1 // SPDX-License-Identifier: GPL-2.0-only
3 * Implementation of the security services.
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
15 * Added conditional policy language extensions
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
24 * Added validation of kernel classes and permissions
28 * Added support for bounds domain and audit messaged on masked permissions
32 * Added support for runtime switching of the policy type
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/mutex.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlabel.h>
61 #include "conditional.h"
69 /* Policy capability names */
70 const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
71 "network_peer_controls",
73 "extended_socket_class",
74 "always_check_network",
76 "nnp_nosuid_transition"
79 static struct selinux_ss selinux_ss;
81 void selinux_ss_init(struct selinux_ss **ss)
83 rwlock_init(&selinux_ss.policy_rwlock);
84 mutex_init(&selinux_ss.status_lock);
88 /* Forward declaration. */
89 static int context_struct_to_string(struct policydb *policydb,
90 struct context *context,
94 static void context_struct_compute_av(struct policydb *policydb,
95 struct context *scontext,
96 struct context *tcontext,
98 struct av_decision *avd,
99 struct extended_perms *xperms);
101 static int selinux_set_mapping(struct policydb *pol,
102 struct security_class_mapping *map,
103 struct selinux_map *out_map)
107 bool print_unknown_handle = false;
109 /* Find number of classes in the input mapping */
116 /* Allocate space for the class records, plus one for class zero */
117 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
118 if (!out_map->mapping)
121 /* Store the raw class and permission values */
123 while (map[j].name) {
124 struct security_class_mapping *p_in = map + (j++);
125 struct selinux_mapping *p_out = out_map->mapping + j;
127 /* An empty class string skips ahead */
128 if (!strcmp(p_in->name, "")) {
129 p_out->num_perms = 0;
133 p_out->value = string_to_security_class(pol, p_in->name);
135 pr_info("SELinux: Class %s not defined in policy.\n",
137 if (pol->reject_unknown)
139 p_out->num_perms = 0;
140 print_unknown_handle = true;
145 while (p_in->perms[k]) {
146 /* An empty permission string skips ahead */
147 if (!*p_in->perms[k]) {
151 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
153 if (!p_out->perms[k]) {
154 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
155 p_in->perms[k], p_in->name);
156 if (pol->reject_unknown)
158 print_unknown_handle = true;
163 p_out->num_perms = k;
166 if (print_unknown_handle)
167 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
168 pol->allow_unknown ? "allowed" : "denied");
173 kfree(out_map->mapping);
174 out_map->mapping = NULL;
179 * Get real, policy values from mapped values
182 static u16 unmap_class(struct selinux_map *map, u16 tclass)
184 if (tclass < map->size)
185 return map->mapping[tclass].value;
191 * Get kernel value for class from its policy value
193 static u16 map_class(struct selinux_map *map, u16 pol_value)
197 for (i = 1; i < map->size; i++) {
198 if (map->mapping[i].value == pol_value)
202 return SECCLASS_NULL;
205 static void map_decision(struct selinux_map *map,
206 u16 tclass, struct av_decision *avd,
209 if (tclass < map->size) {
210 struct selinux_mapping *mapping = &map->mapping[tclass];
211 unsigned int i, n = mapping->num_perms;
214 for (i = 0, result = 0; i < n; i++) {
215 if (avd->allowed & mapping->perms[i])
217 if (allow_unknown && !mapping->perms[i])
220 avd->allowed = result;
222 for (i = 0, result = 0; i < n; i++)
223 if (avd->auditallow & mapping->perms[i])
225 avd->auditallow = result;
227 for (i = 0, result = 0; i < n; i++) {
228 if (avd->auditdeny & mapping->perms[i])
230 if (!allow_unknown && !mapping->perms[i])
234 * In case the kernel has a bug and requests a permission
235 * between num_perms and the maximum permission number, we
236 * should audit that denial
238 for (; i < (sizeof(u32)*8); i++)
240 avd->auditdeny = result;
244 int security_mls_enabled(struct selinux_state *state)
246 struct policydb *p = &state->ss->policydb;
248 return p->mls_enabled;
252 * Return the boolean value of a constraint expression
253 * when it is applied to the specified source and target
256 * xcontext is a special beast... It is used by the validatetrans rules
257 * only. For these rules, scontext is the context before the transition,
258 * tcontext is the context after the transition, and xcontext is the context
259 * of the process performing the transition. All other callers of
260 * constraint_expr_eval should pass in NULL for xcontext.
262 static int constraint_expr_eval(struct policydb *policydb,
263 struct context *scontext,
264 struct context *tcontext,
265 struct context *xcontext,
266 struct constraint_expr *cexpr)
270 struct role_datum *r1, *r2;
271 struct mls_level *l1, *l2;
272 struct constraint_expr *e;
273 int s[CEXPR_MAXDEPTH];
276 for (e = cexpr; e; e = e->next) {
277 switch (e->expr_type) {
293 if (sp == (CEXPR_MAXDEPTH - 1))
297 val1 = scontext->user;
298 val2 = tcontext->user;
301 val1 = scontext->type;
302 val2 = tcontext->type;
305 val1 = scontext->role;
306 val2 = tcontext->role;
307 r1 = policydb->role_val_to_struct[val1 - 1];
308 r2 = policydb->role_val_to_struct[val2 - 1];
311 s[++sp] = ebitmap_get_bit(&r1->dominates,
315 s[++sp] = ebitmap_get_bit(&r2->dominates,
319 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
321 !ebitmap_get_bit(&r2->dominates,
329 l1 = &(scontext->range.level[0]);
330 l2 = &(tcontext->range.level[0]);
333 l1 = &(scontext->range.level[0]);
334 l2 = &(tcontext->range.level[1]);
337 l1 = &(scontext->range.level[1]);
338 l2 = &(tcontext->range.level[0]);
341 l1 = &(scontext->range.level[1]);
342 l2 = &(tcontext->range.level[1]);
345 l1 = &(scontext->range.level[0]);
346 l2 = &(scontext->range.level[1]);
349 l1 = &(tcontext->range.level[0]);
350 l2 = &(tcontext->range.level[1]);
355 s[++sp] = mls_level_eq(l1, l2);
358 s[++sp] = !mls_level_eq(l1, l2);
361 s[++sp] = mls_level_dom(l1, l2);
364 s[++sp] = mls_level_dom(l2, l1);
367 s[++sp] = mls_level_incomp(l2, l1);
381 s[++sp] = (val1 == val2);
384 s[++sp] = (val1 != val2);
392 if (sp == (CEXPR_MAXDEPTH-1))
395 if (e->attr & CEXPR_TARGET)
397 else if (e->attr & CEXPR_XTARGET) {
404 if (e->attr & CEXPR_USER)
406 else if (e->attr & CEXPR_ROLE)
408 else if (e->attr & CEXPR_TYPE)
417 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
438 * security_dump_masked_av - dumps masked permissions during
439 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
441 static int dump_masked_av_helper(void *k, void *d, void *args)
443 struct perm_datum *pdatum = d;
444 char **permission_names = args;
446 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
448 permission_names[pdatum->value - 1] = (char *)k;
453 static void security_dump_masked_av(struct policydb *policydb,
454 struct context *scontext,
455 struct context *tcontext,
460 struct common_datum *common_dat;
461 struct class_datum *tclass_dat;
462 struct audit_buffer *ab;
464 char *scontext_name = NULL;
465 char *tcontext_name = NULL;
466 char *permission_names[32];
469 bool need_comma = false;
474 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
475 tclass_dat = policydb->class_val_to_struct[tclass - 1];
476 common_dat = tclass_dat->comdatum;
478 /* init permission_names */
480 hashtab_map(common_dat->permissions.table,
481 dump_masked_av_helper, permission_names) < 0)
484 if (hashtab_map(tclass_dat->permissions.table,
485 dump_masked_av_helper, permission_names) < 0)
488 /* get scontext/tcontext in text form */
489 if (context_struct_to_string(policydb, scontext,
490 &scontext_name, &length) < 0)
493 if (context_struct_to_string(policydb, tcontext,
494 &tcontext_name, &length) < 0)
497 /* audit a message */
498 ab = audit_log_start(audit_context(),
499 GFP_ATOMIC, AUDIT_SELINUX_ERR);
503 audit_log_format(ab, "op=security_compute_av reason=%s "
504 "scontext=%s tcontext=%s tclass=%s perms=",
505 reason, scontext_name, tcontext_name, tclass_name);
507 for (index = 0; index < 32; index++) {
508 u32 mask = (1 << index);
510 if ((mask & permissions) == 0)
513 audit_log_format(ab, "%s%s",
514 need_comma ? "," : "",
515 permission_names[index]
516 ? permission_names[index] : "????");
521 /* release scontext/tcontext */
522 kfree(tcontext_name);
523 kfree(scontext_name);
529 * security_boundary_permission - drops violated permissions
530 * on boundary constraint.
