1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <asm/unaligned.h>
23 #include "transaction.h"
24 #include "btrfs_inode.h"
26 #include "print-tree.h"
29 #include "free-space-cache.h"
30 #include "free-space-tree.h"
31 #include "inode-map.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
43 #include <asm/cpufeature.h>
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void free_fs_root(struct btrfs_root *root);
56 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
57 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
58 struct btrfs_fs_info *fs_info);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
61 struct extent_io_tree *dirty_pages,
63 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
64 struct extent_io_tree *pinned_extents);
65 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
69 * btrfs_end_io_wq structs are used to do processing in task context when an IO
70 * is complete. This is used during reads to verify checksums, and it is used
71 * by writes to insert metadata for new file extents after IO is complete.
73 struct btrfs_end_io_wq {
77 struct btrfs_fs_info *info;
79 enum btrfs_wq_endio_type metadata;
80 struct btrfs_work work;
83 static struct kmem_cache *btrfs_end_io_wq_cache;
85 int __init btrfs_end_io_wq_init(void)
87 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88 sizeof(struct btrfs_end_io_wq),
92 if (!btrfs_end_io_wq_cache)
97 void __cold btrfs_end_io_wq_exit(void)
99 kmem_cache_destroy(btrfs_end_io_wq_cache);
103 * async submit bios are used to offload expensive checksumming
104 * onto the worker threads. They checksum file and metadata bios
105 * just before they are sent down the IO stack.
107 struct async_submit_bio {
109 struct btrfs_fs_info *fs_info;
111 extent_submit_bio_start_t *submit_bio_start;
112 extent_submit_bio_done_t *submit_bio_done;
114 unsigned long bio_flags;
116 * bio_offset is optional, can be used if the pages in the bio
117 * can't tell us where in the file the bio should go
120 struct btrfs_work work;
125 * Lockdep class keys for extent_buffer->lock's in this root. For a given
126 * eb, the lockdep key is determined by the btrfs_root it belongs to and
127 * the level the eb occupies in the tree.
129 * Different roots are used for different purposes and may nest inside each
130 * other and they require separate keysets. As lockdep keys should be
131 * static, assign keysets according to the purpose of the root as indicated
132 * by btrfs_root->objectid. This ensures that all special purpose roots
133 * have separate keysets.
135 * Lock-nesting across peer nodes is always done with the immediate parent
136 * node locked thus preventing deadlock. As lockdep doesn't know this, use
137 * subclass to avoid triggering lockdep warning in such cases.
139 * The key is set by the readpage_end_io_hook after the buffer has passed
140 * csum validation but before the pages are unlocked. It is also set by
141 * btrfs_init_new_buffer on freshly allocated blocks.
143 * We also add a check to make sure the highest level of the tree is the
144 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
145 * needs update as well.
147 #ifdef CONFIG_DEBUG_LOCK_ALLOC
148 # if BTRFS_MAX_LEVEL != 8
152 static struct btrfs_lockdep_keyset {
153 u64 id; /* root objectid */
154 const char *name_stem; /* lock name stem */
155 char names[BTRFS_MAX_LEVEL + 1][20];
156 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
157 } btrfs_lockdep_keysets[] = {
158 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
159 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
160 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
161 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
162 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
163 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
164 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
165 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
166 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
167 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
168 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
169 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
170 { .id = 0, .name_stem = "tree" },
173 void __init btrfs_init_lockdep(void)
177 /* initialize lockdep class names */
178 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
179 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
181 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
182 snprintf(ks->names[j], sizeof(ks->names[j]),
183 "btrfs-%s-%02d", ks->name_stem, j);
187 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 struct btrfs_lockdep_keyset *ks;
192 BUG_ON(level >= ARRAY_SIZE(ks->keys));
194 /* find the matching keyset, id 0 is the default entry */
195 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
196 if (ks->id == objectid)
199 lockdep_set_class_and_name(&eb->lock,
200 &ks->keys[level], ks->names[level]);
206 * extents on the btree inode are pretty simple, there's one extent
207 * that covers the entire device
209 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
210 struct page *page, size_t pg_offset, u64 start, u64 len,
213 struct btrfs_fs_info *fs_info = inode->root->fs_info;
214 struct extent_map_tree *em_tree = &inode->extent_tree;
215 struct extent_map *em;
218 read_lock(&em_tree->lock);
219 em = lookup_extent_mapping(em_tree, start, len);
221 em->bdev = fs_info->fs_devices->latest_bdev;
222 read_unlock(&em_tree->lock);
225 read_unlock(&em_tree->lock);
227 em = alloc_extent_map();
229 em = ERR_PTR(-ENOMEM);
234 em->block_len = (u64)-1;
236 em->bdev = fs_info->fs_devices->latest_bdev;
238 write_lock(&em_tree->lock);
239 ret = add_extent_mapping(em_tree, em, 0);
240 if (ret == -EEXIST) {
242 em = lookup_extent_mapping(em_tree, start, len);
249 write_unlock(&em_tree->lock);
255 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
257 return crc32c(seed, data, len);
260 void btrfs_csum_final(u32 crc, u8 *result)
262 put_unaligned_le32(~crc, result);
266 * compute the csum for a btree block, and either verify it or write it
267 * into the csum field of the block.
269 static int csum_tree_block(struct btrfs_fs_info *fs_info,
270 struct extent_buffer *buf,
273 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
274 char result[BTRFS_CSUM_SIZE];
276 unsigned long cur_len;
277 unsigned long offset = BTRFS_CSUM_SIZE;
279 unsigned long map_start;
280 unsigned long map_len;
284 len = buf->len - offset;
286 err = map_private_extent_buffer(buf, offset, 32,
287 &kaddr, &map_start, &map_len);
290 cur_len = min(len, map_len - (offset - map_start));
291 crc = btrfs_csum_data(kaddr + offset - map_start,
296 memset(result, 0, BTRFS_CSUM_SIZE);
298 btrfs_csum_final(crc, result);
301 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
304 memcpy(&found, result, csum_size);
306 read_extent_buffer(buf, &val, 0, csum_size);
307 btrfs_warn_rl(fs_info,
308 "%s checksum verify failed on %llu wanted %X found %X level %d",
309 fs_info->sb->s_id, buf->start,
310 val, found, btrfs_header_level(buf));
314 write_extent_buffer(buf, result, 0, csum_size);
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
330 struct extent_state *cached_state = NULL;
332 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
334 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
341 btrfs_tree_read_lock(eb);
342 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
345 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
347 if (extent_buffer_uptodate(eb) &&
348 btrfs_header_generation(eb) == parent_transid) {
352 btrfs_err_rl(eb->fs_info,
353 "parent transid verify failed on %llu wanted %llu found %llu",
355 parent_transid, btrfs_header_generation(eb));
359 * Things reading via commit roots that don't have normal protection,
360 * like send, can have a really old block in cache that may point at a
361 * block that has been freed and re-allocated. So don't clear uptodate
362 * if we find an eb that is under IO (dirty/writeback) because we could
363 * end up reading in the stale data and then writing it back out and
364 * making everybody very sad.
366 if (!extent_buffer_under_io(eb))
367 clear_extent_buffer_uptodate(eb);
369 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
372 btrfs_tree_read_unlock_blocking(eb);
377 * Return 0 if the superblock checksum type matches the checksum value of that
378 * algorithm. Pass the raw disk superblock data.
380 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
383 struct btrfs_super_block *disk_sb =
384 (struct btrfs_super_block *)raw_disk_sb;
385 u16 csum_type = btrfs_super_csum_type(disk_sb);
388 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
390 char result[sizeof(crc)];
393 * The super_block structure does not span the whole
394 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
395 * is filled with zeros and is included in the checksum.
397 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
398 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
399 btrfs_csum_final(crc, result);
401 if (memcmp(raw_disk_sb, result, sizeof(result)))
405 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
406 btrfs_err(fs_info, "unsupported checksum algorithm %u",
414 static int verify_level_key(struct btrfs_fs_info *fs_info,
415 struct extent_buffer *eb, int level,
416 struct btrfs_key *first_key, u64 parent_transid)
419 struct btrfs_key found_key;
422 found_level = btrfs_header_level(eb);
423 if (found_level != level) {
424 #ifdef CONFIG_BTRFS_DEBUG
427 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
428 eb->start, level, found_level);
437 * For live tree block (new tree blocks in current transaction),
438 * we need proper lock context to avoid race, which is impossible here.
439 * So we only checks tree blocks which is read from disk, whose
440 * generation <= fs_info->last_trans_committed.
442 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
445 btrfs_node_key_to_cpu(eb, &found_key, 0);
447 btrfs_item_key_to_cpu(eb, &found_key, 0);
448 ret = btrfs_comp_cpu_keys(first_key, &found_key);
450 #ifdef CONFIG_BTRFS_DEBUG
454 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
455 eb->start, parent_transid, first_key->objectid,
456 first_key->type, first_key->offset,
457 found_key.objectid, found_key.type,
465 * helper to read a given tree block, doing retries as required when
466 * the checksums don't match and we have alternate mirrors to try.
468 * @parent_transid: expected transid, skip check if 0
469 * @level: expected level, mandatory check
470 * @first_key: expected key of first slot, skip check if NULL
472 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
473 struct extent_buffer *eb,
474 u64 parent_transid, int level,
475 struct btrfs_key *first_key)
477 struct extent_io_tree *io_tree;
482 int failed_mirror = 0;
484 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
485 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
487 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
490 if (verify_parent_transid(io_tree, eb,
493 else if (verify_level_key(fs_info, eb, level,
494 first_key, parent_transid))
501 * This buffer's crc is fine, but its contents are corrupted, so
502 * there is no reason to read the other copies, they won't be
505 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
509 num_copies = btrfs_num_copies(fs_info,
514 if (!failed_mirror) {
516 failed_mirror = eb->read_mirror;
520 if (mirror_num == failed_mirror)
523 if (mirror_num > num_copies)
527 if (failed && !ret && failed_mirror)
528 repair_eb_io_failure(fs_info, eb, failed_mirror);
534 * checksum a dirty tree block before IO. This has extra checks to make sure
535 * we only fill in the checksum field in the first page of a multi-page block
538 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
540 u64 start = page_offset(page);
542 struct extent_buffer *eb;
544 eb = (struct extent_buffer *)page->private;
545 if (page != eb->pages[0])
548 found_start = btrfs_header_bytenr(eb);
550 * Please do not consolidate these warnings into a single if.
551 * It is useful to know what went wrong.
