]> Git Repo - linux.git/blob - fs/btrfs/disk-io.c
btrfs: use device_list_mutex when removing stale devices
[linux.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <asm/unaligned.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "volumes.h"
26 #include "print-tree.h"
27 #include "locking.h"
28 #include "tree-log.h"
29 #include "free-space-cache.h"
30 #include "free-space-tree.h"
31 #include "inode-map.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41
42 #ifdef CONFIG_X86
43 #include <asm/cpufeature.h>
44 #endif
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void free_fs_root(struct btrfs_root *root);
56 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
57 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
58                                       struct btrfs_fs_info *fs_info);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
61                                         struct extent_io_tree *dirty_pages,
62                                         int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
64                                        struct extent_io_tree *pinned_extents);
65 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
67
68 /*
69  * btrfs_end_io_wq structs are used to do processing in task context when an IO
70  * is complete.  This is used during reads to verify checksums, and it is used
71  * by writes to insert metadata for new file extents after IO is complete.
72  */
73 struct btrfs_end_io_wq {
74         struct bio *bio;
75         bio_end_io_t *end_io;
76         void *private;
77         struct btrfs_fs_info *info;
78         blk_status_t status;
79         enum btrfs_wq_endio_type metadata;
80         struct btrfs_work work;
81 };
82
83 static struct kmem_cache *btrfs_end_io_wq_cache;
84
85 int __init btrfs_end_io_wq_init(void)
86 {
87         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88                                         sizeof(struct btrfs_end_io_wq),
89                                         0,
90                                         SLAB_MEM_SPREAD,
91                                         NULL);
92         if (!btrfs_end_io_wq_cache)
93                 return -ENOMEM;
94         return 0;
95 }
96
97 void __cold btrfs_end_io_wq_exit(void)
98 {
99         kmem_cache_destroy(btrfs_end_io_wq_cache);
100 }
101
102 /*
103  * async submit bios are used to offload expensive checksumming
104  * onto the worker threads.  They checksum file and metadata bios
105  * just before they are sent down the IO stack.
106  */
107 struct async_submit_bio {
108         void *private_data;
109         struct btrfs_fs_info *fs_info;
110         struct bio *bio;
111         extent_submit_bio_start_t *submit_bio_start;
112         extent_submit_bio_done_t *submit_bio_done;
113         int mirror_num;
114         unsigned long bio_flags;
115         /*
116          * bio_offset is optional, can be used if the pages in the bio
117          * can't tell us where in the file the bio should go
118          */
119         u64 bio_offset;
120         struct btrfs_work work;
121         blk_status_t status;
122 };
123
124 /*
125  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
126  * eb, the lockdep key is determined by the btrfs_root it belongs to and
127  * the level the eb occupies in the tree.
128  *
129  * Different roots are used for different purposes and may nest inside each
130  * other and they require separate keysets.  As lockdep keys should be
131  * static, assign keysets according to the purpose of the root as indicated
132  * by btrfs_root->objectid.  This ensures that all special purpose roots
133  * have separate keysets.
134  *
135  * Lock-nesting across peer nodes is always done with the immediate parent
136  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
137  * subclass to avoid triggering lockdep warning in such cases.
138  *
139  * The key is set by the readpage_end_io_hook after the buffer has passed
140  * csum validation but before the pages are unlocked.  It is also set by
141  * btrfs_init_new_buffer on freshly allocated blocks.
142  *
143  * We also add a check to make sure the highest level of the tree is the
144  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
145  * needs update as well.
146  */
147 #ifdef CONFIG_DEBUG_LOCK_ALLOC
148 # if BTRFS_MAX_LEVEL != 8
149 #  error
150 # endif
151
152 static struct btrfs_lockdep_keyset {
153         u64                     id;             /* root objectid */
154         const char              *name_stem;     /* lock name stem */
155         char                    names[BTRFS_MAX_LEVEL + 1][20];
156         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
157 } btrfs_lockdep_keysets[] = {
158         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
159         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
160         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
161         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
162         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
163         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
164         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
165         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
166         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
167         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
168         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
169         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
170         { .id = 0,                              .name_stem = "tree"     },
171 };
172
173 void __init btrfs_init_lockdep(void)
174 {
175         int i, j;
176
177         /* initialize lockdep class names */
178         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
179                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
180
181                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
182                         snprintf(ks->names[j], sizeof(ks->names[j]),
183                                  "btrfs-%s-%02d", ks->name_stem, j);
184         }
185 }
186
187 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
188                                     int level)
189 {
190         struct btrfs_lockdep_keyset *ks;
191
192         BUG_ON(level >= ARRAY_SIZE(ks->keys));
193
194         /* find the matching keyset, id 0 is the default entry */
195         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
196                 if (ks->id == objectid)
197                         break;
198
199         lockdep_set_class_and_name(&eb->lock,
200                                    &ks->keys[level], ks->names[level]);
201 }
202
203 #endif
204
205 /*
206  * extents on the btree inode are pretty simple, there's one extent
207  * that covers the entire device
208  */
209 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
210                 struct page *page, size_t pg_offset, u64 start, u64 len,
211                 int create)
212 {
213         struct btrfs_fs_info *fs_info = inode->root->fs_info;
214         struct extent_map_tree *em_tree = &inode->extent_tree;
215         struct extent_map *em;
216         int ret;
217
218         read_lock(&em_tree->lock);
219         em = lookup_extent_mapping(em_tree, start, len);
220         if (em) {
221                 em->bdev = fs_info->fs_devices->latest_bdev;
222                 read_unlock(&em_tree->lock);
223                 goto out;
224         }
225         read_unlock(&em_tree->lock);
226
227         em = alloc_extent_map();
228         if (!em) {
229                 em = ERR_PTR(-ENOMEM);
230                 goto out;
231         }
232         em->start = 0;
233         em->len = (u64)-1;
234         em->block_len = (u64)-1;
235         em->block_start = 0;
236         em->bdev = fs_info->fs_devices->latest_bdev;
237
238         write_lock(&em_tree->lock);
239         ret = add_extent_mapping(em_tree, em, 0);
240         if (ret == -EEXIST) {
241                 free_extent_map(em);
242                 em = lookup_extent_mapping(em_tree, start, len);
243                 if (!em)
244                         em = ERR_PTR(-EIO);
245         } else if (ret) {
246                 free_extent_map(em);
247                 em = ERR_PTR(ret);
248         }
249         write_unlock(&em_tree->lock);
250
251 out:
252         return em;
253 }
254
255 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
256 {
257         return crc32c(seed, data, len);
258 }
259
260 void btrfs_csum_final(u32 crc, u8 *result)
261 {
262         put_unaligned_le32(~crc, result);
263 }
264
265 /*
266  * compute the csum for a btree block, and either verify it or write it
267  * into the csum field of the block.
268  */
269 static int csum_tree_block(struct btrfs_fs_info *fs_info,
270                            struct extent_buffer *buf,
271                            int verify)
272 {
273         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
274         char result[BTRFS_CSUM_SIZE];
275         unsigned long len;
276         unsigned long cur_len;
277         unsigned long offset = BTRFS_CSUM_SIZE;
278         char *kaddr;
279         unsigned long map_start;
280         unsigned long map_len;
281         int err;
282         u32 crc = ~(u32)0;
283
284         len = buf->len - offset;
285         while (len > 0) {
286                 err = map_private_extent_buffer(buf, offset, 32,
287                                         &kaddr, &map_start, &map_len);
288                 if (err)
289                         return err;
290                 cur_len = min(len, map_len - (offset - map_start));
291                 crc = btrfs_csum_data(kaddr + offset - map_start,
292                                       crc, cur_len);
293                 len -= cur_len;
294                 offset += cur_len;
295         }
296         memset(result, 0, BTRFS_CSUM_SIZE);
297
298         btrfs_csum_final(crc, result);
299
300         if (verify) {
301                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
302                         u32 val;
303                         u32 found = 0;
304                         memcpy(&found, result, csum_size);
305
306                         read_extent_buffer(buf, &val, 0, csum_size);
307                         btrfs_warn_rl(fs_info,
308                                 "%s checksum verify failed on %llu wanted %X found %X level %d",
309                                 fs_info->sb->s_id, buf->start,
310                                 val, found, btrfs_header_level(buf));
311                         return -EUCLEAN;
312                 }
313         } else {
314                 write_extent_buffer(buf, result, 0, csum_size);
315         }
316
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
333
334         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
335                 return 0;
336
337         if (atomic)
338                 return -EAGAIN;
339
340         if (need_lock) {
341                 btrfs_tree_read_lock(eb);
342                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
343         }
344
345         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
346                          &cached_state);
347         if (extent_buffer_uptodate(eb) &&
348             btrfs_header_generation(eb) == parent_transid) {
349                 ret = 0;
350                 goto out;
351         }
352         btrfs_err_rl(eb->fs_info,
353                 "parent transid verify failed on %llu wanted %llu found %llu",
354                         eb->start,
355                         parent_transid, btrfs_header_generation(eb));
356         ret = 1;
357
358         /*
359          * Things reading via commit roots that don't have normal protection,
360          * like send, can have a really old block in cache that may point at a
361          * block that has been freed and re-allocated.  So don't clear uptodate
362          * if we find an eb that is under IO (dirty/writeback) because we could
363          * end up reading in the stale data and then writing it back out and
364          * making everybody very sad.
365          */
366         if (!extent_buffer_under_io(eb))
367                 clear_extent_buffer_uptodate(eb);
368 out:
369         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
370                              &cached_state);
371         if (need_lock)
372                 btrfs_tree_read_unlock_blocking(eb);
373         return ret;
374 }
375
376 /*
377  * Return 0 if the superblock checksum type matches the checksum value of that
378  * algorithm. Pass the raw disk superblock data.
379  */
380 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
381                                   char *raw_disk_sb)
382 {
383         struct btrfs_super_block *disk_sb =
384                 (struct btrfs_super_block *)raw_disk_sb;
385         u16 csum_type = btrfs_super_csum_type(disk_sb);
386         int ret = 0;
387
388         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
389                 u32 crc = ~(u32)0;
390                 char result[sizeof(crc)];
391
392                 /*
393                  * The super_block structure does not span the whole
394                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
395                  * is filled with zeros and is included in the checksum.
396                  */
397                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
398                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
399                 btrfs_csum_final(crc, result);
400
401                 if (memcmp(raw_disk_sb, result, sizeof(result)))
402                         ret = 1;
403         }
404
405         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
406                 btrfs_err(fs_info, "unsupported checksum algorithm %u",
407                                 csum_type);
408                 ret = 1;
409         }
410
411         return ret;
412 }
413
414 static int verify_level_key(struct btrfs_fs_info *fs_info,
415                             struct extent_buffer *eb, int level,
416                             struct btrfs_key *first_key, u64 parent_transid)
417 {
418         int found_level;
419         struct btrfs_key found_key;
420         int ret;
421
422         found_level = btrfs_header_level(eb);
423         if (found_level != level) {
424 #ifdef CONFIG_BTRFS_DEBUG
425                 WARN_ON(1);
426                 btrfs_err(fs_info,
427 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
428                           eb->start, level, found_level);
429 #endif
430                 return -EIO;
431         }
432
433         if (!first_key)
434                 return 0;
435
436         /*
437          * For live tree block (new tree blocks in current transaction),
438          * we need proper lock context to avoid race, which is impossible here.
439          * So we only checks tree blocks which is read from disk, whose
440          * generation <= fs_info->last_trans_committed.
441          */
442         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
443                 return 0;
444         if (found_level)
445                 btrfs_node_key_to_cpu(eb, &found_key, 0);
446         else
447                 btrfs_item_key_to_cpu(eb, &found_key, 0);
448         ret = btrfs_comp_cpu_keys(first_key, &found_key);
449
450 #ifdef CONFIG_BTRFS_DEBUG
451         if (ret) {
452                 WARN_ON(1);
453                 btrfs_err(fs_info,
454 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
455                           eb->start, parent_transid, first_key->objectid,
456                           first_key->type, first_key->offset,
457                           found_key.objectid, found_key.type,
458                           found_key.offset);
459         }
460 #endif
461         return ret;
462 }
463
464 /*
465  * helper to read a given tree block, doing retries as required when
466  * the checksums don't match and we have alternate mirrors to try.
467  *
468  * @parent_transid:     expected transid, skip check if 0
469  * @level:              expected level, mandatory check
470  * @first_key:          expected key of first slot, skip check if NULL
471  */
472 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
473                                           struct extent_buffer *eb,
474                                           u64 parent_transid, int level,
475                                           struct btrfs_key *first_key)
476 {
477         struct extent_io_tree *io_tree;
478         int failed = 0;
479         int ret;
480         int num_copies = 0;
481         int mirror_num = 0;
482         int failed_mirror = 0;
483
484         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
485         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
486         while (1) {
487                 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
488                                                mirror_num);
489                 if (!ret) {
490                         if (verify_parent_transid(io_tree, eb,
491                                                    parent_transid, 0))
492                                 ret = -EIO;
493                         else if (verify_level_key(fs_info, eb, level,
494                                                   first_key, parent_transid))
495                                 ret = -EUCLEAN;
496                         else
497                                 break;
498                 }
499
500                 /*
501                  * This buffer's crc is fine, but its contents are corrupted, so
502                  * there is no reason to read the other copies, they won't be
503                  * any less wrong.
504                  */
505                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
506                     ret == -EUCLEAN)
507                         break;
508
509                 num_copies = btrfs_num_copies(fs_info,
510                                               eb->start, eb->len);
511                 if (num_copies == 1)
512                         break;
513
514                 if (!failed_mirror) {
515                         failed = 1;
516                         failed_mirror = eb->read_mirror;
517                 }
518
519                 mirror_num++;
520                 if (mirror_num == failed_mirror)
521                         mirror_num++;
522
523                 if (mirror_num > num_copies)
524                         break;
525         }
526
527         if (failed && !ret && failed_mirror)
528                 repair_eb_io_failure(fs_info, eb, failed_mirror);
529
530         return ret;
531 }
532
533 /*
534  * checksum a dirty tree block before IO.  This has extra checks to make sure
535  * we only fill in the checksum field in the first page of a multi-page block
536  */
537
538 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
539 {
540         u64 start = page_offset(page);
541         u64 found_start;
542         struct extent_buffer *eb;
543
544         eb = (struct extent_buffer *)page->private;
545         if (page != eb->pages[0])
546                 return 0;
547
548         found_start = btrfs_header_bytenr(eb);
549         /*
550          * Please do not consolidate these warnings into a single if.
551          * It is useful to know what went wrong.
552          */
553         if (WARN_ON(found_start != start))
554                 return -EUCLEAN;
555         if (WARN_ON(!PageUptodate(page)))
556                 return -EUCLEAN;
557
558         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
559                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
560
561         return csum_tree_block(fs_info, eb, 0);
562 }
563
564 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
565                                  struct extent_buffer *eb)
566 {
567         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
568         u8 fsid[BTRFS_FSID_SIZE];
569         int ret = 1;
570
571         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
572         while (fs_devices) {
573                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
574                         ret = 0;
575                         break;
576                 }
577                 fs_devices = fs_devices->seed;
578         }
579         return ret;
580 }
581
582 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
583                                       u64 phy_offset, struct page *page,
584                                       u64 start, u64 end, int mirror)
585 {
586         u64 found_start;
587         int found_level;
588         struct extent_buffer *eb;
589         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
590         struct btrfs_fs_info *fs_info = root->fs_info;
591         int ret = 0;
592         int reads_done;
593
594         if (!page->private)
595                 goto out;
596
597         eb = (struct extent_buffer *)page->private;
598
599         /* the pending IO might have been the only thing that kept this buffer
600          * in memory.  Make sure we have a ref for all this other checks
601          */
602         extent_buffer_get(eb);
603
604         reads_done = atomic_dec_and_test(&eb->io_pages);
605         if (!reads_done)
606                 goto err;
607
608         eb->read_mirror = mirror;
609         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
610                 ret = -EIO;
611                 goto err;
612         }
613
614         found_start = btrfs_header_bytenr(eb);
615         if (found_start != eb->start) {
616                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
617                              eb->start, found_start);
618                 ret = -EIO;
619                 goto err;
620         }
621         if (check_tree_block_fsid(fs_info, eb)) {
622                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
623                              eb->start);
624                 ret = -EIO;
625                 goto err;
626         }
627         found_level = btrfs_header_level(eb);
628         if (found_level >= BTRFS_MAX_LEVEL) {
629                 btrfs_err(fs_info, "bad tree block level %d on %llu",
630                           (int)btrfs_header_level(eb), eb->start);
631                 ret = -EIO;
632                 goto err;
633         }
634
635         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
636                                        eb, found_level);
637
638         ret = csum_tree_block(fs_info, eb, 1);
639         if (ret)
640                 goto err;
641
642         /*
643          * If this is a leaf block and it is corrupt, set the corrupt bit so
644          * that we don't try and read the other copies of this block, just
645          * return -EIO.