532 static void type_attribute_bounds_av(struct policydb *policydb,
533 struct context *scontext,
534 struct context *tcontext,
536 struct av_decision *avd)
538 struct context lo_scontext;
539 struct context lo_tcontext, *tcontextp = tcontext;
540 struct av_decision lo_avd;
541 struct type_datum *source;
542 struct type_datum *target;
545 source = policydb->type_val_to_struct[scontext->type - 1];
551 target = policydb->type_val_to_struct[tcontext->type - 1];
554 memset(&lo_avd, 0, sizeof(lo_avd));
556 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 lo_scontext.type = source->bounds;
559 if (target->bounds) {
560 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 lo_tcontext.type = target->bounds;
562 tcontextp = &lo_tcontext;
565 context_struct_compute_av(policydb, &lo_scontext,
571 masked = ~lo_avd.allowed & avd->allowed;
574 return; /* no masked permission */
576 /* mask violated permissions */
577 avd->allowed &= ~masked;
579 /* audit masked permissions */
580 security_dump_masked_av(policydb, scontext, tcontext,
581 tclass, masked, "bounds");
585 * flag which drivers have permissions
586 * only looking for ioctl based extended permssions
588 void services_compute_xperms_drivers(
589 struct extended_perms *xperms,
590 struct avtab_node *node)
594 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595 /* if one or more driver has all permissions allowed */
596 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599 /* if allowing permissions within a driver */
600 security_xperm_set(xperms->drivers.p,
601 node->datum.u.xperms->driver);
604 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
605 if (node->key.specified & AVTAB_XPERMS_ALLOWED)
610 * Compute access vectors and extended permissions based on a context
611 * structure pair for the permissions in a particular class.
613 static void context_struct_compute_av(struct policydb *policydb,
614 struct context *scontext,
615 struct context *tcontext,
617 struct av_decision *avd,
618 struct extended_perms *xperms)
620 struct constraint_node *constraint;
621 struct role_allow *ra;
622 struct avtab_key avkey;
623 struct avtab_node *node;
624 struct class_datum *tclass_datum;
625 struct ebitmap *sattr, *tattr;
626 struct ebitmap_node *snode, *tnode;
631 avd->auditdeny = 0xffffffff;
633 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
637 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
638 if (printk_ratelimit())
639 pr_warn("SELinux: Invalid class %hu\n", tclass);
643 tclass_datum = policydb->class_val_to_struct[tclass - 1];
646 * If a specific type enforcement rule was defined for
647 * this permission check, then use it.
649 avkey.target_class = tclass;
650 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
651 sattr = &policydb->type_attr_map_array[scontext->type - 1];
652 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
653 ebitmap_for_each_positive_bit(sattr, snode, i) {
654 ebitmap_for_each_positive_bit(tattr, tnode, j) {
655 avkey.source_type = i + 1;
656 avkey.target_type = j + 1;
657 for (node = avtab_search_node(&policydb->te_avtab,
660 node = avtab_search_node_next(node, avkey.specified)) {
661 if (node->key.specified == AVTAB_ALLOWED)
662 avd->allowed |= node->datum.u.data;
663 else if (node->key.specified == AVTAB_AUDITALLOW)
664 avd->auditallow |= node->datum.u.data;
665 else if (node->key.specified == AVTAB_AUDITDENY)
666 avd->auditdeny &= node->datum.u.data;
667 else if (xperms && (node->key.specified & AVTAB_XPERMS))
668 services_compute_xperms_drivers(xperms, node);
671 /* Check conditional av table for additional permissions */
672 cond_compute_av(&policydb->te_cond_avtab, &avkey,
679 * Remove any permissions prohibited by a constraint (this includes
682 constraint = tclass_datum->constraints;
684 if ((constraint->permissions & (avd->allowed)) &&
685 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
687 avd->allowed &= ~(constraint->permissions);
689 constraint = constraint->next;
693 * If checking process transition permission and the
694 * role is changing, then check the (current_role, new_role)
697 if (tclass == policydb->process_class &&
698 (avd->allowed & policydb->process_trans_perms) &&
699 scontext->role != tcontext->role) {
700 for (ra = policydb->role_allow; ra; ra = ra->next) {
701 if (scontext->role == ra->role &&
702 tcontext->role == ra->new_role)
706 avd->allowed &= ~policydb->process_trans_perms;
710 * If the given source and target types have boundary
711 * constraint, lazy checks have to mask any violated
712 * permission and notice it to userspace via audit.
714 type_attribute_bounds_av(policydb, scontext, tcontext,
718 static int security_validtrans_handle_fail(struct selinux_state *state,
719 struct context *ocontext,
720 struct context *ncontext,
721 struct context *tcontext,
724 struct policydb *p = &state->ss->policydb;
725 char *o = NULL, *n = NULL, *t = NULL;
726 u32 olen, nlen, tlen;
728 if (context_struct_to_string(p, ocontext, &o, &olen))
730 if (context_struct_to_string(p, ncontext, &n, &nlen))
732 if (context_struct_to_string(p, tcontext, &t, &tlen))
734 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
735 "op=security_validate_transition seresult=denied"
736 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
737 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
743 if (!enforcing_enabled(state))
748 static int security_compute_validatetrans(struct selinux_state *state,
749 u32 oldsid, u32 newsid, u32 tasksid,
750 u16 orig_tclass, bool user)
752 struct policydb *policydb;
753 struct sidtab *sidtab;
754 struct context *ocontext;
755 struct context *ncontext;
756 struct context *tcontext;
757 struct class_datum *tclass_datum;
758 struct constraint_node *constraint;
763 if (!state->initialized)
766 read_lock(&state->ss->policy_rwlock);
768 policydb = &state->ss->policydb;
769 sidtab = state->ss->sidtab;
772 tclass = unmap_class(&state->ss->map, orig_tclass);
774 tclass = orig_tclass;
776 if (!tclass || tclass > policydb->p_classes.nprim) {
780 tclass_datum = policydb->class_val_to_struct[tclass - 1];
782 ocontext = sidtab_search(sidtab, oldsid);
784 pr_err("SELinux: %s: unrecognized SID %d\n",
790 ncontext = sidtab_search(sidtab, newsid);
792 pr_err("SELinux: %s: unrecognized SID %d\n",
798 tcontext = sidtab_search(sidtab, tasksid);
800 pr_err("SELinux: %s: unrecognized SID %d\n",
806 constraint = tclass_datum->validatetrans;
808 if (!constraint_expr_eval(policydb, ocontext, ncontext,
809 tcontext, constraint->expr)) {
813 rc = security_validtrans_handle_fail(state,
820 constraint = constraint->next;
824 read_unlock(&state->ss->policy_rwlock);
828 int security_validate_transition_user(struct selinux_state *state,
829 u32 oldsid, u32 newsid, u32 tasksid,
832 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
836 int security_validate_transition(struct selinux_state *state,
837 u32 oldsid, u32 newsid, u32 tasksid,
840 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
845 * security_bounded_transition - check whether the given
846 * transition is directed to bounded, or not.
847 * It returns 0, if @newsid is bounded by @oldsid.
848 * Otherwise, it returns error code.
