1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
60 fix mmap readahead to honour policy and enable policy for any page cache
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
65 handle mremap for shared memory (currently ignored for the policy)
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
106 #include <asm/tlbflush.h>
108 #include <linux/uaccess.h>
110 #include "internal.h"
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
119 /* Highest zone. An specific allocation for a zone below that is not
121 enum zone_type policy_zone = 0;
124 * run-time system-wide default policy => local allocation
126 static struct mempolicy default_policy = {
127 .refcnt = ATOMIC_INIT(1), /* never free it */
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
134 * numa_nearest_node - Find nearest node by state
135 * @node: Node id to start the search
136 * @state: State to filter the search
138 * Lookup the closest node by distance if @nid is not in state.
140 * Return: this @node if it is in state, otherwise the closest node by distance
142 int numa_nearest_node(int node, unsigned int state)
144 int min_dist = INT_MAX, dist, n, min_node;
146 if (state >= NR_NODE_STATES)
149 if (node == NUMA_NO_NODE || node_state(node, state))
153 for_each_node_state(n, state) {
154 dist = node_distance(node, n);
155 if (dist < min_dist) {
163 EXPORT_SYMBOL_GPL(numa_nearest_node);
165 struct mempolicy *get_task_policy(struct task_struct *p)
167 struct mempolicy *pol = p->mempolicy;
173 node = numa_node_id();
174 if (node != NUMA_NO_NODE) {
175 pol = &preferred_node_policy[node];
176 /* preferred_node_policy is not initialised early in boot */
181 return &default_policy;
184 static const struct mempolicy_operations {
185 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
186 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
187 } mpol_ops[MPOL_MAX];
189 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
191 return pol->flags & MPOL_MODE_FLAGS;
194 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
195 const nodemask_t *rel)
198 nodes_fold(tmp, *orig, nodes_weight(*rel));
199 nodes_onto(*ret, tmp, *rel);
202 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
204 if (nodes_empty(*nodes))
210 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
212 if (nodes_empty(*nodes))
215 nodes_clear(pol->nodes);
216 node_set(first_node(*nodes), pol->nodes);
221 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222 * any, for the new policy. mpol_new() has already validated the nodes
223 * parameter with respect to the policy mode and flags.
225 * Must be called holding task's alloc_lock to protect task's mems_allowed
226 * and mempolicy. May also be called holding the mmap_lock for write.
228 static int mpol_set_nodemask(struct mempolicy *pol,
229 const nodemask_t *nodes, struct nodemask_scratch *nsc)
234 * Default (pol==NULL) resp. local memory policies are not a
235 * subject of any remapping. They also do not need any special
238 if (!pol || pol->mode == MPOL_LOCAL)
242 nodes_and(nsc->mask1,
243 cpuset_current_mems_allowed, node_states[N_MEMORY]);
247 if (pol->flags & MPOL_F_RELATIVE_NODES)
248 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
250 nodes_and(nsc->mask2, *nodes, nsc->mask1);
252 if (mpol_store_user_nodemask(pol))
253 pol->w.user_nodemask = *nodes;
255 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
257 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
262 * This function just creates a new policy, does some check and simple
263 * initialization. You must invoke mpol_set_nodemask() to set nodes.
265 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
268 struct mempolicy *policy;
270 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
271 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
273 if (mode == MPOL_DEFAULT) {
274 if (nodes && !nodes_empty(*nodes))
275 return ERR_PTR(-EINVAL);
281 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
282 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
283 * All other modes require a valid pointer to a non-empty nodemask.
285 if (mode == MPOL_PREFERRED) {
286 if (nodes_empty(*nodes)) {
287 if (((flags & MPOL_F_STATIC_NODES) ||
288 (flags & MPOL_F_RELATIVE_NODES)))
289 return ERR_PTR(-EINVAL);
293 } else if (mode == MPOL_LOCAL) {
294 if (!nodes_empty(*nodes) ||
295 (flags & MPOL_F_STATIC_NODES) ||
296 (flags & MPOL_F_RELATIVE_NODES))
297 return ERR_PTR(-EINVAL);
298 } else if (nodes_empty(*nodes))
299 return ERR_PTR(-EINVAL);
300 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
302 return ERR_PTR(-ENOMEM);
303 atomic_set(&policy->refcnt, 1);
305 policy->flags = flags;
306 policy->home_node = NUMA_NO_NODE;
311 /* Slow path of a mpol destructor. */
312 void __mpol_put(struct mempolicy *p)
314 if (!atomic_dec_and_test(&p->refcnt))
316 kmem_cache_free(policy_cache, p);
319 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
323 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
327 if (pol->flags & MPOL_F_STATIC_NODES)
328 nodes_and(tmp, pol->w.user_nodemask, *nodes);
329 else if (pol->flags & MPOL_F_RELATIVE_NODES)
330 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
334 pol->w.cpuset_mems_allowed = *nodes;
337 if (nodes_empty(tmp))
343 static void mpol_rebind_preferred(struct mempolicy *pol,
344 const nodemask_t *nodes)
346 pol->w.cpuset_mems_allowed = *nodes;
350 * mpol_rebind_policy - Migrate a policy to a different set of nodes
352 * Per-vma policies are protected by mmap_lock. Allocations using per-task
353 * policies are protected by task->mems_allowed_seq to prevent a premature
354 * OOM/allocation failure due to parallel nodemask modification.
356 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
358 if (!pol || pol->mode == MPOL_LOCAL)
360 if (!mpol_store_user_nodemask(pol) &&
361 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
364 mpol_ops[pol->mode].rebind(pol, newmask);
368 * Wrapper for mpol_rebind_policy() that just requires task
369 * pointer, and updates task mempolicy.
371 * Called with task's alloc_lock held.
374 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
376 mpol_rebind_policy(tsk->mempolicy, new);
380 * Rebind each vma in mm to new nodemask.
382 * Call holding a reference to mm. Takes mm->mmap_lock during call.
385 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
387 struct vm_area_struct *vma;
388 VMA_ITERATOR(vmi, mm, 0);
391 for_each_vma(vmi, vma) {
392 vma_start_write(vma);
393 mpol_rebind_policy(vma->vm_policy, new);
395 mmap_write_unlock(mm);
398 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
400 .rebind = mpol_rebind_default,
402 [MPOL_INTERLEAVE] = {
403 .create = mpol_new_nodemask,
404 .rebind = mpol_rebind_nodemask,
407 .create = mpol_new_preferred,
408 .rebind = mpol_rebind_preferred,
411 .create = mpol_new_nodemask,
412 .rebind = mpol_rebind_nodemask,
415 .rebind = mpol_rebind_default,
417 [MPOL_PREFERRED_MANY] = {
418 .create = mpol_new_nodemask,
419 .rebind = mpol_rebind_preferred,
423 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
424 unsigned long flags);
427 struct list_head *pagelist;
432 struct vm_area_struct *first;
437 * Check if the folio's nid is in qp->nmask.
439 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
440 * in the invert of qp->nmask.
442 static inline bool queue_folio_required(struct folio *folio,
443 struct queue_pages *qp)
445 int nid = folio_nid(folio);
446 unsigned long flags = qp->flags;
448 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
452 * queue_folios_pmd() has three possible return values:
453 * 0 - folios are placed on the right node or queued successfully, or
454 * special page is met, i.e. zero page, or unmovable page is found
455 * but continue walking (indicated by queue_pages.has_unmovable).
456 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
457 * existing folio was already on a node that does not follow the
460 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
461 unsigned long end, struct mm_walk *walk)
466 struct queue_pages *qp = walk->private;
469 if (unlikely(is_pmd_migration_entry(*pmd))) {
473 folio = pfn_folio(pmd_pfn(*pmd));
474 if (is_huge_zero_page(&folio->page)) {
475 walk->action = ACTION_CONTINUE;
478 if (!queue_folio_required(folio, qp))
482 /* go to folio migration */
483 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
484 if (!vma_migratable(walk->vma) ||
485 migrate_folio_add(folio, qp->pagelist, flags)) {
486 qp->has_unmovable = true;
497 * Scan through pages checking if pages follow certain conditions,
498 * and move them to the pagelist if they do.