553 if (WARN_ON(found_start != start))
555 if (WARN_ON(!PageUptodate(page)))
558 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
559 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
561 return csum_tree_block(fs_info, eb, 0);
564 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
565 struct extent_buffer *eb)
567 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
568 u8 fsid[BTRFS_FSID_SIZE];
571 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
573 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
577 fs_devices = fs_devices->seed;
582 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
583 u64 phy_offset, struct page *page,
584 u64 start, u64 end, int mirror)
588 struct extent_buffer *eb;
589 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
590 struct btrfs_fs_info *fs_info = root->fs_info;
597 eb = (struct extent_buffer *)page->private;
599 /* the pending IO might have been the only thing that kept this buffer
600 * in memory. Make sure we have a ref for all this other checks
602 extent_buffer_get(eb);
604 reads_done = atomic_dec_and_test(&eb->io_pages);
608 eb->read_mirror = mirror;
609 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
614 found_start = btrfs_header_bytenr(eb);
615 if (found_start != eb->start) {
616 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
617 eb->start, found_start);
621 if (check_tree_block_fsid(fs_info, eb)) {
622 btrfs_err_rl(fs_info, "bad fsid on block %llu",
627 found_level = btrfs_header_level(eb);
628 if (found_level >= BTRFS_MAX_LEVEL) {
629 btrfs_err(fs_info, "bad tree block level %d on %llu",
630 (int)btrfs_header_level(eb), eb->start);
635 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
638 ret = csum_tree_block(fs_info, eb, 1);
643 * If this is a leaf block and it is corrupt, set the corrupt bit so
644 * that we don't try and read the other copies of this block, just
647 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
648 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
652 if (found_level > 0 && btrfs_check_node(fs_info, eb))
656 set_extent_buffer_uptodate(eb);
659 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
660 btree_readahead_hook(eb, ret);
664 * our io error hook is going to dec the io pages
665 * again, we have to make sure it has something
668 atomic_inc(&eb->io_pages);
669 clear_extent_buffer_uptodate(eb);
671 free_extent_buffer(eb);
676 static int btree_io_failed_hook(struct page *page, int failed_mirror)
678 struct extent_buffer *eb;
680 eb = (struct extent_buffer *)page->private;
681 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
682 eb->read_mirror = failed_mirror;
683 atomic_dec(&eb->io_pages);
684 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
685 btree_readahead_hook(eb, -EIO);
686 return -EIO; /* we fixed nothing */
689 static void end_workqueue_bio(struct bio *bio)
691 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
692 struct btrfs_fs_info *fs_info;
693 struct btrfs_workqueue *wq;
694 btrfs_work_func_t func;
696 fs_info = end_io_wq->info;
697 end_io_wq->status = bio->bi_status;
699 if (bio_op(bio) == REQ_OP_WRITE) {
700 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
701 wq = fs_info->endio_meta_write_workers;
702 func = btrfs_endio_meta_write_helper;
703 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
704 wq = fs_info->endio_freespace_worker;
705 func = btrfs_freespace_write_helper;
706 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
707 wq = fs_info->endio_raid56_workers;
708 func = btrfs_endio_raid56_helper;
710 wq = fs_info->endio_write_workers;
711 func = btrfs_endio_write_helper;
714 if (unlikely(end_io_wq->metadata ==
715 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
716 wq = fs_info->endio_repair_workers;
717 func = btrfs_endio_repair_helper;
718 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
719 wq = fs_info->endio_raid56_workers;
720 func = btrfs_endio_raid56_helper;
721 } else if (end_io_wq->metadata) {
722 wq = fs_info->endio_meta_workers;
723 func = btrfs_endio_meta_helper;
725 wq = fs_info->endio_workers;
726 func = btrfs_endio_helper;
730 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
731 btrfs_queue_work(wq, &end_io_wq->work);
734 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
735 enum btrfs_wq_endio_type metadata)
737 struct btrfs_end_io_wq *end_io_wq;
739 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
741 return BLK_STS_RESOURCE;
743 end_io_wq->private = bio->bi_private;
744 end_io_wq->end_io = bio->bi_end_io;
745 end_io_wq->info = info;
746 end_io_wq->status = 0;
747 end_io_wq->bio = bio;
748 end_io_wq->metadata = metadata;
750 bio->bi_private = end_io_wq;
751 bio->bi_end_io = end_workqueue_bio;
755 static void run_one_async_start(struct btrfs_work *work)
757 struct async_submit_bio *async;
760 async = container_of(work, struct async_submit_bio, work);
761 ret = async->submit_bio_start(async->private_data, async->bio,
767 static void run_one_async_done(struct btrfs_work *work)
769 struct async_submit_bio *async;
771 async = container_of(work, struct async_submit_bio, work);
773 /* If an error occurred we just want to clean up the bio and move on */
775 async->bio->bi_status = async->status;
776 bio_endio(async->bio);
780 async->submit_bio_done(async->private_data, async->bio, async->mirror_num);
783 static void run_one_async_free(struct btrfs_work *work)
785 struct async_submit_bio *async;
787 async = container_of(work, struct async_submit_bio, work);
791 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
792 int mirror_num, unsigned long bio_flags,
793 u64 bio_offset, void *private_data,
794 extent_submit_bio_start_t *submit_bio_start,
795 extent_submit_bio_done_t *submit_bio_done)
797 struct async_submit_bio *async;
799 async = kmalloc(sizeof(*async), GFP_NOFS);
801 return BLK_STS_RESOURCE;
803 async->private_data = private_data;
804 async->fs_info = fs_info;
806 async->mirror_num = mirror_num;
807 async->submit_bio_start = submit_bio_start;
808 async->submit_bio_done = submit_bio_done;
810 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
811 run_one_async_done, run_one_async_free);
813 async->bio_flags = bio_flags;
814 async->bio_offset = bio_offset;
818 if (op_is_sync(bio->bi_opf))
819 btrfs_set_work_high_priority(&async->work);
821 btrfs_queue_work(fs_info->workers, &async->work);
825 static blk_status_t btree_csum_one_bio(struct bio *bio)
827 struct bio_vec *bvec;
828 struct btrfs_root *root;
831 ASSERT(!bio_flagged(bio, BIO_CLONED));
832 bio_for_each_segment_all(bvec, bio, i) {
833 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
834 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
839 return errno_to_blk_status(ret);
842 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
846 * when we're called for a write, we're already in the async
847 * submission context. Just jump into btrfs_map_bio
849 return btree_csum_one_bio(bio);
852 static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio,
855 struct inode *inode = private_data;
859 * when we're called for a write, we're already in the async
860 * submission context. Just jump into btrfs_map_bio
862 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
864 bio->bi_status = ret;
870 static int check_async_write(struct btrfs_inode *bi)
872 if (atomic_read(&bi->sync_writers))
875 if (static_cpu_has(X86_FEATURE_XMM4_2))
881 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
882 int mirror_num, unsigned long bio_flags,
885 struct inode *inode = private_data;
886 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
887 int async = check_async_write(BTRFS_I(inode));
890 if (bio_op(bio) != REQ_OP_WRITE) {
892 * called for a read, do the setup so that checksum validation
893 * can happen in the async kernel threads
895 ret = btrfs_bio_wq_end_io(fs_info, bio,
896 BTRFS_WQ_ENDIO_METADATA);
899 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
901 ret = btree_csum_one_bio(bio);
904 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
907 * kthread helpers are used to submit writes so that
908 * checksumming can happen in parallel across all CPUs
910 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
911 bio_offset, private_data,
912 btree_submit_bio_start,
913 btree_submit_bio_done);
921 bio->bi_status = ret;
926 #ifdef CONFIG_MIGRATION
927 static int btree_migratepage(struct address_space *mapping,
928 struct page *newpage, struct page *page,
929 enum migrate_mode mode)
932 * we can't safely write a btree page from here,
933 * we haven't done the locking hook
938 * Buffers may be managed in a filesystem specific way.
939 * We must have no buffers or drop them.
941 if (page_has_private(page) &&
942 !try_to_release_page(page, GFP_KERNEL))
944 return migrate_page(mapping, newpage, page, mode);
949 static int btree_writepages(struct address_space *mapping,
950 struct writeback_control *wbc)
952 struct btrfs_fs_info *fs_info;
955 if (wbc->sync_mode == WB_SYNC_NONE) {
957 if (wbc->for_kupdate)
960 fs_info = BTRFS_I(mapping->host)->root->fs_info;
961 /* this is a bit racy, but that's ok */
962 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
963 BTRFS_DIRTY_METADATA_THRESH);
967 return btree_write_cache_pages(mapping, wbc);
970 static int btree_readpage(struct file *file, struct page *page)
972 struct extent_io_tree *tree;
973 tree = &BTRFS_I(page->mapping->host)->io_tree;
974 return extent_read_full_page(tree, page, btree_get_extent, 0);
977 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
979 if (PageWriteback(page) || PageDirty(page))
982 return try_release_extent_buffer(page);
985 static void btree_invalidatepage(struct page *page, unsigned int offset,
988 struct extent_io_tree *tree;
989 tree = &BTRFS_I(page->mapping->host)->io_tree;
990 extent_invalidatepage(tree, page, offset);
991 btree_releasepage(page, GFP_NOFS);
992 if (PagePrivate(page)) {
993 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
994 "page private not zero on page %llu",
995 (unsigned long long)page_offset(page));
996 ClearPagePrivate(page);
997 set_page_private(page, 0);
1002 static int btree_set_page_dirty(struct page *page)
1005 struct extent_buffer *eb;
1007 BUG_ON(!PagePrivate(page));
1008 eb = (struct extent_buffer *)page->private;
1010 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1011 BUG_ON(!atomic_read(&eb->refs));
1012 btrfs_assert_tree_locked(eb);
1014 return __set_page_dirty_nobuffers(page);
1017 static const struct address_space_operations btree_aops = {
1018 .readpage = btree_readpage,
1019 .writepages = btree_writepages,
1020 .releasepage = btree_releasepage,
1021 .invalidatepage = btree_invalidatepage,
1022 #ifdef CONFIG_MIGRATION
1023 .migratepage = btree_migratepage,
1025 .set_page_dirty = btree_set_page_dirty,
1028 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1030 struct extent_buffer *buf = NULL;
1031 struct inode *btree_inode = fs_info->btree_inode;
1033 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1036 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1038 free_extent_buffer(buf);
1041 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1042 int mirror_num, struct extent_buffer **eb)
1044 struct extent_buffer *buf = NULL;
1045 struct inode *btree_inode = fs_info->btree_inode;
1046 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1049 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1053 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1055 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1058 free_extent_buffer(buf);
1062 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1063 free_extent_buffer(buf);
1065 } else if (extent_buffer_uptodate(buf)) {
1068 free_extent_buffer(buf);
1073 struct extent_buffer *btrfs_find_create_tree_block(
1074 struct btrfs_fs_info *fs_info,
1077 if (btrfs_is_testing(fs_info))
1078 return alloc_test_extent_buffer(fs_info, bytenr);
1079 return alloc_extent_buffer(fs_info, bytenr);
1083 int btrfs_write_tree_block(struct extent_buffer *buf)
1085 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1086 buf->start + buf->len - 1);
1089 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1091 filemap_fdatawait_range(buf->pages[0]->mapping,
1092 buf->start, buf->start + buf->len - 1);
1096 * Read tree block at logical address @bytenr and do variant basic but critical
1099 * @parent_transid: expected transid of this tree block, skip check if 0
1100 * @level: expected level, mandatory check
1101 * @first_key: expected key in slot 0, skip check if NULL
1103 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1104 u64 parent_transid, int level,
1105 struct btrfs_key *first_key)
1107 struct extent_buffer *buf = NULL;
1110 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1114 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1117 free_extent_buffer(buf);
1118 return ERR_PTR(ret);
1124 void clean_tree_block(struct btrfs_fs_info *fs_info,
1125 struct extent_buffer *buf)
1127 if (btrfs_header_generation(buf) ==
1128 fs_info->running_transaction->transid) {
1129 btrfs_assert_tree_locked(buf);
1131 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1132 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1134 fs_info->dirty_metadata_batch);
1135 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1136 btrfs_set_lock_blocking(buf);
1137 clear_extent_buffer_dirty(buf);
1142 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1144 struct btrfs_subvolume_writers *writers;
1147 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1149 return ERR_PTR(-ENOMEM);
1151 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1154 return ERR_PTR(ret);
1157 init_waitqueue_head(&writers->wait);
1162 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1164 percpu_counter_destroy(&writers->counter);
1168 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1171 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1173 root->commit_root = NULL;
1175 root->orphan_cleanup_state = 0;
1177 root->objectid = objectid;
1178 root->last_trans = 0;
1179 root->highest_objectid = 0;
1180 root->nr_delalloc_inodes = 0;
1181 root->nr_ordered_extents = 0;
1183 root->inode_tree = RB_ROOT;
1184 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1185 root->block_rsv = NULL;
1187 INIT_LIST_HEAD(&root->dirty_list);
1188 INIT_LIST_HEAD(&root->root_list);
1189 INIT_LIST_HEAD(&root->delalloc_inodes);
1190 INIT_LIST_HEAD(&root->delalloc_root);
1191 INIT_LIST_HEAD(&root->ordered_extents);
1192 INIT_LIST_HEAD(&root->ordered_root);
1193 INIT_LIST_HEAD(&root->logged_list[0]);
1194 INIT_LIST_HEAD(&root->logged_list[1]);
1195 spin_lock_init(&root->inode_lock);
1196 spin_lock_init(&root->delalloc_lock);
1197 spin_lock_init(&root->ordered_extent_lock);
1198 spin_lock_init(&root->accounting_lock);
1199 spin_lock_init(&root->log_extents_lock[0]);
1200 spin_lock_init(&root->log_extents_lock[1]);
1201 spin_lock_init(&root->qgroup_meta_rsv_lock);
1202 mutex_init(&root->objectid_mutex);
1203 mutex_init(&root->log_mutex);
1204 mutex_init(&root->ordered_extent_mutex);
1205 mutex_init(&root->delalloc_mutex);
1206 init_waitqueue_head(&root->log_writer_wait);
1207 init_waitqueue_head(&root->log_commit_wait[0]);
1208 init_waitqueue_head(&root->log_commit_wait[1]);
1209 INIT_LIST_HEAD(&root->log_ctxs[0]);
1210 INIT_LIST_HEAD(&root->log_ctxs[1]);
1211 atomic_set(&root->log_commit[0], 0);
1212 atomic_set(&root->log_commit[1], 0);
1213 atomic_set(&root->log_writers, 0);
1214 atomic_set(&root->log_batch, 0);
1215 refcount_set(&root->refs, 1);
1216 atomic_set(&root->will_be_snapshotted, 0);
1217 root->log_transid = 0;
1218 root->log_transid_committed = -1;
1219 root->last_log_commit = 0;
1221 extent_io_tree_init(&root->dirty_log_pages, NULL);
1223 memset(&root->root_key, 0, sizeof(root->root_key));
1224 memset(&root->root_item, 0, sizeof(root->root_item));
1225 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1227 root->defrag_trans_start = fs_info->generation;
1229 root->defrag_trans_start = 0;
1230 root->root_key.objectid = objectid;
1233 spin_lock_init(&root->root_item_lock);
1236 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1239 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1241 root->fs_info = fs_info;
1245 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1246 /* Should only be used by the testing infrastructure */
1247 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1249 struct btrfs_root *root;
1252 return ERR_PTR(-EINVAL);
1254 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1256 return ERR_PTR(-ENOMEM);
1258 /* We don't use the stripesize in selftest, set it as sectorsize */
1259 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1260 root->alloc_bytenr = 0;
1266 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1267 struct btrfs_fs_info *fs_info,
1270 struct extent_buffer *leaf;
1271 struct btrfs_root *tree_root = fs_info->tree_root;
1272 struct btrfs_root *root;
1273 struct btrfs_key key;
1275 uuid_le uuid = NULL_UUID_LE;
1277 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1279 return ERR_PTR(-ENOMEM);
1281 __setup_root(root, fs_info, objectid);
1282 root->root_key.objectid = objectid;
1283 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1284 root->root_key.offset = 0;
1286 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1288 ret = PTR_ERR(leaf);
1294 btrfs_mark_buffer_dirty(leaf);
1296 root->commit_root = btrfs_root_node(root);
1297 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1299 root->root_item.flags = 0;
1300 root->root_item.byte_limit = 0;
1301 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1302 btrfs_set_root_generation(&root->root_item, trans->transid);
1303 btrfs_set_root_level(&root->root_item, 0);
1304 btrfs_set_root_refs(&root->root_item, 1);
1305 btrfs_set_root_used(&root->root_item, leaf->len);
1306 btrfs_set_root_last_snapshot(&root->root_item, 0);
1307 btrfs_set_root_dirid(&root->root_item, 0);
1308 if (is_fstree(objectid))
1310 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1311 root->root_item.drop_level = 0;
1313 key.objectid = objectid;
1314 key.type = BTRFS_ROOT_ITEM_KEY;
1316 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1320 btrfs_tree_unlock(leaf);
1326 btrfs_tree_unlock(leaf);
1327 free_extent_buffer(root->commit_root);
1328 free_extent_buffer(leaf);
1332 return ERR_PTR(ret);
1335 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1336 struct btrfs_fs_info *fs_info)
1338 struct btrfs_root *root;
1339 struct extent_buffer *leaf;
1341 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1343 return ERR_PTR(-ENOMEM);
1345 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1347 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1348 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1349 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1352 * DON'T set REF_COWS for log trees
1354 * log trees do not get reference counted because they go away
1355 * before a real commit is actually done. They do store pointers
1356 * to file data extents, and those reference counts still get
1357 * updated (along with back refs to the log tree).
