]> Git Repo - linux.git/blob - net/core/dev.c
ALSA: hda/realtek: fix speaker, mute/micmute LEDs not work on a HP platform
[linux.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <[email protected]>
8  *                              Mark Evans, <[email protected]>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <[email protected]>
12  *              Alan Cox <[email protected]>
13  *              David Hinds <[email protected]>
14  *              Alexey Kuznetsov <[email protected]>
15  *              Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "dev.h"
155 #include "net-sysfs.h"
156
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         netdev_name_node_del(name_node);
349         kfree(name_node->name);
350         netdev_name_node_free(name_node);
351 }
352
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355         struct netdev_name_node *name_node;
356         struct net *net = dev_net(dev);
357
358         name_node = netdev_name_node_lookup(net, name);
359         if (!name_node)
360                 return -ENOENT;
361         /* lookup might have found our primary name or a name belonging
362          * to another device.
363          */
364         if (name_node == dev->name_node || name_node->dev != dev)
365                 return -EINVAL;
366
367         __netdev_name_node_alt_destroy(name_node);
368
369         return 0;
370 }
371
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374         struct netdev_name_node *name_node, *tmp;
375
376         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377                 __netdev_name_node_alt_destroy(name_node);
378 }
379
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383         struct net *net = dev_net(dev);
384
385         ASSERT_RTNL();
386
387         write_lock(&dev_base_lock);
388         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389         netdev_name_node_add(net, dev->name_node);
390         hlist_add_head_rcu(&dev->index_hlist,
391                            dev_index_hash(net, dev->ifindex));
392         write_unlock(&dev_base_lock);
393
394         dev_base_seq_inc(net);
395 }
396
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402         ASSERT_RTNL();
403
404         /* Unlink dev from the device chain */
405         if (lock)
406                 write_lock(&dev_base_lock);
407         list_del_rcu(&dev->dev_list);
408         netdev_name_node_del(dev->name_node);
409         hlist_del_rcu(&dev->index_hlist);
410         if (lock)
411                 write_unlock(&dev_base_lock);
412
413         dev_base_seq_inc(dev_net(dev));
414 }
415
416 /*
417  *      Our notifier list
418  */
419
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421
422 /*
423  *      Device drivers call our routines to queue packets here. We empty the
424  *      queue in the local softnet handler.
425  */
426
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451
452 static const char *const netdev_lock_name[] = {
453         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474         int i;
475
476         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477                 if (netdev_lock_type[i] == dev_type)
478                         return i;
479         /* the last key is used by default */
480         return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484                                                  unsigned short dev_type)
485 {
486         int i;
487
488         i = netdev_lock_pos(dev_type);
489         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490                                    netdev_lock_name[i]);
491 }
492
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495         int i;
496
497         i = netdev_lock_pos(dev->type);
498         lockdep_set_class_and_name(&dev->addr_list_lock,
499                                    &netdev_addr_lock_key[i],
500                                    netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504                                                  unsigned short dev_type)
505 {
506 }
507
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512
513 /*******************************************************************************
514  *
515  *              Protocol management and registration routines
516  *
517  *******************************************************************************/
518
519
520 /*
521  *      Add a protocol ID to the list. Now that the input handler is
522  *      smarter we can dispense with all the messy stuff that used to be
523  *      here.
524  *
525  *      BEWARE!!! Protocol handlers, mangling input packets,
526  *      MUST BE last in hash buckets and checking protocol handlers
527  *      MUST start from promiscuous ptype_all chain in net_bh.
528  *      It is true now, do not change it.
529  *      Explanation follows: if protocol handler, mangling packet, will
530  *      be the first on list, it is not able to sense, that packet
531  *      is cloned and should be copied-on-write, so that it will
532  *      change it and subsequent readers will get broken packet.
533  *                                                      --ANK (980803)
534  */
535
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538         if (pt->type == htons(ETH_P_ALL))
539                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540         else
541                 return pt->dev ? &pt->dev->ptype_specific :
542                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544
545 /**
546  *      dev_add_pack - add packet handler
547  *      @pt: packet type declaration
548  *
549  *      Add a protocol handler to the networking stack. The passed &packet_type
550  *      is linked into kernel lists and may not be freed until it has been
551  *      removed from the kernel lists.
552  *
553  *      This call does not sleep therefore it can not
554  *      guarantee all CPU's that are in middle of receiving packets
555  *      will see the new packet type (until the next received packet).
556  */
557
558 void dev_add_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561
562         spin_lock(&ptype_lock);
563         list_add_rcu(&pt->list, head);
564         spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567
568 /**
569  *      __dev_remove_pack        - remove packet handler
570  *      @pt: packet type declaration
571  *
572  *      Remove a protocol handler that was previously added to the kernel
573  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *      from the kernel lists and can be freed or reused once this function
575  *      returns.
576  *
577  *      The packet type might still be in use by receivers
578  *      and must not be freed until after all the CPU's have gone
579  *      through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583         struct list_head *head = ptype_head(pt);
584         struct packet_type *pt1;
585
586         spin_lock(&ptype_lock);
587
588         list_for_each_entry(pt1, head, list) {
589                 if (pt == pt1) {
590                         list_del_rcu(&pt->list);
591                         goto out;
592                 }
593         }
594
595         pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597         spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600
601 /**
602  *      dev_remove_pack  - remove packet handler
603  *      @pt: packet type declaration
604  *
605  *      Remove a protocol handler that was previously added to the kernel
606  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *      from the kernel lists and can be freed or reused once this function
608  *      returns.
609  *
610  *      This call sleeps to guarantee that no CPU is looking at the packet
611  *      type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615         __dev_remove_pack(pt);
616
617         synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620
621
622 /*******************************************************************************
623  *
624  *                          Device Interface Subroutines
625  *
626  *******************************************************************************/
627
628 /**
629  *      dev_get_iflink  - get 'iflink' value of a interface
630  *      @dev: targeted interface
631  *
632  *      Indicates the ifindex the interface is linked to.
633  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635
636 int dev_get_iflink(const struct net_device *dev)
637 {
638         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639                 return dev->netdev_ops->ndo_get_iflink(dev);
640
641         return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644
645 /**
646  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *      @dev: targeted interface
648  *      @skb: The packet.
649  *
650  *      For better visibility of tunnel traffic OVS needs to retrieve
651  *      egress tunnel information for a packet. Following API allows
652  *      user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656         struct ip_tunnel_info *info;
657
658         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659                 return -EINVAL;
660
661         info = skb_tunnel_info_unclone(skb);
662         if (!info)
663                 return -ENOMEM;
664         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665                 return -EINVAL;
666
667         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673         int k = stack->num_paths++;
674
675         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676                 return NULL;
677
678         return &stack->path[k];
679 }
680
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682                           struct net_device_path_stack *stack)
683 {
684         const struct net_device *last_dev;
685         struct net_device_path_ctx ctx = {
686                 .dev    = dev,
687         };
688         struct net_device_path *path;
689         int ret = 0;
690
691         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692         stack->num_paths = 0;
693         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694                 last_dev = ctx.dev;
695                 path = dev_fwd_path(stack);
696                 if (!path)
697                         return -1;
698
699                 memset(path, 0, sizeof(struct net_device_path));
700                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701                 if (ret < 0)
702                         return -1;
703
704                 if (WARN_ON_ONCE(last_dev == ctx.dev))
705                         return -1;
706         }
707
708         if (!ctx.dev)
709                 return ret;
710
711         path = dev_fwd_path(stack);
712         if (!path)
713                 return -1;
714         path->type = DEV_PATH_ETHERNET;
715         path->dev = ctx.dev;
716
717         return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720
721 /**
722  *      __dev_get_by_name       - find a device by its name
723  *      @net: the applicable net namespace
724  *      @name: name to find
725  *
726  *      Find an interface by name. Must be called under RTNL semaphore
727  *      or @dev_base_lock. If the name is found a pointer to the device
728  *      is returned. If the name is not found then %NULL is returned. The
729  *      reference counters are not incremented so the caller must be
730  *      careful with locks.
731  */
732
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735         struct netdev_name_node *node_name;
736
737         node_name = netdev_name_node_lookup(net, name);
738         return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741
742 /**
743  * dev_get_by_name_rcu  - find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756         struct netdev_name_node *node_name;
757
758         node_name = netdev_name_node_lookup_rcu(net, name);
759         return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764  *      dev_get_by_name         - find a device by its name
765  *      @net: the applicable net namespace
766  *      @name: name to find
767  *
768  *      Find an interface by name. This can be called from any
769  *      context and does its own locking. The returned handle has
770  *      the usage count incremented and the caller must use dev_put() to
771  *      release it when it is no longer needed. %NULL is returned if no
772  *      matching device is found.
773  */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777         struct net_device *dev;
778
779         rcu_read_lock();
780         dev = dev_get_by_name_rcu(net, name);
781         dev_hold(dev);
782         rcu_read_unlock();
783         return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786
787 /**
788  *      __dev_get_by_index - find a device by its ifindex
789  *      @net: the applicable net namespace
790  *      @ifindex: index of device
791  *
792  *      Search for an interface by index. Returns %NULL if the device
793  *      is not found or a pointer to the device. The device has not
794  *      had its reference counter increased so the caller must be careful
795  *      about locking. The caller must hold either the RTNL semaphore
796  *      or @dev_base_lock.
797  */
798
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801         struct net_device *dev;
802         struct hlist_head *head = dev_index_hash(net, ifindex);
803
804         hlist_for_each_entry(dev, head, index_hlist)
805                 if (dev->ifindex == ifindex)
806                         return dev;
807
808         return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811
812 /**
813  *      dev_get_by_index_rcu - find a device by its ifindex
814  *      @net: the applicable net namespace
815  *      @ifindex: index of device
816  *
817  *      Search for an interface by index. Returns %NULL if the device
818  *      is not found or a pointer to the device. The device has not
819  *      had its reference counter increased so the caller must be careful
820  *      about locking. The caller must hold RCU lock.
821  */
822
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825         struct net_device *dev;
826         struct hlist_head *head = dev_index_hash(net, ifindex);
827
828         hlist_for_each_entry_rcu(dev, head, index_hlist)
829                 if (dev->ifindex == ifindex)
830                         return dev;
831
832         return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837 /**
838  *      dev_get_by_index - find a device by its ifindex
839  *      @net: the applicable net namespace
840  *      @ifindex: index of device
841  *
842  *      Search for an interface by index. Returns NULL if the device
843  *      is not found or a pointer to the device. The device returned has
844  *      had a reference added and the pointer is safe until the user calls
845  *      dev_put to indicate they have finished with it.
846  */
847
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850         struct net_device *dev;
851
852         rcu_read_lock();
853         dev = dev_get_by_index_rcu(net, ifindex);
854         dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      dev_get_by_napi_id - find a device by napi_id
862  *      @napi_id: ID of the NAPI struct
863  *
864  *      Search for an interface by NAPI ID. Returns %NULL if the device
865  *      is not found or a pointer to the device. The device has not had
866  *      its reference counter increased so the caller must be careful
867  *      about locking. The caller must hold RCU lock.
868  */
869
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872         struct napi_struct *napi;
873
874         WARN_ON_ONCE(!rcu_read_lock_held());
875
876         if (napi_id < MIN_NAPI_ID)
877                 return NULL;
878
879         napi = napi_by_id(napi_id);
880
881         return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884
885 /**
886  *      netdev_get_name - get a netdevice name, knowing its ifindex.
887  *      @net: network namespace
888  *      @name: a pointer to the buffer where the name will be stored.
889  *      @ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893         struct net_device *dev;
894         int ret;
895
896         down_read(&devnet_rename_sem);
897         rcu_read_lock();
898
899         dev = dev_get_by_index_rcu(net, ifindex);
900         if (!dev) {
901                 ret = -ENODEV;
902                 goto out;
903         }
904
905         strcpy(name, dev->name);
906
907         ret = 0;
908 out:
909         rcu_read_unlock();
910         up_read(&devnet_rename_sem);
911         return ret;
912 }
913
914 /**
915  *      dev_getbyhwaddr_rcu - find a device by its hardware address
916  *      @net: the applicable net namespace
917  *      @type: media type of device
918  *      @ha: hardware address
919  *
920  *      Search for an interface by MAC address. Returns NULL if the device
921  *      is not found or a pointer to the device.
922  *      The caller must hold RCU or RTNL.
923  *      The returned device has not had its ref count increased
924  *      and the caller must therefore be careful about locking
925  *
926  */
927
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929                                        const char *ha)
930 {
931         struct net_device *dev;
932
933         for_each_netdev_rcu(net, dev)
934                 if (dev->type == type &&
935                     !memcmp(dev->dev_addr, ha, dev->addr_len))
936                         return dev;
937
938         return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944         struct net_device *dev, *ret = NULL;
945
946         rcu_read_lock();
947         for_each_netdev_rcu(net, dev)
948                 if (dev->type == type) {
949                         dev_hold(dev);
950                         ret = dev;
951                         break;
952                 }
953         rcu_read_unlock();
954         return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958 /**
959  *      __dev_get_by_flags - find any device with given flags
960  *      @net: the applicable net namespace
961  *      @if_flags: IFF_* values
962  *      @mask: bitmask of bits in if_flags to check
963  *
964  *      Search for any interface with the given flags. Returns NULL if a device
965  *      is not found or a pointer to the device. Must be called inside
966  *      rtnl_lock(), and result refcount is unchanged.
967  */
968
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970                                       unsigned short mask)
971 {
972         struct net_device *dev, *ret;
973
974         ASSERT_RTNL();
975
976         ret = NULL;
977         for_each_netdev(net, dev) {
978                 if (((dev->flags ^ if_flags) & mask) == 0) {
979                         ret = dev;
980                         break;
981                 }
982         }
983         return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986
987 /**
988  *      dev_valid_name - check if name is okay for network device
989  *      @name: name string
990  *
991  *      Network device names need to be valid file names to
992  *      allow sysfs to work.  We also disallow any kind of
993  *      whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997         if (*name == '\0')
998                 return false;
999         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000                 return false;
1001         if (!strcmp(name, ".") || !strcmp(name, ".."))
1002                 return false;
1003
1004         while (*name) {
1005                 if (*name == '/' || *name == ':' || isspace(*name))
1006                         return false;
1007                 name++;
1008         }
1009         return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012
1013 /**
1014  *      __dev_alloc_name - allocate a name for a device
1015  *      @net: network namespace to allocate the device name in
1016  *      @name: name format string
1017  *      @buf:  scratch buffer and result name string
1018  *
1019  *      Passed a format string - eg "lt%d" it will try and find a suitable
1020  *      id. It scans list of devices to build up a free map, then chooses
1021  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *      while allocating the name and adding the device in order to avoid
1023  *      duplicates.
1024  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *      Returns the number of the unit assigned or a negative errno code.
1026  */
1027
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030         int i = 0;
1031         const char *p;
1032         const int max_netdevices = 8*PAGE_SIZE;
1033         unsigned long *inuse;
1034         struct net_device *d;
1035
1036         if (!dev_valid_name(name))
1037                 return -EINVAL;
1038
1039         p = strchr(name, '%');
1040         if (p) {
1041                 /*
1042                  * Verify the string as this thing may have come from
1043                  * the user.  There must be either one "%d" and no other "%"
1044                  * characters.
1045                  */
1046                 if (p[1] != 'd' || strchr(p + 2, '%'))
1047                         return -EINVAL;
1048
1049                 /* Use one page as a bit array of possible slots */
1050                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051                 if (!inuse)
1052                         return -ENOMEM;
1053
1054                 for_each_netdev(net, d) {
1055                         struct netdev_name_node *name_node;
1056                         list_for_each_entry(name_node, &d->name_node->list, list) {
1057                                 if (!sscanf(name_node->name, name, &i))
1058                                         continue;
1059                                 if (i < 0 || i >= max_netdevices)
1060                                         continue;
1061
1062                                 /*  avoid cases where sscanf is not exact inverse of printf */
1063                                 snprintf(buf, IFNAMSIZ, name, i);
1064                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065                                         __set_bit(i, inuse);
1066                         }
1067                         if (!sscanf(d->name, name, &i))
1068                                 continue;
1069                         if (i < 0 || i >= max_netdevices)
1070                                 continue;
1071
1072                         /*  avoid cases where sscanf is not exact inverse of printf */
1073                         snprintf(buf, IFNAMSIZ, name, i);
1074                         if (!strncmp(buf, d->name, IFNAMSIZ))
1075                                 __set_bit(i, inuse);
1076                 }
1077
1078                 i = find_first_zero_bit(inuse, max_netdevices);
1079                 free_page((unsigned long) inuse);
1080         }
1081
1082         snprintf(buf, IFNAMSIZ, name, i);
1083         if (!netdev_name_in_use(net, buf))
1084                 return i;
1085
1086         /* It is possible to run out of possible slots
1087          * when the name is long and there isn't enough space left
1088          * for the digits, or if all bits are used.
1089          */
1090         return -ENFILE;
1091 }
1092
1093 static int dev_alloc_name_ns(struct net *net,
1094                              struct net_device *dev,
1095                              const char *name)
1096 {
1097         char buf[IFNAMSIZ];
1098         int ret;
1099
1100         BUG_ON(!net);
1101         ret = __dev_alloc_name(net, name, buf);
1102         if (ret >= 0)
1103                 strscpy(dev->name, buf, IFNAMSIZ);
1104         return ret;
1105 }
1106
1107 /**
1108  *      dev_alloc_name - allocate a name for a device
1109  *      @dev: device
1110  *      @name: name format string
1111  *
1112  *      Passed a format string - eg "lt%d" it will try and find a suitable
1113  *      id. It scans list of devices to build up a free map, then chooses
1114  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *      while allocating the name and adding the device in order to avoid
1116  *      duplicates.
1117  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *      Returns the number of the unit assigned or a negative errno code.
1119  */
1120
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123         return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128                               const char *name)
1129 {
1130         BUG_ON(!net);
1131
1132         if (!dev_valid_name(name))
1133                 return -EINVAL;
1134
1135         if (strchr(name, '%'))
1136                 return dev_alloc_name_ns(net, dev, name);
1137         else if (netdev_name_in_use(net, name))
1138                 return -EEXIST;
1139         else if (dev->name != name)
1140                 strscpy(dev->name, name, IFNAMSIZ);
1141
1142         return 0;
1143 }
1144
1145 /**
1146  *      dev_change_name - change name of a device
1147  *      @dev: device
1148  *      @newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *      Change name of a device, can pass format strings "eth%d".
1151  *      for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155         unsigned char old_assign_type;
1156         char oldname[IFNAMSIZ];
1157         int err = 0;
1158         int ret;
1159         struct net *net;
1160
1161         ASSERT_RTNL();
1162         BUG_ON(!dev_net(dev));
1163
1164         net = dev_net(dev);
1165
1166         down_write(&devnet_rename_sem);
1167
1168         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1169                 up_write(&devnet_rename_sem);
1170                 return 0;
1171         }
1172
1173         memcpy(oldname, dev->name, IFNAMSIZ);
1174
1175         err = dev_get_valid_name(net, dev, newname);
1176         if (err < 0) {
1177                 up_write(&devnet_rename_sem);
1178                 return err;
1179         }
1180
1181         if (oldname[0] && !strchr(oldname, '%'))
1182                 netdev_info(dev, "renamed from %s%s\n", oldname,
1183                             dev->flags & IFF_UP ? " (while UP)" : "");
1184
1185         old_assign_type = dev->name_assign_type;
1186         dev->name_assign_type = NET_NAME_RENAMED;
1187
1188 rollback:
1189         ret = device_rename(&dev->dev, dev->name);
1190         if (ret) {
1191                 memcpy(dev->name, oldname, IFNAMSIZ);
1192                 dev->name_assign_type = old_assign_type;
1193                 up_write(&devnet_rename_sem);
1194                 return ret;
1195         }
1196
1197         up_write(&devnet_rename_sem);
1198
1199         netdev_adjacent_rename_links(dev, oldname);
1200
1201         write_lock(&dev_base_lock);
1202         netdev_name_node_del(dev->name_node);
1203         write_unlock(&dev_base_lock);
1204
1205         synchronize_rcu();
1206
1207         write_lock(&dev_base_lock);
1208         netdev_name_node_add(net, dev->name_node);
1209         write_unlock(&dev_base_lock);
1210
1211         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1212         ret = notifier_to_errno(ret);
1213
1214         if (ret) {
1215                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1216                 if (err >= 0) {
1217                         err = ret;
1218                         down_write(&devnet_rename_sem);
1219                         memcpy(dev->name, oldname, IFNAMSIZ);
1220                         memcpy(oldname, newname, IFNAMSIZ);
1221                         dev->name_assign_type = old_assign_type;
1222                         old_assign_type = NET_NAME_RENAMED;
1223                         goto rollback;
1224                 } else {
1225                         netdev_err(dev, "name change rollback failed: %d\n",
1226                                    ret);
1227                 }
1228         }
1229
1230         return err;
1231 }
1232
1233 /**
1234  *      dev_set_alias - change ifalias of a device
1235  *      @dev: device
1236  *      @alias: name up to IFALIASZ
1237  *      @len: limit of bytes to copy from info
1238  *
1239  *      Set ifalias for a device,
1240  */
1241 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1242 {
1243         struct dev_ifalias *new_alias = NULL;
1244
1245         if (len >= IFALIASZ)
1246                 return -EINVAL;
1247
1248         if (len) {
1249                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1250                 if (!new_alias)
1251                         return -ENOMEM;
1252
1253                 memcpy(new_alias->ifalias, alias, len);
1254                 new_alias->ifalias[len] = 0;
1255         }
1256
1257         mutex_lock(&ifalias_mutex);
1258         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1259                                         mutex_is_locked(&ifalias_mutex));
1260         mutex_unlock(&ifalias_mutex);
1261
1262         if (new_alias)
1263                 kfree_rcu(new_alias, rcuhead);
1264
1265         return len;
1266 }
1267 EXPORT_SYMBOL(dev_set_alias);
1268
1269 /**
1270  *      dev_get_alias - get ifalias of a device
1271  *      @dev: device
1272  *      @name: buffer to store name of ifalias
1273  *      @len: size of buffer
1274  *
1275  *      get ifalias for a device.  Caller must make sure dev cannot go
1276  *      away,  e.g. rcu read lock or own a reference count to device.
1277  */
1278 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1279 {
1280         const struct dev_ifalias *alias;
1281         int ret = 0;
1282
1283         rcu_read_lock();
1284         alias = rcu_dereference(dev->ifalias);
1285         if (alias)
1286                 ret = snprintf(name, len, "%s", alias->ifalias);
1287         rcu_read_unlock();
1288
1289         return ret;
1290 }
1291
1292 /**
1293  *      netdev_features_change - device changes features
1294  *      @dev: device to cause notification
1295  *
1296  *      Called to indicate a device has changed features.
1297  */
1298 void netdev_features_change(struct net_device *dev)
1299 {
1300         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301 }
1302 EXPORT_SYMBOL(netdev_features_change);
1303
1304 /**
1305  *      netdev_state_change - device changes state
1306  *      @dev: device to cause notification
1307  *
1308  *      Called to indicate a device has changed state. This function calls
1309  *      the notifier chains for netdev_chain and sends a NEWLINK message
1310  *      to the routing socket.
1311  */
1312 void netdev_state_change(struct net_device *dev)
1313 {
1314         if (dev->flags & IFF_UP) {
1315                 struct netdev_notifier_change_info change_info = {
1316                         .info.dev = dev,
1317                 };
1318
1319                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1320                                               &change_info.info);
1321                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1322         }
1323 }
1324 EXPORT_SYMBOL(netdev_state_change);
1325
1326 /**
1327  * __netdev_notify_peers - notify network peers about existence of @dev,
1328  * to be called when rtnl lock is already held.
1329  * @dev: network device
1330  *
1331  * Generate traffic such that interested network peers are aware of
1332  * @dev, such as by generating a gratuitous ARP. This may be used when
1333  * a device wants to inform the rest of the network about some sort of
1334  * reconfiguration such as a failover event or virtual machine
1335  * migration.
1336  */
1337 void __netdev_notify_peers(struct net_device *dev)
1338 {
1339         ASSERT_RTNL();
1340         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1341         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1342 }
1343 EXPORT_SYMBOL(__netdev_notify_peers);
1344
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357         rtnl_lock();
1358         __netdev_notify_peers(dev);
1359         rtnl_unlock();
1360 }
1361 EXPORT_SYMBOL(netdev_notify_peers);
1362
1363 static int napi_threaded_poll(void *data);
1364
1365 static int napi_kthread_create(struct napi_struct *n)
1366 {
1367         int err = 0;
1368
1369         /* Create and wake up the kthread once to put it in
1370          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1371          * warning and work with loadavg.
1372          */
1373         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1374                                 n->dev->name, n->napi_id);
1375         if (IS_ERR(n->thread)) {
1376                 err = PTR_ERR(n->thread);
1377                 pr_err("kthread_run failed with err %d\n", err);
1378                 n->thread = NULL;
1379         }
1380
1381         return err;
1382 }
1383
1384 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1385 {
1386         const struct net_device_ops *ops = dev->netdev_ops;
1387         int ret;
1388
1389         ASSERT_RTNL();
1390         dev_addr_check(dev);
1391
1392         if (!netif_device_present(dev)) {
1393                 /* may be detached because parent is runtime-suspended */
1394                 if (dev->dev.parent)
1395                         pm_runtime_resume(dev->dev.parent);
1396                 if (!netif_device_present(dev))
1397                         return -ENODEV;
1398         }
1399
1400         /* Block netpoll from trying to do any rx path servicing.
1401          * If we don't do this there is a chance ndo_poll_controller
1402          * or ndo_poll may be running while we open the device
1403          */
1404         netpoll_poll_disable(dev);
1405
1406         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1407         ret = notifier_to_errno(ret);
1408         if (ret)
1409                 return ret;
1410
1411         set_bit(__LINK_STATE_START, &dev->state);
1412
1413         if (ops->ndo_validate_addr)
1414                 ret = ops->ndo_validate_addr(dev);
1415
1416         if (!ret && ops->ndo_open)
1417                 ret = ops->ndo_open(dev);
1418
1419         netpoll_poll_enable(dev);
1420
1421         if (ret)
1422                 clear_bit(__LINK_STATE_START, &dev->state);
1423         else {
1424                 dev->flags |= IFF_UP;
1425                 dev_set_rx_mode(dev);
1426                 dev_activate(dev);
1427                 add_device_randomness(dev->dev_addr, dev->addr_len);
1428         }
1429
1430         return ret;
1431 }
1432
1433 /**
1434  *      dev_open        - prepare an interface for use.
1435  *      @dev: device to open
1436  *      @extack: netlink extended ack
1437  *
1438  *      Takes a device from down to up state. The device's private open
1439  *      function is invoked and then the multicast lists are loaded. Finally
1440  *      the device is moved into the up state and a %NETDEV_UP message is
1441  *      sent to the netdev notifier chain.
1442  *
1443  *      Calling this function on an active interface is a nop. On a failure
1444  *      a negative errno code is returned.
1445  */
1446 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1447 {
1448         int ret;
1449
1450         if (dev->flags & IFF_UP)
1451                 return 0;
1452
1453         ret = __dev_open(dev, extack);
1454         if (ret < 0)
1455                 return ret;
1456
1457         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1458         call_netdevice_notifiers(NETDEV_UP, dev);
1459
1460         return ret;
1461 }
1462 EXPORT_SYMBOL(dev_open);
1463
1464 static void __dev_close_many(struct list_head *head)
1465 {
1466         struct net_device *dev;
1467
1468         ASSERT_RTNL();
1469         might_sleep();
1470
1471         list_for_each_entry(dev, head, close_list) {
1472                 /* Temporarily disable netpoll until the interface is down */
1473                 netpoll_poll_disable(dev);
1474
1475                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1476
1477                 clear_bit(__LINK_STATE_START, &dev->state);
1478
1479                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1480                  * can be even on different cpu. So just clear netif_running().
1481                  *
1482                  * dev->stop() will invoke napi_disable() on all of it's
1483                  * napi_struct instances on this device.
1484                  */
1485                 smp_mb__after_atomic(); /* Commit netif_running(). */
1486         }
1487
1488         dev_deactivate_many(head);
1489
1490         list_for_each_entry(dev, head, close_list) {
1491                 const struct net_device_ops *ops = dev->netdev_ops;
1492
1493                 /*
1494                  *      Call the device specific close. This cannot fail.
1495                  *      Only if device is UP
1496                  *
1497                  *      We allow it to be called even after a DETACH hot-plug
1498                  *      event.
1499                  */
1500                 if (ops->ndo_stop)
1501                         ops->ndo_stop(dev);
1502
1503                 dev->flags &= ~IFF_UP;
1504                 netpoll_poll_enable(dev);
1505         }
1506 }
1507
1508 static void __dev_close(struct net_device *dev)
1509 {
1510         LIST_HEAD(single);
1511
1512         list_add(&dev->close_list, &single);
1513         __dev_close_many(&single);
1514         list_del(&single);
1515 }
1516
1517 void dev_close_many(struct list_head *head, bool unlink)
1518 {
1519         struct net_device *dev, *tmp;
1520
1521         /* Remove the devices that don't need to be closed */
1522         list_for_each_entry_safe(dev, tmp, head, close_list)
1523                 if (!(dev->flags & IFF_UP))
1524                         list_del_init(&dev->close_list);
1525
1526         __dev_close_many(head);
1527
1528         list_for_each_entry_safe(dev, tmp, head, close_list) {
1529                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1530                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1531                 if (unlink)
1532                         list_del_init(&dev->close_list);
1533         }
1534 }
1535 EXPORT_SYMBOL(dev_close_many);
1536
1537 /**
1538  *      dev_close - shutdown an interface.
1539  *      @dev: device to shutdown
1540  *
1541  *      This function moves an active device into down state. A
1542  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1543  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1544  *      chain.
1545  */
1546 void dev_close(struct net_device *dev)
1547 {
1548         if (dev->flags & IFF_UP) {
1549                 LIST_HEAD(single);
1550
1551                 list_add(&dev->close_list, &single);
1552                 dev_close_many(&single, true);
1553                 list_del(&single);
1554         }
1555 }
1556 EXPORT_SYMBOL(dev_close);
1557
1558
1559 /**
1560  *      dev_disable_lro - disable Large Receive Offload on a device
1561  *      @dev: device
1562  *
1563  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1564  *      called under RTNL.  This is needed if received packets may be
1565  *      forwarded to another interface.
1566  */
1567 void dev_disable_lro(struct net_device *dev)
1568 {
1569         struct net_device *lower_dev;
1570         struct list_head *iter;
1571
1572         dev->wanted_features &= ~NETIF_F_LRO;
1573         netdev_update_features(dev);
1574
1575         if (unlikely(dev->features & NETIF_F_LRO))
1576                 netdev_WARN(dev, "failed to disable LRO!\n");
1577
1578         netdev_for_each_lower_dev(dev, lower_dev, iter)
1579                 dev_disable_lro(lower_dev);
1580 }
1581 EXPORT_SYMBOL(dev_disable_lro);
1582
1583 /**
1584  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1585  *      @dev: device
1586  *
1587  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1588  *      called under RTNL.  This is needed if Generic XDP is installed on
1589  *      the device.
1590  */
1591 static void dev_disable_gro_hw(struct net_device *dev)
1592 {
1593         dev->wanted_features &= ~NETIF_F_GRO_HW;
1594         netdev_update_features(dev);
1595
1596         if (unlikely(dev->features & NETIF_F_GRO_HW))
1597                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1598 }
1599
1600 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1601 {
1602 #define N(val)                                          \
1603         case NETDEV_##val:                              \
1604                 return "NETDEV_" __stringify(val);
1605         switch (cmd) {
1606         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1607         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1608         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1609         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1610         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1611         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1612         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1613         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1614         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1615         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1616         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1617         N(XDP_FEAT_CHANGE)
1618         }
1619 #undef N
1620         return "UNKNOWN_NETDEV_EVENT";
1621 }
1622 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1623
1624 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1625                                    struct net_device *dev)
1626 {
1627         struct netdev_notifier_info info = {
1628                 .dev = dev,
1629         };
1630
1631         return nb->notifier_call(nb, val, &info);
1632 }
1633
1634 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1635                                              struct net_device *dev)
1636 {
1637         int err;
1638
1639         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1640         err = notifier_to_errno(err);
1641         if (err)
1642                 return err;
1643
1644         if (!(dev->flags & IFF_UP))
1645                 return 0;
1646
1647         call_netdevice_notifier(nb, NETDEV_UP, dev);
1648         return 0;
1649 }
1650
1651 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1652                                                 struct net_device *dev)
1653 {
1654         if (dev->flags & IFF_UP) {
1655                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1656                                         dev);
1657                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1658         }
1659         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1660 }
1661
1662 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1663                                                  struct net *net)
1664 {
1665         struct net_device *dev;
1666         int err;
1667
1668         for_each_netdev(net, dev) {
1669                 err = call_netdevice_register_notifiers(nb, dev);
1670                 if (err)
1671                         goto rollback;
1672         }
1673         return 0;
1674
1675 rollback:
1676         for_each_netdev_continue_reverse(net, dev)
1677                 call_netdevice_unregister_notifiers(nb, dev);
1678         return err;
1679 }
1680
1681 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1682                                                     struct net *net)
1683 {
1684         struct net_device *dev;
1685
1686         for_each_netdev(net, dev)
1687                 call_netdevice_unregister_notifiers(nb, dev);
1688 }
1689
1690 static int dev_boot_phase = 1;
1691
1692 /**
1693  * register_netdevice_notifier - register a network notifier block
1694  * @nb: notifier
1695  *
1696  * Register a notifier to be called when network device events occur.
1697  * The notifier passed is linked into the kernel structures and must
1698  * not be reused until it has been unregistered. A negative errno code
1699  * is returned on a failure.
1700  *
1701  * When registered all registration and up events are replayed
1702  * to the new notifier to allow device to have a race free
1703  * view of the network device list.
1704  */
1705
1706 int register_netdevice_notifier(struct notifier_block *nb)
1707 {
1708         struct net *net;
1709         int err;
1710
1711         /* Close race with setup_net() and cleanup_net() */
1712         down_write(&pernet_ops_rwsem);
1713         rtnl_lock();
1714         err = raw_notifier_chain_register(&netdev_chain, nb);
1715         if (err)
1716                 goto unlock;
1717         if (dev_boot_phase)
1718                 goto unlock;
1719         for_each_net(net) {
1720                 err = call_netdevice_register_net_notifiers(nb, net);
1721                 if (err)
1722                         goto rollback;
1723         }
1724
1725 unlock:
1726         rtnl_unlock();
1727         up_write(&pernet_ops_rwsem);
1728         return err;
1729
1730 rollback:
1731         for_each_net_continue_reverse(net)
1732                 call_netdevice_unregister_net_notifiers(nb, net);
1733
1734         raw_notifier_chain_unregister(&netdev_chain, nb);
1735         goto unlock;
1736 }
1737 EXPORT_SYMBOL(register_netdevice_notifier);
1738
1739 /**
1740  * unregister_netdevice_notifier - unregister a network notifier block
1741  * @nb: notifier
1742  *
1743  * Unregister a notifier previously registered by
1744  * register_netdevice_notifier(). The notifier is unlinked into the
1745  * kernel structures and may then be reused. A negative errno code
1746  * is returned on a failure.
1747  *
1748  * After unregistering unregister and down device events are synthesized
1749  * for all devices on the device list to the removed notifier to remove
1750  * the need for special case cleanup code.
1751  */
1752
1753 int unregister_netdevice_notifier(struct notifier_block *nb)
1754 {
1755         struct net *net;
1756         int err;
1757
1758         /* Close race with setup_net() and cleanup_net() */
1759         down_write(&pernet_ops_rwsem);
1760         rtnl_lock();
1761         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1762         if (err)
1763                 goto unlock;
1764
1765         for_each_net(net)
1766                 call_netdevice_unregister_net_notifiers(nb, net);
1767
1768 unlock:
1769         rtnl_unlock();
1770         up_write(&pernet_ops_rwsem);
1771         return err;
1772 }
1773 EXPORT_SYMBOL(unregister_netdevice_notifier);
1774
1775 static int __register_netdevice_notifier_net(struct net *net,
1776                                              struct notifier_block *nb,
1777                                              bool ignore_call_fail)
1778 {
1779         int err;
1780
1781         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1782         if (err)
1783                 return err;
1784         if (dev_boot_phase)
1785                 return 0;
1786
1787         err = call_netdevice_register_net_notifiers(nb, net);
1788         if (err && !ignore_call_fail)
1789                 goto chain_unregister;
1790
1791         return 0;
1792
1793 chain_unregister:
1794         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1795         return err;
1796 }
1797
1798 static int __unregister_netdevice_notifier_net(struct net *net,
1799                                                struct notifier_block *nb)
1800 {
1801         int err;
1802
1803         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1804         if (err)
1805                 return err;
1806
1807         call_netdevice_unregister_net_notifiers(nb, net);
1808         return 0;
1809 }
1810
1811 /**
1812  * register_netdevice_notifier_net - register a per-netns network notifier block
1813  * @net: network namespace
1814  * @nb: notifier
1815  *
1816  * Register a notifier to be called when network device events occur.
1817  * The notifier passed is linked into the kernel structures and must
1818  * not be reused until it has been unregistered. A negative errno code
1819  * is returned on a failure.
1820  *
1821  * When registered all registration and up events are replayed
1822  * to the new notifier to allow device to have a race free
1823  * view of the network device list.
1824  */
1825
1826 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1827 {
1828         int err;
1829
1830         rtnl_lock();
1831         err = __register_netdevice_notifier_net(net, nb, false);
1832         rtnl_unlock();
1833         return err;
1834 }
1835 EXPORT_SYMBOL(register_netdevice_notifier_net);
1836
1837 /**
1838  * unregister_netdevice_notifier_net - unregister a per-netns
1839  *                                     network notifier block
1840  * @net: network namespace
1841  * @nb: notifier
1842  *
1843  * Unregister a notifier previously registered by
1844  * register_netdevice_notifier_net(). The notifier is unlinked from the
1845  * kernel structures and may then be reused. A negative errno code
1846  * is returned on a failure.
1847  *
1848  * After unregistering unregister and down device events are synthesized
1849  * for all devices on the device list to the removed notifier to remove
1850  * the need for special case cleanup code.
1851  */
1852
1853 int unregister_netdevice_notifier_net(struct net *net,
1854                                       struct notifier_block *nb)
1855 {
1856         int err;
1857
1858         rtnl_lock();
1859         err = __unregister_netdevice_notifier_net(net, nb);
1860         rtnl_unlock();
1861         return err;
1862 }
1863 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1864
1865 static void __move_netdevice_notifier_net(struct net *src_net,
1866                                           struct net *dst_net,
1867                                           struct notifier_block *nb)
1868 {
1869         __unregister_netdevice_notifier_net(src_net, nb);
1870         __register_netdevice_notifier_net(dst_net, nb, true);
1871 }
1872
1873 int register_netdevice_notifier_dev_net(struct net_device *dev,
1874                                         struct notifier_block *nb,
1875                                         struct netdev_net_notifier *nn)
1876 {
1877         int err;
1878
1879         rtnl_lock();
1880         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1881         if (!err) {
1882                 nn->nb = nb;
1883                 list_add(&nn->list, &dev->net_notifier_list);
1884         }
1885         rtnl_unlock();
1886         return err;
1887 }
1888 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1889
1890 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1891                                           struct notifier_block *nb,
1892                                           struct netdev_net_notifier *nn)
1893 {
1894         int err;
1895
1896         rtnl_lock();
1897         list_del(&nn->list);
1898         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1899         rtnl_unlock();
1900         return err;
1901 }
1902 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1903
1904 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1905                                              struct net *net)
1906 {
1907         struct netdev_net_notifier *nn;
1908
1909         list_for_each_entry(nn, &dev->net_notifier_list, list)
1910                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1911 }
1912
1913 /**
1914  *      call_netdevice_notifiers_info - call all network notifier blocks
1915  *      @val: value passed unmodified to notifier function
1916  *      @info: notifier information data
1917  *
1918  *      Call all network notifier blocks.  Parameters and return value
1919  *      are as for raw_notifier_call_chain().