850 * @oldsid : current security identifier
851 * @newsid : destinated security identifier
853 int security_bounded_transition(struct selinux_state *state,
854 u32 old_sid, u32 new_sid)
856 struct policydb *policydb;
857 struct sidtab *sidtab;
858 struct context *old_context, *new_context;
859 struct type_datum *type;
863 if (!state->initialized)
866 read_lock(&state->ss->policy_rwlock);
868 policydb = &state->ss->policydb;
869 sidtab = state->ss->sidtab;
872 old_context = sidtab_search(sidtab, old_sid);
874 pr_err("SELinux: %s: unrecognized SID %u\n",
880 new_context = sidtab_search(sidtab, new_sid);
882 pr_err("SELinux: %s: unrecognized SID %u\n",
888 /* type/domain unchanged */
889 if (old_context->type == new_context->type)
892 index = new_context->type;
894 type = policydb->type_val_to_struct[index - 1];
897 /* not bounded anymore */
902 /* @newsid is bounded by @oldsid */
904 if (type->bounds == old_context->type)
907 index = type->bounds;
911 char *old_name = NULL;
912 char *new_name = NULL;
915 if (!context_struct_to_string(policydb, old_context,
916 &old_name, &length) &&
917 !context_struct_to_string(policydb, new_context,
918 &new_name, &length)) {
919 audit_log(audit_context(),
920 GFP_ATOMIC, AUDIT_SELINUX_ERR,
921 "op=security_bounded_transition "
923 "oldcontext=%s newcontext=%s",
930 read_unlock(&state->ss->policy_rwlock);
935 static void avd_init(struct selinux_state *state, struct av_decision *avd)
939 avd->auditdeny = 0xffffffff;
940 avd->seqno = state->ss->latest_granting;
944 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
945 struct avtab_node *node)
949 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
950 if (xpermd->driver != node->datum.u.xperms->driver)
952 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
953 if (!security_xperm_test(node->datum.u.xperms->perms.p,
960 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
961 xpermd->used |= XPERMS_ALLOWED;
962 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
963 memset(xpermd->allowed->p, 0xff,
964 sizeof(xpermd->allowed->p));
966 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
967 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
968 xpermd->allowed->p[i] |=
969 node->datum.u.xperms->perms.p[i];
971 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
972 xpermd->used |= XPERMS_AUDITALLOW;
973 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
974 memset(xpermd->auditallow->p, 0xff,
975 sizeof(xpermd->auditallow->p));
977 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
978 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
979 xpermd->auditallow->p[i] |=
980 node->datum.u.xperms->perms.p[i];
982 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
983 xpermd->used |= XPERMS_DONTAUDIT;
984 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
985 memset(xpermd->dontaudit->p, 0xff,
986 sizeof(xpermd->dontaudit->p));
988 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
989 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
990 xpermd->dontaudit->p[i] |=
991 node->datum.u.xperms->perms.p[i];
998 void security_compute_xperms_decision(struct selinux_state *state,
1003 struct extended_perms_decision *xpermd)
1005 struct policydb *policydb;
1006 struct sidtab *sidtab;
1008 struct context *scontext, *tcontext;
1009 struct avtab_key avkey;
1010 struct avtab_node *node;
1011 struct ebitmap *sattr, *tattr;
1012 struct ebitmap_node *snode, *tnode;
1015 xpermd->driver = driver;
1017 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1018 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1019 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1021 read_lock(&state->ss->policy_rwlock);
1022 if (!state->initialized)
1025 policydb = &state->ss->policydb;
1026 sidtab = state->ss->sidtab;
1028 scontext = sidtab_search(sidtab, ssid);
1030 pr_err("SELinux: %s: unrecognized SID %d\n",
1035 tcontext = sidtab_search(sidtab, tsid);
1037 pr_err("SELinux: %s: unrecognized SID %d\n",
1042 tclass = unmap_class(&state->ss->map, orig_tclass);
1043 if (unlikely(orig_tclass && !tclass)) {
1044 if (policydb->allow_unknown)
1050 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1051 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1055 avkey.target_class = tclass;
1056 avkey.specified = AVTAB_XPERMS;
1057 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1058 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1059 ebitmap_for_each_positive_bit(sattr, snode, i) {
1060 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1061 avkey.source_type = i + 1;
1062 avkey.target_type = j + 1;
1063 for (node = avtab_search_node(&policydb->te_avtab,
1066 node = avtab_search_node_next(node, avkey.specified))
1067 services_compute_xperms_decision(xpermd, node);
1069 cond_compute_xperms(&policydb->te_cond_avtab,
1074 read_unlock(&state->ss->policy_rwlock);
1077 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1082 * security_compute_av - Compute access vector decisions.
1083 * @ssid: source security identifier
1084 * @tsid: target security identifier
1085 * @tclass: target security class
1086 * @avd: access vector decisions
1087 * @xperms: extended permissions
1089 * Compute a set of access vector decisions based on the
1090 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1092 void security_compute_av(struct selinux_state *state,
1096 struct av_decision *avd,
1097 struct extended_perms *xperms)
1099 struct policydb *policydb;
1100 struct sidtab *sidtab;
1102 struct context *scontext = NULL, *tcontext = NULL;
1104 read_lock(&state->ss->policy_rwlock);
1105 avd_init(state, avd);
1107 if (!state->initialized)
1110 policydb = &state->ss->policydb;
1111 sidtab = state->ss->sidtab;
1113 scontext = sidtab_search(sidtab, ssid);
1115 pr_err("SELinux: %s: unrecognized SID %d\n",
1120 /* permissive domain? */
1121 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1122 avd->flags |= AVD_FLAGS_PERMISSIVE;
1124 tcontext = sidtab_search(sidtab, tsid);
1126 pr_err("SELinux: %s: unrecognized SID %d\n",
1131 tclass = unmap_class(&state->ss->map, orig_tclass);
1132 if (unlikely(orig_tclass && !tclass)) {
1133 if (policydb->allow_unknown)
1137 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1139 map_decision(&state->ss->map, orig_tclass, avd,
1140 policydb->allow_unknown);
1142 read_unlock(&state->ss->policy_rwlock);
1145 avd->allowed = 0xffffffff;
1149 void security_compute_av_user(struct selinux_state *state,
1153 struct av_decision *avd)
1155 struct policydb *policydb;
1156 struct sidtab *sidtab;
1157 struct context *scontext = NULL, *tcontext = NULL;
1159 read_lock(&state->ss->policy_rwlock);
1160 avd_init(state, avd);
1161 if (!state->initialized)
1164 policydb = &state->ss->policydb;
1165 sidtab = state->ss->sidtab;
1167 scontext = sidtab_search(sidtab, ssid);
1169 pr_err("SELinux: %s: unrecognized SID %d\n",
1174 /* permissive domain? */
1175 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1176 avd->flags |= AVD_FLAGS_PERMISSIVE;
1178 tcontext = sidtab_search(sidtab, tsid);
1180 pr_err("SELinux: %s: unrecognized SID %d\n",
1185 if (unlikely(!tclass)) {
1186 if (policydb->allow_unknown)
1191 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1194 read_unlock(&state->ss->policy_rwlock);
1197 avd->allowed = 0xffffffff;
1202 * Write the security context string representation of
1203 * the context structure `context' into a dynamically
1204 * allocated string of the correct size. Set `*scontext'
1205 * to point to this string and set `*scontext_len' to
1206 * the length of the string.
1208 static int context_struct_to_string(struct policydb *p,
1209 struct context *context,
1210 char **scontext, u32 *scontext_len)
1219 *scontext_len = context->len;
1221 *scontext = kstrdup(context->str, GFP_ATOMIC);
1228 /* Compute the size of the context. */
1229 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1230 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1231 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1232 *scontext_len += mls_compute_context_len(p, context);
1237 /* Allocate space for the context; caller must free this space. */
1238 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1241 *scontext = scontextp;
1244 * Copy the user name, role name and type name into the context.
1246 scontextp += sprintf(scontextp, "%s:%s:%s",
1247 sym_name(p, SYM_USERS, context->user - 1),
1248 sym_name(p, SYM_ROLES, context->role - 1),
1249 sym_name(p, SYM_TYPES, context->type - 1));
1251 mls_sid_to_context(p, context, &scontextp);
1258 #include "initial_sid_to_string.h"
1260 const char *security_get_initial_sid_context(u32 sid)
1262 if (unlikely(sid > SECINITSID_NUM))
1264 return initial_sid_to_string[sid];
1267 static int security_sid_to_context_core(struct selinux_state *state,
1268 u32 sid, char **scontext,
1269 u32 *scontext_len, int force,
1272 struct policydb *policydb;
1273 struct sidtab *sidtab;
1274 struct context *context;
1281 if (!state->initialized) {
1282 if (sid <= SECINITSID_NUM) {
1285 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1288 scontextp = kmemdup(initial_sid_to_string[sid],
1289 *scontext_len, GFP_ATOMIC);
1294 *scontext = scontextp;
1297 pr_err("SELinux: %s: called before initial "
1298 "load_policy on unknown SID %d\n", __func__, sid);
1302 read_lock(&state->ss->policy_rwlock);
1303 policydb = &state->ss->policydb;
1304 sidtab = state->ss->sidtab;
1306 context = sidtab_search_force(sidtab, sid);
1308 context = sidtab_search(sidtab, sid);
1310 pr_err("SELinux: %s: unrecognized SID %d\n",
1315 if (only_invalid && !context->len)
1318 rc = context_struct_to_string(policydb, context, scontext,
1321 read_unlock(&state->ss->policy_rwlock);
1328 * security_sid_to_context - Obtain a context for a given SID.
1329 * @sid: security identifier, SID
1330 * @scontext: security context
1331 * @scontext_len: length in bytes
1333 * Write the string representation of the context associated with @sid
1334 * into a dynamically allocated string of the correct size. Set @scontext
1335 * to point to this string and set @scontext_len to the length of the string.
1337 int security_sid_to_context(struct selinux_state *state,
1338 u32 sid, char **scontext, u32 *scontext_len)
1340 return security_sid_to_context_core(state, sid, scontext,
1341 scontext_len, 0, 0);
1344 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1345 char **scontext, u32 *scontext_len)
1347 return security_sid_to_context_core(state, sid, scontext,
1348 scontext_len, 1, 0);
1352 * security_sid_to_context_inval - Obtain a context for a given SID if it
1354 * @sid: security identifier, SID
1355 * @scontext: security context
1356 * @scontext_len: length in bytes
1358 * Write the string representation of the context associated with @sid
1359 * into a dynamically allocated string of the correct size, but only if the
1360 * context is invalid in the current policy. Set @scontext to point to
1361 * this string (or NULL if the context is valid) and set @scontext_len to
1362 * the length of the string (or 0 if the context is valid).
1364 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1365 char **scontext, u32 *scontext_len)
1367 return security_sid_to_context_core(state, sid, scontext,
1368 scontext_len, 1, 1);
1372 * Caveat: Mutates scontext.