646          */
647         if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
648                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
649                 ret = -EIO;
650         }
651
652         if (found_level > 0 && btrfs_check_node(fs_info, eb))
653                 ret = -EIO;
654
655         if (!ret)
656                 set_extent_buffer_uptodate(eb);
657 err:
658         if (reads_done &&
659             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
660                 btree_readahead_hook(eb, ret);
661
662         if (ret) {
663                 /*
664                  * our io error hook is going to dec the io pages
665                  * again, we have to make sure it has something
666                  * to decrement
667                  */
668                 atomic_inc(&eb->io_pages);
669                 clear_extent_buffer_uptodate(eb);
670         }
671         free_extent_buffer(eb);
672 out:
673         return ret;
674 }
675
676 static int btree_io_failed_hook(struct page *page, int failed_mirror)
677 {
678         struct extent_buffer *eb;
679
680         eb = (struct extent_buffer *)page->private;
681         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
682         eb->read_mirror = failed_mirror;
683         atomic_dec(&eb->io_pages);
684         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
685                 btree_readahead_hook(eb, -EIO);
686         return -EIO;    /* we fixed nothing */
687 }
688
689 static void end_workqueue_bio(struct bio *bio)
690 {
691         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
692         struct btrfs_fs_info *fs_info;
693         struct btrfs_workqueue *wq;
694         btrfs_work_func_t func;
695
696         fs_info = end_io_wq->info;
697         end_io_wq->status = bio->bi_status;
698
699         if (bio_op(bio) == REQ_OP_WRITE) {
700                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
701                         wq = fs_info->endio_meta_write_workers;
702                         func = btrfs_endio_meta_write_helper;
703                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
704                         wq = fs_info->endio_freespace_worker;
705                         func = btrfs_freespace_write_helper;
706                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
707                         wq = fs_info->endio_raid56_workers;
708                         func = btrfs_endio_raid56_helper;
709                 } else {
710                         wq = fs_info->endio_write_workers;
711                         func = btrfs_endio_write_helper;
712                 }
713         } else {
714                 if (unlikely(end_io_wq->metadata ==
715                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
716                         wq = fs_info->endio_repair_workers;
717                         func = btrfs_endio_repair_helper;
718                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
719                         wq = fs_info->endio_raid56_workers;
720                         func = btrfs_endio_raid56_helper;
721                 } else if (end_io_wq->metadata) {
722                         wq = fs_info->endio_meta_workers;
723                         func = btrfs_endio_meta_helper;
724                 } else {
725                         wq = fs_info->endio_workers;
726                         func = btrfs_endio_helper;
727                 }
728         }
729
730         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
731         btrfs_queue_work(wq, &end_io_wq->work);
732 }
733
734 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
735                         enum btrfs_wq_endio_type metadata)
736 {
737         struct btrfs_end_io_wq *end_io_wq;
738
739         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
740         if (!end_io_wq)
741                 return BLK_STS_RESOURCE;
742
743         end_io_wq->private = bio->bi_private;
744         end_io_wq->end_io = bio->bi_end_io;
745         end_io_wq->info = info;
746         end_io_wq->status = 0;
747         end_io_wq->bio = bio;
748         end_io_wq->metadata = metadata;
749
750         bio->bi_private = end_io_wq;
751         bio->bi_end_io = end_workqueue_bio;
752         return 0;
753 }
754
755 static void run_one_async_start(struct btrfs_work *work)
756 {
757         struct async_submit_bio *async;
758         blk_status_t ret;
759
760         async = container_of(work, struct  async_submit_bio, work);
761         ret = async->submit_bio_start(async->private_data, async->bio,
762                                       async->bio_offset);
763         if (ret)
764                 async->status = ret;
765 }
766
767 static void run_one_async_done(struct btrfs_work *work)
768 {
769         struct async_submit_bio *async;
770
771         async = container_of(work, struct  async_submit_bio, work);
772
773         /* If an error occurred we just want to clean up the bio and move on */
774         if (async->status) {
775                 async->bio->bi_status = async->status;
776                 bio_endio(async->bio);
777                 return;
778         }
779
780         async->submit_bio_done(async->private_data, async->bio, async->mirror_num);
781 }
782
783 static void run_one_async_free(struct btrfs_work *work)
784 {
785         struct async_submit_bio *async;
786
787         async = container_of(work, struct  async_submit_bio, work);
788         kfree(async);
789 }
790
791 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
792                                  int mirror_num, unsigned long bio_flags,
793                                  u64 bio_offset, void *private_data,
794                                  extent_submit_bio_start_t *submit_bio_start,
795                                  extent_submit_bio_done_t *submit_bio_done)
796 {
797         struct async_submit_bio *async;
798
799         async = kmalloc(sizeof(*async), GFP_NOFS);
800         if (!async)
801                 return BLK_STS_RESOURCE;
802
803         async->private_data = private_data;
804         async->fs_info = fs_info;
805         async->bio = bio;
806         async->mirror_num = mirror_num;
807         async->submit_bio_start = submit_bio_start;
808         async->submit_bio_done = submit_bio_done;
809
810         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
811                         run_one_async_done, run_one_async_free);
812
813         async->bio_flags = bio_flags;
814         async->bio_offset = bio_offset;
815
816         async->status = 0;
817
818         if (op_is_sync(bio->bi_opf))
819                 btrfs_set_work_high_priority(&async->work);
820
821         btrfs_queue_work(fs_info->workers, &async->work);
822         return 0;
823 }
824
825 static blk_status_t btree_csum_one_bio(struct bio *bio)
826 {
827         struct bio_vec *bvec;
828         struct btrfs_root *root;
829         int i, ret = 0;
830
831         ASSERT(!bio_flagged(bio, BIO_CLONED));
832         bio_for_each_segment_all(bvec, bio, i) {
833                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
834                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
835                 if (ret)
836                         break;
837         }
838
839         return errno_to_blk_status(ret);
840 }
841
842 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
843                                              u64 bio_offset)
844 {
845         /*
846          * when we're called for a write, we're already in the async
847          * submission context.  Just jump into btrfs_map_bio
848          */
849         return btree_csum_one_bio(bio);
850 }
851
852 static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio,
853                                             int mirror_num)
854 {
855         struct inode *inode = private_data;
856         blk_status_t ret;
857
858         /*
859          * when we're called for a write, we're already in the async
860          * submission context.  Just jump into btrfs_map_bio
861          */
862         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
863         if (ret) {
864                 bio->bi_status = ret;
865                 bio_endio(bio);
866         }
867         return ret;
868 }
869
870 static int check_async_write(struct btrfs_inode *bi)
871 {
872         if (atomic_read(&bi->sync_writers))
873                 return 0;
874 #ifdef CONFIG_X86
875         if (static_cpu_has(X86_FEATURE_XMM4_2))
876                 return 0;
877 #endif
878         return 1;
879 }
880
881 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
882                                           int mirror_num, unsigned long bio_flags,
883                                           u64 bio_offset)
884 {
885         struct inode *inode = private_data;
886         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
887         int async = check_async_write(BTRFS_I(inode));
888         blk_status_t ret;
889
890         if (bio_op(bio) != REQ_OP_WRITE) {
891                 /*
892                  * called for a read, do the setup so that checksum validation
893                  * can happen in the async kernel threads
894                  */
895                 ret = btrfs_bio_wq_end_io(fs_info, bio,
896                                           BTRFS_WQ_ENDIO_METADATA);
897                 if (ret)
898                         goto out_w_error;
899                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
900         } else if (!async) {
901                 ret = btree_csum_one_bio(bio);
902                 if (ret)
903                         goto out_w_error;
904                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
905         } else {
906                 /*
907                  * kthread helpers are used to submit writes so that
908                  * checksumming can happen in parallel across all CPUs
909                  */
910                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
911                                           bio_offset, private_data,
912                                           btree_submit_bio_start,
913                                           btree_submit_bio_done);
914         }
915
916         if (ret)
917                 goto out_w_error;
918         return 0;
919
920 out_w_error:
921         bio->bi_status = ret;
922         bio_endio(bio);
923         return ret;
924 }
925
926 #ifdef CONFIG_MIGRATION
927 static int btree_migratepage(struct address_space *mapping,
928                         struct page *newpage, struct page *page,
929                         enum migrate_mode mode)
930 {
931         /*
932          * we can't safely write a btree page from here,
933          * we haven't done the locking hook
934          */
935         if (PageDirty(page))
936                 return -EAGAIN;
937         /*
938          * Buffers may be managed in a filesystem specific way.
939          * We must have no buffers or drop them.
940          */
941         if (page_has_private(page) &&
942             !try_to_release_page(page, GFP_KERNEL))
943                 return -EAGAIN;
944         return migrate_page(mapping, newpage, page, mode);
945 }
946 #endif
947
948
949 static int btree_writepages(struct address_space *mapping,
950                             struct writeback_control *wbc)
951 {
952         struct btrfs_fs_info *fs_info;
953         int ret;
954
955         if (wbc->sync_mode == WB_SYNC_NONE) {
956
957                 if (wbc->for_kupdate)
958                         return 0;
959
960                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
961                 /* this is a bit racy, but that's ok */
962                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
963                                              BTRFS_DIRTY_METADATA_THRESH);
964                 if (ret < 0)
965                         return 0;
966         }
967         return btree_write_cache_pages(mapping, wbc);
968 }
969
970 static int btree_readpage(struct file *file, struct page *page)
971 {
972         struct extent_io_tree *tree;
973         tree = &BTRFS_I(page->mapping->host)->io_tree;
974         return extent_read_full_page(tree, page, btree_get_extent, 0);
975 }
976
977 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
978 {
979         if (PageWriteback(page) || PageDirty(page))
980                 return 0;
981
982         return try_release_extent_buffer(page);
983 }
984
985 static void btree_invalidatepage(struct page *page, unsigned int offset,
986                                  unsigned int length)
987 {
988         struct extent_io_tree *tree;
989         tree = &BTRFS_I(page->mapping->host)->io_tree;
990         extent_invalidatepage(tree, page, offset);
991         btree_releasepage(page, GFP_NOFS);
992         if (PagePrivate(page)) {
993                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
994                            "page private not zero on page %llu",
995                            (unsigned long long)page_offset(page));
996                 ClearPagePrivate(page);
997                 set_page_private(page, 0);
998                 put_page(page);
999         }
1000 }
1001
1002 static int btree_set_page_dirty(struct page *page)
1003 {
1004 #ifdef DEBUG
1005         struct extent_buffer *eb;
1006
1007         BUG_ON(!PagePrivate(page));
1008         eb = (struct extent_buffer *)page->private;
1009         BUG_ON(!eb);
1010         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1011         BUG_ON(!atomic_read(&eb->refs));
1012         btrfs_assert_tree_locked(eb);
1013 #endif
1014         return __set_page_dirty_nobuffers(page);
1015 }
1016
1017 static const struct address_space_operations btree_aops = {
1018         .readpage       = btree_readpage,
1019         .writepages     = btree_writepages,
1020         .releasepage    = btree_releasepage,
1021         .invalidatepage = btree_invalidatepage,
1022 #ifdef CONFIG_MIGRATION
1023         .migratepage    = btree_migratepage,
1024 #endif
1025         .set_page_dirty = btree_set_page_dirty,
1026 };
1027
1028 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1029 {
1030         struct extent_buffer *buf = NULL;
1031         struct inode *btree_inode = fs_info->btree_inode;
1032
1033         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1034         if (IS_ERR(buf))
1035                 return;
1036         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1037                                  buf, WAIT_NONE, 0);
1038         free_extent_buffer(buf);
1039 }
1040
1041 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1042                          int mirror_num, struct extent_buffer **eb)
1043 {
1044         struct extent_buffer *buf = NULL;
1045         struct inode *btree_inode = fs_info->btree_inode;
1046         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1047         int ret;
1048
1049         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1050         if (IS_ERR(buf))
1051                 return 0;
1052
1053         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1054
1055         ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1056                                        mirror_num);
1057         if (ret) {
1058                 free_extent_buffer(buf);
1059                 return ret;
1060         }
1061
1062         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1063                 free_extent_buffer(buf);
1064                 return -EIO;
1065         } else if (extent_buffer_uptodate(buf)) {
1066                 *eb = buf;
1067         } else {
1068                 free_extent_buffer(buf);
1069         }
1070         return 0;
1071 }
1072
1073 struct extent_buffer *btrfs_find_create_tree_block(
1074                                                 struct btrfs_fs_info *fs_info,
1075                                                 u64 bytenr)
1076 {
1077         if (btrfs_is_testing(fs_info))
1078                 return alloc_test_extent_buffer(fs_info, bytenr);
1079         return alloc_extent_buffer(fs_info, bytenr);
1080 }
1081
1082
1083 int btrfs_write_tree_block(struct extent_buffer *buf)
1084 {
1085         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1086                                         buf->start + buf->len - 1);
1087 }
1088
1089 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1090 {
1091         filemap_fdatawait_range(buf->pages[0]->mapping,
1092                                 buf->start, buf->start + buf->len - 1);
1093 }
1094
1095 /*
1096  * Read tree block at logical address @bytenr and do variant basic but critical
1097  * verification.
1098  *
1099  * @parent_transid:     expected transid of this tree block, skip check if 0
1100  * @level:              expected level, mandatory check
1101  * @first_key:          expected key in slot 0, skip check if NULL
1102  */
1103 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1104                                       u64 parent_transid, int level,
1105                                       struct btrfs_key *first_key)
1106 {
1107         struct extent_buffer *buf = NULL;
1108         int ret;
1109
1110         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1111         if (IS_ERR(buf))
1112                 return buf;
1113
1114         ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1115                                              level, first_key);
1116         if (ret) {
1117                 free_extent_buffer(buf);
1118                 return ERR_PTR(ret);
1119         }
1120         return buf;
1121
1122 }
1123
1124 void clean_tree_block(struct btrfs_fs_info *fs_info,
1125                       struct extent_buffer *buf)
1126 {
1127         if (btrfs_header_generation(buf) ==
1128             fs_info->running_transaction->transid) {
1129                 btrfs_assert_tree_locked(buf);
1130
1131                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1132                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1133                                                  -buf->len,
1134                                                  fs_info->dirty_metadata_batch);
1135                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1136                         btrfs_set_lock_blocking(buf);
1137                         clear_extent_buffer_dirty(buf);
1138                 }
1139         }
1140 }
1141
1142 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1143 {
1144         struct btrfs_subvolume_writers *writers;
1145         int ret;
1146
1147         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1148         if (!writers)
1149                 return ERR_PTR(-ENOMEM);
1150
1151         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1152         if (ret < 0) {
1153                 kfree(writers);
1154                 return ERR_PTR(ret);
1155         }
1156
1157         init_waitqueue_head(&writers->wait);
1158         return writers;
1159 }
1160
1161 static void
1162 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1163 {
1164         percpu_counter_destroy(&writers->counter);
1165         kfree(writers);
1166 }
1167
1168 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1169                          u64 objectid)
1170 {
1171         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1172         root->node = NULL;
1173         root->commit_root = NULL;
1174         root->state = 0;
1175         root->orphan_cleanup_state = 0;
1176
1177         root->objectid = objectid;
1178         root->last_trans = 0;
1179         root->highest_objectid = 0;
1180         root->nr_delalloc_inodes = 0;
1181         root->nr_ordered_extents = 0;
1182         root->name = NULL;
1183         root->inode_tree = RB_ROOT;
1184         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1185         root->block_rsv = NULL;
1186
1187         INIT_LIST_HEAD(&root->dirty_list);
1188         INIT_LIST_HEAD(&root->root_list);
1189         INIT_LIST_HEAD(&root->delalloc_inodes);
1190         INIT_LIST_HEAD(&root->delalloc_root);
1191         INIT_LIST_HEAD(&root->ordered_extents);
1192         INIT_LIST_HEAD(&root->ordered_root);
1193         INIT_LIST_HEAD(&root->logged_list[0]);
1194         INIT_LIST_HEAD(&root->logged_list[1]);
1195         spin_lock_init(&root->inode_lock);
1196         spin_lock_init(&root->delalloc_lock);
1197         spin_lock_init(&root->ordered_extent_lock);
1198         spin_lock_init(&root->accounting_lock);
1199         spin_lock_init(&root->log_extents_lock[0]);
1200         spin_lock_init(&root->log_extents_lock[1]);
1201         spin_lock_init(&root->qgroup_meta_rsv_lock);
1202         mutex_init(&root->objectid_mutex);
1203         mutex_init(&root->log_mutex);
1204         mutex_init(&root->ordered_extent_mutex);
1205         mutex_init(&root->delalloc_mutex);
1206         init_waitqueue_head(&root->log_writer_wait);
1207         init_waitqueue_head(&root->log_commit_wait[0]);
1208         init_waitqueue_head(&root->log_commit_wait[1]);
1209         INIT_LIST_HEAD(&root->log_ctxs[0]);
1210         INIT_LIST_HEAD(&root->log_ctxs[1]);
1211         atomic_set(&root->log_commit[0], 0);
1212         atomic_set(&root->log_commit[1], 0);
1213         atomic_set(&root->log_writers, 0);
1214         atomic_set(&root->log_batch, 0);
1215         refcount_set(&root->refs, 1);
1216         atomic_set(&root->will_be_snapshotted, 0);
1217         root->log_transid = 0;
1218         root->log_transid_committed = -1;
1219         root->last_log_commit = 0;
1220         if (!dummy)
1221                 extent_io_tree_init(&root->dirty_log_pages, NULL);
1222
1223         memset(&root->root_key, 0, sizeof(root->root_key));
1224         memset(&root->root_item, 0, sizeof(root->root_item));
1225         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1226         if (!dummy)
1227                 root->defrag_trans_start = fs_info->generation;
1228         else
1229                 root->defrag_trans_start = 0;
1230         root->root_key.objectid = objectid;
1231         root->anon_dev = 0;
1232
1233         spin_lock_init(&root->root_item_lock);
1234 }
1235
1236 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1237                 gfp_t flags)
1238 {
1239         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1240         if (root)
1241                 root->fs_info = fs_info;
1242         return root;
1243 }
1244
1245 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1246 /* Should only be used by the testing infrastructure */
1247 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1248 {
1249         struct btrfs_root *root;
1250
1251         if (!fs_info)
1252                 return ERR_PTR(-EINVAL);
1253
1254         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1255         if (!root)
1256                 return ERR_PTR(-ENOMEM);
1257
1258         /* We don't use the stripesize in selftest, set it as sectorsize */
1259         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1260         root->alloc_bytenr = 0;
1261
1262         return root;
1263 }
1264 #endif
1265
1266 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1267                                      struct btrfs_fs_info *fs_info,
1268                                      u64 objectid)
1269 {
1270         struct extent_buffer *leaf;
1271         struct btrfs_root *tree_root = fs_info->tree_root;
1272         struct btrfs_root *root;
1273         struct btrfs_key key;
1274         int ret = 0;
1275         uuid_le uuid = NULL_UUID_LE;
1276
1277         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1278         if (!root)
1279                 return ERR_PTR(-ENOMEM);
1280
1281         __setup_root(root, fs_info, objectid);
1282         root->root_key.objectid = objectid;
1283         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1284         root->root_key.offset = 0;
1285
1286         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1287         if (IS_ERR(leaf)) {
1288                 ret = PTR_ERR(leaf);
1289                 leaf = NULL;
1290                 goto fail;
1291         }
1292
1293         root->node = leaf;
1294         btrfs_mark_buffer_dirty(leaf);
1295
1296         root->commit_root = btrfs_root_node(root);
1297         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1298
1299         root->root_item.flags = 0;
1300         root->root_item.byte_limit = 0;
1301         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1302         btrfs_set_root_generation(&root->root_item, trans->transid);
1303         btrfs_set_root_level(&root->root_item, 0);
1304         btrfs_set_root_refs(&root->root_item, 1);
1305         btrfs_set_root_used(&root->root_item, leaf->len);
1306         btrfs_set_root_last_snapshot(&root->root_item, 0);
1307         btrfs_set_root_dirid(&root->root_item, 0);
1308         if (is_fstree(objectid))
1309                 uuid_le_gen(&uuid);
1310         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1311         root->root_item.drop_level = 0;
1312
1313         key.objectid = objectid;
1314         key.type = BTRFS_ROOT_ITEM_KEY;
1315         key.offset = 0;
1316         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1317         if (ret)
1318                 goto fail;
1319
1320         btrfs_tree_unlock(leaf);
1321
1322         return root;
1323
1324 fail:
1325         if (leaf) {
1326                 btrfs_tree_unlock(leaf);
1327                 free_extent_buffer(root->commit_root);
1328                 free_extent_buffer(leaf);
1329         }
1330         kfree(root);
1331
1332         return ERR_PTR(ret);
1333 }
1334
1335 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1336                                          struct btrfs_fs_info *fs_info)
1337 {
1338         struct btrfs_root *root;
1339         struct extent_buffer *leaf;
1340
1341         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1342         if (!root)
1343                 return ERR_PTR(-ENOMEM);
1344
1345         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1346
1347         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1348         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1349         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1350
1351         /*
1352          * DON'T set REF_COWS for log trees
1353          *
1354          * log trees do not get reference counted because they go away
1355          * before a real commit is actually done.  They do store pointers
1356          * to file data extents, and those reference counts still get
1357          * updated (along with back refs to the log tree).