1360 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1364 return ERR_CAST(leaf);
1369 btrfs_mark_buffer_dirty(root->node);
1370 btrfs_tree_unlock(root->node);
1374 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1375 struct btrfs_fs_info *fs_info)
1377 struct btrfs_root *log_root;
1379 log_root = alloc_log_tree(trans, fs_info);
1380 if (IS_ERR(log_root))
1381 return PTR_ERR(log_root);
1382 WARN_ON(fs_info->log_root_tree);
1383 fs_info->log_root_tree = log_root;
1387 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1388 struct btrfs_root *root)
1390 struct btrfs_fs_info *fs_info = root->fs_info;
1391 struct btrfs_root *log_root;
1392 struct btrfs_inode_item *inode_item;
1394 log_root = alloc_log_tree(trans, fs_info);
1395 if (IS_ERR(log_root))
1396 return PTR_ERR(log_root);
1398 log_root->last_trans = trans->transid;
1399 log_root->root_key.offset = root->root_key.objectid;
1401 inode_item = &log_root->root_item.inode;
1402 btrfs_set_stack_inode_generation(inode_item, 1);
1403 btrfs_set_stack_inode_size(inode_item, 3);
1404 btrfs_set_stack_inode_nlink(inode_item, 1);
1405 btrfs_set_stack_inode_nbytes(inode_item,
1407 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1409 btrfs_set_root_node(&log_root->root_item, log_root->node);
1411 WARN_ON(root->log_root);
1412 root->log_root = log_root;
1413 root->log_transid = 0;
1414 root->log_transid_committed = -1;
1415 root->last_log_commit = 0;
1419 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1420 struct btrfs_key *key)
1422 struct btrfs_root *root;
1423 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1424 struct btrfs_path *path;
1429 path = btrfs_alloc_path();
1431 return ERR_PTR(-ENOMEM);
1433 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1439 __setup_root(root, fs_info, key->objectid);
1441 ret = btrfs_find_root(tree_root, key, path,
1442 &root->root_item, &root->root_key);
1449 generation = btrfs_root_generation(&root->root_item);
1450 level = btrfs_root_level(&root->root_item);
1451 root->node = read_tree_block(fs_info,
1452 btrfs_root_bytenr(&root->root_item),
1453 generation, level, NULL);
1454 if (IS_ERR(root->node)) {
1455 ret = PTR_ERR(root->node);
1457 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1459 free_extent_buffer(root->node);
1462 root->commit_root = btrfs_root_node(root);
1464 btrfs_free_path(path);
1470 root = ERR_PTR(ret);
1474 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1475 struct btrfs_key *location)
1477 struct btrfs_root *root;
1479 root = btrfs_read_tree_root(tree_root, location);
1483 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1484 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1485 btrfs_check_and_init_root_item(&root->root_item);
1491 int btrfs_init_fs_root(struct btrfs_root *root)
1494 struct btrfs_subvolume_writers *writers;
1496 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1497 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1499 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1504 writers = btrfs_alloc_subvolume_writers();
1505 if (IS_ERR(writers)) {
1506 ret = PTR_ERR(writers);
1509 root->subv_writers = writers;
1511 btrfs_init_free_ino_ctl(root);
1512 spin_lock_init(&root->ino_cache_lock);
1513 init_waitqueue_head(&root->ino_cache_wait);
1515 ret = get_anon_bdev(&root->anon_dev);
1519 mutex_lock(&root->objectid_mutex);
1520 ret = btrfs_find_highest_objectid(root,
1521 &root->highest_objectid);
1523 mutex_unlock(&root->objectid_mutex);
1527 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1529 mutex_unlock(&root->objectid_mutex);
1533 /* the caller is responsible to call free_fs_root */
1537 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1540 struct btrfs_root *root;
1542 spin_lock(&fs_info->fs_roots_radix_lock);
1543 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1544 (unsigned long)root_id);
1545 spin_unlock(&fs_info->fs_roots_radix_lock);
1549 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1550 struct btrfs_root *root)
1554 ret = radix_tree_preload(GFP_NOFS);
1558 spin_lock(&fs_info->fs_roots_radix_lock);
1559 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1560 (unsigned long)root->root_key.objectid,
1563 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1564 spin_unlock(&fs_info->fs_roots_radix_lock);
1565 radix_tree_preload_end();
1570 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1571 struct btrfs_key *location,
1574 struct btrfs_root *root;
1575 struct btrfs_path *path;
1576 struct btrfs_key key;
1579 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1580 return fs_info->tree_root;
1581 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1582 return fs_info->extent_root;
1583 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1584 return fs_info->chunk_root;
1585 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1586 return fs_info->dev_root;
1587 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1588 return fs_info->csum_root;
1589 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1590 return fs_info->quota_root ? fs_info->quota_root :
1592 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1593 return fs_info->uuid_root ? fs_info->uuid_root :
1595 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1596 return fs_info->free_space_root ? fs_info->free_space_root :
1599 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1601 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1602 return ERR_PTR(-ENOENT);
1606 root = btrfs_read_fs_root(fs_info->tree_root, location);
1610 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1615 ret = btrfs_init_fs_root(root);
1619 path = btrfs_alloc_path();
1624 key.objectid = BTRFS_ORPHAN_OBJECTID;
1625 key.type = BTRFS_ORPHAN_ITEM_KEY;
1626 key.offset = location->objectid;
1628 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1629 btrfs_free_path(path);
1633 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1635 ret = btrfs_insert_fs_root(fs_info, root);
1637 if (ret == -EEXIST) {
1646 return ERR_PTR(ret);
1649 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1651 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1653 struct btrfs_device *device;
1654 struct backing_dev_info *bdi;
1657 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1660 bdi = device->bdev->bd_bdi;
1661 if (bdi_congested(bdi, bdi_bits)) {
1671 * called by the kthread helper functions to finally call the bio end_io
1672 * functions. This is where read checksum verification actually happens
1674 static void end_workqueue_fn(struct btrfs_work *work)
1677 struct btrfs_end_io_wq *end_io_wq;
1679 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1680 bio = end_io_wq->bio;
1682 bio->bi_status = end_io_wq->status;
1683 bio->bi_private = end_io_wq->private;
1684 bio->bi_end_io = end_io_wq->end_io;
1685 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1689 static int cleaner_kthread(void *arg)
1691 struct btrfs_root *root = arg;
1692 struct btrfs_fs_info *fs_info = root->fs_info;
1694 struct btrfs_trans_handle *trans;
1699 /* Make the cleaner go to sleep early. */
1700 if (btrfs_need_cleaner_sleep(fs_info))
1704 * Do not do anything if we might cause open_ctree() to block
1705 * before we have finished mounting the filesystem.
1707 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1710 if (!mutex_trylock(&fs_info->cleaner_mutex))
1714 * Avoid the problem that we change the status of the fs
1715 * during the above check and trylock.
1717 if (btrfs_need_cleaner_sleep(fs_info)) {
1718 mutex_unlock(&fs_info->cleaner_mutex);
1722 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1723 btrfs_run_delayed_iputs(fs_info);
1724 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1726 again = btrfs_clean_one_deleted_snapshot(root);
1727 mutex_unlock(&fs_info->cleaner_mutex);
1730 * The defragger has dealt with the R/O remount and umount,
1731 * needn't do anything special here.
1733 btrfs_run_defrag_inodes(fs_info);
1736 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1737 * with relocation (btrfs_relocate_chunk) and relocation
1738 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1739 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1740 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1741 * unused block groups.
1743 btrfs_delete_unused_bgs(fs_info);
1746 set_current_state(TASK_INTERRUPTIBLE);
1747 if (!kthread_should_stop())
1749 __set_current_state(TASK_RUNNING);
1751 } while (!kthread_should_stop());
1754 * Transaction kthread is stopped before us and wakes us up.
1755 * However we might have started a new transaction and COWed some
1756 * tree blocks when deleting unused block groups for example. So
1757 * make sure we commit the transaction we started to have a clean
1758 * shutdown when evicting the btree inode - if it has dirty pages
1759 * when we do the final iput() on it, eviction will trigger a
1760 * writeback for it which will fail with null pointer dereferences
1761 * since work queues and other resources were already released and
1762 * destroyed by the time the iput/eviction/writeback is made.
1764 trans = btrfs_attach_transaction(root);
1765 if (IS_ERR(trans)) {
1766 if (PTR_ERR(trans) != -ENOENT)
1768 "cleaner transaction attach returned %ld",
1773 ret = btrfs_commit_transaction(trans);
1776 "cleaner open transaction commit returned %d",
1783 static int transaction_kthread(void *arg)
1785 struct btrfs_root *root = arg;
1786 struct btrfs_fs_info *fs_info = root->fs_info;
1787 struct btrfs_trans_handle *trans;
1788 struct btrfs_transaction *cur;
1791 unsigned long delay;
1795 cannot_commit = false;
1796 delay = HZ * fs_info->commit_interval;
1797 mutex_lock(&fs_info->transaction_kthread_mutex);
1799 spin_lock(&fs_info->trans_lock);
1800 cur = fs_info->running_transaction;
1802 spin_unlock(&fs_info->trans_lock);
1806 now = ktime_get_seconds();
1807 if (cur->state < TRANS_STATE_BLOCKED &&
1808 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1809 (now < cur->start_time ||
1810 now - cur->start_time < fs_info->commit_interval)) {
1811 spin_unlock(&fs_info->trans_lock);
1815 transid = cur->transid;
1816 spin_unlock(&fs_info->trans_lock);
1818 /* If the file system is aborted, this will always fail. */
1819 trans = btrfs_attach_transaction(root);
1820 if (IS_ERR(trans)) {
1821 if (PTR_ERR(trans) != -ENOENT)
1822 cannot_commit = true;
1825 if (transid == trans->transid) {
1826 btrfs_commit_transaction(trans);
1828 btrfs_end_transaction(trans);
1831 wake_up_process(fs_info->cleaner_kthread);
1832 mutex_unlock(&fs_info->transaction_kthread_mutex);
1834 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1835 &fs_info->fs_state)))
1836 btrfs_cleanup_transaction(fs_info);
1837 if (!kthread_should_stop() &&
1838 (!btrfs_transaction_blocked(fs_info) ||
1840 schedule_timeout_interruptible(delay);
1841 } while (!kthread_should_stop());
1846 * this will find the highest generation in the array of
1847 * root backups. The index of the highest array is returned,
1848 * or -1 if we can't find anything.
1850 * We check to make sure the array is valid by comparing the
1851 * generation of the latest root in the array with the generation
1852 * in the super block. If they don't match we pitch it.