500 * queue_folios_pte_range() has three possible return values:
501 * 0 - folios are placed on the right node or queued successfully, or
502 * special page is met, i.e. zero page, or unmovable page is found
503 * but continue walking (indicated by queue_pages.has_unmovable).
504 * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already
505 * on a node that does not follow the policy.
507 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
508 unsigned long end, struct mm_walk *walk)
510 struct vm_area_struct *vma = walk->vma;
512 struct queue_pages *qp = walk->private;
513 unsigned long flags = qp->flags;
514 pte_t *pte, *mapped_pte;
518 ptl = pmd_trans_huge_lock(pmd, vma);
520 return queue_folios_pmd(pmd, ptl, addr, end, walk);
522 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
524 walk->action = ACTION_AGAIN;
527 for (; addr != end; pte++, addr += PAGE_SIZE) {
528 ptent = ptep_get(pte);
529 if (!pte_present(ptent))
531 folio = vm_normal_folio(vma, addr, ptent);
532 if (!folio || folio_is_zone_device(folio))
535 * vm_normal_folio() filters out zero pages, but there might
536 * still be reserved folios to skip, perhaps in a VDSO.
538 if (folio_test_reserved(folio))
540 if (!queue_folio_required(folio, qp))
542 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
544 * MPOL_MF_STRICT must be specified if we get here.
545 * Continue walking vmas due to MPOL_MF_MOVE* flags.
547 if (!vma_migratable(vma))
548 qp->has_unmovable = true;
551 * Do not abort immediately since there may be
552 * temporary off LRU pages in the range. Still
553 * need migrate other LRU pages.
555 if (migrate_folio_add(folio, qp->pagelist, flags))
556 qp->has_unmovable = true;
560 pte_unmap_unlock(mapped_pte, ptl);
563 return addr != end ? -EIO : 0;
566 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
567 unsigned long addr, unsigned long end,
568 struct mm_walk *walk)
571 #ifdef CONFIG_HUGETLB_PAGE
572 struct queue_pages *qp = walk->private;
573 unsigned long flags = (qp->flags & MPOL_MF_VALID);
578 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
579 entry = huge_ptep_get(pte);
580 if (!pte_present(entry))
582 folio = pfn_folio(pte_pfn(entry));
583 if (!queue_folio_required(folio, qp))
586 if (flags == MPOL_MF_STRICT) {
588 * STRICT alone means only detecting misplaced folio and no
589 * need to further check other vma.
595 if (!vma_migratable(walk->vma)) {
597 * Must be STRICT with MOVE*, otherwise .test_walk() have
598 * stopped walking current vma.
599 * Detecting misplaced folio but allow migrating folios which
602 qp->has_unmovable = true;
607 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it
608 * is shared it is likely not worth migrating.
610 * To check if the folio is shared, ideally we want to make sure
611 * every page is mapped to the same process. Doing that is very
612 * expensive, so check the estimated mapcount of the folio instead.
614 if (flags & (MPOL_MF_MOVE_ALL) ||
615 (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 &&
616 !hugetlb_pmd_shared(pte))) {
617 if (!isolate_hugetlb(folio, qp->pagelist) &&
618 (flags & MPOL_MF_STRICT))
620 * Failed to isolate folio but allow migrating pages
621 * which have been queued.
623 qp->has_unmovable = true;
633 #ifdef CONFIG_NUMA_BALANCING
635 * This is used to mark a range of virtual addresses to be inaccessible.
636 * These are later cleared by a NUMA hinting fault. Depending on these
637 * faults, pages may be migrated for better NUMA placement.
639 * This is assuming that NUMA faults are handled using PROT_NONE. If
640 * an architecture makes a different choice, it will need further
641 * changes to the core.
643 unsigned long change_prot_numa(struct vm_area_struct *vma,
644 unsigned long addr, unsigned long end)
646 struct mmu_gather tlb;
649 tlb_gather_mmu(&tlb, vma->vm_mm);
651 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
653 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
655 tlb_finish_mmu(&tlb);
660 static unsigned long change_prot_numa(struct vm_area_struct *vma,
661 unsigned long addr, unsigned long end)
665 #endif /* CONFIG_NUMA_BALANCING */
667 static int queue_pages_test_walk(unsigned long start, unsigned long end,
668 struct mm_walk *walk)
670 struct vm_area_struct *next, *vma = walk->vma;
671 struct queue_pages *qp = walk->private;
672 unsigned long endvma = vma->vm_end;
673 unsigned long flags = qp->flags;
675 /* range check first */
676 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
680 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
681 (qp->start < vma->vm_start))
682 /* hole at head side of range */
685 next = find_vma(vma->vm_mm, vma->vm_end);
686 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
687 ((vma->vm_end < qp->end) &&
688 (!next || vma->vm_end < next->vm_start)))
689 /* hole at middle or tail of range */
693 * Need check MPOL_MF_STRICT to return -EIO if possible
694 * regardless of vma_migratable
696 if (!vma_migratable(vma) &&
697 !(flags & MPOL_MF_STRICT))
703 if (flags & MPOL_MF_LAZY) {
704 /* Similar to task_numa_work, skip inaccessible VMAs */
705 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
706 !(vma->vm_flags & VM_MIXEDMAP))
707 change_prot_numa(vma, start, endvma);
711 /* queue pages from current vma */
712 if (flags & MPOL_MF_VALID)
717 static const struct mm_walk_ops queue_pages_walk_ops = {
718 .hugetlb_entry = queue_folios_hugetlb,
719 .pmd_entry = queue_folios_pte_range,
720 .test_walk = queue_pages_test_walk,
721 .walk_lock = PGWALK_RDLOCK,
724 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
725 .hugetlb_entry = queue_folios_hugetlb,
726 .pmd_entry = queue_folios_pte_range,
727 .test_walk = queue_pages_test_walk,
728 .walk_lock = PGWALK_WRLOCK,
732 * Walk through page tables and collect pages to be migrated.
734 * If pages found in a given range are on a set of nodes (determined by
735 * @nodes and @flags,) it's isolated and queued to the pagelist which is
736 * passed via @private.
738 * queue_pages_range() has three possible return values:
739 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
741 * 0 - queue pages successfully or no misplaced page.
742 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
743 * memory range specified by nodemask and maxnode points outside
744 * your accessible address space (-EFAULT)
747 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
748 nodemask_t *nodes, unsigned long flags,
749 struct list_head *pagelist, bool lock_vma)
752 struct queue_pages qp = {
753 .pagelist = pagelist,
759 .has_unmovable = false,
761 const struct mm_walk_ops *ops = lock_vma ?
762 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
764 err = walk_page_range(mm, start, end, ops, &qp);
766 if (qp.has_unmovable)
769 /* whole range in hole */
776 * Apply policy to a single VMA
777 * This must be called with the mmap_lock held for writing.