1358          */
1359
1360         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1361                         NULL, 0, 0, 0);
1362         if (IS_ERR(leaf)) {
1363                 kfree(root);
1364                 return ERR_CAST(leaf);
1365         }
1366
1367         root->node = leaf;
1368
1369         btrfs_mark_buffer_dirty(root->node);
1370         btrfs_tree_unlock(root->node);
1371         return root;
1372 }
1373
1374 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1375                              struct btrfs_fs_info *fs_info)
1376 {
1377         struct btrfs_root *log_root;
1378
1379         log_root = alloc_log_tree(trans, fs_info);
1380         if (IS_ERR(log_root))
1381                 return PTR_ERR(log_root);
1382         WARN_ON(fs_info->log_root_tree);
1383         fs_info->log_root_tree = log_root;
1384         return 0;
1385 }
1386
1387 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1388                        struct btrfs_root *root)
1389 {
1390         struct btrfs_fs_info *fs_info = root->fs_info;
1391         struct btrfs_root *log_root;
1392         struct btrfs_inode_item *inode_item;
1393
1394         log_root = alloc_log_tree(trans, fs_info);
1395         if (IS_ERR(log_root))
1396                 return PTR_ERR(log_root);
1397
1398         log_root->last_trans = trans->transid;
1399         log_root->root_key.offset = root->root_key.objectid;
1400
1401         inode_item = &log_root->root_item.inode;
1402         btrfs_set_stack_inode_generation(inode_item, 1);
1403         btrfs_set_stack_inode_size(inode_item, 3);
1404         btrfs_set_stack_inode_nlink(inode_item, 1);
1405         btrfs_set_stack_inode_nbytes(inode_item,
1406                                      fs_info->nodesize);
1407         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1408
1409         btrfs_set_root_node(&log_root->root_item, log_root->node);
1410
1411         WARN_ON(root->log_root);
1412         root->log_root = log_root;
1413         root->log_transid = 0;
1414         root->log_transid_committed = -1;
1415         root->last_log_commit = 0;
1416         return 0;
1417 }
1418
1419 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1420                                                struct btrfs_key *key)
1421 {
1422         struct btrfs_root *root;
1423         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1424         struct btrfs_path *path;
1425         u64 generation;
1426         int ret;
1427         int level;
1428
1429         path = btrfs_alloc_path();
1430         if (!path)
1431                 return ERR_PTR(-ENOMEM);
1432
1433         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1434         if (!root) {
1435                 ret = -ENOMEM;
1436                 goto alloc_fail;
1437         }
1438
1439         __setup_root(root, fs_info, key->objectid);
1440
1441         ret = btrfs_find_root(tree_root, key, path,
1442                               &root->root_item, &root->root_key);
1443         if (ret) {
1444                 if (ret > 0)
1445                         ret = -ENOENT;
1446                 goto find_fail;
1447         }
1448
1449         generation = btrfs_root_generation(&root->root_item);
1450         level = btrfs_root_level(&root->root_item);
1451         root->node = read_tree_block(fs_info,
1452                                      btrfs_root_bytenr(&root->root_item),
1453                                      generation, level, NULL);
1454         if (IS_ERR(root->node)) {
1455                 ret = PTR_ERR(root->node);
1456                 goto find_fail;
1457         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1458                 ret = -EIO;
1459                 free_extent_buffer(root->node);
1460                 goto find_fail;
1461         }
1462         root->commit_root = btrfs_root_node(root);
1463 out:
1464         btrfs_free_path(path);
1465         return root;
1466
1467 find_fail:
1468         kfree(root);
1469 alloc_fail:
1470         root = ERR_PTR(ret);
1471         goto out;
1472 }
1473
1474 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1475                                       struct btrfs_key *location)
1476 {
1477         struct btrfs_root *root;
1478
1479         root = btrfs_read_tree_root(tree_root, location);
1480         if (IS_ERR(root))
1481                 return root;
1482
1483         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1484                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1485                 btrfs_check_and_init_root_item(&root->root_item);
1486         }
1487
1488         return root;
1489 }
1490
1491 int btrfs_init_fs_root(struct btrfs_root *root)
1492 {
1493         int ret;
1494         struct btrfs_subvolume_writers *writers;
1495
1496         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1497         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1498                                         GFP_NOFS);
1499         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1500                 ret = -ENOMEM;
1501                 goto fail;
1502         }
1503
1504         writers = btrfs_alloc_subvolume_writers();
1505         if (IS_ERR(writers)) {
1506                 ret = PTR_ERR(writers);
1507                 goto fail;
1508         }
1509         root->subv_writers = writers;
1510
1511         btrfs_init_free_ino_ctl(root);
1512         spin_lock_init(&root->ino_cache_lock);
1513         init_waitqueue_head(&root->ino_cache_wait);
1514
1515         ret = get_anon_bdev(&root->anon_dev);
1516         if (ret)
1517                 goto fail;
1518
1519         mutex_lock(&root->objectid_mutex);
1520         ret = btrfs_find_highest_objectid(root,
1521                                         &root->highest_objectid);
1522         if (ret) {
1523                 mutex_unlock(&root->objectid_mutex);
1524                 goto fail;
1525         }
1526
1527         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1528
1529         mutex_unlock(&root->objectid_mutex);
1530
1531         return 0;
1532 fail:
1533         /* the caller is responsible to call free_fs_root */
1534         return ret;
1535 }
1536
1537 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1538                                         u64 root_id)
1539 {
1540         struct btrfs_root *root;
1541
1542         spin_lock(&fs_info->fs_roots_radix_lock);
1543         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1544                                  (unsigned long)root_id);
1545         spin_unlock(&fs_info->fs_roots_radix_lock);
1546         return root;
1547 }
1548
1549 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1550                          struct btrfs_root *root)
1551 {
1552         int ret;
1553
1554         ret = radix_tree_preload(GFP_NOFS);
1555         if (ret)
1556                 return ret;
1557
1558         spin_lock(&fs_info->fs_roots_radix_lock);
1559         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1560                                 (unsigned long)root->root_key.objectid,
1561                                 root);
1562         if (ret == 0)
1563                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1564         spin_unlock(&fs_info->fs_roots_radix_lock);
1565         radix_tree_preload_end();
1566
1567         return ret;
1568 }
1569
1570 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1571                                      struct btrfs_key *location,
1572                                      bool check_ref)
1573 {
1574         struct btrfs_root *root;
1575         struct btrfs_path *path;
1576         struct btrfs_key key;
1577         int ret;
1578
1579         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1580                 return fs_info->tree_root;
1581         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1582                 return fs_info->extent_root;
1583         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1584                 return fs_info->chunk_root;
1585         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1586                 return fs_info->dev_root;
1587         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1588                 return fs_info->csum_root;
1589         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1590                 return fs_info->quota_root ? fs_info->quota_root :
1591                                              ERR_PTR(-ENOENT);
1592         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1593                 return fs_info->uuid_root ? fs_info->uuid_root :
1594                                             ERR_PTR(-ENOENT);
1595         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1596                 return fs_info->free_space_root ? fs_info->free_space_root :
1597                                                   ERR_PTR(-ENOENT);
1598 again:
1599         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1600         if (root) {
1601                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1602                         return ERR_PTR(-ENOENT);
1603                 return root;
1604         }
1605
1606         root = btrfs_read_fs_root(fs_info->tree_root, location);
1607         if (IS_ERR(root))
1608                 return root;
1609
1610         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1611                 ret = -ENOENT;
1612                 goto fail;
1613         }
1614
1615         ret = btrfs_init_fs_root(root);
1616         if (ret)
1617                 goto fail;
1618
1619         path = btrfs_alloc_path();
1620         if (!path) {
1621                 ret = -ENOMEM;
1622                 goto fail;
1623         }
1624         key.objectid = BTRFS_ORPHAN_OBJECTID;
1625         key.type = BTRFS_ORPHAN_ITEM_KEY;
1626         key.offset = location->objectid;
1627
1628         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1629         btrfs_free_path(path);
1630         if (ret < 0)
1631                 goto fail;
1632         if (ret == 0)
1633                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1634
1635         ret = btrfs_insert_fs_root(fs_info, root);
1636         if (ret) {
1637                 if (ret == -EEXIST) {
1638                         free_fs_root(root);
1639                         goto again;
1640                 }
1641                 goto fail;
1642         }
1643         return root;
1644 fail:
1645         free_fs_root(root);
1646         return ERR_PTR(ret);
1647 }
1648
1649 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1650 {
1651         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1652         int ret = 0;
1653         struct btrfs_device *device;
1654         struct backing_dev_info *bdi;
1655
1656         rcu_read_lock();
1657         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1658                 if (!device->bdev)
1659                         continue;
1660                 bdi = device->bdev->bd_bdi;
1661                 if (bdi_congested(bdi, bdi_bits)) {
1662                         ret = 1;
1663                         break;
1664                 }
1665         }
1666         rcu_read_unlock();
1667         return ret;
1668 }
1669
1670 /*
1671  * called by the kthread helper functions to finally call the bio end_io
1672  * functions.  This is where read checksum verification actually happens
1673  */
1674 static void end_workqueue_fn(struct btrfs_work *work)
1675 {
1676         struct bio *bio;
1677         struct btrfs_end_io_wq *end_io_wq;
1678
1679         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1680         bio = end_io_wq->bio;
1681
1682         bio->bi_status = end_io_wq->status;
1683         bio->bi_private = end_io_wq->private;
1684         bio->bi_end_io = end_io_wq->end_io;
1685         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1686         bio_endio(bio);
1687 }
1688
1689 static int cleaner_kthread(void *arg)
1690 {
1691         struct btrfs_root *root = arg;
1692         struct btrfs_fs_info *fs_info = root->fs_info;
1693         int again;
1694         struct btrfs_trans_handle *trans;
1695
1696         do {
1697                 again = 0;
1698
1699                 /* Make the cleaner go to sleep early. */
1700                 if (btrfs_need_cleaner_sleep(fs_info))
1701                         goto sleep;
1702
1703                 /*
1704                  * Do not do anything if we might cause open_ctree() to block
1705                  * before we have finished mounting the filesystem.
1706                  */
1707                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1708                         goto sleep;
1709
1710                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1711                         goto sleep;
1712
1713                 /*
1714                  * Avoid the problem that we change the status of the fs
1715                  * during the above check and trylock.
1716                  */
1717                 if (btrfs_need_cleaner_sleep(fs_info)) {
1718                         mutex_unlock(&fs_info->cleaner_mutex);
1719                         goto sleep;
1720                 }
1721
1722                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1723                 btrfs_run_delayed_iputs(fs_info);
1724                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1725
1726                 again = btrfs_clean_one_deleted_snapshot(root);
1727                 mutex_unlock(&fs_info->cleaner_mutex);
1728
1729                 /*
1730                  * The defragger has dealt with the R/O remount and umount,
1731                  * needn't do anything special here.
1732                  */
1733                 btrfs_run_defrag_inodes(fs_info);
1734
1735                 /*
1736                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1737                  * with relocation (btrfs_relocate_chunk) and relocation
1738                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1739                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1740                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1741                  * unused block groups.
1742                  */
1743                 btrfs_delete_unused_bgs(fs_info);
1744 sleep:
1745                 if (!again) {
1746                         set_current_state(TASK_INTERRUPTIBLE);
1747                         if (!kthread_should_stop())
1748                                 schedule();
1749                         __set_current_state(TASK_RUNNING);
1750                 }
1751         } while (!kthread_should_stop());
1752
1753         /*
1754          * Transaction kthread is stopped before us and wakes us up.
1755          * However we might have started a new transaction and COWed some
1756          * tree blocks when deleting unused block groups for example. So
1757          * make sure we commit the transaction we started to have a clean
1758          * shutdown when evicting the btree inode - if it has dirty pages
1759          * when we do the final iput() on it, eviction will trigger a
1760          * writeback for it which will fail with null pointer dereferences
1761          * since work queues and other resources were already released and
1762          * destroyed by the time the iput/eviction/writeback is made.
1763          */
1764         trans = btrfs_attach_transaction(root);
1765         if (IS_ERR(trans)) {
1766                 if (PTR_ERR(trans) != -ENOENT)
1767                         btrfs_err(fs_info,
1768                                   "cleaner transaction attach returned %ld",
1769                                   PTR_ERR(trans));
1770         } else {
1771                 int ret;
1772
1773                 ret = btrfs_commit_transaction(trans);
1774                 if (ret)
1775                         btrfs_err(fs_info,
1776                                   "cleaner open transaction commit returned %d",
1777                                   ret);
1778         }
1779
1780         return 0;
1781 }
1782
1783 static int transaction_kthread(void *arg)
1784 {
1785         struct btrfs_root *root = arg;
1786         struct btrfs_fs_info *fs_info = root->fs_info;
1787         struct btrfs_trans_handle *trans;
1788         struct btrfs_transaction *cur;
1789         u64 transid;
1790         time64_t now;
1791         unsigned long delay;
1792         bool cannot_commit;
1793
1794         do {
1795                 cannot_commit = false;
1796                 delay = HZ * fs_info->commit_interval;
1797                 mutex_lock(&fs_info->transaction_kthread_mutex);
1798
1799                 spin_lock(&fs_info->trans_lock);
1800                 cur = fs_info->running_transaction;
1801                 if (!cur) {
1802                         spin_unlock(&fs_info->trans_lock);
1803                         goto sleep;
1804                 }
1805
1806                 now = ktime_get_seconds();
1807                 if (cur->state < TRANS_STATE_BLOCKED &&
1808                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1809                     (now < cur->start_time ||
1810                      now - cur->start_time < fs_info->commit_interval)) {
1811                         spin_unlock(&fs_info->trans_lock);
1812                         delay = HZ * 5;
1813                         goto sleep;
1814                 }
1815                 transid = cur->transid;
1816                 spin_unlock(&fs_info->trans_lock);
1817
1818                 /* If the file system is aborted, this will always fail. */
1819                 trans = btrfs_attach_transaction(root);
1820                 if (IS_ERR(trans)) {
1821                         if (PTR_ERR(trans) != -ENOENT)
1822                                 cannot_commit = true;
1823                         goto sleep;
1824                 }
1825                 if (transid == trans->transid) {
1826                         btrfs_commit_transaction(trans);
1827                 } else {
1828                         btrfs_end_transaction(trans);
1829                 }
1830 sleep:
1831                 wake_up_process(fs_info->cleaner_kthread);
1832                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1833
1834                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1835                                       &fs_info->fs_state)))
1836                         btrfs_cleanup_transaction(fs_info);
1837                 if (!kthread_should_stop() &&
1838                                 (!btrfs_transaction_blocked(fs_info) ||
1839                                  cannot_commit))
1840                         schedule_timeout_interruptible(delay);
1841         } while (!kthread_should_stop());
1842         return 0;
1843 }
1844
1845 /*
1846  * this will find the highest generation in the array of
1847  * root backups.  The index of the highest array is returned,
1848  * or -1 if we can't find anything.
