credentials; any time after this it may be unlocked.
1457 security_bprm_committed_creds(bprm);
1459 /* Pass the opened binary to the interpreter. */
1460 if (bprm->have_execfd) {
1461 retval = get_unused_fd_flags(0);
1464 fd_install(retval, bprm->executable);
1465 bprm->executable = NULL;
1466 bprm->execfd = retval;
1471 up_write(&me->signal->exec_update_lock);
1473 mutex_unlock(&me->signal->cred_guard_mutex);
1478 EXPORT_SYMBOL(begin_new_exec);
1480 void would_dump(struct linux_binprm *bprm, struct file *file)
1482 struct inode *inode = file_inode(file);
1483 struct mnt_idmap *idmap = file_mnt_idmap(file);
1484 if (inode_permission(idmap, inode, MAY_READ) < 0) {
1485 struct user_namespace *old, *user_ns;
1486 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1488 /* Ensure mm->user_ns contains the executable */
1489 user_ns = old = bprm->mm->user_ns;
1490 while ((user_ns != &init_user_ns) &&
1491 !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1492 user_ns = user_ns->parent;
1494 if (old != user_ns) {
1495 bprm->mm->user_ns = get_user_ns(user_ns);
1500 EXPORT_SYMBOL(would_dump);
1502 void setup_new_exec(struct linux_binprm * bprm)
1504 /* Setup things that can depend upon the personality */
1505 struct task_struct *me = current;
1507 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1509 arch_setup_new_exec();
1511 /* Set the new mm task size. We have to do that late because it may
1512 * depend on TIF_32BIT which is only updated in flush_thread() on
1513 * some architectures like powerpc
1515 me->mm->task_size = TASK_SIZE;
1516 up_write(&me->signal->exec_update_lock);
1517 mutex_unlock(&me->signal->cred_guard_mutex);
1519 EXPORT_SYMBOL(setup_new_exec);
1521 /* Runs immediately before start_thread() takes over. */
1522 void finalize_exec(struct linux_binprm *bprm)
1524 /* Store any stack rlimit changes before starting thread. */
1525 task_lock(current->group_leader);
1526 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1527 task_unlock(current->group_leader);
1529 EXPORT_SYMBOL(finalize_exec);
1532 * Prepare credentials and lock ->cred_guard_mutex.
1533 * setup_new_exec() commits the new creds and drops the lock.
1534 * Or, if exec fails before, free_bprm() should release ->cred
1537 static int prepare_bprm_creds(struct linux_binprm *bprm)
1539 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1540 return -ERESTARTNOINTR;
1542 bprm->cred = prepare_exec_creds();
1543 if (likely(bprm->cred))
1546 mutex_unlock(¤t->signal->cred_guard_mutex);
1550 /* Matches do_open_execat() */
1551 static void do_close_execat(struct file *file)
1557 static void free_bprm(struct linux_binprm *bprm)
1560 acct_arg_size(bprm, 0);
1563 free_arg_pages(bprm);
1565 mutex_unlock(¤t->signal->cred_guard_mutex);
1566 abort_creds(bprm->cred);
1568 do_close_execat(bprm->file);
1569 if (bprm->executable)
1570 fput(bprm->executable);
1571 /* If a binfmt changed the interp, free it. */
1572 if (bprm->interp != bprm->filename)
1573 kfree(bprm->interp);
1574 kfree(bprm->fdpath);
1578 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1580 struct linux_binprm *bprm;
1582 int retval = -ENOMEM;
1584 file = do_open_execat(fd, filename, flags);
1586 return ERR_CAST(file);
1588 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1590 do_close_execat(file);
1591 return ERR_PTR(-ENOMEM);
1596 if (fd == AT_FDCWD || filename->name[0] == '/') {
1597 bprm->filename = filename->name;
1599 if (filename->name[0] == '\0')
1600 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1602 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1603 fd, filename->name);
1608 * Record that a name derived from an O_CLOEXEC fd will be
1609 * inaccessible after exec. This allows the code in exec to
1610 * choose to fail when the executable is not mmaped into the
1611 * interpreter and an open file descriptor is not passed to
1612 * the interpreter. This makes for a better user experience
1613 * than having the interpreter start and then immediately fail
1614 * when it finds the executable is inaccessible.