779 static int vma_replace_policy(struct vm_area_struct *vma,
780 struct mempolicy *pol)
783 struct mempolicy *old;
784 struct mempolicy *new;
786 vma_assert_write_locked(vma);
788 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
789 vma->vm_start, vma->vm_end, vma->vm_pgoff,
790 vma->vm_ops, vma->vm_file,
791 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
797 if (vma->vm_ops && vma->vm_ops->set_policy) {
798 err = vma->vm_ops->set_policy(vma, new);
803 old = vma->vm_policy;
804 vma->vm_policy = new; /* protected by mmap_lock */
813 /* Split or merge the VMA (if required) and apply the new policy */
814 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
815 struct vm_area_struct **prev, unsigned long start,
816 unsigned long end, struct mempolicy *new_pol)
818 struct vm_area_struct *merged;
819 unsigned long vmstart, vmend;
823 vmend = min(end, vma->vm_end);
824 if (start > vma->vm_start) {
828 vmstart = vma->vm_start;
831 if (mpol_equal(vma_policy(vma), new_pol)) {
836 pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT);
837 merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags,
838 vma->anon_vma, vma->vm_file, pgoff, new_pol,
839 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
842 return vma_replace_policy(merged, new_pol);
845 if (vma->vm_start != vmstart) {
846 err = split_vma(vmi, vma, vmstart, 1);
851 if (vma->vm_end != vmend) {
852 err = split_vma(vmi, vma, vmend, 0);
858 return vma_replace_policy(vma, new_pol);
861 /* Set the process memory policy */
862 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
865 struct mempolicy *new, *old;
866 NODEMASK_SCRATCH(scratch);
872 new = mpol_new(mode, flags, nodes);
879 ret = mpol_set_nodemask(new, nodes, scratch);
881 task_unlock(current);
886 old = current->mempolicy;
887 current->mempolicy = new;
888 if (new && new->mode == MPOL_INTERLEAVE)
889 current->il_prev = MAX_NUMNODES-1;
890 task_unlock(current);
894 NODEMASK_SCRATCH_FREE(scratch);
899 * Return nodemask for policy for get_mempolicy() query
901 * Called with task's alloc_lock held
903 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
906 if (p == &default_policy)
911 case MPOL_INTERLEAVE:
913 case MPOL_PREFERRED_MANY:
917 /* return empty node mask for local allocation */
924 static int lookup_node(struct mm_struct *mm, unsigned long addr)
926 struct page *p = NULL;
929 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
931 ret = page_to_nid(p);
937 /* Retrieve NUMA policy */
938 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
939 unsigned long addr, unsigned long flags)
942 struct mm_struct *mm = current->mm;
943 struct vm_area_struct *vma = NULL;
944 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
947 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
950 if (flags & MPOL_F_MEMS_ALLOWED) {
951 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
953 *policy = 0; /* just so it's initialized */
955 *nmask = cpuset_current_mems_allowed;
956 task_unlock(current);
960 if (flags & MPOL_F_ADDR) {
962 * Do NOT fall back to task policy if the
963 * vma/shared policy at addr is NULL. We
964 * want to return MPOL_DEFAULT in this case.
967 vma = vma_lookup(mm, addr);
969 mmap_read_unlock(mm);
972 if (vma->vm_ops && vma->vm_ops->get_policy)
973 pol = vma->vm_ops->get_policy(vma, addr);
975 pol = vma->vm_policy;
980 pol = &default_policy; /* indicates default behavior */
982 if (flags & MPOL_F_NODE) {
983 if (flags & MPOL_F_ADDR) {
985 * Take a refcount on the mpol, because we are about to
986 * drop the mmap_lock, after which only "pol" remains
987 * valid, "vma" is stale.
992 mmap_read_unlock(mm);
993 err = lookup_node(mm, addr);
997 } else if (pol == current->mempolicy &&
998 pol->mode == MPOL_INTERLEAVE) {
999 *policy = next_node_in(current->il_prev, pol->nodes);
1005 *policy = pol == &default_policy ? MPOL_DEFAULT :
1008 * Internal mempolicy flags must be masked off before exposing
1009 * the policy to userspace.
1011 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1016 if (mpol_store_user_nodemask(pol)) {
1017 *nmask = pol->w.user_nodemask;
1020 get_policy_nodemask(pol, nmask);
1021 task_unlock(current);
1028 mmap_read_unlock(mm);
1030 mpol_put(pol_refcount);
1034 #ifdef CONFIG_MIGRATION
1035 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1036 unsigned long flags)
1039 * We try to migrate only unshared folios. If it is shared it
1040 * is likely not worth migrating.
1042 * To check if the folio is shared, ideally we want to make sure
1043 * every page is mapped to the same process. Doing that is very
1044 * expensive, so check the estimated mapcount of the folio instead.
1046 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1047 if (folio_isolate_lru(folio)) {
1048 list_add_tail(&folio->lru, foliolist);
1049 node_stat_mod_folio(folio,
1050 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1051 folio_nr_pages(folio));
1052 } else if (flags & MPOL_MF_STRICT) {
1054 * Non-movable folio may reach here. And, there may be
1055 * temporary off LRU folios or non-LRU movable folios.
1056 * Treat them as unmovable folios since they can't be
1057 * isolated, so they can't be moved at the moment. It
1058 * should return -EIO for this case too.
1068 * Migrate pages from one node to a target node.
1069 * Returns error or the number of pages not migrated.
1071 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1075 struct vm_area_struct *vma;
1076 LIST_HEAD(pagelist);
1078 struct migration_target_control mtc = {
1080 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1084 node_set(source, nmask);
1087 * This does not "check" the range but isolates all pages that
1088 * need migration. Between passing in the full user address
1089 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1091 vma = find_vma(mm, 0);
1092 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1093 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1094 flags | MPOL_MF_DISCONTIG_OK, &pagelist, false);
1096 if (!list_empty(&pagelist)) {
1097 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1098 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1100 putback_movable_pages(&pagelist);
1107 * Move pages between the two nodesets so as to preserve the physical
1108 * layout as much as possible.
1110 * Returns the number of page that could not be moved.
1112 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1113 const nodemask_t *to, int flags)
1119 lru_cache_disable();
1124 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1125 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1126 * bit in 'tmp', and return that <source, dest> pair for migration.
1127 * The pair of nodemasks 'to' and 'from' define the map.
1129 * If no pair of bits is found that way, fallback to picking some
1130 * pair of 'source' and 'dest' bits that are not the same. If the
1131 * 'source' and 'dest' bits are the same, this represents a node
1132 * that will be migrating to itself, so no pages need move.
1134 * If no bits are left in 'tmp', or if all remaining bits left
1135 * in 'tmp' correspond to the same bit in 'to', return false
1136 * (nothing left to migrate).
1138 * This lets us pick a pair of nodes to migrate between, such that
1139 * if possible the dest node is not already occupied by some other
1140 * source node, minimizing the risk of overloading the memory on a
1141 * node that would happen if we migrated incoming memory to a node
1142 * before migrating outgoing memory source that same node.
1144 * A single scan of tmp is sufficient. As we go, we remember the
1145 * most recent <s, d> pair that moved (s != d). If we find a pair
1146 * that not only moved, but what's better, moved to an empty slot
1147 * (d is not set in tmp), then we break out then, with that pair.
1148 * Otherwise when we finish scanning from_tmp, we at least have the
1149 * most recent <s, d> pair that moved. If we get all the way through
1150 * the scan of tmp without finding any node that moved, much less
1151 * moved to an empty node, then there is nothing left worth migrating.
1155 while (!nodes_empty(tmp)) {
1157 int source = NUMA_NO_NODE;
1160 for_each_node_mask(s, tmp) {
1163 * do_migrate_pages() tries to maintain the relative
1164 * node relationship of the pages established between
1165 * threads and memory areas.
1167 * However if the number of source nodes is not equal to
1168 * the number of destination nodes we can not preserve
1169 * this node relative relationship. In that case, skip
1170 * copying memory from a node that is in the destination
1173 * Example: [2,3,4] -> [3,4,5] moves everything.
1174 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1177 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1178 (node_isset(s, *to)))
1181 d = node_remap(s, *from, *to);
1185 source = s; /* Node moved. Memorize */
1188 /* dest not in remaining from nodes? */
1189 if (!node_isset(dest, tmp))
1192 if (source == NUMA_NO_NODE)
1195 node_clear(source, tmp);
1196 err = migrate_to_node(mm, source, dest, flags);
1202 mmap_read_unlock(mm);
1212 * Allocate a new page for page migration based on vma policy.
1213 * Start by assuming the page is mapped by the same vma as contains @start.
1214 * Search forward from there, if not. N.B., this assumes that the
1215 * list of pages handed to migrate_pages()--which is how we get here--
1216 * is in virtual address order.