1849  *
1850  * We check to make sure the array is valid by comparing the
1851  * generation of the latest  root in the array with the generation
1852  * in the super block.  If they don't match we pitch it.
1853  */
1854 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1855 {
1856         u64 cur;
1857         int newest_index = -1;
1858         struct btrfs_root_backup *root_backup;
1859         int i;
1860
1861         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1862                 root_backup = info->super_copy->super_roots + i;
1863                 cur = btrfs_backup_tree_root_gen(root_backup);
1864                 if (cur == newest_gen)
1865                         newest_index = i;
1866         }
1867
1868         /* check to see if we actually wrapped around */
1869         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1870                 root_backup = info->super_copy->super_roots;
1871                 cur = btrfs_backup_tree_root_gen(root_backup);
1872                 if (cur == newest_gen)
1873                         newest_index = 0;
1874         }
1875         return newest_index;
1876 }
1877
1878
1879 /*
1880  * find the oldest backup so we know where to store new entries
1881  * in the backup array.  This will set the backup_root_index
1882  * field in the fs_info struct
1883  */
1884 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1885                                      u64 newest_gen)
1886 {
1887         int newest_index = -1;
1888
1889         newest_index = find_newest_super_backup(info, newest_gen);
1890         /* if there was garbage in there, just move along */
1891         if (newest_index == -1) {
1892                 info->backup_root_index = 0;
1893         } else {
1894                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1895         }
1896 }
1897
1898 /*
1899  * copy all the root pointers into the super backup array.
1900  * this will bump the backup pointer by one when it is
1901  * done
1902  */
1903 static void backup_super_roots(struct btrfs_fs_info *info)
1904 {
1905         int next_backup;
1906         struct btrfs_root_backup *root_backup;
1907         int last_backup;
1908
1909         next_backup = info->backup_root_index;
1910         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1911                 BTRFS_NUM_BACKUP_ROOTS;
1912
1913         /*
1914          * just overwrite the last backup if we're at the same generation
1915          * this happens only at umount
1916          */
1917         root_backup = info->super_for_commit->super_roots + last_backup;
1918         if (btrfs_backup_tree_root_gen(root_backup) ==
1919             btrfs_header_generation(info->tree_root->node))
1920                 next_backup = last_backup;
1921
1922         root_backup = info->super_for_commit->super_roots + next_backup;
1923
1924         /*
1925          * make sure all of our padding and empty slots get zero filled
1926          * regardless of which ones we use today
1927          */
1928         memset(root_backup, 0, sizeof(*root_backup));
1929
1930         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1931
1932         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1933         btrfs_set_backup_tree_root_gen(root_backup,
1934                                btrfs_header_generation(info->tree_root->node));
1935
1936         btrfs_set_backup_tree_root_level(root_backup,
1937                                btrfs_header_level(info->tree_root->node));
1938
1939         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1940         btrfs_set_backup_chunk_root_gen(root_backup,
1941                                btrfs_header_generation(info->chunk_root->node));
1942         btrfs_set_backup_chunk_root_level(root_backup,
1943                                btrfs_header_level(info->chunk_root->node));
1944
1945         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1946         btrfs_set_backup_extent_root_gen(root_backup,
1947                                btrfs_header_generation(info->extent_root->node));
1948         btrfs_set_backup_extent_root_level(root_backup,
1949                                btrfs_header_level(info->extent_root->node));
1950
1951         /*
1952          * we might commit during log recovery, which happens before we set
1953          * the fs_root.  Make sure it is valid before we fill it in.
1954          */
1955         if (info->fs_root && info->fs_root->node) {
1956                 btrfs_set_backup_fs_root(root_backup,
1957                                          info->fs_root->node->start);
1958                 btrfs_set_backup_fs_root_gen(root_backup,
1959                                btrfs_header_generation(info->fs_root->node));
1960                 btrfs_set_backup_fs_root_level(root_backup,
1961                                btrfs_header_level(info->fs_root->node));
1962         }
1963
1964         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1965         btrfs_set_backup_dev_root_gen(root_backup,
1966                                btrfs_header_generation(info->dev_root->node));
1967         btrfs_set_backup_dev_root_level(root_backup,
1968                                        btrfs_header_level(info->dev_root->node));
1969
1970         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1971         btrfs_set_backup_csum_root_gen(root_backup,
1972                                btrfs_header_generation(info->csum_root->node));
1973         btrfs_set_backup_csum_root_level(root_backup,
1974                                btrfs_header_level(info->csum_root->node));
1975
1976         btrfs_set_backup_total_bytes(root_backup,
1977                              btrfs_super_total_bytes(info->super_copy));
1978         btrfs_set_backup_bytes_used(root_backup,
1979                              btrfs_super_bytes_used(info->super_copy));
1980         btrfs_set_backup_num_devices(root_backup,
1981                              btrfs_super_num_devices(info->super_copy));
1982
1983         /*
1984          * if we don't copy this out to the super_copy, it won't get remembered
1985          * for the next commit
1986          */
1987         memcpy(&info->super_copy->super_roots,
1988                &info->super_for_commit->super_roots,
1989                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1990 }
1991
1992 /*
1993  * this copies info out of the root backup array and back into
1994  * the in-memory super block.  It is meant to help iterate through
1995  * the array, so you send it the number of backups you've already
1996  * tried and the last backup index you used.
1997  *
1998  * this returns -1 when it has tried all the backups
1999  */
2000 static noinline int next_root_backup(struct btrfs_fs_info *info,
2001                                      struct btrfs_super_block *super,
2002                                      int *num_backups_tried, int *backup_index)
2003 {
2004         struct btrfs_root_backup *root_backup;
2005         int newest = *backup_index;
2006
2007         if (*num_backups_tried == 0) {
2008                 u64 gen = btrfs_super_generation(super);
2009
2010                 newest = find_newest_super_backup(info, gen);
2011                 if (newest == -1)
2012                         return -1;
2013
2014                 *backup_index = newest;
2015                 *num_backups_tried = 1;
2016         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2017                 /* we've tried all the backups, all done */
2018                 return -1;
2019         } else {
2020                 /* jump to the next oldest backup */
2021                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2022                         BTRFS_NUM_BACKUP_ROOTS;
2023                 *backup_index = newest;
2024                 *num_backups_tried += 1;
2025         }
2026         root_backup = super->super_roots + newest;
2027
2028         btrfs_set_super_generation(super,
2029                                    btrfs_backup_tree_root_gen(root_backup));
2030         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2031         btrfs_set_super_root_level(super,
2032                                    btrfs_backup_tree_root_level(root_backup));
2033         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2034
2035         /*
2036          * fixme: the total bytes and num_devices need to match or we should
2037          * need a fsck
2038          */
2039         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2040         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2041         return 0;
2042 }
2043
2044 /* helper to cleanup workers */
2045 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2046 {
2047         btrfs_destroy_workqueue(fs_info->fixup_workers);
2048         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2049         btrfs_destroy_workqueue(fs_info->workers);
2050         btrfs_destroy_workqueue(fs_info->endio_workers);
2051         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2052         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2053         btrfs_destroy_workqueue(fs_info->rmw_workers);
2054         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2055         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2056         btrfs_destroy_workqueue(fs_info->submit_workers);
2057         btrfs_destroy_workqueue(fs_info->delayed_workers);
2058         btrfs_destroy_workqueue(fs_info->caching_workers);
2059         btrfs_destroy_workqueue(fs_info->readahead_workers);
2060         btrfs_destroy_workqueue(fs_info->flush_workers);
2061         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2062         btrfs_destroy_workqueue(fs_info->extent_workers);
2063         /*
2064          * Now that all other work queues are destroyed, we can safely destroy
2065          * the queues used for metadata I/O, since tasks from those other work
2066          * queues can do metadata I/O operations.
2067          */
2068         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2069         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2070 }
2071
2072 static void free_root_extent_buffers(struct btrfs_root *root)
2073 {
2074         if (root) {
2075                 free_extent_buffer(root->node);
2076                 free_extent_buffer(root->commit_root);
2077                 root->node = NULL;
2078                 root->commit_root = NULL;
2079         }
2080 }
2081
2082 /* helper to cleanup tree roots */
2083 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2084 {
2085         free_root_extent_buffers(info->tree_root);
2086
2087         free_root_extent_buffers(info->dev_root);
2088         free_root_extent_buffers(info->extent_root);
2089         free_root_extent_buffers(info->csum_root);
2090         free_root_extent_buffers(info->quota_root);
2091         free_root_extent_buffers(info->uuid_root);
2092         if (chunk_root)
2093                 free_root_extent_buffers(info->chunk_root);
2094         free_root_extent_buffers(info->free_space_root);
2095 }
2096
2097 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2098 {
2099         int ret;
2100         struct btrfs_root *gang[8];
2101         int i;
2102
2103         while (!list_empty(&fs_info->dead_roots)) {
2104                 gang[0] = list_entry(fs_info->dead_roots.next,
2105                                      struct btrfs_root, root_list);
2106                 list_del(&gang[0]->root_list);
2107
2108                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2109                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2110                 } else {
2111                         free_extent_buffer(gang[0]->node);
2112                         free_extent_buffer(gang[0]->commit_root);
2113                         btrfs_put_fs_root(gang[0]);
2114                 }
2115         }
2116
2117         while (1) {
2118                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2119                                              (void **)gang, 0,
2120                                              ARRAY_SIZE(gang));
2121                 if (!ret)
2122                         break;
2123                 for (i = 0; i < ret; i++)
2124                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2125         }
2126
2127         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2128                 btrfs_free_log_root_tree(NULL, fs_info);
2129                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2130         }
2131 }
2132
2133 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2134 {
2135         mutex_init(&fs_info->scrub_lock);
2136         atomic_set(&fs_info->scrubs_running, 0);
2137         atomic_set(&fs_info->scrub_pause_req, 0);
2138         atomic_set(&fs_info->scrubs_paused, 0);
2139         atomic_set(&fs_info->scrub_cancel_req, 0);
2140         init_waitqueue_head(&fs_info->scrub_pause_wait);
2141         fs_info->scrub_workers_refcnt = 0;
2142 }
2143
2144 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2145 {
2146         spin_lock_init(&fs_info->balance_lock);
2147         mutex_init(&fs_info->balance_mutex);
2148         atomic_set(&fs_info->balance_pause_req, 0);
2149         atomic_set(&fs_info->balance_cancel_req, 0);
2150         fs_info->balance_ctl = NULL;
2151         init_waitqueue_head(&fs_info->balance_wait_q);
2152 }
2153
2154 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2155 {
2156         struct inode *inode = fs_info->btree_inode;
2157
2158         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2159         set_nlink(inode, 1);
2160         /*
2161          * we set the i_size on the btree inode to the max possible int.
2162          * the real end of the address space is determined by all of
2163          * the devices in the system
2164          */
2165         inode->i_size = OFFSET_MAX;
2166         inode->i_mapping->a_ops = &btree_aops;
2167
2168         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2169         extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2170         BTRFS_I(inode)->io_tree.track_uptodate = 0;
2171         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2172
2173         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2174
2175         BTRFS_I(inode)->root = fs_info->tree_root;
2176         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2177         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2178         btrfs_insert_inode_hash(inode);
2179 }
2180
2181 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2182 {
2183         fs_info->dev_replace.lock_owner = 0;
2184         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2185         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2186         rwlock_init(&fs_info->dev_replace.lock);
2187         atomic_set(&fs_info->dev_replace.read_locks, 0);
2188         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2189         init_waitqueue_head(&fs_info->replace_wait);
2190         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2191 }
2192
2193 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2194 {
2195         spin_lock_init(&fs_info->qgroup_lock);
2196         mutex_init(&fs_info->qgroup_ioctl_lock);
2197         fs_info->qgroup_tree = RB_ROOT;
2198         fs_info->qgroup_op_tree = RB_ROOT;
2199         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2200         fs_info->qgroup_seq = 1;
2201         fs_info->qgroup_ulist = NULL;
2202         fs_info->qgroup_rescan_running = false;
2203         mutex_init(&fs_info->qgroup_rescan_lock);
2204 }
2205
2206 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2207                 struct btrfs_fs_devices *fs_devices)
2208 {
2209         u32 max_active = fs_info->thread_pool_size;
2210         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2211
2212         fs_info->workers =
2213                 btrfs_alloc_workqueue(fs_info, "worker",
2214                                       flags | WQ_HIGHPRI, max_active, 16);
2215
2216         fs_info->delalloc_workers =
2217                 btrfs_alloc_workqueue(fs_info, "delalloc",
2218                                       flags, max_active, 2);
2219
2220         fs_info->flush_workers =
2221                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2222                                       flags, max_active, 0);
2223
2224         fs_info->caching_workers =
2225                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2226
2227         /*
2228          * a higher idle thresh on the submit workers makes it much more
2229          * likely that bios will be send down in a sane order to the
2230          * devices
2231          */
2232         fs_info->submit_workers =
2233                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2234                                       min_t(u64, fs_devices->num_devices,
2235                                             max_active), 64);
2236
2237         fs_info->fixup_workers =
2238                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2239
2240         /*
2241          * endios are largely parallel and should have a very
2242          * low idle thresh
2243          */
2244         fs_info->endio_workers =
2245                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2246         fs_info->endio_meta_workers =
2247                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2248                                       max_active, 4);
2249         fs_info->endio_meta_write_workers =
2250                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2251                                       max_active, 2);
2252         fs_info->endio_raid56_workers =
2253                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2254                                       max_active, 4);
2255         fs_info->endio_repair_workers =
2256                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2257         fs_info->rmw_workers =
2258                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2259         fs_info->endio_write_workers =
2260                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2261                                       max_active, 2);
2262         fs_info->endio_freespace_worker =
2263                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2264                                       max_active, 0);
2265         fs_info->delayed_workers =
2266                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2267                                       max_active, 0);
2268         fs_info->readahead_workers =
2269                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2270                                       max_active, 2);
2271         fs_info->qgroup_rescan_workers =
2272                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2273         fs_info->extent_workers =
2274                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2275                                       min_t(u64, fs_devices->num_devices,
2276                                             max_active), 8);
2277
2278         if (!(fs_info->workers && fs_info->delalloc_workers &&
2279               fs_info->submit_workers && fs_info->flush_workers &&
2280               fs_info->endio_workers && fs_info->endio_meta_workers &&
2281               fs_info->endio_meta_write_workers &&
2282               fs_info->endio_repair_workers &&
2283               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2284               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2285               fs_info->caching_workers && fs_info->readahead_workers &&
2286               fs_info->fixup_workers && fs_info->delayed_workers &&
2287               fs_info->extent_workers &&
2288               fs_info->qgroup_rescan_workers)) {
2289                 return -ENOMEM;
2290         }
2291
2292         return 0;
2293 }
2294
2295 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2296                             struct btrfs_fs_devices *fs_devices)
2297 {
2298         int ret;
2299         struct btrfs_root *log_tree_root;
2300         struct btrfs_super_block *disk_super = fs_info->super_copy;
2301         u64 bytenr = btrfs_super_log_root(disk_super);
2302         int level = btrfs_super_log_root_level(disk_super);
2303
2304         if (fs_devices->rw_devices == 0) {
2305                 btrfs_warn(fs_info, "log replay required on RO media");
2306                 return -EIO;
2307         }
2308
2309         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2310         if (!log_tree_root)
2311                 return -ENOMEM;
2312
2313         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2314
2315         log_tree_root->node = read_tree_block(fs_info, bytenr,
2316                                               fs_info->generation + 1,
2317                                               level, NULL);
2318         if (IS_ERR(log_tree_root->node)) {
2319                 btrfs_warn(fs_info, "failed to read log tree");
2320                 ret = PTR_ERR(log_tree_root->node);
2321                 kfree(log_tree_root);
2322                 return ret;
2323         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2324                 btrfs_err(fs_info, "failed to read log tree");
2325                 free_extent_buffer(log_tree_root->node);
2326                 kfree(log_tree_root);
2327                 return -EIO;
2328         }
2329         /* returns with log_tree_root freed on success */
2330         ret = btrfs_recover_log_trees(log_tree_root);
2331         if (ret) {
2332                 btrfs_handle_fs_error(fs_info, ret,
2333                                       "Failed to recover log tree");
2334                 free_extent_buffer(log_tree_root->node);
2335                 kfree(log_tree_root);
2336                 return ret;
2337         }
2338
2339         if (sb_rdonly(fs_info->sb)) {
2340                 ret = btrfs_commit_super(fs_info);
2341                 if (ret)
2342                         return ret;
2343         }
2344
2345         return 0;
2346 }
2347
2348 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2349 {
2350         struct btrfs_root *tree_root = fs_info->tree_root;
2351         struct btrfs_root *root;
2352         struct btrfs_key location;
2353         int ret;
2354
2355         BUG_ON(!fs_info->tree_root);
2356
2357         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2358         location.type = BTRFS_ROOT_ITEM_KEY;
2359         location.offset = 0;
2360
2361         root = btrfs_read_tree_root(tree_root, &location);
2362         if (IS_ERR(root)) {
2363                 ret = PTR_ERR(root);
2364                 goto out;
2365         }
2366         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2367         fs_info->extent_root = root;
2368
2369         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2370         root = btrfs_read_tree_root(tree_root, &location);
2371         if (IS_ERR(root)) {
2372                 ret = PTR_ERR(root);
2373                 goto out;
2374         }
2375         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2376         fs_info->dev_root = root;
2377         btrfs_init_devices_late(fs_info);
2378
2379         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2380         root = btrfs_read_tree_root(tree_root, &location);
2381         if (IS_ERR(root)) {
2382                 ret = PTR_ERR(root);
2383                 goto out;
2384         }
2385         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2386         fs_info->csum_root = root;
2387
2388         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2389         root = btrfs_read_tree_root(tree_root, &location);
2390         if (!IS_ERR(root)) {
2391                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2392                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2393                 fs_info->quota_root = root;
2394         }
2395
2396         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2397         root = btrfs_read_tree_root(tree_root, &location);
2398         if (IS_ERR(root)) {
2399                 ret = PTR_ERR(root);
2400                 if (ret != -ENOENT)
2401                         goto out;
2402         } else {
2403                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2404                 fs_info->uuid_root = root;
2405         }
2406
2407         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2408                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2409                 root = btrfs_read_tree_root(tree_root, &location);
2410                 if (IS_ERR(root)) {
2411                         ret = PTR_ERR(root);
2412                         goto out;
2413                 }
2414                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2415                 fs_info->free_space_root = root;
2416         }
2417
2418         return 0;
2419 out:
2420         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2421                    location.objectid, ret);
2422         return ret;
2423 }
2424
2425 /*
2426  * Real super block validation
2427  * NOTE: super csum type and incompat features will not be checked here.