1854 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1857 int newest_index = -1;
1858 struct btrfs_root_backup *root_backup;
1861 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1862 root_backup = info->super_copy->super_roots + i;
1863 cur = btrfs_backup_tree_root_gen(root_backup);
1864 if (cur == newest_gen)
1868 /* check to see if we actually wrapped around */
1869 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1870 root_backup = info->super_copy->super_roots;
1871 cur = btrfs_backup_tree_root_gen(root_backup);
1872 if (cur == newest_gen)
1875 return newest_index;
1880 * find the oldest backup so we know where to store new entries
1881 * in the backup array. This will set the backup_root_index
1882 * field in the fs_info struct
1884 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1887 int newest_index = -1;
1889 newest_index = find_newest_super_backup(info, newest_gen);
1890 /* if there was garbage in there, just move along */
1891 if (newest_index == -1) {
1892 info->backup_root_index = 0;
1894 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1899 * copy all the root pointers into the super backup array.
1900 * this will bump the backup pointer by one when it is
1903 static void backup_super_roots(struct btrfs_fs_info *info)
1906 struct btrfs_root_backup *root_backup;
1909 next_backup = info->backup_root_index;
1910 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1911 BTRFS_NUM_BACKUP_ROOTS;
1914 * just overwrite the last backup if we're at the same generation
1915 * this happens only at umount
1917 root_backup = info->super_for_commit->super_roots + last_backup;
1918 if (btrfs_backup_tree_root_gen(root_backup) ==
1919 btrfs_header_generation(info->tree_root->node))
1920 next_backup = last_backup;
1922 root_backup = info->super_for_commit->super_roots + next_backup;
1925 * make sure all of our padding and empty slots get zero filled
1926 * regardless of which ones we use today
1928 memset(root_backup, 0, sizeof(*root_backup));
1930 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1932 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1933 btrfs_set_backup_tree_root_gen(root_backup,
1934 btrfs_header_generation(info->tree_root->node));
1936 btrfs_set_backup_tree_root_level(root_backup,
1937 btrfs_header_level(info->tree_root->node));
1939 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1940 btrfs_set_backup_chunk_root_gen(root_backup,
1941 btrfs_header_generation(info->chunk_root->node));
1942 btrfs_set_backup_chunk_root_level(root_backup,
1943 btrfs_header_level(info->chunk_root->node));
1945 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1946 btrfs_set_backup_extent_root_gen(root_backup,
1947 btrfs_header_generation(info->extent_root->node));
1948 btrfs_set_backup_extent_root_level(root_backup,
1949 btrfs_header_level(info->extent_root->node));
1952 * we might commit during log recovery, which happens before we set
1953 * the fs_root. Make sure it is valid before we fill it in.
1955 if (info->fs_root && info->fs_root->node) {
1956 btrfs_set_backup_fs_root(root_backup,
1957 info->fs_root->node->start);
1958 btrfs_set_backup_fs_root_gen(root_backup,
1959 btrfs_header_generation(info->fs_root->node));
1960 btrfs_set_backup_fs_root_level(root_backup,
1961 btrfs_header_level(info->fs_root->node));
1964 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1965 btrfs_set_backup_dev_root_gen(root_backup,
1966 btrfs_header_generation(info->dev_root->node));
1967 btrfs_set_backup_dev_root_level(root_backup,
1968 btrfs_header_level(info->dev_root->node));
1970 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1971 btrfs_set_backup_csum_root_gen(root_backup,
1972 btrfs_header_generation(info->csum_root->node));
1973 btrfs_set_backup_csum_root_level(root_backup,
1974 btrfs_header_level(info->csum_root->node));
1976 btrfs_set_backup_total_bytes(root_backup,
1977 btrfs_super_total_bytes(info->super_copy));
1978 btrfs_set_backup_bytes_used(root_backup,
1979 btrfs_super_bytes_used(info->super_copy));
1980 btrfs_set_backup_num_devices(root_backup,
1981 btrfs_super_num_devices(info->super_copy));
1984 * if we don't copy this out to the super_copy, it won't get remembered
1985 * for the next commit
1987 memcpy(&info->super_copy->super_roots,
1988 &info->super_for_commit->super_roots,
1989 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1993 * this copies info out of the root backup array and back into
1994 * the in-memory super block. It is meant to help iterate through
1995 * the array, so you send it the number of backups you've already
1996 * tried and the last backup index you used.
1998 * this returns -1 when it has tried all the backups
2000 static noinline int next_root_backup(struct btrfs_fs_info *info,
2001 struct btrfs_super_block *super,
2002 int *num_backups_tried, int *backup_index)
2004 struct btrfs_root_backup *root_backup;
2005 int newest = *backup_index;
2007 if (*num_backups_tried == 0) {
2008 u64 gen = btrfs_super_generation(super);
2010 newest = find_newest_super_backup(info, gen);
2014 *backup_index = newest;
2015 *num_backups_tried = 1;
2016 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2017 /* we've tried all the backups, all done */
2020 /* jump to the next oldest backup */
2021 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2022 BTRFS_NUM_BACKUP_ROOTS;
2023 *backup_index = newest;
2024 *num_backups_tried += 1;
2026 root_backup = super->super_roots + newest;
2028 btrfs_set_super_generation(super,
2029 btrfs_backup_tree_root_gen(root_backup));
2030 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2031 btrfs_set_super_root_level(super,
2032 btrfs_backup_tree_root_level(root_backup));
2033 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2036 * fixme: the total bytes and num_devices need to match or we should
2039 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2040 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2044 /* helper to cleanup workers */
2045 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2047 btrfs_destroy_workqueue(fs_info->fixup_workers);
2048 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2049 btrfs_destroy_workqueue(fs_info->workers);
2050 btrfs_destroy_workqueue(fs_info->endio_workers);
2051 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2052 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2053 btrfs_destroy_workqueue(fs_info->rmw_workers);
2054 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2055 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2056 btrfs_destroy_workqueue(fs_info->submit_workers);
2057 btrfs_destroy_workqueue(fs_info->delayed_workers);
2058 btrfs_destroy_workqueue(fs_info->caching_workers);
2059 btrfs_destroy_workqueue(fs_info->readahead_workers);
2060 btrfs_destroy_workqueue(fs_info->flush_workers);
2061 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2062 btrfs_destroy_workqueue(fs_info->extent_workers);
2064 * Now that all other work queues are destroyed, we can safely destroy
2065 * the queues used for metadata I/O, since tasks from those other work
2066 * queues can do metadata I/O operations.
2068 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2069 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2072 static void free_root_extent_buffers(struct btrfs_root *root)
2075 free_extent_buffer(root->node);
2076 free_extent_buffer(root->commit_root);
2078 root->commit_root = NULL;
2082 /* helper to cleanup tree roots */
2083 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2085 free_root_extent_buffers(info->tree_root);
2087 free_root_extent_buffers(info->dev_root);
2088 free_root_extent_buffers(info->extent_root);
2089 free_root_extent_buffers(info->csum_root);
2090 free_root_extent_buffers(info->quota_root);
2091 free_root_extent_buffers(info->uuid_root);
2093 free_root_extent_buffers(info->chunk_root);
2094 free_root_extent_buffers(info->free_space_root);
2097 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2100 struct btrfs_root *gang[8];
2103 while (!list_empty(&fs_info->dead_roots)) {
2104 gang[0] = list_entry(fs_info->dead_roots.next,
2105 struct btrfs_root, root_list);
2106 list_del(&gang[0]->root_list);
2108 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2109 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2111 free_extent_buffer(gang[0]->node);
2112 free_extent_buffer(gang[0]->commit_root);
2113 btrfs_put_fs_root(gang[0]);
2118 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2123 for (i = 0; i < ret; i++)
2124 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2127 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2128 btrfs_free_log_root_tree(NULL, fs_info);
2129 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2133 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2135 mutex_init(&fs_info->scrub_lock);
2136 atomic_set(&fs_info->scrubs_running, 0);
2137 atomic_set(&fs_info->scrub_pause_req, 0);
2138 atomic_set(&fs_info->scrubs_paused, 0);
2139 atomic_set(&fs_info->scrub_cancel_req, 0);
2140 init_waitqueue_head(&fs_info->scrub_pause_wait);
2141 fs_info->scrub_workers_refcnt = 0;
2144 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2146 spin_lock_init(&fs_info->balance_lock);
2147 mutex_init(&fs_info->balance_mutex);
2148 atomic_set(&fs_info->balance_pause_req, 0);
2149 atomic_set(&fs_info->balance_cancel_req, 0);
2150 fs_info->balance_ctl = NULL;
2151 init_waitqueue_head(&fs_info->balance_wait_q);
2154 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2156 struct inode *inode = fs_info->btree_inode;
2158 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2159 set_nlink(inode, 1);
2161 * we set the i_size on the btree inode to the max possible int.
2162 * the real end of the address space is determined by all of
2163 * the devices in the system
2165 inode->i_size = OFFSET_MAX;
2166 inode->i_mapping->a_ops = &btree_aops;
2168 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2169 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2170 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2171 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2173 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2175 BTRFS_I(inode)->root = fs_info->tree_root;
2176 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2177 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2178 btrfs_insert_inode_hash(inode);
2181 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2183 fs_info->dev_replace.lock_owner = 0;
2184 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2185 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2186 rwlock_init(&fs_info->dev_replace.lock);
2187 atomic_set(&fs_info->dev_replace.read_locks, 0);
2188 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2189 init_waitqueue_head(&fs_info->replace_wait);
2190 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2193 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2195 spin_lock_init(&fs_info->qgroup_lock);
2196 mutex_init(&fs_info->qgroup_ioctl_lock);
2197 fs_info->qgroup_tree = RB_ROOT;
2198 fs_info->qgroup_op_tree = RB_ROOT;
2199 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2200 fs_info->qgroup_seq = 1;
2201 fs_info->qgroup_ulist = NULL;
2202 fs_info->qgroup_rescan_running = false;
2203 mutex_init(&fs_info->qgroup_rescan_lock);
2206 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2207 struct btrfs_fs_devices *fs_devices)
2209 u32 max_active = fs_info->thread_pool_size;
2210 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2213 btrfs_alloc_workqueue(fs_info, "worker",
2214 flags | WQ_HIGHPRI, max_active, 16);
2216 fs_info->delalloc_workers =
2217 btrfs_alloc_workqueue(fs_info, "delalloc",
2218 flags, max_active, 2);
2220 fs_info->flush_workers =
2221 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2222 flags, max_active, 0);
2224 fs_info->caching_workers =
2225 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2228 * a higher idle thresh on the submit workers makes it much more
2229 * likely that bios will be send down in a sane order to the
2232 fs_info->submit_workers =
2233 btrfs_alloc_workqueue(fs_info, "submit", flags,
2234 min_t(u64, fs_devices->num_devices,
2237 fs_info->fixup_workers =
2238 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2241 * endios are largely parallel and should have a very
2244 fs_info->endio_workers =
2245 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2246 fs_info->endio_meta_workers =
2247 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2249 fs_info->endio_meta_write_workers =
2250 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2252 fs_info->endio_raid56_workers =
2253 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2255 fs_info->endio_repair_workers =
2256 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2257 fs_info->rmw_workers =
2258 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2259 fs_info->endio_write_workers =
2260 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2262 fs_info->endio_freespace_worker =
2263 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2265 fs_info->delayed_workers =
2266 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2268 fs_info->readahead_workers =
2269 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2271 fs_info->qgroup_rescan_workers =
2272 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2273 fs_info->extent_workers =
2274 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2275 min_t(u64, fs_devices->num_devices,
2278 if (!(fs_info->workers && fs_info->delalloc_workers &&
2279 fs_info->submit_workers && fs_info->flush_workers &&
2280 fs_info->endio_workers && fs_info->endio_meta_workers &&
2281 fs_info->endio_meta_write_workers &&
2282 fs_info->endio_repair_workers &&
2283 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2284 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2285 fs_info->caching_workers && fs_info->readahead_workers &&
2286 fs_info->fixup_workers && fs_info->delayed_workers &&
2287 fs_info->extent_workers &&
2288 fs_info->qgroup_rescan_workers)) {
2295 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2296 struct btrfs_fs_devices *fs_devices)
2299 struct btrfs_root *log_tree_root;
2300 struct btrfs_super_block *disk_super = fs_info->super_copy;
2301 u64 bytenr = btrfs_super_log_root(disk_super);
2302 int level = btrfs_super_log_root_level(disk_super);
2304 if (fs_devices->rw_devices == 0) {
2305 btrfs_warn(fs_info, "log replay required on RO media");
2309 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2313 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2315 log_tree_root->node = read_tree_block(fs_info, bytenr,
2316 fs_info->generation + 1,
2318 if (IS_ERR(log_tree_root->node)) {
2319 btrfs_warn(fs_info, "failed to read log tree");
2320 ret = PTR_ERR(log_tree_root->node);
2321 kfree(log_tree_root);
2323 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2324 btrfs_err(fs_info, "failed to read log tree");
2325 free_extent_buffer(log_tree_root->node);
2326 kfree(log_tree_root);
2329 /* returns with log_tree_root freed on success */
2330 ret = btrfs_recover_log_trees(log_tree_root);
2332 btrfs_handle_fs_error(fs_info, ret,
2333 "Failed to recover log tree");
2334 free_extent_buffer(log_tree_root->node);
2335 kfree(log_tree_root);
2339 if (sb_rdonly(fs_info->sb)) {
2340 ret = btrfs_commit_super(fs_info);
2348 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2350 struct btrfs_root *tree_root = fs_info->tree_root;
2351 struct btrfs_root *root;
2352 struct btrfs_key location;
2355 BUG_ON(!fs_info->tree_root);
2357 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2358 location.type = BTRFS_ROOT_ITEM_KEY;
2359 location.offset = 0;
2361 root = btrfs_read_tree_root(tree_root, &location);
2363 ret = PTR_ERR(root);
2366 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2367 fs_info->extent_root = root;
2369 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2370 root = btrfs_read_tree_root(tree_root, &location);
2372 ret = PTR_ERR(root);
2375 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2376 fs_info->dev_root = root;
2377 btrfs_init_devices_late(fs_info);
2379 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2380 root = btrfs_read_tree_root(tree_root, &location);
2382 ret = PTR_ERR(root);
2385 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2386 fs_info->csum_root = root;
2388 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2389 root = btrfs_read_tree_root(tree_root, &location);
2390 if (!IS_ERR(root)) {
2391 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2392 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2393 fs_info->quota_root = root;
2396 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2397 root = btrfs_read_tree_root(tree_root, &location);
2399 ret = PTR_ERR(root);
2403 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2404 fs_info->uuid_root = root;
2407 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2408 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2409 root = btrfs_read_tree_root(tree_root, &location);
2411 ret = PTR_ERR(root);
2414 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2415 fs_info->free_space_root = root;
2420 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2421 location.objectid, ret);
2426 * Real super block validation
2427 * NOTE: super csum type and incompat features will not be checked here.