1218 static struct folio *new_folio(struct folio *src, unsigned long start)
1220 struct vm_area_struct *vma;
1221 unsigned long address;
1222 VMA_ITERATOR(vmi, current->mm, start);
1223 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1225 for_each_vma(vmi, vma) {
1226 address = page_address_in_vma(&src->page, vma);
1227 if (address != -EFAULT)
1231 if (folio_test_hugetlb(src)) {
1232 return alloc_hugetlb_folio_vma(folio_hstate(src),
1236 if (folio_test_large(src))
1237 gfp = GFP_TRANSHUGE;
1240 * if !vma, vma_alloc_folio() will use task or system default policy
1242 return vma_alloc_folio(gfp, folio_order(src), vma, address,
1243 folio_test_large(src));
1247 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1248 unsigned long flags)
1253 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1254 const nodemask_t *to, int flags)
1259 static struct folio *new_folio(struct folio *src, unsigned long start)
1265 static long do_mbind(unsigned long start, unsigned long len,
1266 unsigned short mode, unsigned short mode_flags,
1267 nodemask_t *nmask, unsigned long flags)
1269 struct mm_struct *mm = current->mm;
1270 struct vm_area_struct *vma, *prev;
1271 struct vma_iterator vmi;
1272 struct mempolicy *new;
1276 LIST_HEAD(pagelist);
1278 if (flags & ~(unsigned long)MPOL_MF_VALID)
1280 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1283 if (start & ~PAGE_MASK)
1286 if (mode == MPOL_DEFAULT)
1287 flags &= ~MPOL_MF_STRICT;
1289 len = PAGE_ALIGN(len);
1297 new = mpol_new(mode, mode_flags, nmask);
1299 return PTR_ERR(new);
1301 if (flags & MPOL_MF_LAZY)
1302 new->flags |= MPOL_F_MOF;
1305 * If we are using the default policy then operation
1306 * on discontinuous address spaces is okay after all
1309 flags |= MPOL_MF_DISCONTIG_OK;
1311 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1312 start, start + len, mode, mode_flags,
1313 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1315 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1317 lru_cache_disable();
1320 NODEMASK_SCRATCH(scratch);
1322 mmap_write_lock(mm);
1323 err = mpol_set_nodemask(new, nmask, scratch);
1325 mmap_write_unlock(mm);
1328 NODEMASK_SCRATCH_FREE(scratch);
1334 * Lock the VMAs before scanning for pages to migrate, to ensure we don't
1335 * miss a concurrently inserted page.
1337 ret = queue_pages_range(mm, start, end, nmask,
1338 flags | MPOL_MF_INVERT, &pagelist, true);
1345 vma_iter_init(&vmi, mm, start);
1346 prev = vma_prev(&vmi);
1347 for_each_vma_range(vmi, vma, end) {
1348 err = mbind_range(&vmi, vma, &prev, start, end, new);
1356 if (!list_empty(&pagelist)) {
1357 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1358 nr_failed = migrate_pages(&pagelist, new_folio, NULL,
1359 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1361 putback_movable_pages(&pagelist);
1364 if (((ret > 0) || nr_failed) && (flags & MPOL_MF_STRICT))
1368 if (!list_empty(&pagelist))
1369 putback_movable_pages(&pagelist);
1372 mmap_write_unlock(mm);
1375 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1381 * User space interface with variable sized bitmaps for nodelists.
1383 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1384 unsigned long maxnode)
1386 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1389 if (in_compat_syscall())
1390 ret = compat_get_bitmap(mask,
1391 (const compat_ulong_t __user *)nmask,
1394 ret = copy_from_user(mask, nmask,
1395 nlongs * sizeof(unsigned long));
1400 if (maxnode % BITS_PER_LONG)
1401 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1406 /* Copy a node mask from user space. */
1407 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1408 unsigned long maxnode)
1411 nodes_clear(*nodes);
1412 if (maxnode == 0 || !nmask)
1414 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1418 * When the user specified more nodes than supported just check
1419 * if the non supported part is all zero, one word at a time,
1420 * starting at the end.
1422 while (maxnode > MAX_NUMNODES) {
1423 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1426 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1429 if (maxnode - bits >= MAX_NUMNODES) {
1432 maxnode = MAX_NUMNODES;
1433 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1439 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1442 /* Copy a kernel node mask to user space */
1443 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1446 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1447 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1448 bool compat = in_compat_syscall();
1451 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1453 if (copy > nbytes) {
1454 if (copy > PAGE_SIZE)
1456 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1459 maxnode = nr_node_ids;
1463 return compat_put_bitmap((compat_ulong_t __user *)mask,
1464 nodes_addr(*nodes), maxnode);
1466 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1469 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1470 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1472 *flags = *mode & MPOL_MODE_FLAGS;
1473 *mode &= ~MPOL_MODE_FLAGS;
1475 if ((unsigned int)(*mode) >= MPOL_MAX)
1477 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1479 if (*flags & MPOL_F_NUMA_BALANCING) {
1480 if (*mode != MPOL_BIND)
1482 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1487 static long kernel_mbind(unsigned long start, unsigned long len,
1488 unsigned long mode, const unsigned long __user *nmask,
1489 unsigned long maxnode, unsigned int flags)
1491 unsigned short mode_flags;
1496 start = untagged_addr(start);
1497 err = sanitize_mpol_flags(&lmode, &mode_flags);
1501 err = get_nodes(&nodes, nmask, maxnode);
1505 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1508 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1509 unsigned long, home_node, unsigned long, flags)
1511 struct mm_struct *mm = current->mm;
1512 struct vm_area_struct *vma, *prev;
1513 struct mempolicy *new, *old;
1516 VMA_ITERATOR(vmi, mm, start);
1518 start = untagged_addr(start);
1519 if (start & ~PAGE_MASK)
1522 * flags is used for future extension if any.
1528 * Check home_node is online to avoid accessing uninitialized
1531 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1534 len = PAGE_ALIGN(len);
1541 mmap_write_lock(mm);
1542 prev = vma_prev(&vmi);
1543 for_each_vma_range(vmi, vma, end) {
1545 * If any vma in the range got policy other than MPOL_BIND
1546 * or MPOL_PREFERRED_MANY we return error. We don't reset
1547 * the home node for vmas we already updated before.
1549 old = vma_policy(vma);
1552 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1556 new = mpol_dup(old);
1562 vma_start_write(vma);
1563 new->home_node = home_node;
1564 err = mbind_range(&vmi, vma, &prev, start, end, new);
1569 mmap_write_unlock(mm);
1573 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1574 unsigned long, mode, const unsigned long __user *, nmask,
1575 unsigned long, maxnode, unsigned int, flags)
1577 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1580 /* Set the process memory policy */
1581 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1582 unsigned long maxnode)
1584 unsigned short mode_flags;
1589 err = sanitize_mpol_flags(&lmode, &mode_flags);
1593 err = get_nodes(&nodes, nmask, maxnode);
1597 return do_set_mempolicy(lmode, mode_flags, &nodes);
1600 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1601 unsigned long, maxnode)
1603 return kernel_set_mempolicy(mode, nmask, maxnode);
1606 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1607 const unsigned long __user *old_nodes,
1608 const unsigned long __user *new_nodes)
1610 struct mm_struct *mm = NULL;
1611 struct task_struct *task;
1612 nodemask_t task_nodes;
1616 NODEMASK_SCRATCH(scratch);
1621 old = &scratch->mask1;
1622 new = &scratch->mask2;
1624 err = get_nodes(old, old_nodes, maxnode);
1628 err = get_nodes(new, new_nodes, maxnode);
1632 /* Find the mm_struct */
1634 task = pid ? find_task_by_vpid(pid) : current;
1640 get_task_struct(task);
1645 * Check if this process has the right to modify the specified process.
1646 * Use the regular "ptrace_may_access()" checks.