2428  *
2429  * @sb:         super block to check
2430  * @mirror_num: the super block number to check its bytenr:
2431  *              0       the primary (1st) sb
2432  *              1, 2    2nd and 3rd backup copy
2433  *             -1       skip bytenr check
2434  */
2435 static int validate_super(struct btrfs_fs_info *fs_info,
2436                             struct btrfs_super_block *sb, int mirror_num)
2437 {
2438         u64 nodesize = btrfs_super_nodesize(sb);
2439         u64 sectorsize = btrfs_super_sectorsize(sb);
2440         int ret = 0;
2441
2442         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2443                 btrfs_err(fs_info, "no valid FS found");
2444                 ret = -EINVAL;
2445         }
2446         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2447                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2448                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2449                 ret = -EINVAL;
2450         }
2451         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2452                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2453                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2454                 ret = -EINVAL;
2455         }
2456         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2457                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2458                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2459                 ret = -EINVAL;
2460         }
2461         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2462                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2463                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2464                 ret = -EINVAL;
2465         }
2466
2467         /*
2468          * Check sectorsize and nodesize first, other check will need it.
2469          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2470          */
2471         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2472             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2473                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2474                 ret = -EINVAL;
2475         }
2476         /* Only PAGE SIZE is supported yet */
2477         if (sectorsize != PAGE_SIZE) {
2478                 btrfs_err(fs_info,
2479                         "sectorsize %llu not supported yet, only support %lu",
2480                         sectorsize, PAGE_SIZE);
2481                 ret = -EINVAL;
2482         }
2483         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2484             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2485                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2486                 ret = -EINVAL;
2487         }
2488         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2489                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2490                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2491                 ret = -EINVAL;
2492         }
2493
2494         /* Root alignment check */
2495         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2496                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2497                            btrfs_super_root(sb));
2498                 ret = -EINVAL;
2499         }
2500         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2501                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2502                            btrfs_super_chunk_root(sb));
2503                 ret = -EINVAL;
2504         }
2505         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2506                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2507                            btrfs_super_log_root(sb));
2508                 ret = -EINVAL;
2509         }
2510
2511         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2512                 btrfs_err(fs_info,
2513                            "dev_item UUID does not match fsid: %pU != %pU",
2514                            fs_info->fsid, sb->dev_item.fsid);
2515                 ret = -EINVAL;
2516         }
2517
2518         /*
2519          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2520          * done later
2521          */
2522         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2523                 btrfs_err(fs_info, "bytes_used is too small %llu",
2524                           btrfs_super_bytes_used(sb));
2525                 ret = -EINVAL;
2526         }
2527         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2528                 btrfs_err(fs_info, "invalid stripesize %u",
2529                           btrfs_super_stripesize(sb));
2530                 ret = -EINVAL;
2531         }
2532         if (btrfs_super_num_devices(sb) > (1UL << 31))
2533                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2534                            btrfs_super_num_devices(sb));
2535         if (btrfs_super_num_devices(sb) == 0) {
2536                 btrfs_err(fs_info, "number of devices is 0");
2537                 ret = -EINVAL;
2538         }
2539
2540         if (mirror_num >= 0 &&
2541             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2542                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2543                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2544                 ret = -EINVAL;
2545         }
2546
2547         /*
2548          * Obvious sys_chunk_array corruptions, it must hold at least one key
2549          * and one chunk
2550          */
2551         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2552                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2553                           btrfs_super_sys_array_size(sb),
2554                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2555                 ret = -EINVAL;
2556         }
2557         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2558                         + sizeof(struct btrfs_chunk)) {
2559                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2560                           btrfs_super_sys_array_size(sb),
2561                           sizeof(struct btrfs_disk_key)
2562                           + sizeof(struct btrfs_chunk));
2563                 ret = -EINVAL;
2564         }
2565
2566         /*
2567          * The generation is a global counter, we'll trust it more than the others
2568          * but it's still possible that it's the one that's wrong.
2569          */
2570         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2571                 btrfs_warn(fs_info,
2572                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2573                         btrfs_super_generation(sb),
2574                         btrfs_super_chunk_root_generation(sb));
2575         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2576             && btrfs_super_cache_generation(sb) != (u64)-1)
2577                 btrfs_warn(fs_info,
2578                         "suspicious: generation < cache_generation: %llu < %llu",
2579                         btrfs_super_generation(sb),
2580                         btrfs_super_cache_generation(sb));
2581
2582         return ret;
2583 }
2584
2585 /*
2586  * Validation of super block at mount time.
2587  * Some checks already done early at mount time, like csum type and incompat
2588  * flags will be skipped.
2589  */
2590 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2591 {
2592         return validate_super(fs_info, fs_info->super_copy, 0);
2593 }
2594
2595 /*
2596  * Validation of super block at write time.
2597  * Some checks like bytenr check will be skipped as their values will be
2598  * overwritten soon.
2599  * Extra checks like csum type and incompat flags will be done here.
2600  */
2601 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2602                                       struct btrfs_super_block *sb)
2603 {
2604         int ret;
2605
2606         ret = validate_super(fs_info, sb, -1);
2607         if (ret < 0)
2608                 goto out;
2609         if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2610                 ret = -EUCLEAN;
2611                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2612                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2613                 goto out;
2614         }
2615         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2616                 ret = -EUCLEAN;
2617                 btrfs_err(fs_info,
2618                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2619                           btrfs_super_incompat_flags(sb),
2620                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2621                 goto out;
2622         }
2623 out:
2624         if (ret < 0)
2625                 btrfs_err(fs_info,
2626                 "super block corruption detected before writing it to disk");
2627         return ret;
2628 }
2629
2630 int open_ctree(struct super_block *sb,
2631                struct btrfs_fs_devices *fs_devices,
2632                char *options)
2633 {
2634         u32 sectorsize;
2635         u32 nodesize;
2636         u32 stripesize;
2637         u64 generation;
2638         u64 features;
2639         struct btrfs_key location;
2640         struct buffer_head *bh;
2641         struct btrfs_super_block *disk_super;
2642         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2643         struct btrfs_root *tree_root;
2644         struct btrfs_root *chunk_root;
2645         int ret;
2646         int err = -EINVAL;
2647         int num_backups_tried = 0;
2648         int backup_index = 0;
2649         int clear_free_space_tree = 0;
2650         int level;
2651
2652         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2653         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2654         if (!tree_root || !chunk_root) {
2655                 err = -ENOMEM;
2656                 goto fail;
2657         }
2658
2659         ret = init_srcu_struct(&fs_info->subvol_srcu);
2660         if (ret) {
2661                 err = ret;
2662                 goto fail;
2663         }
2664
2665         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2666         if (ret) {
2667                 err = ret;
2668                 goto fail_srcu;
2669         }
2670         fs_info->dirty_metadata_batch = PAGE_SIZE *
2671                                         (1 + ilog2(nr_cpu_ids));
2672
2673         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2674         if (ret) {
2675                 err = ret;
2676                 goto fail_dirty_metadata_bytes;
2677         }
2678
2679         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2680         if (ret) {
2681                 err = ret;
2682                 goto fail_delalloc_bytes;
2683         }
2684
2685         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2686         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2687         INIT_LIST_HEAD(&fs_info->trans_list);
2688         INIT_LIST_HEAD(&fs_info->dead_roots);
2689         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2690         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2691         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2692         INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2693         spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2694         spin_lock_init(&fs_info->delalloc_root_lock);
2695         spin_lock_init(&fs_info->trans_lock);
2696         spin_lock_init(&fs_info->fs_roots_radix_lock);
2697         spin_lock_init(&fs_info->delayed_iput_lock);
2698         spin_lock_init(&fs_info->defrag_inodes_lock);
2699         spin_lock_init(&fs_info->tree_mod_seq_lock);
2700         spin_lock_init(&fs_info->super_lock);
2701         spin_lock_init(&fs_info->qgroup_op_lock);
2702         spin_lock_init(&fs_info->buffer_lock);
2703         spin_lock_init(&fs_info->unused_bgs_lock);
2704         rwlock_init(&fs_info->tree_mod_log_lock);
2705         mutex_init(&fs_info->unused_bg_unpin_mutex);
2706         mutex_init(&fs_info->delete_unused_bgs_mutex);
2707         mutex_init(&fs_info->reloc_mutex);
2708         mutex_init(&fs_info->delalloc_root_mutex);
2709         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2710         seqlock_init(&fs_info->profiles_lock);
2711
2712         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2713         INIT_LIST_HEAD(&fs_info->space_info);
2714         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2715         INIT_LIST_HEAD(&fs_info->unused_bgs);
2716         btrfs_mapping_init(&fs_info->mapping_tree);
2717         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2718                              BTRFS_BLOCK_RSV_GLOBAL);
2719         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2720         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2721         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2722         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2723                              BTRFS_BLOCK_RSV_DELOPS);
2724         atomic_set(&fs_info->async_delalloc_pages, 0);
2725         atomic_set(&fs_info->defrag_running, 0);
2726         atomic_set(&fs_info->qgroup_op_seq, 0);
2727         atomic_set(&fs_info->reada_works_cnt, 0);
2728         atomic64_set(&fs_info->tree_mod_seq, 0);
2729         fs_info->sb = sb;
2730         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2731         fs_info->metadata_ratio = 0;
2732         fs_info->defrag_inodes = RB_ROOT;
2733         atomic64_set(&fs_info->free_chunk_space, 0);
2734         fs_info->tree_mod_log = RB_ROOT;
2735         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2736         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2737         /* readahead state */
2738         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2739         spin_lock_init(&fs_info->reada_lock);
2740         btrfs_init_ref_verify(fs_info);
2741
2742         fs_info->thread_pool_size = min_t(unsigned long,
2743                                           num_online_cpus() + 2, 8);
2744
2745         INIT_LIST_HEAD(&fs_info->ordered_roots);
2746         spin_lock_init(&fs_info->ordered_root_lock);
2747
2748         fs_info->btree_inode = new_inode(sb);
2749         if (!fs_info->btree_inode) {
2750                 err = -ENOMEM;
2751                 goto fail_bio_counter;
2752         }
2753         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2754
2755         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2756                                         GFP_KERNEL);
2757         if (!fs_info->delayed_root) {
2758                 err = -ENOMEM;
2759                 goto fail_iput;
2760         }
2761         btrfs_init_delayed_root(fs_info->delayed_root);
2762
2763         btrfs_init_scrub(fs_info);
2764 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2765         fs_info->check_integrity_print_mask = 0;
2766 #endif
2767         btrfs_init_balance(fs_info);
2768         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2769
2770         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2771         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2772
2773         btrfs_init_btree_inode(fs_info);
2774
2775         spin_lock_init(&fs_info->block_group_cache_lock);
2776         fs_info->block_group_cache_tree = RB_ROOT;
2777         fs_info->first_logical_byte = (u64)-1;
2778
2779         extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2780         extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2781         fs_info->pinned_extents = &fs_info->freed_extents[0];
2782         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2783
2784         mutex_init(&fs_info->ordered_operations_mutex);
2785         mutex_init(&fs_info->tree_log_mutex);
2786         mutex_init(&fs_info->chunk_mutex);
2787         mutex_init(&fs_info->transaction_kthread_mutex);
2788         mutex_init(&fs_info->cleaner_mutex);
2789         mutex_init(&fs_info->ro_block_group_mutex);
2790         init_rwsem(&fs_info->commit_root_sem);
2791         init_rwsem(&fs_info->cleanup_work_sem);
2792         init_rwsem(&fs_info->subvol_sem);
2793         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2794
2795         btrfs_init_dev_replace_locks(fs_info);
2796         btrfs_init_qgroup(fs_info);
2797
2798         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2799         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2800
2801         init_waitqueue_head(&fs_info->transaction_throttle);
2802         init_waitqueue_head(&fs_info->transaction_wait);
2803         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2804         init_waitqueue_head(&fs_info->async_submit_wait);
2805
2806         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2807
2808         /* Usable values until the real ones are cached from the superblock */
2809         fs_info->nodesize = 4096;
2810         fs_info->sectorsize = 4096;
2811         fs_info->stripesize = 4096;
2812
2813         ret = btrfs_alloc_stripe_hash_table(fs_info);
2814         if (ret) {
2815                 err = ret;
2816                 goto fail_alloc;
2817         }
2818
2819         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2820
2821         invalidate_bdev(fs_devices->latest_bdev);
2822
2823         /*
2824          * Read super block and check the signature bytes only
2825          */
2826         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2827         if (IS_ERR(bh)) {
2828                 err = PTR_ERR(bh);
2829                 goto fail_alloc;
2830         }
2831
2832         /*
2833          * We want to check superblock checksum, the type is stored inside.
2834          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2835          */
2836         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2837                 btrfs_err(fs_info, "superblock checksum mismatch");
2838                 err = -EINVAL;
2839                 brelse(bh);
2840                 goto fail_alloc;
2841         }
2842
2843         /*
2844          * super_copy is zeroed at allocation time and we never touch the
2845          * following bytes up to INFO_SIZE, the checksum is calculated from
2846          * the whole block of INFO_SIZE
2847          */
2848         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2849         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2850                sizeof(*fs_info->super_for_commit));
2851         brelse(bh);
2852
2853         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2854
2855         ret = btrfs_validate_mount_super(fs_info);
2856         if (ret) {
2857                 btrfs_err(fs_info, "superblock contains fatal errors");
2858                 err = -EINVAL;
2859                 goto fail_alloc;
2860         }
2861
2862         disk_super = fs_info->super_copy;
2863         if (!btrfs_super_root(disk_super))
2864                 goto fail_alloc;
2865
2866         /* check FS state, whether FS is broken. */
2867         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2868                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2869
2870         /*
2871          * run through our array of backup supers and setup
2872          * our ring pointer to the oldest one
2873          */
2874         generation = btrfs_super_generation(disk_super);
2875         find_oldest_super_backup(fs_info, generation);
2876
2877         /*
2878          * In the long term, we'll store the compression type in the super
2879          * block, and it'll be used for per file compression control.