1920  */
1921
1922 static int call_netdevice_notifiers_info(unsigned long val,
1923                                          struct netdev_notifier_info *info)
1924 {
1925         struct net *net = dev_net(info->dev);
1926         int ret;
1927
1928         ASSERT_RTNL();
1929
1930         /* Run per-netns notifier block chain first, then run the global one.
1931          * Hopefully, one day, the global one is going to be removed after
1932          * all notifier block registrators get converted to be per-netns.
1933          */
1934         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1935         if (ret & NOTIFY_STOP_MASK)
1936                 return ret;
1937         return raw_notifier_call_chain(&netdev_chain, val, info);
1938 }
1939
1940 /**
1941  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1942  *                                             for and rollback on error
1943  *      @val_up: value passed unmodified to notifier function
1944  *      @val_down: value passed unmodified to the notifier function when
1945  *                 recovering from an error on @val_up
1946  *      @info: notifier information data
1947  *
1948  *      Call all per-netns network notifier blocks, but not notifier blocks on
1949  *      the global notifier chain. Parameters and return value are as for
1950  *      raw_notifier_call_chain_robust().
1951  */
1952
1953 static int
1954 call_netdevice_notifiers_info_robust(unsigned long val_up,
1955                                      unsigned long val_down,
1956                                      struct netdev_notifier_info *info)
1957 {
1958         struct net *net = dev_net(info->dev);
1959
1960         ASSERT_RTNL();
1961
1962         return raw_notifier_call_chain_robust(&net->netdev_chain,
1963                                               val_up, val_down, info);
1964 }
1965
1966 static int call_netdevice_notifiers_extack(unsigned long val,
1967                                            struct net_device *dev,
1968                                            struct netlink_ext_ack *extack)
1969 {
1970         struct netdev_notifier_info info = {
1971                 .dev = dev,
1972                 .extack = extack,
1973         };
1974
1975         return call_netdevice_notifiers_info(val, &info);
1976 }
1977
1978 /**
1979  *      call_netdevice_notifiers - call all network notifier blocks
1980  *      @val: value passed unmodified to notifier function
1981  *      @dev: net_device pointer passed unmodified to notifier function
1982  *
1983  *      Call all network notifier blocks.  Parameters and return value
1984  *      are as for raw_notifier_call_chain().
1985  */
1986
1987 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1988 {
1989         return call_netdevice_notifiers_extack(val, dev, NULL);
1990 }
1991 EXPORT_SYMBOL(call_netdevice_notifiers);
1992
1993 /**
1994  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1995  *      @val: value passed unmodified to notifier function
1996  *      @dev: net_device pointer passed unmodified to notifier function
1997  *      @arg: additional u32 argument passed to the notifier function
1998  *
1999  *      Call all network notifier blocks.  Parameters and return value
2000  *      are as for raw_notifier_call_chain().
2001  */
2002 static int call_netdevice_notifiers_mtu(unsigned long val,
2003                                         struct net_device *dev, u32 arg)
2004 {
2005         struct netdev_notifier_info_ext info = {
2006                 .info.dev = dev,
2007                 .ext.mtu = arg,
2008         };
2009
2010         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2011
2012         return call_netdevice_notifiers_info(val, &info.info);
2013 }
2014
2015 #ifdef CONFIG_NET_INGRESS
2016 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2017
2018 void net_inc_ingress_queue(void)
2019 {
2020         static_branch_inc(&ingress_needed_key);
2021 }
2022 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2023
2024 void net_dec_ingress_queue(void)
2025 {
2026         static_branch_dec(&ingress_needed_key);
2027 }
2028 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2029 #endif
2030
2031 #ifdef CONFIG_NET_EGRESS
2032 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2033
2034 void net_inc_egress_queue(void)
2035 {
2036         static_branch_inc(&egress_needed_key);
2037 }
2038 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2039
2040 void net_dec_egress_queue(void)
2041 {
2042         static_branch_dec(&egress_needed_key);
2043 }
2044 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2045 #endif
2046
2047 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2048 EXPORT_SYMBOL(netstamp_needed_key);
2049 #ifdef CONFIG_JUMP_LABEL
2050 static atomic_t netstamp_needed_deferred;
2051 static atomic_t netstamp_wanted;
2052 static void netstamp_clear(struct work_struct *work)
2053 {
2054         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2055         int wanted;
2056
2057         wanted = atomic_add_return(deferred, &netstamp_wanted);
2058         if (wanted > 0)
2059                 static_branch_enable(&netstamp_needed_key);
2060         else
2061                 static_branch_disable(&netstamp_needed_key);
2062 }
2063 static DECLARE_WORK(netstamp_work, netstamp_clear);
2064 #endif
2065
2066 void net_enable_timestamp(void)
2067 {
2068 #ifdef CONFIG_JUMP_LABEL
2069         int wanted = atomic_read(&netstamp_wanted);
2070
2071         while (wanted > 0) {
2072                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2073                         return;
2074         }
2075         atomic_inc(&netstamp_needed_deferred);
2076         schedule_work(&netstamp_work);
2077 #else
2078         static_branch_inc(&netstamp_needed_key);
2079 #endif
2080 }
2081 EXPORT_SYMBOL(net_enable_timestamp);
2082
2083 void net_disable_timestamp(void)
2084 {
2085 #ifdef CONFIG_JUMP_LABEL
2086         int wanted = atomic_read(&netstamp_wanted);
2087
2088         while (wanted > 1) {
2089                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2090                         return;
2091         }
2092         atomic_dec(&netstamp_needed_deferred);
2093         schedule_work(&netstamp_work);
2094 #else
2095         static_branch_dec(&netstamp_needed_key);
2096 #endif
2097 }
2098 EXPORT_SYMBOL(net_disable_timestamp);
2099
2100 static inline void net_timestamp_set(struct sk_buff *skb)
2101 {
2102         skb->tstamp = 0;
2103         skb->mono_delivery_time = 0;
2104         if (static_branch_unlikely(&netstamp_needed_key))
2105                 skb->tstamp = ktime_get_real();
2106 }
2107
2108 #define net_timestamp_check(COND, SKB)                          \
2109         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2110                 if ((COND) && !(SKB)->tstamp)                   \
2111                         (SKB)->tstamp = ktime_get_real();       \
2112         }                                                       \
2113
2114 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2115 {
2116         return __is_skb_forwardable(dev, skb, true);
2117 }
2118 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2119
2120 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2121                               bool check_mtu)
2122 {
2123         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2124
2125         if (likely(!ret)) {
2126                 skb->protocol = eth_type_trans(skb, dev);
2127                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2128         }
2129
2130         return ret;
2131 }
2132
2133 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2134 {
2135         return __dev_forward_skb2(dev, skb, true);
2136 }
2137 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2138
2139 /**
2140  * dev_forward_skb - loopback an skb to another netif
2141  *
2142  * @dev: destination network device
2143  * @skb: buffer to forward
2144  *
2145  * return values:
2146  *      NET_RX_SUCCESS  (no congestion)
2147  *      NET_RX_DROP     (packet was dropped, but freed)
2148  *
2149  * dev_forward_skb can be used for injecting an skb from the
2150  * start_xmit function of one device into the receive queue
2151  * of another device.
2152  *
2153  * The receiving device may be in another namespace, so
2154  * we have to clear all information in the skb that could
2155  * impact namespace isolation.
2156  */
2157 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2158 {
2159         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2160 }
2161 EXPORT_SYMBOL_GPL(dev_forward_skb);
2162
2163 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2164 {
2165         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2166 }
2167
2168 static inline int deliver_skb(struct sk_buff *skb,
2169                               struct packet_type *pt_prev,
2170                               struct net_device *orig_dev)
2171 {
2172         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2173                 return -ENOMEM;
2174         refcount_inc(&skb->users);
2175         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2176 }
2177
2178 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2179                                           struct packet_type **pt,
2180                                           struct net_device *orig_dev,
2181                                           __be16 type,
2182                                           struct list_head *ptype_list)
2183 {
2184         struct packet_type *ptype, *pt_prev = *pt;
2185
2186         list_for_each_entry_rcu(ptype, ptype_list, list) {
2187                 if (ptype->type != type)
2188                         continue;
2189                 if (pt_prev)
2190                         deliver_skb(skb, pt_prev, orig_dev);
2191                 pt_prev = ptype;
2192         }
2193         *pt = pt_prev;
2194 }
2195
2196 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2197 {
2198         if (!ptype->af_packet_priv || !skb->sk)
2199                 return false;
2200
2201         if (ptype->id_match)
2202                 return ptype->id_match(ptype, skb->sk);
2203         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2204                 return true;
2205
2206         return false;
2207 }
2208
2209 /**
2210  * dev_nit_active - return true if any network interface taps are in use
2211  *
2212  * @dev: network device to check for the presence of taps
2213  */
2214 bool dev_nit_active(struct net_device *dev)
2215 {
2216         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2217 }
2218 EXPORT_SYMBOL_GPL(dev_nit_active);
2219
2220 /*
2221  *      Support routine. Sends outgoing frames to any network
2222  *      taps currently in use.
2223  */
2224
2225 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2226 {
2227         struct packet_type *ptype;
2228         struct sk_buff *skb2 = NULL;
2229         struct packet_type *pt_prev = NULL;
2230         struct list_head *ptype_list = &ptype_all;
2231
2232         rcu_read_lock();
2233 again:
2234         list_for_each_entry_rcu(ptype, ptype_list, list) {
2235                 if (ptype->ignore_outgoing)
2236                         continue;
2237
2238                 /* Never send packets back to the socket
2239                  * they originated from - MvS ([email protected])
2240                  */
2241                 if (skb_loop_sk(ptype, skb))
2242                         continue;
2243
2244                 if (pt_prev) {
2245                         deliver_skb(skb2, pt_prev, skb->dev);
2246                         pt_prev = ptype;
2247                         continue;
2248                 }
2249
2250                 /* need to clone skb, done only once */
2251                 skb2 = skb_clone(skb, GFP_ATOMIC);
2252                 if (!skb2)
2253                         goto out_unlock;
2254
2255                 net_timestamp_set(skb2);
2256
2257                 /* skb->nh should be correctly
2258                  * set by sender, so that the second statement is
2259                  * just protection against buggy protocols.
2260                  */
2261                 skb_reset_mac_header(skb2);
2262
2263                 if (skb_network_header(skb2) < skb2->data ||
2264                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2265                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2266                                              ntohs(skb2->protocol),
2267                                              dev->name);
2268                         skb_reset_network_header(skb2);
2269                 }
2270
2271                 skb2->transport_header = skb2->network_header;
2272                 skb2->pkt_type = PACKET_OUTGOING;
2273                 pt_prev = ptype;
2274         }
2275
2276         if (ptype_list == &ptype_all) {
2277                 ptype_list = &dev->ptype_all;
2278                 goto again;
2279         }
2280 out_unlock:
2281         if (pt_prev) {
2282                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2283                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2284                 else
2285                         kfree_skb(skb2);
2286         }
2287         rcu_read_unlock();
2288 }
2289 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2290
2291 /**
2292  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2293  * @dev: Network device
2294  * @txq: number of queues available
2295  *
2296  * If real_num_tx_queues is changed the tc mappings may no longer be
2297  * valid. To resolve this verify the tc mapping remains valid and if
2298  * not NULL the mapping. With no priorities mapping to this
2299  * offset/count pair it will no longer be used. In the worst case TC0
2300  * is invalid nothing can be done so disable priority mappings. If is
2301  * expected that drivers will fix this mapping if they can before
2302  * calling netif_set_real_num_tx_queues.
2303  */
2304 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2305 {
2306         int i;
2307         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2308
2309         /* If TC0 is invalidated disable TC mapping */
2310         if (tc->offset + tc->count > txq) {
2311                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2312                 dev->num_tc = 0;
2313                 return;
2314         }
2315
2316         /* Invalidated prio to tc mappings set to TC0 */
2317         for (i = 1; i < TC_BITMASK + 1; i++) {
2318                 int q = netdev_get_prio_tc_map(dev, i);
2319
2320                 tc = &dev->tc_to_txq[q];
2321                 if (tc->offset + tc->count > txq) {
2322                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2323                                     i, q);
2324                         netdev_set_prio_tc_map(dev, i, 0);
2325                 }
2326         }
2327 }
2328
2329 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2330 {
2331         if (dev->num_tc) {
2332                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2333                 int i;
2334
2335                 /* walk through the TCs and see if it falls into any of them */
2336                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2337                         if ((txq - tc->offset) < tc->count)
2338                                 return i;
2339                 }
2340
2341                 /* didn't find it, just return -1 to indicate no match */
2342                 return -1;
2343         }
2344
2345         return 0;
2346 }
2347 EXPORT_SYMBOL(netdev_txq_to_tc);
2348
2349 #ifdef CONFIG_XPS
2350 static struct static_key xps_needed __read_mostly;
2351 static struct static_key xps_rxqs_needed __read_mostly;
2352 static DEFINE_MUTEX(xps_map_mutex);
2353 #define xmap_dereference(P)             \
2354         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2355
2356 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2357                              struct xps_dev_maps *old_maps, int tci, u16 index)
2358 {
2359         struct xps_map *map = NULL;
2360         int pos;
2361
2362         if (dev_maps)
2363                 map = xmap_dereference(dev_maps->attr_map[tci]);
2364         if (!map)
2365                 return false;
2366
2367         for (pos = map->len; pos--;) {
2368                 if (map->queues[pos] != index)
2369                         continue;
2370
2371                 if (map->len > 1) {
2372                         map->queues[pos] = map->queues[--map->len];
2373                         break;
2374                 }
2375
2376                 if (old_maps)
2377                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2378                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2379                 kfree_rcu(map, rcu);
2380                 return false;
2381         }
2382
2383         return true;
2384 }
2385
2386 static bool remove_xps_queue_cpu(struct net_device *dev,
2387                                  struct xps_dev_maps *dev_maps,
2388                                  int cpu, u16 offset, u16 count)
2389 {
2390         int num_tc = dev_maps->num_tc;
2391         bool active = false;
2392         int tci;
2393
2394         for (tci = cpu * num_tc; num_tc--; tci++) {
2395                 int i, j;
2396
2397                 for (i = count, j = offset; i--; j++) {
2398                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2399                                 break;
2400                 }
2401
2402                 active |= i < 0;
2403         }
2404
2405         return active;
2406 }
2407
2408 static void reset_xps_maps(struct net_device *dev,
2409                            struct xps_dev_maps *dev_maps,
2410                            enum xps_map_type type)
2411 {
2412         static_key_slow_dec_cpuslocked(&xps_needed);
2413         if (type == XPS_RXQS)
2414                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2415
2416         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2417
2418         kfree_rcu(dev_maps, rcu);
2419 }
2420
2421 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2422                            u16 offset, u16 count)
2423 {
2424         struct xps_dev_maps *dev_maps;
2425         bool active = false;
2426         int i, j;
2427
2428         dev_maps = xmap_dereference(dev->xps_maps[type]);
2429         if (!dev_maps)
2430                 return;
2431
2432         for (j = 0; j < dev_maps->nr_ids; j++)
2433                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2434         if (!active)
2435                 reset_xps_maps(dev, dev_maps, type);
2436
2437         if (type == XPS_CPUS) {
2438                 for (i = offset + (count - 1); count--; i--)
2439                         netdev_queue_numa_node_write(
2440                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2441         }
2442 }
2443
2444 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2445                                    u16 count)
2446 {
2447         if (!static_key_false(&xps_needed))
2448                 return;
2449
2450         cpus_read_lock();
2451         mutex_lock(&xps_map_mutex);
2452
2453         if (static_key_false(&xps_rxqs_needed))
2454                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2455
2456         clean_xps_maps(dev, XPS_CPUS, offset, count);
2457
2458         mutex_unlock(&xps_map_mutex);
2459         cpus_read_unlock();
2460 }
2461
2462 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2463 {
2464         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2465 }
2466
2467 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2468                                       u16 index, bool is_rxqs_map)
2469 {
2470         struct xps_map *new_map;
2471         int alloc_len = XPS_MIN_MAP_ALLOC;
2472         int i, pos;
2473
2474         for (pos = 0; map && pos < map->len; pos++) {
2475                 if (map->queues[pos] != index)
2476                         continue;
2477                 return map;
2478         }
2479
2480         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2481         if (map) {
2482                 if (pos < map->alloc_len)
2483                         return map;
2484
2485                 alloc_len = map->alloc_len * 2;
2486         }
2487
2488         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2489          *  map
2490          */
2491         if (is_rxqs_map)
2492                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2493         else
2494                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2495                                        cpu_to_node(attr_index));
2496         if (!new_map)
2497                 return NULL;
2498
2499         for (i = 0; i < pos; i++)
2500                 new_map->queues[i] = map->queues[i];
2501         new_map->alloc_len = alloc_len;
2502         new_map->len = pos;
2503
2504         return new_map;
2505 }
2506
2507 /* Copy xps maps at a given index */
2508 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2509                               struct xps_dev_maps *new_dev_maps, int index,
2510                               int tc, bool skip_tc)
2511 {
2512         int i, tci = index * dev_maps->num_tc;
2513         struct xps_map *map;
2514
2515         /* copy maps belonging to foreign traffic classes */
2516         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2517                 if (i == tc && skip_tc)
2518                         continue;
2519
2520                 /* fill in the new device map from the old device map */
2521                 map = xmap_dereference(dev_maps->attr_map[tci]);
2522                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2523         }
2524 }
2525
2526 /* Must be called under cpus_read_lock */
2527 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2528                           u16 index, enum xps_map_type type)
2529 {
2530         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2531         const unsigned long *online_mask = NULL;
2532         bool active = false, copy = false;
2533         int i, j, tci, numa_node_id = -2;
2534         int maps_sz, num_tc = 1, tc = 0;
2535         struct xps_map *map, *new_map;
2536         unsigned int nr_ids;
2537
2538         if (dev->num_tc) {
2539                 /* Do not allow XPS on subordinate device directly */
2540                 num_tc = dev->num_tc;
2541                 if (num_tc < 0)
2542                         return -EINVAL;
2543
2544                 /* If queue belongs to subordinate dev use its map */
2545                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2546
2547                 tc = netdev_txq_to_tc(dev, index);
2548                 if (tc < 0)
2549                         return -EINVAL;
2550         }
2551
2552         mutex_lock(&xps_map_mutex);
2553
2554         dev_maps = xmap_dereference(dev->xps_maps[type]);
2555         if (type == XPS_RXQS) {
2556                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2557                 nr_ids = dev->num_rx_queues;
2558         } else {
2559                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2560                 if (num_possible_cpus() > 1)
2561                         online_mask = cpumask_bits(cpu_online_mask);
2562                 nr_ids = nr_cpu_ids;
2563         }
2564
2565         if (maps_sz < L1_CACHE_BYTES)
2566                 maps_sz = L1_CACHE_BYTES;
2567
2568         /* The old dev_maps could be larger or smaller than the one we're
2569          * setting up now, as dev->num_tc or nr_ids could have been updated in
2570          * between. We could try to be smart, but let's be safe instead and only
2571          * copy foreign traffic classes if the two map sizes match.
2572          */
2573         if (dev_maps &&
2574             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2575                 copy = true;
2576
2577         /* allocate memory for queue storage */
2578         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2579              j < nr_ids;) {
2580                 if (!new_dev_maps) {
2581                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2582                         if (!new_dev_maps) {
2583                                 mutex_unlock(&xps_map_mutex);
2584                                 return -ENOMEM;
2585                         }
2586
2587                         new_dev_maps->nr_ids = nr_ids;
2588                         new_dev_maps->num_tc = num_tc;
2589                 }
2590
2591                 tci = j * num_tc + tc;
2592                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2593
2594                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2595                 if (!map)
2596                         goto error;
2597
2598                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2599         }
2600
2601         if (!new_dev_maps)
2602                 goto out_no_new_maps;
2603
2604         if (!dev_maps) {
2605                 /* Increment static keys at most once per type */
2606                 static_key_slow_inc_cpuslocked(&xps_needed);
2607                 if (type == XPS_RXQS)
2608                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2609         }
2610
2611         for (j = 0; j < nr_ids; j++) {
2612                 bool skip_tc = false;
2613
2614                 tci = j * num_tc + tc;
2615                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2616                     netif_attr_test_online(j, online_mask, nr_ids)) {
2617                         /* add tx-queue to CPU/rx-queue maps */
2618                         int pos = 0;
2619
2620                         skip_tc = true;
2621
2622                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2623                         while ((pos < map->len) && (map->queues[pos] != index))
2624                                 pos++;
2625
2626                         if (pos == map->len)
2627                                 map->queues[map->len++] = index;
2628 #ifdef CONFIG_NUMA
2629                         if (type == XPS_CPUS) {
2630                                 if (numa_node_id == -2)
2631                                         numa_node_id = cpu_to_node(j);
2632                                 else if (numa_node_id != cpu_to_node(j))
2633                                         numa_node_id = -1;
2634                         }
2635 #endif
2636                 }
2637
2638                 if (copy)
2639                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2640                                           skip_tc);
2641         }
2642
2643         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2644
2645         /* Cleanup old maps */
2646         if (!dev_maps)
2647                 goto out_no_old_maps;
2648
2649         for (j = 0; j < dev_maps->nr_ids; j++) {
2650                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2651                         map = xmap_dereference(dev_maps->attr_map[tci]);
2652                         if (!map)
2653                                 continue;
2654
2655                         if (copy) {
2656                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2657                                 if (map == new_map)
2658                                         continue;
2659                         }
2660
2661                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2662                         kfree_rcu(map, rcu);
2663                 }
2664         }
2665
2666         old_dev_maps = dev_maps;
2667
2668 out_no_old_maps:
2669         dev_maps = new_dev_maps;
2670         active = true;
2671
2672 out_no_new_maps:
2673         if (type == XPS_CPUS)
2674                 /* update Tx queue numa node */
2675                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2676                                              (numa_node_id >= 0) ?
2677                                              numa_node_id : NUMA_NO_NODE);
2678
2679         if (!dev_maps)
2680                 goto out_no_maps;
2681
2682         /* removes tx-queue from unused CPUs/rx-queues */
2683         for (j = 0; j < dev_maps->nr_ids; j++) {
2684                 tci = j * dev_maps->num_tc;
2685
2686                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2687                         if (i == tc &&
2688                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2689                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2690                                 continue;
2691
2692                         active |= remove_xps_queue(dev_maps,
2693                                                    copy ? old_dev_maps : NULL,
2694                                                    tci, index);
2695                 }
2696         }
2697
2698         if (old_dev_maps)
2699                 kfree_rcu(old_dev_maps, rcu);
2700
2701         /* free map if not active */
2702         if (!active)
2703                 reset_xps_maps(dev, dev_maps, type);
2704
2705 out_no_maps:
2706         mutex_unlock(&xps_map_mutex);
2707
2708         return 0;
2709 error:
2710         /* remove any maps that we added */
2711         for (j = 0; j < nr_ids; j++) {
2712                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2713                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2714                         map = copy ?
2715                               xmap_dereference(dev_maps->attr_map[tci]) :
2716                               NULL;
2717                         if (new_map && new_map != map)
2718                                 kfree(new_map);
2719                 }
2720         }
2721
2722         mutex_unlock(&xps_map_mutex);
2723
2724         kfree(new_dev_maps);
2725         return -ENOMEM;
2726 }
2727 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2728
2729 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2730                         u16 index)
2731 {
2732         int ret;
2733
2734         cpus_read_lock();
2735         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2736         cpus_read_unlock();
2737
2738         return ret;
2739 }
2740 EXPORT_SYMBOL(netif_set_xps_queue);
2741
2742 #endif
2743 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2744 {
2745         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2746
2747         /* Unbind any subordinate channels */
2748         while (txq-- != &dev->_tx[0]) {
2749                 if (txq->sb_dev)
2750                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2751         }
2752 }
2753
2754 void netdev_reset_tc(struct net_device *dev)
2755 {
2756 #ifdef CONFIG_XPS
2757         netif_reset_xps_queues_gt(dev, 0);
2758 #endif
2759         netdev_unbind_all_sb_channels(dev);
2760
2761         /* Reset TC configuration of device */
2762         dev->num_tc = 0;
2763         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2764         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2765 }
2766 EXPORT_SYMBOL(netdev_reset_tc);
2767
2768 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2769 {
2770         if (tc >= dev->num_tc)
2771                 return -EINVAL;
2772
2773 #ifdef CONFIG_XPS
2774         netif_reset_xps_queues(dev, offset, count);
2775 #endif
2776         dev->tc_to_txq[tc].count = count;
2777         dev->tc_to_txq[tc].offset = offset;
2778         return 0;
2779 }
2780 EXPORT_SYMBOL(netdev_set_tc_queue);
2781
2782 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2783 {
2784         if (num_tc > TC_MAX_QUEUE)
2785                 return -EINVAL;
2786
2787 #ifdef CONFIG_XPS
2788         netif_reset_xps_queues_gt(dev, 0);
2789 #endif
2790         netdev_unbind_all_sb_channels(dev);
2791
2792         dev->num_tc = num_tc;
2793         return 0;
2794 }
2795 EXPORT_SYMBOL(netdev_set_num_tc);
2796
2797 void netdev_unbind_sb_channel(struct net_device *dev,
2798                               struct net_device *sb_dev)
2799 {
2800         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2801
2802 #ifdef CONFIG_XPS
2803         netif_reset_xps_queues_gt(sb_dev, 0);
2804 #endif
2805         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2806         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2807
2808         while (txq-- != &dev->_tx[0]) {
2809                 if (txq->sb_dev == sb_dev)
2810                         txq->sb_dev = NULL;
2811         }
2812 }
2813 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2814
2815 int netdev_bind_sb_channel_queue(struct net_device *dev,
2816                                  struct net_device *sb_dev,
2817                                  u8 tc, u16 count, u16 offset)
2818 {
2819         /* Make certain the sb_dev and dev are already configured */
2820         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2821                 return -EINVAL;
2822
2823         /* We cannot hand out queues we don't have */
2824         if ((offset + count) > dev->real_num_tx_queues)
2825                 return -EINVAL;
2826
2827         /* Record the mapping */
2828         sb_dev->tc_to_txq[tc].count = count;
2829         sb_dev->tc_to_txq[tc].offset = offset;
2830
2831         /* Provide a way for Tx queue to find the tc_to_txq map or
2832          * XPS map for itself.
2833          */
2834         while (count--)
2835                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2836
2837         return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2840
2841 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2842 {
2843         /* Do not use a multiqueue device to represent a subordinate channel */
2844         if (netif_is_multiqueue(dev))
2845                 return -ENODEV;
2846
2847         /* We allow channels 1 - 32767 to be used for subordinate channels.
2848          * Channel 0 is meant to be "native" mode and used only to represent
2849          * the main root device. We allow writing 0 to reset the device back
2850          * to normal mode after being used as a subordinate channel.
2851          */
2852         if (channel > S16_MAX)
2853                 return -EINVAL;
2854
2855         dev->num_tc = -channel;
2856
2857         return 0;
2858 }
2859 EXPORT_SYMBOL(netdev_set_sb_channel);
2860
2861 /*
2862  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2863  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2864  */
2865 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2866 {
2867         bool disabling;
2868         int rc;
2869
2870         disabling = txq < dev->real_num_tx_queues;
2871
2872         if (txq < 1 || txq > dev->num_tx_queues)
2873                 return -EINVAL;
2874
2875         if (dev->reg_state == NETREG_REGISTERED ||
2876             dev->reg_state == NETREG_UNREGISTERING) {
2877                 ASSERT_RTNL();
2878
2879                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2880                                                   txq);
2881                 if (rc)
2882                         return rc;
2883
2884                 if (dev->num_tc)
2885                         netif_setup_tc(dev, txq);
2886
2887                 dev_qdisc_change_real_num_tx(dev, txq);
2888
2889                 dev->real_num_tx_queues = txq;
2890
2891                 if (disabling) {
2892                         synchronize_net();
2893                         qdisc_reset_all_tx_gt(dev, txq);
2894 #ifdef CONFIG_XPS
2895                         netif_reset_xps_queues_gt(dev, txq);
2896 #endif
2897                 }
2898         } else {
2899                 dev->real_num_tx_queues = txq;
2900         }
2901
2902         return 0;
2903 }
2904 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2905
2906 #ifdef CONFIG_SYSFS
2907 /**
2908  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2909  *      @dev: Network device
2910  *      @rxq: Actual number of RX queues
2911  *
2912  *      This must be called either with the rtnl_lock held or before
2913  *      registration of the net device.  Returns 0 on success, or a
2914  *      negative error code.  If called before registration, it always
2915  *      succeeds.
2916  */
2917 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2918 {
2919         int rc;
2920
2921         if (rxq < 1 || rxq > dev->num_rx_queues)
2922                 return -EINVAL;
2923
2924         if (dev->reg_state == NETREG_REGISTERED) {
2925                 ASSERT_RTNL();
2926
2927                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2928                                                   rxq);
2929                 if (rc)
2930                         return rc;
2931         }
2932
2933         dev->real_num_rx_queues = rxq;
2934         return 0;
2935 }
2936 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2937 #endif
2938
2939 /**
2940  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2941  *      @dev: Network device
2942  *      @txq: Actual number of TX queues
2943  *      @rxq: Actual number of RX queues
2944  *
2945  *      Set the real number of both TX and RX queues.
2946  *      Does nothing if the number of queues is already correct.
2947  */
2948 int netif_set_real_num_queues(struct net_device *dev,
2949                               unsigned int txq, unsigned int rxq)
2950 {
2951         unsigned int old_rxq = dev->real_num_rx_queues;
2952         int err;
2953
2954         if (txq < 1 || txq > dev->num_tx_queues ||
2955             rxq < 1 || rxq > dev->num_rx_queues)
2956                 return -EINVAL;
2957
2958         /* Start from increases, so the error path only does decreases -
2959          * decreases can't fail.
2960          */
2961         if (rxq > dev->real_num_rx_queues) {
2962                 err = netif_set_real_num_rx_queues(dev, rxq);
2963                 if (err)
2964                         return err;
2965         }
2966         if (txq > dev->real_num_tx_queues) {
2967                 err = netif_set_real_num_tx_queues(dev, txq);
2968                 if (err)
2969                         goto undo_rx;
2970         }
2971         if (rxq < dev->real_num_rx_queues)
2972                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2973         if (txq < dev->real_num_tx_queues)
2974                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2975
2976         return 0;
2977 undo_rx:
2978         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2979         return err;
2980 }
2981 EXPORT_SYMBOL(netif_set_real_num_queues);
2982
2983 /**
2984  * netif_set_tso_max_size() - set the max size of TSO frames supported
2985  * @dev:        netdev to update
2986  * @size:       max skb->len of a TSO frame
2987  *
2988  * Set the limit on the size of TSO super-frames the device can handle.
2989  * Unless explicitly set the stack will assume the value of
2990  * %GSO_LEGACY_MAX_SIZE.
2991  */
2992 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
2993 {
2994         dev->tso_max_size = min(GSO_MAX_SIZE, size);
2995         if (size < READ_ONCE(dev->gso_max_size))
2996                 netif_set_gso_max_size(dev, size);
2997         if (size < READ_ONCE(dev->gso_ipv4_max_size))
2998                 netif_set_gso_ipv4_max_size(dev, size);
2999 }
3000 EXPORT_SYMBOL(netif_set_tso_max_size);
3001
3002 /**
3003  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3004  * @dev:        netdev to update
3005  * @segs:       max number of TCP segments
3006  *
3007  * Set the limit on the number of TCP segments the device can generate from
3008  * a single TSO super-frame.
3009  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3010  */
3011 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3012 {
3013         dev->tso_max_segs = segs;
3014         if (segs < READ_ONCE(dev->gso_max_segs))
3015                 netif_set_gso_max_segs(dev, segs);
3016 }
3017 EXPORT_SYMBOL(netif_set_tso_max_segs);
3018
3019 /**
3020  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3021  * @to:         netdev to update
3022  * @from:       netdev from which to copy the limits
3023  */
3024 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3025 {
3026         netif_set_tso_max_size(to, from->tso_max_size);
3027         netif_set_tso_max_segs(to, from->tso_max_segs);
3028 }
3029 EXPORT_SYMBOL(netif_inherit_tso_max);
3030
3031 /**
3032  * netif_get_num_default_rss_queues - default number of RSS queues
3033  *
3034  * Default value is the number of physical cores if there are only 1 or 2, or
3035  * divided by 2 if there are more.
3036  */
3037 int netif_get_num_default_rss_queues(void)
3038 {
3039         cpumask_var_t cpus;
3040         int cpu, count = 0;
3041
3042         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3043                 return 1;
3044
3045         cpumask_copy(cpus, cpu_online_mask);
3046         for_each_cpu(cpu, cpus) {
3047                 ++count;
3048                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3049         }
3050         free_cpumask_var(cpus);
3051
3052         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3053 }
3054 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3055
3056 static void __netif_reschedule(struct Qdisc *q)
3057 {
3058         struct softnet_data *sd;
3059         unsigned long flags;
3060
3061         local_irq_save(flags);
3062         sd = this_cpu_ptr(&softnet_data);
3063         q->next_sched = NULL;
3064         *sd->output_queue_tailp = q;
3065         sd->output_queue_tailp = &q->next_sched;
3066         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3067         local_irq_restore(flags);
3068 }
3069
3070 void __netif_schedule(struct Qdisc *q)
3071 {
3072         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3073                 __netif_reschedule(q);
3074 }
3075 EXPORT_SYMBOL(__netif_schedule);
3076
3077 struct dev_kfree_skb_cb {
3078         enum skb_free_reason reason;
3079 };
3080
3081 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3082 {
3083         return (struct dev_kfree_skb_cb *)skb->cb;
3084 }
3085
3086 void netif_schedule_queue(struct netdev_queue *txq)
3087 {
3088         rcu_read_lock();
3089         if (!netif_xmit_stopped(txq)) {
3090                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3091
3092                 __netif_schedule(q);
3093         }
3094         rcu_read_unlock();
3095 }
3096 EXPORT_SYMBOL(netif_schedule_queue);
3097
3098 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3099 {
3100         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3101                 struct Qdisc *q;
3102
3103                 rcu_read_lock();
3104                 q = rcu_dereference(dev_queue->qdisc);
3105                 __netif_schedule(q);
3106                 rcu_read_unlock();
3107         }
3108 }
3109 EXPORT_SYMBOL(netif_tx_wake_queue);
3110
3111 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3112 {
3113         unsigned long flags;
3114
3115         if (unlikely(!skb))
3116                 return;
3117
3118         if (likely(refcount_read(&skb->users) == 1)) {
3119                 smp_rmb();
3120                 refcount_set(&skb->users, 0);
3121         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3122                 return;
3123         }
3124         get_kfree_skb_cb(skb)->reason = reason;
3125         local_irq_save(flags);
3126         skb->next = __this_cpu_read(softnet_data.completion_queue);
3127         __this_cpu_write(softnet_data.completion_queue, skb);
3128         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3129         local_irq_restore(flags);
3130 }
3131 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3132
3133 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3134 {
3135         if (in_hardirq() || irqs_disabled())
3136                 __dev_kfree_skb_irq(skb, reason);
3137         else if (unlikely(reason == SKB_REASON_DROPPED))
3138                 kfree_skb(skb);
3139         else
3140                 consume_skb(skb);
3141 }
3142 EXPORT_SYMBOL(__dev_kfree_skb_any);
3143
3144
3145 /**
3146  * netif_device_detach - mark device as removed
3147  * @dev: network device
3148  *
3149  * Mark device as removed from system and therefore no longer available.
3150  */
3151 void netif_device_detach(struct net_device *dev)
3152 {
3153         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3154             netif_running(dev)) {
3155                 netif_tx_stop_all_queues(dev);
3156         }
3157 }
3158 EXPORT_SYMBOL(netif_device_detach);
3159
3160 /**
3161  * netif_device_attach - mark device as attached
3162  * @dev: network device
3163  *
3164  * Mark device as attached from system and restart if needed.
3165  */
3166 void netif_device_attach(struct net_device *dev)
3167 {
3168         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3169             netif_running(dev)) {
3170                 netif_tx_wake_all_queues(dev);
3171                 __netdev_watchdog_up(dev);
3172         }
3173 }
3174 EXPORT_SYMBOL(netif_device_attach);
3175
3176 /*
3177  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3178  * to be used as a distribution range.
3179  */
3180 static u16 skb_tx_hash(const struct net_device *dev,
3181                        const struct net_device *sb_dev,
3182                        struct sk_buff *skb)
3183 {
3184         u32 hash;
3185         u16 qoffset = 0;
3186         u16 qcount = dev->real_num_tx_queues;
3187
3188         if (dev->num_tc) {
3189                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3190
3191                 qoffset = sb_dev->tc_to_txq[tc].offset;
3192                 qcount = sb_dev->tc_to_txq[tc].count;
3193                 if (unlikely(!qcount)) {
3194                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3195                                              sb_dev->name, qoffset, tc);
3196                         qoffset = 0;
3197                         qcount = dev->real_num_tx_queues;
3198                 }
3199         }
3200
3201         if (skb_rx_queue_recorded(skb)) {
3202                 hash = skb_get_rx_queue(skb);
3203                 if (hash >= qoffset)
3204                         hash -= qoffset;
3205                 while (unlikely(hash >= qcount))
3206                         hash -= qcount;
3207                 return hash + qoffset;
3208         }
3209
3210         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3211 }
3212
3213 static void skb_warn_bad_offload(const struct sk_buff *skb)
3214 {
3215         static const netdev_features_t null_features;
3216         struct net_device *dev = skb->dev;
3217         const char *name = "";
3218
3219         if (!net_ratelimit())
3220                 return;
3221
3222         if (dev) {
3223                 if (dev->dev.parent)
3224                         name = dev_driver_string(dev->dev.parent);
3225                 else
3226                         name = netdev_name(dev);
3227         }
3228         skb_dump(KERN_WARNING, skb, false);
3229         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3230              name, dev ? &dev->features : &null_features,
3231              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3232 }
3233
3234 /*
3235  * Invalidate hardware checksum when packet is to be mangled, and
3236  * complete checksum manually on outgoing path.
3237  */
3238 int skb_checksum_help(struct sk_buff *skb)
3239 {
3240         __wsum csum;
3241         int ret = 0, offset;
3242
3243         if (skb->ip_summed == CHECKSUM_COMPLETE)
3244                 goto out_set_summed;
3245
3246         if (unlikely(skb_is_gso(skb))) {
3247                 skb_warn_bad_offload(skb);
3248                 return -EINVAL;
3249         }
3250
3251         /* Before computing a checksum, we should make sure no frag could
3252          * be modified by an external entity : checksum could be wrong.
3253          */
3254         if (skb_has_shared_frag(skb)) {
3255                 ret = __skb_linearize(skb);
3256                 if (ret)
3257                         goto out;
3258         }
3259
3260         offset = skb_checksum_start_offset(skb);
3261         ret = -EINVAL;
3262         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3263                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3264                 goto out;
3265         }
3266         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3267
3268         offset += skb->csum_offset;
3269         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3270                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3271                 goto out;
3272         }
3273         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3274         if (ret)
3275                 goto out;
3276
3277         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3278 out_set_summed:
3279         skb->ip_summed = CHECKSUM_NONE;
3280 out:
3281         return ret;
3282 }
3283 EXPORT_SYMBOL(skb_checksum_help);
3284
3285 int skb_crc32c_csum_help(struct sk_buff *skb)
3286 {
3287         __le32 crc32c_csum;
3288         int ret = 0, offset, start;
3289
3290         if (skb->ip_summed != CHECKSUM_PARTIAL)
3291                 goto out;
3292
3293         if (unlikely(skb_is_gso(skb)))
3294                 goto out;
3295
3296         /* Before computing a checksum, we should make sure no frag could
3297          * be modified by an external entity : checksum could be wrong.