2429 * @sb: super block to check
2430 * @mirror_num: the super block number to check its bytenr:
2431 * 0 the primary (1st) sb
2432 * 1, 2 2nd and 3rd backup copy
2433 * -1 skip bytenr check
2435 static int validate_super(struct btrfs_fs_info *fs_info,
2436 struct btrfs_super_block *sb, int mirror_num)
2438 u64 nodesize = btrfs_super_nodesize(sb);
2439 u64 sectorsize = btrfs_super_sectorsize(sb);
2442 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2443 btrfs_err(fs_info, "no valid FS found");
2446 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2447 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2448 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2451 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2452 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2453 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2456 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2457 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2458 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2461 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2462 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2463 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2468 * Check sectorsize and nodesize first, other check will need it.
2469 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2471 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2472 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2473 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2476 /* Only PAGE SIZE is supported yet */
2477 if (sectorsize != PAGE_SIZE) {
2479 "sectorsize %llu not supported yet, only support %lu",
2480 sectorsize, PAGE_SIZE);
2483 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2484 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2485 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2488 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2489 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2490 le32_to_cpu(sb->__unused_leafsize), nodesize);
2494 /* Root alignment check */
2495 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2496 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2497 btrfs_super_root(sb));
2500 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2501 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2502 btrfs_super_chunk_root(sb));
2505 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2506 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2507 btrfs_super_log_root(sb));
2511 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2513 "dev_item UUID does not match fsid: %pU != %pU",
2514 fs_info->fsid, sb->dev_item.fsid);
2519 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2522 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2523 btrfs_err(fs_info, "bytes_used is too small %llu",
2524 btrfs_super_bytes_used(sb));
2527 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2528 btrfs_err(fs_info, "invalid stripesize %u",
2529 btrfs_super_stripesize(sb));
2532 if (btrfs_super_num_devices(sb) > (1UL << 31))
2533 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2534 btrfs_super_num_devices(sb));
2535 if (btrfs_super_num_devices(sb) == 0) {
2536 btrfs_err(fs_info, "number of devices is 0");
2540 if (mirror_num >= 0 &&
2541 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2542 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2543 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2548 * Obvious sys_chunk_array corruptions, it must hold at least one key
2551 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2552 btrfs_err(fs_info, "system chunk array too big %u > %u",
2553 btrfs_super_sys_array_size(sb),
2554 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2557 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2558 + sizeof(struct btrfs_chunk)) {
2559 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2560 btrfs_super_sys_array_size(sb),
2561 sizeof(struct btrfs_disk_key)
2562 + sizeof(struct btrfs_chunk));
2567 * The generation is a global counter, we'll trust it more than the others
2568 * but it's still possible that it's the one that's wrong.
2570 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2572 "suspicious: generation < chunk_root_generation: %llu < %llu",
2573 btrfs_super_generation(sb),
2574 btrfs_super_chunk_root_generation(sb));
2575 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2576 && btrfs_super_cache_generation(sb) != (u64)-1)
2578 "suspicious: generation < cache_generation: %llu < %llu",
2579 btrfs_super_generation(sb),
2580 btrfs_super_cache_generation(sb));
2586 * Validation of super block at mount time.
2587 * Some checks already done early at mount time, like csum type and incompat
2588 * flags will be skipped.
2590 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2592 return validate_super(fs_info, fs_info->super_copy, 0);
2596 * Validation of super block at write time.
2597 * Some checks like bytenr check will be skipped as their values will be
2599 * Extra checks like csum type and incompat flags will be done here.
2601 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2602 struct btrfs_super_block *sb)
2606 ret = validate_super(fs_info, sb, -1);
2609 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2611 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2612 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2615 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2618 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2619 btrfs_super_incompat_flags(sb),
2620 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2626 "super block corruption detected before writing it to disk");
2630 int open_ctree(struct super_block *sb,
2631 struct btrfs_fs_devices *fs_devices,
2639 struct btrfs_key location;
2640 struct buffer_head *bh;
2641 struct btrfs_super_block *disk_super;
2642 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2643 struct btrfs_root *tree_root;
2644 struct btrfs_root *chunk_root;
2647 int num_backups_tried = 0;
2648 int backup_index = 0;
2649 int clear_free_space_tree = 0;
2652 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2653 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2654 if (!tree_root || !chunk_root) {
2659 ret = init_srcu_struct(&fs_info->subvol_srcu);
2665 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2670 fs_info->dirty_metadata_batch = PAGE_SIZE *
2671 (1 + ilog2(nr_cpu_ids));
2673 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2676 goto fail_dirty_metadata_bytes;
2679 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2682 goto fail_delalloc_bytes;
2685 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2686 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2687 INIT_LIST_HEAD(&fs_info->trans_list);
2688 INIT_LIST_HEAD(&fs_info->dead_roots);
2689 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2690 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2691 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2692 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2693 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2694 spin_lock_init(&fs_info->delalloc_root_lock);
2695 spin_lock_init(&fs_info->trans_lock);
2696 spin_lock_init(&fs_info->fs_roots_radix_lock);
2697 spin_lock_init(&fs_info->delayed_iput_lock);
2698 spin_lock_init(&fs_info->defrag_inodes_lock);
2699 spin_lock_init(&fs_info->tree_mod_seq_lock);
2700 spin_lock_init(&fs_info->super_lock);
2701 spin_lock_init(&fs_info->qgroup_op_lock);
2702 spin_lock_init(&fs_info->buffer_lock);
2703 spin_lock_init(&fs_info->unused_bgs_lock);
2704 rwlock_init(&fs_info->tree_mod_log_lock);
2705 mutex_init(&fs_info->unused_bg_unpin_mutex);
2706 mutex_init(&fs_info->delete_unused_bgs_mutex);
2707 mutex_init(&fs_info->reloc_mutex);
2708 mutex_init(&fs_info->delalloc_root_mutex);
2709 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2710 seqlock_init(&fs_info->profiles_lock);
2712 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2713 INIT_LIST_HEAD(&fs_info->space_info);
2714 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2715 INIT_LIST_HEAD(&fs_info->unused_bgs);
2716 btrfs_mapping_init(&fs_info->mapping_tree);
2717 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2718 BTRFS_BLOCK_RSV_GLOBAL);
2719 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2720 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2721 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2722 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2723 BTRFS_BLOCK_RSV_DELOPS);
2724 atomic_set(&fs_info->async_delalloc_pages, 0);
2725 atomic_set(&fs_info->defrag_running, 0);
2726 atomic_set(&fs_info->qgroup_op_seq, 0);
2727 atomic_set(&fs_info->reada_works_cnt, 0);
2728 atomic64_set(&fs_info->tree_mod_seq, 0);
2730 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2731 fs_info->metadata_ratio = 0;
2732 fs_info->defrag_inodes = RB_ROOT;
2733 atomic64_set(&fs_info->free_chunk_space, 0);
2734 fs_info->tree_mod_log = RB_ROOT;
2735 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2736 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2737 /* readahead state */
2738 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2739 spin_lock_init(&fs_info->reada_lock);
2740 btrfs_init_ref_verify(fs_info);
2742 fs_info->thread_pool_size = min_t(unsigned long,
2743 num_online_cpus() + 2, 8);
2745 INIT_LIST_HEAD(&fs_info->ordered_roots);
2746 spin_lock_init(&fs_info->ordered_root_lock);
2748 fs_info->btree_inode = new_inode(sb);
2749 if (!fs_info->btree_inode) {
2751 goto fail_bio_counter;
2753 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2755 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2757 if (!fs_info->delayed_root) {
2761 btrfs_init_delayed_root(fs_info->delayed_root);
2763 btrfs_init_scrub(fs_info);
2764 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2765 fs_info->check_integrity_print_mask = 0;
2767 btrfs_init_balance(fs_info);
2768 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2770 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2771 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2773 btrfs_init_btree_inode(fs_info);
2775 spin_lock_init(&fs_info->block_group_cache_lock);
2776 fs_info->block_group_cache_tree = RB_ROOT;
2777 fs_info->first_logical_byte = (u64)-1;
2779 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2780 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2781 fs_info->pinned_extents = &fs_info->freed_extents[0];
2782 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2784 mutex_init(&fs_info->ordered_operations_mutex);
2785 mutex_init(&fs_info->tree_log_mutex);
2786 mutex_init(&fs_info->chunk_mutex);
2787 mutex_init(&fs_info->transaction_kthread_mutex);
2788 mutex_init(&fs_info->cleaner_mutex);
2789 mutex_init(&fs_info->ro_block_group_mutex);
2790 init_rwsem(&fs_info->commit_root_sem);
2791 init_rwsem(&fs_info->cleanup_work_sem);
2792 init_rwsem(&fs_info->subvol_sem);
2793 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2795 btrfs_init_dev_replace_locks(fs_info);
2796 btrfs_init_qgroup(fs_info);
2798 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2799 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2801 init_waitqueue_head(&fs_info->transaction_throttle);
2802 init_waitqueue_head(&fs_info->transaction_wait);
2803 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2804 init_waitqueue_head(&fs_info->async_submit_wait);
2806 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2808 /* Usable values until the real ones are cached from the superblock */
2809 fs_info->nodesize = 4096;
2810 fs_info->sectorsize = 4096;
2811 fs_info->stripesize = 4096;
2813 ret = btrfs_alloc_stripe_hash_table(fs_info);
2819 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2821 invalidate_bdev(fs_devices->latest_bdev);
2824 * Read super block and check the signature bytes only
2826 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2833 * We want to check superblock checksum, the type is stored inside.
2834 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2836 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2837 btrfs_err(fs_info, "superblock checksum mismatch");
2844 * super_copy is zeroed at allocation time and we never touch the
2845 * following bytes up to INFO_SIZE, the checksum is calculated from
2846 * the whole block of INFO_SIZE
2848 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2849 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2850 sizeof(*fs_info->super_for_commit));
2853 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2855 ret = btrfs_validate_mount_super(fs_info);
2857 btrfs_err(fs_info, "superblock contains fatal errors");
2862 disk_super = fs_info->super_copy;
2863 if (!btrfs_super_root(disk_super))
2866 /* check FS state, whether FS is broken. */
2867 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2868 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2871 * run through our array of backup supers and setup
2872 * our ring pointer to the oldest one
2874 generation = btrfs_super_generation(disk_super);
2875 find_oldest_super_backup(fs_info, generation);
2878 * In the long term, we'll store the compression type in the super
2879 * block, and it'll be used for per file compression control.