2880          */
2881         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2882
2883         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2884         if (ret) {
2885                 err = ret;
2886                 goto fail_alloc;
2887         }
2888
2889         features = btrfs_super_incompat_flags(disk_super) &
2890                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2891         if (features) {
2892                 btrfs_err(fs_info,
2893                     "cannot mount because of unsupported optional features (%llx)",
2894                     features);
2895                 err = -EINVAL;
2896                 goto fail_alloc;
2897         }
2898
2899         features = btrfs_super_incompat_flags(disk_super);
2900         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2901         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2902                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2903         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2904                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2905
2906         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2907                 btrfs_info(fs_info, "has skinny extents");
2908
2909         /*
2910          * flag our filesystem as having big metadata blocks if
2911          * they are bigger than the page size
2912          */
2913         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2914                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2915                         btrfs_info(fs_info,
2916                                 "flagging fs with big metadata feature");
2917                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2918         }
2919
2920         nodesize = btrfs_super_nodesize(disk_super);
2921         sectorsize = btrfs_super_sectorsize(disk_super);
2922         stripesize = sectorsize;
2923         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2924         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2925
2926         /* Cache block sizes */
2927         fs_info->nodesize = nodesize;
2928         fs_info->sectorsize = sectorsize;
2929         fs_info->stripesize = stripesize;
2930
2931         /*
2932          * mixed block groups end up with duplicate but slightly offset
2933          * extent buffers for the same range.  It leads to corruptions
2934          */
2935         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2936             (sectorsize != nodesize)) {
2937                 btrfs_err(fs_info,
2938 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2939                         nodesize, sectorsize);
2940                 goto fail_alloc;
2941         }
2942
2943         /*
2944          * Needn't use the lock because there is no other task which will
2945          * update the flag.
2946          */
2947         btrfs_set_super_incompat_flags(disk_super, features);
2948
2949         features = btrfs_super_compat_ro_flags(disk_super) &
2950                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2951         if (!sb_rdonly(sb) && features) {
2952                 btrfs_err(fs_info,
2953         "cannot mount read-write because of unsupported optional features (%llx)",
2954                        features);
2955                 err = -EINVAL;
2956                 goto fail_alloc;
2957         }
2958
2959         ret = btrfs_init_workqueues(fs_info, fs_devices);
2960         if (ret) {
2961                 err = ret;
2962                 goto fail_sb_buffer;
2963         }
2964
2965         sb->s_bdi->congested_fn = btrfs_congested_fn;
2966         sb->s_bdi->congested_data = fs_info;
2967         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2968         sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2969         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2970         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2971
2972         sb->s_blocksize = sectorsize;
2973         sb->s_blocksize_bits = blksize_bits(sectorsize);
2974         memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2975
2976         mutex_lock(&fs_info->chunk_mutex);
2977         ret = btrfs_read_sys_array(fs_info);
2978         mutex_unlock(&fs_info->chunk_mutex);
2979         if (ret) {
2980                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2981                 goto fail_sb_buffer;
2982         }
2983
2984         generation = btrfs_super_chunk_root_generation(disk_super);
2985         level = btrfs_super_chunk_root_level(disk_super);
2986
2987         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2988
2989         chunk_root->node = read_tree_block(fs_info,
2990                                            btrfs_super_chunk_root(disk_super),
2991                                            generation, level, NULL);
2992         if (IS_ERR(chunk_root->node) ||
2993             !extent_buffer_uptodate(chunk_root->node)) {
2994                 btrfs_err(fs_info, "failed to read chunk root");
2995                 if (!IS_ERR(chunk_root->node))
2996                         free_extent_buffer(chunk_root->node);
2997                 chunk_root->node = NULL;
2998                 goto fail_tree_roots;
2999         }
3000         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3001         chunk_root->commit_root = btrfs_root_node(chunk_root);
3002
3003         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3004            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3005
3006         ret = btrfs_read_chunk_tree(fs_info);
3007         if (ret) {
3008                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3009                 goto fail_tree_roots;
3010         }
3011
3012         /*
3013          * Keep the devid that is marked to be the target device for the
3014          * device replace procedure
3015          */
3016         btrfs_free_extra_devids(fs_devices, 0);
3017
3018         if (!fs_devices->latest_bdev) {
3019                 btrfs_err(fs_info, "failed to read devices");
3020                 goto fail_tree_roots;
3021         }
3022
3023 retry_root_backup:
3024         generation = btrfs_super_generation(disk_super);
3025         level = btrfs_super_root_level(disk_super);
3026
3027         tree_root->node = read_tree_block(fs_info,
3028                                           btrfs_super_root(disk_super),
3029                                           generation, level, NULL);
3030         if (IS_ERR(tree_root->node) ||
3031             !extent_buffer_uptodate(tree_root->node)) {
3032                 btrfs_warn(fs_info, "failed to read tree root");
3033                 if (!IS_ERR(tree_root->node))
3034                         free_extent_buffer(tree_root->node);
3035                 tree_root->node = NULL;
3036                 goto recovery_tree_root;
3037         }
3038
3039         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3040         tree_root->commit_root = btrfs_root_node(tree_root);
3041         btrfs_set_root_refs(&tree_root->root_item, 1);
3042
3043         mutex_lock(&tree_root->objectid_mutex);
3044         ret = btrfs_find_highest_objectid(tree_root,
3045                                         &tree_root->highest_objectid);
3046         if (ret) {
3047                 mutex_unlock(&tree_root->objectid_mutex);
3048                 goto recovery_tree_root;
3049         }
3050
3051         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3052
3053         mutex_unlock(&tree_root->objectid_mutex);
3054
3055         ret = btrfs_read_roots(fs_info);
3056         if (ret)
3057                 goto recovery_tree_root;
3058
3059         fs_info->generation = generation;
3060         fs_info->last_trans_committed = generation;
3061
3062         ret = btrfs_recover_balance(fs_info);
3063         if (ret) {
3064                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3065                 goto fail_block_groups;
3066         }
3067
3068         ret = btrfs_init_dev_stats(fs_info);
3069         if (ret) {
3070                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3071                 goto fail_block_groups;
3072         }
3073
3074         ret = btrfs_init_dev_replace(fs_info);
3075         if (ret) {
3076                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3077                 goto fail_block_groups;
3078         }
3079
3080         btrfs_free_extra_devids(fs_devices, 1);
3081
3082         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3083         if (ret) {
3084                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3085                                 ret);
3086                 goto fail_block_groups;
3087         }
3088
3089         ret = btrfs_sysfs_add_device(fs_devices);
3090         if (ret) {
3091                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3092                                 ret);
3093                 goto fail_fsdev_sysfs;
3094         }
3095
3096         ret = btrfs_sysfs_add_mounted(fs_info);
3097         if (ret) {
3098                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3099                 goto fail_fsdev_sysfs;
3100         }
3101
3102         ret = btrfs_init_space_info(fs_info);
3103         if (ret) {
3104                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3105                 goto fail_sysfs;
3106         }
3107
3108         ret = btrfs_read_block_groups(fs_info);
3109         if (ret) {
3110                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3111                 goto fail_sysfs;
3112         }
3113
3114         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3115                 btrfs_warn(fs_info,
3116                 "writeable mount is not allowed due to too many missing devices");
3117                 goto fail_sysfs;
3118         }
3119
3120         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3121                                                "btrfs-cleaner");
3122         if (IS_ERR(fs_info->cleaner_kthread))
3123                 goto fail_sysfs;
3124
3125         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3126                                                    tree_root,
3127                                                    "btrfs-transaction");
3128         if (IS_ERR(fs_info->transaction_kthread))
3129                 goto fail_cleaner;
3130
3131         if (!btrfs_test_opt(fs_info, NOSSD) &&
3132             !fs_info->fs_devices->rotating) {
3133                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3134         }
3135
3136         /*
3137          * Mount does not set all options immediately, we can do it now and do
3138          * not have to wait for transaction commit
3139          */
3140         btrfs_apply_pending_changes(fs_info);
3141
3142 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3143         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3144                 ret = btrfsic_mount(fs_info, fs_devices,
3145                                     btrfs_test_opt(fs_info,
3146                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3147                                     1 : 0,
3148                                     fs_info->check_integrity_print_mask);
3149                 if (ret)
3150                         btrfs_warn(fs_info,
3151                                 "failed to initialize integrity check module: %d",
3152                                 ret);
3153         }
3154 #endif
3155         ret = btrfs_read_qgroup_config(fs_info);
3156         if (ret)
3157                 goto fail_trans_kthread;
3158
3159         if (btrfs_build_ref_tree(fs_info))
3160                 btrfs_err(fs_info, "couldn't build ref tree");
3161
3162         /* do not make disk changes in broken FS or nologreplay is given */
3163         if (btrfs_super_log_root(disk_super) != 0 &&
3164             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3165                 ret = btrfs_replay_log(fs_info, fs_devices);
3166                 if (ret) {
3167                         err = ret;
3168                         goto fail_qgroup;
3169                 }
3170         }
3171
3172         ret = btrfs_find_orphan_roots(fs_info);
3173         if (ret)
3174                 goto fail_qgroup;
3175
3176         if (!sb_rdonly(sb)) {
3177                 ret = btrfs_cleanup_fs_roots(fs_info);
3178                 if (ret)
3179                         goto fail_qgroup;
3180
3181                 mutex_lock(&fs_info->cleaner_mutex);
3182                 ret = btrfs_recover_relocation(tree_root);
3183                 mutex_unlock(&fs_info->cleaner_mutex);
3184                 if (ret < 0) {
3185                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3186                                         ret);
3187                         err = -EINVAL;
3188                         goto fail_qgroup;
3189                 }
3190         }
3191
3192         location.objectid = BTRFS_FS_TREE_OBJECTID;
3193         location.type = BTRFS_ROOT_ITEM_KEY;
3194         location.offset = 0;
3195
3196         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3197         if (IS_ERR(fs_info->fs_root)) {
3198                 err = PTR_ERR(fs_info->fs_root);
3199                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3200                 goto fail_qgroup;
3201         }
3202
3203         if (sb_rdonly(sb))
3204                 return 0;
3205
3206         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3207             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3208                 clear_free_space_tree = 1;
3209         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3210                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3211                 btrfs_warn(fs_info, "free space tree is invalid");
3212                 clear_free_space_tree = 1;
3213         }
3214
3215         if (clear_free_space_tree) {
3216                 btrfs_info(fs_info, "clearing free space tree");
3217                 ret = btrfs_clear_free_space_tree(fs_info);
3218                 if (ret) {
3219                         btrfs_warn(fs_info,
3220                                    "failed to clear free space tree: %d", ret);
3221                         close_ctree(fs_info);
3222                         return ret;
3223                 }
3224         }
3225
3226         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3227             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3228                 btrfs_info(fs_info, "creating free space tree");
3229                 ret = btrfs_create_free_space_tree(fs_info);
3230                 if (ret) {
3231                         btrfs_warn(fs_info,
3232                                 "failed to create free space tree: %d", ret);
3233                         close_ctree(fs_info);
3234                         return ret;
3235                 }
3236         }
3237
3238         down_read(&fs_info->cleanup_work_sem);
3239         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3240             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3241                 up_read(&fs_info->cleanup_work_sem);
3242                 close_ctree(fs_info);
3243                 return ret;
3244         }
3245         up_read(&fs_info->cleanup_work_sem);
3246
3247         ret = btrfs_resume_balance_async(fs_info);
3248         if (ret) {
3249                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3250                 close_ctree(fs_info);
3251                 return ret;
3252         }
3253
3254         ret = btrfs_resume_dev_replace_async(fs_info);
3255         if (ret) {
3256                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3257                 close_ctree(fs_info);
3258                 return ret;
3259         }
3260
3261         btrfs_qgroup_rescan_resume(fs_info);
3262
3263         if (!fs_info->uuid_root) {
3264                 btrfs_info(fs_info, "creating UUID tree");
3265                 ret = btrfs_create_uuid_tree(fs_info);
3266                 if (ret) {
3267                         btrfs_warn(fs_info,
3268                                 "failed to create the UUID tree: %d", ret);
3269                         close_ctree(fs_info);
3270                         return ret;
3271                 }
3272         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3273                    fs_info->generation !=
3274                                 btrfs_super_uuid_tree_generation(disk_super)) {
3275                 btrfs_info(fs_info, "checking UUID tree");
3276                 ret = btrfs_check_uuid_tree(fs_info);
3277                 if (ret) {
3278                         btrfs_warn(fs_info,
3279                                 "failed to check the UUID tree: %d", ret);
3280                         close_ctree(fs_info);
3281                         return ret;
3282                 }
3283         } else {
3284                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3285         }
3286         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3287
3288         /*
3289          * backuproot only affect mount behavior, and if open_ctree succeeded,
3290          * no need to keep the flag
3291          */
3292         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3293
3294         return 0;
3295
3296 fail_qgroup:
3297         btrfs_free_qgroup_config(fs_info);
3298 fail_trans_kthread:
3299         kthread_stop(fs_info->transaction_kthread);
3300         btrfs_cleanup_transaction(fs_info);
3301         btrfs_free_fs_roots(fs_info);
3302 fail_cleaner:
3303         kthread_stop(fs_info->cleaner_kthread);
3304
3305         /*
3306          * make sure we're done with the btree inode before we stop our
3307          * kthreads
3308          */
3309         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3310
3311 fail_sysfs:
3312         btrfs_sysfs_remove_mounted(fs_info);
3313
3314 fail_fsdev_sysfs:
3315         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3316
3317 fail_block_groups:
3318         btrfs_put_block_group_cache(fs_info);
3319
3320 fail_tree_roots:
3321         free_root_pointers(fs_info, 1);
3322         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3323
3324 fail_sb_buffer:
3325         btrfs_stop_all_workers(fs_info);
3326         btrfs_free_block_groups(fs_info);
3327 fail_alloc:
3328 fail_iput:
3329         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3330
3331         iput(fs_info->btree_inode);
3332 fail_bio_counter:
3333         percpu_counter_destroy(&fs_info->bio_counter);
3334 fail_delalloc_bytes:
3335         percpu_counter_destroy(&fs_info->delalloc_bytes);
3336 fail_dirty_metadata_bytes:
3337         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3338 fail_srcu:
3339         cleanup_srcu_struct(&fs_info->subvol_srcu);
3340 fail:
3341         btrfs_free_stripe_hash_table(fs_info);
3342         btrfs_close_devices(fs_info->fs_devices);
3343         return err;
3344
3345 recovery_tree_root:
3346         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3347                 goto fail_tree_roots;
3348
3349         free_root_pointers(fs_info, 0);
3350
3351         /* don't use the log in recovery mode, it won't be valid */
3352         btrfs_set_super_log_root(disk_super, 0);
3353
3354         /* we can't trust the free space cache either */
3355         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3356
3357         ret = next_root_backup(fs_info, fs_info->super_copy,
3358                                &num_backups_tried, &backup_index);
3359         if (ret == -1)
3360                 goto fail_block_groups;
3361         goto retry_root_backup;
3362 }
3363 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3364
3365 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3366 {
3367         if (uptodate) {
3368                 set_buffer_uptodate(bh);
3369         } else {
3370                 struct btrfs_device *device = (struct btrfs_device *)
3371                         bh->b_private;
3372
3373                 btrfs_warn_rl_in_rcu(device->fs_info,
3374                                 "lost page write due to IO error on %s",
3375                                           rcu_str_deref(device->name));
3376                 /* note, we don't set_buffer_write_io_error because we have
3377                  * our own ways of dealing with the IO errors
3378                  */
3379                 clear_buffer_uptodate(bh);
3380                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3381         }
3382         unlock_buffer(bh);
3383         put_bh(bh);
3384 }
3385
3386 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3387                         struct buffer_head **bh_ret)
3388 {
3389         struct buffer_head *bh;
3390         struct btrfs_super_block *super;
3391         u64 bytenr;
3392
3393         bytenr = btrfs_sb_offset(copy_num);
3394         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3395                 return -EINVAL;
3396
3397         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3398         /*
3399          * If we fail to read from the underlying devices, as of now
3400          * the best option we have is to mark it EIO.
3401          */
3402         if (!bh)
3403                 return -EIO;
3404
3405         super = (struct btrfs_super_block *)bh->b_data;
3406         if (btrfs_super_bytenr(super) != bytenr ||
3407                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3408                 brelse(bh);
3409                 return -EINVAL;
3410         }
3411
3412         *bh_ret = bh;
3413         return 0;
3414 }
3415
3416
3417 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3418 {
3419         struct buffer_head *bh;
3420         struct buffer_head *latest = NULL;
3421         struct btrfs_super_block *super;
3422         int i;
3423         u64 transid = 0;
3424         int ret = -EINVAL;
3425
3426         /* we would like to check all the supers, but that would make
3427          * a btrfs mount succeed after a mkfs from a different FS.
3428          * So, we need to add a special mount option to scan for
3429          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3430          */
3431         for (i = 0; i < 1; i++) {
3432                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3433                 if (ret)
3434                         continue;
3435
3436                 super = (struct btrfs_super_block *)bh->b_data;
3437
3438                 if (!latest || btrfs_super_generation(super) > transid) {
3439                         brelse(latest);
3440                         latest = bh;
3441                         transid = btrfs_super_generation(super);
3442                 } else {
3443                         brelse(bh);
3444                 }
3445         }
3446
3447         if (!latest)
3448                 return ERR_PTR(ret);
3449
3450         return latest;
3451 }
3452
3453 /*
3454  * Write superblock @sb to the @device. Do not wait for completion, all the
3455  * buffer heads we write are pinned.
3456  *
3457  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3458  * the expected device size at commit time. Note that max_mirrors must be
3459  * same for write and wait phases.
3460  *
3461  * Return number of errors when buffer head is not found or submission fails.