1616 if (get_close_on_exec(fd))
1617 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1619 bprm->filename = bprm->fdpath;
1621 bprm->interp = bprm->filename;
1623 retval = bprm_mm_init(bprm);
1629 return ERR_PTR(retval);
1632 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1634 /* If a binfmt changed the interp, free it first. */
1635 if (bprm->interp != bprm->filename)
1636 kfree(bprm->interp);
1637 bprm->interp = kstrdup(interp, GFP_KERNEL);
1642 EXPORT_SYMBOL(bprm_change_interp);
1645 * determine how safe it is to execute the proposed program
1646 * - the caller must hold ->cred_guard_mutex to protect against
1647 * PTRACE_ATTACH or seccomp thread-sync
1649 static void check_unsafe_exec(struct linux_binprm *bprm)
1651 struct task_struct *p = current, *t;
1655 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1658 * This isn't strictly necessary, but it makes it harder for LSMs to
1661 if (task_no_new_privs(current))
1662 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1665 * If another task is sharing our fs, we cannot safely
1666 * suid exec because the differently privileged task
1667 * will be able to manipulate the current directory, etc.
1668 * It would be nice to force an unshare instead...
1671 spin_lock(&p->fs->lock);
1673 for_other_threads(p, t) {
1679 /* "users" and "in_exec" locked for copy_fs() */
1680 if (p->fs->users > n_fs)
1681 bprm->unsafe |= LSM_UNSAFE_SHARE;
1684 spin_unlock(&p->fs->lock);
1687 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1689 /* Handle suid and sgid on files */
1690 struct mnt_idmap *idmap;
1691 struct inode *inode = file_inode(file);
1696 if (!mnt_may_suid(file->f_path.mnt))
1699 if (task_no_new_privs(current))
1702 mode = READ_ONCE(inode->i_mode);
1703 if (!(mode & (S_ISUID|S_ISGID)))
1706 idmap = file_mnt_idmap(file);
1708 /* Be careful if suid/sgid is set */
1711 /* reload atomically mode/uid/gid now that lock held */
1712 mode = inode->i_mode;
1713 vfsuid = i_uid_into_vfsuid(idmap, inode);
1714 vfsgid = i_gid_into_vfsgid(idmap, inode);
1715 inode_unlock(inode);
1717 /* We ignore suid/sgid if there are no mappings for them in the ns */
1718 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1719 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1722 if (mode & S_ISUID) {
1723 bprm->per_clear |= PER_CLEAR_ON_SETID;
1724 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1727 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1728 bprm->per_clear |= PER_CLEAR_ON_SETID;
1729 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1734 * Compute brpm->cred based upon the final binary.
1736 static int bprm_creds_from_file(struct linux_binprm *bprm)
1738 /* Compute creds based on which file? */
1739 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1741 bprm_fill_uid(bprm, file);
1742 return security_bprm_creds_from_file(bprm, file);
1746 * Fill the binprm structure from the inode.
1747 * Read the first BINPRM_BUF_SIZE bytes
1749 * This may be called multiple times for binary chains (scripts for example).
1751 static int prepare_binprm(struct linux_binprm *bprm)
1755 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1756 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1760 * Arguments are '\0' separated strings found at the location bprm->p
1761 * points to; chop off the first by relocating brpm->p to right after
1762 * the first '\0' encountered.