2881 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2883 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2889 features = btrfs_super_incompat_flags(disk_super) &
2890 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2893 "cannot mount because of unsupported optional features (%llx)",
2899 features = btrfs_super_incompat_flags(disk_super);
2900 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2901 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2902 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2903 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2904 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2906 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2907 btrfs_info(fs_info, "has skinny extents");
2910 * flag our filesystem as having big metadata blocks if
2911 * they are bigger than the page size
2913 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2914 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2916 "flagging fs with big metadata feature");
2917 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2920 nodesize = btrfs_super_nodesize(disk_super);
2921 sectorsize = btrfs_super_sectorsize(disk_super);
2922 stripesize = sectorsize;
2923 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2924 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2926 /* Cache block sizes */
2927 fs_info->nodesize = nodesize;
2928 fs_info->sectorsize = sectorsize;
2929 fs_info->stripesize = stripesize;
2932 * mixed block groups end up with duplicate but slightly offset
2933 * extent buffers for the same range. It leads to corruptions
2935 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2936 (sectorsize != nodesize)) {
2938 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2939 nodesize, sectorsize);
2944 * Needn't use the lock because there is no other task which will
2947 btrfs_set_super_incompat_flags(disk_super, features);
2949 features = btrfs_super_compat_ro_flags(disk_super) &
2950 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2951 if (!sb_rdonly(sb) && features) {
2953 "cannot mount read-write because of unsupported optional features (%llx)",
2959 ret = btrfs_init_workqueues(fs_info, fs_devices);
2962 goto fail_sb_buffer;
2965 sb->s_bdi->congested_fn = btrfs_congested_fn;
2966 sb->s_bdi->congested_data = fs_info;
2967 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2968 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2969 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2970 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2972 sb->s_blocksize = sectorsize;
2973 sb->s_blocksize_bits = blksize_bits(sectorsize);
2974 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2976 mutex_lock(&fs_info->chunk_mutex);
2977 ret = btrfs_read_sys_array(fs_info);
2978 mutex_unlock(&fs_info->chunk_mutex);
2980 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2981 goto fail_sb_buffer;
2984 generation = btrfs_super_chunk_root_generation(disk_super);
2985 level = btrfs_super_chunk_root_level(disk_super);
2987 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2989 chunk_root->node = read_tree_block(fs_info,
2990 btrfs_super_chunk_root(disk_super),
2991 generation, level, NULL);
2992 if (IS_ERR(chunk_root->node) ||
2993 !extent_buffer_uptodate(chunk_root->node)) {
2994 btrfs_err(fs_info, "failed to read chunk root");
2995 if (!IS_ERR(chunk_root->node))
2996 free_extent_buffer(chunk_root->node);
2997 chunk_root->node = NULL;
2998 goto fail_tree_roots;
3000 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3001 chunk_root->commit_root = btrfs_root_node(chunk_root);
3003 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3004 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3006 ret = btrfs_read_chunk_tree(fs_info);
3008 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3009 goto fail_tree_roots;
3013 * Keep the devid that is marked to be the target device for the
3014 * device replace procedure
3016 btrfs_free_extra_devids(fs_devices, 0);
3018 if (!fs_devices->latest_bdev) {
3019 btrfs_err(fs_info, "failed to read devices");
3020 goto fail_tree_roots;
3024 generation = btrfs_super_generation(disk_super);
3025 level = btrfs_super_root_level(disk_super);
3027 tree_root->node = read_tree_block(fs_info,
3028 btrfs_super_root(disk_super),
3029 generation, level, NULL);
3030 if (IS_ERR(tree_root->node) ||
3031 !extent_buffer_uptodate(tree_root->node)) {
3032 btrfs_warn(fs_info, "failed to read tree root");
3033 if (!IS_ERR(tree_root->node))
3034 free_extent_buffer(tree_root->node);
3035 tree_root->node = NULL;
3036 goto recovery_tree_root;
3039 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3040 tree_root->commit_root = btrfs_root_node(tree_root);
3041 btrfs_set_root_refs(&tree_root->root_item, 1);
3043 mutex_lock(&tree_root->objectid_mutex);
3044 ret = btrfs_find_highest_objectid(tree_root,
3045 &tree_root->highest_objectid);
3047 mutex_unlock(&tree_root->objectid_mutex);
3048 goto recovery_tree_root;
3051 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3053 mutex_unlock(&tree_root->objectid_mutex);
3055 ret = btrfs_read_roots(fs_info);
3057 goto recovery_tree_root;
3059 fs_info->generation = generation;
3060 fs_info->last_trans_committed = generation;
3062 ret = btrfs_recover_balance(fs_info);
3064 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3065 goto fail_block_groups;
3068 ret = btrfs_init_dev_stats(fs_info);
3070 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3071 goto fail_block_groups;
3074 ret = btrfs_init_dev_replace(fs_info);
3076 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3077 goto fail_block_groups;
3080 btrfs_free_extra_devids(fs_devices, 1);
3082 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3084 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3086 goto fail_block_groups;
3089 ret = btrfs_sysfs_add_device(fs_devices);
3091 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3093 goto fail_fsdev_sysfs;
3096 ret = btrfs_sysfs_add_mounted(fs_info);
3098 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3099 goto fail_fsdev_sysfs;
3102 ret = btrfs_init_space_info(fs_info);
3104 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3108 ret = btrfs_read_block_groups(fs_info);
3110 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3114 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3116 "writeable mount is not allowed due to too many missing devices");
3120 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3122 if (IS_ERR(fs_info->cleaner_kthread))
3125 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3127 "btrfs-transaction");
3128 if (IS_ERR(fs_info->transaction_kthread))
3131 if (!btrfs_test_opt(fs_info, NOSSD) &&
3132 !fs_info->fs_devices->rotating) {
3133 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3137 * Mount does not set all options immediately, we can do it now and do
3138 * not have to wait for transaction commit
3140 btrfs_apply_pending_changes(fs_info);
3142 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3143 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3144 ret = btrfsic_mount(fs_info, fs_devices,
3145 btrfs_test_opt(fs_info,
3146 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3148 fs_info->check_integrity_print_mask);
3151 "failed to initialize integrity check module: %d",
3155 ret = btrfs_read_qgroup_config(fs_info);
3157 goto fail_trans_kthread;
3159 if (btrfs_build_ref_tree(fs_info))
3160 btrfs_err(fs_info, "couldn't build ref tree");
3162 /* do not make disk changes in broken FS or nologreplay is given */
3163 if (btrfs_super_log_root(disk_super) != 0 &&
3164 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3165 ret = btrfs_replay_log(fs_info, fs_devices);
3172 ret = btrfs_find_orphan_roots(fs_info);
3176 if (!sb_rdonly(sb)) {
3177 ret = btrfs_cleanup_fs_roots(fs_info);
3181 mutex_lock(&fs_info->cleaner_mutex);
3182 ret = btrfs_recover_relocation(tree_root);
3183 mutex_unlock(&fs_info->cleaner_mutex);
3185 btrfs_warn(fs_info, "failed to recover relocation: %d",
3192 location.objectid = BTRFS_FS_TREE_OBJECTID;
3193 location.type = BTRFS_ROOT_ITEM_KEY;
3194 location.offset = 0;
3196 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3197 if (IS_ERR(fs_info->fs_root)) {
3198 err = PTR_ERR(fs_info->fs_root);
3199 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3206 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3207 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3208 clear_free_space_tree = 1;
3209 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3210 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3211 btrfs_warn(fs_info, "free space tree is invalid");
3212 clear_free_space_tree = 1;
3215 if (clear_free_space_tree) {
3216 btrfs_info(fs_info, "clearing free space tree");
3217 ret = btrfs_clear_free_space_tree(fs_info);
3220 "failed to clear free space tree: %d", ret);
3221 close_ctree(fs_info);
3226 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3227 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3228 btrfs_info(fs_info, "creating free space tree");
3229 ret = btrfs_create_free_space_tree(fs_info);
3232 "failed to create free space tree: %d", ret);
3233 close_ctree(fs_info);
3238 down_read(&fs_info->cleanup_work_sem);
3239 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3240 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3241 up_read(&fs_info->cleanup_work_sem);
3242 close_ctree(fs_info);
3245 up_read(&fs_info->cleanup_work_sem);
3247 ret = btrfs_resume_balance_async(fs_info);
3249 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3250 close_ctree(fs_info);
3254 ret = btrfs_resume_dev_replace_async(fs_info);
3256 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3257 close_ctree(fs_info);
3261 btrfs_qgroup_rescan_resume(fs_info);
3263 if (!fs_info->uuid_root) {
3264 btrfs_info(fs_info, "creating UUID tree");
3265 ret = btrfs_create_uuid_tree(fs_info);
3268 "failed to create the UUID tree: %d", ret);
3269 close_ctree(fs_info);
3272 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3273 fs_info->generation !=
3274 btrfs_super_uuid_tree_generation(disk_super)) {
3275 btrfs_info(fs_info, "checking UUID tree");
3276 ret = btrfs_check_uuid_tree(fs_info);
3279 "failed to check the UUID tree: %d", ret);
3280 close_ctree(fs_info);
3284 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3286 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3289 * backuproot only affect mount behavior, and if open_ctree succeeded,
3290 * no need to keep the flag
3292 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3297 btrfs_free_qgroup_config(fs_info);
3299 kthread_stop(fs_info->transaction_kthread);
3300 btrfs_cleanup_transaction(fs_info);
3301 btrfs_free_fs_roots(fs_info);
3303 kthread_stop(fs_info->cleaner_kthread);
3306 * make sure we're done with the btree inode before we stop our
3309 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3312 btrfs_sysfs_remove_mounted(fs_info);
3315 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3318 btrfs_put_block_group_cache(fs_info);
3321 free_root_pointers(fs_info, 1);
3322 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3325 btrfs_stop_all_workers(fs_info);
3326 btrfs_free_block_groups(fs_info);
3329 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3331 iput(fs_info->btree_inode);
3333 percpu_counter_destroy(&fs_info->bio_counter);
3334 fail_delalloc_bytes:
3335 percpu_counter_destroy(&fs_info->delalloc_bytes);
3336 fail_dirty_metadata_bytes:
3337 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3339 cleanup_srcu_struct(&fs_info->subvol_srcu);
3341 btrfs_free_stripe_hash_table(fs_info);
3342 btrfs_close_devices(fs_info->fs_devices);
3346 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3347 goto fail_tree_roots;
3349 free_root_pointers(fs_info, 0);
3351 /* don't use the log in recovery mode, it won't be valid */
3352 btrfs_set_super_log_root(disk_super, 0);
3354 /* we can't trust the free space cache either */
3355 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3357 ret = next_root_backup(fs_info, fs_info->super_copy,
3358 &num_backups_tried, &backup_index);
3360 goto fail_block_groups;
3361 goto retry_root_backup;
3363 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3365 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3368 set_buffer_uptodate(bh);
3370 struct btrfs_device *device = (struct btrfs_device *)
3373 btrfs_warn_rl_in_rcu(device->fs_info,
3374 "lost page write due to IO error on %s",
3375 rcu_str_deref(device->name));
3376 /* note, we don't set_buffer_write_io_error because we have
3377 * our own ways of dealing with the IO errors
3379 clear_buffer_uptodate(bh);
3380 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3386 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3387 struct buffer_head **bh_ret)
3389 struct buffer_head *bh;
3390 struct btrfs_super_block *super;
3393 bytenr = btrfs_sb_offset(copy_num);
3394 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3397 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3399 * If we fail to read from the underlying devices, as of now
3400 * the best option we have is to mark it EIO.
3405 super = (struct btrfs_super_block *)bh->b_data;
3406 if (btrfs_super_bytenr(super) != bytenr ||
3407 btrfs_super_magic(super) != BTRFS_MAGIC) {
3417 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3419 struct buffer_head *bh;
3420 struct buffer_head *latest = NULL;
3421 struct btrfs_super_block *super;
3426 /* we would like to check all the supers, but that would make
3427 * a btrfs mount succeed after a mkfs from a different FS.
3428 * So, we need to add a special mount option to scan for
3429 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3431 for (i = 0; i < 1; i++) {
3432 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3436 super = (struct btrfs_super_block *)bh->b_data;
3438 if (!latest || btrfs_super_generation(super) > transid) {
3441 transid = btrfs_super_generation(super);
3448 return ERR_PTR(ret);
3454 * Write superblock @sb to the @device. Do not wait for completion, all the
3455 * buffer heads we write are pinned.
3457 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3458 * the expected device size at commit time. Note that max_mirrors must be
3459 * same for write and wait phases.
3461 * Return number of errors when buffer head is not found or submission fails.
3463 static int write_dev_supers(struct btrfs_device *device,
3464 struct btrfs_super_block *sb, int max_mirrors)
3466 struct buffer_head *bh;
3474 if (max_mirrors == 0)
3475 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3477 for (i = 0; i < max_mirrors; i++) {
3478 bytenr = btrfs_sb_offset(i);
3479 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3480 device->commit_total_bytes)
3483 btrfs_set_super_bytenr(sb, bytenr);
3486 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3487 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3488 btrfs_csum_final(crc, sb->csum);
3490 /* One reference for us, and we leave it for the caller */
3491 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3492 BTRFS_SUPER_INFO_SIZE);
3494 btrfs_err(device->fs_info,
3495 "couldn't get super buffer head for bytenr %llu",
3501 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3503 /* one reference for submit_bh */
3506 set_buffer_uptodate(bh);
3508 bh->b_end_io = btrfs_end_buffer_write_sync;
3509 bh->b_private = device;
3512 * we fua the first super. The others we allow
3515 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3516 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3517 op_flags |= REQ_FUA;
3518 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3522 return errors < i ? 0 : -1;
3526 * Wait for write completion of superblocks done by write_dev_supers,
3527 * @max_mirrors same for write and wait phases.