3298          */
3299         if (unlikely(skb_has_shared_frag(skb))) {
3300                 ret = __skb_linearize(skb);
3301                 if (ret)
3302                         goto out;
3303         }
3304         start = skb_checksum_start_offset(skb);
3305         offset = start + offsetof(struct sctphdr, checksum);
3306         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3307                 ret = -EINVAL;
3308                 goto out;
3309         }
3310
3311         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3312         if (ret)
3313                 goto out;
3314
3315         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3316                                                   skb->len - start, ~(__u32)0,
3317                                                   crc32c_csum_stub));
3318         *(__le32 *)(skb->data + offset) = crc32c_csum;
3319         skb->ip_summed = CHECKSUM_NONE;
3320         skb->csum_not_inet = 0;
3321 out:
3322         return ret;
3323 }
3324
3325 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3326 {
3327         __be16 type = skb->protocol;
3328
3329         /* Tunnel gso handlers can set protocol to ethernet. */
3330         if (type == htons(ETH_P_TEB)) {
3331                 struct ethhdr *eth;
3332
3333                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3334                         return 0;
3335
3336                 eth = (struct ethhdr *)skb->data;
3337                 type = eth->h_proto;
3338         }
3339
3340         return __vlan_get_protocol(skb, type, depth);
3341 }
3342
3343 /* openvswitch calls this on rx path, so we need a different check.
3344  */
3345 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3346 {
3347         if (tx_path)
3348                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3349                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3350
3351         return skb->ip_summed == CHECKSUM_NONE;
3352 }
3353
3354 /**
3355  *      __skb_gso_segment - Perform segmentation on skb.
3356  *      @skb: buffer to segment
3357  *      @features: features for the output path (see dev->features)
3358  *      @tx_path: whether it is called in TX path
3359  *
3360  *      This function segments the given skb and returns a list of segments.
3361  *
3362  *      It may return NULL if the skb requires no segmentation.  This is
3363  *      only possible when GSO is used for verifying header integrity.
3364  *
3365  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3366  */
3367 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3368                                   netdev_features_t features, bool tx_path)
3369 {
3370         struct sk_buff *segs;
3371
3372         if (unlikely(skb_needs_check(skb, tx_path))) {
3373                 int err;
3374
3375                 /* We're going to init ->check field in TCP or UDP header */
3376                 err = skb_cow_head(skb, 0);
3377                 if (err < 0)
3378                         return ERR_PTR(err);
3379         }
3380
3381         /* Only report GSO partial support if it will enable us to
3382          * support segmentation on this frame without needing additional
3383          * work.
3384          */
3385         if (features & NETIF_F_GSO_PARTIAL) {
3386                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3387                 struct net_device *dev = skb->dev;
3388
3389                 partial_features |= dev->features & dev->gso_partial_features;
3390                 if (!skb_gso_ok(skb, features | partial_features))
3391                         features &= ~NETIF_F_GSO_PARTIAL;
3392         }
3393
3394         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3395                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3396
3397         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3398         SKB_GSO_CB(skb)->encap_level = 0;
3399
3400         skb_reset_mac_header(skb);
3401         skb_reset_mac_len(skb);
3402
3403         segs = skb_mac_gso_segment(skb, features);
3404
3405         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3406                 skb_warn_bad_offload(skb);
3407
3408         return segs;
3409 }
3410 EXPORT_SYMBOL(__skb_gso_segment);
3411
3412 /* Take action when hardware reception checksum errors are detected. */
3413 #ifdef CONFIG_BUG
3414 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3415 {
3416         netdev_err(dev, "hw csum failure\n");
3417         skb_dump(KERN_ERR, skb, true);
3418         dump_stack();
3419 }
3420
3421 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3422 {
3423         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3424 }
3425 EXPORT_SYMBOL(netdev_rx_csum_fault);
3426 #endif
3427
3428 /* XXX: check that highmem exists at all on the given machine. */
3429 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3430 {
3431 #ifdef CONFIG_HIGHMEM
3432         int i;
3433
3434         if (!(dev->features & NETIF_F_HIGHDMA)) {
3435                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3436                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3437
3438                         if (PageHighMem(skb_frag_page(frag)))
3439                                 return 1;
3440                 }
3441         }
3442 #endif
3443         return 0;
3444 }
3445
3446 /* If MPLS offload request, verify we are testing hardware MPLS features
3447  * instead of standard features for the netdev.
3448  */
3449 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3450 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3451                                            netdev_features_t features,
3452                                            __be16 type)
3453 {
3454         if (eth_p_mpls(type))
3455                 features &= skb->dev->mpls_features;
3456
3457         return features;
3458 }
3459 #else
3460 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3461                                            netdev_features_t features,
3462                                            __be16 type)
3463 {
3464         return features;
3465 }
3466 #endif
3467
3468 static netdev_features_t harmonize_features(struct sk_buff *skb,
3469         netdev_features_t features)
3470 {
3471         __be16 type;
3472
3473         type = skb_network_protocol(skb, NULL);
3474         features = net_mpls_features(skb, features, type);
3475
3476         if (skb->ip_summed != CHECKSUM_NONE &&
3477             !can_checksum_protocol(features, type)) {
3478                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3479         }
3480         if (illegal_highdma(skb->dev, skb))
3481                 features &= ~NETIF_F_SG;
3482
3483         return features;
3484 }
3485
3486 netdev_features_t passthru_features_check(struct sk_buff *skb,
3487                                           struct net_device *dev,
3488                                           netdev_features_t features)
3489 {
3490         return features;
3491 }
3492 EXPORT_SYMBOL(passthru_features_check);
3493
3494 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3495                                              struct net_device *dev,
3496                                              netdev_features_t features)
3497 {
3498         return vlan_features_check(skb, features);
3499 }
3500
3501 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3502                                             struct net_device *dev,
3503                                             netdev_features_t features)
3504 {
3505         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3506
3507         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3508                 return features & ~NETIF_F_GSO_MASK;
3509
3510         if (!skb_shinfo(skb)->gso_type) {
3511                 skb_warn_bad_offload(skb);
3512                 return features & ~NETIF_F_GSO_MASK;
3513         }
3514
3515         /* Support for GSO partial features requires software
3516          * intervention before we can actually process the packets
3517          * so we need to strip support for any partial features now
3518          * and we can pull them back in after we have partially
3519          * segmented the frame.
3520          */
3521         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3522                 features &= ~dev->gso_partial_features;
3523
3524         /* Make sure to clear the IPv4 ID mangling feature if the
3525          * IPv4 header has the potential to be fragmented.
3526          */
3527         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3528                 struct iphdr *iph = skb->encapsulation ?
3529                                     inner_ip_hdr(skb) : ip_hdr(skb);
3530
3531                 if (!(iph->frag_off & htons(IP_DF)))
3532                         features &= ~NETIF_F_TSO_MANGLEID;
3533         }
3534
3535         return features;
3536 }
3537
3538 netdev_features_t netif_skb_features(struct sk_buff *skb)
3539 {
3540         struct net_device *dev = skb->dev;
3541         netdev_features_t features = dev->features;
3542
3543         if (skb_is_gso(skb))
3544                 features = gso_features_check(skb, dev, features);
3545
3546         /* If encapsulation offload request, verify we are testing
3547          * hardware encapsulation features instead of standard
3548          * features for the netdev
3549          */
3550         if (skb->encapsulation)
3551                 features &= dev->hw_enc_features;
3552
3553         if (skb_vlan_tagged(skb))
3554                 features = netdev_intersect_features(features,
3555                                                      dev->vlan_features |
3556                                                      NETIF_F_HW_VLAN_CTAG_TX |
3557                                                      NETIF_F_HW_VLAN_STAG_TX);
3558
3559         if (dev->netdev_ops->ndo_features_check)
3560                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3561                                                                 features);
3562         else
3563                 features &= dflt_features_check(skb, dev, features);
3564
3565         return harmonize_features(skb, features);
3566 }
3567 EXPORT_SYMBOL(netif_skb_features);
3568
3569 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3570                     struct netdev_queue *txq, bool more)
3571 {
3572         unsigned int len;
3573         int rc;
3574
3575         if (dev_nit_active(dev))
3576                 dev_queue_xmit_nit(skb, dev);
3577
3578         len = skb->len;
3579         trace_net_dev_start_xmit(skb, dev);
3580         rc = netdev_start_xmit(skb, dev, txq, more);
3581         trace_net_dev_xmit(skb, rc, dev, len);
3582
3583         return rc;
3584 }
3585
3586 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3587                                     struct netdev_queue *txq, int *ret)
3588 {
3589         struct sk_buff *skb = first;
3590         int rc = NETDEV_TX_OK;
3591
3592         while (skb) {
3593                 struct sk_buff *next = skb->next;
3594
3595                 skb_mark_not_on_list(skb);
3596                 rc = xmit_one(skb, dev, txq, next != NULL);
3597                 if (unlikely(!dev_xmit_complete(rc))) {
3598                         skb->next = next;
3599                         goto out;
3600                 }
3601
3602                 skb = next;
3603                 if (netif_tx_queue_stopped(txq) && skb) {
3604                         rc = NETDEV_TX_BUSY;
3605                         break;
3606                 }
3607         }
3608
3609 out:
3610         *ret = rc;
3611         return skb;
3612 }
3613
3614 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3615                                           netdev_features_t features)
3616 {
3617         if (skb_vlan_tag_present(skb) &&
3618             !vlan_hw_offload_capable(features, skb->vlan_proto))
3619                 skb = __vlan_hwaccel_push_inside(skb);
3620         return skb;
3621 }
3622
3623 int skb_csum_hwoffload_help(struct sk_buff *skb,
3624                             const netdev_features_t features)
3625 {
3626         if (unlikely(skb_csum_is_sctp(skb)))
3627                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3628                         skb_crc32c_csum_help(skb);
3629
3630         if (features & NETIF_F_HW_CSUM)
3631                 return 0;
3632
3633         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3634                 switch (skb->csum_offset) {
3635                 case offsetof(struct tcphdr, check):
3636                 case offsetof(struct udphdr, check):
3637                         return 0;
3638                 }
3639         }
3640
3641         return skb_checksum_help(skb);
3642 }
3643 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3644
3645 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3646 {
3647         netdev_features_t features;
3648
3649         features = netif_skb_features(skb);
3650         skb = validate_xmit_vlan(skb, features);
3651         if (unlikely(!skb))
3652                 goto out_null;
3653
3654         skb = sk_validate_xmit_skb(skb, dev);
3655         if (unlikely(!skb))
3656                 goto out_null;
3657
3658         if (netif_needs_gso(skb, features)) {
3659                 struct sk_buff *segs;
3660
3661                 segs = skb_gso_segment(skb, features);
3662                 if (IS_ERR(segs)) {
3663                         goto out_kfree_skb;
3664                 } else if (segs) {
3665                         consume_skb(skb);
3666                         skb = segs;
3667                 }
3668         } else {
3669                 if (skb_needs_linearize(skb, features) &&
3670                     __skb_linearize(skb))
3671                         goto out_kfree_skb;
3672
3673                 /* If packet is not checksummed and device does not
3674                  * support checksumming for this protocol, complete
3675                  * checksumming here.
3676                  */
3677                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3678                         if (skb->encapsulation)
3679                                 skb_set_inner_transport_header(skb,
3680                                                                skb_checksum_start_offset(skb));
3681                         else
3682                                 skb_set_transport_header(skb,
3683                                                          skb_checksum_start_offset(skb));
3684                         if (skb_csum_hwoffload_help(skb, features))
3685                                 goto out_kfree_skb;
3686                 }
3687         }
3688
3689         skb = validate_xmit_xfrm(skb, features, again);
3690
3691         return skb;
3692
3693 out_kfree_skb:
3694         kfree_skb(skb);
3695 out_null:
3696         dev_core_stats_tx_dropped_inc(dev);
3697         return NULL;
3698 }
3699
3700 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3701 {
3702         struct sk_buff *next, *head = NULL, *tail;
3703
3704         for (; skb != NULL; skb = next) {
3705                 next = skb->next;
3706                 skb_mark_not_on_list(skb);
3707
3708                 /* in case skb wont be segmented, point to itself */
3709                 skb->prev = skb;
3710
3711                 skb = validate_xmit_skb(skb, dev, again);
3712                 if (!skb)
3713                         continue;
3714
3715                 if (!head)
3716                         head = skb;
3717                 else
3718                         tail->next = skb;
3719                 /* If skb was segmented, skb->prev points to
3720                  * the last segment. If not, it still contains skb.
3721                  */
3722                 tail = skb->prev;
3723         }
3724         return head;
3725 }
3726 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3727
3728 static void qdisc_pkt_len_init(struct sk_buff *skb)
3729 {
3730         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3731
3732         qdisc_skb_cb(skb)->pkt_len = skb->len;
3733
3734         /* To get more precise estimation of bytes sent on wire,
3735          * we add to pkt_len the headers size of all segments
3736          */
3737         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3738                 unsigned int hdr_len;
3739                 u16 gso_segs = shinfo->gso_segs;
3740
3741                 /* mac layer + network layer */
3742                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3743
3744                 /* + transport layer */
3745                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3746                         const struct tcphdr *th;
3747                         struct tcphdr _tcphdr;
3748
3749                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3750                                                 sizeof(_tcphdr), &_tcphdr);
3751                         if (likely(th))
3752                                 hdr_len += __tcp_hdrlen(th);
3753                 } else {
3754                         struct udphdr _udphdr;
3755
3756                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3757                                                sizeof(_udphdr), &_udphdr))
3758                                 hdr_len += sizeof(struct udphdr);
3759                 }
3760
3761                 if (shinfo->gso_type & SKB_GSO_DODGY)
3762                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3763                                                 shinfo->gso_size);
3764
3765                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3766         }
3767 }
3768
3769 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3770                              struct sk_buff **to_free,
3771                              struct netdev_queue *txq)
3772 {
3773         int rc;
3774
3775         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3776         if (rc == NET_XMIT_SUCCESS)
3777                 trace_qdisc_enqueue(q, txq, skb);
3778         return rc;
3779 }
3780
3781 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3782                                  struct net_device *dev,
3783                                  struct netdev_queue *txq)
3784 {
3785         spinlock_t *root_lock = qdisc_lock(q);
3786         struct sk_buff *to_free = NULL;
3787         bool contended;
3788         int rc;
3789
3790         qdisc_calculate_pkt_len(skb, q);
3791
3792         if (q->flags & TCQ_F_NOLOCK) {
3793                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3794                     qdisc_run_begin(q)) {
3795                         /* Retest nolock_qdisc_is_empty() within the protection
3796                          * of q->seqlock to protect from racing with requeuing.
3797                          */
3798                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3799                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3800                                 __qdisc_run(q);
3801                                 qdisc_run_end(q);
3802
3803                                 goto no_lock_out;
3804                         }
3805
3806                         qdisc_bstats_cpu_update(q, skb);
3807                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3808                             !nolock_qdisc_is_empty(q))
3809                                 __qdisc_run(q);
3810
3811                         qdisc_run_end(q);
3812                         return NET_XMIT_SUCCESS;
3813                 }
3814
3815                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3816                 qdisc_run(q);
3817
3818 no_lock_out:
3819                 if (unlikely(to_free))
3820                         kfree_skb_list_reason(to_free,
3821                                               SKB_DROP_REASON_QDISC_DROP);
3822                 return rc;
3823         }
3824
3825         /*
3826          * Heuristic to force contended enqueues to serialize on a
3827          * separate lock before trying to get qdisc main lock.
3828          * This permits qdisc->running owner to get the lock more
3829          * often and dequeue packets faster.
3830          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3831          * and then other tasks will only enqueue packets. The packets will be
3832          * sent after the qdisc owner is scheduled again. To prevent this
3833          * scenario the task always serialize on the lock.
3834          */
3835         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3836         if (unlikely(contended))
3837                 spin_lock(&q->busylock);
3838
3839         spin_lock(root_lock);
3840         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3841                 __qdisc_drop(skb, &to_free);
3842                 rc = NET_XMIT_DROP;
3843         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3844                    qdisc_run_begin(q)) {
3845                 /*
3846                  * This is a work-conserving queue; there are no old skbs
3847                  * waiting to be sent out; and the qdisc is not running -
3848                  * xmit the skb directly.
3849                  */
3850
3851                 qdisc_bstats_update(q, skb);
3852
3853                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3854                         if (unlikely(contended)) {
3855                                 spin_unlock(&q->busylock);
3856                                 contended = false;
3857                         }
3858                         __qdisc_run(q);
3859                 }
3860
3861                 qdisc_run_end(q);
3862                 rc = NET_XMIT_SUCCESS;
3863         } else {
3864                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3865                 if (qdisc_run_begin(q)) {
3866                         if (unlikely(contended)) {
3867                                 spin_unlock(&q->busylock);
3868                                 contended = false;
3869                         }
3870                         __qdisc_run(q);
3871                         qdisc_run_end(q);
3872                 }
3873         }
3874         spin_unlock(root_lock);
3875         if (unlikely(to_free))
3876                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3877         if (unlikely(contended))
3878                 spin_unlock(&q->busylock);
3879         return rc;
3880 }
3881
3882 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3883 static void skb_update_prio(struct sk_buff *skb)
3884 {
3885         const struct netprio_map *map;
3886         const struct sock *sk;
3887         unsigned int prioidx;
3888
3889         if (skb->priority)
3890                 return;
3891         map = rcu_dereference_bh(skb->dev->priomap);
3892         if (!map)
3893                 return;
3894         sk = skb_to_full_sk(skb);
3895         if (!sk)
3896                 return;
3897
3898         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3899
3900         if (prioidx < map->priomap_len)
3901                 skb->priority = map->priomap[prioidx];
3902 }
3903 #else
3904 #define skb_update_prio(skb)
3905 #endif
3906
3907 /**
3908  *      dev_loopback_xmit - loop back @skb
3909  *      @net: network namespace this loopback is happening in
3910  *      @sk:  sk needed to be a netfilter okfn
3911  *      @skb: buffer to transmit
3912  */
3913 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3914 {
3915         skb_reset_mac_header(skb);
3916         __skb_pull(skb, skb_network_offset(skb));
3917         skb->pkt_type = PACKET_LOOPBACK;
3918         if (skb->ip_summed == CHECKSUM_NONE)
3919                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3920         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3921         skb_dst_force(skb);
3922         netif_rx(skb);
3923         return 0;
3924 }
3925 EXPORT_SYMBOL(dev_loopback_xmit);
3926
3927 #ifdef CONFIG_NET_EGRESS
3928 static struct sk_buff *
3929 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3930 {
3931 #ifdef CONFIG_NET_CLS_ACT
3932         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3933         struct tcf_result cl_res;
3934
3935         if (!miniq)
3936                 return skb;
3937
3938         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3939         tc_skb_cb(skb)->mru = 0;
3940         tc_skb_cb(skb)->post_ct = false;
3941         mini_qdisc_bstats_cpu_update(miniq, skb);
3942
3943         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3944         case TC_ACT_OK:
3945         case TC_ACT_RECLASSIFY:
3946                 skb->tc_index = TC_H_MIN(cl_res.classid);
3947                 break;
3948         case TC_ACT_SHOT:
3949                 mini_qdisc_qstats_cpu_drop(miniq);
3950                 *ret = NET_XMIT_DROP;
3951                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3952                 return NULL;
3953         case TC_ACT_STOLEN:
3954         case TC_ACT_QUEUED:
3955         case TC_ACT_TRAP:
3956                 *ret = NET_XMIT_SUCCESS;
3957                 consume_skb(skb);
3958                 return NULL;
3959         case TC_ACT_REDIRECT:
3960                 /* No need to push/pop skb's mac_header here on egress! */
3961                 skb_do_redirect(skb);
3962                 *ret = NET_XMIT_SUCCESS;
3963                 return NULL;
3964         default:
3965                 break;
3966         }
3967 #endif /* CONFIG_NET_CLS_ACT */
3968
3969         return skb;
3970 }
3971
3972 static struct netdev_queue *
3973 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3974 {
3975         int qm = skb_get_queue_mapping(skb);
3976
3977         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3978 }
3979
3980 static bool netdev_xmit_txqueue_skipped(void)
3981 {
3982         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3983 }
3984
3985 void netdev_xmit_skip_txqueue(bool skip)
3986 {
3987         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3988 }
3989 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3990 #endif /* CONFIG_NET_EGRESS */
3991
3992 #ifdef CONFIG_XPS
3993 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3994                                struct xps_dev_maps *dev_maps, unsigned int tci)
3995 {
3996         int tc = netdev_get_prio_tc_map(dev, skb->priority);
3997         struct xps_map *map;
3998         int queue_index = -1;
3999
4000         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4001                 return queue_index;
4002
4003         tci *= dev_maps->num_tc;
4004         tci += tc;
4005
4006         map = rcu_dereference(dev_maps->attr_map[tci]);
4007         if (map) {
4008                 if (map->len == 1)
4009                         queue_index = map->queues[0];
4010                 else
4011                         queue_index = map->queues[reciprocal_scale(
4012                                                 skb_get_hash(skb), map->len)];
4013                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4014                         queue_index = -1;
4015         }
4016         return queue_index;
4017 }
4018 #endif
4019
4020 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4021                          struct sk_buff *skb)
4022 {
4023 #ifdef CONFIG_XPS
4024         struct xps_dev_maps *dev_maps;
4025         struct sock *sk = skb->sk;
4026         int queue_index = -1;
4027
4028         if (!static_key_false(&xps_needed))
4029                 return -1;
4030
4031         rcu_read_lock();
4032         if (!static_key_false(&xps_rxqs_needed))
4033                 goto get_cpus_map;
4034
4035         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4036         if (dev_maps) {
4037                 int tci = sk_rx_queue_get(sk);
4038
4039                 if (tci >= 0)
4040                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4041                                                           tci);
4042         }
4043
4044 get_cpus_map:
4045         if (queue_index < 0) {
4046                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4047                 if (dev_maps) {
4048                         unsigned int tci = skb->sender_cpu - 1;
4049
4050                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4051                                                           tci);
4052                 }
4053         }
4054         rcu_read_unlock();
4055
4056         return queue_index;
4057 #else
4058         return -1;
4059 #endif
4060 }
4061
4062 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4063                      struct net_device *sb_dev)
4064 {
4065         return 0;
4066 }
4067 EXPORT_SYMBOL(dev_pick_tx_zero);
4068
4069 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4070                        struct net_device *sb_dev)
4071 {
4072         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4073 }
4074 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4075
4076 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4077                      struct net_device *sb_dev)
4078 {
4079         struct sock *sk = skb->sk;
4080         int queue_index = sk_tx_queue_get(sk);
4081
4082         sb_dev = sb_dev ? : dev;
4083
4084         if (queue_index < 0 || skb->ooo_okay ||
4085             queue_index >= dev->real_num_tx_queues) {
4086                 int new_index = get_xps_queue(dev, sb_dev, skb);
4087
4088                 if (new_index < 0)
4089                         new_index = skb_tx_hash(dev, sb_dev, skb);
4090
4091                 if (queue_index != new_index && sk &&
4092                     sk_fullsock(sk) &&
4093                     rcu_access_pointer(sk->sk_dst_cache))
4094                         sk_tx_queue_set(sk, new_index);
4095
4096                 queue_index = new_index;
4097         }
4098
4099         return queue_index;
4100 }
4101 EXPORT_SYMBOL(netdev_pick_tx);
4102
4103 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4104                                          struct sk_buff *skb,
4105                                          struct net_device *sb_dev)
4106 {
4107         int queue_index = 0;
4108
4109 #ifdef CONFIG_XPS
4110         u32 sender_cpu = skb->sender_cpu - 1;
4111
4112         if (sender_cpu >= (u32)NR_CPUS)
4113                 skb->sender_cpu = raw_smp_processor_id() + 1;
4114 #endif
4115
4116         if (dev->real_num_tx_queues != 1) {
4117                 const struct net_device_ops *ops = dev->netdev_ops;
4118
4119                 if (ops->ndo_select_queue)
4120                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4121                 else
4122                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4123
4124                 queue_index = netdev_cap_txqueue(dev, queue_index);
4125         }
4126
4127         skb_set_queue_mapping(skb, queue_index);
4128         return netdev_get_tx_queue(dev, queue_index);
4129 }
4130
4131 /**
4132  * __dev_queue_xmit() - transmit a buffer
4133  * @skb:        buffer to transmit
4134  * @sb_dev:     suboordinate device used for L2 forwarding offload
4135  *
4136  * Queue a buffer for transmission to a network device. The caller must
4137  * have set the device and priority and built the buffer before calling
4138  * this function. The function can be called from an interrupt.
4139  *
4140  * When calling this method, interrupts MUST be enabled. This is because
4141  * the BH enable code must have IRQs enabled so that it will not deadlock.
4142  *
4143  * Regardless of the return value, the skb is consumed, so it is currently
4144  * difficult to retry a send to this method. (You can bump the ref count
4145  * before sending to hold a reference for retry if you are careful.)
4146  *
4147  * Return:
4148  * * 0                          - buffer successfully transmitted
4149  * * positive qdisc return code - NET_XMIT_DROP etc.
4150  * * negative errno             - other errors
4151  */
4152 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4153 {
4154         struct net_device *dev = skb->dev;
4155         struct netdev_queue *txq = NULL;
4156         struct Qdisc *q;
4157         int rc = -ENOMEM;
4158         bool again = false;
4159
4160         skb_reset_mac_header(skb);
4161         skb_assert_len(skb);
4162
4163         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4164                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4165
4166         /* Disable soft irqs for various locks below. Also
4167          * stops preemption for RCU.
4168          */
4169         rcu_read_lock_bh();
4170
4171         skb_update_prio(skb);
4172
4173         qdisc_pkt_len_init(skb);
4174 #ifdef CONFIG_NET_CLS_ACT
4175         skb->tc_at_ingress = 0;
4176 #endif
4177 #ifdef CONFIG_NET_EGRESS
4178         if (static_branch_unlikely(&egress_needed_key)) {
4179                 if (nf_hook_egress_active()) {
4180                         skb = nf_hook_egress(skb, &rc, dev);
4181                         if (!skb)
4182                                 goto out;
4183                 }
4184
4185                 netdev_xmit_skip_txqueue(false);
4186
4187                 nf_skip_egress(skb, true);
4188                 skb = sch_handle_egress(skb, &rc, dev);
4189                 if (!skb)
4190                         goto out;
4191                 nf_skip_egress(skb, false);
4192
4193                 if (netdev_xmit_txqueue_skipped())
4194                         txq = netdev_tx_queue_mapping(dev, skb);
4195         }
4196 #endif
4197         /* If device/qdisc don't need skb->dst, release it right now while
4198          * its hot in this cpu cache.
4199          */
4200         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4201                 skb_dst_drop(skb);
4202         else
4203                 skb_dst_force(skb);
4204
4205         if (!txq)
4206                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4207
4208         q = rcu_dereference_bh(txq->qdisc);
4209
4210         trace_net_dev_queue(skb);
4211         if (q->enqueue) {
4212                 rc = __dev_xmit_skb(skb, q, dev, txq);
4213                 goto out;
4214         }
4215
4216         /* The device has no queue. Common case for software devices:
4217          * loopback, all the sorts of tunnels...
4218
4219          * Really, it is unlikely that netif_tx_lock protection is necessary
4220          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4221          * counters.)
4222          * However, it is possible, that they rely on protection
4223          * made by us here.
4224
4225          * Check this and shot the lock. It is not prone from deadlocks.
4226          *Either shot noqueue qdisc, it is even simpler 8)
4227          */
4228         if (dev->flags & IFF_UP) {
4229                 int cpu = smp_processor_id(); /* ok because BHs are off */
4230
4231                 /* Other cpus might concurrently change txq->xmit_lock_owner
4232                  * to -1 or to their cpu id, but not to our id.
4233                  */
4234                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4235                         if (dev_xmit_recursion())
4236                                 goto recursion_alert;
4237
4238                         skb = validate_xmit_skb(skb, dev, &again);
4239                         if (!skb)
4240                                 goto out;
4241
4242                         HARD_TX_LOCK(dev, txq, cpu);
4243
4244                         if (!netif_xmit_stopped(txq)) {
4245                                 dev_xmit_recursion_inc();
4246                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4247                                 dev_xmit_recursion_dec();
4248                                 if (dev_xmit_complete(rc)) {
4249                                         HARD_TX_UNLOCK(dev, txq);
4250                                         goto out;
4251                                 }
4252                         }
4253                         HARD_TX_UNLOCK(dev, txq);
4254                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4255                                              dev->name);
4256                 } else {
4257                         /* Recursion is detected! It is possible,
4258                          * unfortunately
4259                          */
4260 recursion_alert:
4261                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4262                                              dev->name);
4263                 }
4264         }
4265
4266         rc = -ENETDOWN;
4267         rcu_read_unlock_bh();
4268
4269         dev_core_stats_tx_dropped_inc(dev);
4270         kfree_skb_list(skb);
4271         return rc;
4272 out:
4273         rcu_read_unlock_bh();
4274         return rc;
4275 }
4276 EXPORT_SYMBOL(__dev_queue_xmit);
4277
4278 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4279 {
4280         struct net_device *dev = skb->dev;
4281         struct sk_buff *orig_skb = skb;
4282         struct netdev_queue *txq;
4283         int ret = NETDEV_TX_BUSY;
4284         bool again = false;
4285
4286         if (unlikely(!netif_running(dev) ||
4287                      !netif_carrier_ok(dev)))
4288                 goto drop;
4289
4290         skb = validate_xmit_skb_list(skb, dev, &again);
4291         if (skb != orig_skb)
4292                 goto drop;
4293
4294         skb_set_queue_mapping(skb, queue_id);
4295         txq = skb_get_tx_queue(dev, skb);
4296
4297         local_bh_disable();
4298
4299         dev_xmit_recursion_inc();
4300         HARD_TX_LOCK(dev, txq, smp_processor_id());
4301         if (!netif_xmit_frozen_or_drv_stopped(txq))
4302                 ret = netdev_start_xmit(skb, dev, txq, false);
4303         HARD_TX_UNLOCK(dev, txq);
4304         dev_xmit_recursion_dec();
4305
4306         local_bh_enable();
4307         return ret;
4308 drop:
4309         dev_core_stats_tx_dropped_inc(dev);
4310         kfree_skb_list(skb);
4311         return NET_XMIT_DROP;
4312 }
4313 EXPORT_SYMBOL(__dev_direct_xmit);
4314
4315 /*************************************************************************
4316  *                      Receiver routines
4317  *************************************************************************/
4318
4319 int netdev_max_backlog __read_mostly = 1000;
4320 EXPORT_SYMBOL(netdev_max_backlog);
4321
4322 int netdev_tstamp_prequeue __read_mostly = 1;
4323 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4324 int netdev_budget __read_mostly = 300;
4325 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4326 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4327 int weight_p __read_mostly = 64;           /* old backlog weight */
4328 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4329 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4330 int dev_rx_weight __read_mostly = 64;
4331 int dev_tx_weight __read_mostly = 64;
4332
4333 /* Called with irq disabled */
4334 static inline void ____napi_schedule(struct softnet_data *sd,
4335                                      struct napi_struct *napi)
4336 {
4337         struct task_struct *thread;
4338
4339         lockdep_assert_irqs_disabled();
4340
4341         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4342                 /* Paired with smp_mb__before_atomic() in
4343                  * napi_enable()/dev_set_threaded().
4344                  * Use READ_ONCE() to guarantee a complete
4345                  * read on napi->thread. Only call
4346                  * wake_up_process() when it's not NULL.
4347                  */
4348                 thread = READ_ONCE(napi->thread);
4349                 if (thread) {
4350                         /* Avoid doing set_bit() if the thread is in
4351                          * INTERRUPTIBLE state, cause napi_thread_wait()
4352                          * makes sure to proceed with napi polling
4353                          * if the thread is explicitly woken from here.
4354                          */
4355                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4356                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4357                         wake_up_process(thread);
4358                         return;
4359                 }
4360         }
4361
4362         list_add_tail(&napi->poll_list, &sd->poll_list);
4363         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4364 }
4365
4366 #ifdef CONFIG_RPS
4367
4368 /* One global table that all flow-based protocols share. */
4369 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4370 EXPORT_SYMBOL(rps_sock_flow_table);
4371 u32 rps_cpu_mask __read_mostly;
4372 EXPORT_SYMBOL(rps_cpu_mask);
4373
4374 struct static_key_false rps_needed __read_mostly;
4375 EXPORT_SYMBOL(rps_needed);
4376 struct static_key_false rfs_needed __read_mostly;
4377 EXPORT_SYMBOL(rfs_needed);
4378
4379 static struct rps_dev_flow *
4380 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4381             struct rps_dev_flow *rflow, u16 next_cpu)
4382 {
4383         if (next_cpu < nr_cpu_ids) {
4384 #ifdef CONFIG_RFS_ACCEL
4385                 struct netdev_rx_queue *rxqueue;
4386                 struct rps_dev_flow_table *flow_table;
4387                 struct rps_dev_flow *old_rflow;
4388                 u32 flow_id;
4389                 u16 rxq_index;
4390                 int rc;
4391
4392                 /* Should we steer this flow to a different hardware queue? */
4393                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4394                     !(dev->features & NETIF_F_NTUPLE))
4395                         goto out;
4396                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4397                 if (rxq_index == skb_get_rx_queue(skb))
4398                         goto out;
4399
4400                 rxqueue = dev->_rx + rxq_index;
4401                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4402                 if (!flow_table)
4403                         goto out;
4404                 flow_id = skb_get_hash(skb) & flow_table->mask;
4405                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4406                                                         rxq_index, flow_id);
4407                 if (rc < 0)
4408                         goto out;
4409                 old_rflow = rflow;
4410                 rflow = &flow_table->flows[flow_id];
4411                 rflow->filter = rc;
4412                 if (old_rflow->filter == rflow->filter)
4413                         old_rflow->filter = RPS_NO_FILTER;
4414         out:
4415 #endif
4416                 rflow->last_qtail =
4417                         per_cpu(softnet_data, next_cpu).input_queue_head;
4418         }
4419
4420         rflow->cpu = next_cpu;
4421         return rflow;
4422 }
4423
4424 /*
4425  * get_rps_cpu is called from netif_receive_skb and returns the target
4426  * CPU from the RPS map of the receiving queue for a given skb.
4427  * rcu_read_lock must be held on entry.
4428  */
4429 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4430                        struct rps_dev_flow **rflowp)
4431 {
4432         const struct rps_sock_flow_table *sock_flow_table;
4433         struct netdev_rx_queue *rxqueue = dev->_rx;
4434         struct rps_dev_flow_table *flow_table;
4435         struct rps_map *map;
4436         int cpu = -1;
4437         u32 tcpu;
4438         u32 hash;
4439
4440         if (skb_rx_queue_recorded(skb)) {
4441                 u16 index = skb_get_rx_queue(skb);
4442
4443                 if (unlikely(index >= dev->real_num_rx_queues)) {
4444                         WARN_ONCE(dev->real_num_rx_queues > 1,
4445                                   "%s received packet on queue %u, but number "
4446                                   "of RX queues is %u\n",
4447                                   dev->name, index, dev->real_num_rx_queues);
4448                         goto done;
4449                 }
4450                 rxqueue += index;
4451         }
4452
4453         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4454
4455         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4456         map = rcu_dereference(rxqueue->rps_map);
4457         if (!flow_table && !map)
4458                 goto done;
4459
4460         skb_reset_network_header(skb);
4461         hash = skb_get_hash(skb);
4462         if (!hash)
4463                 goto done;
4464
4465         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4466         if (flow_table && sock_flow_table) {
4467                 struct rps_dev_flow *rflow;
4468                 u32 next_cpu;
4469                 u32 ident;
4470
4471                 /* First check into global flow table if there is a match */
4472                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4473                 if ((ident ^ hash) & ~rps_cpu_mask)
4474                         goto try_rps;
4475
4476                 next_cpu = ident & rps_cpu_mask;
4477
4478                 /* OK, now we know there is a match,
4479                  * we can look at the local (per receive queue) flow table
4480                  */
4481                 rflow = &flow_table->flows[hash & flow_table->mask];
4482                 tcpu = rflow->cpu;
4483
4484                 /*
4485                  * If the desired CPU (where last recvmsg was done) is
4486                  * different from current CPU (one in the rx-queue flow
4487                  * table entry), switch if one of the following holds:
4488                  *   - Current CPU is unset (>= nr_cpu_ids).
4489                  *   - Current CPU is offline.
4490                  *   - The current CPU's queue tail has advanced beyond the
4491                  *     last packet that was enqueued using this table entry.
4492                  *     This guarantees that all previous packets for the flow
4493                  *     have been dequeued, thus preserving in order delivery.
4494                  */
4495                 if (unlikely(tcpu != next_cpu) &&
4496                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4497                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4498                       rflow->last_qtail)) >= 0)) {
4499                         tcpu = next_cpu;
4500                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4501                 }
4502
4503                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4504                         *rflowp = rflow;
4505                         cpu = tcpu;
4506                         goto done;
4507                 }
4508         }
4509
4510 try_rps:
4511
4512         if (map) {
4513                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4514                 if (cpu_online(tcpu)) {
4515                         cpu = tcpu;
4516                         goto done;
4517                 }
4518         }
4519
4520 done:
4521         return cpu;
4522 }
4523
4524 #ifdef CONFIG_RFS_ACCEL
4525
4526 /**
4527  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4528  * @dev: Device on which the filter was set
4529  * @rxq_index: RX queue index
4530  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4531  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4532  *
4533  * Drivers that implement ndo_rx_flow_steer() should periodically call
4534  * this function for each installed filter and remove the filters for
4535  * which it returns %true.
4536  */
4537 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4538                          u32 flow_id, u16 filter_id)
4539 {
4540         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4541         struct rps_dev_flow_table *flow_table;
4542         struct rps_dev_flow *rflow;
4543         bool expire = true;
4544         unsigned int cpu;
4545
4546         rcu_read_lock();
4547         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4548         if (flow_table && flow_id <= flow_table->mask) {
4549                 rflow = &flow_table->flows[flow_id];
4550                 cpu = READ_ONCE(rflow->cpu);
4551                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4552                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4553                            rflow->last_qtail) <
4554                      (int)(10 * flow_table->mask)))
4555                         expire = false;
4556         }
4557         rcu_read_unlock();
4558         return expire;
4559 }
4560 EXPORT_SYMBOL(rps_may_expire_flow);
4561
4562 #endif /* CONFIG_RFS_ACCEL */
4563
4564 /* Called from hardirq (IPI) context */
4565 static void rps_trigger_softirq(void *data)
4566 {
4567         struct softnet_data *sd = data;
4568
4569         ____napi_schedule(sd, &sd->backlog);
4570         sd->received_rps++;
4571 }
4572
4573 #endif /* CONFIG_RPS */
4574
4575 /* Called from hardirq (IPI) context */
4576 static void trigger_rx_softirq(void *data)
4577 {
4578         struct softnet_data *sd = data;
4579
4580         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4581         smp_store_release(&sd->defer_ipi_scheduled, 0);
4582 }
4583
4584 /*
4585  * Check if this softnet_data structure is another cpu one
4586  * If yes, queue it to our IPI list and return 1
4587  * If no, return 0
4588  */
4589 static int napi_schedule_rps(struct softnet_data *sd)
4590 {
4591         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4592
4593 #ifdef CONFIG_RPS
4594         if (sd != mysd) {
4595                 sd->rps_ipi_next = mysd->rps_ipi_list;
4596                 mysd->rps_ipi_list = sd;
4597
4598                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4599                 return 1;
4600         }
4601 #endif /* CONFIG_RPS */
4602         __napi_schedule_irqoff(&mysd->backlog);
4603         return 0;
4604 }
4605
4606 #ifdef CONFIG_NET_FLOW_LIMIT
4607 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4608 #endif
4609
4610 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4611 {
4612 #ifdef CONFIG_NET_FLOW_LIMIT
4613         struct sd_flow_limit *fl;
4614         struct softnet_data *sd;
4615         unsigned int old_flow, new_flow;
4616
4617         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4618                 return false;
4619
4620         sd = this_cpu_ptr(&softnet_data);
4621
4622         rcu_read_lock();
4623         fl = rcu_dereference(sd->flow_limit);
4624         if (fl) {
4625                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4626                 old_flow = fl->history[fl->history_head];
4627                 fl->history[fl->history_head] = new_flow;
4628
4629                 fl->history_head++;
4630                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4631
4632                 if (likely(fl->buckets[old_flow]))
4633                         fl->buckets[old_flow]--;
4634
4635                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4636                         fl->count++;
4637                         rcu_read_unlock();
4638                         return true;
4639                 }
4640         }
4641         rcu_read_unlock();
4642 #endif
4643         return false;
4644 }
4645
4646 /*
4647  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4648  * queue (may be a remote CPU queue).