1374 static int string_to_context_struct(struct policydb *pol,
1375 struct sidtab *sidtabp,
1377 struct context *ctx,
1380 struct role_datum *role;
1381 struct type_datum *typdatum;
1382 struct user_datum *usrdatum;
1383 char *scontextp, *p, oldc;
1388 /* Parse the security context. */
1391 scontextp = (char *) scontext;
1393 /* Extract the user. */
1395 while (*p && *p != ':')
1403 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1407 ctx->user = usrdatum->value;
1411 while (*p && *p != ':')
1419 role = hashtab_search(pol->p_roles.table, scontextp);
1422 ctx->role = role->value;
1426 while (*p && *p != ':')
1431 typdatum = hashtab_search(pol->p_types.table, scontextp);
1432 if (!typdatum || typdatum->attribute)
1435 ctx->type = typdatum->value;
1437 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1441 /* Check the validity of the new context. */
1443 if (!policydb_context_isvalid(pol, ctx))
1448 context_destroy(ctx);
1452 static int security_context_to_sid_core(struct selinux_state *state,
1453 const char *scontext, u32 scontext_len,
1454 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1457 struct policydb *policydb;
1458 struct sidtab *sidtab;
1459 char *scontext2, *str = NULL;
1460 struct context context;
1463 /* An empty security context is never valid. */
1467 /* Copy the string to allow changes and ensure a NUL terminator */
1468 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1472 if (!state->initialized) {
1475 for (i = 1; i < SECINITSID_NUM; i++) {
1476 if (!strcmp(initial_sid_to_string[i], scontext2)) {
1481 *sid = SECINITSID_KERNEL;
1487 /* Save another copy for storing in uninterpreted form */
1489 str = kstrdup(scontext2, gfp_flags);
1493 read_lock(&state->ss->policy_rwlock);
1494 policydb = &state->ss->policydb;
1495 sidtab = state->ss->sidtab;
1496 rc = string_to_context_struct(policydb, sidtab, scontext2,
1498 if (rc == -EINVAL && force) {
1500 context.len = strlen(str) + 1;
1504 rc = sidtab_context_to_sid(sidtab, &context, sid);
1505 context_destroy(&context);
1507 read_unlock(&state->ss->policy_rwlock);
1515 * security_context_to_sid - Obtain a SID for a given security context.
1516 * @scontext: security context
1517 * @scontext_len: length in bytes
1518 * @sid: security identifier, SID
1519 * @gfp: context for the allocation
1521 * Obtains a SID associated with the security context that
1522 * has the string representation specified by @scontext.
1523 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1524 * memory is available, or 0 on success.
1526 int security_context_to_sid(struct selinux_state *state,
1527 const char *scontext, u32 scontext_len, u32 *sid,
1530 return security_context_to_sid_core(state, scontext, scontext_len,
1531 sid, SECSID_NULL, gfp, 0);
1534 int security_context_str_to_sid(struct selinux_state *state,
1535 const char *scontext, u32 *sid, gfp_t gfp)
1537 return security_context_to_sid(state, scontext, strlen(scontext),
1542 * security_context_to_sid_default - Obtain a SID for a given security context,
1543 * falling back to specified default if needed.
1545 * @scontext: security context
1546 * @scontext_len: length in bytes
1547 * @sid: security identifier, SID
1548 * @def_sid: default SID to assign on error
1550 * Obtains a SID associated with the security context that
1551 * has the string representation specified by @scontext.
1552 * The default SID is passed to the MLS layer to be used to allow
1553 * kernel labeling of the MLS field if the MLS field is not present
1554 * (for upgrading to MLS without full relabel).
1555 * Implicitly forces adding of the context even if it cannot be mapped yet.
1556 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1557 * memory is available, or 0 on success.
1559 int security_context_to_sid_default(struct selinux_state *state,
1560 const char *scontext, u32 scontext_len,
1561 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1563 return security_context_to_sid_core(state, scontext, scontext_len,
1564 sid, def_sid, gfp_flags, 1);
1567 int security_context_to_sid_force(struct selinux_state *state,
1568 const char *scontext, u32 scontext_len,
1571 return security_context_to_sid_core(state, scontext, scontext_len,
1572 sid, SECSID_NULL, GFP_KERNEL, 1);
1575 static int compute_sid_handle_invalid_context(
1576 struct selinux_state *state,
1577 struct context *scontext,
1578 struct context *tcontext,
1580 struct context *newcontext)
1582 struct policydb *policydb = &state->ss->policydb;
1583 char *s = NULL, *t = NULL, *n = NULL;
1584 u32 slen, tlen, nlen;
1585 struct audit_buffer *ab;
1587 if (context_struct_to_string(policydb, scontext, &s, &slen))
1589 if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1591 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1593 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1594 audit_log_format(ab,
1595 "op=security_compute_sid invalid_context=");
1596 /* no need to record the NUL with untrusted strings */
1597 audit_log_n_untrustedstring(ab, n, nlen - 1);
1598 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1599 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1605 if (!enforcing_enabled(state))
1610 static void filename_compute_type(struct policydb *policydb,
1611 struct context *newcontext,
1612 u32 stype, u32 ttype, u16 tclass,
1613 const char *objname)
1615 struct filename_trans ft;
1616 struct filename_trans_datum *otype;
1619 * Most filename trans rules are going to live in specific directories
1620 * like /dev or /var/run. This bitmap will quickly skip rule searches
1621 * if the ttype does not contain any rules.
1623 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1631 otype = hashtab_search(policydb->filename_trans, &ft);
1633 newcontext->type = otype->otype;
1636 static int security_compute_sid(struct selinux_state *state,
1641 const char *objname,
1645 struct policydb *policydb;
1646 struct sidtab *sidtab;
1647 struct class_datum *cladatum = NULL;
1648 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1649 struct role_trans *roletr = NULL;
1650 struct avtab_key avkey;
1651 struct avtab_datum *avdatum;
1652 struct avtab_node *node;
1657 if (!state->initialized) {
1658 switch (orig_tclass) {
1659 case SECCLASS_PROCESS: /* kernel value */
1669 context_init(&newcontext);
1671 read_lock(&state->ss->policy_rwlock);
1674 tclass = unmap_class(&state->ss->map, orig_tclass);
1675 sock = security_is_socket_class(orig_tclass);
1677 tclass = orig_tclass;
1678 sock = security_is_socket_class(map_class(&state->ss->map,
1682 policydb = &state->ss->policydb;
1683 sidtab = state->ss->sidtab;
1685 scontext = sidtab_search(sidtab, ssid);
1687 pr_err("SELinux: %s: unrecognized SID %d\n",
1692 tcontext = sidtab_search(sidtab, tsid);
1694 pr_err("SELinux: %s: unrecognized SID %d\n",
1700 if (tclass && tclass <= policydb->p_classes.nprim)
1701 cladatum = policydb->class_val_to_struct[tclass - 1];
1703 /* Set the user identity. */
1704 switch (specified) {
1705 case AVTAB_TRANSITION:
1707 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1708 newcontext.user = tcontext->user;
1710 /* notice this gets both DEFAULT_SOURCE and unset */
1711 /* Use the process user identity. */
1712 newcontext.user = scontext->user;
1716 /* Use the related object owner. */
1717 newcontext.user = tcontext->user;
1721 /* Set the role to default values. */
1722 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1723 newcontext.role = scontext->role;
1724 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1725 newcontext.role = tcontext->role;
1727 if ((tclass == policydb->process_class) || (sock == true))
1728 newcontext.role = scontext->role;
1730 newcontext.role = OBJECT_R_VAL;
1733 /* Set the type to default values. */
1734 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1735 newcontext.type = scontext->type;
1736 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1737 newcontext.type = tcontext->type;
1739 if ((tclass == policydb->process_class) || (sock == true)) {
1740 /* Use the type of process. */
1741 newcontext.type = scontext->type;
1743 /* Use the type of the related object. */
1744 newcontext.type = tcontext->type;
1748 /* Look for a type transition/member/change rule. */
1749 avkey.source_type = scontext->type;
1750 avkey.target_type = tcontext->type;
1751 avkey.target_class = tclass;
1752 avkey.specified = specified;
1753 avdatum = avtab_search(&policydb->te_avtab, &avkey);
1755 /* If no permanent rule, also check for enabled conditional rules */
1757 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1758 for (; node; node = avtab_search_node_next(node, specified)) {
1759 if (node->key.specified & AVTAB_ENABLED) {
1760 avdatum = &node->datum;
1767 /* Use the type from the type transition/member/change rule. */
1768 newcontext.type = avdatum->u.data;
1771 /* if we have a objname this is a file trans check so check those rules */
1773 filename_compute_type(policydb, &newcontext, scontext->type,
1774 tcontext->type, tclass, objname);
1776 /* Check for class-specific changes. */
1777 if (specified & AVTAB_TRANSITION) {
1778 /* Look for a role transition rule. */
1779 for (roletr = policydb->role_tr; roletr;
1780 roletr = roletr->next) {
1781 if ((roletr->role == scontext->role) &&
1782 (roletr->type == tcontext->type) &&
1783 (roletr->tclass == tclass)) {
1784 /* Use the role transition rule. */
1785 newcontext.role = roletr->new_role;
1791 /* Set the MLS attributes.