1764 int remove_arg_zero(struct linux_binprm *bprm)
1766 unsigned long offset;
1774 offset = bprm->p & ~PAGE_MASK;
1775 page = get_arg_page(bprm, bprm->p, 0);
1778 kaddr = kmap_local_page(page);
1780 for (; offset < PAGE_SIZE && kaddr[offset];
1781 offset++, bprm->p++)
1784 kunmap_local(kaddr);
1786 } while (offset == PAGE_SIZE);
1793 EXPORT_SYMBOL(remove_arg_zero);
1795 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1797 * cycle the list of binary formats handler, until one recognizes the image
1799 static int search_binary_handler(struct linux_binprm *bprm)
1801 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1802 struct linux_binfmt *fmt;
1805 retval = prepare_binprm(bprm);
1809 retval = security_bprm_check(bprm);
1815 read_lock(&binfmt_lock);
1816 list_for_each_entry(fmt, &formats, lh) {
1817 if (!try_module_get(fmt->module))
1819 read_unlock(&binfmt_lock);
1821 retval = fmt->load_binary(bprm);
1823 read_lock(&binfmt_lock);
1825 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1826 read_unlock(&binfmt_lock);
1830 read_unlock(&binfmt_lock);
1833 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1834 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1836 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1845 /* binfmt handlers will call back into begin_new_exec() on success. */
1846 static int exec_binprm(struct linux_binprm *bprm)
1848 pid_t old_pid, old_vpid;
1851 /* Need to fetch pid before load_binary changes it */
1852 old_pid = current->pid;
1854 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1857 /* This allows 4 levels of binfmt rewrites before failing hard. */
1858 for (depth = 0;; depth++) {
1863 ret = search_binary_handler(bprm);
1866 if (!bprm->interpreter)
1870 bprm->file = bprm->interpreter;
1871 bprm->interpreter = NULL;
1873 if (unlikely(bprm->have_execfd)) {
1874 if (bprm->executable) {
1878 bprm->executable = exec;
1884 trace_sched_process_exec(current, old_pid, bprm);
1885 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1886 proc_exec_connector(current);
1890 static int bprm_execve(struct linux_binprm *bprm)
1894 retval = prepare_bprm_creds(bprm);
1899 * Check for unsafe execution states before exec_binprm(), which
1900 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1901 * where setuid-ness is evaluated.
1903 check_unsafe_exec(bprm);
1904 current->in_execve = 1;
1905 sched_mm_cid_before_execve(current);
1909 /* Set the unchanging part of bprm->cred */
1910 retval = security_bprm_creds_for_exec(bprm);
1914 retval = exec_binprm(bprm);
1918 sched_mm_cid_after_execve(current);
1919 /* execve succeeded */
1920 current->fs->in_exec = 0;
1921 current->in_execve = 0;
1922 rseq_execve(current);
1923 user_events_execve(current);
1924 acct_update_integrals(current);
1925 task_numa_free(current, false);
1930 * If past the point of no return ensure the code never
1931 * returns to the userspace process. Use an existing fatal
1932 * signal if present otherwise terminate the process with
1935 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1936 force_fatal_sig(SIGSEGV);
1938 sched_mm_cid_after_execve(current);
1939 current->fs->in_exec = 0;
1940 current->in_execve = 0;
1945 static int do_execveat_common(int fd, struct filename *filename,
1946 struct user_arg_ptr argv,
1947 struct user_arg_ptr envp,
1950 struct linux_binprm *bprm;
1953 if (IS_ERR(filename))
1954 return PTR_ERR(filename);
1957 * We move the actual failure in case of RLIMIT_NPROC excess from
1958 * set*uid() to execve() because too many poorly written programs
1959 * don't check setuid() return code. Here we additionally recheck
1960 * whether NPROC limit is still exceeded.
1962 if ((current->flags & PF_NPROC_EXCEEDED) &&
1963 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1968 /* We're below the limit (still or again), so we don't want to make
1969 * further execve() calls fail. */
1970 current->flags &= ~PF_NPROC_EXCEEDED;
1972 bprm = alloc_bprm(fd, filename, flags);
1974 retval = PTR_ERR(bprm);
1978 retval = count(argv, MAX_ARG_STRINGS);
1980 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1981 current->comm, bprm->filename);
1984 bprm->argc = retval;
1986 retval = count(envp, MAX_ARG_STRINGS);
1989 bprm->envc = retval;
1991 retval = bprm_stack_limits(bprm);
1995 retval = copy_string_kernel(bprm->filename, bprm);
1998 bprm->exec = bprm->p;
2000 retval = copy_strings(bprm->envc, envp, bprm);
2004 retval = copy_strings(bprm->argc, argv, bprm);
2009 * When argv is empty, add an empty string ("") as argv[0] to
2010 * ensure confused userspace programs that start processing
2011 * from argv[1] won't end up walking envp. See also
2012 * bprm_stack_limits().