4649  */
4650 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4651                               unsigned int *qtail)
4652 {
4653         enum skb_drop_reason reason;
4654         struct softnet_data *sd;
4655         unsigned long flags;
4656         unsigned int qlen;
4657
4658         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4659         sd = &per_cpu(softnet_data, cpu);
4660
4661         rps_lock_irqsave(sd, &flags);
4662         if (!netif_running(skb->dev))
4663                 goto drop;
4664         qlen = skb_queue_len(&sd->input_pkt_queue);
4665         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4666                 if (qlen) {
4667 enqueue:
4668                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4669                         input_queue_tail_incr_save(sd, qtail);
4670                         rps_unlock_irq_restore(sd, &flags);
4671                         return NET_RX_SUCCESS;
4672                 }
4673
4674                 /* Schedule NAPI for backlog device
4675                  * We can use non atomic operation since we own the queue lock
4676                  */
4677                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4678                         napi_schedule_rps(sd);
4679                 goto enqueue;
4680         }
4681         reason = SKB_DROP_REASON_CPU_BACKLOG;
4682
4683 drop:
4684         sd->dropped++;
4685         rps_unlock_irq_restore(sd, &flags);
4686
4687         dev_core_stats_rx_dropped_inc(skb->dev);
4688         kfree_skb_reason(skb, reason);
4689         return NET_RX_DROP;
4690 }
4691
4692 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4693 {
4694         struct net_device *dev = skb->dev;
4695         struct netdev_rx_queue *rxqueue;
4696
4697         rxqueue = dev->_rx;
4698
4699         if (skb_rx_queue_recorded(skb)) {
4700                 u16 index = skb_get_rx_queue(skb);
4701
4702                 if (unlikely(index >= dev->real_num_rx_queues)) {
4703                         WARN_ONCE(dev->real_num_rx_queues > 1,
4704                                   "%s received packet on queue %u, but number "
4705                                   "of RX queues is %u\n",
4706                                   dev->name, index, dev->real_num_rx_queues);
4707
4708                         return rxqueue; /* Return first rxqueue */
4709                 }
4710                 rxqueue += index;
4711         }
4712         return rxqueue;
4713 }
4714
4715 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4716                              struct bpf_prog *xdp_prog)
4717 {
4718         void *orig_data, *orig_data_end, *hard_start;
4719         struct netdev_rx_queue *rxqueue;
4720         bool orig_bcast, orig_host;
4721         u32 mac_len, frame_sz;
4722         __be16 orig_eth_type;
4723         struct ethhdr *eth;
4724         u32 metalen, act;
4725         int off;
4726
4727         /* The XDP program wants to see the packet starting at the MAC
4728          * header.
4729          */
4730         mac_len = skb->data - skb_mac_header(skb);
4731         hard_start = skb->data - skb_headroom(skb);
4732
4733         /* SKB "head" area always have tailroom for skb_shared_info */
4734         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4735         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4736
4737         rxqueue = netif_get_rxqueue(skb);
4738         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4739         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4740                          skb_headlen(skb) + mac_len, true);
4741
4742         orig_data_end = xdp->data_end;
4743         orig_data = xdp->data;
4744         eth = (struct ethhdr *)xdp->data;
4745         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4746         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4747         orig_eth_type = eth->h_proto;
4748
4749         act = bpf_prog_run_xdp(xdp_prog, xdp);
4750
4751         /* check if bpf_xdp_adjust_head was used */
4752         off = xdp->data - orig_data;
4753         if (off) {
4754                 if (off > 0)
4755                         __skb_pull(skb, off);
4756                 else if (off < 0)
4757                         __skb_push(skb, -off);
4758
4759                 skb->mac_header += off;
4760                 skb_reset_network_header(skb);
4761         }
4762
4763         /* check if bpf_xdp_adjust_tail was used */
4764         off = xdp->data_end - orig_data_end;
4765         if (off != 0) {
4766                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4767                 skb->len += off; /* positive on grow, negative on shrink */
4768         }
4769
4770         /* check if XDP changed eth hdr such SKB needs update */
4771         eth = (struct ethhdr *)xdp->data;
4772         if ((orig_eth_type != eth->h_proto) ||
4773             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4774                                                   skb->dev->dev_addr)) ||
4775             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4776                 __skb_push(skb, ETH_HLEN);
4777                 skb->pkt_type = PACKET_HOST;
4778                 skb->protocol = eth_type_trans(skb, skb->dev);
4779         }
4780
4781         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4782          * before calling us again on redirect path. We do not call do_redirect
4783          * as we leave that up to the caller.
4784          *
4785          * Caller is responsible for managing lifetime of skb (i.e. calling
4786          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4787          */
4788         switch (act) {
4789         case XDP_REDIRECT:
4790         case XDP_TX:
4791                 __skb_push(skb, mac_len);
4792                 break;
4793         case XDP_PASS:
4794                 metalen = xdp->data - xdp->data_meta;
4795                 if (metalen)
4796                         skb_metadata_set(skb, metalen);
4797                 break;
4798         }
4799
4800         return act;
4801 }
4802
4803 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4804                                      struct xdp_buff *xdp,
4805                                      struct bpf_prog *xdp_prog)
4806 {
4807         u32 act = XDP_DROP;
4808
4809         /* Reinjected packets coming from act_mirred or similar should
4810          * not get XDP generic processing.
4811          */
4812         if (skb_is_redirected(skb))
4813                 return XDP_PASS;
4814
4815         /* XDP packets must be linear and must have sufficient headroom
4816          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4817          * native XDP provides, thus we need to do it here as well.
4818          */
4819         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4820             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4821                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4822                 int troom = skb->tail + skb->data_len - skb->end;
4823
4824                 /* In case we have to go down the path and also linearize,
4825                  * then lets do the pskb_expand_head() work just once here.
4826                  */
4827                 if (pskb_expand_head(skb,
4828                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4829                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4830                         goto do_drop;
4831                 if (skb_linearize(skb))
4832                         goto do_drop;
4833         }
4834
4835         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4836         switch (act) {
4837         case XDP_REDIRECT:
4838         case XDP_TX:
4839         case XDP_PASS:
4840                 break;
4841         default:
4842                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4843                 fallthrough;
4844         case XDP_ABORTED:
4845                 trace_xdp_exception(skb->dev, xdp_prog, act);
4846                 fallthrough;
4847         case XDP_DROP:
4848         do_drop:
4849                 kfree_skb(skb);
4850                 break;
4851         }
4852
4853         return act;
4854 }
4855
4856 /* When doing generic XDP we have to bypass the qdisc layer and the
4857  * network taps in order to match in-driver-XDP behavior. This also means
4858  * that XDP packets are able to starve other packets going through a qdisc,
4859  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4860  * queues, so they do not have this starvation issue.
4861  */
4862 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4863 {
4864         struct net_device *dev = skb->dev;
4865         struct netdev_queue *txq;
4866         bool free_skb = true;
4867         int cpu, rc;
4868
4869         txq = netdev_core_pick_tx(dev, skb, NULL);
4870         cpu = smp_processor_id();
4871         HARD_TX_LOCK(dev, txq, cpu);
4872         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4873                 rc = netdev_start_xmit(skb, dev, txq, 0);
4874                 if (dev_xmit_complete(rc))
4875                         free_skb = false;
4876         }
4877         HARD_TX_UNLOCK(dev, txq);
4878         if (free_skb) {
4879                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4880                 dev_core_stats_tx_dropped_inc(dev);
4881                 kfree_skb(skb);
4882         }
4883 }
4884
4885 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4886
4887 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4888 {
4889         if (xdp_prog) {
4890                 struct xdp_buff xdp;
4891                 u32 act;
4892                 int err;
4893
4894                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4895                 if (act != XDP_PASS) {
4896                         switch (act) {
4897                         case XDP_REDIRECT:
4898                                 err = xdp_do_generic_redirect(skb->dev, skb,
4899                                                               &xdp, xdp_prog);
4900                                 if (err)
4901                                         goto out_redir;
4902                                 break;
4903                         case XDP_TX:
4904                                 generic_xdp_tx(skb, xdp_prog);
4905                                 break;
4906                         }
4907                         return XDP_DROP;
4908                 }
4909         }
4910         return XDP_PASS;
4911 out_redir:
4912         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4913         return XDP_DROP;
4914 }
4915 EXPORT_SYMBOL_GPL(do_xdp_generic);
4916
4917 static int netif_rx_internal(struct sk_buff *skb)
4918 {
4919         int ret;
4920
4921         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4922
4923         trace_netif_rx(skb);
4924
4925 #ifdef CONFIG_RPS
4926         if (static_branch_unlikely(&rps_needed)) {
4927                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4928                 int cpu;
4929
4930                 rcu_read_lock();
4931
4932                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4933                 if (cpu < 0)
4934                         cpu = smp_processor_id();
4935
4936                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4937
4938                 rcu_read_unlock();
4939         } else
4940 #endif
4941         {
4942                 unsigned int qtail;
4943
4944                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4945         }
4946         return ret;
4947 }
4948
4949 /**
4950  *      __netif_rx      -       Slightly optimized version of netif_rx
4951  *      @skb: buffer to post
4952  *
4953  *      This behaves as netif_rx except that it does not disable bottom halves.
4954  *      As a result this function may only be invoked from the interrupt context
4955  *      (either hard or soft interrupt).
4956  */
4957 int __netif_rx(struct sk_buff *skb)
4958 {
4959         int ret;
4960
4961         lockdep_assert_once(hardirq_count() | softirq_count());
4962
4963         trace_netif_rx_entry(skb);
4964         ret = netif_rx_internal(skb);
4965         trace_netif_rx_exit(ret);
4966         return ret;
4967 }
4968 EXPORT_SYMBOL(__netif_rx);
4969
4970 /**
4971  *      netif_rx        -       post buffer to the network code
4972  *      @skb: buffer to post
4973  *
4974  *      This function receives a packet from a device driver and queues it for
4975  *      the upper (protocol) levels to process via the backlog NAPI device. It
4976  *      always succeeds. The buffer may be dropped during processing for
4977  *      congestion control or by the protocol layers.
4978  *      The network buffer is passed via the backlog NAPI device. Modern NIC
4979  *      driver should use NAPI and GRO.
4980  *      This function can used from interrupt and from process context. The
4981  *      caller from process context must not disable interrupts before invoking
4982  *      this function.
4983  *
4984  *      return values:
4985  *      NET_RX_SUCCESS  (no congestion)
4986  *      NET_RX_DROP     (packet was dropped)
4987  *
4988  */
4989 int netif_rx(struct sk_buff *skb)
4990 {
4991         bool need_bh_off = !(hardirq_count() | softirq_count());
4992         int ret;
4993
4994         if (need_bh_off)
4995                 local_bh_disable();
4996         trace_netif_rx_entry(skb);
4997         ret = netif_rx_internal(skb);
4998         trace_netif_rx_exit(ret);
4999         if (need_bh_off)
5000                 local_bh_enable();
5001         return ret;
5002 }
5003 EXPORT_SYMBOL(netif_rx);
5004
5005 static __latent_entropy void net_tx_action(struct softirq_action *h)
5006 {
5007         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5008
5009         if (sd->completion_queue) {
5010                 struct sk_buff *clist;
5011
5012                 local_irq_disable();
5013                 clist = sd->completion_queue;
5014                 sd->completion_queue = NULL;
5015                 local_irq_enable();
5016
5017                 while (clist) {
5018                         struct sk_buff *skb = clist;
5019
5020                         clist = clist->next;
5021
5022                         WARN_ON(refcount_read(&skb->users));
5023                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5024                                 trace_consume_skb(skb, net_tx_action);
5025                         else
5026                                 trace_kfree_skb(skb, net_tx_action,
5027                                                 SKB_DROP_REASON_NOT_SPECIFIED);
5028
5029                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5030                                 __kfree_skb(skb);
5031                         else
5032                                 __kfree_skb_defer(skb);
5033                 }
5034         }
5035
5036         if (sd->output_queue) {
5037                 struct Qdisc *head;
5038
5039                 local_irq_disable();
5040                 head = sd->output_queue;
5041                 sd->output_queue = NULL;
5042                 sd->output_queue_tailp = &sd->output_queue;
5043                 local_irq_enable();
5044
5045                 rcu_read_lock();
5046
5047                 while (head) {
5048                         struct Qdisc *q = head;
5049                         spinlock_t *root_lock = NULL;
5050
5051                         head = head->next_sched;
5052
5053                         /* We need to make sure head->next_sched is read
5054                          * before clearing __QDISC_STATE_SCHED
5055                          */
5056                         smp_mb__before_atomic();
5057
5058                         if (!(q->flags & TCQ_F_NOLOCK)) {
5059                                 root_lock = qdisc_lock(q);
5060                                 spin_lock(root_lock);
5061                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5062                                                      &q->state))) {
5063                                 /* There is a synchronize_net() between
5064                                  * STATE_DEACTIVATED flag being set and
5065                                  * qdisc_reset()/some_qdisc_is_busy() in
5066                                  * dev_deactivate(), so we can safely bail out
5067                                  * early here to avoid data race between
5068                                  * qdisc_deactivate() and some_qdisc_is_busy()
5069                                  * for lockless qdisc.
5070                                  */
5071                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5072                                 continue;
5073                         }
5074
5075                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5076                         qdisc_run(q);
5077                         if (root_lock)
5078                                 spin_unlock(root_lock);
5079                 }
5080
5081                 rcu_read_unlock();
5082         }
5083
5084         xfrm_dev_backlog(sd);
5085 }
5086
5087 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5088 /* This hook is defined here for ATM LANE */
5089 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5090                              unsigned char *addr) __read_mostly;
5091 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5092 #endif
5093
5094 static inline struct sk_buff *
5095 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5096                    struct net_device *orig_dev, bool *another)
5097 {
5098 #ifdef CONFIG_NET_CLS_ACT
5099         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5100         struct tcf_result cl_res;
5101
5102         /* If there's at least one ingress present somewhere (so
5103          * we get here via enabled static key), remaining devices
5104          * that are not configured with an ingress qdisc will bail
5105          * out here.
5106          */
5107         if (!miniq)
5108                 return skb;
5109
5110         if (*pt_prev) {
5111                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5112                 *pt_prev = NULL;
5113         }
5114
5115         qdisc_skb_cb(skb)->pkt_len = skb->len;
5116         tc_skb_cb(skb)->mru = 0;
5117         tc_skb_cb(skb)->post_ct = false;
5118         skb->tc_at_ingress = 1;
5119         mini_qdisc_bstats_cpu_update(miniq, skb);
5120
5121         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5122         case TC_ACT_OK:
5123         case TC_ACT_RECLASSIFY:
5124                 skb->tc_index = TC_H_MIN(cl_res.classid);
5125                 break;
5126         case TC_ACT_SHOT:
5127                 mini_qdisc_qstats_cpu_drop(miniq);
5128                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5129                 *ret = NET_RX_DROP;
5130                 return NULL;
5131         case TC_ACT_STOLEN:
5132         case TC_ACT_QUEUED:
5133         case TC_ACT_TRAP:
5134                 consume_skb(skb);
5135                 *ret = NET_RX_SUCCESS;
5136                 return NULL;
5137         case TC_ACT_REDIRECT:
5138                 /* skb_mac_header check was done by cls/act_bpf, so
5139                  * we can safely push the L2 header back before
5140                  * redirecting to another netdev
5141                  */
5142                 __skb_push(skb, skb->mac_len);
5143                 if (skb_do_redirect(skb) == -EAGAIN) {
5144                         __skb_pull(skb, skb->mac_len);
5145                         *another = true;
5146                         break;
5147                 }
5148                 *ret = NET_RX_SUCCESS;
5149                 return NULL;
5150         case TC_ACT_CONSUMED:
5151                 *ret = NET_RX_SUCCESS;
5152                 return NULL;
5153         default:
5154                 break;
5155         }
5156 #endif /* CONFIG_NET_CLS_ACT */
5157         return skb;
5158 }
5159
5160 /**
5161  *      netdev_is_rx_handler_busy - check if receive handler is registered
5162  *      @dev: device to check
5163  *
5164  *      Check if a receive handler is already registered for a given device.
5165  *      Return true if there one.
5166  *
5167  *      The caller must hold the rtnl_mutex.
5168  */
5169 bool netdev_is_rx_handler_busy(struct net_device *dev)
5170 {
5171         ASSERT_RTNL();
5172         return dev && rtnl_dereference(dev->rx_handler);
5173 }
5174 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5175
5176 /**
5177  *      netdev_rx_handler_register - register receive handler
5178  *      @dev: device to register a handler for
5179  *      @rx_handler: receive handler to register
5180  *      @rx_handler_data: data pointer that is used by rx handler
5181  *
5182  *      Register a receive handler for a device. This handler will then be
5183  *      called from __netif_receive_skb. A negative errno code is returned
5184  *      on a failure.
5185  *
5186  *      The caller must hold the rtnl_mutex.
5187  *
5188  *      For a general description of rx_handler, see enum rx_handler_result.
5189  */
5190 int netdev_rx_handler_register(struct net_device *dev,
5191                                rx_handler_func_t *rx_handler,
5192                                void *rx_handler_data)
5193 {
5194         if (netdev_is_rx_handler_busy(dev))
5195                 return -EBUSY;
5196
5197         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5198                 return -EINVAL;
5199
5200         /* Note: rx_handler_data must be set before rx_handler */
5201         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5202         rcu_assign_pointer(dev->rx_handler, rx_handler);
5203
5204         return 0;
5205 }
5206 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5207
5208 /**
5209  *      netdev_rx_handler_unregister - unregister receive handler
5210  *      @dev: device to unregister a handler from
5211  *
5212  *      Unregister a receive handler from a device.
5213  *
5214  *      The caller must hold the rtnl_mutex.
5215  */
5216 void netdev_rx_handler_unregister(struct net_device *dev)
5217 {
5218
5219         ASSERT_RTNL();
5220         RCU_INIT_POINTER(dev->rx_handler, NULL);
5221         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5222          * section has a guarantee to see a non NULL rx_handler_data
5223          * as well.
5224          */
5225         synchronize_net();
5226         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5227 }
5228 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5229
5230 /*
5231  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5232  * the special handling of PFMEMALLOC skbs.
5233  */
5234 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5235 {
5236         switch (skb->protocol) {
5237         case htons(ETH_P_ARP):
5238         case htons(ETH_P_IP):
5239         case htons(ETH_P_IPV6):
5240         case htons(ETH_P_8021Q):
5241         case htons(ETH_P_8021AD):
5242                 return true;
5243         default:
5244                 return false;
5245         }
5246 }
5247
5248 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5249                              int *ret, struct net_device *orig_dev)
5250 {
5251         if (nf_hook_ingress_active(skb)) {
5252                 int ingress_retval;
5253
5254                 if (*pt_prev) {
5255                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5256                         *pt_prev = NULL;
5257                 }
5258
5259                 rcu_read_lock();
5260                 ingress_retval = nf_hook_ingress(skb);
5261                 rcu_read_unlock();
5262                 return ingress_retval;
5263         }
5264         return 0;
5265 }
5266
5267 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5268                                     struct packet_type **ppt_prev)
5269 {
5270         struct packet_type *ptype, *pt_prev;
5271         rx_handler_func_t *rx_handler;
5272         struct sk_buff *skb = *pskb;
5273         struct net_device *orig_dev;
5274         bool deliver_exact = false;
5275         int ret = NET_RX_DROP;
5276         __be16 type;
5277
5278         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5279
5280         trace_netif_receive_skb(skb);
5281
5282         orig_dev = skb->dev;
5283
5284         skb_reset_network_header(skb);
5285         if (!skb_transport_header_was_set(skb))
5286                 skb_reset_transport_header(skb);
5287         skb_reset_mac_len(skb);
5288
5289         pt_prev = NULL;
5290
5291 another_round:
5292         skb->skb_iif = skb->dev->ifindex;
5293
5294         __this_cpu_inc(softnet_data.processed);
5295
5296         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5297                 int ret2;
5298
5299                 migrate_disable();
5300                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5301                 migrate_enable();
5302
5303                 if (ret2 != XDP_PASS) {
5304                         ret = NET_RX_DROP;
5305                         goto out;
5306                 }
5307         }
5308
5309         if (eth_type_vlan(skb->protocol)) {
5310                 skb = skb_vlan_untag(skb);
5311                 if (unlikely(!skb))
5312                         goto out;
5313         }
5314
5315         if (skb_skip_tc_classify(skb))
5316                 goto skip_classify;
5317
5318         if (pfmemalloc)
5319                 goto skip_taps;
5320
5321         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5322                 if (pt_prev)
5323                         ret = deliver_skb(skb, pt_prev, orig_dev);
5324                 pt_prev = ptype;
5325         }
5326
5327         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5328                 if (pt_prev)
5329                         ret = deliver_skb(skb, pt_prev, orig_dev);
5330                 pt_prev = ptype;
5331         }
5332
5333 skip_taps:
5334 #ifdef CONFIG_NET_INGRESS
5335         if (static_branch_unlikely(&ingress_needed_key)) {
5336                 bool another = false;
5337
5338                 nf_skip_egress(skb, true);
5339                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5340                                          &another);
5341                 if (another)
5342                         goto another_round;
5343                 if (!skb)
5344                         goto out;
5345
5346                 nf_skip_egress(skb, false);
5347                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5348                         goto out;
5349         }
5350 #endif
5351         skb_reset_redirect(skb);
5352 skip_classify:
5353         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5354                 goto drop;
5355
5356         if (skb_vlan_tag_present(skb)) {
5357                 if (pt_prev) {
5358                         ret = deliver_skb(skb, pt_prev, orig_dev);
5359                         pt_prev = NULL;
5360                 }
5361                 if (vlan_do_receive(&skb))
5362                         goto another_round;
5363                 else if (unlikely(!skb))
5364                         goto out;
5365         }
5366
5367         rx_handler = rcu_dereference(skb->dev->rx_handler);
5368         if (rx_handler) {
5369                 if (pt_prev) {
5370                         ret = deliver_skb(skb, pt_prev, orig_dev);
5371                         pt_prev = NULL;
5372                 }
5373                 switch (rx_handler(&skb)) {
5374                 case RX_HANDLER_CONSUMED:
5375                         ret = NET_RX_SUCCESS;
5376                         goto out;
5377                 case RX_HANDLER_ANOTHER:
5378                         goto another_round;
5379                 case RX_HANDLER_EXACT:
5380                         deliver_exact = true;
5381                         break;
5382                 case RX_HANDLER_PASS:
5383                         break;
5384                 default:
5385                         BUG();
5386                 }
5387         }
5388
5389         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5390 check_vlan_id:
5391                 if (skb_vlan_tag_get_id(skb)) {
5392                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5393                          * find vlan device.
5394                          */
5395                         skb->pkt_type = PACKET_OTHERHOST;
5396                 } else if (eth_type_vlan(skb->protocol)) {
5397                         /* Outer header is 802.1P with vlan 0, inner header is
5398                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5399                          * not find vlan dev for vlan id 0.
5400                          */
5401                         __vlan_hwaccel_clear_tag(skb);
5402                         skb = skb_vlan_untag(skb);
5403                         if (unlikely(!skb))
5404                                 goto out;
5405                         if (vlan_do_receive(&skb))
5406                                 /* After stripping off 802.1P header with vlan 0
5407                                  * vlan dev is found for inner header.
5408                                  */
5409                                 goto another_round;
5410                         else if (unlikely(!skb))
5411                                 goto out;
5412                         else
5413                                 /* We have stripped outer 802.1P vlan 0 header.
5414                                  * But could not find vlan dev.
5415                                  * check again for vlan id to set OTHERHOST.
5416                                  */
5417                                 goto check_vlan_id;
5418                 }
5419                 /* Note: we might in the future use prio bits
5420                  * and set skb->priority like in vlan_do_receive()
5421                  * For the time being, just ignore Priority Code Point
5422                  */
5423                 __vlan_hwaccel_clear_tag(skb);
5424         }
5425
5426         type = skb->protocol;
5427
5428         /* deliver only exact match when indicated */
5429         if (likely(!deliver_exact)) {
5430                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5431                                        &ptype_base[ntohs(type) &
5432                                                    PTYPE_HASH_MASK]);
5433         }
5434
5435         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5436                                &orig_dev->ptype_specific);
5437
5438         if (unlikely(skb->dev != orig_dev)) {
5439                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5440                                        &skb->dev->ptype_specific);
5441         }
5442
5443         if (pt_prev) {
5444                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5445                         goto drop;
5446                 *ppt_prev = pt_prev;
5447         } else {
5448 drop:
5449                 if (!deliver_exact)
5450                         dev_core_stats_rx_dropped_inc(skb->dev);
5451                 else
5452                         dev_core_stats_rx_nohandler_inc(skb->dev);
5453                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5454                 /* Jamal, now you will not able to escape explaining
5455                  * me how you were going to use this. :-)
5456                  */
5457                 ret = NET_RX_DROP;
5458         }
5459
5460 out:
5461         /* The invariant here is that if *ppt_prev is not NULL
5462          * then skb should also be non-NULL.
5463          *
5464          * Apparently *ppt_prev assignment above holds this invariant due to
5465          * skb dereferencing near it.
5466          */
5467         *pskb = skb;
5468         return ret;
5469 }
5470
5471 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5472 {
5473         struct net_device *orig_dev = skb->dev;
5474         struct packet_type *pt_prev = NULL;
5475         int ret;
5476
5477         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5478         if (pt_prev)
5479                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5480                                          skb->dev, pt_prev, orig_dev);
5481         return ret;
5482 }
5483
5484 /**
5485  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5486  *      @skb: buffer to process
5487  *
5488  *      More direct receive version of netif_receive_skb().  It should
5489  *      only be used by callers that have a need to skip RPS and Generic XDP.
5490  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5491  *
5492  *      This function may only be called from softirq context and interrupts
5493  *      should be enabled.
5494  *
5495  *      Return values (usually ignored):
5496  *      NET_RX_SUCCESS: no congestion
5497  *      NET_RX_DROP: packet was dropped
5498  */
5499 int netif_receive_skb_core(struct sk_buff *skb)
5500 {
5501         int ret;
5502
5503         rcu_read_lock();
5504         ret = __netif_receive_skb_one_core(skb, false);
5505         rcu_read_unlock();
5506
5507         return ret;
5508 }
5509 EXPORT_SYMBOL(netif_receive_skb_core);
5510
5511 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5512                                                   struct packet_type *pt_prev,
5513                                                   struct net_device *orig_dev)
5514 {
5515         struct sk_buff *skb, *next;
5516
5517         if (!pt_prev)
5518                 return;
5519         if (list_empty(head))
5520                 return;
5521         if (pt_prev->list_func != NULL)
5522                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5523                                    ip_list_rcv, head, pt_prev, orig_dev);
5524         else
5525                 list_for_each_entry_safe(skb, next, head, list) {
5526                         skb_list_del_init(skb);
5527                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5528                 }
5529 }
5530
5531 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5532 {
5533         /* Fast-path assumptions:
5534          * - There is no RX handler.
5535          * - Only one packet_type matches.
5536          * If either of these fails, we will end up doing some per-packet
5537          * processing in-line, then handling the 'last ptype' for the whole
5538          * sublist.  This can't cause out-of-order delivery to any single ptype,
5539          * because the 'last ptype' must be constant across the sublist, and all
5540          * other ptypes are handled per-packet.
5541          */
5542         /* Current (common) ptype of sublist */
5543         struct packet_type *pt_curr = NULL;
5544         /* Current (common) orig_dev of sublist */
5545         struct net_device *od_curr = NULL;
5546         struct list_head sublist;
5547         struct sk_buff *skb, *next;
5548
5549         INIT_LIST_HEAD(&sublist);
5550         list_for_each_entry_safe(skb, next, head, list) {
5551                 struct net_device *orig_dev = skb->dev;
5552                 struct packet_type *pt_prev = NULL;
5553
5554                 skb_list_del_init(skb);
5555                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5556                 if (!pt_prev)
5557                         continue;
5558                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5559                         /* dispatch old sublist */
5560                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5561                         /* start new sublist */
5562                         INIT_LIST_HEAD(&sublist);
5563                         pt_curr = pt_prev;
5564                         od_curr = orig_dev;
5565                 }
5566                 list_add_tail(&skb->list, &sublist);
5567         }
5568
5569         /* dispatch final sublist */
5570         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5571 }
5572
5573 static int __netif_receive_skb(struct sk_buff *skb)
5574 {
5575         int ret;
5576
5577         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5578                 unsigned int noreclaim_flag;
5579
5580                 /*
5581                  * PFMEMALLOC skbs are special, they should
5582                  * - be delivered to SOCK_MEMALLOC sockets only
5583                  * - stay away from userspace
5584                  * - have bounded memory usage
5585                  *
5586                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5587                  * context down to all allocation sites.
5588                  */
5589                 noreclaim_flag = memalloc_noreclaim_save();
5590                 ret = __netif_receive_skb_one_core(skb, true);
5591                 memalloc_noreclaim_restore(noreclaim_flag);
5592         } else
5593                 ret = __netif_receive_skb_one_core(skb, false);
5594
5595         return ret;
5596 }
5597
5598 static void __netif_receive_skb_list(struct list_head *head)
5599 {
5600         unsigned long noreclaim_flag = 0;
5601         struct sk_buff *skb, *next;
5602         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5603
5604         list_for_each_entry_safe(skb, next, head, list) {
5605                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5606                         struct list_head sublist;
5607
5608                         /* Handle the previous sublist */
5609                         list_cut_before(&sublist, head, &skb->list);
5610                         if (!list_empty(&sublist))
5611                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5612                         pfmemalloc = !pfmemalloc;
5613                         /* See comments in __netif_receive_skb */
5614                         if (pfmemalloc)
5615                                 noreclaim_flag = memalloc_noreclaim_save();
5616                         else
5617                                 memalloc_noreclaim_restore(noreclaim_flag);
5618                 }
5619         }
5620         /* Handle the remaining sublist */
5621         if (!list_empty(head))
5622                 __netif_receive_skb_list_core(head, pfmemalloc);
5623         /* Restore pflags */
5624         if (pfmemalloc)
5625                 memalloc_noreclaim_restore(noreclaim_flag);
5626 }
5627
5628 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5629 {
5630         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5631         struct bpf_prog *new = xdp->prog;
5632         int ret = 0;
5633
5634         switch (xdp->command) {
5635         case XDP_SETUP_PROG:
5636                 rcu_assign_pointer(dev->xdp_prog, new);
5637                 if (old)
5638                         bpf_prog_put(old);
5639
5640                 if (old && !new) {
5641                         static_branch_dec(&generic_xdp_needed_key);
5642                 } else if (new && !old) {
5643                         static_branch_inc(&generic_xdp_needed_key);
5644                         dev_disable_lro(dev);
5645                         dev_disable_gro_hw(dev);
5646                 }
5647                 break;
5648
5649         default:
5650                 ret = -EINVAL;
5651                 break;
5652         }
5653
5654         return ret;
5655 }
5656
5657 static int netif_receive_skb_internal(struct sk_buff *skb)
5658 {
5659         int ret;
5660
5661         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5662
5663         if (skb_defer_rx_timestamp(skb))
5664                 return NET_RX_SUCCESS;
5665
5666         rcu_read_lock();
5667 #ifdef CONFIG_RPS
5668         if (static_branch_unlikely(&rps_needed)) {
5669                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5670                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5671
5672                 if (cpu >= 0) {
5673                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5674                         rcu_read_unlock();
5675                         return ret;
5676                 }
5677         }
5678 #endif
5679         ret = __netif_receive_skb(skb);
5680         rcu_read_unlock();
5681         return ret;
5682 }
5683
5684 void netif_receive_skb_list_internal(struct list_head *head)
5685 {
5686         struct sk_buff *skb, *next;
5687         struct list_head sublist;
5688
5689         INIT_LIST_HEAD(&sublist);
5690         list_for_each_entry_safe(skb, next, head, list) {
5691                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5692                 skb_list_del_init(skb);
5693                 if (!skb_defer_rx_timestamp(skb))
5694                         list_add_tail(&skb->list, &sublist);
5695         }
5696         list_splice_init(&sublist, head);
5697
5698         rcu_read_lock();
5699 #ifdef CONFIG_RPS
5700         if (static_branch_unlikely(&rps_needed)) {
5701                 list_for_each_entry_safe(skb, next, head, list) {
5702                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5703                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5704
5705                         if (cpu >= 0) {
5706                                 /* Will be handled, remove from list */
5707                                 skb_list_del_init(skb);
5708                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5709                         }
5710                 }
5711         }
5712 #endif
5713         __netif_receive_skb_list(head);
5714         rcu_read_unlock();
5715 }
5716
5717 /**
5718  *      netif_receive_skb - process receive buffer from network
5719  *      @skb: buffer to process
5720  *
5721  *      netif_receive_skb() is the main receive data processing function.
5722  *      It always succeeds. The buffer may be dropped during processing
5723  *      for congestion control or by the protocol layers.
5724  *
5725  *      This function may only be called from softirq context and interrupts
5726  *      should be enabled.
5727  *
5728  *      Return values (usually ignored):
5729  *      NET_RX_SUCCESS: no congestion
5730  *      NET_RX_DROP: packet was dropped
5731  */
5732 int netif_receive_skb(struct sk_buff *skb)
5733 {
5734         int ret;
5735
5736         trace_netif_receive_skb_entry(skb);
5737
5738         ret = netif_receive_skb_internal(skb);
5739         trace_netif_receive_skb_exit(ret);
5740
5741         return ret;
5742 }
5743 EXPORT_SYMBOL(netif_receive_skb);
5744
5745 /**
5746  *      netif_receive_skb_list - process many receive buffers from network
5747  *      @head: list of skbs to process.
5748  *
5749  *      Since return value of netif_receive_skb() is normally ignored, and
5750  *      wouldn't be meaningful for a list, this function returns void.
5751  *
5752  *      This function may only be called from softirq context and interrupts
5753  *      should be enabled.
5754  */
5755 void netif_receive_skb_list(struct list_head *head)
5756 {
5757         struct sk_buff *skb;
5758
5759         if (list_empty(head))
5760                 return;
5761         if (trace_netif_receive_skb_list_entry_enabled()) {
5762                 list_for_each_entry(skb, head, list)
5763                         trace_netif_receive_skb_list_entry(skb);
5764         }
5765         netif_receive_skb_list_internal(head);
5766         trace_netif_receive_skb_list_exit(0);
5767 }
5768 EXPORT_SYMBOL(netif_receive_skb_list);
5769
5770 static DEFINE_PER_CPU(struct work_struct, flush_works);
5771
5772 /* Network device is going away, flush any packets still pending */
5773 static void flush_backlog(struct work_struct *work)
5774 {
5775         struct sk_buff *skb, *tmp;
5776         struct softnet_data *sd;
5777
5778         local_bh_disable();
5779         sd = this_cpu_ptr(&softnet_data);
5780
5781         rps_lock_irq_disable(sd);
5782         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5783                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5784                         __skb_unlink(skb, &sd->input_pkt_queue);
5785                         dev_kfree_skb_irq(skb);
5786                         input_queue_head_incr(sd);
5787                 }
5788         }
5789         rps_unlock_irq_enable(sd);
5790
5791         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5792                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5793                         __skb_unlink(skb, &sd->process_queue);
5794                         kfree_skb(skb);
5795                         input_queue_head_incr(sd);
5796                 }
5797         }
5798         local_bh_enable();
5799 }
5800
5801 static bool flush_required(int cpu)
5802 {
5803 #if IS_ENABLED(CONFIG_RPS)
5804         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5805         bool do_flush;
5806
5807         rps_lock_irq_disable(sd);
5808
5809         /* as insertion into process_queue happens with the rps lock held,
5810          * process_queue access may race only with dequeue
5811          */
5812         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5813                    !skb_queue_empty_lockless(&sd->process_queue);
5814         rps_unlock_irq_enable(sd);
5815
5816         return do_flush;
5817 #endif
5818         /* without RPS we can't safely check input_pkt_queue: during a
5819          * concurrent remote skb_queue_splice() we can detect as empty both
5820          * input_pkt_queue and process_queue even if the latter could end-up
5821          * containing a lot of packets.
5822          */
5823         return true;
5824 }
5825
5826 static void flush_all_backlogs(void)
5827 {
5828         static cpumask_t flush_cpus;
5829         unsigned int cpu;
5830
5831         /* since we are under rtnl lock protection we can use static data
5832          * for the cpumask and avoid allocating on stack the possibly
5833          * large mask
5834          */
5835         ASSERT_RTNL();
5836
5837         cpus_read_lock();
5838
5839         cpumask_clear(&flush_cpus);
5840         for_each_online_cpu(cpu) {
5841                 if (flush_required(cpu)) {
5842                         queue_work_on(cpu, system_highpri_wq,
5843                                       per_cpu_ptr(&flush_works, cpu));
5844                         cpumask_set_cpu(cpu, &flush_cpus);
5845                 }
5846         }
5847
5848         /* we can have in flight packet[s] on the cpus we are not flushing,
5849          * synchronize_net() in unregister_netdevice_many() will take care of
5850          * them
5851          */
5852         for_each_cpu(cpu, &flush_cpus)
5853                 flush_work(per_cpu_ptr(&flush_works, cpu));
5854
5855         cpus_read_unlock();
5856 }
5857
5858 static void net_rps_send_ipi(struct softnet_data *remsd)
5859 {
5860 #ifdef CONFIG_RPS
5861         while (remsd) {
5862                 struct softnet_data *next = remsd->rps_ipi_next;
5863
5864                 if (cpu_online(remsd->cpu))
5865                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5866                 remsd = next;
5867         }
5868 #endif
5869 }
5870
5871 /*
5872  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5873  * Note: called with local irq disabled, but exits with local irq enabled.
5874  */
5875 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5876 {
5877 #ifdef CONFIG_RPS
5878         struct softnet_data *remsd = sd->rps_ipi_list;
5879
5880         if (remsd) {
5881                 sd->rps_ipi_list = NULL;
5882
5883                 local_irq_enable();
5884
5885                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5886                 net_rps_send_ipi(remsd);
5887         } else
5888 #endif
5889                 local_irq_enable();
5890 }
5891
5892 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5893 {
5894 #ifdef CONFIG_RPS
5895         return sd->rps_ipi_list != NULL;
5896 #else
5897         return false;
5898 #endif
5899 }
5900
5901 static int process_backlog(struct napi_struct *napi, int quota)
5902 {
5903         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5904         bool again = true;
5905         int work = 0;
5906
5907         /* Check if we have pending ipi, its better to send them now,
5908          * not waiting net_rx_action() end.