1648 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1655 task_nodes = cpuset_mems_allowed(task);
1656 /* Is the user allowed to access the target nodes? */
1657 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1662 task_nodes = cpuset_mems_allowed(current);
1663 nodes_and(*new, *new, task_nodes);
1664 if (nodes_empty(*new))
1667 err = security_task_movememory(task);
1671 mm = get_task_mm(task);
1672 put_task_struct(task);
1679 err = do_migrate_pages(mm, old, new,
1680 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1684 NODEMASK_SCRATCH_FREE(scratch);
1689 put_task_struct(task);
1694 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1695 const unsigned long __user *, old_nodes,
1696 const unsigned long __user *, new_nodes)
1698 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1702 /* Retrieve NUMA policy */
1703 static int kernel_get_mempolicy(int __user *policy,
1704 unsigned long __user *nmask,
1705 unsigned long maxnode,
1707 unsigned long flags)
1713 if (nmask != NULL && maxnode < nr_node_ids)
1716 addr = untagged_addr(addr);
1718 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1723 if (policy && put_user(pval, policy))
1727 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1732 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1733 unsigned long __user *, nmask, unsigned long, maxnode,
1734 unsigned long, addr, unsigned long, flags)
1736 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1739 bool vma_migratable(struct vm_area_struct *vma)
1741 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1745 * DAX device mappings require predictable access latency, so avoid
1746 * incurring periodic faults.
1748 if (vma_is_dax(vma))
1751 if (is_vm_hugetlb_page(vma) &&
1752 !hugepage_migration_supported(hstate_vma(vma)))
1756 * Migration allocates pages in the highest zone. If we cannot
1757 * do so then migration (at least from node to node) is not
1761 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1767 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1770 struct mempolicy *pol = NULL;
1773 if (vma->vm_ops && vma->vm_ops->get_policy) {
1774 pol = vma->vm_ops->get_policy(vma, addr);
1775 } else if (vma->vm_policy) {
1776 pol = vma->vm_policy;
1779 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1780 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1781 * count on these policies which will be dropped by
1782 * mpol_cond_put() later
1784 if (mpol_needs_cond_ref(pol))
1793 * get_vma_policy(@vma, @addr)
1794 * @vma: virtual memory area whose policy is sought
1795 * @addr: address in @vma for shared policy lookup
1797 * Returns effective policy for a VMA at specified address.
1798 * Falls back to current->mempolicy or system default policy, as necessary.
1799 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1800 * count--added by the get_policy() vm_op, as appropriate--to protect against
1801 * freeing by another task. It is the caller's responsibility to free the
1802 * extra reference for shared policies.
1804 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1807 struct mempolicy *pol = __get_vma_policy(vma, addr);
1810 pol = get_task_policy(current);
1815 bool vma_policy_mof(struct vm_area_struct *vma)
1817 struct mempolicy *pol;
1819 if (vma->vm_ops && vma->vm_ops->get_policy) {
1822 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1823 if (pol && (pol->flags & MPOL_F_MOF))
1830 pol = vma->vm_policy;
1832 pol = get_task_policy(current);
1834 return pol->flags & MPOL_F_MOF;
1837 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1839 enum zone_type dynamic_policy_zone = policy_zone;
1841 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1844 * if policy->nodes has movable memory only,
1845 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1847 * policy->nodes is intersect with node_states[N_MEMORY].
1848 * so if the following test fails, it implies
1849 * policy->nodes has movable memory only.
1851 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1852 dynamic_policy_zone = ZONE_MOVABLE;
1854 return zone >= dynamic_policy_zone;
1858 * Return a nodemask representing a mempolicy for filtering nodes for
1861 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1863 int mode = policy->mode;
1865 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1866 if (unlikely(mode == MPOL_BIND) &&
1867 apply_policy_zone(policy, gfp_zone(gfp)) &&
1868 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1869 return &policy->nodes;
1871 if (mode == MPOL_PREFERRED_MANY)
1872 return &policy->nodes;
1878 * Return the preferred node id for 'prefer' mempolicy, and return
1879 * the given id for all other policies.
1881 * policy_node() is always coupled with policy_nodemask(), which
1882 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1884 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1886 if (policy->mode == MPOL_PREFERRED) {
1887 nd = first_node(policy->nodes);
1890 * __GFP_THISNODE shouldn't even be used with the bind policy
1891 * because we might easily break the expectation to stay on the
1892 * requested node and not break the policy.
1894 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1897 if ((policy->mode == MPOL_BIND ||
1898 policy->mode == MPOL_PREFERRED_MANY) &&
1899 policy->home_node != NUMA_NO_NODE)
1900 return policy->home_node;
1905 /* Do dynamic interleaving for a process */
1906 static unsigned interleave_nodes(struct mempolicy *policy)
1909 struct task_struct *me = current;
1911 next = next_node_in(me->il_prev, policy->nodes);
1912 if (next < MAX_NUMNODES)
1918 * Depending on the memory policy provide a node from which to allocate the
1921 unsigned int mempolicy_slab_node(void)
1923 struct mempolicy *policy;
1924 int node = numa_mem_id();
1929 policy = current->mempolicy;
1933 switch (policy->mode) {
1934 case MPOL_PREFERRED:
1935 return first_node(policy->nodes);
1937 case MPOL_INTERLEAVE:
1938 return interleave_nodes(policy);
1941 case MPOL_PREFERRED_MANY:
1946 * Follow bind policy behavior and start allocation at the
1949 struct zonelist *zonelist;
1950 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1951 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1952 z = first_zones_zonelist(zonelist, highest_zoneidx,
1954 return z->zone ? zone_to_nid(z->zone) : node;
1965 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1966 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1967 * number of present nodes.
1969 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1971 nodemask_t nodemask = pol->nodes;
1972 unsigned int target, nnodes;
1976 * The barrier will stabilize the nodemask in a register or on
1977 * the stack so that it will stop changing under the code.
1979 * Between first_node() and next_node(), pol->nodes could be changed
1980 * by other threads. So we put pol->nodes in a local stack.
1984 nnodes = nodes_weight(nodemask);
1986 return numa_node_id();
1987 target = (unsigned int)n % nnodes;
1988 nid = first_node(nodemask);
1989 for (i = 0; i < target; i++)
1990 nid = next_node(nid, nodemask);
1994 /* Determine a node number for interleave */
1995 static inline unsigned interleave_nid(struct mempolicy *pol,
1996 struct vm_area_struct *vma, unsigned long addr, int shift)
2002 * for small pages, there is no difference between
2003 * shift and PAGE_SHIFT, so the bit-shift is safe.
2004 * for huge pages, since vm_pgoff is in units of small
2005 * pages, we need to shift off the always 0 bits to get
2008 BUG_ON(shift < PAGE_SHIFT);
2009 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2010 off += (addr - vma->vm_start) >> shift;
2011 return offset_il_node(pol, off);
2013 return interleave_nodes(pol);
2016 #ifdef CONFIG_HUGETLBFS
2018 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2019 * @vma: virtual memory area whose policy is sought
2020 * @addr: address in @vma for shared policy lookup and interleave policy
2021 * @gfp_flags: for requested zone
2022 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2023 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2025 * Returns a nid suitable for a huge page allocation and a pointer
2026 * to the struct mempolicy for conditional unref after allocation.
2027 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2028 * to the mempolicy's @nodemask for filtering the zonelist.
2030 * Must be protected by read_mems_allowed_begin()
2032 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2033 struct mempolicy **mpol, nodemask_t **nodemask)
2038 *mpol = get_vma_policy(vma, addr);
2040 mode = (*mpol)->mode;
2042 if (unlikely(mode == MPOL_INTERLEAVE)) {
2043 nid = interleave_nid(*mpol, vma, addr,
2044 huge_page_shift(hstate_vma(vma)));
2046 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2047 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2048 *nodemask = &(*mpol)->nodes;
2054 * init_nodemask_of_mempolicy
2056 * If the current task's mempolicy is "default" [NULL], return 'false'
2057 * to indicate default policy. Otherwise, extract the policy nodemask
2058 * for 'bind' or 'interleave' policy into the argument nodemask, or
2059 * initialize the argument nodemask to contain the single node for
2060 * 'preferred' or 'local' policy and return 'true' to indicate presence
2061 * of non-default mempolicy.
2063 * We don't bother with reference counting the mempolicy [mpol_get/put]
2064 * because the current task is examining it's own mempolicy and a task's
2065 * mempolicy is only ever changed by the task itself.
2067 * N.B., it is the caller's responsibility to free a returned nodemask.