3462  */
3463 static int write_dev_supers(struct btrfs_device *device,
3464                             struct btrfs_super_block *sb, int max_mirrors)
3465 {
3466         struct buffer_head *bh;
3467         int i;
3468         int ret;
3469         int errors = 0;
3470         u32 crc;
3471         u64 bytenr;
3472         int op_flags;
3473
3474         if (max_mirrors == 0)
3475                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3476
3477         for (i = 0; i < max_mirrors; i++) {
3478                 bytenr = btrfs_sb_offset(i);
3479                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3480                     device->commit_total_bytes)
3481                         break;
3482
3483                 btrfs_set_super_bytenr(sb, bytenr);
3484
3485                 crc = ~(u32)0;
3486                 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3487                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3488                 btrfs_csum_final(crc, sb->csum);
3489
3490                 /* One reference for us, and we leave it for the caller */
3491                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3492                               BTRFS_SUPER_INFO_SIZE);
3493                 if (!bh) {
3494                         btrfs_err(device->fs_info,
3495                             "couldn't get super buffer head for bytenr %llu",
3496                             bytenr);
3497                         errors++;
3498                         continue;
3499                 }
3500
3501                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3502
3503                 /* one reference for submit_bh */
3504                 get_bh(bh);
3505
3506                 set_buffer_uptodate(bh);
3507                 lock_buffer(bh);
3508                 bh->b_end_io = btrfs_end_buffer_write_sync;
3509                 bh->b_private = device;
3510
3511                 /*
3512                  * we fua the first super.  The others we allow
3513                  * to go down lazy.
3514                  */
3515                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3516                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3517                         op_flags |= REQ_FUA;
3518                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3519                 if (ret)
3520                         errors++;
3521         }
3522         return errors < i ? 0 : -1;
3523 }
3524
3525 /*
3526  * Wait for write completion of superblocks done by write_dev_supers,
3527  * @max_mirrors same for write and wait phases.
3528  *
3529  * Return number of errors when buffer head is not found or not marked up to
3530  * date.
3531  */
3532 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3533 {
3534         struct buffer_head *bh;
3535         int i;
3536         int errors = 0;
3537         bool primary_failed = false;
3538         u64 bytenr;
3539
3540         if (max_mirrors == 0)
3541                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3542
3543         for (i = 0; i < max_mirrors; i++) {
3544                 bytenr = btrfs_sb_offset(i);
3545                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3546                     device->commit_total_bytes)
3547                         break;
3548
3549                 bh = __find_get_block(device->bdev,
3550                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3551                                       BTRFS_SUPER_INFO_SIZE);
3552                 if (!bh) {
3553                         errors++;
3554                         if (i == 0)
3555                                 primary_failed = true;
3556                         continue;
3557                 }
3558                 wait_on_buffer(bh);
3559                 if (!buffer_uptodate(bh)) {
3560                         errors++;
3561                         if (i == 0)
3562                                 primary_failed = true;
3563                 }
3564
3565                 /* drop our reference */
3566                 brelse(bh);
3567
3568                 /* drop the reference from the writing run */
3569                 brelse(bh);
3570         }
3571
3572         /* log error, force error return */
3573         if (primary_failed) {
3574                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3575                           device->devid);
3576                 return -1;
3577         }
3578
3579         return errors < i ? 0 : -1;
3580 }
3581
3582 /*
3583  * endio for the write_dev_flush, this will wake anyone waiting
3584  * for the barrier when it is done
3585  */
3586 static void btrfs_end_empty_barrier(struct bio *bio)
3587 {
3588         complete(bio->bi_private);
3589 }
3590
3591 /*
3592  * Submit a flush request to the device if it supports it. Error handling is
3593  * done in the waiting counterpart.
3594  */
3595 static void write_dev_flush(struct btrfs_device *device)
3596 {
3597         struct request_queue *q = bdev_get_queue(device->bdev);
3598         struct bio *bio = device->flush_bio;
3599
3600         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3601                 return;
3602
3603         bio_reset(bio);
3604         bio->bi_end_io = btrfs_end_empty_barrier;
3605         bio_set_dev(bio, device->bdev);
3606         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3607         init_completion(&device->flush_wait);
3608         bio->bi_private = &device->flush_wait;
3609
3610         btrfsic_submit_bio(bio);
3611         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3612 }
3613
3614 /*
3615  * If the flush bio has been submitted by write_dev_flush, wait for it.
3616  */
3617 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3618 {
3619         struct bio *bio = device->flush_bio;
3620
3621         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3622                 return BLK_STS_OK;
3623
3624         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3625         wait_for_completion_io(&device->flush_wait);
3626
3627         return bio->bi_status;
3628 }
3629
3630 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3631 {
3632         if (!btrfs_check_rw_degradable(fs_info, NULL))
3633                 return -EIO;
3634         return 0;
3635 }
3636
3637 /*
3638  * send an empty flush down to each device in parallel,
3639  * then wait for them
3640  */
3641 static int barrier_all_devices(struct btrfs_fs_info *info)
3642 {
3643         struct list_head *head;
3644         struct btrfs_device *dev;
3645         int errors_wait = 0;
3646         blk_status_t ret;
3647
3648         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3649         /* send down all the barriers */
3650         head = &info->fs_devices->devices;
3651         list_for_each_entry(dev, head, dev_list) {
3652                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3653                         continue;
3654                 if (!dev->bdev)
3655                         continue;
3656                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3657                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3658                         continue;
3659
3660                 write_dev_flush(dev);
3661                 dev->last_flush_error = BLK_STS_OK;
3662         }
3663
3664         /* wait for all the barriers */
3665         list_for_each_entry(dev, head, dev_list) {
3666                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3667                         continue;
3668                 if (!dev->bdev) {
3669                         errors_wait++;
3670                         continue;
3671                 }
3672                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3673                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3674                         continue;
3675
3676                 ret = wait_dev_flush(dev);
3677                 if (ret) {
3678                         dev->last_flush_error = ret;
3679                         btrfs_dev_stat_inc_and_print(dev,
3680                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3681                         errors_wait++;
3682                 }
3683         }
3684
3685         if (errors_wait) {
3686                 /*
3687                  * At some point we need the status of all disks
3688                  * to arrive at the volume status. So error checking
3689                  * is being pushed to a separate loop.
3690                  */
3691                 return check_barrier_error(info);
3692         }
3693         return 0;
3694 }
3695
3696 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3697 {
3698         int raid_type;
3699         int min_tolerated = INT_MAX;
3700
3701         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3702             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3703                 min_tolerated = min(min_tolerated,
3704                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3705                                     tolerated_failures);
3706
3707         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3708                 if (raid_type == BTRFS_RAID_SINGLE)
3709                         continue;
3710                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3711                         continue;
3712                 min_tolerated = min(min_tolerated,
3713                                     btrfs_raid_array[raid_type].
3714                                     tolerated_failures);
3715         }
3716
3717         if (min_tolerated == INT_MAX) {
3718                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3719                 min_tolerated = 0;
3720         }
3721
3722         return min_tolerated;
3723 }
3724
3725 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3726 {
3727         struct list_head *head;
3728         struct btrfs_device *dev;
3729         struct btrfs_super_block *sb;
3730         struct btrfs_dev_item *dev_item;
3731         int ret;
3732         int do_barriers;
3733         int max_errors;
3734         int total_errors = 0;
3735         u64 flags;
3736
3737         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3738
3739         /*
3740          * max_mirrors == 0 indicates we're from commit_transaction,
3741          * not from fsync where the tree roots in fs_info have not
3742          * been consistent on disk.
3743          */
3744         if (max_mirrors == 0)
3745                 backup_super_roots(fs_info);
3746
3747         sb = fs_info->super_for_commit;
3748         dev_item = &sb->dev_item;
3749
3750         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3751         head = &fs_info->fs_devices->devices;
3752         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3753
3754         if (do_barriers) {
3755                 ret = barrier_all_devices(fs_info);
3756                 if (ret) {
3757                         mutex_unlock(
3758                                 &fs_info->fs_devices->device_list_mutex);
3759                         btrfs_handle_fs_error(fs_info, ret,
3760                                               "errors while submitting device barriers.");
3761                         return ret;
3762                 }
3763         }
3764
3765         list_for_each_entry(dev, head, dev_list) {
3766                 if (!dev->bdev) {
3767                         total_errors++;
3768                         continue;
3769                 }
3770                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3771                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3772                         continue;
3773
3774                 btrfs_set_stack_device_generation(dev_item, 0);
3775                 btrfs_set_stack_device_type(dev_item, dev->type);
3776                 btrfs_set_stack_device_id(dev_item, dev->devid);
3777                 btrfs_set_stack_device_total_bytes(dev_item,
3778                                                    dev->commit_total_bytes);
3779                 btrfs_set_stack_device_bytes_used(dev_item,
3780                                                   dev->commit_bytes_used);
3781                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3782                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3783                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3784                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3785                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3786
3787                 flags = btrfs_super_flags(sb);
3788                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3789
3790                 ret = btrfs_validate_write_super(fs_info, sb);
3791                 if (ret < 0) {
3792                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3793                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3794                                 "unexpected superblock corruption detected");
3795                         return -EUCLEAN;
3796                 }
3797
3798                 ret = write_dev_supers(dev, sb, max_mirrors);
3799                 if (ret)
3800                         total_errors++;
3801         }
3802         if (total_errors > max_errors) {
3803                 btrfs_err(fs_info, "%d errors while writing supers",
3804                           total_errors);
3805                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3806
3807                 /* FUA is masked off if unsupported and can't be the reason */
3808                 btrfs_handle_fs_error(fs_info, -EIO,
3809                                       "%d errors while writing supers",
3810                                       total_errors);
3811                 return -EIO;
3812         }
3813
3814         total_errors = 0;
3815         list_for_each_entry(dev, head, dev_list) {
3816                 if (!dev->bdev)
3817                         continue;
3818                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3819                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3820                         continue;
3821
3822                 ret = wait_dev_supers(dev, max_mirrors);
3823                 if (ret)
3824                         total_errors++;
3825         }
3826         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3827         if (total_errors > max_errors) {
3828                 btrfs_handle_fs_error(fs_info, -EIO,
3829                                       "%d errors while writing supers",
3830                                       total_errors);
3831                 return -EIO;
3832         }
3833         return 0;
3834 }
3835
3836 /* Drop a fs root from the radix tree and free it. */
3837 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3838                                   struct btrfs_root *root)
3839 {
3840         spin_lock(&fs_info->fs_roots_radix_lock);
3841         radix_tree_delete(&fs_info->fs_roots_radix,
3842                           (unsigned long)root->root_key.objectid);
3843         spin_unlock(&fs_info->fs_roots_radix_lock);
3844
3845         if (btrfs_root_refs(&root->root_item) == 0)
3846                 synchronize_srcu(&fs_info->subvol_srcu);
3847
3848         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3849                 btrfs_free_log(NULL, root);
3850                 if (root->reloc_root) {
3851                         free_extent_buffer(root->reloc_root->node);
3852                         free_extent_buffer(root->reloc_root->commit_root);
3853                         btrfs_put_fs_root(root->reloc_root);
3854                         root->reloc_root = NULL;
3855                 }
3856         }
3857
3858         if (root->free_ino_pinned)
3859                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3860         if (root->free_ino_ctl)
3861                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3862         free_fs_root(root);
3863 }
3864
3865 static void free_fs_root(struct btrfs_root *root)
3866 {
3867         iput(root->ino_cache_inode);
3868         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3869         if (root->anon_dev)
3870                 free_anon_bdev(root->anon_dev);
3871         if (root->subv_writers)
3872                 btrfs_free_subvolume_writers(root->subv_writers);
3873         free_extent_buffer(root->node);
3874         free_extent_buffer(root->commit_root);
3875         kfree(root->free_ino_ctl);
3876         kfree(root->free_ino_pinned);
3877         kfree(root->name);
3878         btrfs_put_fs_root(root);
3879 }
3880
3881 void btrfs_free_fs_root(struct btrfs_root *root)
3882 {
3883         free_fs_root(root);
3884 }
3885
3886 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3887 {
3888         u64 root_objectid = 0;
3889         struct btrfs_root *gang[8];
3890         int i = 0;
3891         int err = 0;
3892         unsigned int ret = 0;
3893         int index;
3894
3895         while (1) {
3896                 index = srcu_read_lock(&fs_info->subvol_srcu);
3897                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3898                                              (void **)gang, root_objectid,
3899                                              ARRAY_SIZE(gang));
3900                 if (!ret) {
3901                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3902                         break;
3903                 }
3904                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3905
3906                 for (i = 0; i < ret; i++) {
3907                         /* Avoid to grab roots in dead_roots */
3908                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3909                                 gang[i] = NULL;
3910                                 continue;
3911                         }
3912                         /* grab all the search result for later use */
3913                         gang[i] = btrfs_grab_fs_root(gang[i]);
3914                 }
3915                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3916
3917                 for (i = 0; i < ret; i++) {
3918                         if (!gang[i])
3919                                 continue;
3920                         root_objectid = gang[i]->root_key.objectid;
3921                         err = btrfs_orphan_cleanup(gang[i]);
3922                         if (err)
3923                                 break;
3924                         btrfs_put_fs_root(gang[i]);
3925                 }
3926                 root_objectid++;
3927         }
3928
3929         /* release the uncleaned roots due to error */
3930         for (; i < ret; i++) {
3931                 if (gang[i])
3932                         btrfs_put_fs_root(gang[i]);
3933         }
3934         return err;
3935 }
3936
3937 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3938 {
3939         struct btrfs_root *root = fs_info->tree_root;
3940         struct btrfs_trans_handle *trans;
3941
3942         mutex_lock(&fs_info->cleaner_mutex);
3943         btrfs_run_delayed_iputs(fs_info);
3944         mutex_unlock(&fs_info->cleaner_mutex);
3945         wake_up_process(fs_info->cleaner_kthread);
3946
3947         /* wait until ongoing cleanup work done */
3948         down_write(&fs_info->cleanup_work_sem);
3949         up_write(&fs_info->cleanup_work_sem);
3950
3951         trans = btrfs_join_transaction(root);
3952         if (IS_ERR(trans))
3953                 return PTR_ERR(trans);
3954         return btrfs_commit_transaction(trans);
3955 }
3956
3957 void close_ctree(struct btrfs_fs_info *fs_info)
3958 {
3959         int ret;
3960
3961         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3962
3963         /* wait for the qgroup rescan worker to stop */
3964         btrfs_qgroup_wait_for_completion(fs_info, false);
3965
3966         /* wait for the uuid_scan task to finish */
3967         down(&fs_info->uuid_tree_rescan_sem);
3968         /* avoid complains from lockdep et al., set sem back to initial state */
3969         up(&fs_info->uuid_tree_rescan_sem);
3970
3971         /* pause restriper - we want to resume on mount */
3972         btrfs_pause_balance(fs_info);
3973
3974         btrfs_dev_replace_suspend_for_unmount(fs_info);
3975
3976         btrfs_scrub_cancel(fs_info);
3977
3978         /* wait for any defraggers to finish */
3979         wait_event(fs_info->transaction_wait,
3980                    (atomic_read(&fs_info->defrag_running) == 0));
3981
3982         /* clear out the rbtree of defraggable inodes */
3983         btrfs_cleanup_defrag_inodes(fs_info);
3984
3985         cancel_work_sync(&fs_info->async_reclaim_work);
3986
3987         if (!sb_rdonly(fs_info->sb)) {
3988                 /*
3989                  * If the cleaner thread is stopped and there are
3990                  * block groups queued for removal, the deletion will be
3991                  * skipped when we quit the cleaner thread.
3992                  */
3993                 btrfs_delete_unused_bgs(fs_info);
3994
3995                 ret = btrfs_commit_super(fs_info);
3996                 if (ret)
3997                         btrfs_err(fs_info, "commit super ret %d", ret);
3998         }
3999
4000         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4001             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4002                 btrfs_error_commit_super(fs_info);
4003
4004         kthread_stop(fs_info->transaction_kthread);
4005         kthread_stop(fs_info->cleaner_kthread);
4006
4007         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4008
4009         btrfs_free_qgroup_config(fs_info);
4010         ASSERT(list_empty(&fs_info->delalloc_roots));
4011
4012         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4013                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4014                        percpu_counter_sum(&fs_info->delalloc_bytes));
4015         }
4016
4017         btrfs_sysfs_remove_mounted(fs_info);
4018         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4019
4020         btrfs_free_fs_roots(fs_info);
4021
4022         btrfs_put_block_group_cache(fs_info);
4023
4024         /*
4025          * we must make sure there is not any read request to
4026          * submit after we stopping all workers.