5909          */
5910         if (sd_has_rps_ipi_waiting(sd)) {
5911                 local_irq_disable();
5912                 net_rps_action_and_irq_enable(sd);
5913         }
5914
5915         napi->weight = READ_ONCE(dev_rx_weight);
5916         while (again) {
5917                 struct sk_buff *skb;
5918
5919                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5920                         rcu_read_lock();
5921                         __netif_receive_skb(skb);
5922                         rcu_read_unlock();
5923                         input_queue_head_incr(sd);
5924                         if (++work >= quota)
5925                                 return work;
5926
5927                 }
5928
5929                 rps_lock_irq_disable(sd);
5930                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5931                         /*
5932                          * Inline a custom version of __napi_complete().
5933                          * only current cpu owns and manipulates this napi,
5934                          * and NAPI_STATE_SCHED is the only possible flag set
5935                          * on backlog.
5936                          * We can use a plain write instead of clear_bit(),
5937                          * and we dont need an smp_mb() memory barrier.
5938                          */
5939                         napi->state = 0;
5940                         again = false;
5941                 } else {
5942                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5943                                                    &sd->process_queue);
5944                 }
5945                 rps_unlock_irq_enable(sd);
5946         }
5947
5948         return work;
5949 }
5950
5951 /**
5952  * __napi_schedule - schedule for receive
5953  * @n: entry to schedule
5954  *
5955  * The entry's receive function will be scheduled to run.
5956  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5957  */
5958 void __napi_schedule(struct napi_struct *n)
5959 {
5960         unsigned long flags;
5961
5962         local_irq_save(flags);
5963         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5964         local_irq_restore(flags);
5965 }
5966 EXPORT_SYMBOL(__napi_schedule);
5967
5968 /**
5969  *      napi_schedule_prep - check if napi can be scheduled
5970  *      @n: napi context
5971  *
5972  * Test if NAPI routine is already running, and if not mark
5973  * it as running.  This is used as a condition variable to
5974  * insure only one NAPI poll instance runs.  We also make
5975  * sure there is no pending NAPI disable.
5976  */
5977 bool napi_schedule_prep(struct napi_struct *n)
5978 {
5979         unsigned long new, val = READ_ONCE(n->state);
5980
5981         do {
5982                 if (unlikely(val & NAPIF_STATE_DISABLE))
5983                         return false;
5984                 new = val | NAPIF_STATE_SCHED;
5985
5986                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5987                  * This was suggested by Alexander Duyck, as compiler
5988                  * emits better code than :
5989                  * if (val & NAPIF_STATE_SCHED)
5990                  *     new |= NAPIF_STATE_MISSED;
5991                  */
5992                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5993                                                    NAPIF_STATE_MISSED;
5994         } while (!try_cmpxchg(&n->state, &val, new));
5995
5996         return !(val & NAPIF_STATE_SCHED);
5997 }
5998 EXPORT_SYMBOL(napi_schedule_prep);
5999
6000 /**
6001  * __napi_schedule_irqoff - schedule for receive
6002  * @n: entry to schedule
6003  *
6004  * Variant of __napi_schedule() assuming hard irqs are masked.
6005  *
6006  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6007  * because the interrupt disabled assumption might not be true
6008  * due to force-threaded interrupts and spinlock substitution.
6009  */
6010 void __napi_schedule_irqoff(struct napi_struct *n)
6011 {
6012         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6013                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6014         else
6015                 __napi_schedule(n);
6016 }
6017 EXPORT_SYMBOL(__napi_schedule_irqoff);
6018
6019 bool napi_complete_done(struct napi_struct *n, int work_done)
6020 {
6021         unsigned long flags, val, new, timeout = 0;
6022         bool ret = true;
6023
6024         /*
6025          * 1) Don't let napi dequeue from the cpu poll list
6026          *    just in case its running on a different cpu.
6027          * 2) If we are busy polling, do nothing here, we have
6028          *    the guarantee we will be called later.
6029          */
6030         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6031                                  NAPIF_STATE_IN_BUSY_POLL)))
6032                 return false;
6033
6034         if (work_done) {
6035                 if (n->gro_bitmask)
6036                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6037                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6038         }
6039         if (n->defer_hard_irqs_count > 0) {
6040                 n->defer_hard_irqs_count--;
6041                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6042                 if (timeout)
6043                         ret = false;
6044         }
6045         if (n->gro_bitmask) {
6046                 /* When the NAPI instance uses a timeout and keeps postponing
6047                  * it, we need to bound somehow the time packets are kept in
6048                  * the GRO layer
6049                  */
6050                 napi_gro_flush(n, !!timeout);
6051         }
6052
6053         gro_normal_list(n);
6054
6055         if (unlikely(!list_empty(&n->poll_list))) {
6056                 /* If n->poll_list is not empty, we need to mask irqs */
6057                 local_irq_save(flags);
6058                 list_del_init(&n->poll_list);
6059                 local_irq_restore(flags);
6060         }
6061
6062         val = READ_ONCE(n->state);
6063         do {
6064                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6065
6066                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6067                               NAPIF_STATE_SCHED_THREADED |
6068                               NAPIF_STATE_PREFER_BUSY_POLL);
6069
6070                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6071                  * because we will call napi->poll() one more time.
6072                  * This C code was suggested by Alexander Duyck to help gcc.
6073                  */
6074                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6075                                                     NAPIF_STATE_SCHED;
6076         } while (!try_cmpxchg(&n->state, &val, new));
6077
6078         if (unlikely(val & NAPIF_STATE_MISSED)) {
6079                 __napi_schedule(n);
6080                 return false;
6081         }
6082
6083         if (timeout)
6084                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6085                               HRTIMER_MODE_REL_PINNED);
6086         return ret;
6087 }
6088 EXPORT_SYMBOL(napi_complete_done);
6089
6090 /* must be called under rcu_read_lock(), as we dont take a reference */
6091 static struct napi_struct *napi_by_id(unsigned int napi_id)
6092 {
6093         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6094         struct napi_struct *napi;
6095
6096         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6097                 if (napi->napi_id == napi_id)
6098                         return napi;
6099
6100         return NULL;
6101 }
6102
6103 #if defined(CONFIG_NET_RX_BUSY_POLL)
6104
6105 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6106 {
6107         if (!skip_schedule) {
6108                 gro_normal_list(napi);
6109                 __napi_schedule(napi);
6110                 return;
6111         }
6112
6113         if (napi->gro_bitmask) {
6114                 /* flush too old packets
6115                  * If HZ < 1000, flush all packets.
6116                  */
6117                 napi_gro_flush(napi, HZ >= 1000);
6118         }
6119
6120         gro_normal_list(napi);
6121         clear_bit(NAPI_STATE_SCHED, &napi->state);
6122 }
6123
6124 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6125                            u16 budget)
6126 {
6127         bool skip_schedule = false;
6128         unsigned long timeout;
6129         int rc;
6130
6131         /* Busy polling means there is a high chance device driver hard irq
6132          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6133          * set in napi_schedule_prep().
6134          * Since we are about to call napi->poll() once more, we can safely
6135          * clear NAPI_STATE_MISSED.
6136          *
6137          * Note: x86 could use a single "lock and ..." instruction
6138          * to perform these two clear_bit()
6139          */
6140         clear_bit(NAPI_STATE_MISSED, &napi->state);
6141         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6142
6143         local_bh_disable();
6144
6145         if (prefer_busy_poll) {
6146                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6147                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6148                 if (napi->defer_hard_irqs_count && timeout) {
6149                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6150                         skip_schedule = true;
6151                 }
6152         }
6153
6154         /* All we really want here is to re-enable device interrupts.
6155          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6156          */
6157         rc = napi->poll(napi, budget);
6158         /* We can't gro_normal_list() here, because napi->poll() might have
6159          * rearmed the napi (napi_complete_done()) in which case it could
6160          * already be running on another CPU.
6161          */
6162         trace_napi_poll(napi, rc, budget);
6163         netpoll_poll_unlock(have_poll_lock);
6164         if (rc == budget)
6165                 __busy_poll_stop(napi, skip_schedule);
6166         local_bh_enable();
6167 }
6168
6169 void napi_busy_loop(unsigned int napi_id,
6170                     bool (*loop_end)(void *, unsigned long),
6171                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6172 {
6173         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6174         int (*napi_poll)(struct napi_struct *napi, int budget);
6175         void *have_poll_lock = NULL;
6176         struct napi_struct *napi;
6177
6178 restart:
6179         napi_poll = NULL;
6180
6181         rcu_read_lock();
6182
6183         napi = napi_by_id(napi_id);
6184         if (!napi)
6185                 goto out;
6186
6187         preempt_disable();
6188         for (;;) {
6189                 int work = 0;
6190
6191                 local_bh_disable();
6192                 if (!napi_poll) {
6193                         unsigned long val = READ_ONCE(napi->state);
6194
6195                         /* If multiple threads are competing for this napi,
6196                          * we avoid dirtying napi->state as much as we can.
6197                          */
6198                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6199                                    NAPIF_STATE_IN_BUSY_POLL)) {
6200                                 if (prefer_busy_poll)
6201                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6202                                 goto count;
6203                         }
6204                         if (cmpxchg(&napi->state, val,
6205                                     val | NAPIF_STATE_IN_BUSY_POLL |
6206                                           NAPIF_STATE_SCHED) != val) {
6207                                 if (prefer_busy_poll)
6208                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6209                                 goto count;
6210                         }
6211                         have_poll_lock = netpoll_poll_lock(napi);
6212                         napi_poll = napi->poll;
6213                 }
6214                 work = napi_poll(napi, budget);
6215                 trace_napi_poll(napi, work, budget);
6216                 gro_normal_list(napi);
6217 count:
6218                 if (work > 0)
6219                         __NET_ADD_STATS(dev_net(napi->dev),
6220                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6221                 local_bh_enable();
6222
6223                 if (!loop_end || loop_end(loop_end_arg, start_time))
6224                         break;
6225
6226                 if (unlikely(need_resched())) {
6227                         if (napi_poll)
6228                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6229                         preempt_enable();
6230                         rcu_read_unlock();
6231                         cond_resched();
6232                         if (loop_end(loop_end_arg, start_time))
6233                                 return;
6234                         goto restart;
6235                 }
6236                 cpu_relax();
6237         }
6238         if (napi_poll)
6239                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6240         preempt_enable();
6241 out:
6242         rcu_read_unlock();
6243 }
6244 EXPORT_SYMBOL(napi_busy_loop);
6245
6246 #endif /* CONFIG_NET_RX_BUSY_POLL */
6247
6248 static void napi_hash_add(struct napi_struct *napi)
6249 {
6250         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6251                 return;
6252
6253         spin_lock(&napi_hash_lock);
6254
6255         /* 0..NR_CPUS range is reserved for sender_cpu use */
6256         do {
6257                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6258                         napi_gen_id = MIN_NAPI_ID;
6259         } while (napi_by_id(napi_gen_id));
6260         napi->napi_id = napi_gen_id;
6261
6262         hlist_add_head_rcu(&napi->napi_hash_node,
6263                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6264
6265         spin_unlock(&napi_hash_lock);
6266 }
6267
6268 /* Warning : caller is responsible to make sure rcu grace period
6269  * is respected before freeing memory containing @napi
6270  */
6271 static void napi_hash_del(struct napi_struct *napi)
6272 {
6273         spin_lock(&napi_hash_lock);
6274
6275         hlist_del_init_rcu(&napi->napi_hash_node);
6276
6277         spin_unlock(&napi_hash_lock);
6278 }
6279
6280 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6281 {
6282         struct napi_struct *napi;
6283
6284         napi = container_of(timer, struct napi_struct, timer);
6285
6286         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6287          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6288          */
6289         if (!napi_disable_pending(napi) &&
6290             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6291                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6292                 __napi_schedule_irqoff(napi);
6293         }
6294
6295         return HRTIMER_NORESTART;
6296 }
6297
6298 static void init_gro_hash(struct napi_struct *napi)
6299 {
6300         int i;
6301
6302         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6303                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6304                 napi->gro_hash[i].count = 0;
6305         }
6306         napi->gro_bitmask = 0;
6307 }
6308
6309 int dev_set_threaded(struct net_device *dev, bool threaded)
6310 {
6311         struct napi_struct *napi;
6312         int err = 0;
6313
6314         if (dev->threaded == threaded)
6315                 return 0;
6316
6317         if (threaded) {
6318                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6319                         if (!napi->thread) {
6320                                 err = napi_kthread_create(napi);
6321                                 if (err) {
6322                                         threaded = false;
6323                                         break;
6324                                 }
6325                         }
6326                 }
6327         }
6328
6329         dev->threaded = threaded;
6330
6331         /* Make sure kthread is created before THREADED bit
6332          * is set.
6333          */
6334         smp_mb__before_atomic();
6335
6336         /* Setting/unsetting threaded mode on a napi might not immediately
6337          * take effect, if the current napi instance is actively being
6338          * polled. In this case, the switch between threaded mode and
6339          * softirq mode will happen in the next round of napi_schedule().
6340          * This should not cause hiccups/stalls to the live traffic.
6341          */
6342         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6343                 if (threaded)
6344                         set_bit(NAPI_STATE_THREADED, &napi->state);
6345                 else
6346                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6347         }
6348
6349         return err;
6350 }
6351 EXPORT_SYMBOL(dev_set_threaded);
6352
6353 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6354                            int (*poll)(struct napi_struct *, int), int weight)
6355 {
6356         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6357                 return;
6358
6359         INIT_LIST_HEAD(&napi->poll_list);
6360         INIT_HLIST_NODE(&napi->napi_hash_node);
6361         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6362         napi->timer.function = napi_watchdog;
6363         init_gro_hash(napi);
6364         napi->skb = NULL;
6365         INIT_LIST_HEAD(&napi->rx_list);
6366         napi->rx_count = 0;
6367         napi->poll = poll;
6368         if (weight > NAPI_POLL_WEIGHT)
6369                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6370                                 weight);
6371         napi->weight = weight;
6372         napi->dev = dev;
6373 #ifdef CONFIG_NETPOLL
6374         napi->poll_owner = -1;
6375 #endif
6376         set_bit(NAPI_STATE_SCHED, &napi->state);
6377         set_bit(NAPI_STATE_NPSVC, &napi->state);
6378         list_add_rcu(&napi->dev_list, &dev->napi_list);
6379         napi_hash_add(napi);
6380         napi_get_frags_check(napi);
6381         /* Create kthread for this napi if dev->threaded is set.
6382          * Clear dev->threaded if kthread creation failed so that
6383          * threaded mode will not be enabled in napi_enable().
6384          */
6385         if (dev->threaded && napi_kthread_create(napi))
6386                 dev->threaded = 0;
6387 }
6388 EXPORT_SYMBOL(netif_napi_add_weight);
6389
6390 void napi_disable(struct napi_struct *n)
6391 {
6392         unsigned long val, new;
6393
6394         might_sleep();
6395         set_bit(NAPI_STATE_DISABLE, &n->state);
6396
6397         val = READ_ONCE(n->state);
6398         do {
6399                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6400                         usleep_range(20, 200);
6401                         val = READ_ONCE(n->state);
6402                 }
6403
6404                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6405                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6406         } while (!try_cmpxchg(&n->state, &val, new));
6407
6408         hrtimer_cancel(&n->timer);
6409
6410         clear_bit(NAPI_STATE_DISABLE, &n->state);
6411 }
6412 EXPORT_SYMBOL(napi_disable);
6413
6414 /**
6415  *      napi_enable - enable NAPI scheduling
6416  *      @n: NAPI context
6417  *
6418  * Resume NAPI from being scheduled on this context.
6419  * Must be paired with napi_disable.
6420  */
6421 void napi_enable(struct napi_struct *n)
6422 {
6423         unsigned long new, val = READ_ONCE(n->state);
6424
6425         do {
6426                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6427
6428                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6429                 if (n->dev->threaded && n->thread)
6430                         new |= NAPIF_STATE_THREADED;
6431         } while (!try_cmpxchg(&n->state, &val, new));
6432 }
6433 EXPORT_SYMBOL(napi_enable);
6434
6435 static void flush_gro_hash(struct napi_struct *napi)
6436 {
6437         int i;
6438
6439         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6440                 struct sk_buff *skb, *n;
6441
6442                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6443                         kfree_skb(skb);
6444                 napi->gro_hash[i].count = 0;
6445         }
6446 }
6447
6448 /* Must be called in process context */
6449 void __netif_napi_del(struct napi_struct *napi)
6450 {
6451         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6452                 return;
6453
6454         napi_hash_del(napi);
6455         list_del_rcu(&napi->dev_list);
6456         napi_free_frags(napi);
6457
6458         flush_gro_hash(napi);
6459         napi->gro_bitmask = 0;
6460
6461         if (napi->thread) {
6462                 kthread_stop(napi->thread);
6463                 napi->thread = NULL;
6464         }
6465 }
6466 EXPORT_SYMBOL(__netif_napi_del);
6467
6468 static int __napi_poll(struct napi_struct *n, bool *repoll)
6469 {
6470         int work, weight;
6471
6472         weight = n->weight;
6473
6474         /* This NAPI_STATE_SCHED test is for avoiding a race
6475          * with netpoll's poll_napi().  Only the entity which
6476          * obtains the lock and sees NAPI_STATE_SCHED set will
6477          * actually make the ->poll() call.  Therefore we avoid
6478          * accidentally calling ->poll() when NAPI is not scheduled.
6479          */
6480         work = 0;
6481         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6482                 work = n->poll(n, weight);
6483                 trace_napi_poll(n, work, weight);
6484         }
6485
6486         if (unlikely(work > weight))
6487                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6488                                 n->poll, work, weight);
6489
6490         if (likely(work < weight))
6491                 return work;
6492
6493         /* Drivers must not modify the NAPI state if they
6494          * consume the entire weight.  In such cases this code
6495          * still "owns" the NAPI instance and therefore can
6496          * move the instance around on the list at-will.
6497          */
6498         if (unlikely(napi_disable_pending(n))) {
6499                 napi_complete(n);
6500                 return work;
6501         }
6502
6503         /* The NAPI context has more processing work, but busy-polling
6504          * is preferred. Exit early.
6505          */
6506         if (napi_prefer_busy_poll(n)) {
6507                 if (napi_complete_done(n, work)) {
6508                         /* If timeout is not set, we need to make sure
6509                          * that the NAPI is re-scheduled.
6510                          */
6511                         napi_schedule(n);
6512                 }
6513                 return work;
6514         }
6515
6516         if (n->gro_bitmask) {
6517                 /* flush too old packets
6518                  * If HZ < 1000, flush all packets.
6519                  */
6520                 napi_gro_flush(n, HZ >= 1000);
6521         }
6522
6523         gro_normal_list(n);
6524
6525         /* Some drivers may have called napi_schedule
6526          * prior to exhausting their budget.
6527          */
6528         if (unlikely(!list_empty(&n->poll_list))) {
6529                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6530                              n->dev ? n->dev->name : "backlog");
6531                 return work;
6532         }
6533
6534         *repoll = true;
6535
6536         return work;
6537 }
6538
6539 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6540 {
6541         bool do_repoll = false;
6542         void *have;
6543         int work;
6544
6545         list_del_init(&n->poll_list);
6546
6547         have = netpoll_poll_lock(n);
6548
6549         work = __napi_poll(n, &do_repoll);
6550
6551         if (do_repoll)
6552                 list_add_tail(&n->poll_list, repoll);
6553
6554         netpoll_poll_unlock(have);
6555
6556         return work;
6557 }
6558
6559 static int napi_thread_wait(struct napi_struct *napi)
6560 {
6561         bool woken = false;
6562
6563         set_current_state(TASK_INTERRUPTIBLE);
6564
6565         while (!kthread_should_stop()) {
6566                 /* Testing SCHED_THREADED bit here to make sure the current
6567                  * kthread owns this napi and could poll on this napi.
6568                  * Testing SCHED bit is not enough because SCHED bit might be
6569                  * set by some other busy poll thread or by napi_disable().
6570                  */
6571                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6572                         WARN_ON(!list_empty(&napi->poll_list));
6573                         __set_current_state(TASK_RUNNING);
6574                         return 0;
6575                 }
6576
6577                 schedule();
6578                 /* woken being true indicates this thread owns this napi. */
6579                 woken = true;
6580                 set_current_state(TASK_INTERRUPTIBLE);
6581         }
6582         __set_current_state(TASK_RUNNING);
6583
6584         return -1;
6585 }
6586
6587 static int napi_threaded_poll(void *data)
6588 {
6589         struct napi_struct *napi = data;
6590         void *have;
6591
6592         while (!napi_thread_wait(napi)) {
6593                 for (;;) {
6594                         bool repoll = false;
6595
6596                         local_bh_disable();
6597
6598                         have = netpoll_poll_lock(napi);
6599                         __napi_poll(napi, &repoll);
6600                         netpoll_poll_unlock(have);
6601
6602                         local_bh_enable();
6603
6604                         if (!repoll)
6605                                 break;
6606
6607                         cond_resched();
6608                 }
6609         }
6610         return 0;
6611 }
6612
6613 static void skb_defer_free_flush(struct softnet_data *sd)
6614 {
6615         struct sk_buff *skb, *next;
6616
6617         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6618         if (!READ_ONCE(sd->defer_list))
6619                 return;
6620
6621         spin_lock_irq(&sd->defer_lock);
6622         skb = sd->defer_list;
6623         sd->defer_list = NULL;
6624         sd->defer_count = 0;
6625         spin_unlock_irq(&sd->defer_lock);
6626
6627         while (skb != NULL) {
6628                 next = skb->next;
6629                 napi_consume_skb(skb, 1);
6630                 skb = next;
6631         }
6632 }
6633
6634 static __latent_entropy void net_rx_action(struct softirq_action *h)
6635 {
6636         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6637         unsigned long time_limit = jiffies +
6638                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6639         int budget = READ_ONCE(netdev_budget);
6640         LIST_HEAD(list);
6641         LIST_HEAD(repoll);
6642
6643         local_irq_disable();
6644         list_splice_init(&sd->poll_list, &list);
6645         local_irq_enable();
6646
6647         for (;;) {
6648                 struct napi_struct *n;
6649
6650                 skb_defer_free_flush(sd);
6651
6652                 if (list_empty(&list)) {
6653                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6654                                 goto end;
6655                         break;
6656                 }
6657
6658                 n = list_first_entry(&list, struct napi_struct, poll_list);
6659                 budget -= napi_poll(n, &repoll);
6660
6661                 /* If softirq window is exhausted then punt.
6662                  * Allow this to run for 2 jiffies since which will allow
6663                  * an average latency of 1.5/HZ.
6664                  */
6665                 if (unlikely(budget <= 0 ||
6666                              time_after_eq(jiffies, time_limit))) {
6667                         sd->time_squeeze++;
6668                         break;
6669                 }
6670         }
6671
6672         local_irq_disable();
6673
6674         list_splice_tail_init(&sd->poll_list, &list);
6675         list_splice_tail(&repoll, &list);
6676         list_splice(&list, &sd->poll_list);
6677         if (!list_empty(&sd->poll_list))
6678                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6679
6680         net_rps_action_and_irq_enable(sd);
6681 end:;
6682 }
6683
6684 struct netdev_adjacent {
6685         struct net_device *dev;
6686         netdevice_tracker dev_tracker;
6687
6688         /* upper master flag, there can only be one master device per list */
6689         bool master;
6690
6691         /* lookup ignore flag */
6692         bool ignore;
6693
6694         /* counter for the number of times this device was added to us */
6695         u16 ref_nr;
6696
6697         /* private field for the users */
6698         void *private;
6699
6700         struct list_head list;
6701         struct rcu_head rcu;
6702 };
6703
6704 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6705                                                  struct list_head *adj_list)
6706 {
6707         struct netdev_adjacent *adj;
6708
6709         list_for_each_entry(adj, adj_list, list) {
6710                 if (adj->dev == adj_dev)
6711                         return adj;
6712         }
6713         return NULL;
6714 }
6715
6716 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6717                                     struct netdev_nested_priv *priv)
6718 {
6719         struct net_device *dev = (struct net_device *)priv->data;
6720
6721         return upper_dev == dev;
6722 }
6723
6724 /**
6725  * netdev_has_upper_dev - Check if device is linked to an upper device
6726  * @dev: device
6727  * @upper_dev: upper device to check
6728  *
6729  * Find out if a device is linked to specified upper device and return true
6730  * in case it is. Note that this checks only immediate upper device,
6731  * not through a complete stack of devices. The caller must hold the RTNL lock.
6732  */
6733 bool netdev_has_upper_dev(struct net_device *dev,
6734                           struct net_device *upper_dev)
6735 {
6736         struct netdev_nested_priv priv = {
6737                 .data = (void *)upper_dev,
6738         };
6739
6740         ASSERT_RTNL();
6741
6742         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6743                                              &priv);
6744 }
6745 EXPORT_SYMBOL(netdev_has_upper_dev);
6746
6747 /**
6748  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6749  * @dev: device
6750  * @upper_dev: upper device to check
6751  *
6752  * Find out if a device is linked to specified upper device and return true
6753  * in case it is. Note that this checks the entire upper device chain.
6754  * The caller must hold rcu lock.
6755  */
6756
6757 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6758                                   struct net_device *upper_dev)
6759 {
6760         struct netdev_nested_priv priv = {
6761                 .data = (void *)upper_dev,
6762         };
6763
6764         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6765                                                &priv);
6766 }
6767 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6768
6769 /**
6770  * netdev_has_any_upper_dev - Check if device is linked to some device
6771  * @dev: device
6772  *
6773  * Find out if a device is linked to an upper device and return true in case
6774  * it is. The caller must hold the RTNL lock.
6775  */
6776 bool netdev_has_any_upper_dev(struct net_device *dev)
6777 {
6778         ASSERT_RTNL();
6779
6780         return !list_empty(&dev->adj_list.upper);
6781 }
6782 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6783
6784 /**
6785  * netdev_master_upper_dev_get - Get master upper device
6786  * @dev: device
6787  *
6788  * Find a master upper device and return pointer to it or NULL in case
6789  * it's not there. The caller must hold the RTNL lock.
6790  */
6791 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6792 {
6793         struct netdev_adjacent *upper;
6794
6795         ASSERT_RTNL();
6796
6797         if (list_empty(&dev->adj_list.upper))
6798                 return NULL;
6799
6800         upper = list_first_entry(&dev->adj_list.upper,
6801                                  struct netdev_adjacent, list);
6802         if (likely(upper->master))
6803                 return upper->dev;
6804         return NULL;
6805 }
6806 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6807
6808 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6809 {
6810         struct netdev_adjacent *upper;
6811
6812         ASSERT_RTNL();
6813
6814         if (list_empty(&dev->adj_list.upper))
6815                 return NULL;
6816
6817         upper = list_first_entry(&dev->adj_list.upper,
6818                                  struct netdev_adjacent, list);
6819         if (likely(upper->master) && !upper->ignore)
6820                 return upper->dev;
6821         return NULL;
6822 }
6823
6824 /**
6825  * netdev_has_any_lower_dev - Check if device is linked to some device
6826  * @dev: device
6827  *
6828  * Find out if a device is linked to a lower device and return true in case
6829  * it is. The caller must hold the RTNL lock.
6830  */
6831 static bool netdev_has_any_lower_dev(struct net_device *dev)
6832 {
6833         ASSERT_RTNL();
6834
6835         return !list_empty(&dev->adj_list.lower);
6836 }
6837
6838 void *netdev_adjacent_get_private(struct list_head *adj_list)
6839 {
6840         struct netdev_adjacent *adj;
6841
6842         adj = list_entry(adj_list, struct netdev_adjacent, list);
6843
6844         return adj->private;
6845 }
6846 EXPORT_SYMBOL(netdev_adjacent_get_private);
6847
6848 /**
6849  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6850  * @dev: device
6851  * @iter: list_head ** of the current position
6852  *
6853  * Gets the next device from the dev's upper list, starting from iter
6854  * position. The caller must hold RCU read lock.
6855  */
6856 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6857                                                  struct list_head **iter)
6858 {
6859         struct netdev_adjacent *upper;
6860
6861         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6862
6863         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6864
6865         if (&upper->list == &dev->adj_list.upper)
6866                 return NULL;
6867
6868         *iter = &upper->list;
6869
6870         return upper->dev;
6871 }
6872 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6873
6874 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6875                                                   struct list_head **iter,
6876                                                   bool *ignore)
6877 {
6878         struct netdev_adjacent *upper;
6879
6880         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6881
6882         if (&upper->list == &dev->adj_list.upper)
6883                 return NULL;
6884
6885         *iter = &upper->list;
6886         *ignore = upper->ignore;
6887
6888         return upper->dev;
6889 }
6890
6891 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6892                                                     struct list_head **iter)
6893 {
6894         struct netdev_adjacent *upper;
6895
6896         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6897
6898         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6899
6900         if (&upper->list == &dev->adj_list.upper)
6901                 return NULL;
6902
6903         *iter = &upper->list;
6904
6905         return upper->dev;
6906 }
6907
6908 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6909                                        int (*fn)(struct net_device *dev,
6910                                          struct netdev_nested_priv *priv),
6911                                        struct netdev_nested_priv *priv)
6912 {
6913         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6914         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6915         int ret, cur = 0;
6916         bool ignore;
6917
6918         now = dev;
6919         iter = &dev->adj_list.upper;
6920
6921         while (1) {
6922                 if (now != dev) {
6923                         ret = fn(now, priv);
6924                         if (ret)
6925                                 return ret;
6926                 }
6927
6928                 next = NULL;
6929                 while (1) {
6930                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6931                         if (!udev)
6932                                 break;
6933                         if (ignore)
6934                                 continue;
6935
6936                         next = udev;
6937                         niter = &udev->adj_list.upper;
6938                         dev_stack[cur] = now;
6939                         iter_stack[cur++] = iter;
6940                         break;
6941                 }
6942
6943                 if (!next) {
6944                         if (!cur)
6945                                 return 0;
6946                         next = dev_stack[--cur];
6947                         niter = iter_stack[cur];
6948                 }
6949
6950                 now = next;
6951                 iter = niter;
6952         }
6953
6954         return 0;
6955 }
6956
6957 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6958                                   int (*fn)(struct net_device *dev,
6959                                             struct netdev_nested_priv *priv),
6960                                   struct netdev_nested_priv *priv)
6961 {
6962         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6963         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6964         int ret, cur = 0;
6965
6966         now = dev;
6967         iter = &dev->adj_list.upper;
6968
6969         while (1) {
6970                 if (now != dev) {
6971                         ret = fn(now, priv);
6972                         if (ret)
6973                                 return ret;
6974                 }
6975
6976                 next = NULL;
6977                 while (1) {
6978                         udev = netdev_next_upper_dev_rcu(now, &iter);
6979                         if (!udev)
6980                                 break;
6981
6982                         next = udev;
6983                         niter = &udev->adj_list.upper;
6984                         dev_stack[cur] = now;
6985                         iter_stack[cur++] = iter;
6986                         break;
6987                 }
6988
6989                 if (!next) {
6990                         if (!cur)
6991                                 return 0;
6992                         next = dev_stack[--cur];
6993                         niter = iter_stack[cur];
6994                 }
6995
6996                 now = next;
6997                 iter = niter;
6998         }
6999
7000         return 0;
7001 }
7002 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7003
7004 static bool __netdev_has_upper_dev(struct net_device *dev,
7005                                    struct net_device *upper_dev)
7006 {
7007         struct netdev_nested_priv priv = {
7008                 .flags = 0,
7009                 .data = (void *)upper_dev,
7010         };
7011
7012         ASSERT_RTNL();
7013
7014         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7015                                            &priv);
7016 }
7017
7018 /**
7019  * netdev_lower_get_next_private - Get the next ->private from the
7020  *                                 lower neighbour list
7021  * @dev: device
7022  * @iter: list_head ** of the current position
7023  *
7024  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7025  * list, starting from iter position. The caller must hold either hold the
7026  * RTNL lock or its own locking that guarantees that the neighbour lower
7027  * list will remain unchanged.
7028  */
7029 void *netdev_lower_get_next_private(struct net_device *dev,
7030                                     struct list_head **iter)
7031 {
7032         struct netdev_adjacent *lower;
7033
7034         lower = list_entry(*iter, struct netdev_adjacent, list);
7035
7036         if (&lower->list == &dev->adj_list.lower)
7037                 return NULL;
7038
7039         *iter = lower->list.next;
7040
7041         return lower->private;
7042 }
7043 EXPORT_SYMBOL(netdev_lower_get_next_private);
7044
7045 /**
7046  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7047  *                                     lower neighbour list, RCU
7048  *                                     variant
7049  * @dev: device
7050  * @iter: list_head ** of the current position
7051  *
7052  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7053  * list, starting from iter position. The caller must hold RCU read lock.
7054  */
7055 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7056                                         struct list_head **iter)
7057 {
7058         struct netdev_adjacent *lower;
7059
7060         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7061
7062         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7063
7064         if (&lower->list == &dev->adj_list.lower)
7065                 return NULL;
7066
7067         *iter = &lower->list;
7068
7069         return lower->private;
7070 }
7071 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7072
7073 /**
7074  * netdev_lower_get_next - Get the next device from the lower neighbour
7075  *                         list
7076  * @dev: device
7077  * @iter: list_head ** of the current position
7078  *
7079  * Gets the next netdev_adjacent from the dev's lower neighbour
7080  * list, starting from iter position. The caller must hold RTNL lock or
7081  * its own locking that guarantees that the neighbour lower
7082  * list will remain unchanged.
7083  */
7084 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7085 {
7086         struct netdev_adjacent *lower;
7087
7088         lower = list_entry(*iter, struct netdev_adjacent, list);
7089
7090         if (&lower->list == &dev->adj_list.lower)
7091                 return NULL;
7092
7093         *iter = lower->list.next;
7094
7095         return lower->dev;
7096 }
7097 EXPORT_SYMBOL(netdev_lower_get_next);
7098
7099 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7100                                                 struct list_head **iter)
7101 {
7102         struct netdev_adjacent *lower;
7103
7104         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7105
7106         if (&lower->list == &dev->adj_list.lower)
7107                 return NULL;
7108
7109         *iter = &lower->list;
7110
7111         return lower->dev;
7112 }
7113
7114 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7115                                                   struct list_head **iter,
7116                                                   bool *ignore)
7117 {
7118         struct netdev_adjacent *lower;
7119
7120         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7121
7122         if (&lower->list == &dev->adj_list.lower)
7123                 return NULL;
7124
7125         *iter = &lower->list;
7126         *ignore = lower->ignore;
7127
7128         return lower->dev;
7129 }
7130
7131 int netdev_walk_all_lower_dev(struct net_device *dev,
7132                               int (*fn)(struct net_device *dev,
7133                                         struct netdev_nested_priv *priv),
7134                               struct netdev_nested_priv *priv)
7135 {
7136         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7137         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7138         int ret, cur = 0;
7139
7140         now = dev;
7141         iter = &dev->adj_list.lower;
7142
7143         while (1) {
7144                 if (now != dev) {
7145                         ret = fn(now, priv);
7146                         if (ret)
7147                                 return ret;
7148                 }
7149
7150                 next = NULL;
7151                 while (1) {
7152                         ldev = netdev_next_lower_dev(now, &iter);
7153                         if (!ldev)
7154                                 break;
7155
7156                         next = ldev;
7157                         niter = &ldev->adj_list.lower;
7158                         dev_stack[cur] = now;
7159                         iter_stack[cur++] = iter;
7160                         break;
7161                 }
7162
7163                 if (!next) {
7164                         if (!cur)
7165                                 return 0;
7166                         next = dev_stack[--cur];
7167                         niter = iter_stack[cur];
7168                 }
7169
7170                 now = next;
7171                 iter = niter;
7172         }
7173
7174         return 0;
7175 }
7176 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7177
7178 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7179                                        int (*fn)(struct net_device *dev,
7180                                          struct netdev_nested_priv *priv),
7181                                        struct netdev_nested_priv *priv)
7182 {
7183         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7184         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7185         int ret, cur = 0;
7186         bool ignore;
7187
7188         now = dev;
7189         iter = &dev->adj_list.lower;
7190
7191         while (1) {
7192                 if (now != dev) {
7193                         ret = fn(now, priv);
7194                         if (ret)
7195                                 return ret;
7196                 }
7197
7198                 next = NULL;
7199                 while (1) {
7200                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7201                         if (!ldev)
7202                                 break;
7203                         if (ignore)
7204                                 continue;
7205
7206                         next = ldev;
7207                         niter = &ldev->adj_list.lower;
7208                         dev_stack[cur] = now;
7209                         iter_stack[cur++] = iter;
7210                         break;
7211                 }
7212
7213                 if (!next) {
7214                         if (!cur)
7215                                 return 0;
7216                         next = dev_stack[--cur];
7217                         niter = iter_stack[cur];
7218                 }
7219
7220                 now = next;
7221                 iter = niter;
7222         }
7223
7224         return 0;
7225 }
7226
7227 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7228                                              struct list_head **iter)
7229 {
7230         struct netdev_adjacent *lower;
7231
7232         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7233         if (&lower->list == &dev->adj_list.lower)
7234                 return NULL;
7235
7236         *iter = &lower->list;
7237
7238         return lower->dev;
7239 }
7240 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7241
7242 static u8 __netdev_upper_depth(struct net_device *dev)
7243 {
7244         struct net_device *udev;
7245         struct list_head *iter;
7246         u8 max_depth = 0;
7247         bool ignore;
7248
7249         for (iter = &dev->adj_list.upper,
7250              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7251              udev;
7252              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7253                 if (ignore)
7254                         continue;
7255                 if (max_depth < udev->upper_level)
7256                         max_depth = udev->upper_level;
7257         }
7258
7259         return max_depth;
7260 }
7261
7262 static u8 __netdev_lower_depth(struct net_device *dev)
7263 {
7264         struct net_device *ldev;
7265         struct list_head *iter;
7266         u8 max_depth = 0;
7267         bool ignore;
7268
7269         for (iter = &dev->adj_list.lower,
7270              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7271              ldev;
7272              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7273                 if (ignore)
7274                         continue;
7275                 if (max_depth < ldev->lower_level)
7276                         max_depth = ldev->lower_level;
7277         }
7278
7279         return max_depth;
7280 }
7281
7282 static int __netdev_update_upper_level(struct net_device *dev,
7283                                        struct netdev_nested_priv *__unused)
7284 {
7285         dev->upper_level = __netdev_upper_depth(dev) + 1;
7286         return 0;
7287 }
7288
7289 #ifdef CONFIG_LOCKDEP
7290 static LIST_HEAD(net_unlink_list);
7291
7292 static void net_unlink_todo(struct net_device *dev)
7293 {
7294         if (list_empty(&dev->unlink_list))
7295                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7296 }
7297 #endif
7298
7299 static int __netdev_update_lower_level(struct net_device *dev,
7300                                        struct netdev_nested_priv *priv)
7301 {
7302         dev->lower_level = __netdev_lower_depth(dev) + 1;
7303
7304 #ifdef CONFIG_LOCKDEP
7305         if (!priv)
7306                 return 0;
7307
7308         if (priv->flags & NESTED_SYNC_IMM)
7309                 dev->nested_level = dev->lower_level - 1;
7310         if (priv->flags & NESTED_SYNC_TODO)
7311                 net_unlink_todo(dev);
7312 #endif
7313         return 0;
7314 }
7315
7316 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7317                                   int (*fn)(struct net_device *dev,
7318                                             struct netdev_nested_priv *priv),
7319                                   struct netdev_nested_priv *priv)
7320 {
7321         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7322         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7323         int ret, cur = 0;
7324
7325         now = dev;
7326         iter = &dev->adj_list.lower;
7327
7328         while (1) {
7329                 if (now != dev) {
7330                         ret = fn(now, priv);
7331                         if (ret)
7332                                 return ret;
7333                 }
7334
7335                 next = NULL;
7336                 while (1) {
7337                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7338                         if (!ldev)
7339                                 break;
7340
7341                         next = ldev;
7342                         niter = &ldev->adj_list.lower;
7343                         dev_stack[cur] = now;
7344                         iter_stack[cur++] = iter;
7345                         break;
7346                 }
7347
7348                 if (!next) {
7349                         if (!cur)
7350                                 return 0;
7351                         next = dev_stack[--cur];
7352                         niter = iter_stack[cur];
7353                 }
7354
7355                 now = next;
7356                 iter = niter;
7357         }
7358
7359         return 0;
7360 }
7361 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7362
7363 /**
7364  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7365  *                                     lower neighbour list, RCU
7366  *                                     variant
7367  * @dev: device
7368  *
7369  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7370  * list. The caller must hold RCU read lock.