2069 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2071 struct mempolicy *mempolicy;
2073 if (!(mask && current->mempolicy))
2077 mempolicy = current->mempolicy;
2078 switch (mempolicy->mode) {
2079 case MPOL_PREFERRED:
2080 case MPOL_PREFERRED_MANY:
2082 case MPOL_INTERLEAVE:
2083 *mask = mempolicy->nodes;
2087 init_nodemask_of_node(mask, numa_node_id());
2093 task_unlock(current);
2100 * mempolicy_in_oom_domain
2102 * If tsk's mempolicy is "bind", check for intersection between mask and
2103 * the policy nodemask. Otherwise, return true for all other policies
2104 * including "interleave", as a tsk with "interleave" policy may have
2105 * memory allocated from all nodes in system.
2107 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2109 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2110 const nodemask_t *mask)
2112 struct mempolicy *mempolicy;
2119 mempolicy = tsk->mempolicy;
2120 if (mempolicy && mempolicy->mode == MPOL_BIND)
2121 ret = nodes_intersects(mempolicy->nodes, *mask);
2127 /* Allocate a page in interleaved policy.
2128 Own path because it needs to do special accounting. */
2129 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2134 page = __alloc_pages(gfp, order, nid, NULL);
2135 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2136 if (!static_branch_likely(&vm_numa_stat_key))
2138 if (page && page_to_nid(page) == nid) {
2140 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2146 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2147 int nid, struct mempolicy *pol)
2150 gfp_t preferred_gfp;
2153 * This is a two pass approach. The first pass will only try the
2154 * preferred nodes but skip the direct reclaim and allow the
2155 * allocation to fail, while the second pass will try all the
2158 preferred_gfp = gfp | __GFP_NOWARN;
2159 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2160 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2162 page = __alloc_pages(gfp, order, nid, NULL);
2168 * vma_alloc_folio - Allocate a folio for a VMA.
2170 * @order: Order of the folio.
2171 * @vma: Pointer to VMA or NULL if not available.
2172 * @addr: Virtual address of the allocation. Must be inside @vma.
2173 * @hugepage: For hugepages try only the preferred node if possible.
2175 * Allocate a folio for a specific address in @vma, using the appropriate
2176 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2177 * of the mm_struct of the VMA to prevent it from going away. Should be
2178 * used for all allocations for folios that will be mapped into user space.
2180 * Return: The folio on success or NULL if allocation fails.
2182 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2183 unsigned long addr, bool hugepage)
2185 struct mempolicy *pol;
2186 int node = numa_node_id();
2187 struct folio *folio;
2191 pol = get_vma_policy(vma, addr);
2193 if (pol->mode == MPOL_INTERLEAVE) {
2197 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2200 page = alloc_page_interleave(gfp, order, nid);
2201 folio = (struct folio *)page;
2202 if (folio && order > 1)
2203 folio_prep_large_rmappable(folio);
2207 if (pol->mode == MPOL_PREFERRED_MANY) {
2210 node = policy_node(gfp, pol, node);
2212 page = alloc_pages_preferred_many(gfp, order, node, pol);
2214 folio = (struct folio *)page;
2215 if (folio && order > 1)
2216 folio_prep_large_rmappable(folio);
2220 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2221 int hpage_node = node;
2224 * For hugepage allocation and non-interleave policy which
2225 * allows the current node (or other explicitly preferred
2226 * node) we only try to allocate from the current/preferred
2227 * node and don't fall back to other nodes, as the cost of
2228 * remote accesses would likely offset THP benefits.
2230 * If the policy is interleave or does not allow the current
2231 * node in its nodemask, we allocate the standard way.
2233 if (pol->mode == MPOL_PREFERRED)
2234 hpage_node = first_node(pol->nodes);
2236 nmask = policy_nodemask(gfp, pol);
2237 if (!nmask || node_isset(hpage_node, *nmask)) {
2240 * First, try to allocate THP only on local node, but
2241 * don't reclaim unnecessarily, just compact.
2243 folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2244 __GFP_NORETRY, order, hpage_node);
2247 * If hugepage allocations are configured to always
2248 * synchronous compact or the vma has been madvised
2249 * to prefer hugepage backing, retry allowing remote
2250 * memory with both reclaim and compact as well.
2252 if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2253 folio = __folio_alloc(gfp, order, hpage_node,
2260 nmask = policy_nodemask(gfp, pol);
2261 preferred_nid = policy_node(gfp, pol, node);
2262 folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2267 EXPORT_SYMBOL(vma_alloc_folio);
2270 * alloc_pages - Allocate pages.
2272 * @order: Power of two of number of pages to allocate.
2274 * Allocate 1 << @order contiguous pages. The physical address of the
2275 * first page is naturally aligned (eg an order-3 allocation will be aligned
2276 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2277 * process is honoured when in process context.
2279 * Context: Can be called from any context, providing the appropriate GFP
2281 * Return: The page on success or NULL if allocation fails.
2283 struct page *alloc_pages(gfp_t gfp, unsigned order)
2285 struct mempolicy *pol = &default_policy;
2288 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2289 pol = get_task_policy(current);
2292 * No reference counting needed for current->mempolicy
2293 * nor system default_policy
2295 if (pol->mode == MPOL_INTERLEAVE)
2296 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2297 else if (pol->mode == MPOL_PREFERRED_MANY)
2298 page = alloc_pages_preferred_many(gfp, order,
2299 policy_node(gfp, pol, numa_node_id()), pol);
2301 page = __alloc_pages(gfp, order,
2302 policy_node(gfp, pol, numa_node_id()),
2303 policy_nodemask(gfp, pol));
2307 EXPORT_SYMBOL(alloc_pages);
2309 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2311 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2312 struct folio *folio = (struct folio *)page;
2314 if (folio && order > 1)
2315 folio_prep_large_rmappable(folio);
2318 EXPORT_SYMBOL(folio_alloc);
2320 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2321 struct mempolicy *pol, unsigned long nr_pages,
2322 struct page **page_array)
2325 unsigned long nr_pages_per_node;
2328 unsigned long nr_allocated;
2329 unsigned long total_allocated = 0;
2331 nodes = nodes_weight(pol->nodes);
2332 nr_pages_per_node = nr_pages / nodes;
2333 delta = nr_pages - nodes * nr_pages_per_node;
2335 for (i = 0; i < nodes; i++) {
2337 nr_allocated = __alloc_pages_bulk(gfp,
2338 interleave_nodes(pol), NULL,
2339 nr_pages_per_node + 1, NULL,
2343 nr_allocated = __alloc_pages_bulk(gfp,
2344 interleave_nodes(pol), NULL,
2345 nr_pages_per_node, NULL, page_array);
2348 page_array += nr_allocated;
2349 total_allocated += nr_allocated;
2352 return total_allocated;
2355 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2356 struct mempolicy *pol, unsigned long nr_pages,
2357 struct page **page_array)
2359 gfp_t preferred_gfp;
2360 unsigned long nr_allocated = 0;
2362 preferred_gfp = gfp | __GFP_NOWARN;
2363 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2365 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2366 nr_pages, NULL, page_array);
2368 if (nr_allocated < nr_pages)
2369 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2370 nr_pages - nr_allocated, NULL,
2371 page_array + nr_allocated);
2372 return nr_allocated;
2375 /* alloc pages bulk and mempolicy should be considered at the
2376 * same time in some situation such as vmalloc.
2378 * It can accelerate memory allocation especially interleaving
2381 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2382 unsigned long nr_pages, struct page **page_array)
2384 struct mempolicy *pol = &default_policy;
2386 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2387 pol = get_task_policy(current);
2389 if (pol->mode == MPOL_INTERLEAVE)
2390 return alloc_pages_bulk_array_interleave(gfp, pol,
2391 nr_pages, page_array);
2393 if (pol->mode == MPOL_PREFERRED_MANY)
2394 return alloc_pages_bulk_array_preferred_many(gfp,
2395 numa_node_id(), pol, nr_pages, page_array);
2397 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2398 policy_nodemask(gfp, pol), nr_pages, NULL,
2402 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2404 struct mempolicy *pol = mpol_dup(vma_policy(src));
2407 return PTR_ERR(pol);
2408 dst->vm_policy = pol;
2413 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2414 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2415 * with the mems_allowed returned by cpuset_mems_allowed(). This
2416 * keeps mempolicies cpuset relative after its cpuset moves. See
2417 * further kernel/cpuset.c update_nodemask().