1792 This is done last because it may allocate memory. */
1793 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1798 /* Check the validity of the context. */
1799 if (!policydb_context_isvalid(policydb, &newcontext)) {
1800 rc = compute_sid_handle_invalid_context(state, scontext,
1807 /* Obtain the sid for the context. */
1808 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1810 read_unlock(&state->ss->policy_rwlock);
1811 context_destroy(&newcontext);
1817 * security_transition_sid - Compute the SID for a new subject/object.
1818 * @ssid: source security identifier
1819 * @tsid: target security identifier
1820 * @tclass: target security class
1821 * @out_sid: security identifier for new subject/object
1823 * Compute a SID to use for labeling a new subject or object in the
1824 * class @tclass based on a SID pair (@ssid, @tsid).
1825 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1826 * if insufficient memory is available, or %0 if the new SID was
1827 * computed successfully.
1829 int security_transition_sid(struct selinux_state *state,
1830 u32 ssid, u32 tsid, u16 tclass,
1831 const struct qstr *qstr, u32 *out_sid)
1833 return security_compute_sid(state, ssid, tsid, tclass,
1835 qstr ? qstr->name : NULL, out_sid, true);
1838 int security_transition_sid_user(struct selinux_state *state,
1839 u32 ssid, u32 tsid, u16 tclass,
1840 const char *objname, u32 *out_sid)
1842 return security_compute_sid(state, ssid, tsid, tclass,
1844 objname, out_sid, false);
1848 * security_member_sid - Compute the SID for member selection.
1849 * @ssid: source security identifier
1850 * @tsid: target security identifier
1851 * @tclass: target security class
1852 * @out_sid: security identifier for selected member
1854 * Compute a SID to use when selecting a member of a polyinstantiated
1855 * object of class @tclass based on a SID pair (@ssid, @tsid).
1856 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1857 * if insufficient memory is available, or %0 if the SID was
1858 * computed successfully.
1860 int security_member_sid(struct selinux_state *state,
1866 return security_compute_sid(state, ssid, tsid, tclass,
1872 * security_change_sid - Compute the SID for object relabeling.
1873 * @ssid: source security identifier
1874 * @tsid: target security identifier
1875 * @tclass: target security class
1876 * @out_sid: security identifier for selected member
1878 * Compute a SID to use for relabeling an object of class @tclass
1879 * based on a SID pair (@ssid, @tsid).
1880 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1881 * if insufficient memory is available, or %0 if the SID was
1882 * computed successfully.
1884 int security_change_sid(struct selinux_state *state,
1890 return security_compute_sid(state,
1891 ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1895 static inline int convert_context_handle_invalid_context(
1896 struct selinux_state *state,
1897 struct context *context)
1899 struct policydb *policydb = &state->ss->policydb;
1903 if (enforcing_enabled(state))
1906 if (!context_struct_to_string(policydb, context, &s, &len)) {
1907 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
1914 struct convert_context_args {
1915 struct selinux_state *state;
1916 struct policydb *oldp;
1917 struct policydb *newp;
1921 * Convert the values in the security context
1922 * structure `oldc' from the values specified
1923 * in the policy `p->oldp' to the values specified
1924 * in the policy `p->newp', storing the new context
1925 * in `newc'. Verify that the context is valid
1926 * under the new policy.
1928 static int convert_context(struct context *oldc, struct context *newc, void *p)
1930 struct convert_context_args *args;
1931 struct ocontext *oc;
1932 struct role_datum *role;
1933 struct type_datum *typdatum;
1934 struct user_datum *usrdatum;
1942 s = kstrdup(oldc->str, GFP_KERNEL);
1946 rc = string_to_context_struct(args->newp, NULL, s,
1948 if (rc == -EINVAL) {
1950 * Retain string representation for later mapping.
1952 * IMPORTANT: We need to copy the contents of oldc->str
1953 * back into s again because string_to_context_struct()
1954 * may have garbled it.
1956 memcpy(s, oldc->str, oldc->len);
1959 newc->len = oldc->len;
1964 /* Other error condition, e.g. ENOMEM. */
1965 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
1969 pr_info("SELinux: Context %s became valid (mapped).\n",
1976 /* Convert the user. */
1978 usrdatum = hashtab_search(args->newp->p_users.table,
1979 sym_name(args->oldp,
1980 SYM_USERS, oldc->user - 1));
1983 newc->user = usrdatum->value;
1985 /* Convert the role. */
1987 role = hashtab_search(args->newp->p_roles.table,
1988 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
1991 newc->role = role->value;
1993 /* Convert the type. */
1995 typdatum = hashtab_search(args->newp->p_types.table,
1996 sym_name(args->oldp,
1997 SYM_TYPES, oldc->type - 1));
2000 newc->type = typdatum->value;
2002 /* Convert the MLS fields if dealing with MLS policies */
2003 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2004 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2007 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2009 * Switching between non-MLS and MLS policy:
2010 * ensure that the MLS fields of the context for all
2011 * existing entries in the sidtab are filled in with a
2012 * suitable default value, likely taken from one of the
2015 oc = args->newp->ocontexts[OCON_ISID];
2016 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2020 pr_err("SELinux: unable to look up"
2021 " the initial SIDs list\n");
2024 rc = mls_range_set(newc, &oc->context[0].range);
2029 /* Check the validity of the new context. */
2030 if (!policydb_context_isvalid(args->newp, newc)) {
2031 rc = convert_context_handle_invalid_context(args->state, oldc);
2038 /* Map old representation to string and save it. */
2039 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2042 context_destroy(newc);
2045 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2050 static void security_load_policycaps(struct selinux_state *state)
2052 struct policydb *p = &state->ss->policydb;
2054 struct ebitmap_node *node;
2056 for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2057 state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2059 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2060 pr_info("SELinux: policy capability %s=%d\n",
2061 selinux_policycap_names[i],
2062 ebitmap_get_bit(&p->policycaps, i));
2064 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2065 if (i >= ARRAY_SIZE(selinux_policycap_names))
2066 pr_info("SELinux: unknown policy capability %u\n",
2071 static int security_preserve_bools(struct selinux_state *state,
2072 struct policydb *newpolicydb);
2075 * security_load_policy - Load a security policy configuration.
2076 * @data: binary policy data
2077 * @len: length of data in bytes
2079 * Load a new set of security policy configuration data,
2080 * validate it and convert the SID table as necessary.
2081 * This function will flush the access vector cache after
2082 * loading the new policy.
2084 int security_load_policy(struct selinux_state *state, void *data, size_t len)
2086 struct policydb *policydb;
2087 struct sidtab *oldsidtab, *newsidtab;
2088 struct policydb *oldpolicydb, *newpolicydb;
2089 struct selinux_mapping *oldmapping;
2090 struct selinux_map newmap;
2091 struct sidtab_convert_params convert_params;
2092 struct convert_context_args args;
2095 struct policy_file file = { data, len }, *fp = &file;
2097 oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2102 newpolicydb = oldpolicydb + 1;
2104 policydb = &state->ss->policydb;
2106 newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2112 if (!state->initialized) {
2113 rc = policydb_read(policydb, fp);
2119 policydb->len = len;
2120 rc = selinux_set_mapping(policydb, secclass_map,
2124 policydb_destroy(policydb);
2128 rc = policydb_load_isids(policydb, newsidtab);
2131 policydb_destroy(policydb);
2135 state->ss->sidtab = newsidtab;
2136 security_load_policycaps(state);
2137 state->initialized = 1;
2138 seqno = ++state->ss->latest_granting;
2139 selinux_complete_init();
2140 avc_ss_reset(state->avc, seqno);
2141 selnl_notify_policyload(seqno);
2142 selinux_status_update_policyload(state, seqno);
2143 selinux_netlbl_cache_invalidate();
2144 selinux_xfrm_notify_policyload();
2148 rc = policydb_read(newpolicydb, fp);
2154 newpolicydb->len = len;
2155 /* If switching between different policy types, log MLS status */
2156 if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2157 pr_info("SELinux: Disabling MLS support...\n");
2158 else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2159 pr_info("SELinux: Enabling MLS support...\n");
2161 rc = policydb_load_isids(newpolicydb, newsidtab);
2163 pr_err("SELinux: unable to load the initial SIDs\n");
2164 policydb_destroy(newpolicydb);
2169 rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2173 rc = security_preserve_bools(state, newpolicydb);
2175 pr_err("SELinux: unable to preserve booleans\n");
2179 oldsidtab = state->ss->sidtab;
2182 * Convert the internal representations of contexts
2183 * in the new SID table.