7371  */
7372 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7373 {
7374         struct netdev_adjacent *lower;
7375
7376         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7377                         struct netdev_adjacent, list);
7378         if (lower)
7379                 return lower->private;
7380         return NULL;
7381 }
7382 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7383
7384 /**
7385  * netdev_master_upper_dev_get_rcu - Get master upper device
7386  * @dev: device
7387  *
7388  * Find a master upper device and return pointer to it or NULL in case
7389  * it's not there. The caller must hold the RCU read lock.
7390  */
7391 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7392 {
7393         struct netdev_adjacent *upper;
7394
7395         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7396                                        struct netdev_adjacent, list);
7397         if (upper && likely(upper->master))
7398                 return upper->dev;
7399         return NULL;
7400 }
7401 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7402
7403 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7404                               struct net_device *adj_dev,
7405                               struct list_head *dev_list)
7406 {
7407         char linkname[IFNAMSIZ+7];
7408
7409         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7410                 "upper_%s" : "lower_%s", adj_dev->name);
7411         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7412                                  linkname);
7413 }
7414 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7415                                char *name,
7416                                struct list_head *dev_list)
7417 {
7418         char linkname[IFNAMSIZ+7];
7419
7420         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7421                 "upper_%s" : "lower_%s", name);
7422         sysfs_remove_link(&(dev->dev.kobj), linkname);
7423 }
7424
7425 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7426                                                  struct net_device *adj_dev,
7427                                                  struct list_head *dev_list)
7428 {
7429         return (dev_list == &dev->adj_list.upper ||
7430                 dev_list == &dev->adj_list.lower) &&
7431                 net_eq(dev_net(dev), dev_net(adj_dev));
7432 }
7433
7434 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7435                                         struct net_device *adj_dev,
7436                                         struct list_head *dev_list,
7437                                         void *private, bool master)
7438 {
7439         struct netdev_adjacent *adj;
7440         int ret;
7441
7442         adj = __netdev_find_adj(adj_dev, dev_list);
7443
7444         if (adj) {
7445                 adj->ref_nr += 1;
7446                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7447                          dev->name, adj_dev->name, adj->ref_nr);
7448
7449                 return 0;
7450         }
7451
7452         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7453         if (!adj)
7454                 return -ENOMEM;
7455
7456         adj->dev = adj_dev;
7457         adj->master = master;
7458         adj->ref_nr = 1;
7459         adj->private = private;
7460         adj->ignore = false;
7461         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7462
7463         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7464                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7465
7466         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7467                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7468                 if (ret)
7469                         goto free_adj;
7470         }
7471
7472         /* Ensure that master link is always the first item in list. */
7473         if (master) {
7474                 ret = sysfs_create_link(&(dev->dev.kobj),
7475                                         &(adj_dev->dev.kobj), "master");
7476                 if (ret)
7477                         goto remove_symlinks;
7478
7479                 list_add_rcu(&adj->list, dev_list);
7480         } else {
7481                 list_add_tail_rcu(&adj->list, dev_list);
7482         }
7483
7484         return 0;
7485
7486 remove_symlinks:
7487         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7488                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7489 free_adj:
7490         netdev_put(adj_dev, &adj->dev_tracker);
7491         kfree(adj);
7492
7493         return ret;
7494 }
7495
7496 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7497                                          struct net_device *adj_dev,
7498                                          u16 ref_nr,
7499                                          struct list_head *dev_list)
7500 {
7501         struct netdev_adjacent *adj;
7502
7503         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7504                  dev->name, adj_dev->name, ref_nr);
7505
7506         adj = __netdev_find_adj(adj_dev, dev_list);
7507
7508         if (!adj) {
7509                 pr_err("Adjacency does not exist for device %s from %s\n",
7510                        dev->name, adj_dev->name);
7511                 WARN_ON(1);
7512                 return;
7513         }
7514
7515         if (adj->ref_nr > ref_nr) {
7516                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7517                          dev->name, adj_dev->name, ref_nr,
7518                          adj->ref_nr - ref_nr);
7519                 adj->ref_nr -= ref_nr;
7520                 return;
7521         }
7522
7523         if (adj->master)
7524                 sysfs_remove_link(&(dev->dev.kobj), "master");
7525
7526         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7527                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7528
7529         list_del_rcu(&adj->list);
7530         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7531                  adj_dev->name, dev->name, adj_dev->name);
7532         netdev_put(adj_dev, &adj->dev_tracker);
7533         kfree_rcu(adj, rcu);
7534 }
7535
7536 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7537                                             struct net_device *upper_dev,
7538                                             struct list_head *up_list,
7539                                             struct list_head *down_list,
7540                                             void *private, bool master)
7541 {
7542         int ret;
7543
7544         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7545                                            private, master);
7546         if (ret)
7547                 return ret;
7548
7549         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7550                                            private, false);
7551         if (ret) {
7552                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7553                 return ret;
7554         }
7555
7556         return 0;
7557 }
7558
7559 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7560                                                struct net_device *upper_dev,
7561                                                u16 ref_nr,
7562                                                struct list_head *up_list,
7563                                                struct list_head *down_list)
7564 {
7565         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7566         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7567 }
7568
7569 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7570                                                 struct net_device *upper_dev,
7571                                                 void *private, bool master)
7572 {
7573         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7574                                                 &dev->adj_list.upper,
7575                                                 &upper_dev->adj_list.lower,
7576                                                 private, master);
7577 }
7578
7579 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7580                                                    struct net_device *upper_dev)
7581 {
7582         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7583                                            &dev->adj_list.upper,
7584                                            &upper_dev->adj_list.lower);
7585 }
7586
7587 static int __netdev_upper_dev_link(struct net_device *dev,
7588                                    struct net_device *upper_dev, bool master,
7589                                    void *upper_priv, void *upper_info,
7590                                    struct netdev_nested_priv *priv,
7591                                    struct netlink_ext_ack *extack)
7592 {
7593         struct netdev_notifier_changeupper_info changeupper_info = {
7594                 .info = {
7595                         .dev = dev,
7596                         .extack = extack,
7597                 },
7598                 .upper_dev = upper_dev,
7599                 .master = master,
7600                 .linking = true,
7601                 .upper_info = upper_info,
7602         };
7603         struct net_device *master_dev;
7604         int ret = 0;
7605
7606         ASSERT_RTNL();
7607
7608         if (dev == upper_dev)
7609                 return -EBUSY;
7610
7611         /* To prevent loops, check if dev is not upper device to upper_dev. */
7612         if (__netdev_has_upper_dev(upper_dev, dev))
7613                 return -EBUSY;
7614
7615         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7616                 return -EMLINK;
7617
7618         if (!master) {
7619                 if (__netdev_has_upper_dev(dev, upper_dev))
7620                         return -EEXIST;
7621         } else {
7622                 master_dev = __netdev_master_upper_dev_get(dev);
7623                 if (master_dev)
7624                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7625         }
7626
7627         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7628                                             &changeupper_info.info);
7629         ret = notifier_to_errno(ret);
7630         if (ret)
7631                 return ret;
7632
7633         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7634                                                    master);
7635         if (ret)
7636                 return ret;
7637
7638         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7639                                             &changeupper_info.info);
7640         ret = notifier_to_errno(ret);
7641         if (ret)
7642                 goto rollback;
7643
7644         __netdev_update_upper_level(dev, NULL);
7645         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7646
7647         __netdev_update_lower_level(upper_dev, priv);
7648         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7649                                     priv);
7650
7651         return 0;
7652
7653 rollback:
7654         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7655
7656         return ret;
7657 }
7658
7659 /**
7660  * netdev_upper_dev_link - Add a link to the upper device
7661  * @dev: device
7662  * @upper_dev: new upper device
7663  * @extack: netlink extended ack
7664  *
7665  * Adds a link to device which is upper to this one. The caller must hold
7666  * the RTNL lock. On a failure a negative errno code is returned.
7667  * On success the reference counts are adjusted and the function
7668  * returns zero.
7669  */
7670 int netdev_upper_dev_link(struct net_device *dev,
7671                           struct net_device *upper_dev,
7672                           struct netlink_ext_ack *extack)
7673 {
7674         struct netdev_nested_priv priv = {
7675                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7676                 .data = NULL,
7677         };
7678
7679         return __netdev_upper_dev_link(dev, upper_dev, false,
7680                                        NULL, NULL, &priv, extack);
7681 }
7682 EXPORT_SYMBOL(netdev_upper_dev_link);
7683
7684 /**
7685  * netdev_master_upper_dev_link - Add a master link to the upper device
7686  * @dev: device
7687  * @upper_dev: new upper device
7688  * @upper_priv: upper device private
7689  * @upper_info: upper info to be passed down via notifier
7690  * @extack: netlink extended ack
7691  *
7692  * Adds a link to device which is upper to this one. In this case, only
7693  * one master upper device can be linked, although other non-master devices
7694  * might be linked as well. The caller must hold the RTNL lock.
7695  * On a failure a negative errno code is returned. On success the reference
7696  * counts are adjusted and the function returns zero.
7697  */
7698 int netdev_master_upper_dev_link(struct net_device *dev,
7699                                  struct net_device *upper_dev,
7700                                  void *upper_priv, void *upper_info,
7701                                  struct netlink_ext_ack *extack)
7702 {
7703         struct netdev_nested_priv priv = {
7704                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7705                 .data = NULL,
7706         };
7707
7708         return __netdev_upper_dev_link(dev, upper_dev, true,
7709                                        upper_priv, upper_info, &priv, extack);
7710 }
7711 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7712
7713 static void __netdev_upper_dev_unlink(struct net_device *dev,
7714                                       struct net_device *upper_dev,
7715                                       struct netdev_nested_priv *priv)
7716 {
7717         struct netdev_notifier_changeupper_info changeupper_info = {
7718                 .info = {
7719                         .dev = dev,
7720                 },
7721                 .upper_dev = upper_dev,
7722                 .linking = false,
7723         };
7724
7725         ASSERT_RTNL();
7726
7727         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7728
7729         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7730                                       &changeupper_info.info);
7731
7732         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7733
7734         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7735                                       &changeupper_info.info);
7736
7737         __netdev_update_upper_level(dev, NULL);
7738         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7739
7740         __netdev_update_lower_level(upper_dev, priv);
7741         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7742                                     priv);
7743 }
7744
7745 /**
7746  * netdev_upper_dev_unlink - Removes a link to upper device
7747  * @dev: device
7748  * @upper_dev: new upper device
7749  *
7750  * Removes a link to device which is upper to this one. The caller must hold
7751  * the RTNL lock.
7752  */
7753 void netdev_upper_dev_unlink(struct net_device *dev,
7754                              struct net_device *upper_dev)
7755 {
7756         struct netdev_nested_priv priv = {
7757                 .flags = NESTED_SYNC_TODO,
7758                 .data = NULL,
7759         };
7760
7761         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7762 }
7763 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7764
7765 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7766                                       struct net_device *lower_dev,
7767                                       bool val)
7768 {
7769         struct netdev_adjacent *adj;
7770
7771         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7772         if (adj)
7773                 adj->ignore = val;
7774
7775         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7776         if (adj)
7777                 adj->ignore = val;
7778 }
7779
7780 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7781                                         struct net_device *lower_dev)
7782 {
7783         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7784 }
7785
7786 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7787                                        struct net_device *lower_dev)
7788 {
7789         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7790 }
7791
7792 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7793                                    struct net_device *new_dev,
7794                                    struct net_device *dev,
7795                                    struct netlink_ext_ack *extack)
7796 {
7797         struct netdev_nested_priv priv = {
7798                 .flags = 0,
7799                 .data = NULL,
7800         };
7801         int err;
7802
7803         if (!new_dev)
7804                 return 0;
7805
7806         if (old_dev && new_dev != old_dev)
7807                 netdev_adjacent_dev_disable(dev, old_dev);
7808         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7809                                       extack);
7810         if (err) {
7811                 if (old_dev && new_dev != old_dev)
7812                         netdev_adjacent_dev_enable(dev, old_dev);
7813                 return err;
7814         }
7815
7816         return 0;
7817 }
7818 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7819
7820 void netdev_adjacent_change_commit(struct net_device *old_dev,
7821                                    struct net_device *new_dev,
7822                                    struct net_device *dev)
7823 {
7824         struct netdev_nested_priv priv = {
7825                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7826                 .data = NULL,
7827         };
7828
7829         if (!new_dev || !old_dev)
7830                 return;
7831
7832         if (new_dev == old_dev)
7833                 return;
7834
7835         netdev_adjacent_dev_enable(dev, old_dev);
7836         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7837 }
7838 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7839
7840 void netdev_adjacent_change_abort(struct net_device *old_dev,
7841                                   struct net_device *new_dev,
7842                                   struct net_device *dev)
7843 {
7844         struct netdev_nested_priv priv = {
7845                 .flags = 0,
7846                 .data = NULL,
7847         };
7848
7849         if (!new_dev)
7850                 return;
7851
7852         if (old_dev && new_dev != old_dev)
7853                 netdev_adjacent_dev_enable(dev, old_dev);
7854
7855         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7856 }
7857 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7858
7859 /**
7860  * netdev_bonding_info_change - Dispatch event about slave change
7861  * @dev: device
7862  * @bonding_info: info to dispatch
7863  *
7864  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7865  * The caller must hold the RTNL lock.
7866  */
7867 void netdev_bonding_info_change(struct net_device *dev,
7868                                 struct netdev_bonding_info *bonding_info)
7869 {
7870         struct netdev_notifier_bonding_info info = {
7871                 .info.dev = dev,
7872         };
7873
7874         memcpy(&info.bonding_info, bonding_info,
7875                sizeof(struct netdev_bonding_info));
7876         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7877                                       &info.info);
7878 }
7879 EXPORT_SYMBOL(netdev_bonding_info_change);
7880
7881 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7882                                            struct netlink_ext_ack *extack)
7883 {
7884         struct netdev_notifier_offload_xstats_info info = {
7885                 .info.dev = dev,
7886                 .info.extack = extack,
7887                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7888         };
7889         int err;
7890         int rc;
7891
7892         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7893                                          GFP_KERNEL);
7894         if (!dev->offload_xstats_l3)
7895                 return -ENOMEM;
7896
7897         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7898                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7899                                                   &info.info);
7900         err = notifier_to_errno(rc);
7901         if (err)
7902                 goto free_stats;
7903
7904         return 0;
7905
7906 free_stats:
7907         kfree(dev->offload_xstats_l3);
7908         dev->offload_xstats_l3 = NULL;
7909         return err;
7910 }
7911
7912 int netdev_offload_xstats_enable(struct net_device *dev,
7913                                  enum netdev_offload_xstats_type type,
7914                                  struct netlink_ext_ack *extack)
7915 {
7916         ASSERT_RTNL();
7917
7918         if (netdev_offload_xstats_enabled(dev, type))
7919                 return -EALREADY;
7920
7921         switch (type) {
7922         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7923                 return netdev_offload_xstats_enable_l3(dev, extack);
7924         }
7925
7926         WARN_ON(1);
7927         return -EINVAL;
7928 }
7929 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7930
7931 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7932 {
7933         struct netdev_notifier_offload_xstats_info info = {
7934                 .info.dev = dev,
7935                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7936         };
7937
7938         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7939                                       &info.info);
7940         kfree(dev->offload_xstats_l3);
7941         dev->offload_xstats_l3 = NULL;
7942 }
7943
7944 int netdev_offload_xstats_disable(struct net_device *dev,
7945                                   enum netdev_offload_xstats_type type)
7946 {
7947         ASSERT_RTNL();
7948
7949         if (!netdev_offload_xstats_enabled(dev, type))
7950                 return -EALREADY;
7951
7952         switch (type) {
7953         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7954                 netdev_offload_xstats_disable_l3(dev);
7955                 return 0;
7956         }
7957
7958         WARN_ON(1);
7959         return -EINVAL;
7960 }
7961 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7962
7963 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7964 {
7965         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7966 }
7967
7968 static struct rtnl_hw_stats64 *
7969 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7970                               enum netdev_offload_xstats_type type)
7971 {
7972         switch (type) {
7973         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7974                 return dev->offload_xstats_l3;
7975         }
7976
7977         WARN_ON(1);
7978         return NULL;
7979 }
7980
7981 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7982                                    enum netdev_offload_xstats_type type)
7983 {
7984         ASSERT_RTNL();
7985
7986         return netdev_offload_xstats_get_ptr(dev, type);
7987 }
7988 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7989
7990 struct netdev_notifier_offload_xstats_ru {
7991         bool used;
7992 };
7993
7994 struct netdev_notifier_offload_xstats_rd {
7995         struct rtnl_hw_stats64 stats;
7996         bool used;
7997 };
7998
7999 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8000                                   const struct rtnl_hw_stats64 *src)
8001 {
8002         dest->rx_packets          += src->rx_packets;
8003         dest->tx_packets          += src->tx_packets;
8004         dest->rx_bytes            += src->rx_bytes;
8005         dest->tx_bytes            += src->tx_bytes;
8006         dest->rx_errors           += src->rx_errors;
8007         dest->tx_errors           += src->tx_errors;
8008         dest->rx_dropped          += src->rx_dropped;
8009         dest->tx_dropped          += src->tx_dropped;
8010         dest->multicast           += src->multicast;
8011 }
8012
8013 static int netdev_offload_xstats_get_used(struct net_device *dev,
8014                                           enum netdev_offload_xstats_type type,
8015                                           bool *p_used,
8016                                           struct netlink_ext_ack *extack)
8017 {
8018         struct netdev_notifier_offload_xstats_ru report_used = {};
8019         struct netdev_notifier_offload_xstats_info info = {
8020                 .info.dev = dev,
8021                 .info.extack = extack,
8022                 .type = type,
8023                 .report_used = &report_used,
8024         };
8025         int rc;
8026
8027         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8028         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8029                                            &info.info);
8030         *p_used = report_used.used;
8031         return notifier_to_errno(rc);
8032 }
8033
8034 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8035                                            enum netdev_offload_xstats_type type,
8036                                            struct rtnl_hw_stats64 *p_stats,
8037                                            bool *p_used,
8038                                            struct netlink_ext_ack *extack)
8039 {
8040         struct netdev_notifier_offload_xstats_rd report_delta = {};
8041         struct netdev_notifier_offload_xstats_info info = {
8042                 .info.dev = dev,
8043                 .info.extack = extack,
8044                 .type = type,
8045                 .report_delta = &report_delta,
8046         };
8047         struct rtnl_hw_stats64 *stats;
8048         int rc;
8049
8050         stats = netdev_offload_xstats_get_ptr(dev, type);
8051         if (WARN_ON(!stats))
8052                 return -EINVAL;
8053
8054         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8055                                            &info.info);
8056
8057         /* Cache whatever we got, even if there was an error, otherwise the
8058          * successful stats retrievals would get lost.
8059          */
8060         netdev_hw_stats64_add(stats, &report_delta.stats);
8061
8062         if (p_stats)
8063                 *p_stats = *stats;
8064         *p_used = report_delta.used;
8065
8066         return notifier_to_errno(rc);
8067 }
8068
8069 int netdev_offload_xstats_get(struct net_device *dev,
8070                               enum netdev_offload_xstats_type type,
8071                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8072                               struct netlink_ext_ack *extack)
8073 {
8074         ASSERT_RTNL();
8075
8076         if (p_stats)
8077                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8078                                                        p_used, extack);
8079         else
8080                 return netdev_offload_xstats_get_used(dev, type, p_used,
8081                                                       extack);
8082 }
8083 EXPORT_SYMBOL(netdev_offload_xstats_get);
8084
8085 void
8086 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8087                                    const struct rtnl_hw_stats64 *stats)
8088 {
8089         report_delta->used = true;
8090         netdev_hw_stats64_add(&report_delta->stats, stats);
8091 }
8092 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8093
8094 void
8095 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8096 {
8097         report_used->used = true;
8098 }
8099 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8100
8101 void netdev_offload_xstats_push_delta(struct net_device *dev,
8102                                       enum netdev_offload_xstats_type type,
8103                                       const struct rtnl_hw_stats64 *p_stats)
8104 {
8105         struct rtnl_hw_stats64 *stats;
8106
8107         ASSERT_RTNL();
8108
8109         stats = netdev_offload_xstats_get_ptr(dev, type);
8110         if (WARN_ON(!stats))
8111                 return;
8112
8113         netdev_hw_stats64_add(stats, p_stats);
8114 }
8115 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8116
8117 /**
8118  * netdev_get_xmit_slave - Get the xmit slave of master device
8119  * @dev: device
8120  * @skb: The packet
8121  * @all_slaves: assume all the slaves are active
8122  *
8123  * The reference counters are not incremented so the caller must be
8124  * careful with locks. The caller must hold RCU lock.
8125  * %NULL is returned if no slave is found.
8126  */
8127
8128 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8129                                          struct sk_buff *skb,
8130                                          bool all_slaves)
8131 {
8132         const struct net_device_ops *ops = dev->netdev_ops;
8133
8134         if (!ops->ndo_get_xmit_slave)
8135                 return NULL;
8136         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8137 }
8138 EXPORT_SYMBOL(netdev_get_xmit_slave);
8139
8140 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8141                                                   struct sock *sk)
8142 {
8143         const struct net_device_ops *ops = dev->netdev_ops;
8144
8145         if (!ops->ndo_sk_get_lower_dev)
8146                 return NULL;
8147         return ops->ndo_sk_get_lower_dev(dev, sk);
8148 }
8149
8150 /**
8151  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8152  * @dev: device
8153  * @sk: the socket
8154  *
8155  * %NULL is returned if no lower device is found.
8156  */
8157
8158 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8159                                             struct sock *sk)
8160 {
8161         struct net_device *lower;
8162
8163         lower = netdev_sk_get_lower_dev(dev, sk);
8164         while (lower) {
8165                 dev = lower;
8166                 lower = netdev_sk_get_lower_dev(dev, sk);
8167         }
8168
8169         return dev;
8170 }
8171 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8172
8173 static void netdev_adjacent_add_links(struct net_device *dev)
8174 {
8175         struct netdev_adjacent *iter;
8176
8177         struct net *net = dev_net(dev);
8178
8179         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8180                 if (!net_eq(net, dev_net(iter->dev)))
8181                         continue;
8182                 netdev_adjacent_sysfs_add(iter->dev, dev,
8183                                           &iter->dev->adj_list.lower);
8184                 netdev_adjacent_sysfs_add(dev, iter->dev,
8185                                           &dev->adj_list.upper);
8186         }
8187
8188         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8189                 if (!net_eq(net, dev_net(iter->dev)))
8190                         continue;
8191                 netdev_adjacent_sysfs_add(iter->dev, dev,
8192                                           &iter->dev->adj_list.upper);
8193                 netdev_adjacent_sysfs_add(dev, iter->dev,
8194                                           &dev->adj_list.lower);
8195         }
8196 }
8197
8198 static void netdev_adjacent_del_links(struct net_device *dev)
8199 {
8200         struct netdev_adjacent *iter;
8201
8202         struct net *net = dev_net(dev);
8203
8204         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8205                 if (!net_eq(net, dev_net(iter->dev)))
8206                         continue;
8207                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8208                                           &iter->dev->adj_list.lower);
8209                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8210                                           &dev->adj_list.upper);
8211         }
8212
8213         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8214                 if (!net_eq(net, dev_net(iter->dev)))
8215                         continue;
8216                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8217                                           &iter->dev->adj_list.upper);
8218                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8219                                           &dev->adj_list.lower);
8220         }
8221 }
8222
8223 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8224 {
8225         struct netdev_adjacent *iter;
8226
8227         struct net *net = dev_net(dev);
8228
8229         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8230                 if (!net_eq(net, dev_net(iter->dev)))
8231                         continue;
8232                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8233                                           &iter->dev->adj_list.lower);
8234                 netdev_adjacent_sysfs_add(iter->dev, dev,
8235                                           &iter->dev->adj_list.lower);
8236         }
8237
8238         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8239                 if (!net_eq(net, dev_net(iter->dev)))
8240                         continue;
8241                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8242                                           &iter->dev->adj_list.upper);
8243                 netdev_adjacent_sysfs_add(iter->dev, dev,
8244                                           &iter->dev->adj_list.upper);
8245         }
8246 }
8247
8248 void *netdev_lower_dev_get_private(struct net_device *dev,
8249                                    struct net_device *lower_dev)
8250 {
8251         struct netdev_adjacent *lower;
8252
8253         if (!lower_dev)
8254                 return NULL;
8255         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8256         if (!lower)
8257                 return NULL;
8258
8259         return lower->private;
8260 }
8261 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8262
8263
8264 /**
8265  * netdev_lower_state_changed - Dispatch event about lower device state change
8266  * @lower_dev: device
8267  * @lower_state_info: state to dispatch
8268  *
8269  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8270  * The caller must hold the RTNL lock.
8271  */
8272 void netdev_lower_state_changed(struct net_device *lower_dev,
8273                                 void *lower_state_info)
8274 {
8275         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8276                 .info.dev = lower_dev,
8277         };
8278
8279         ASSERT_RTNL();
8280         changelowerstate_info.lower_state_info = lower_state_info;
8281         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8282                                       &changelowerstate_info.info);
8283 }
8284 EXPORT_SYMBOL(netdev_lower_state_changed);
8285
8286 static void dev_change_rx_flags(struct net_device *dev, int flags)
8287 {
8288         const struct net_device_ops *ops = dev->netdev_ops;
8289
8290         if (ops->ndo_change_rx_flags)
8291                 ops->ndo_change_rx_flags(dev, flags);
8292 }
8293
8294 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8295 {
8296         unsigned int old_flags = dev->flags;
8297         kuid_t uid;
8298         kgid_t gid;
8299
8300         ASSERT_RTNL();
8301
8302         dev->flags |= IFF_PROMISC;
8303         dev->promiscuity += inc;
8304         if (dev->promiscuity == 0) {
8305                 /*
8306                  * Avoid overflow.
8307                  * If inc causes overflow, untouch promisc and return error.
8308                  */
8309                 if (inc < 0)
8310                         dev->flags &= ~IFF_PROMISC;
8311                 else {
8312                         dev->promiscuity -= inc;
8313                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8314                         return -EOVERFLOW;
8315                 }
8316         }
8317         if (dev->flags != old_flags) {
8318                 netdev_info(dev, "%s promiscuous mode\n",
8319                             dev->flags & IFF_PROMISC ? "entered" : "left");
8320                 if (audit_enabled) {
8321                         current_uid_gid(&uid, &gid);
8322                         audit_log(audit_context(), GFP_ATOMIC,
8323                                   AUDIT_ANOM_PROMISCUOUS,
8324                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8325                                   dev->name, (dev->flags & IFF_PROMISC),
8326                                   (old_flags & IFF_PROMISC),
8327                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8328                                   from_kuid(&init_user_ns, uid),
8329                                   from_kgid(&init_user_ns, gid),
8330                                   audit_get_sessionid(current));
8331                 }
8332
8333                 dev_change_rx_flags(dev, IFF_PROMISC);
8334         }
8335         if (notify)
8336                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8337         return 0;
8338 }
8339
8340 /**
8341  *      dev_set_promiscuity     - update promiscuity count on a device
8342  *      @dev: device
8343  *      @inc: modifier
8344  *
8345  *      Add or remove promiscuity from a device. While the count in the device
8346  *      remains above zero the interface remains promiscuous. Once it hits zero
8347  *      the device reverts back to normal filtering operation. A negative inc
8348  *      value is used to drop promiscuity on the device.
8349  *      Return 0 if successful or a negative errno code on error.
8350  */
8351 int dev_set_promiscuity(struct net_device *dev, int inc)
8352 {
8353         unsigned int old_flags = dev->flags;
8354         int err;
8355
8356         err = __dev_set_promiscuity(dev, inc, true);
8357         if (err < 0)
8358                 return err;
8359         if (dev->flags != old_flags)
8360                 dev_set_rx_mode(dev);
8361         return err;
8362 }
8363 EXPORT_SYMBOL(dev_set_promiscuity);
8364
8365 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8366 {
8367         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8368
8369         ASSERT_RTNL();
8370
8371         dev->flags |= IFF_ALLMULTI;
8372         dev->allmulti += inc;
8373         if (dev->allmulti == 0) {
8374                 /*
8375                  * Avoid overflow.
8376                  * If inc causes overflow, untouch allmulti and return error.
8377                  */
8378                 if (inc < 0)
8379                         dev->flags &= ~IFF_ALLMULTI;
8380                 else {
8381                         dev->allmulti -= inc;
8382                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8383                         return -EOVERFLOW;
8384                 }
8385         }
8386         if (dev->flags ^ old_flags) {
8387                 netdev_info(dev, "%s allmulticast mode\n",
8388                             dev->flags & IFF_ALLMULTI ? "entered" : "left");
8389                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8390                 dev_set_rx_mode(dev);
8391                 if (notify)
8392                         __dev_notify_flags(dev, old_flags,
8393                                            dev->gflags ^ old_gflags, 0, NULL);
8394         }
8395         return 0;
8396 }
8397
8398 /**
8399  *      dev_set_allmulti        - update allmulti count on a device
8400  *      @dev: device
8401  *      @inc: modifier
8402  *
8403  *      Add or remove reception of all multicast frames to a device. While the
8404  *      count in the device remains above zero the interface remains listening
8405  *      to all interfaces. Once it hits zero the device reverts back to normal
8406  *      filtering operation. A negative @inc value is used to drop the counter
8407  *      when releasing a resource needing all multicasts.
8408  *      Return 0 if successful or a negative errno code on error.
8409  */
8410
8411 int dev_set_allmulti(struct net_device *dev, int inc)
8412 {
8413         return __dev_set_allmulti(dev, inc, true);
8414 }
8415 EXPORT_SYMBOL(dev_set_allmulti);
8416
8417 /*
8418  *      Upload unicast and multicast address lists to device and
8419  *      configure RX filtering. When the device doesn't support unicast
8420  *      filtering it is put in promiscuous mode while unicast addresses
8421  *      are present.
8422  */
8423 void __dev_set_rx_mode(struct net_device *dev)
8424 {
8425         const struct net_device_ops *ops = dev->netdev_ops;
8426
8427         /* dev_open will call this function so the list will stay sane. */
8428         if (!(dev->flags&IFF_UP))
8429                 return;
8430
8431         if (!netif_device_present(dev))
8432                 return;
8433
8434         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8435                 /* Unicast addresses changes may only happen under the rtnl,
8436                  * therefore calling __dev_set_promiscuity here is safe.
8437                  */
8438                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8439                         __dev_set_promiscuity(dev, 1, false);
8440                         dev->uc_promisc = true;
8441                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8442                         __dev_set_promiscuity(dev, -1, false);
8443                         dev->uc_promisc = false;
8444                 }
8445         }
8446
8447         if (ops->ndo_set_rx_mode)
8448                 ops->ndo_set_rx_mode(dev);
8449 }
8450
8451 void dev_set_rx_mode(struct net_device *dev)
8452 {
8453         netif_addr_lock_bh(dev);
8454         __dev_set_rx_mode(dev);
8455         netif_addr_unlock_bh(dev);
8456 }
8457
8458 /**
8459  *      dev_get_flags - get flags reported to userspace
8460  *      @dev: device
8461  *
8462  *      Get the combination of flag bits exported through APIs to userspace.
8463  */
8464 unsigned int dev_get_flags(const struct net_device *dev)
8465 {
8466         unsigned int flags;
8467
8468         flags = (dev->flags & ~(IFF_PROMISC |
8469                                 IFF_ALLMULTI |
8470                                 IFF_RUNNING |
8471                                 IFF_LOWER_UP |
8472                                 IFF_DORMANT)) |
8473                 (dev->gflags & (IFF_PROMISC |
8474                                 IFF_ALLMULTI));
8475
8476         if (netif_running(dev)) {
8477                 if (netif_oper_up(dev))
8478                         flags |= IFF_RUNNING;
8479                 if (netif_carrier_ok(dev))
8480                         flags |= IFF_LOWER_UP;
8481                 if (netif_dormant(dev))
8482                         flags |= IFF_DORMANT;
8483         }
8484
8485         return flags;
8486 }
8487 EXPORT_SYMBOL(dev_get_flags);
8488
8489 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8490                        struct netlink_ext_ack *extack)
8491 {
8492         unsigned int old_flags = dev->flags;
8493         int ret;
8494
8495         ASSERT_RTNL();
8496
8497         /*
8498          *      Set the flags on our device.
8499          */
8500
8501         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8502                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8503                                IFF_AUTOMEDIA)) |
8504                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8505                                     IFF_ALLMULTI));
8506
8507         /*
8508          *      Load in the correct multicast list now the flags have changed.
8509          */
8510
8511         if ((old_flags ^ flags) & IFF_MULTICAST)
8512                 dev_change_rx_flags(dev, IFF_MULTICAST);
8513
8514         dev_set_rx_mode(dev);
8515
8516         /*
8517          *      Have we downed the interface. We handle IFF_UP ourselves
8518          *      according to user attempts to set it, rather than blindly
8519          *      setting it.
8520          */
8521
8522         ret = 0;
8523         if ((old_flags ^ flags) & IFF_UP) {
8524                 if (old_flags & IFF_UP)
8525                         __dev_close(dev);
8526                 else
8527                         ret = __dev_open(dev, extack);
8528         }
8529
8530         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8531                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8532                 unsigned int old_flags = dev->flags;
8533
8534                 dev->gflags ^= IFF_PROMISC;
8535
8536                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8537                         if (dev->flags != old_flags)
8538                                 dev_set_rx_mode(dev);
8539         }
8540
8541         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8542          * is important. Some (broken) drivers set IFF_PROMISC, when
8543          * IFF_ALLMULTI is requested not asking us and not reporting.
8544          */
8545         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8546                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8547
8548                 dev->gflags ^= IFF_ALLMULTI;
8549                 __dev_set_allmulti(dev, inc, false);
8550         }
8551
8552         return ret;
8553 }
8554
8555 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8556                         unsigned int gchanges, u32 portid,
8557                         const struct nlmsghdr *nlh)
8558 {
8559         unsigned int changes = dev->flags ^ old_flags;
8560
8561         if (gchanges)
8562                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8563
8564         if (changes & IFF_UP) {
8565                 if (dev->flags & IFF_UP)
8566                         call_netdevice_notifiers(NETDEV_UP, dev);
8567                 else
8568                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8569         }
8570
8571         if (dev->flags & IFF_UP &&
8572             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8573                 struct netdev_notifier_change_info change_info = {
8574                         .info = {
8575                                 .dev = dev,
8576                         },
8577                         .flags_changed = changes,
8578                 };
8579
8580                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8581         }
8582 }
8583
8584 /**
8585  *      dev_change_flags - change device settings
8586  *      @dev: device
8587  *      @flags: device state flags
8588  *      @extack: netlink extended ack
8589  *
8590  *      Change settings on device based state flags. The flags are
8591  *      in the userspace exported format.
8592  */
8593 int dev_change_flags(struct net_device *dev, unsigned int flags,
8594                      struct netlink_ext_ack *extack)
8595 {
8596         int ret;
8597         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8598
8599         ret = __dev_change_flags(dev, flags, extack);
8600         if (ret < 0)
8601                 return ret;
8602
8603         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8604         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8605         return ret;
8606 }
8607 EXPORT_SYMBOL(dev_change_flags);
8608
8609 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8610 {
8611         const struct net_device_ops *ops = dev->netdev_ops;
8612
8613         if (ops->ndo_change_mtu)
8614                 return ops->ndo_change_mtu(dev, new_mtu);
8615
8616         /* Pairs with all the lockless reads of dev->mtu in the stack */
8617         WRITE_ONCE(dev->mtu, new_mtu);
8618         return 0;
8619 }
8620 EXPORT_SYMBOL(__dev_set_mtu);
8621
8622 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8623                      struct netlink_ext_ack *extack)
8624 {
8625         /* MTU must be positive, and in range */
8626         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8627                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8628                 return -EINVAL;
8629         }
8630
8631         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8632                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8633                 return -EINVAL;
8634         }
8635         return 0;
8636 }
8637
8638 /**
8639  *      dev_set_mtu_ext - Change maximum transfer unit
8640  *      @dev: device
8641  *      @new_mtu: new transfer unit
8642  *      @extack: netlink extended ack
8643  *
8644  *      Change the maximum transfer size of the network device.
8645  */
8646 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8647                     struct netlink_ext_ack *extack)
8648 {
8649         int err, orig_mtu;
8650
8651         if (new_mtu == dev->mtu)
8652                 return 0;
8653
8654         err = dev_validate_mtu(dev, new_mtu, extack);
8655         if (err)
8656                 return err;
8657
8658         if (!netif_device_present(dev))
8659                 return -ENODEV;
8660
8661         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8662         err = notifier_to_errno(err);
8663         if (err)
8664                 return err;
8665
8666         orig_mtu = dev->mtu;
8667         err = __dev_set_mtu(dev, new_mtu);
8668
8669         if (!err) {
8670                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8671                                                    orig_mtu);
8672                 err = notifier_to_errno(err);
8673                 if (err) {
8674                         /* setting mtu back and notifying everyone again,
8675                          * so that they have a chance to revert changes.