2419 * current's mempolicy may be rebinded by the other task(the task that changes
2420 * cpuset's mems), so we needn't do rebind work for current task.
2423 /* Slow path of a mempolicy duplicate */
2424 struct mempolicy *__mpol_dup(struct mempolicy *old)
2426 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2429 return ERR_PTR(-ENOMEM);
2431 /* task's mempolicy is protected by alloc_lock */
2432 if (old == current->mempolicy) {
2435 task_unlock(current);
2439 if (current_cpuset_is_being_rebound()) {
2440 nodemask_t mems = cpuset_mems_allowed(current);
2441 mpol_rebind_policy(new, &mems);
2443 atomic_set(&new->refcnt, 1);
2447 /* Slow path of a mempolicy comparison */
2448 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2452 if (a->mode != b->mode)
2454 if (a->flags != b->flags)
2456 if (a->home_node != b->home_node)
2458 if (mpol_store_user_nodemask(a))
2459 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2464 case MPOL_INTERLEAVE:
2465 case MPOL_PREFERRED:
2466 case MPOL_PREFERRED_MANY:
2467 return !!nodes_equal(a->nodes, b->nodes);
2477 * Shared memory backing store policy support.
2479 * Remember policies even when nobody has shared memory mapped.
2480 * The policies are kept in Red-Black tree linked from the inode.
2481 * They are protected by the sp->lock rwlock, which should be held
2482 * for any accesses to the tree.
2486 * lookup first element intersecting start-end. Caller holds sp->lock for
2487 * reading or for writing
2489 static struct sp_node *
2490 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2492 struct rb_node *n = sp->root.rb_node;
2495 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2497 if (start >= p->end)
2499 else if (end <= p->start)
2507 struct sp_node *w = NULL;
2508 struct rb_node *prev = rb_prev(n);
2511 w = rb_entry(prev, struct sp_node, nd);
2512 if (w->end <= start)
2516 return rb_entry(n, struct sp_node, nd);
2520 * Insert a new shared policy into the list. Caller holds sp->lock for
2523 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2525 struct rb_node **p = &sp->root.rb_node;
2526 struct rb_node *parent = NULL;
2531 nd = rb_entry(parent, struct sp_node, nd);
2532 if (new->start < nd->start)
2534 else if (new->end > nd->end)
2535 p = &(*p)->rb_right;
2539 rb_link_node(&new->nd, parent, p);
2540 rb_insert_color(&new->nd, &sp->root);
2541 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2542 new->policy ? new->policy->mode : 0);
2545 /* Find shared policy intersecting idx */
2547 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2549 struct mempolicy *pol = NULL;
2552 if (!sp->root.rb_node)
2554 read_lock(&sp->lock);
2555 sn = sp_lookup(sp, idx, idx+1);
2557 mpol_get(sn->policy);
2560 read_unlock(&sp->lock);
2564 static void sp_free(struct sp_node *n)
2566 mpol_put(n->policy);
2567 kmem_cache_free(sn_cache, n);
2571 * mpol_misplaced - check whether current page node is valid in policy
2573 * @page: page to be checked
2574 * @vma: vm area where page mapped
2575 * @addr: virtual address where page mapped
2577 * Lookup current policy node id for vma,addr and "compare to" page's
2578 * node id. Policy determination "mimics" alloc_page_vma().
2579 * Called from fault path where we know the vma and faulting address.
2581 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2582 * policy, or a suitable node ID to allocate a replacement page from.
2584 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2586 struct mempolicy *pol;
2588 int curnid = page_to_nid(page);
2589 unsigned long pgoff;
2590 int thiscpu = raw_smp_processor_id();
2591 int thisnid = cpu_to_node(thiscpu);
2592 int polnid = NUMA_NO_NODE;
2593 int ret = NUMA_NO_NODE;
2595 pol = get_vma_policy(vma, addr);
2596 if (!(pol->flags & MPOL_F_MOF))
2599 switch (pol->mode) {
2600 case MPOL_INTERLEAVE:
2601 pgoff = vma->vm_pgoff;
2602 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2603 polnid = offset_il_node(pol, pgoff);
2606 case MPOL_PREFERRED:
2607 if (node_isset(curnid, pol->nodes))
2609 polnid = first_node(pol->nodes);
2613 polnid = numa_node_id();
2617 /* Optimize placement among multiple nodes via NUMA balancing */
2618 if (pol->flags & MPOL_F_MORON) {
2619 if (node_isset(thisnid, pol->nodes))
2625 case MPOL_PREFERRED_MANY:
2627 * use current page if in policy nodemask,
2628 * else select nearest allowed node, if any.
2629 * If no allowed nodes, use current [!misplaced].
2631 if (node_isset(curnid, pol->nodes))
2633 z = first_zones_zonelist(
2634 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2635 gfp_zone(GFP_HIGHUSER),
2637 polnid = zone_to_nid(z->zone);
2644 /* Migrate the page towards the node whose CPU is referencing it */
2645 if (pol->flags & MPOL_F_MORON) {
2648 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2652 if (curnid != polnid)
2661 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2662 * dropped after task->mempolicy is set to NULL so that any allocation done as
2663 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2666 void mpol_put_task_policy(struct task_struct *task)
2668 struct mempolicy *pol;
2671 pol = task->mempolicy;
2672 task->mempolicy = NULL;
2677 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2679 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2680 rb_erase(&n->nd, &sp->root);
2684 static void sp_node_init(struct sp_node *node, unsigned long start,
2685 unsigned long end, struct mempolicy *pol)
2687 node->start = start;
2692 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2693 struct mempolicy *pol)
2696 struct mempolicy *newpol;
2698 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2702 newpol = mpol_dup(pol);
2703 if (IS_ERR(newpol)) {
2704 kmem_cache_free(sn_cache, n);
2707 newpol->flags |= MPOL_F_SHARED;
2708 sp_node_init(n, start, end, newpol);
2713 /* Replace a policy range. */
2714 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2715 unsigned long end, struct sp_node *new)
2718 struct sp_node *n_new = NULL;
2719 struct mempolicy *mpol_new = NULL;
2723 write_lock(&sp->lock);
2724 n = sp_lookup(sp, start, end);
2725 /* Take care of old policies in the same range. */
2726 while (n && n->start < end) {
2727 struct rb_node *next = rb_next(&n->nd);
2728 if (n->start >= start) {
2734 /* Old policy spanning whole new range. */
2739 *mpol_new = *n->policy;
2740 atomic_set(&mpol_new->refcnt, 1);
2741 sp_node_init(n_new, end, n->end, mpol_new);
2743 sp_insert(sp, n_new);
2752 n = rb_entry(next, struct sp_node, nd);
2756 write_unlock(&sp->lock);
2763 kmem_cache_free(sn_cache, n_new);
2768 write_unlock(&sp->lock);
2770 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2773 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2776 atomic_set(&mpol_new->refcnt, 1);
2781 * mpol_shared_policy_init - initialize shared policy for inode
2782 * @sp: pointer to inode shared policy
2783 * @mpol: struct mempolicy to install
2785 * Install non-NULL @mpol in inode's shared policy rb-tree.
2786 * On entry, the current task has a reference on a non-NULL @mpol.
2787 * This must be released on exit.
2788 * This is called at get_inode() calls and we can use GFP_KERNEL.