4027          */
4028         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4029         btrfs_stop_all_workers(fs_info);
4030
4031         btrfs_free_block_groups(fs_info);
4032
4033         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4034         free_root_pointers(fs_info, 1);
4035
4036         iput(fs_info->btree_inode);
4037
4038 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4039         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4040                 btrfsic_unmount(fs_info->fs_devices);
4041 #endif
4042
4043         btrfs_close_devices(fs_info->fs_devices);
4044         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4045
4046         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4047         percpu_counter_destroy(&fs_info->delalloc_bytes);
4048         percpu_counter_destroy(&fs_info->bio_counter);
4049         cleanup_srcu_struct(&fs_info->subvol_srcu);
4050
4051         btrfs_free_stripe_hash_table(fs_info);
4052         btrfs_free_ref_cache(fs_info);
4053
4054         while (!list_empty(&fs_info->pinned_chunks)) {
4055                 struct extent_map *em;
4056
4057                 em = list_first_entry(&fs_info->pinned_chunks,
4058                                       struct extent_map, list);
4059                 list_del_init(&em->list);
4060                 free_extent_map(em);
4061         }
4062 }
4063
4064 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4065                           int atomic)
4066 {
4067         int ret;
4068         struct inode *btree_inode = buf->pages[0]->mapping->host;
4069
4070         ret = extent_buffer_uptodate(buf);
4071         if (!ret)
4072                 return ret;
4073
4074         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4075                                     parent_transid, atomic);
4076         if (ret == -EAGAIN)
4077                 return ret;
4078         return !ret;
4079 }
4080
4081 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4082 {
4083         struct btrfs_fs_info *fs_info;
4084         struct btrfs_root *root;
4085         u64 transid = btrfs_header_generation(buf);
4086         int was_dirty;
4087
4088 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4089         /*
4090          * This is a fast path so only do this check if we have sanity tests
4091          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
4092          * outside of the sanity tests.
4093          */
4094         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4095                 return;
4096 #endif
4097         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4098         fs_info = root->fs_info;
4099         btrfs_assert_tree_locked(buf);
4100         if (transid != fs_info->generation)
4101                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4102                         buf->start, transid, fs_info->generation);
4103         was_dirty = set_extent_buffer_dirty(buf);
4104         if (!was_dirty)
4105                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4106                                          buf->len,
4107                                          fs_info->dirty_metadata_batch);
4108 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4109         /*
4110          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4111          * but item data not updated.
4112          * So here we should only check item pointers, not item data.
4113          */
4114         if (btrfs_header_level(buf) == 0 &&
4115             btrfs_check_leaf_relaxed(fs_info, buf)) {
4116                 btrfs_print_leaf(buf);
4117                 ASSERT(0);
4118         }
4119 #endif
4120 }
4121
4122 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4123                                         int flush_delayed)
4124 {
4125         /*
4126          * looks as though older kernels can get into trouble with
4127          * this code, they end up stuck in balance_dirty_pages forever
4128          */
4129         int ret;
4130
4131         if (current->flags & PF_MEMALLOC)
4132                 return;
4133
4134         if (flush_delayed)
4135                 btrfs_balance_delayed_items(fs_info);
4136
4137         ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4138                                      BTRFS_DIRTY_METADATA_THRESH);
4139         if (ret > 0) {
4140                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4141         }
4142 }
4143
4144 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4145 {
4146         __btrfs_btree_balance_dirty(fs_info, 1);
4147 }
4148
4149 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4150 {
4151         __btrfs_btree_balance_dirty(fs_info, 0);
4152 }
4153
4154 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4155                       struct btrfs_key *first_key)
4156 {
4157         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4158         struct btrfs_fs_info *fs_info = root->fs_info;
4159
4160         return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4161                                               level, first_key);
4162 }
4163
4164 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4165 {
4166         /* cleanup FS via transaction */
4167         btrfs_cleanup_transaction(fs_info);
4168
4169         mutex_lock(&fs_info->cleaner_mutex);
4170         btrfs_run_delayed_iputs(fs_info);
4171         mutex_unlock(&fs_info->cleaner_mutex);
4172
4173         down_write(&fs_info->cleanup_work_sem);
4174         up_write(&fs_info->cleanup_work_sem);
4175 }
4176
4177 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4178 {
4179         struct btrfs_ordered_extent *ordered;
4180
4181         spin_lock(&root->ordered_extent_lock);
4182         /*
4183          * This will just short circuit the ordered completion stuff which will
4184          * make sure the ordered extent gets properly cleaned up.
4185          */
4186         list_for_each_entry(ordered, &root->ordered_extents,
4187                             root_extent_list)
4188                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4189         spin_unlock(&root->ordered_extent_lock);
4190 }
4191
4192 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4193 {
4194         struct btrfs_root *root;
4195         struct list_head splice;
4196
4197         INIT_LIST_HEAD(&splice);
4198
4199         spin_lock(&fs_info->ordered_root_lock);
4200         list_splice_init(&fs_info->ordered_roots, &splice);
4201         while (!list_empty(&splice)) {
4202                 root = list_first_entry(&splice, struct btrfs_root,
4203                                         ordered_root);
4204                 list_move_tail(&root->ordered_root,
4205                                &fs_info->ordered_roots);
4206
4207                 spin_unlock(&fs_info->ordered_root_lock);
4208                 btrfs_destroy_ordered_extents(root);
4209
4210                 cond_resched();
4211                 spin_lock(&fs_info->ordered_root_lock);
4212         }
4213         spin_unlock(&fs_info->ordered_root_lock);
4214 }
4215
4216 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4217                                       struct btrfs_fs_info *fs_info)
4218 {
4219         struct rb_node *node;
4220         struct btrfs_delayed_ref_root *delayed_refs;
4221         struct btrfs_delayed_ref_node *ref;
4222         int ret = 0;
4223
4224         delayed_refs = &trans->delayed_refs;
4225
4226         spin_lock(&delayed_refs->lock);
4227         if (atomic_read(&delayed_refs->num_entries) == 0) {
4228                 spin_unlock(&delayed_refs->lock);
4229                 btrfs_info(fs_info, "delayed_refs has NO entry");
4230                 return ret;
4231         }
4232
4233         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4234                 struct btrfs_delayed_ref_head *head;
4235                 struct rb_node *n;
4236                 bool pin_bytes = false;
4237
4238                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4239                                 href_node);
4240                 if (!mutex_trylock(&head->mutex)) {
4241                         refcount_inc(&head->refs);
4242                         spin_unlock(&delayed_refs->lock);
4243
4244                         mutex_lock(&head->mutex);
4245                         mutex_unlock(&head->mutex);
4246                         btrfs_put_delayed_ref_head(head);
4247                         spin_lock(&delayed_refs->lock);
4248                         continue;
4249                 }
4250                 spin_lock(&head->lock);
4251                 while ((n = rb_first(&head->ref_tree)) != NULL) {
4252                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4253                                        ref_node);
4254                         ref->in_tree = 0;
4255                         rb_erase(&ref->ref_node, &head->ref_tree);
4256                         RB_CLEAR_NODE(&ref->ref_node);
4257                         if (!list_empty(&ref->add_list))
4258                                 list_del(&ref->add_list);
4259                         atomic_dec(&delayed_refs->num_entries);
4260                         btrfs_put_delayed_ref(ref);
4261                 }
4262                 if (head->must_insert_reserved)
4263                         pin_bytes = true;
4264                 btrfs_free_delayed_extent_op(head->extent_op);
4265                 delayed_refs->num_heads--;
4266                 if (head->processing == 0)
4267                         delayed_refs->num_heads_ready--;
4268                 atomic_dec(&delayed_refs->num_entries);
4269                 rb_erase(&head->href_node, &delayed_refs->href_root);
4270                 RB_CLEAR_NODE(&head->href_node);
4271                 spin_unlock(&head->lock);
4272                 spin_unlock(&delayed_refs->lock);
4273                 mutex_unlock(&head->mutex);
4274
4275                 if (pin_bytes)
4276                         btrfs_pin_extent(fs_info, head->bytenr,
4277                                          head->num_bytes, 1);
4278                 btrfs_put_delayed_ref_head(head);
4279                 cond_resched();
4280                 spin_lock(&delayed_refs->lock);
4281         }
4282
4283         spin_unlock(&delayed_refs->lock);
4284
4285         return ret;
4286 }
4287
4288 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4289 {
4290         struct btrfs_inode *btrfs_inode;
4291         struct list_head splice;
4292
4293         INIT_LIST_HEAD(&splice);
4294
4295         spin_lock(&root->delalloc_lock);
4296         list_splice_init(&root->delalloc_inodes, &splice);
4297
4298         while (!list_empty(&splice)) {
4299                 struct inode *inode = NULL;
4300                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4301                                                delalloc_inodes);
4302                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4303                 spin_unlock(&root->delalloc_lock);
4304
4305                 /*
4306                  * Make sure we get a live inode and that it'll not disappear
4307                  * meanwhile.
4308                  */
4309                 inode = igrab(&btrfs_inode->vfs_inode);
4310                 if (inode) {
4311                         invalidate_inode_pages2(inode->i_mapping);
4312                         iput(inode);
4313                 }
4314                 spin_lock(&root->delalloc_lock);
4315         }
4316         spin_unlock(&root->delalloc_lock);
4317 }
4318
4319 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4320 {
4321         struct btrfs_root *root;
4322         struct list_head splice;
4323
4324         INIT_LIST_HEAD(&splice);
4325
4326         spin_lock(&fs_info->delalloc_root_lock);
4327         list_splice_init(&fs_info->delalloc_roots, &splice);
4328         while (!list_empty(&splice)) {
4329                 root = list_first_entry(&splice, struct btrfs_root,
4330                                          delalloc_root);
4331                 root = btrfs_grab_fs_root(root);
4332                 BUG_ON(!root);
4333                 spin_unlock(&fs_info->delalloc_root_lock);
4334
4335                 btrfs_destroy_delalloc_inodes(root);
4336                 btrfs_put_fs_root(root);
4337
4338                 spin_lock(&fs_info->delalloc_root_lock);
4339         }
4340         spin_unlock(&fs_info->delalloc_root_lock);
4341 }
4342
4343 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4344                                         struct extent_io_tree *dirty_pages,
4345                                         int mark)
4346 {
4347         int ret;
4348         struct extent_buffer *eb;
4349         u64 start = 0;
4350         u64 end;
4351
4352         while (1) {
4353                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4354                                             mark, NULL);
4355                 if (ret)
4356                         break;
4357
4358                 clear_extent_bits(dirty_pages, start, end, mark);
4359                 while (start <= end) {
4360                         eb = find_extent_buffer(fs_info, start);
4361                         start += fs_info->nodesize;
4362                         if (!eb)
4363                                 continue;
4364                         wait_on_extent_buffer_writeback(eb);
4365
4366                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4367                                                &eb->bflags))
4368                                 clear_extent_buffer_dirty(eb);
4369                         free_extent_buffer_stale(eb);
4370                 }
4371         }
4372
4373         return ret;
4374 }
4375
4376 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4377                                        struct extent_io_tree *pinned_extents)
4378 {
4379         struct extent_io_tree *unpin;
4380         u64 start;
4381         u64 end;
4382         int ret;
4383         bool loop = true;
4384
4385         unpin = pinned_extents;
4386 again:
4387         while (1) {
4388                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4389                                             EXTENT_DIRTY, NULL);
4390                 if (ret)
4391                         break;
4392
4393                 clear_extent_dirty(unpin, start, end);
4394                 btrfs_error_unpin_extent_range(fs_info, start, end);
4395                 cond_resched();
4396         }
4397
4398         if (loop) {
4399                 if (unpin == &fs_info->freed_extents[0])
4400                         unpin = &fs_info->freed_extents[1];
4401                 else
4402                         unpin = &fs_info->freed_extents[0];
4403                 loop = false;
4404                 goto again;
4405         }
4406
4407         return 0;
4408 }
4409
4410 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4411 {
4412         struct inode *inode;
4413
4414         inode = cache->io_ctl.inode;
4415         if (inode) {
4416                 invalidate_inode_pages2(inode->i_mapping);
4417                 BTRFS_I(inode)->generation = 0;
4418                 cache->io_ctl.inode = NULL;
4419                 iput(inode);
4420         }
4421         btrfs_put_block_group(cache);
4422 }
4423
4424 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4425                              struct btrfs_fs_info *fs_info)
4426 {
4427         struct btrfs_block_group_cache *cache;
4428
4429         spin_lock(&cur_trans->dirty_bgs_lock);
4430         while (!list_empty(&cur_trans->dirty_bgs)) {
4431                 cache = list_first_entry(&cur_trans->dirty_bgs,
4432                                          struct btrfs_block_group_cache,
4433                                          dirty_list);
4434
4435                 if (!list_empty(&cache->io_list)) {
4436                         spin_unlock(&cur_trans->dirty_bgs_lock);
4437                         list_del_init(&cache->io_list);
4438                         btrfs_cleanup_bg_io(cache);
4439                         spin_lock(&cur_trans->dirty_bgs_lock);
4440                 }
4441
4442                 list_del_init(&cache->dirty_list);
4443                 spin_lock(&cache->lock);
4444                 cache->disk_cache_state = BTRFS_DC_ERROR;
4445                 spin_unlock(&cache->lock);
4446
4447                 spin_unlock(&cur_trans->dirty_bgs_lock);
4448                 btrfs_put_block_group(cache);
4449                 spin_lock(&cur_trans->dirty_bgs_lock);
4450         }
4451         spin_unlock(&cur_trans->dirty_bgs_lock);
4452
4453         /*
4454          * Refer to the definition of io_bgs member for details why it's safe
4455          * to use it without any locking
4456          */
4457         while (!list_empty(&cur_trans->io_bgs)) {
4458                 cache = list_first_entry(&cur_trans->io_bgs,
4459                                          struct btrfs_block_group_cache,
4460                                          io_list);
4461
4462                 list_del_init(&cache->io_list);
4463                 spin_lock(&cache->lock);
4464                 cache->disk_cache_state = BTRFS_DC_ERROR;
4465                 spin_unlock(&cache->lock);
4466                 btrfs_cleanup_bg_io(cache);
4467         }
4468 }
4469
4470 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4471                                    struct btrfs_fs_info *fs_info)
4472 {
4473         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4474         ASSERT(list_empty(&cur_trans->dirty_bgs));
4475         ASSERT(list_empty(&cur_trans->io_bgs));
4476
4477         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4478
4479         cur_trans->state = TRANS_STATE_COMMIT_START;
4480         wake_up(&fs_info->transaction_blocked_wait);
4481
4482         cur_trans->state = TRANS_STATE_UNBLOCKED;
4483         wake_up(&fs_info->transaction_wait);
4484
4485         btrfs_destroy_delayed_inodes(fs_info);
4486         btrfs_assert_delayed_root_empty(fs_info);
4487
4488         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4489                                      EXTENT_DIRTY);
4490         btrfs_destroy_pinned_extent(fs_info,
4491                                     fs_info->pinned_extents);
4492
4493         cur_trans->state =TRANS_STATE_COMPLETED;
4494         wake_up(&cur_trans->commit_wait);
4495 }
4496
4497 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4498 {
4499         struct btrfs_transaction *t;
4500
4501         mutex_lock(&fs_info->transaction_kthread_mutex);
4502
4503         spin_lock(&fs_info->trans_lock);
4504         while (!list_empty(&fs_info->trans_list)) {
4505                 t = list_first_entry(&fs_info->trans_list,
4506                                      struct btrfs_transaction, list);
4507                 if (t->state >= TRANS_STATE_COMMIT_START) {
4508                         refcount_inc(&t->use_count);
4509                         spin_unlock(&fs_info->trans_lock);
4510                         btrfs_wait_for_commit(fs_info, t->transid);
4511                         btrfs_put_transaction(t);
4512                         spin_lock(&fs_info->trans_lock);
4513                         continue;
4514                 }
4515                 if (t == fs_info->running_transaction) {
4516                         t->state = TRANS_STATE_COMMIT_DOING;
4517                         spin_unlock(&fs_info->trans_lock);
4518                         /*
4519                          * We wait for 0 num_writers since we don't hold a trans
4520                          * handle open currently for this transaction.
4521                          */
4522                         wait_event(t->writer_wait,
4523                                    atomic_read(&t->num_writers) == 0);
4524                 } else {
4525                         spin_unlock(&fs_info->trans_lock);
4526                 }
4527                 btrfs_cleanup_one_transaction(t, fs_info);
4528
4529                 spin_lock(&fs_info->trans_lock);
4530                 if (t == fs_info->running_transaction)
4531                         fs_info->running_transaction = NULL;
4532                 list_del_init(&t->list);
4533                 spin_unlock(&fs_info->trans_lock);
4534
4535                 btrfs_put_transaction(t);
4536                 trace_btrfs_transaction_commit(fs_info->tree_root);
4537                 spin_lock(&fs_info->trans_lock);
4538         }
4539         spin_unlock(&fs_info->trans_lock);
4540         btrfs_destroy_all_ordered_extents(fs_info);
4541         btrfs_destroy_delayed_inodes(fs_info);
4542         btrfs_assert_delayed_root_empty(fs_info);
4543         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4544         btrfs_destroy_all_delalloc_inodes(fs_info);
4545         mutex_unlock(&fs_info->transaction_kthread_mutex);
4546
4547         return 0;
4548 }
4549
4550 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4551 {
4552         struct inode *inode = private_data;
4553         return btrfs_sb(inode->i_sb);
4554 }
4555
4556 static const struct extent_io_ops btree_extent_io_ops = {
4557         /* mandatory callbacks */
4558         .submit_bio_hook = btree_submit_bio_hook,
4559         .readpage_end_io_hook = btree_readpage_end_io_hook,
4560         /* note we're sharing with inode.c for the merge bio hook */
4561         .merge_bio_hook = btrfs_merge_bio_hook,
4562         .readpage_io_failed_hook = btree_io_failed_hook,
4563         .set_range_writeback = btrfs_set_range_writeback,
4564         .tree_fs_info = btree_fs_info,
4565
4566         /* optional callbacks */
4567 };
This page took 0.307249 seconds and 4 git commands to generate.