8676                          */
8677                         __dev_set_mtu(dev, orig_mtu);
8678                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8679                                                      new_mtu);
8680                 }
8681         }
8682         return err;
8683 }
8684
8685 int dev_set_mtu(struct net_device *dev, int new_mtu)
8686 {
8687         struct netlink_ext_ack extack;
8688         int err;
8689
8690         memset(&extack, 0, sizeof(extack));
8691         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8692         if (err && extack._msg)
8693                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8694         return err;
8695 }
8696 EXPORT_SYMBOL(dev_set_mtu);
8697
8698 /**
8699  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8700  *      @dev: device
8701  *      @new_len: new tx queue length
8702  */
8703 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8704 {
8705         unsigned int orig_len = dev->tx_queue_len;
8706         int res;
8707
8708         if (new_len != (unsigned int)new_len)
8709                 return -ERANGE;
8710
8711         if (new_len != orig_len) {
8712                 dev->tx_queue_len = new_len;
8713                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8714                 res = notifier_to_errno(res);
8715                 if (res)
8716                         goto err_rollback;
8717                 res = dev_qdisc_change_tx_queue_len(dev);
8718                 if (res)
8719                         goto err_rollback;
8720         }
8721
8722         return 0;
8723
8724 err_rollback:
8725         netdev_err(dev, "refused to change device tx_queue_len\n");
8726         dev->tx_queue_len = orig_len;
8727         return res;
8728 }
8729
8730 /**
8731  *      dev_set_group - Change group this device belongs to
8732  *      @dev: device
8733  *      @new_group: group this device should belong to
8734  */
8735 void dev_set_group(struct net_device *dev, int new_group)
8736 {
8737         dev->group = new_group;
8738 }
8739
8740 /**
8741  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8742  *      @dev: device
8743  *      @addr: new address
8744  *      @extack: netlink extended ack
8745  */
8746 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8747                               struct netlink_ext_ack *extack)
8748 {
8749         struct netdev_notifier_pre_changeaddr_info info = {
8750                 .info.dev = dev,
8751                 .info.extack = extack,
8752                 .dev_addr = addr,
8753         };
8754         int rc;
8755
8756         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8757         return notifier_to_errno(rc);
8758 }
8759 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8760
8761 /**
8762  *      dev_set_mac_address - Change Media Access Control Address
8763  *      @dev: device
8764  *      @sa: new address
8765  *      @extack: netlink extended ack
8766  *
8767  *      Change the hardware (MAC) address of the device
8768  */
8769 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8770                         struct netlink_ext_ack *extack)
8771 {
8772         const struct net_device_ops *ops = dev->netdev_ops;
8773         int err;
8774
8775         if (!ops->ndo_set_mac_address)
8776                 return -EOPNOTSUPP;
8777         if (sa->sa_family != dev->type)
8778                 return -EINVAL;
8779         if (!netif_device_present(dev))
8780                 return -ENODEV;
8781         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8782         if (err)
8783                 return err;
8784         err = ops->ndo_set_mac_address(dev, sa);
8785         if (err)
8786                 return err;
8787         dev->addr_assign_type = NET_ADDR_SET;
8788         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8789         add_device_randomness(dev->dev_addr, dev->addr_len);
8790         return 0;
8791 }
8792 EXPORT_SYMBOL(dev_set_mac_address);
8793
8794 static DECLARE_RWSEM(dev_addr_sem);
8795
8796 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8797                              struct netlink_ext_ack *extack)
8798 {
8799         int ret;
8800
8801         down_write(&dev_addr_sem);
8802         ret = dev_set_mac_address(dev, sa, extack);
8803         up_write(&dev_addr_sem);
8804         return ret;
8805 }
8806 EXPORT_SYMBOL(dev_set_mac_address_user);
8807
8808 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8809 {
8810         size_t size = sizeof(sa->sa_data_min);
8811         struct net_device *dev;
8812         int ret = 0;
8813
8814         down_read(&dev_addr_sem);
8815         rcu_read_lock();
8816
8817         dev = dev_get_by_name_rcu(net, dev_name);
8818         if (!dev) {
8819                 ret = -ENODEV;
8820                 goto unlock;
8821         }
8822         if (!dev->addr_len)
8823                 memset(sa->sa_data, 0, size);
8824         else
8825                 memcpy(sa->sa_data, dev->dev_addr,
8826                        min_t(size_t, size, dev->addr_len));
8827         sa->sa_family = dev->type;
8828
8829 unlock:
8830         rcu_read_unlock();
8831         up_read(&dev_addr_sem);
8832         return ret;
8833 }
8834 EXPORT_SYMBOL(dev_get_mac_address);
8835
8836 /**
8837  *      dev_change_carrier - Change device carrier
8838  *      @dev: device
8839  *      @new_carrier: new value
8840  *
8841  *      Change device carrier
8842  */
8843 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8844 {
8845         const struct net_device_ops *ops = dev->netdev_ops;
8846
8847         if (!ops->ndo_change_carrier)
8848                 return -EOPNOTSUPP;
8849         if (!netif_device_present(dev))
8850                 return -ENODEV;
8851         return ops->ndo_change_carrier(dev, new_carrier);
8852 }
8853
8854 /**
8855  *      dev_get_phys_port_id - Get device physical port ID
8856  *      @dev: device
8857  *      @ppid: port ID
8858  *
8859  *      Get device physical port ID
8860  */
8861 int dev_get_phys_port_id(struct net_device *dev,
8862                          struct netdev_phys_item_id *ppid)
8863 {
8864         const struct net_device_ops *ops = dev->netdev_ops;
8865
8866         if (!ops->ndo_get_phys_port_id)
8867                 return -EOPNOTSUPP;
8868         return ops->ndo_get_phys_port_id(dev, ppid);
8869 }
8870
8871 /**
8872  *      dev_get_phys_port_name - Get device physical port name
8873  *      @dev: device
8874  *      @name: port name
8875  *      @len: limit of bytes to copy to name
8876  *
8877  *      Get device physical port name
8878  */
8879 int dev_get_phys_port_name(struct net_device *dev,
8880                            char *name, size_t len)
8881 {
8882         const struct net_device_ops *ops = dev->netdev_ops;
8883         int err;
8884
8885         if (ops->ndo_get_phys_port_name) {
8886                 err = ops->ndo_get_phys_port_name(dev, name, len);
8887                 if (err != -EOPNOTSUPP)
8888                         return err;
8889         }
8890         return devlink_compat_phys_port_name_get(dev, name, len);
8891 }
8892
8893 /**
8894  *      dev_get_port_parent_id - Get the device's port parent identifier
8895  *      @dev: network device
8896  *      @ppid: pointer to a storage for the port's parent identifier
8897  *      @recurse: allow/disallow recursion to lower devices
8898  *
8899  *      Get the devices's port parent identifier
8900  */
8901 int dev_get_port_parent_id(struct net_device *dev,
8902                            struct netdev_phys_item_id *ppid,
8903                            bool recurse)
8904 {
8905         const struct net_device_ops *ops = dev->netdev_ops;
8906         struct netdev_phys_item_id first = { };
8907         struct net_device *lower_dev;
8908         struct list_head *iter;
8909         int err;
8910
8911         if (ops->ndo_get_port_parent_id) {
8912                 err = ops->ndo_get_port_parent_id(dev, ppid);
8913                 if (err != -EOPNOTSUPP)
8914                         return err;
8915         }
8916
8917         err = devlink_compat_switch_id_get(dev, ppid);
8918         if (!recurse || err != -EOPNOTSUPP)
8919                 return err;
8920
8921         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8922                 err = dev_get_port_parent_id(lower_dev, ppid, true);
8923                 if (err)
8924                         break;
8925                 if (!first.id_len)
8926                         first = *ppid;
8927                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8928                         return -EOPNOTSUPP;
8929         }
8930
8931         return err;
8932 }
8933 EXPORT_SYMBOL(dev_get_port_parent_id);
8934
8935 /**
8936  *      netdev_port_same_parent_id - Indicate if two network devices have
8937  *      the same port parent identifier
8938  *      @a: first network device
8939  *      @b: second network device
8940  */
8941 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8942 {
8943         struct netdev_phys_item_id a_id = { };
8944         struct netdev_phys_item_id b_id = { };
8945
8946         if (dev_get_port_parent_id(a, &a_id, true) ||
8947             dev_get_port_parent_id(b, &b_id, true))
8948                 return false;
8949
8950         return netdev_phys_item_id_same(&a_id, &b_id);
8951 }
8952 EXPORT_SYMBOL(netdev_port_same_parent_id);
8953
8954 /**
8955  *      dev_change_proto_down - set carrier according to proto_down.
8956  *
8957  *      @dev: device
8958  *      @proto_down: new value
8959  */
8960 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8961 {
8962         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8963                 return -EOPNOTSUPP;
8964         if (!netif_device_present(dev))
8965                 return -ENODEV;
8966         if (proto_down)
8967                 netif_carrier_off(dev);
8968         else
8969                 netif_carrier_on(dev);
8970         dev->proto_down = proto_down;
8971         return 0;
8972 }
8973
8974 /**
8975  *      dev_change_proto_down_reason - proto down reason
8976  *
8977  *      @dev: device
8978  *      @mask: proto down mask
8979  *      @value: proto down value
8980  */
8981 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8982                                   u32 value)
8983 {
8984         int b;
8985
8986         if (!mask) {
8987                 dev->proto_down_reason = value;
8988         } else {
8989                 for_each_set_bit(b, &mask, 32) {
8990                         if (value & (1 << b))
8991                                 dev->proto_down_reason |= BIT(b);
8992                         else
8993                                 dev->proto_down_reason &= ~BIT(b);
8994                 }
8995         }
8996 }
8997
8998 struct bpf_xdp_link {
8999         struct bpf_link link;
9000         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9001         int flags;
9002 };
9003
9004 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9005 {
9006         if (flags & XDP_FLAGS_HW_MODE)
9007                 return XDP_MODE_HW;
9008         if (flags & XDP_FLAGS_DRV_MODE)
9009                 return XDP_MODE_DRV;
9010         if (flags & XDP_FLAGS_SKB_MODE)
9011                 return XDP_MODE_SKB;
9012         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9013 }
9014
9015 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9016 {
9017         switch (mode) {
9018         case XDP_MODE_SKB:
9019                 return generic_xdp_install;
9020         case XDP_MODE_DRV:
9021         case XDP_MODE_HW:
9022                 return dev->netdev_ops->ndo_bpf;
9023         default:
9024                 return NULL;
9025         }
9026 }
9027
9028 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9029                                          enum bpf_xdp_mode mode)
9030 {
9031         return dev->xdp_state[mode].link;
9032 }
9033
9034 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9035                                      enum bpf_xdp_mode mode)
9036 {
9037         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9038
9039         if (link)
9040                 return link->link.prog;
9041         return dev->xdp_state[mode].prog;
9042 }
9043
9044 u8 dev_xdp_prog_count(struct net_device *dev)
9045 {
9046         u8 count = 0;
9047         int i;
9048
9049         for (i = 0; i < __MAX_XDP_MODE; i++)
9050                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9051                         count++;
9052         return count;
9053 }
9054 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9055
9056 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9057 {
9058         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9059
9060         return prog ? prog->aux->id : 0;
9061 }
9062
9063 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9064                              struct bpf_xdp_link *link)
9065 {
9066         dev->xdp_state[mode].link = link;
9067         dev->xdp_state[mode].prog = NULL;
9068 }
9069
9070 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9071                              struct bpf_prog *prog)
9072 {
9073         dev->xdp_state[mode].link = NULL;
9074         dev->xdp_state[mode].prog = prog;
9075 }
9076
9077 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9078                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9079                            u32 flags, struct bpf_prog *prog)
9080 {
9081         struct netdev_bpf xdp;
9082         int err;
9083
9084         memset(&xdp, 0, sizeof(xdp));
9085         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9086         xdp.extack = extack;
9087         xdp.flags = flags;
9088         xdp.prog = prog;
9089
9090         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9091          * "moved" into driver), so they don't increment it on their own, but
9092          * they do decrement refcnt when program is detached or replaced.
9093          * Given net_device also owns link/prog, we need to bump refcnt here
9094          * to prevent drivers from underflowing it.
9095          */
9096         if (prog)
9097                 bpf_prog_inc(prog);
9098         err = bpf_op(dev, &xdp);
9099         if (err) {
9100                 if (prog)
9101                         bpf_prog_put(prog);
9102                 return err;
9103         }
9104
9105         if (mode != XDP_MODE_HW)
9106                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9107
9108         return 0;
9109 }
9110
9111 static void dev_xdp_uninstall(struct net_device *dev)
9112 {
9113         struct bpf_xdp_link *link;
9114         struct bpf_prog *prog;
9115         enum bpf_xdp_mode mode;
9116         bpf_op_t bpf_op;
9117
9118         ASSERT_RTNL();
9119
9120         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9121                 prog = dev_xdp_prog(dev, mode);
9122                 if (!prog)
9123                         continue;
9124
9125                 bpf_op = dev_xdp_bpf_op(dev, mode);
9126                 if (!bpf_op)
9127                         continue;
9128
9129                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9130
9131                 /* auto-detach link from net device */
9132                 link = dev_xdp_link(dev, mode);
9133                 if (link)
9134                         link->dev = NULL;
9135                 else
9136                         bpf_prog_put(prog);
9137
9138                 dev_xdp_set_link(dev, mode, NULL);
9139         }
9140 }
9141
9142 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9143                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9144                           struct bpf_prog *old_prog, u32 flags)
9145 {
9146         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9147         struct bpf_prog *cur_prog;
9148         struct net_device *upper;
9149         struct list_head *iter;
9150         enum bpf_xdp_mode mode;
9151         bpf_op_t bpf_op;
9152         int err;
9153
9154         ASSERT_RTNL();
9155
9156         /* either link or prog attachment, never both */
9157         if (link && (new_prog || old_prog))
9158                 return -EINVAL;
9159         /* link supports only XDP mode flags */
9160         if (link && (flags & ~XDP_FLAGS_MODES)) {
9161                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9162                 return -EINVAL;
9163         }
9164         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9165         if (num_modes > 1) {
9166                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9167                 return -EINVAL;
9168         }
9169         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9170         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9171                 NL_SET_ERR_MSG(extack,
9172                                "More than one program loaded, unset mode is ambiguous");
9173                 return -EINVAL;
9174         }
9175         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9176         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9177                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9178                 return -EINVAL;
9179         }
9180
9181         mode = dev_xdp_mode(dev, flags);
9182         /* can't replace attached link */
9183         if (dev_xdp_link(dev, mode)) {
9184                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9185                 return -EBUSY;
9186         }
9187
9188         /* don't allow if an upper device already has a program */
9189         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9190                 if (dev_xdp_prog_count(upper) > 0) {
9191                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9192                         return -EEXIST;
9193                 }
9194         }
9195
9196         cur_prog = dev_xdp_prog(dev, mode);
9197         /* can't replace attached prog with link */
9198         if (link && cur_prog) {
9199                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9200                 return -EBUSY;
9201         }
9202         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9203                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9204                 return -EEXIST;
9205         }
9206
9207         /* put effective new program into new_prog */
9208         if (link)
9209                 new_prog = link->link.prog;
9210
9211         if (new_prog) {
9212                 bool offload = mode == XDP_MODE_HW;
9213                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9214                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9215
9216                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9217                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9218                         return -EBUSY;
9219                 }
9220                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9221                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9222                         return -EEXIST;
9223                 }
9224                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9225                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9226                         return -EINVAL;
9227                 }
9228                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9229                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9230                         return -EINVAL;
9231                 }
9232                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9233                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9234                         return -EINVAL;
9235                 }
9236                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9237                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9238                         return -EINVAL;
9239                 }
9240         }
9241
9242         /* don't call drivers if the effective program didn't change */
9243         if (new_prog != cur_prog) {
9244                 bpf_op = dev_xdp_bpf_op(dev, mode);
9245                 if (!bpf_op) {
9246                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9247                         return -EOPNOTSUPP;
9248                 }
9249
9250                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9251                 if (err)
9252                         return err;
9253         }
9254
9255         if (link)
9256                 dev_xdp_set_link(dev, mode, link);
9257         else
9258                 dev_xdp_set_prog(dev, mode, new_prog);
9259         if (cur_prog)
9260                 bpf_prog_put(cur_prog);
9261
9262         return 0;
9263 }
9264
9265 static int dev_xdp_attach_link(struct net_device *dev,
9266                                struct netlink_ext_ack *extack,
9267                                struct bpf_xdp_link *link)
9268 {
9269         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9270 }
9271
9272 static int dev_xdp_detach_link(struct net_device *dev,
9273                                struct netlink_ext_ack *extack,
9274                                struct bpf_xdp_link *link)
9275 {
9276         enum bpf_xdp_mode mode;
9277         bpf_op_t bpf_op;
9278
9279         ASSERT_RTNL();
9280
9281         mode = dev_xdp_mode(dev, link->flags);
9282         if (dev_xdp_link(dev, mode) != link)
9283                 return -EINVAL;
9284
9285         bpf_op = dev_xdp_bpf_op(dev, mode);
9286         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9287         dev_xdp_set_link(dev, mode, NULL);
9288         return 0;
9289 }
9290
9291 static void bpf_xdp_link_release(struct bpf_link *link)
9292 {
9293         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9294
9295         rtnl_lock();
9296
9297         /* if racing with net_device's tear down, xdp_link->dev might be
9298          * already NULL, in which case link was already auto-detached
9299          */
9300         if (xdp_link->dev) {
9301                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9302                 xdp_link->dev = NULL;
9303         }
9304
9305         rtnl_unlock();
9306 }
9307
9308 static int bpf_xdp_link_detach(struct bpf_link *link)
9309 {
9310         bpf_xdp_link_release(link);
9311         return 0;
9312 }
9313
9314 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9315 {
9316         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9317
9318         kfree(xdp_link);
9319 }
9320
9321 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9322                                      struct seq_file *seq)
9323 {
9324         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9325         u32 ifindex = 0;
9326
9327         rtnl_lock();
9328         if (xdp_link->dev)
9329                 ifindex = xdp_link->dev->ifindex;
9330         rtnl_unlock();
9331
9332         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9333 }
9334
9335 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9336                                        struct bpf_link_info *info)
9337 {
9338         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9339         u32 ifindex = 0;
9340
9341         rtnl_lock();
9342         if (xdp_link->dev)
9343                 ifindex = xdp_link->dev->ifindex;
9344         rtnl_unlock();
9345
9346         info->xdp.ifindex = ifindex;
9347         return 0;
9348 }
9349
9350 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9351                                struct bpf_prog *old_prog)
9352 {
9353         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9354         enum bpf_xdp_mode mode;
9355         bpf_op_t bpf_op;
9356         int err = 0;
9357
9358         rtnl_lock();
9359
9360         /* link might have been auto-released already, so fail */
9361         if (!xdp_link->dev) {
9362                 err = -ENOLINK;
9363                 goto out_unlock;
9364         }
9365
9366         if (old_prog && link->prog != old_prog) {
9367                 err = -EPERM;
9368                 goto out_unlock;
9369         }
9370         old_prog = link->prog;
9371         if (old_prog->type != new_prog->type ||
9372             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9373                 err = -EINVAL;
9374                 goto out_unlock;
9375         }
9376
9377         if (old_prog == new_prog) {
9378                 /* no-op, don't disturb drivers */
9379                 bpf_prog_put(new_prog);
9380                 goto out_unlock;
9381         }
9382
9383         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9384         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9385         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9386                               xdp_link->flags, new_prog);
9387         if (err)
9388                 goto out_unlock;
9389
9390         old_prog = xchg(&link->prog, new_prog);
9391         bpf_prog_put(old_prog);
9392
9393 out_unlock:
9394         rtnl_unlock();
9395         return err;
9396 }
9397
9398 static const struct bpf_link_ops bpf_xdp_link_lops = {
9399         .release = bpf_xdp_link_release,
9400         .dealloc = bpf_xdp_link_dealloc,
9401         .detach = bpf_xdp_link_detach,
9402         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9403         .fill_link_info = bpf_xdp_link_fill_link_info,
9404         .update_prog = bpf_xdp_link_update,
9405 };
9406
9407 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9408 {
9409         struct net *net = current->nsproxy->net_ns;
9410         struct bpf_link_primer link_primer;
9411         struct bpf_xdp_link *link;
9412         struct net_device *dev;
9413         int err, fd;
9414
9415         rtnl_lock();
9416         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9417         if (!dev) {
9418                 rtnl_unlock();
9419                 return -EINVAL;
9420         }
9421
9422         link = kzalloc(sizeof(*link), GFP_USER);
9423         if (!link) {
9424                 err = -ENOMEM;
9425                 goto unlock;
9426         }
9427
9428         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9429         link->dev = dev;
9430         link->flags = attr->link_create.flags;
9431
9432         err = bpf_link_prime(&link->link, &link_primer);
9433         if (err) {
9434                 kfree(link);
9435                 goto unlock;
9436         }
9437
9438         err = dev_xdp_attach_link(dev, NULL, link);
9439         rtnl_unlock();
9440
9441         if (err) {
9442                 link->dev = NULL;
9443                 bpf_link_cleanup(&link_primer);
9444                 goto out_put_dev;
9445         }
9446
9447         fd = bpf_link_settle(&link_primer);
9448         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9449         dev_put(dev);
9450         return fd;
9451
9452 unlock:
9453         rtnl_unlock();
9454
9455 out_put_dev:
9456         dev_put(dev);
9457         return err;
9458 }
9459
9460 /**
9461  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9462  *      @dev: device
9463  *      @extack: netlink extended ack
9464  *      @fd: new program fd or negative value to clear
9465  *      @expected_fd: old program fd that userspace expects to replace or clear
9466  *      @flags: xdp-related flags
9467  *
9468  *      Set or clear a bpf program for a device
9469  */
9470 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9471                       int fd, int expected_fd, u32 flags)
9472 {
9473         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9474         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9475         int err;
9476
9477         ASSERT_RTNL();
9478
9479         if (fd >= 0) {
9480                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9481                                                  mode != XDP_MODE_SKB);
9482                 if (IS_ERR(new_prog))
9483                         return PTR_ERR(new_prog);
9484         }
9485
9486         if (expected_fd >= 0) {
9487                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9488                                                  mode != XDP_MODE_SKB);
9489                 if (IS_ERR(old_prog)) {
9490                         err = PTR_ERR(old_prog);
9491                         old_prog = NULL;
9492                         goto err_out;
9493                 }
9494         }
9495
9496         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9497
9498 err_out:
9499         if (err && new_prog)
9500                 bpf_prog_put(new_prog);
9501         if (old_prog)
9502                 bpf_prog_put(old_prog);
9503         return err;
9504 }
9505
9506 /**
9507  *      dev_new_index   -       allocate an ifindex
9508  *      @net: the applicable net namespace
9509  *
9510  *      Returns a suitable unique value for a new device interface
9511  *      number.  The caller must hold the rtnl semaphore or the
9512  *      dev_base_lock to be sure it remains unique.
9513  */
9514 static int dev_new_index(struct net *net)
9515 {
9516         int ifindex = net->ifindex;
9517
9518         for (;;) {
9519                 if (++ifindex <= 0)
9520                         ifindex = 1;
9521                 if (!__dev_get_by_index(net, ifindex))
9522                         return net->ifindex = ifindex;
9523         }
9524 }
9525
9526 /* Delayed registration/unregisteration */
9527 LIST_HEAD(net_todo_list);
9528 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9529
9530 static void net_set_todo(struct net_device *dev)
9531 {
9532         list_add_tail(&dev->todo_list, &net_todo_list);
9533         atomic_inc(&dev_net(dev)->dev_unreg_count);
9534 }
9535
9536 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9537         struct net_device *upper, netdev_features_t features)
9538 {
9539         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9540         netdev_features_t feature;
9541         int feature_bit;
9542
9543         for_each_netdev_feature(upper_disables, feature_bit) {
9544                 feature = __NETIF_F_BIT(feature_bit);
9545                 if (!(upper->wanted_features & feature)
9546                     && (features & feature)) {
9547                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9548                                    &feature, upper->name);
9549                         features &= ~feature;
9550                 }
9551         }
9552
9553         return features;
9554 }
9555
9556 static void netdev_sync_lower_features(struct net_device *upper,
9557         struct net_device *lower, netdev_features_t features)
9558 {
9559         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9560         netdev_features_t feature;
9561         int feature_bit;
9562
9563         for_each_netdev_feature(upper_disables, feature_bit) {
9564                 feature = __NETIF_F_BIT(feature_bit);
9565                 if (!(features & feature) && (lower->features & feature)) {
9566                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9567                                    &feature, lower->name);
9568                         lower->wanted_features &= ~feature;
9569                         __netdev_update_features(lower);
9570
9571                         if (unlikely(lower->features & feature))
9572                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9573                                             &feature, lower->name);
9574                         else
9575                                 netdev_features_change(lower);
9576                 }
9577         }
9578 }
9579
9580 static netdev_features_t netdev_fix_features(struct net_device *dev,
9581         netdev_features_t features)
9582 {
9583         /* Fix illegal checksum combinations */
9584         if ((features & NETIF_F_HW_CSUM) &&
9585             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9586                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9587                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9588         }
9589
9590         /* TSO requires that SG is present as well. */
9591         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9592                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9593                 features &= ~NETIF_F_ALL_TSO;
9594         }
9595
9596         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9597                                         !(features & NETIF_F_IP_CSUM)) {
9598                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9599                 features &= ~NETIF_F_TSO;
9600                 features &= ~NETIF_F_TSO_ECN;
9601         }
9602
9603         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9604                                          !(features & NETIF_F_IPV6_CSUM)) {
9605                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9606                 features &= ~NETIF_F_TSO6;
9607         }
9608
9609         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9610         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9611                 features &= ~NETIF_F_TSO_MANGLEID;
9612
9613         /* TSO ECN requires that TSO is present as well. */
9614         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9615                 features &= ~NETIF_F_TSO_ECN;
9616
9617         /* Software GSO depends on SG. */
9618         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9619                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9620                 features &= ~NETIF_F_GSO;
9621         }
9622
9623         /* GSO partial features require GSO partial be set */
9624         if ((features & dev->gso_partial_features) &&
9625             !(features & NETIF_F_GSO_PARTIAL)) {
9626                 netdev_dbg(dev,
9627                            "Dropping partially supported GSO features since no GSO partial.\n");
9628                 features &= ~dev->gso_partial_features;
9629         }
9630
9631         if (!(features & NETIF_F_RXCSUM)) {
9632                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9633                  * successfully merged by hardware must also have the
9634                  * checksum verified by hardware.  If the user does not
9635                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9636                  */
9637                 if (features & NETIF_F_GRO_HW) {
9638                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9639                         features &= ~NETIF_F_GRO_HW;
9640                 }
9641         }
9642
9643         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9644         if (features & NETIF_F_RXFCS) {
9645                 if (features & NETIF_F_LRO) {
9646                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9647                         features &= ~NETIF_F_LRO;
9648                 }
9649
9650                 if (features & NETIF_F_GRO_HW) {
9651                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9652                         features &= ~NETIF_F_GRO_HW;
9653                 }
9654         }
9655
9656         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9657                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9658                 features &= ~NETIF_F_LRO;
9659         }
9660
9661         if (features & NETIF_F_HW_TLS_TX) {
9662                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9663                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9664                 bool hw_csum = features & NETIF_F_HW_CSUM;
9665
9666                 if (!ip_csum && !hw_csum) {
9667                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9668                         features &= ~NETIF_F_HW_TLS_TX;
9669                 }
9670         }
9671
9672         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9673                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9674                 features &= ~NETIF_F_HW_TLS_RX;
9675         }
9676
9677         return features;
9678 }
9679
9680 int __netdev_update_features(struct net_device *dev)
9681 {
9682         struct net_device *upper, *lower;
9683         netdev_features_t features;
9684         struct list_head *iter;
9685         int err = -1;
9686
9687         ASSERT_RTNL();
9688
9689         features = netdev_get_wanted_features(dev);
9690
9691         if (dev->netdev_ops->ndo_fix_features)
9692                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9693
9694         /* driver might be less strict about feature dependencies */
9695         features = netdev_fix_features(dev, features);
9696
9697         /* some features can't be enabled if they're off on an upper device */
9698         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9699                 features = netdev_sync_upper_features(dev, upper, features);
9700
9701         if (dev->features == features)
9702                 goto sync_lower;
9703
9704         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9705                 &dev->features, &features);
9706
9707         if (dev->netdev_ops->ndo_set_features)
9708                 err = dev->netdev_ops->ndo_set_features(dev, features);
9709         else
9710                 err = 0;
9711
9712         if (unlikely(err < 0)) {
9713                 netdev_err(dev,
9714                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9715                         err, &features, &dev->features);
9716                 /* return non-0 since some features might have changed and
9717                  * it's better to fire a spurious notification than miss it
9718                  */
9719                 return -1;
9720         }
9721
9722 sync_lower:
9723         /* some features must be disabled on lower devices when disabled
9724          * on an upper device (think: bonding master or bridge)
9725          */
9726         netdev_for_each_lower_dev(dev, lower, iter)
9727                 netdev_sync_lower_features(dev, lower, features);
9728
9729         if (!err) {
9730                 netdev_features_t diff = features ^ dev->features;
9731
9732                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9733                         /* udp_tunnel_{get,drop}_rx_info both need
9734                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9735                          * device, or they won't do anything.
9736                          * Thus we need to update dev->features
9737                          * *before* calling udp_tunnel_get_rx_info,
9738                          * but *after* calling udp_tunnel_drop_rx_info.
9739                          */
9740                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9741                                 dev->features = features;
9742                                 udp_tunnel_get_rx_info(dev);
9743                         } else {
9744                                 udp_tunnel_drop_rx_info(dev);
9745                         }
9746                 }
9747
9748                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9749                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9750                                 dev->features = features;
9751                                 err |= vlan_get_rx_ctag_filter_info(dev);
9752                         } else {
9753                                 vlan_drop_rx_ctag_filter_info(dev);
9754                         }
9755                 }
9756
9757                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9758                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9759                                 dev->features = features;
9760                                 err |= vlan_get_rx_stag_filter_info(dev);
9761                         } else {
9762                                 vlan_drop_rx_stag_filter_info(dev);
9763                         }
9764                 }
9765
9766                 dev->features = features;
9767         }
9768
9769         return err < 0 ? 0 : 1;
9770 }
9771
9772 /**
9773  *      netdev_update_features - recalculate device features
9774  *      @dev: the device to check
9775  *
9776  *      Recalculate dev->features set and send notifications if it
9777  *      has changed. Should be called after driver or hardware dependent
9778  *      conditions might have changed that influence the features.
9779  */
9780 void netdev_update_features(struct net_device *dev)
9781 {
9782         if (__netdev_update_features(dev))
9783                 netdev_features_change(dev);
9784 }
9785 EXPORT_SYMBOL(netdev_update_features);
9786
9787 /**
9788  *      netdev_change_features - recalculate device features
9789  *      @dev: the device to check
9790  *
9791  *      Recalculate dev->features set and send notifications even
9792  *      if they have not changed. Should be called instead of
9793  *      netdev_update_features() if also dev->vlan_features might
9794  *      have changed to allow the changes to be propagated to stacked
9795  *      VLAN devices.
9796  */
9797 void netdev_change_features(struct net_device *dev)
9798 {
9799         __netdev_update_features(dev);
9800         netdev_features_change(dev);
9801 }
9802 EXPORT_SYMBOL(netdev_change_features);
9803
9804 /**
9805  *      netif_stacked_transfer_operstate -      transfer operstate
9806  *      @rootdev: the root or lower level device to transfer state from
9807  *      @dev: the device to transfer operstate to
9808  *
9809  *      Transfer operational state from root to device. This is normally
9810  *      called when a stacking relationship exists between the root
9811  *      device and the device(a leaf device).
9812  */
9813 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9814                                         struct net_device *dev)
9815 {
9816         if (rootdev->operstate == IF_OPER_DORMANT)
9817                 netif_dormant_on(dev);
9818         else
9819                 netif_dormant_off(dev);
9820
9821         if (rootdev->operstate == IF_OPER_TESTING)
9822                 netif_testing_on(dev);
9823         else
9824                 netif_testing_off(dev);
9825
9826         if (netif_carrier_ok(rootdev))
9827                 netif_carrier_on(dev);
9828         else
9829                 netif_carrier_off(dev);
9830 }
9831 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9832
9833 static int netif_alloc_rx_queues(struct net_device *dev)
9834 {
9835         unsigned int i, count = dev->num_rx_queues;
9836         struct netdev_rx_queue *rx;
9837         size_t sz = count * sizeof(*rx);
9838         int err = 0;
9839
9840         BUG_ON(count < 1);
9841
9842         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9843         if (!rx)
9844                 return -ENOMEM;
9845
9846         dev->_rx = rx;
9847
9848         for (i = 0; i < count; i++) {
9849                 rx[i].dev = dev;
9850
9851                 /* XDP RX-queue setup */
9852                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9853                 if (err < 0)
9854                         goto err_rxq_info;
9855         }
9856         return 0;
9857
9858 err_rxq_info:
9859         /* Rollback successful reg's and free other resources */
9860         while (i--)
9861                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9862         kvfree(dev->_rx);
9863         dev->_rx = NULL;
9864         return err;
9865 }
9866
9867 static void netif_free_rx_queues(struct net_device *dev)
9868 {
9869         unsigned int i, count = dev->num_rx_queues;
9870
9871         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9872         if (!dev->_rx)
9873                 return;
9874
9875         for (i = 0; i < count; i++)
9876                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9877
9878         kvfree(dev->_rx);
9879 }
9880
9881 static void netdev_init_one_queue(struct net_device *dev,
9882                                   struct netdev_queue *queue, void *_unused)
9883 {
9884         /* Initialize queue lock */
9885         spin_lock_init(&queue->_xmit_lock);
9886         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9887         queue->xmit_lock_owner = -1;
9888         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9889         queue->dev = dev;
9890 #ifdef CONFIG_BQL
9891         dql_init(&queue->dql, HZ);
9892 #endif
9893 }
9894
9895 static void netif_free_tx_queues(struct net_device *dev)
9896 {
9897         kvfree(dev->_tx);
9898 }
9899
9900 static int netif_alloc_netdev_queues(struct net_device *dev)
9901 {
9902         unsigned int count = dev->num_tx_queues;
9903         struct netdev_queue *tx;
9904         size_t sz = count * sizeof(*tx);
9905
9906         if (count < 1 || count > 0xffff)
9907                 return -EINVAL;
9908
9909         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9910         if (!tx)
9911                 return -ENOMEM;
9912
9913         dev->_tx = tx;
9914
9915         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9916         spin_lock_init(&dev->tx_global_lock);
9917
9918         return 0;
9919 }
9920
9921 void netif_tx_stop_all_queues(struct net_device *dev)
9922 {
9923         unsigned int i;
9924
9925         for (i = 0; i < dev->num_tx_queues; i++) {
9926                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9927
9928                 netif_tx_stop_queue(txq);
9929         }
9930 }
9931 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9932
9933 /**
9934  * register_netdevice() - register a network device
9935  * @dev: device to register
9936  *
9937  * Take a prepared network device structure and make it externally accessible.
9938  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9939  * Callers must hold the rtnl lock - you may want register_netdev()
9940  * instead of this.
9941  */
9942 int register_netdevice(struct net_device *dev)
9943 {
9944         int ret;
9945         struct net *net = dev_net(dev);
9946
9947         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9948                      NETDEV_FEATURE_COUNT);
9949         BUG_ON(dev_boot_phase);
9950         ASSERT_RTNL();
9951
9952         might_sleep();
9953
9954         /* When net_device's are persistent, this will be fatal. */
9955         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9956         BUG_ON(!net);
9957
9958         ret = ethtool_check_ops(dev->ethtool_ops);
9959         if (ret)
9960                 return ret;
9961
9962         spin_lock_init(&dev->addr_list_lock);
9963         netdev_set_addr_lockdep_class(dev);
9964
9965         ret = dev_get_valid_name(net, dev, dev->name);
9966         if (ret < 0)
9967                 goto out;
9968
9969         ret = -ENOMEM;
9970         dev->name_node = netdev_name_node_head_alloc(dev);
9971         if (!dev->name_node)
9972                 goto out;
9973
9974         /* Init, if this function is available */
9975         if (dev->netdev_ops->ndo_init) {
9976                 ret = dev->netdev_ops->ndo_init(dev);
9977                 if (ret) {
9978                         if (ret > 0)
9979                                 ret = -EIO;
9980                         goto err_free_name;
9981                 }
9982         }
9983
9984         if (((dev->hw_features | dev->features) &
9985              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9986             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9987              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9988                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9989                 ret = -EINVAL;
9990                 goto err_uninit;
9991         }
9992
9993         ret = -EBUSY;
9994         if (!dev->ifindex)
9995                 dev->ifindex = dev_new_index(net);
9996         else if (__dev_get_by_index(net, dev->ifindex))
9997                 goto err_uninit;
9998
9999         /* Transfer changeable features to wanted_features and enable
10000          * software offloads (GSO and GRO).
10001          */
10002         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10003         dev->features |= NETIF_F_SOFT_FEATURES;
10004
10005         if (dev->udp_tunnel_nic_info) {
10006                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10007                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10008         }
10009
10010         dev->wanted_features = dev->features & dev->hw_features;
10011
10012         if (!(dev->flags & IFF_LOOPBACK))
10013                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10014
10015         /* If IPv4 TCP segmentation offload is supported we should also
10016          * allow the device to enable segmenting the frame with the option
10017          * of ignoring a static IP ID value.  This doesn't enable the
10018          * feature itself but allows the user to enable it later.
10019          */
10020         if (dev->hw_features & NETIF_F_TSO)
10021                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10022         if (dev->vlan_features & NETIF_F_TSO)
10023                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10024         if (dev->mpls_features & NETIF_F_TSO)
10025                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10026         if (dev->hw_enc_features & NETIF_F_TSO)
10027                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10028
10029         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10030          */
10031         dev->vlan_features |= NETIF_F_HIGHDMA;
10032
10033         /* Make NETIF_F_SG inheritable to tunnel devices.
10034          */
10035         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10036
10037         /* Make NETIF_F_SG inheritable to MPLS.
10038          */
10039         dev->mpls_features |= NETIF_F_SG;
10040
10041         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10042         ret = notifier_to_errno(ret);
10043         if (ret)
10044                 goto err_uninit;
10045
10046         ret = netdev_register_kobject(dev);
10047         write_lock(&dev_base_lock);
10048         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10049         write_unlock(&dev_base_lock);
10050         if (ret)
10051                 goto err_uninit_notify;
10052
10053         __netdev_update_features(dev);
10054
10055         /*
10056          *      Default initial state at registry is that the
10057          *      device is present.
10058          */
10059
10060         set_bit(__LINK_STATE_PRESENT, &dev->state);
10061
10062         linkwatch_init_dev(dev);
10063
10064         dev_init_scheduler(dev);
10065
10066         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10067         list_netdevice(dev);
10068
10069         add_device_randomness(dev->dev_addr, dev->addr_len);
10070
10071         /* If the device has permanent device address, driver should
10072          * set dev_addr and also addr_assign_type should be set to
10073          * NET_ADDR_PERM (default value).
10074          */
10075         if (dev->addr_assign_type == NET_ADDR_PERM)
10076                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10077
10078         /* Notify protocols, that a new device appeared. */
10079         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10080         ret = notifier_to_errno(ret);
10081         if (ret) {
10082                 /* Expect explicit free_netdev() on failure */
10083                 dev->needs_free_netdev = false;
10084                 unregister_netdevice_queue(dev, NULL);
10085                 goto out;
10086         }
10087         /*
10088          *      Prevent userspace races by waiting until the network
10089          *      device is fully setup before sending notifications.
10090          */
10091         if (!dev->rtnl_link_ops ||
10092             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10093                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10094
10095 out:
10096         return ret;
10097
10098 err_uninit_notify:
10099         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10100 err_uninit:
10101         if (dev->netdev_ops->ndo_uninit)
10102                 dev->netdev_ops->ndo_uninit(dev);
10103         if (dev->priv_destructor)
10104                 dev->priv_destructor(dev);
10105 err_free_name:
10106         netdev_name_node_free(dev->name_node);
10107         goto out;
10108 }
10109 EXPORT_SYMBOL(register_netdevice);
10110
10111 /**
10112  *      init_dummy_netdev       - init a dummy network device for NAPI
10113  *      @dev: device to init
10114  *
10115  *      This takes a network device structure and initialize the minimum
10116  *      amount of fields so it can be used to schedule NAPI polls without
10117  *      registering a full blown interface. This is to be used by drivers
10118  *      that need to tie several hardware interfaces to a single NAPI
10119  *      poll scheduler due to HW limitations.
10120  */
10121 int init_dummy_netdev(struct net_device *dev)
10122 {
10123         /* Clear everything. Note we don't initialize spinlocks
10124          * are they aren't supposed to be taken by any of the
10125          * NAPI code and this dummy netdev is supposed to be
10126          * only ever used for NAPI polls
10127          */
10128         memset(dev, 0, sizeof(struct net_device));
10129
10130         /* make sure we BUG if trying to hit standard
10131          * register/unregister code path
10132          */
10133         dev->reg_state = NETREG_DUMMY;
10134
10135         /* NAPI wants this */
10136         INIT_LIST_HEAD(&dev->napi_list);
10137
10138         /* a dummy interface is started by default */
10139         set_bit(__LINK_STATE_PRESENT, &dev->state);
10140         set_bit(__LINK_STATE_START, &dev->state);
10141
10142         /* napi_busy_loop stats accounting wants this */
10143         dev_net_set(dev, &init_net);
10144
10145         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10146          * because users of this 'device' dont need to change
10147          * its refcount.
10148          */
10149
10150         return 0;
10151 }
10152 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10153
10154
10155 /**
10156  *      register_netdev - register a network device
10157  *      @dev: device to register
10158  *
10159  *      Take a completed network device structure and add it to the kernel
10160  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10161  *      chain. 0 is returned on success. A negative errno code is returned
10162  *      on a failure to set up the device, or if the name is a duplicate.
10163  *
10164  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10165  *      and expands the device name if you passed a format string to
10166  *      alloc_netdev.