2186 args.oldp = policydb;
2187 args.newp = newpolicydb;
2189 convert_params.func = convert_context;
2190 convert_params.args = &args;
2191 convert_params.target = newsidtab;
2193 rc = sidtab_convert(oldsidtab, &convert_params);
2195 pr_err("SELinux: unable to convert the internal"
2196 " representation of contexts in the new SID"
2201 /* Save the old policydb and SID table to free later. */
2202 memcpy(oldpolicydb, policydb, sizeof(*policydb));
2204 /* Install the new policydb and SID table. */
2205 write_lock_irq(&state->ss->policy_rwlock);
2206 memcpy(policydb, newpolicydb, sizeof(*policydb));
2207 state->ss->sidtab = newsidtab;
2208 security_load_policycaps(state);
2209 oldmapping = state->ss->map.mapping;
2210 state->ss->map.mapping = newmap.mapping;
2211 state->ss->map.size = newmap.size;
2212 seqno = ++state->ss->latest_granting;
2213 write_unlock_irq(&state->ss->policy_rwlock);
2215 /* Free the old policydb and SID table. */
2216 policydb_destroy(oldpolicydb);
2217 sidtab_destroy(oldsidtab);
2221 avc_ss_reset(state->avc, seqno);
2222 selnl_notify_policyload(seqno);
2223 selinux_status_update_policyload(state, seqno);
2224 selinux_netlbl_cache_invalidate();
2225 selinux_xfrm_notify_policyload();
2231 kfree(newmap.mapping);
2232 sidtab_destroy(newsidtab);
2234 policydb_destroy(newpolicydb);
2241 size_t security_policydb_len(struct selinux_state *state)
2243 struct policydb *p = &state->ss->policydb;
2246 read_lock(&state->ss->policy_rwlock);
2248 read_unlock(&state->ss->policy_rwlock);
2254 * security_port_sid - Obtain the SID for a port.
2255 * @protocol: protocol number
2256 * @port: port number
2257 * @out_sid: security identifier
2259 int security_port_sid(struct selinux_state *state,
2260 u8 protocol, u16 port, u32 *out_sid)
2262 struct policydb *policydb;
2263 struct sidtab *sidtab;
2267 read_lock(&state->ss->policy_rwlock);
2269 policydb = &state->ss->policydb;
2270 sidtab = state->ss->sidtab;
2272 c = policydb->ocontexts[OCON_PORT];
2274 if (c->u.port.protocol == protocol &&
2275 c->u.port.low_port <= port &&
2276 c->u.port.high_port >= port)
2283 rc = sidtab_context_to_sid(sidtab,
2289 *out_sid = c->sid[0];
2291 *out_sid = SECINITSID_PORT;
2295 read_unlock(&state->ss->policy_rwlock);
2300 * security_pkey_sid - Obtain the SID for a pkey.
2301 * @subnet_prefix: Subnet Prefix
2302 * @pkey_num: pkey number
2303 * @out_sid: security identifier
2305 int security_ib_pkey_sid(struct selinux_state *state,
2306 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2308 struct policydb *policydb;
2309 struct sidtab *sidtab;
2313 read_lock(&state->ss->policy_rwlock);
2315 policydb = &state->ss->policydb;
2316 sidtab = state->ss->sidtab;
2318 c = policydb->ocontexts[OCON_IBPKEY];
2320 if (c->u.ibpkey.low_pkey <= pkey_num &&
2321 c->u.ibpkey.high_pkey >= pkey_num &&
2322 c->u.ibpkey.subnet_prefix == subnet_prefix)
2330 rc = sidtab_context_to_sid(sidtab,
2336 *out_sid = c->sid[0];
2338 *out_sid = SECINITSID_UNLABELED;
2341 read_unlock(&state->ss->policy_rwlock);
2346 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2347 * @dev_name: device name
2348 * @port: port number
2349 * @out_sid: security identifier
2351 int security_ib_endport_sid(struct selinux_state *state,
2352 const char *dev_name, u8 port_num, u32 *out_sid)
2354 struct policydb *policydb;
2355 struct sidtab *sidtab;
2359 read_lock(&state->ss->policy_rwlock);
2361 policydb = &state->ss->policydb;
2362 sidtab = state->ss->sidtab;
2364 c = policydb->ocontexts[OCON_IBENDPORT];
2366 if (c->u.ibendport.port == port_num &&
2367 !strncmp(c->u.ibendport.dev_name,
2369 IB_DEVICE_NAME_MAX))
2377 rc = sidtab_context_to_sid(sidtab,
2383 *out_sid = c->sid[0];
2385 *out_sid = SECINITSID_UNLABELED;
2388 read_unlock(&state->ss->policy_rwlock);
2393 * security_netif_sid - Obtain the SID for a network interface.
2394 * @name: interface name
2395 * @if_sid: interface SID
2397 int security_netif_sid(struct selinux_state *state,
2398 char *name, u32 *if_sid)
2400 struct policydb *policydb;
2401 struct sidtab *sidtab;
2405 read_lock(&state->ss->policy_rwlock);
2407 policydb = &state->ss->policydb;
2408 sidtab = state->ss->sidtab;
2410 c = policydb->ocontexts[OCON_NETIF];
2412 if (strcmp(name, c->u.name) == 0)
2418 if (!c->sid[0] || !c->sid[1]) {
2419 rc = sidtab_context_to_sid(sidtab,
2424 rc = sidtab_context_to_sid(sidtab,
2430 *if_sid = c->sid[0];
2432 *if_sid = SECINITSID_NETIF;
2435 read_unlock(&state->ss->policy_rwlock);
2439 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2443 for (i = 0; i < 4; i++)
2444 if (addr[i] != (input[i] & mask[i])) {
2453 * security_node_sid - Obtain the SID for a node (host).
2454 * @domain: communication domain aka address family
2456 * @addrlen: address length in bytes
2457 * @out_sid: security identifier
2459 int security_node_sid(struct selinux_state *state,
2465 struct policydb *policydb;
2466 struct sidtab *sidtab;
2470 read_lock(&state->ss->policy_rwlock);
2472 policydb = &state->ss->policydb;
2473 sidtab = state->ss->sidtab;
2480 if (addrlen != sizeof(u32))
2483 addr = *((u32 *)addrp);
2485 c = policydb->ocontexts[OCON_NODE];
2487 if (c->u.node.addr == (addr & c->u.node.mask))
2496 if (addrlen != sizeof(u64) * 2)
2498 c = policydb->ocontexts[OCON_NODE6];
2500 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2509 *out_sid = SECINITSID_NODE;
2515 rc = sidtab_context_to_sid(sidtab,
2521 *out_sid = c->sid[0];
2523 *out_sid = SECINITSID_NODE;
2528 read_unlock(&state->ss->policy_rwlock);
2535 * security_get_user_sids - Obtain reachable SIDs for a user.
2536 * @fromsid: starting SID
2537 * @username: username
2538 * @sids: array of reachable SIDs for user
2539 * @nel: number of elements in @sids
2541 * Generate the set of SIDs for legal security contexts
2542 * for a given user that can be reached by @fromsid.
2543 * Set *@sids to point to a dynamically allocated
2544 * array containing the set of SIDs. Set *@nel to the
2545 * number of elements in the array.
2548 int security_get_user_sids(struct selinux_state *state,
2554 struct policydb *policydb;
2555 struct sidtab *sidtab;
2556 struct context *fromcon, usercon;
2557 u32 *mysids = NULL, *mysids2, sid;
2558 u32 mynel = 0, maxnel = SIDS_NEL;
2559 struct user_datum *user;
2560 struct role_datum *role;
2561 struct ebitmap_node *rnode, *tnode;
2567 if (!state->initialized)
2570 read_lock(&state->ss->policy_rwlock);
2572 policydb = &state->ss->policydb;
2573 sidtab = state->ss->sidtab;
2575 context_init(&usercon);
2578 fromcon = sidtab_search(sidtab, fromsid);
2583 user = hashtab_search(policydb->p_users.table, username);
2587 usercon.user = user->value;
2590 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2594 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2595 role = policydb->role_val_to_struct[i];
2596 usercon.role = i + 1;
2597 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2598 usercon.type = j + 1;
2600 if (mls_setup_user_range(policydb, fromcon, user,
2604 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2607 if (mynel < maxnel) {
2608 mysids[mynel++] = sid;
2612 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2615 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2618 mysids[mynel++] = sid;
2624 read_unlock(&state->ss->policy_rwlock);
2631 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2636 for (i = 0, j = 0; i < mynel; i++) {
2637 struct av_decision dummy_avd;
2638 rc = avc_has_perm_noaudit(state,
2640 SECCLASS_PROCESS, /* kernel value */
2641 PROCESS__TRANSITION, AVC_STRICT,
2644 mysids2[j++] = mysids[i];
2656 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2657 * @fstype: filesystem type
2658 * @path: path from root of mount
2659 * @sclass: file security class
2660 * @sid: SID for path
2662 * Obtain a SID to use for a file in a filesystem that
2663 * cannot support xattr or use a fixed labeling behavior like
2664 * transition SIDs or task SIDs.
2666 * The caller must acquire the policy_rwlock before calling this function.