2014 if (bprm->argc == 0) {
2015 retval = copy_string_kernel("", bprm);
2021 retval = bprm_execve(bprm);
2030 int kernel_execve(const char *kernel_filename,
2031 const char *const *argv, const char *const *envp)
2033 struct filename *filename;
2034 struct linux_binprm *bprm;
2038 /* It is non-sense for kernel threads to call execve */
2039 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
2042 filename = getname_kernel(kernel_filename);
2043 if (IS_ERR(filename))
2044 return PTR_ERR(filename);
2046 bprm = alloc_bprm(fd, filename, 0);
2048 retval = PTR_ERR(bprm);
2052 retval = count_strings_kernel(argv);
2053 if (WARN_ON_ONCE(retval == 0))
2057 bprm->argc = retval;
2059 retval = count_strings_kernel(envp);
2062 bprm->envc = retval;
2064 retval = bprm_stack_limits(bprm);
2068 retval = copy_string_kernel(bprm->filename, bprm);
2071 bprm->exec = bprm->p;
2073 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2077 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2081 retval = bprm_execve(bprm);
2089 static int do_execve(struct filename *filename,
2090 const char __user *const __user *__argv,
2091 const char __user *const __user *__envp)
2093 struct user_arg_ptr argv = { .ptr.native = __argv };
2094 struct user_arg_ptr envp = { .ptr.native = __envp };
2095 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2098 static int do_execveat(int fd, struct filename *filename,
2099 const char __user *const __user *__argv,
2100 const char __user *const __user *__envp,
2103 struct user_arg_ptr argv = { .ptr.native = __argv };
2104 struct user_arg_ptr envp = { .ptr.native = __envp };
2106 return do_execveat_common(fd, filename, argv, envp, flags);
2109 #ifdef CONFIG_COMPAT
2110 static int compat_do_execve(struct filename *filename,
2111 const compat_uptr_t __user *__argv,
2112 const compat_uptr_t __user *__envp)
2114 struct user_arg_ptr argv = {
2116 .ptr.compat = __argv,
2118 struct user_arg_ptr envp = {
2120 .ptr.compat = __envp,
2122 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2125 static int compat_do_execveat(int fd, struct filename *filename,
2126 const compat_uptr_t __user *__argv,
2127 const compat_uptr_t __user *__envp,
2130 struct user_arg_ptr argv = {
2132 .ptr.compat = __argv,
2134 struct user_arg_ptr envp = {
2136 .ptr.compat = __envp,
2138 return do_execveat_common(fd, filename, argv, envp, flags);
2142 void set_binfmt(struct linux_binfmt *new)
2144 struct mm_struct *mm = current->mm;
2147 module_put(mm->binfmt->module);
2151 __module_get(new->module);
2153 EXPORT_SYMBOL(set_binfmt);
2156 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2158 void set_dumpable(struct mm_struct *mm, int value)
2160 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2163 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2166 SYSCALL_DEFINE3(execve,
2167 const char __user *, filename,
2168 const char __user *const __user *, argv,
2169 const char __user *const __user *, envp)
2171 return do_execve(getname(filename), argv, envp);
2174 SYSCALL_DEFINE5(execveat,
2175 int, fd, const char __user *, filename,
2176 const char __user *const __user *, argv,
2177 const char __user *const __user *, envp,
2180 return do_execveat(fd,
2181 getname_uflags(filename, flags),
2185 #ifdef CONFIG_COMPAT
2186 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2187 const compat_uptr_t __user *, argv,
2188 const compat_uptr_t __user *, envp)
2190 return compat_do_execve(getname(filename), argv, envp);
2193 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2194 const char __user *, filename,
2195 const compat_uptr_t __user *, argv,
2196 const compat_uptr_t __user *, envp,
2199 return compat_do_execveat(fd,
2200 getname_uflags(filename, flags),
2205 #ifdef CONFIG_SYSCTL
2207 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2208 void *buffer, size_t *lenp, loff_t *ppos)
2210 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2213 validate_coredump_safety();
2217 static struct ctl_table fs_exec_sysctls[] = {
2219 .procname = "suid_dumpable",
2220 .data = &suid_dumpable,
2221 .maxlen = sizeof(int),
2223 .proc_handler = proc_dointvec_minmax_coredump,
2224 .extra1 = SYSCTL_ZERO,
2225 .extra2 = SYSCTL_TWO,
2229 static int __init init_fs_exec_sysctls(void)
2231 register_sysctl_init("fs", fs_exec_sysctls);
2235 fs_initcall(init_fs_exec_sysctls);
2236 #endif /* CONFIG_SYSCTL */
2238 #ifdef CONFIG_EXEC_KUNIT_TEST
2239 #include "tests/exec_kunit.c"