3529 * Return number of errors when buffer head is not found or not marked up to
3532 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3534 struct buffer_head *bh;
3537 bool primary_failed = false;
3540 if (max_mirrors == 0)
3541 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3543 for (i = 0; i < max_mirrors; i++) {
3544 bytenr = btrfs_sb_offset(i);
3545 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3546 device->commit_total_bytes)
3549 bh = __find_get_block(device->bdev,
3550 bytenr / BTRFS_BDEV_BLOCKSIZE,
3551 BTRFS_SUPER_INFO_SIZE);
3555 primary_failed = true;
3559 if (!buffer_uptodate(bh)) {
3562 primary_failed = true;
3565 /* drop our reference */
3568 /* drop the reference from the writing run */
3572 /* log error, force error return */
3573 if (primary_failed) {
3574 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3579 return errors < i ? 0 : -1;
3583 * endio for the write_dev_flush, this will wake anyone waiting
3584 * for the barrier when it is done
3586 static void btrfs_end_empty_barrier(struct bio *bio)
3588 complete(bio->bi_private);
3592 * Submit a flush request to the device if it supports it. Error handling is
3593 * done in the waiting counterpart.
3595 static void write_dev_flush(struct btrfs_device *device)
3597 struct request_queue *q = bdev_get_queue(device->bdev);
3598 struct bio *bio = device->flush_bio;
3600 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3604 bio->bi_end_io = btrfs_end_empty_barrier;
3605 bio_set_dev(bio, device->bdev);
3606 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3607 init_completion(&device->flush_wait);
3608 bio->bi_private = &device->flush_wait;
3610 btrfsic_submit_bio(bio);
3611 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3615 * If the flush bio has been submitted by write_dev_flush, wait for it.
3617 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3619 struct bio *bio = device->flush_bio;
3621 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3624 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3625 wait_for_completion_io(&device->flush_wait);
3627 return bio->bi_status;
3630 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3632 if (!btrfs_check_rw_degradable(fs_info, NULL))
3638 * send an empty flush down to each device in parallel,
3639 * then wait for them
3641 static int barrier_all_devices(struct btrfs_fs_info *info)
3643 struct list_head *head;
3644 struct btrfs_device *dev;
3645 int errors_wait = 0;
3648 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3649 /* send down all the barriers */
3650 head = &info->fs_devices->devices;
3651 list_for_each_entry(dev, head, dev_list) {
3652 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3656 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3657 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3660 write_dev_flush(dev);
3661 dev->last_flush_error = BLK_STS_OK;
3664 /* wait for all the barriers */
3665 list_for_each_entry(dev, head, dev_list) {
3666 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3672 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3673 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3676 ret = wait_dev_flush(dev);
3678 dev->last_flush_error = ret;
3679 btrfs_dev_stat_inc_and_print(dev,
3680 BTRFS_DEV_STAT_FLUSH_ERRS);
3687 * At some point we need the status of all disks
3688 * to arrive at the volume status. So error checking
3689 * is being pushed to a separate loop.
3691 return check_barrier_error(info);
3696 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3699 int min_tolerated = INT_MAX;
3701 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3702 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3703 min_tolerated = min(min_tolerated,
3704 btrfs_raid_array[BTRFS_RAID_SINGLE].
3705 tolerated_failures);
3707 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3708 if (raid_type == BTRFS_RAID_SINGLE)
3710 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3712 min_tolerated = min(min_tolerated,
3713 btrfs_raid_array[raid_type].
3714 tolerated_failures);
3717 if (min_tolerated == INT_MAX) {
3718 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3722 return min_tolerated;
3725 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3727 struct list_head *head;
3728 struct btrfs_device *dev;
3729 struct btrfs_super_block *sb;
3730 struct btrfs_dev_item *dev_item;
3734 int total_errors = 0;
3737 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3740 * max_mirrors == 0 indicates we're from commit_transaction,
3741 * not from fsync where the tree roots in fs_info have not
3742 * been consistent on disk.
3744 if (max_mirrors == 0)
3745 backup_super_roots(fs_info);
3747 sb = fs_info->super_for_commit;
3748 dev_item = &sb->dev_item;
3750 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3751 head = &fs_info->fs_devices->devices;
3752 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3755 ret = barrier_all_devices(fs_info);
3758 &fs_info->fs_devices->device_list_mutex);
3759 btrfs_handle_fs_error(fs_info, ret,
3760 "errors while submitting device barriers.");
3765 list_for_each_entry(dev, head, dev_list) {
3770 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3771 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3774 btrfs_set_stack_device_generation(dev_item, 0);
3775 btrfs_set_stack_device_type(dev_item, dev->type);
3776 btrfs_set_stack_device_id(dev_item, dev->devid);
3777 btrfs_set_stack_device_total_bytes(dev_item,
3778 dev->commit_total_bytes);
3779 btrfs_set_stack_device_bytes_used(dev_item,
3780 dev->commit_bytes_used);
3781 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3782 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3783 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3784 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3785 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3787 flags = btrfs_super_flags(sb);
3788 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3790 ret = btrfs_validate_write_super(fs_info, sb);
3792 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3793 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3794 "unexpected superblock corruption detected");
3798 ret = write_dev_supers(dev, sb, max_mirrors);
3802 if (total_errors > max_errors) {
3803 btrfs_err(fs_info, "%d errors while writing supers",
3805 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3807 /* FUA is masked off if unsupported and can't be the reason */
3808 btrfs_handle_fs_error(fs_info, -EIO,
3809 "%d errors while writing supers",
3815 list_for_each_entry(dev, head, dev_list) {
3818 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3819 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3822 ret = wait_dev_supers(dev, max_mirrors);
3826 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3827 if (total_errors > max_errors) {
3828 btrfs_handle_fs_error(fs_info, -EIO,
3829 "%d errors while writing supers",
3836 /* Drop a fs root from the radix tree and free it. */
3837 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3838 struct btrfs_root *root)
3840 spin_lock(&fs_info->fs_roots_radix_lock);
3841 radix_tree_delete(&fs_info->fs_roots_radix,
3842 (unsigned long)root->root_key.objectid);
3843 spin_unlock(&fs_info->fs_roots_radix_lock);
3845 if (btrfs_root_refs(&root->root_item) == 0)
3846 synchronize_srcu(&fs_info->subvol_srcu);
3848 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3849 btrfs_free_log(NULL, root);
3850 if (root->reloc_root) {
3851 free_extent_buffer(root->reloc_root->node);
3852 free_extent_buffer(root->reloc_root->commit_root);
3853 btrfs_put_fs_root(root->reloc_root);
3854 root->reloc_root = NULL;
3858 if (root->free_ino_pinned)
3859 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3860 if (root->free_ino_ctl)
3861 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3865 static void free_fs_root(struct btrfs_root *root)
3867 iput(root->ino_cache_inode);
3868 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3870 free_anon_bdev(root->anon_dev);
3871 if (root->subv_writers)
3872 btrfs_free_subvolume_writers(root->subv_writers);
3873 free_extent_buffer(root->node);
3874 free_extent_buffer(root->commit_root);
3875 kfree(root->free_ino_ctl);
3876 kfree(root->free_ino_pinned);
3878 btrfs_put_fs_root(root);
3881 void btrfs_free_fs_root(struct btrfs_root *root)
3886 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3888 u64 root_objectid = 0;
3889 struct btrfs_root *gang[8];
3892 unsigned int ret = 0;
3896 index = srcu_read_lock(&fs_info->subvol_srcu);
3897 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3898 (void **)gang, root_objectid,
3901 srcu_read_unlock(&fs_info->subvol_srcu, index);
3904 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3906 for (i = 0; i < ret; i++) {
3907 /* Avoid to grab roots in dead_roots */
3908 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3912 /* grab all the search result for later use */
3913 gang[i] = btrfs_grab_fs_root(gang[i]);
3915 srcu_read_unlock(&fs_info->subvol_srcu, index);
3917 for (i = 0; i < ret; i++) {
3920 root_objectid = gang[i]->root_key.objectid;
3921 err = btrfs_orphan_cleanup(gang[i]);
3924 btrfs_put_fs_root(gang[i]);
3929 /* release the uncleaned roots due to error */
3930 for (; i < ret; i++) {
3932 btrfs_put_fs_root(gang[i]);
3937 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3939 struct btrfs_root *root = fs_info->tree_root;
3940 struct btrfs_trans_handle *trans;
3942 mutex_lock(&fs_info->cleaner_mutex);
3943 btrfs_run_delayed_iputs(fs_info);
3944 mutex_unlock(&fs_info->cleaner_mutex);
3945 wake_up_process(fs_info->cleaner_kthread);
3947 /* wait until ongoing cleanup work done */
3948 down_write(&fs_info->cleanup_work_sem);
3949 up_write(&fs_info->cleanup_work_sem);
3951 trans = btrfs_join_transaction(root);
3953 return PTR_ERR(trans);
3954 return btrfs_commit_transaction(trans);
3957 void close_ctree(struct btrfs_fs_info *fs_info)
3961 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3963 /* wait for the qgroup rescan worker to stop */
3964 btrfs_qgroup_wait_for_completion(fs_info, false);
3966 /* wait for the uuid_scan task to finish */
3967 down(&fs_info->uuid_tree_rescan_sem);
3968 /* avoid complains from lockdep et al., set sem back to initial state */
3969 up(&fs_info->uuid_tree_rescan_sem);
3971 /* pause restriper - we want to resume on mount */
3972 btrfs_pause_balance(fs_info);
3974 btrfs_dev_replace_suspend_for_unmount(fs_info);
3976 btrfs_scrub_cancel(fs_info);
3978 /* wait for any defraggers to finish */
3979 wait_event(fs_info->transaction_wait,
3980 (atomic_read(&fs_info->defrag_running) == 0));
3982 /* clear out the rbtree of defraggable inodes */
3983 btrfs_cleanup_defrag_inodes(fs_info);
3985 cancel_work_sync(&fs_info->async_reclaim_work);
3987 if (!sb_rdonly(fs_info->sb)) {
3989 * If the cleaner thread is stopped and there are
3990 * block groups queued for removal, the deletion will be
3991 * skipped when we quit the cleaner thread.
3993 btrfs_delete_unused_bgs(fs_info);
3995 ret = btrfs_commit_super(fs_info);
3997 btrfs_err(fs_info, "commit super ret %d", ret);
4000 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4001 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4002 btrfs_error_commit_super(fs_info);
4004 kthread_stop(fs_info->transaction_kthread);
4005 kthread_stop(fs_info->cleaner_kthread);
4007 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4009 btrfs_free_qgroup_config(fs_info);
4010 ASSERT(list_empty(&fs_info->delalloc_roots));
4012 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4013 btrfs_info(fs_info, "at unmount delalloc count %lld",
4014 percpu_counter_sum(&fs_info->delalloc_bytes));
4017 btrfs_sysfs_remove_mounted(fs_info);
4018 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4020 btrfs_free_fs_roots(fs_info);
4022 btrfs_put_block_group_cache(fs_info);
4025 * we must make sure there is not any read request to
4026 * submit after we stopping all workers.
4028 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4029 btrfs_stop_all_workers(fs_info);
4031 btrfs_free_block_groups(fs_info);
4033 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4034 free_root_pointers(fs_info, 1);
4036 iput(fs_info->btree_inode);
4038 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4039 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4040 btrfsic_unmount(fs_info->fs_devices);
4043 btrfs_close_devices(fs_info->fs_devices);
4044 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4046 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4047 percpu_counter_destroy(&fs_info->delalloc_bytes);
4048 percpu_counter_destroy(&fs_info->bio_counter);
4049 cleanup_srcu_struct(&fs_info->subvol_srcu);
4051 btrfs_free_stripe_hash_table(fs_info);
4052 btrfs_free_ref_cache(fs_info);
4054 while (!list_empty(&fs_info->pinned_chunks)) {
4055 struct extent_map *em;
4057 em = list_first_entry(&fs_info->pinned_chunks,
4058 struct extent_map, list);
4059 list_del_init(&em->list);
4060 free_extent_map(em);
4064 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4068 struct inode *btree_inode = buf->pages[0]->mapping->host;
4070 ret = extent_buffer_uptodate(buf);
4074 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4075 parent_transid, atomic);
4081 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4083 struct btrfs_fs_info *fs_info;
4084 struct btrfs_root *root;
4085 u64 transid = btrfs_header_generation(buf);
4088 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4090 * This is a fast path so only do this check if we have sanity tests
4091 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4092 * outside of the sanity tests.