2668 static inline int __security_genfs_sid(struct selinux_state *state,
2674 struct policydb *policydb = &state->ss->policydb;
2675 struct sidtab *sidtab = state->ss->sidtab;
2678 struct genfs *genfs;
2682 while (path[0] == '/' && path[1] == '/')
2685 sclass = unmap_class(&state->ss->map, orig_sclass);
2686 *sid = SECINITSID_UNLABELED;
2688 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2689 cmp = strcmp(fstype, genfs->fstype);
2698 for (c = genfs->head; c; c = c->next) {
2699 len = strlen(c->u.name);
2700 if ((!c->v.sclass || sclass == c->v.sclass) &&
2701 (strncmp(c->u.name, path, len) == 0))
2710 rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2722 * security_genfs_sid - Obtain a SID for a file in a filesystem
2723 * @fstype: filesystem type
2724 * @path: path from root of mount
2725 * @sclass: file security class
2726 * @sid: SID for path
2728 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2731 int security_genfs_sid(struct selinux_state *state,
2739 read_lock(&state->ss->policy_rwlock);
2740 retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2741 read_unlock(&state->ss->policy_rwlock);
2746 * security_fs_use - Determine how to handle labeling for a filesystem.
2747 * @sb: superblock in question
2749 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2751 struct policydb *policydb;
2752 struct sidtab *sidtab;
2755 struct superblock_security_struct *sbsec = sb->s_security;
2756 const char *fstype = sb->s_type->name;
2758 read_lock(&state->ss->policy_rwlock);
2760 policydb = &state->ss->policydb;
2761 sidtab = state->ss->sidtab;
2763 c = policydb->ocontexts[OCON_FSUSE];
2765 if (strcmp(fstype, c->u.name) == 0)
2771 sbsec->behavior = c->v.behavior;
2773 rc = sidtab_context_to_sid(sidtab, &c->context[0],
2778 sbsec->sid = c->sid[0];
2780 rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2783 sbsec->behavior = SECURITY_FS_USE_NONE;
2786 sbsec->behavior = SECURITY_FS_USE_GENFS;
2791 read_unlock(&state->ss->policy_rwlock);
2795 int security_get_bools(struct selinux_state *state,
2796 int *len, char ***names, int **values)
2798 struct policydb *policydb;
2801 if (!state->initialized) {
2808 read_lock(&state->ss->policy_rwlock);
2810 policydb = &state->ss->policydb;
2816 *len = policydb->p_bools.nprim;
2821 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2826 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2830 for (i = 0; i < *len; i++) {
2831 (*values)[i] = policydb->bool_val_to_struct[i]->state;
2834 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2841 read_unlock(&state->ss->policy_rwlock);
2845 for (i = 0; i < *len; i++)
2853 int security_set_bools(struct selinux_state *state, int len, int *values)
2855 struct policydb *policydb;
2857 int lenp, seqno = 0;
2858 struct cond_node *cur;
2860 write_lock_irq(&state->ss->policy_rwlock);
2862 policydb = &state->ss->policydb;
2865 lenp = policydb->p_bools.nprim;
2869 for (i = 0; i < len; i++) {
2870 if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2871 audit_log(audit_context(), GFP_ATOMIC,
2872 AUDIT_MAC_CONFIG_CHANGE,
2873 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2874 sym_name(policydb, SYM_BOOLS, i),
2876 policydb->bool_val_to_struct[i]->state,
2877 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2878 audit_get_sessionid(current));
2881 policydb->bool_val_to_struct[i]->state = 1;
2883 policydb->bool_val_to_struct[i]->state = 0;
2886 for (cur = policydb->cond_list; cur; cur = cur->next) {
2887 rc = evaluate_cond_node(policydb, cur);
2892 seqno = ++state->ss->latest_granting;
2895 write_unlock_irq(&state->ss->policy_rwlock);
2897 avc_ss_reset(state->avc, seqno);
2898 selnl_notify_policyload(seqno);
2899 selinux_status_update_policyload(state, seqno);
2900 selinux_xfrm_notify_policyload();
2905 int security_get_bool_value(struct selinux_state *state,
2908 struct policydb *policydb;
2912 read_lock(&state->ss->policy_rwlock);
2914 policydb = &state->ss->policydb;
2917 len = policydb->p_bools.nprim;
2921 rc = policydb->bool_val_to_struct[index]->state;
2923 read_unlock(&state->ss->policy_rwlock);
2927 static int security_preserve_bools(struct selinux_state *state,
2928 struct policydb *policydb)
2930 int rc, nbools = 0, *bvalues = NULL, i;
2931 char **bnames = NULL;
2932 struct cond_bool_datum *booldatum;
2933 struct cond_node *cur;
2935 rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2938 for (i = 0; i < nbools; i++) {
2939 booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2941 booldatum->state = bvalues[i];
2943 for (cur = policydb->cond_list; cur; cur = cur->next) {
2944 rc = evaluate_cond_node(policydb, cur);
2951 for (i = 0; i < nbools; i++)
2960 * security_sid_mls_copy() - computes a new sid based on the given
2961 * sid and the mls portion of mls_sid.
2963 int security_sid_mls_copy(struct selinux_state *state,
2964 u32 sid, u32 mls_sid, u32 *new_sid)
2966 struct policydb *policydb = &state->ss->policydb;
2967 struct sidtab *sidtab = state->ss->sidtab;
2968 struct context *context1;
2969 struct context *context2;
2970 struct context newcon;
2976 if (!state->initialized || !policydb->mls_enabled) {
2981 context_init(&newcon);
2983 read_lock(&state->ss->policy_rwlock);
2986 context1 = sidtab_search(sidtab, sid);
2988 pr_err("SELinux: %s: unrecognized SID %d\n",
2994 context2 = sidtab_search(sidtab, mls_sid);
2996 pr_err("SELinux: %s: unrecognized SID %d\n",
3001 newcon.user = context1->user;
3002 newcon.role = context1->role;
3003 newcon.type = context1->type;
3004 rc = mls_context_cpy(&newcon, context2);
3008 /* Check the validity of the new context. */
3009 if (!policydb_context_isvalid(policydb, &newcon)) {
3010 rc = convert_context_handle_invalid_context(state, &newcon);
3012 if (!context_struct_to_string(policydb, &newcon, &s,
3014 struct audit_buffer *ab;
3016 ab = audit_log_start(audit_context(),
3019 audit_log_format(ab,
3020 "op=security_sid_mls_copy invalid_context=");
3021 /* don't record NUL with untrusted strings */
3022 audit_log_n_untrustedstring(ab, s, len - 1);
3030 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3032 read_unlock(&state->ss->policy_rwlock);
3033 context_destroy(&newcon);
3039 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3040 * @nlbl_sid: NetLabel SID
3041 * @nlbl_type: NetLabel labeling protocol type
3042 * @xfrm_sid: XFRM SID
3045 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3046 * resolved into a single SID it is returned via @peer_sid and the function
3047 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3048 * returns a negative value. A table summarizing the behavior is below:
3050 * | function return | @sid
3051 * ------------------------------+-----------------+-----------------
3052 * no peer labels | 0 | SECSID_NULL
3053 * single peer label | 0 | <peer_label>
3054 * multiple, consistent labels | 0 | <peer_label>
3055 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3058 int security_net_peersid_resolve(struct selinux_state *state,
3059 u32 nlbl_sid, u32 nlbl_type,
3063 struct policydb *policydb = &state->ss->policydb;
3064 struct sidtab *sidtab = state->ss->sidtab;
3066 struct context *nlbl_ctx;
3067 struct context *xfrm_ctx;
3069 *peer_sid = SECSID_NULL;
3071 /* handle the common (which also happens to be the set of easy) cases
3072 * right away, these two if statements catch everything involving a
3073 * single or absent peer SID/label */
3074 if (xfrm_sid == SECSID_NULL) {
3075 *peer_sid = nlbl_sid;
3078 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3079 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3081 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3082 *peer_sid = xfrm_sid;
3087 * We don't need to check initialized here since the only way both
3088 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3089 * security server was initialized and state->initialized was true.