2790 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2794 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2795 rwlock_init(&sp->lock);
2798 struct vm_area_struct pvma;
2799 struct mempolicy *new;
2800 NODEMASK_SCRATCH(scratch);
2804 /* contextualize the tmpfs mount point mempolicy */
2805 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2807 goto free_scratch; /* no valid nodemask intersection */
2810 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2811 task_unlock(current);
2815 /* Create pseudo-vma that contains just the policy */
2816 vma_init(&pvma, NULL);
2817 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2818 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2821 mpol_put(new); /* drop initial ref */
2823 NODEMASK_SCRATCH_FREE(scratch);
2825 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2829 int mpol_set_shared_policy(struct shared_policy *info,
2830 struct vm_area_struct *vma, struct mempolicy *npol)
2833 struct sp_node *new = NULL;
2834 unsigned long sz = vma_pages(vma);
2836 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2838 sz, npol ? npol->mode : -1,
2839 npol ? npol->flags : -1,
2840 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2843 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2847 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2853 /* Free a backing policy store on inode delete. */
2854 void mpol_free_shared_policy(struct shared_policy *p)
2857 struct rb_node *next;
2859 if (!p->root.rb_node)
2861 write_lock(&p->lock);
2862 next = rb_first(&p->root);
2864 n = rb_entry(next, struct sp_node, nd);
2865 next = rb_next(&n->nd);
2868 write_unlock(&p->lock);
2871 #ifdef CONFIG_NUMA_BALANCING
2872 static int __initdata numabalancing_override;
2874 static void __init check_numabalancing_enable(void)
2876 bool numabalancing_default = false;
2878 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2879 numabalancing_default = true;
2881 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2882 if (numabalancing_override)
2883 set_numabalancing_state(numabalancing_override == 1);
2885 if (num_online_nodes() > 1 && !numabalancing_override) {
2886 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2887 numabalancing_default ? "Enabling" : "Disabling");
2888 set_numabalancing_state(numabalancing_default);
2892 static int __init setup_numabalancing(char *str)
2898 if (!strcmp(str, "enable")) {
2899 numabalancing_override = 1;
2901 } else if (!strcmp(str, "disable")) {
2902 numabalancing_override = -1;
2907 pr_warn("Unable to parse numa_balancing=\n");
2911 __setup("numa_balancing=", setup_numabalancing);
2913 static inline void __init check_numabalancing_enable(void)
2916 #endif /* CONFIG_NUMA_BALANCING */
2918 /* assumes fs == KERNEL_DS */
2919 void __init numa_policy_init(void)
2921 nodemask_t interleave_nodes;
2922 unsigned long largest = 0;
2923 int nid, prefer = 0;
2925 policy_cache = kmem_cache_create("numa_policy",
2926 sizeof(struct mempolicy),
2927 0, SLAB_PANIC, NULL);
2929 sn_cache = kmem_cache_create("shared_policy_node",
2930 sizeof(struct sp_node),
2931 0, SLAB_PANIC, NULL);
2933 for_each_node(nid) {
2934 preferred_node_policy[nid] = (struct mempolicy) {
2935 .refcnt = ATOMIC_INIT(1),
2936 .mode = MPOL_PREFERRED,
2937 .flags = MPOL_F_MOF | MPOL_F_MORON,
2938 .nodes = nodemask_of_node(nid),
2943 * Set interleaving policy for system init. Interleaving is only
2944 * enabled across suitably sized nodes (default is >= 16MB), or
2945 * fall back to the largest node if they're all smaller.
2947 nodes_clear(interleave_nodes);
2948 for_each_node_state(nid, N_MEMORY) {
2949 unsigned long total_pages = node_present_pages(nid);
2951 /* Preserve the largest node */
2952 if (largest < total_pages) {
2953 largest = total_pages;
2957 /* Interleave this node? */
2958 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2959 node_set(nid, interleave_nodes);
2962 /* All too small, use the largest */
2963 if (unlikely(nodes_empty(interleave_nodes)))
2964 node_set(prefer, interleave_nodes);
2966 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2967 pr_err("%s: interleaving failed\n", __func__);
2969 check_numabalancing_enable();
2972 /* Reset policy of current process to default */
2973 void numa_default_policy(void)
2975 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2979 * Parse and format mempolicy from/to strings
2982 static const char * const policy_modes[] =
2984 [MPOL_DEFAULT] = "default",
2985 [MPOL_PREFERRED] = "prefer",
2986 [MPOL_BIND] = "bind",
2987 [MPOL_INTERLEAVE] = "interleave",
2988 [MPOL_LOCAL] = "local",
2989 [MPOL_PREFERRED_MANY] = "prefer (many)",
2995 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2996 * @str: string containing mempolicy to parse
2997 * @mpol: pointer to struct mempolicy pointer, returned on success.
3000 * <mode>[=<flags>][:<nodelist>]
3002 * Return: %0 on success, else %1
3004 int mpol_parse_str(char *str, struct mempolicy **mpol)
3006 struct mempolicy *new = NULL;
3007 unsigned short mode_flags;
3009 char *nodelist = strchr(str, ':');
3010 char *flags = strchr(str, '=');
3014 *flags++ = '\0'; /* terminate mode string */
3017 /* NUL-terminate mode or flags string */
3019 if (nodelist_parse(nodelist, nodes))
3021 if (!nodes_subset(nodes, node_states[N_MEMORY]))
3026 mode = match_string(policy_modes, MPOL_MAX, str);
3031 case MPOL_PREFERRED:
3033 * Insist on a nodelist of one node only, although later
3034 * we use first_node(nodes) to grab a single node, so here
3035 * nodelist (or nodes) cannot be empty.
3038 char *rest = nodelist;
3039 while (isdigit(*rest))
3043 if (nodes_empty(nodes))
3047 case MPOL_INTERLEAVE:
3049 * Default to online nodes with memory if no nodelist
3052 nodes = node_states[N_MEMORY];
3056 * Don't allow a nodelist; mpol_new() checks flags
3063 * Insist on a empty nodelist
3068 case MPOL_PREFERRED_MANY:
3071 * Insist on a nodelist
3080 * Currently, we only support two mutually exclusive
3083 if (!strcmp(flags, "static"))
3084 mode_flags |= MPOL_F_STATIC_NODES;
3085 else if (!strcmp(flags, "relative"))
3086 mode_flags |= MPOL_F_RELATIVE_NODES;
3091 new = mpol_new(mode, mode_flags, &nodes);
3096 * Save nodes for mpol_to_str() to show the tmpfs mount options
3097 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3099 if (mode != MPOL_PREFERRED) {
3101 } else if (nodelist) {
3102 nodes_clear(new->nodes);
3103 node_set(first_node(nodes), new->nodes);
3105 new->mode = MPOL_LOCAL;
3109 * Save nodes for contextualization: this will be used to "clone"
3110 * the mempolicy in a specific context [cpuset] at a later time.
3112 new->w.user_nodemask = nodes;
3117 /* Restore string for error message */
3126 #endif /* CONFIG_TMPFS */
3129 * mpol_to_str - format a mempolicy structure for printing
3130 * @buffer: to contain formatted mempolicy string
3131 * @maxlen: length of @buffer
3132 * @pol: pointer to mempolicy to be formatted
3134 * Convert @pol into a string. If @buffer is too short, truncate the string.
3135 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3136 * longest flag, "relative", and to display at least a few node ids.
3138 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3141 nodemask_t nodes = NODE_MASK_NONE;
3142 unsigned short mode = MPOL_DEFAULT;
3143 unsigned short flags = 0;
3145 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3154 case MPOL_PREFERRED:
3155 case MPOL_PREFERRED_MANY:
3157 case MPOL_INTERLEAVE:
3162 snprintf(p, maxlen, "unknown");
3166 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3168 if (flags & MPOL_MODE_FLAGS) {
3169 p += snprintf(p, buffer + maxlen - p, "=");
3172 * Currently, the only defined flags are mutually exclusive
3174 if (flags & MPOL_F_STATIC_NODES)
3175 p += snprintf(p, buffer + maxlen - p, "static");
3176 else if (flags & MPOL_F_RELATIVE_NODES)
3177 p += snprintf(p, buffer + maxlen - p, "relative");
3180 if (!nodes_empty(nodes))
3181 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3182 nodemask_pr_args(&nodes));