4094 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4097 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4098 fs_info = root->fs_info;
4099 btrfs_assert_tree_locked(buf);
4100 if (transid != fs_info->generation)
4101 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4102 buf->start, transid, fs_info->generation);
4103 was_dirty = set_extent_buffer_dirty(buf);
4105 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4107 fs_info->dirty_metadata_batch);
4108 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4110 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4111 * but item data not updated.
4112 * So here we should only check item pointers, not item data.
4114 if (btrfs_header_level(buf) == 0 &&
4115 btrfs_check_leaf_relaxed(fs_info, buf)) {
4116 btrfs_print_leaf(buf);
4122 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4126 * looks as though older kernels can get into trouble with
4127 * this code, they end up stuck in balance_dirty_pages forever
4131 if (current->flags & PF_MEMALLOC)
4135 btrfs_balance_delayed_items(fs_info);
4137 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4138 BTRFS_DIRTY_METADATA_THRESH);
4140 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4144 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4146 __btrfs_btree_balance_dirty(fs_info, 1);
4149 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4151 __btrfs_btree_balance_dirty(fs_info, 0);
4154 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4155 struct btrfs_key *first_key)
4157 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4158 struct btrfs_fs_info *fs_info = root->fs_info;
4160 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4164 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4166 /* cleanup FS via transaction */
4167 btrfs_cleanup_transaction(fs_info);
4169 mutex_lock(&fs_info->cleaner_mutex);
4170 btrfs_run_delayed_iputs(fs_info);
4171 mutex_unlock(&fs_info->cleaner_mutex);
4173 down_write(&fs_info->cleanup_work_sem);
4174 up_write(&fs_info->cleanup_work_sem);
4177 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4179 struct btrfs_ordered_extent *ordered;
4181 spin_lock(&root->ordered_extent_lock);
4183 * This will just short circuit the ordered completion stuff which will
4184 * make sure the ordered extent gets properly cleaned up.
4186 list_for_each_entry(ordered, &root->ordered_extents,
4188 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4189 spin_unlock(&root->ordered_extent_lock);
4192 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4194 struct btrfs_root *root;
4195 struct list_head splice;
4197 INIT_LIST_HEAD(&splice);
4199 spin_lock(&fs_info->ordered_root_lock);
4200 list_splice_init(&fs_info->ordered_roots, &splice);
4201 while (!list_empty(&splice)) {
4202 root = list_first_entry(&splice, struct btrfs_root,
4204 list_move_tail(&root->ordered_root,
4205 &fs_info->ordered_roots);
4207 spin_unlock(&fs_info->ordered_root_lock);
4208 btrfs_destroy_ordered_extents(root);
4211 spin_lock(&fs_info->ordered_root_lock);
4213 spin_unlock(&fs_info->ordered_root_lock);
4216 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4217 struct btrfs_fs_info *fs_info)
4219 struct rb_node *node;
4220 struct btrfs_delayed_ref_root *delayed_refs;
4221 struct btrfs_delayed_ref_node *ref;
4224 delayed_refs = &trans->delayed_refs;
4226 spin_lock(&delayed_refs->lock);
4227 if (atomic_read(&delayed_refs->num_entries) == 0) {
4228 spin_unlock(&delayed_refs->lock);
4229 btrfs_info(fs_info, "delayed_refs has NO entry");
4233 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4234 struct btrfs_delayed_ref_head *head;
4236 bool pin_bytes = false;
4238 head = rb_entry(node, struct btrfs_delayed_ref_head,
4240 if (!mutex_trylock(&head->mutex)) {
4241 refcount_inc(&head->refs);
4242 spin_unlock(&delayed_refs->lock);
4244 mutex_lock(&head->mutex);
4245 mutex_unlock(&head->mutex);
4246 btrfs_put_delayed_ref_head(head);
4247 spin_lock(&delayed_refs->lock);
4250 spin_lock(&head->lock);
4251 while ((n = rb_first(&head->ref_tree)) != NULL) {
4252 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4255 rb_erase(&ref->ref_node, &head->ref_tree);
4256 RB_CLEAR_NODE(&ref->ref_node);
4257 if (!list_empty(&ref->add_list))
4258 list_del(&ref->add_list);
4259 atomic_dec(&delayed_refs->num_entries);
4260 btrfs_put_delayed_ref(ref);
4262 if (head->must_insert_reserved)
4264 btrfs_free_delayed_extent_op(head->extent_op);
4265 delayed_refs->num_heads--;
4266 if (head->processing == 0)
4267 delayed_refs->num_heads_ready--;
4268 atomic_dec(&delayed_refs->num_entries);
4269 rb_erase(&head->href_node, &delayed_refs->href_root);
4270 RB_CLEAR_NODE(&head->href_node);
4271 spin_unlock(&head->lock);
4272 spin_unlock(&delayed_refs->lock);
4273 mutex_unlock(&head->mutex);
4276 btrfs_pin_extent(fs_info, head->bytenr,
4277 head->num_bytes, 1);
4278 btrfs_put_delayed_ref_head(head);
4280 spin_lock(&delayed_refs->lock);
4283 spin_unlock(&delayed_refs->lock);
4288 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4290 struct btrfs_inode *btrfs_inode;
4291 struct list_head splice;
4293 INIT_LIST_HEAD(&splice);
4295 spin_lock(&root->delalloc_lock);
4296 list_splice_init(&root->delalloc_inodes, &splice);
4298 while (!list_empty(&splice)) {
4299 struct inode *inode = NULL;
4300 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4302 __btrfs_del_delalloc_inode(root, btrfs_inode);
4303 spin_unlock(&root->delalloc_lock);
4306 * Make sure we get a live inode and that it'll not disappear
4309 inode = igrab(&btrfs_inode->vfs_inode);
4311 invalidate_inode_pages2(inode->i_mapping);
4314 spin_lock(&root->delalloc_lock);
4316 spin_unlock(&root->delalloc_lock);
4319 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4321 struct btrfs_root *root;
4322 struct list_head splice;
4324 INIT_LIST_HEAD(&splice);
4326 spin_lock(&fs_info->delalloc_root_lock);
4327 list_splice_init(&fs_info->delalloc_roots, &splice);
4328 while (!list_empty(&splice)) {
4329 root = list_first_entry(&splice, struct btrfs_root,
4331 root = btrfs_grab_fs_root(root);
4333 spin_unlock(&fs_info->delalloc_root_lock);
4335 btrfs_destroy_delalloc_inodes(root);
4336 btrfs_put_fs_root(root);
4338 spin_lock(&fs_info->delalloc_root_lock);
4340 spin_unlock(&fs_info->delalloc_root_lock);
4343 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4344 struct extent_io_tree *dirty_pages,
4348 struct extent_buffer *eb;
4353 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4358 clear_extent_bits(dirty_pages, start, end, mark);
4359 while (start <= end) {
4360 eb = find_extent_buffer(fs_info, start);
4361 start += fs_info->nodesize;
4364 wait_on_extent_buffer_writeback(eb);
4366 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4368 clear_extent_buffer_dirty(eb);
4369 free_extent_buffer_stale(eb);
4376 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4377 struct extent_io_tree *pinned_extents)
4379 struct extent_io_tree *unpin;
4385 unpin = pinned_extents;
4388 ret = find_first_extent_bit(unpin, 0, &start, &end,
4389 EXTENT_DIRTY, NULL);
4393 clear_extent_dirty(unpin, start, end);
4394 btrfs_error_unpin_extent_range(fs_info, start, end);
4399 if (unpin == &fs_info->freed_extents[0])
4400 unpin = &fs_info->freed_extents[1];
4402 unpin = &fs_info->freed_extents[0];
4410 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4412 struct inode *inode;
4414 inode = cache->io_ctl.inode;
4416 invalidate_inode_pages2(inode->i_mapping);
4417 BTRFS_I(inode)->generation = 0;
4418 cache->io_ctl.inode = NULL;
4421 btrfs_put_block_group(cache);
4424 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4425 struct btrfs_fs_info *fs_info)
4427 struct btrfs_block_group_cache *cache;
4429 spin_lock(&cur_trans->dirty_bgs_lock);
4430 while (!list_empty(&cur_trans->dirty_bgs)) {
4431 cache = list_first_entry(&cur_trans->dirty_bgs,
4432 struct btrfs_block_group_cache,
4435 if (!list_empty(&cache->io_list)) {
4436 spin_unlock(&cur_trans->dirty_bgs_lock);
4437 list_del_init(&cache->io_list);
4438 btrfs_cleanup_bg_io(cache);
4439 spin_lock(&cur_trans->dirty_bgs_lock);
4442 list_del_init(&cache->dirty_list);
4443 spin_lock(&cache->lock);
4444 cache->disk_cache_state = BTRFS_DC_ERROR;
4445 spin_unlock(&cache->lock);
4447 spin_unlock(&cur_trans->dirty_bgs_lock);
4448 btrfs_put_block_group(cache);
4449 spin_lock(&cur_trans->dirty_bgs_lock);
4451 spin_unlock(&cur_trans->dirty_bgs_lock);
4454 * Refer to the definition of io_bgs member for details why it's safe
4455 * to use it without any locking
4457 while (!list_empty(&cur_trans->io_bgs)) {
4458 cache = list_first_entry(&cur_trans->io_bgs,
4459 struct btrfs_block_group_cache,
4462 list_del_init(&cache->io_list);
4463 spin_lock(&cache->lock);
4464 cache->disk_cache_state = BTRFS_DC_ERROR;
4465 spin_unlock(&cache->lock);
4466 btrfs_cleanup_bg_io(cache);
4470 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4471 struct btrfs_fs_info *fs_info)
4473 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4474 ASSERT(list_empty(&cur_trans->dirty_bgs));
4475 ASSERT(list_empty(&cur_trans->io_bgs));
4477 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4479 cur_trans->state = TRANS_STATE_COMMIT_START;
4480 wake_up(&fs_info->transaction_blocked_wait);
4482 cur_trans->state = TRANS_STATE_UNBLOCKED;
4483 wake_up(&fs_info->transaction_wait);
4485 btrfs_destroy_delayed_inodes(fs_info);
4486 btrfs_assert_delayed_root_empty(fs_info);
4488 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4490 btrfs_destroy_pinned_extent(fs_info,
4491 fs_info->pinned_extents);
4493 cur_trans->state =TRANS_STATE_COMPLETED;
4494 wake_up(&cur_trans->commit_wait);
4497 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4499 struct btrfs_transaction *t;
4501 mutex_lock(&fs_info->transaction_kthread_mutex);
4503 spin_lock(&fs_info->trans_lock);
4504 while (!list_empty(&fs_info->trans_list)) {
4505 t = list_first_entry(&fs_info->trans_list,
4506 struct btrfs_transaction, list);
4507 if (t->state >= TRANS_STATE_COMMIT_START) {
4508 refcount_inc(&t->use_count);
4509 spin_unlock(&fs_info->trans_lock);
4510 btrfs_wait_for_commit(fs_info, t->transid);
4511 btrfs_put_transaction(t);
4512 spin_lock(&fs_info->trans_lock);
4515 if (t == fs_info->running_transaction) {
4516 t->state = TRANS_STATE_COMMIT_DOING;
4517 spin_unlock(&fs_info->trans_lock);
4519 * We wait for 0 num_writers since we don't hold a trans
4520 * handle open currently for this transaction.
4522 wait_event(t->writer_wait,
4523 atomic_read(&t->num_writers) == 0);
4525 spin_unlock(&fs_info->trans_lock);
4527 btrfs_cleanup_one_transaction(t, fs_info);
4529 spin_lock(&fs_info->trans_lock);
4530 if (t == fs_info->running_transaction)
4531 fs_info->running_transaction = NULL;
4532 list_del_init(&t->list);
4533 spin_unlock(&fs_info->trans_lock);
4535 btrfs_put_transaction(t);
4536 trace_btrfs_transaction_commit(fs_info->tree_root);
4537 spin_lock(&fs_info->trans_lock);
4539 spin_unlock(&fs_info->trans_lock);
4540 btrfs_destroy_all_ordered_extents(fs_info);
4541 btrfs_destroy_delayed_inodes(fs_info);
4542 btrfs_assert_delayed_root_empty(fs_info);
4543 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4544 btrfs_destroy_all_delalloc_inodes(fs_info);
4545 mutex_unlock(&fs_info->transaction_kthread_mutex);
4550 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4552 struct inode *inode = private_data;
4553 return btrfs_sb(inode->i_sb);
4556 static const struct extent_io_ops btree_extent_io_ops = {
4557 /* mandatory callbacks */
4558 .submit_bio_hook = btree_submit_bio_hook,
4559 .readpage_end_io_hook = btree_readpage_end_io_hook,
4560 /* note we're sharing with inode.c for the merge bio hook */
4561 .merge_bio_hook = btrfs_merge_bio_hook,
4562 .readpage_io_failed_hook = btree_io_failed_hook,
4563 .set_range_writeback = btrfs_set_range_writeback,
4564 .tree_fs_info = btree_fs_info,
4566 /* optional callbacks */