10167  */
10168 int register_netdev(struct net_device *dev)
10169 {
10170         int err;
10171
10172         if (rtnl_lock_killable())
10173                 return -EINTR;
10174         err = register_netdevice(dev);
10175         rtnl_unlock();
10176         return err;
10177 }
10178 EXPORT_SYMBOL(register_netdev);
10179
10180 int netdev_refcnt_read(const struct net_device *dev)
10181 {
10182 #ifdef CONFIG_PCPU_DEV_REFCNT
10183         int i, refcnt = 0;
10184
10185         for_each_possible_cpu(i)
10186                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10187         return refcnt;
10188 #else
10189         return refcount_read(&dev->dev_refcnt);
10190 #endif
10191 }
10192 EXPORT_SYMBOL(netdev_refcnt_read);
10193
10194 int netdev_unregister_timeout_secs __read_mostly = 10;
10195
10196 #define WAIT_REFS_MIN_MSECS 1
10197 #define WAIT_REFS_MAX_MSECS 250
10198 /**
10199  * netdev_wait_allrefs_any - wait until all references are gone.
10200  * @list: list of net_devices to wait on
10201  *
10202  * This is called when unregistering network devices.
10203  *
10204  * Any protocol or device that holds a reference should register
10205  * for netdevice notification, and cleanup and put back the
10206  * reference if they receive an UNREGISTER event.
10207  * We can get stuck here if buggy protocols don't correctly
10208  * call dev_put.
10209  */
10210 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10211 {
10212         unsigned long rebroadcast_time, warning_time;
10213         struct net_device *dev;
10214         int wait = 0;
10215
10216         rebroadcast_time = warning_time = jiffies;
10217
10218         list_for_each_entry(dev, list, todo_list)
10219                 if (netdev_refcnt_read(dev) == 1)
10220                         return dev;
10221
10222         while (true) {
10223                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10224                         rtnl_lock();
10225
10226                         /* Rebroadcast unregister notification */
10227                         list_for_each_entry(dev, list, todo_list)
10228                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10229
10230                         __rtnl_unlock();
10231                         rcu_barrier();
10232                         rtnl_lock();
10233
10234                         list_for_each_entry(dev, list, todo_list)
10235                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10236                                              &dev->state)) {
10237                                         /* We must not have linkwatch events
10238                                          * pending on unregister. If this
10239                                          * happens, we simply run the queue
10240                                          * unscheduled, resulting in a noop
10241                                          * for this device.
10242                                          */
10243                                         linkwatch_run_queue();
10244                                         break;
10245                                 }
10246
10247                         __rtnl_unlock();
10248
10249                         rebroadcast_time = jiffies;
10250                 }
10251
10252                 if (!wait) {
10253                         rcu_barrier();
10254                         wait = WAIT_REFS_MIN_MSECS;
10255                 } else {
10256                         msleep(wait);
10257                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10258                 }
10259
10260                 list_for_each_entry(dev, list, todo_list)
10261                         if (netdev_refcnt_read(dev) == 1)
10262                                 return dev;
10263
10264                 if (time_after(jiffies, warning_time +
10265                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10266                         list_for_each_entry(dev, list, todo_list) {
10267                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10268                                          dev->name, netdev_refcnt_read(dev));
10269                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10270                         }
10271
10272                         warning_time = jiffies;
10273                 }
10274         }
10275 }
10276
10277 /* The sequence is:
10278  *
10279  *      rtnl_lock();
10280  *      ...
10281  *      register_netdevice(x1);
10282  *      register_netdevice(x2);
10283  *      ...
10284  *      unregister_netdevice(y1);
10285  *      unregister_netdevice(y2);
10286  *      ...
10287  *      rtnl_unlock();
10288  *      free_netdev(y1);
10289  *      free_netdev(y2);
10290  *
10291  * We are invoked by rtnl_unlock().
10292  * This allows us to deal with problems:
10293  * 1) We can delete sysfs objects which invoke hotplug
10294  *    without deadlocking with linkwatch via keventd.
10295  * 2) Since we run with the RTNL semaphore not held, we can sleep
10296  *    safely in order to wait for the netdev refcnt to drop to zero.
10297  *
10298  * We must not return until all unregister events added during
10299  * the interval the lock was held have been completed.
10300  */
10301 void netdev_run_todo(void)
10302 {
10303         struct net_device *dev, *tmp;
10304         struct list_head list;
10305 #ifdef CONFIG_LOCKDEP
10306         struct list_head unlink_list;
10307
10308         list_replace_init(&net_unlink_list, &unlink_list);
10309
10310         while (!list_empty(&unlink_list)) {
10311                 struct net_device *dev = list_first_entry(&unlink_list,
10312                                                           struct net_device,
10313                                                           unlink_list);
10314                 list_del_init(&dev->unlink_list);
10315                 dev->nested_level = dev->lower_level - 1;
10316         }
10317 #endif
10318
10319         /* Snapshot list, allow later requests */
10320         list_replace_init(&net_todo_list, &list);
10321
10322         __rtnl_unlock();
10323
10324         /* Wait for rcu callbacks to finish before next phase */
10325         if (!list_empty(&list))
10326                 rcu_barrier();
10327
10328         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10329                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10330                         netdev_WARN(dev, "run_todo but not unregistering\n");
10331                         list_del(&dev->todo_list);
10332                         continue;
10333                 }
10334
10335                 write_lock(&dev_base_lock);
10336                 dev->reg_state = NETREG_UNREGISTERED;
10337                 write_unlock(&dev_base_lock);
10338                 linkwatch_forget_dev(dev);
10339         }
10340
10341         while (!list_empty(&list)) {
10342                 dev = netdev_wait_allrefs_any(&list);
10343                 list_del(&dev->todo_list);
10344
10345                 /* paranoia */
10346                 BUG_ON(netdev_refcnt_read(dev) != 1);
10347                 BUG_ON(!list_empty(&dev->ptype_all));
10348                 BUG_ON(!list_empty(&dev->ptype_specific));
10349                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10350                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10351
10352                 if (dev->priv_destructor)
10353                         dev->priv_destructor(dev);
10354                 if (dev->needs_free_netdev)
10355                         free_netdev(dev);
10356
10357                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10358                         wake_up(&netdev_unregistering_wq);
10359
10360                 /* Free network device */
10361                 kobject_put(&dev->dev.kobj);
10362         }
10363 }
10364
10365 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10366  * all the same fields in the same order as net_device_stats, with only
10367  * the type differing, but rtnl_link_stats64 may have additional fields
10368  * at the end for newer counters.
10369  */
10370 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10371                              const struct net_device_stats *netdev_stats)
10372 {
10373         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10374         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10375         u64 *dst = (u64 *)stats64;
10376
10377         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10378         for (i = 0; i < n; i++)
10379                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10380         /* zero out counters that only exist in rtnl_link_stats64 */
10381         memset((char *)stats64 + n * sizeof(u64), 0,
10382                sizeof(*stats64) - n * sizeof(u64));
10383 }
10384 EXPORT_SYMBOL(netdev_stats_to_stats64);
10385
10386 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10387 {
10388         struct net_device_core_stats __percpu *p;
10389
10390         p = alloc_percpu_gfp(struct net_device_core_stats,
10391                              GFP_ATOMIC | __GFP_NOWARN);
10392
10393         if (p && cmpxchg(&dev->core_stats, NULL, p))
10394                 free_percpu(p);
10395
10396         /* This READ_ONCE() pairs with the cmpxchg() above */
10397         return READ_ONCE(dev->core_stats);
10398 }
10399 EXPORT_SYMBOL(netdev_core_stats_alloc);
10400
10401 /**
10402  *      dev_get_stats   - get network device statistics
10403  *      @dev: device to get statistics from
10404  *      @storage: place to store stats
10405  *
10406  *      Get network statistics from device. Return @storage.
10407  *      The device driver may provide its own method by setting
10408  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10409  *      otherwise the internal statistics structure is used.
10410  */
10411 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10412                                         struct rtnl_link_stats64 *storage)
10413 {
10414         const struct net_device_ops *ops = dev->netdev_ops;
10415         const struct net_device_core_stats __percpu *p;
10416
10417         if (ops->ndo_get_stats64) {
10418                 memset(storage, 0, sizeof(*storage));
10419                 ops->ndo_get_stats64(dev, storage);
10420         } else if (ops->ndo_get_stats) {
10421                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10422         } else {
10423                 netdev_stats_to_stats64(storage, &dev->stats);
10424         }
10425
10426         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10427         p = READ_ONCE(dev->core_stats);
10428         if (p) {
10429                 const struct net_device_core_stats *core_stats;
10430                 int i;
10431
10432                 for_each_possible_cpu(i) {
10433                         core_stats = per_cpu_ptr(p, i);
10434                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10435                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10436                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10437                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10438                 }
10439         }
10440         return storage;
10441 }
10442 EXPORT_SYMBOL(dev_get_stats);
10443
10444 /**
10445  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10446  *      @s: place to store stats
10447  *      @netstats: per-cpu network stats to read from
10448  *
10449  *      Read per-cpu network statistics and populate the related fields in @s.
10450  */
10451 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10452                            const struct pcpu_sw_netstats __percpu *netstats)
10453 {
10454         int cpu;
10455
10456         for_each_possible_cpu(cpu) {
10457                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10458                 const struct pcpu_sw_netstats *stats;
10459                 unsigned int start;
10460
10461                 stats = per_cpu_ptr(netstats, cpu);
10462                 do {
10463                         start = u64_stats_fetch_begin(&stats->syncp);
10464                         rx_packets = u64_stats_read(&stats->rx_packets);
10465                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10466                         tx_packets = u64_stats_read(&stats->tx_packets);
10467                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10468                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10469
10470                 s->rx_packets += rx_packets;
10471                 s->rx_bytes   += rx_bytes;
10472                 s->tx_packets += tx_packets;
10473                 s->tx_bytes   += tx_bytes;
10474         }
10475 }
10476 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10477
10478 /**
10479  *      dev_get_tstats64 - ndo_get_stats64 implementation
10480  *      @dev: device to get statistics from
10481  *      @s: place to store stats
10482  *
10483  *      Populate @s from dev->stats and dev->tstats. Can be used as
10484  *      ndo_get_stats64() callback.
10485  */
10486 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10487 {
10488         netdev_stats_to_stats64(s, &dev->stats);
10489         dev_fetch_sw_netstats(s, dev->tstats);
10490 }
10491 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10492
10493 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10494 {
10495         struct netdev_queue *queue = dev_ingress_queue(dev);
10496
10497 #ifdef CONFIG_NET_CLS_ACT
10498         if (queue)
10499                 return queue;
10500         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10501         if (!queue)
10502                 return NULL;
10503         netdev_init_one_queue(dev, queue, NULL);
10504         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10505         queue->qdisc_sleeping = &noop_qdisc;
10506         rcu_assign_pointer(dev->ingress_queue, queue);
10507 #endif
10508         return queue;
10509 }
10510
10511 static const struct ethtool_ops default_ethtool_ops;
10512
10513 void netdev_set_default_ethtool_ops(struct net_device *dev,
10514                                     const struct ethtool_ops *ops)
10515 {
10516         if (dev->ethtool_ops == &default_ethtool_ops)
10517                 dev->ethtool_ops = ops;
10518 }
10519 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10520
10521 /**
10522  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10523  * @dev: netdev to enable the IRQ coalescing on
10524  *
10525  * Sets a conservative default for SW IRQ coalescing. Users can use
10526  * sysfs attributes to override the default values.
10527  */
10528 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10529 {
10530         WARN_ON(dev->reg_state == NETREG_REGISTERED);
10531
10532         dev->gro_flush_timeout = 20000;
10533         dev->napi_defer_hard_irqs = 1;
10534 }
10535 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10536
10537 void netdev_freemem(struct net_device *dev)
10538 {
10539         char *addr = (char *)dev - dev->padded;
10540
10541         kvfree(addr);
10542 }
10543
10544 /**
10545  * alloc_netdev_mqs - allocate network device
10546  * @sizeof_priv: size of private data to allocate space for
10547  * @name: device name format string
10548  * @name_assign_type: origin of device name
10549  * @setup: callback to initialize device
10550  * @txqs: the number of TX subqueues to allocate
10551  * @rxqs: the number of RX subqueues to allocate
10552  *
10553  * Allocates a struct net_device with private data area for driver use
10554  * and performs basic initialization.  Also allocates subqueue structs
10555  * for each queue on the device.
10556  */
10557 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10558                 unsigned char name_assign_type,
10559                 void (*setup)(struct net_device *),
10560                 unsigned int txqs, unsigned int rxqs)
10561 {
10562         struct net_device *dev;
10563         unsigned int alloc_size;
10564         struct net_device *p;
10565
10566         BUG_ON(strlen(name) >= sizeof(dev->name));
10567
10568         if (txqs < 1) {
10569                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10570                 return NULL;
10571         }
10572
10573         if (rxqs < 1) {
10574                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10575                 return NULL;
10576         }
10577
10578         alloc_size = sizeof(struct net_device);
10579         if (sizeof_priv) {
10580                 /* ensure 32-byte alignment of private area */
10581                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10582                 alloc_size += sizeof_priv;
10583         }
10584         /* ensure 32-byte alignment of whole construct */
10585         alloc_size += NETDEV_ALIGN - 1;
10586
10587         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10588         if (!p)
10589                 return NULL;
10590
10591         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10592         dev->padded = (char *)dev - (char *)p;
10593
10594         ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10595 #ifdef CONFIG_PCPU_DEV_REFCNT
10596         dev->pcpu_refcnt = alloc_percpu(int);
10597         if (!dev->pcpu_refcnt)
10598                 goto free_dev;
10599         __dev_hold(dev);
10600 #else
10601         refcount_set(&dev->dev_refcnt, 1);
10602 #endif
10603
10604         if (dev_addr_init(dev))
10605                 goto free_pcpu;
10606
10607         dev_mc_init(dev);
10608         dev_uc_init(dev);
10609
10610         dev_net_set(dev, &init_net);
10611
10612         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10613         dev->gso_max_segs = GSO_MAX_SEGS;
10614         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10615         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10616         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10617         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10618         dev->tso_max_segs = TSO_MAX_SEGS;
10619         dev->upper_level = 1;
10620         dev->lower_level = 1;
10621 #ifdef CONFIG_LOCKDEP
10622         dev->nested_level = 0;
10623         INIT_LIST_HEAD(&dev->unlink_list);
10624 #endif
10625
10626         INIT_LIST_HEAD(&dev->napi_list);
10627         INIT_LIST_HEAD(&dev->unreg_list);
10628         INIT_LIST_HEAD(&dev->close_list);
10629         INIT_LIST_HEAD(&dev->link_watch_list);
10630         INIT_LIST_HEAD(&dev->adj_list.upper);
10631         INIT_LIST_HEAD(&dev->adj_list.lower);
10632         INIT_LIST_HEAD(&dev->ptype_all);
10633         INIT_LIST_HEAD(&dev->ptype_specific);
10634         INIT_LIST_HEAD(&dev->net_notifier_list);
10635 #ifdef CONFIG_NET_SCHED
10636         hash_init(dev->qdisc_hash);
10637 #endif
10638         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10639         setup(dev);
10640
10641         if (!dev->tx_queue_len) {
10642                 dev->priv_flags |= IFF_NO_QUEUE;
10643                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10644         }
10645
10646         dev->num_tx_queues = txqs;
10647         dev->real_num_tx_queues = txqs;
10648         if (netif_alloc_netdev_queues(dev))
10649                 goto free_all;
10650
10651         dev->num_rx_queues = rxqs;
10652         dev->real_num_rx_queues = rxqs;
10653         if (netif_alloc_rx_queues(dev))
10654                 goto free_all;
10655
10656         strcpy(dev->name, name);
10657         dev->name_assign_type = name_assign_type;
10658         dev->group = INIT_NETDEV_GROUP;
10659         if (!dev->ethtool_ops)
10660                 dev->ethtool_ops = &default_ethtool_ops;
10661
10662         nf_hook_netdev_init(dev);
10663
10664         return dev;
10665
10666 free_all:
10667         free_netdev(dev);
10668         return NULL;
10669
10670 free_pcpu:
10671 #ifdef CONFIG_PCPU_DEV_REFCNT
10672         free_percpu(dev->pcpu_refcnt);
10673 free_dev:
10674 #endif
10675         netdev_freemem(dev);
10676         return NULL;
10677 }
10678 EXPORT_SYMBOL(alloc_netdev_mqs);
10679
10680 /**
10681  * free_netdev - free network device
10682  * @dev: device
10683  *
10684  * This function does the last stage of destroying an allocated device
10685  * interface. The reference to the device object is released. If this
10686  * is the last reference then it will be freed.Must be called in process
10687  * context.
10688  */
10689 void free_netdev(struct net_device *dev)
10690 {
10691         struct napi_struct *p, *n;
10692
10693         might_sleep();
10694
10695         /* When called immediately after register_netdevice() failed the unwind
10696          * handling may still be dismantling the device. Handle that case by
10697          * deferring the free.
10698          */
10699         if (dev->reg_state == NETREG_UNREGISTERING) {
10700                 ASSERT_RTNL();
10701                 dev->needs_free_netdev = true;
10702                 return;
10703         }
10704
10705         netif_free_tx_queues(dev);
10706         netif_free_rx_queues(dev);
10707
10708         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10709
10710         /* Flush device addresses */
10711         dev_addr_flush(dev);
10712
10713         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10714                 netif_napi_del(p);
10715
10716         ref_tracker_dir_exit(&dev->refcnt_tracker);
10717 #ifdef CONFIG_PCPU_DEV_REFCNT
10718         free_percpu(dev->pcpu_refcnt);
10719         dev->pcpu_refcnt = NULL;
10720 #endif
10721         free_percpu(dev->core_stats);
10722         dev->core_stats = NULL;
10723         free_percpu(dev->xdp_bulkq);
10724         dev->xdp_bulkq = NULL;
10725
10726         /*  Compatibility with error handling in drivers */
10727         if (dev->reg_state == NETREG_UNINITIALIZED) {
10728                 netdev_freemem(dev);
10729                 return;
10730         }
10731
10732         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10733         dev->reg_state = NETREG_RELEASED;
10734
10735         /* will free via device release */
10736         put_device(&dev->dev);
10737 }
10738 EXPORT_SYMBOL(free_netdev);
10739
10740 /**
10741  *      synchronize_net -  Synchronize with packet receive processing
10742  *
10743  *      Wait for packets currently being received to be done.
10744  *      Does not block later packets from starting.
10745  */
10746 void synchronize_net(void)
10747 {
10748         might_sleep();
10749         if (rtnl_is_locked())
10750                 synchronize_rcu_expedited();
10751         else
10752                 synchronize_rcu();
10753 }
10754 EXPORT_SYMBOL(synchronize_net);
10755
10756 /**
10757  *      unregister_netdevice_queue - remove device from the kernel
10758  *      @dev: device
10759  *      @head: list
10760  *
10761  *      This function shuts down a device interface and removes it
10762  *      from the kernel tables.
10763  *      If head not NULL, device is queued to be unregistered later.
10764  *
10765  *      Callers must hold the rtnl semaphore.  You may want
10766  *      unregister_netdev() instead of this.
10767  */
10768
10769 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10770 {
10771         ASSERT_RTNL();
10772
10773         if (head) {
10774                 list_move_tail(&dev->unreg_list, head);
10775         } else {
10776                 LIST_HEAD(single);
10777
10778                 list_add(&dev->unreg_list, &single);
10779                 unregister_netdevice_many(&single);
10780         }
10781 }
10782 EXPORT_SYMBOL(unregister_netdevice_queue);
10783
10784 void unregister_netdevice_many_notify(struct list_head *head,
10785                                       u32 portid, const struct nlmsghdr *nlh)
10786 {
10787         struct net_device *dev, *tmp;
10788         LIST_HEAD(close_head);
10789
10790         BUG_ON(dev_boot_phase);
10791         ASSERT_RTNL();
10792
10793         if (list_empty(head))
10794                 return;
10795
10796         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10797                 /* Some devices call without registering
10798                  * for initialization unwind. Remove those
10799                  * devices and proceed with the remaining.
10800                  */
10801                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10802                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10803                                  dev->name, dev);
10804
10805                         WARN_ON(1);
10806                         list_del(&dev->unreg_list);
10807                         continue;
10808                 }
10809                 dev->dismantle = true;
10810                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10811         }
10812
10813         /* If device is running, close it first. */
10814         list_for_each_entry(dev, head, unreg_list)
10815                 list_add_tail(&dev->close_list, &close_head);
10816         dev_close_many(&close_head, true);
10817
10818         list_for_each_entry(dev, head, unreg_list) {
10819                 /* And unlink it from device chain. */
10820                 write_lock(&dev_base_lock);
10821                 unlist_netdevice(dev, false);
10822                 dev->reg_state = NETREG_UNREGISTERING;
10823                 write_unlock(&dev_base_lock);
10824         }
10825         flush_all_backlogs();
10826
10827         synchronize_net();
10828
10829         list_for_each_entry(dev, head, unreg_list) {
10830                 struct sk_buff *skb = NULL;
10831
10832                 /* Shutdown queueing discipline. */
10833                 dev_shutdown(dev);
10834
10835                 dev_xdp_uninstall(dev);
10836                 bpf_dev_bound_netdev_unregister(dev);
10837
10838                 netdev_offload_xstats_disable_all(dev);
10839
10840                 /* Notify protocols, that we are about to destroy
10841                  * this device. They should clean all the things.
10842                  */
10843                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10844
10845                 if (!dev->rtnl_link_ops ||
10846                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10847                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10848                                                      GFP_KERNEL, NULL, 0,
10849                                                      portid, nlmsg_seq(nlh));
10850
10851                 /*
10852                  *      Flush the unicast and multicast chains
10853                  */
10854                 dev_uc_flush(dev);
10855                 dev_mc_flush(dev);
10856
10857                 netdev_name_node_alt_flush(dev);
10858                 netdev_name_node_free(dev->name_node);
10859
10860                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10861
10862                 if (dev->netdev_ops->ndo_uninit)
10863                         dev->netdev_ops->ndo_uninit(dev);
10864
10865                 if (skb)
10866                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10867
10868                 /* Notifier chain MUST detach us all upper devices. */
10869                 WARN_ON(netdev_has_any_upper_dev(dev));
10870                 WARN_ON(netdev_has_any_lower_dev(dev));
10871
10872                 /* Remove entries from kobject tree */
10873                 netdev_unregister_kobject(dev);
10874 #ifdef CONFIG_XPS
10875                 /* Remove XPS queueing entries */
10876                 netif_reset_xps_queues_gt(dev, 0);
10877 #endif
10878         }
10879
10880         synchronize_net();
10881
10882         list_for_each_entry(dev, head, unreg_list) {
10883                 netdev_put(dev, &dev->dev_registered_tracker);
10884                 net_set_todo(dev);
10885         }
10886
10887         list_del(head);
10888 }
10889
10890 /**
10891  *      unregister_netdevice_many - unregister many devices
10892  *      @head: list of devices
10893  *
10894  *  Note: As most callers use a stack allocated list_head,
10895  *  we force a list_del() to make sure stack wont be corrupted later.
10896  */
10897 void unregister_netdevice_many(struct list_head *head)
10898 {
10899         unregister_netdevice_many_notify(head, 0, NULL);
10900 }
10901 EXPORT_SYMBOL(unregister_netdevice_many);
10902
10903 /**
10904  *      unregister_netdev - remove device from the kernel
10905  *      @dev: device
10906  *
10907  *      This function shuts down a device interface and removes it
10908  *      from the kernel tables.
10909  *
10910  *      This is just a wrapper for unregister_netdevice that takes
10911  *      the rtnl semaphore.  In general you want to use this and not
10912  *      unregister_netdevice.
10913  */
10914 void unregister_netdev(struct net_device *dev)
10915 {
10916         rtnl_lock();
10917         unregister_netdevice(dev);
10918         rtnl_unlock();
10919 }
10920 EXPORT_SYMBOL(unregister_netdev);
10921
10922 /**
10923  *      __dev_change_net_namespace - move device to different nethost namespace
10924  *      @dev: device
10925  *      @net: network namespace
10926  *      @pat: If not NULL name pattern to try if the current device name
10927  *            is already taken in the destination network namespace.
10928  *      @new_ifindex: If not zero, specifies device index in the target
10929  *                    namespace.
10930  *
10931  *      This function shuts down a device interface and moves it
10932  *      to a new network namespace. On success 0 is returned, on
10933  *      a failure a netagive errno code is returned.
10934  *
10935  *      Callers must hold the rtnl semaphore.
10936  */
10937
10938 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10939                                const char *pat, int new_ifindex)
10940 {
10941         struct net *net_old = dev_net(dev);
10942         int err, new_nsid;
10943
10944         ASSERT_RTNL();
10945
10946         /* Don't allow namespace local devices to be moved. */
10947         err = -EINVAL;
10948         if (dev->features & NETIF_F_NETNS_LOCAL)
10949                 goto out;
10950
10951         /* Ensure the device has been registrered */
10952         if (dev->reg_state != NETREG_REGISTERED)
10953                 goto out;
10954
10955         /* Get out if there is nothing todo */
10956         err = 0;
10957         if (net_eq(net_old, net))
10958                 goto out;
10959
10960         /* Pick the destination device name, and ensure
10961          * we can use it in the destination network namespace.
10962          */
10963         err = -EEXIST;
10964         if (netdev_name_in_use(net, dev->name)) {
10965                 /* We get here if we can't use the current device name */
10966                 if (!pat)
10967                         goto out;
10968                 err = dev_get_valid_name(net, dev, pat);
10969                 if (err < 0)
10970                         goto out;
10971         }
10972
10973         /* Check that new_ifindex isn't used yet. */
10974         err = -EBUSY;
10975         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10976                 goto out;
10977
10978         /*
10979          * And now a mini version of register_netdevice unregister_netdevice.
10980          */
10981
10982         /* If device is running close it first. */
10983         dev_close(dev);
10984
10985         /* And unlink it from device chain */
10986         unlist_netdevice(dev, true);
10987
10988         synchronize_net();
10989
10990         /* Shutdown queueing discipline. */
10991         dev_shutdown(dev);
10992
10993         /* Notify protocols, that we are about to destroy
10994          * this device. They should clean all the things.
10995          *
10996          * Note that dev->reg_state stays at NETREG_REGISTERED.
10997          * This is wanted because this way 8021q and macvlan know
10998          * the device is just moving and can keep their slaves up.
10999          */
11000         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11001         rcu_barrier();
11002
11003         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11004         /* If there is an ifindex conflict assign a new one */
11005         if (!new_ifindex) {
11006                 if (__dev_get_by_index(net, dev->ifindex))
11007                         new_ifindex = dev_new_index(net);
11008                 else
11009                         new_ifindex = dev->ifindex;
11010         }
11011
11012         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11013                             new_ifindex);
11014
11015         /*
11016          *      Flush the unicast and multicast chains
11017          */
11018         dev_uc_flush(dev);
11019         dev_mc_flush(dev);
11020
11021         /* Send a netdev-removed uevent to the old namespace */
11022         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11023         netdev_adjacent_del_links(dev);
11024
11025         /* Move per-net netdevice notifiers that are following the netdevice */
11026         move_netdevice_notifiers_dev_net(dev, net);
11027
11028         /* Actually switch the network namespace */
11029         dev_net_set(dev, net);
11030         dev->ifindex = new_ifindex;
11031
11032         /* Send a netdev-add uevent to the new namespace */
11033         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11034         netdev_adjacent_add_links(dev);
11035
11036         /* Fixup kobjects */
11037         err = device_rename(&dev->dev, dev->name);
11038         WARN_ON(err);
11039
11040         /* Adapt owner in case owning user namespace of target network
11041          * namespace is different from the original one.
11042          */
11043         err = netdev_change_owner(dev, net_old, net);
11044         WARN_ON(err);
11045
11046         /* Add the device back in the hashes */
11047         list_netdevice(dev);
11048
11049         /* Notify protocols, that a new device appeared. */
11050         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11051
11052         /*
11053          *      Prevent userspace races by waiting until the network
11054          *      device is fully setup before sending notifications.
11055          */
11056         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11057
11058         synchronize_net();
11059         err = 0;
11060 out:
11061         return err;
11062 }
11063 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11064
11065 static int dev_cpu_dead(unsigned int oldcpu)
11066 {
11067         struct sk_buff **list_skb;
11068         struct sk_buff *skb;
11069         unsigned int cpu;
11070         struct softnet_data *sd, *oldsd, *remsd = NULL;
11071
11072         local_irq_disable();
11073         cpu = smp_processor_id();
11074         sd = &per_cpu(softnet_data, cpu);
11075         oldsd = &per_cpu(softnet_data, oldcpu);
11076
11077         /* Find end of our completion_queue. */
11078         list_skb = &sd->completion_queue;
11079         while (*list_skb)
11080                 list_skb = &(*list_skb)->next;
11081         /* Append completion queue from offline CPU. */
11082         *list_skb = oldsd->completion_queue;
11083         oldsd->completion_queue = NULL;
11084
11085         /* Append output queue from offline CPU. */
11086         if (oldsd->output_queue) {
11087                 *sd->output_queue_tailp = oldsd->output_queue;
11088                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11089                 oldsd->output_queue = NULL;
11090                 oldsd->output_queue_tailp = &oldsd->output_queue;
11091         }
11092         /* Append NAPI poll list from offline CPU, with one exception :
11093          * process_backlog() must be called by cpu owning percpu backlog.
11094          * We properly handle process_queue & input_pkt_queue later.
11095          */
11096         while (!list_empty(&oldsd->poll_list)) {
11097                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11098                                                             struct napi_struct,
11099                                                             poll_list);
11100
11101                 list_del_init(&napi->poll_list);
11102                 if (napi->poll == process_backlog)
11103                         napi->state = 0;
11104                 else
11105                         ____napi_schedule(sd, napi);
11106         }
11107
11108         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11109         local_irq_enable();
11110
11111 #ifdef CONFIG_RPS
11112         remsd = oldsd->rps_ipi_list;
11113         oldsd->rps_ipi_list = NULL;
11114 #endif
11115         /* send out pending IPI's on offline CPU */
11116         net_rps_send_ipi(remsd);
11117
11118         /* Process offline CPU's input_pkt_queue */
11119         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11120                 netif_rx(skb);
11121                 input_queue_head_incr(oldsd);
11122         }
11123         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11124                 netif_rx(skb);
11125                 input_queue_head_incr(oldsd);
11126         }
11127
11128         return 0;
11129 }
11130
11131 /**
11132  *      netdev_increment_features - increment feature set by one
11133  *      @all: current feature set
11134  *      @one: new feature set
11135  *      @mask: mask feature set
11136  *
11137  *      Computes a new feature set after adding a device with feature set
11138  *      @one to the master device with current feature set @all.  Will not
11139  *      enable anything that is off in @mask. Returns the new feature set.
11140  */
11141 netdev_features_t netdev_increment_features(netdev_features_t all,
11142         netdev_features_t one, netdev_features_t mask)
11143 {
11144         if (mask & NETIF_F_HW_CSUM)
11145                 mask |= NETIF_F_CSUM_MASK;
11146         mask |= NETIF_F_VLAN_CHALLENGED;
11147
11148         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11149         all &= one | ~NETIF_F_ALL_FOR_ALL;
11150
11151         /* If one device supports hw checksumming, set for all. */
11152         if (all & NETIF_F_HW_CSUM)
11153                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11154
11155         return all;
11156 }
11157 EXPORT_SYMBOL(netdev_increment_features);
11158
11159 static struct hlist_head * __net_init netdev_create_hash(void)
11160 {
11161         int i;
11162         struct hlist_head *hash;
11163
11164         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11165         if (hash != NULL)
11166                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11167                         INIT_HLIST_HEAD(&hash[i]);
11168
11169         return hash;
11170 }
11171
11172 /* Initialize per network namespace state */
11173 static int __net_init netdev_init(struct net *net)
11174 {
11175         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11176                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11177
11178         INIT_LIST_HEAD(&net->dev_base_head);
11179
11180         net->dev_name_head = netdev_create_hash();
11181         if (net->dev_name_head == NULL)
11182                 goto err_name;
11183
11184         net->dev_index_head = netdev_create_hash();
11185         if (net->dev_index_head == NULL)
11186                 goto err_idx;
11187
11188         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11189
11190         return 0;
11191
11192 err_idx:
11193         kfree(net->dev_name_head);
11194 err_name:
11195         return -ENOMEM;
11196 }
11197
11198 /**
11199  *      netdev_drivername - network driver for the device
11200  *      @dev: network device
11201  *
11202  *      Determine network driver for device.
11203  */
11204 const char *netdev_drivername(const struct net_device *dev)
11205 {
11206         const struct device_driver *driver;
11207         const struct device *parent;
11208         const char *empty = "";
11209
11210         parent = dev->dev.parent;
11211         if (!parent)
11212                 return empty;
11213
11214         driver = parent->driver;
11215         if (driver && driver->name)
11216                 return driver->name;
11217         return empty;
11218 }
11219
11220 static void __netdev_printk(const char *level, const struct net_device *dev,
11221                             struct va_format *vaf)
11222 {
11223         if (dev && dev->dev.parent) {
11224                 dev_printk_emit(level[1] - '0',
11225                                 dev->dev.parent,
11226                                 "%s %s %s%s: %pV",
11227                                 dev_driver_string(dev->dev.parent),
11228                                 dev_name(dev->dev.parent),
11229                                 netdev_name(dev), netdev_reg_state(dev),
11230                                 vaf);
11231         } else if (dev) {
11232                 printk("%s%s%s: %pV",
11233                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11234         } else {
11235                 printk("%s(NULL net_device): %pV", level, vaf);
11236         }
11237 }
11238
11239 void netdev_printk(const char *level, const struct net_device *dev,
11240                    const char *format, ...)
11241 {
11242         struct va_format vaf;
11243         va_list args;
11244
11245         va_start(args, format);
11246
11247         vaf.fmt = format;
11248         vaf.va = &args;
11249
11250         __netdev_printk(level, dev, &vaf);
11251
11252         va_end(args);
11253 }
11254 EXPORT_SYMBOL(netdev_printk);
11255
11256 #define define_netdev_printk_level(func, level)                 \
11257 void func(const struct net_device *dev, const char *fmt, ...)   \
11258 {                                                               \
11259         struct va_format vaf;                                   \
11260         va_list args;                                           \
11261                                                                 \
11262         va_start(args, fmt);                                    \
11263                                                                 \
11264         vaf.fmt = fmt;                                          \
11265         vaf.va = &args;                                         \
11266                                                                 \
11267         __netdev_printk(level, dev, &vaf);                      \
11268                                                                 \
11269         va_end(args);                                           \
11270 }                                                               \
11271 EXPORT_SYMBOL(func);
11272
11273 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11274 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11275 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11276 define_netdev_printk_level(netdev_err, KERN_ERR);
11277 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11278 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11279 define_netdev_printk_level(netdev_info, KERN_INFO);
11280
11281 static void __net_exit netdev_exit(struct net *net)
11282 {
11283         kfree(net->dev_name_head);
11284         kfree(net->dev_index_head);
11285         if (net != &init_net)
11286                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11287 }
11288
11289 static struct pernet_operations __net_initdata netdev_net_ops = {
11290         .init = netdev_init,
11291         .exit = netdev_exit,
11292 };
11293
11294 static void __net_exit default_device_exit_net(struct net *net)
11295 {
11296         struct net_device *dev, *aux;
11297         /*
11298          * Push all migratable network devices back to the
11299          * initial network namespace
11300          */
11301         ASSERT_RTNL();
11302         for_each_netdev_safe(net, dev, aux) {
11303                 int err;
11304                 char fb_name[IFNAMSIZ];
11305
11306                 /* Ignore unmoveable devices (i.e. loopback) */
11307                 if (dev->features & NETIF_F_NETNS_LOCAL)
11308                         continue;
11309
11310                 /* Leave virtual devices for the generic cleanup */
11311                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11312                         continue;
11313
11314                 /* Push remaining network devices to init_net */
11315                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11316                 if (netdev_name_in_use(&init_net, fb_name))
11317                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11318                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11319                 if (err) {
11320                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11321                                  __func__, dev->name, err);
11322                         BUG();
11323                 }
11324         }
11325 }
11326
11327 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11328 {
11329         /* At exit all network devices most be removed from a network
11330          * namespace.  Do this in the reverse order of registration.
11331          * Do this across as many network namespaces as possible to
11332          * improve batching efficiency.
11333          */
11334         struct net_device *dev;
11335         struct net *net;
11336         LIST_HEAD(dev_kill_list);
11337
11338         rtnl_lock();
11339         list_for_each_entry(net, net_list, exit_list) {
11340                 default_device_exit_net(net);
11341                 cond_resched();
11342         }
11343
11344         list_for_each_entry(net, net_list, exit_list) {
11345                 for_each_netdev_reverse(net, dev) {
11346                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11347                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11348                         else
11349                                 unregister_netdevice_queue(dev, &dev_kill_list);
11350                 }
11351         }
11352         unregister_netdevice_many(&dev_kill_list);
11353         rtnl_unlock();
11354 }
11355
11356 static struct pernet_operations __net_initdata default_device_ops = {
11357         .exit_batch = default_device_exit_batch,
11358 };
11359
11360 /*
11361  *      Initialize the DEV module. At boot time this walks the device list and
11362  *      unhooks any devices that fail to initialise (normally hardware not
11363  *      present) and leaves us with a valid list of present and active devices.
11364  *
11365  */
11366
11367 /*
11368  *       This is called single threaded during boot, so no need
11369  *       to take the rtnl semaphore.
11370  */
11371 static int __init net_dev_init(void)
11372 {
11373         int i, rc = -ENOMEM;
11374
11375         BUG_ON(!dev_boot_phase);
11376
11377         if (dev_proc_init())
11378                 goto out;
11379
11380         if (netdev_kobject_init())
11381                 goto out;
11382
11383         INIT_LIST_HEAD(&ptype_all);
11384         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11385                 INIT_LIST_HEAD(&ptype_base[i]);
11386
11387         if (register_pernet_subsys(&netdev_net_ops))
11388                 goto out;
11389
11390         /*
11391          *      Initialise the packet receive queues.
11392          */
11393
11394         for_each_possible_cpu(i) {
11395                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11396                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11397
11398                 INIT_WORK(flush, flush_backlog);
11399
11400                 skb_queue_head_init(&sd->input_pkt_queue);
11401                 skb_queue_head_init(&sd->process_queue);
11402 #ifdef CONFIG_XFRM_OFFLOAD
11403                 skb_queue_head_init(&sd->xfrm_backlog);
11404 #endif
11405                 INIT_LIST_HEAD(&sd->poll_list);
11406                 sd->output_queue_tailp = &sd->output_queue;
11407 #ifdef CONFIG_RPS
11408                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11409                 sd->cpu = i;
11410 #endif
11411                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11412                 spin_lock_init(&sd->defer_lock);
11413
11414                 init_gro_hash(&sd->backlog);
11415                 sd->backlog.poll = process_backlog;
11416                 sd->backlog.weight = weight_p;
11417         }
11418
11419         dev_boot_phase = 0;
11420
11421         /* The loopback device is special if any other network devices
11422          * is present in a network namespace the loopback device must
11423          * be present. Since we now dynamically allocate and free the
11424          * loopback device ensure this invariant is maintained by
11425          * keeping the loopback device as the first device on the
11426          * list of network devices.  Ensuring the loopback devices
11427          * is the first device that appears and the last network device
11428          * that disappears.
11429          */
11430         if (register_pernet_device(&loopback_net_ops))
11431                 goto out;
11432
11433         if (register_pernet_device(&default_device_ops))
11434                 goto out;
11435
11436         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11437         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11438
11439         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11440                                        NULL, dev_cpu_dead);
11441         WARN_ON(rc < 0);
11442         rc = 0;
11443 out:
11444         return rc;
11445 }
11446
11447 subsys_initcall(net_dev_init);
This page took 0.657812 seconds and 4 git commands to generate.