3091 if (!policydb->mls_enabled)
3094 read_lock(&state->ss->policy_rwlock);
3097 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3099 pr_err("SELinux: %s: unrecognized SID %d\n",
3100 __func__, nlbl_sid);
3104 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3106 pr_err("SELinux: %s: unrecognized SID %d\n",
3107 __func__, xfrm_sid);
3110 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3114 /* at present NetLabel SIDs/labels really only carry MLS
3115 * information so if the MLS portion of the NetLabel SID
3116 * matches the MLS portion of the labeled XFRM SID/label
3117 * then pass along the XFRM SID as it is the most
3119 *peer_sid = xfrm_sid;
3121 read_unlock(&state->ss->policy_rwlock);
3125 static int get_classes_callback(void *k, void *d, void *args)
3127 struct class_datum *datum = d;
3128 char *name = k, **classes = args;
3129 int value = datum->value - 1;
3131 classes[value] = kstrdup(name, GFP_ATOMIC);
3132 if (!classes[value])
3138 int security_get_classes(struct selinux_state *state,
3139 char ***classes, int *nclasses)
3141 struct policydb *policydb = &state->ss->policydb;
3144 if (!state->initialized) {
3150 read_lock(&state->ss->policy_rwlock);
3153 *nclasses = policydb->p_classes.nprim;
3154 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3158 rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3162 for (i = 0; i < *nclasses; i++)
3163 kfree((*classes)[i]);
3168 read_unlock(&state->ss->policy_rwlock);
3172 static int get_permissions_callback(void *k, void *d, void *args)
3174 struct perm_datum *datum = d;
3175 char *name = k, **perms = args;
3176 int value = datum->value - 1;
3178 perms[value] = kstrdup(name, GFP_ATOMIC);
3185 int security_get_permissions(struct selinux_state *state,
3186 char *class, char ***perms, int *nperms)
3188 struct policydb *policydb = &state->ss->policydb;
3190 struct class_datum *match;
3192 read_lock(&state->ss->policy_rwlock);
3195 match = hashtab_search(policydb->p_classes.table, class);
3197 pr_err("SELinux: %s: unrecognized class %s\n",
3203 *nperms = match->permissions.nprim;
3204 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3208 if (match->comdatum) {
3209 rc = hashtab_map(match->comdatum->permissions.table,
3210 get_permissions_callback, *perms);
3215 rc = hashtab_map(match->permissions.table, get_permissions_callback,
3221 read_unlock(&state->ss->policy_rwlock);
3225 read_unlock(&state->ss->policy_rwlock);
3226 for (i = 0; i < *nperms; i++)
3232 int security_get_reject_unknown(struct selinux_state *state)
3234 return state->ss->policydb.reject_unknown;
3237 int security_get_allow_unknown(struct selinux_state *state)
3239 return state->ss->policydb.allow_unknown;
3243 * security_policycap_supported - Check for a specific policy capability
3244 * @req_cap: capability
3247 * This function queries the currently loaded policy to see if it supports the
3248 * capability specified by @req_cap. Returns true (1) if the capability is
3249 * supported, false (0) if it isn't supported.
3252 int security_policycap_supported(struct selinux_state *state,
3253 unsigned int req_cap)
3255 struct policydb *policydb = &state->ss->policydb;
3258 read_lock(&state->ss->policy_rwlock);
3259 rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3260 read_unlock(&state->ss->policy_rwlock);
3265 struct selinux_audit_rule {
3267 struct context au_ctxt;
3270 void selinux_audit_rule_free(void *vrule)
3272 struct selinux_audit_rule *rule = vrule;
3275 context_destroy(&rule->au_ctxt);
3280 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3282 struct selinux_state *state = &selinux_state;
3283 struct policydb *policydb = &state->ss->policydb;
3284 struct selinux_audit_rule *tmprule;
3285 struct role_datum *roledatum;
3286 struct type_datum *typedatum;
3287 struct user_datum *userdatum;
3288 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3293 if (!state->initialized)
3297 case AUDIT_SUBJ_USER:
3298 case AUDIT_SUBJ_ROLE:
3299 case AUDIT_SUBJ_TYPE:
3300 case AUDIT_OBJ_USER:
3301 case AUDIT_OBJ_ROLE:
3302 case AUDIT_OBJ_TYPE:
3303 /* only 'equals' and 'not equals' fit user, role, and type */
3304 if (op != Audit_equal && op != Audit_not_equal)
3307 case AUDIT_SUBJ_SEN:
3308 case AUDIT_SUBJ_CLR:
3309 case AUDIT_OBJ_LEV_LOW:
3310 case AUDIT_OBJ_LEV_HIGH:
3311 /* we do not allow a range, indicated by the presence of '-' */
3312 if (strchr(rulestr, '-'))
3316 /* only the above fields are valid */
3320 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3324 context_init(&tmprule->au_ctxt);
3326 read_lock(&state->ss->policy_rwlock);
3328 tmprule->au_seqno = state->ss->latest_granting;
3331 case AUDIT_SUBJ_USER:
3332 case AUDIT_OBJ_USER:
3334 userdatum = hashtab_search(policydb->p_users.table, rulestr);
3337 tmprule->au_ctxt.user = userdatum->value;
3339 case AUDIT_SUBJ_ROLE:
3340 case AUDIT_OBJ_ROLE:
3342 roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3345 tmprule->au_ctxt.role = roledatum->value;
3347 case AUDIT_SUBJ_TYPE:
3348 case AUDIT_OBJ_TYPE:
3350 typedatum = hashtab_search(policydb->p_types.table, rulestr);
3353 tmprule->au_ctxt.type = typedatum->value;
3355 case AUDIT_SUBJ_SEN:
3356 case AUDIT_SUBJ_CLR:
3357 case AUDIT_OBJ_LEV_LOW:
3358 case AUDIT_OBJ_LEV_HIGH:
3359 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3367 read_unlock(&state->ss->policy_rwlock);
3370 selinux_audit_rule_free(tmprule);
3379 /* Check to see if the rule contains any selinux fields */
3380 int selinux_audit_rule_known(struct audit_krule *rule)
3384 for (i = 0; i < rule->field_count; i++) {
3385 struct audit_field *f = &rule->fields[i];
3387 case AUDIT_SUBJ_USER:
3388 case AUDIT_SUBJ_ROLE:
3389 case AUDIT_SUBJ_TYPE:
3390 case AUDIT_SUBJ_SEN:
3391 case AUDIT_SUBJ_CLR:
3392 case AUDIT_OBJ_USER:
3393 case AUDIT_OBJ_ROLE:
3394 case AUDIT_OBJ_TYPE:
3395 case AUDIT_OBJ_LEV_LOW:
3396 case AUDIT_OBJ_LEV_HIGH:
3404 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3406 struct selinux_state *state = &selinux_state;
3407 struct context *ctxt;
3408 struct mls_level *level;
3409 struct selinux_audit_rule *rule = vrule;
3412 if (unlikely(!rule)) {
3413 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3417 read_lock(&state->ss->policy_rwlock);
3419 if (rule->au_seqno < state->ss->latest_granting) {
3424 ctxt = sidtab_search(state->ss->sidtab, sid);
3425 if (unlikely(!ctxt)) {
3426 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3432 /* a field/op pair that is not caught here will simply fall through
3435 case AUDIT_SUBJ_USER:
3436 case AUDIT_OBJ_USER:
3439 match = (ctxt->user == rule->au_ctxt.user);
3441 case Audit_not_equal:
3442 match = (ctxt->user != rule->au_ctxt.user);
3446 case AUDIT_SUBJ_ROLE:
3447 case AUDIT_OBJ_ROLE:
3450 match = (ctxt->role == rule->au_ctxt.role);
3452 case Audit_not_equal:
3453 match = (ctxt->role != rule->au_ctxt.role);
3457 case AUDIT_SUBJ_TYPE:
3458 case AUDIT_OBJ_TYPE:
3461 match = (ctxt->type == rule->au_ctxt.type);
3463 case Audit_not_equal:
3464 match = (ctxt->type != rule->au_ctxt.type);
3468 case AUDIT_SUBJ_SEN:
3469 case AUDIT_SUBJ_CLR:
3470 case AUDIT_OBJ_LEV_LOW:
3471 case AUDIT_OBJ_LEV_HIGH:
3472 level = ((field == AUDIT_SUBJ_SEN ||
3473 field == AUDIT_OBJ_LEV_LOW) ?
3474 &ctxt->range.level[0] : &ctxt->range.level[1]);
3477 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3480 case Audit_not_equal:
3481 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3485 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3487 !mls_level_eq(&rule->au_ctxt.range.level[0],
3491 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3495 match = (mls_level_dom(level,
3496 &rule->au_ctxt.range.level[0]) &&
3497 !mls_level_eq(level,
3498 &rule->au_ctxt.range.level[0]));
3501 match = mls_level_dom(level,
3502 &rule->au_ctxt.range.level[0]);
3508 read_unlock(&state->ss->policy_rwlock);
3512 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3514 static int aurule_avc_callback(u32 event)
3518 if (event == AVC_CALLBACK_RESET && aurule_callback)
3519 err = aurule_callback();
3523 static int __init aurule_init(void)
3527 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3529 panic("avc_add_callback() failed, error %d\n", err);
3533 __initcall(aurule_init);
3535 #ifdef CONFIG_NETLABEL
3537 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3538 * @secattr: the NetLabel packet security attributes
3539 * @sid: the SELinux SID
3542 * Attempt to cache the context in @ctx, which was derived from the packet in
3543 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3544 * already been initialized.
3547 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3552 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3553 if (sid_cache == NULL)
3555 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3556 if (secattr->cache == NULL) {
3562 secattr->cache->free = kfree;
3563 secattr->cache->data = sid_cache;
3564 secattr->flags |= NETLBL_SECATTR_CACHE;
3568 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3569 * @secattr: the NetLabel packet security attributes
3570 * @sid: the SELinux SID
3573 * Convert the given NetLabel security attributes in @secattr into a
3574 * SELinux SID. If the @secattr field does not contain a full SELinux
3575 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3576 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3577 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3578 * conversion for future lookups. Returns zero on success, negative values on
3582 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3583 struct netlbl_lsm_secattr *secattr,
3586 struct policydb *policydb = &state->ss->policydb;
3587 struct sidtab *sidtab = state->ss->sidtab;
3589 struct context *ctx;
3590 struct context ctx_new;
3592 if (!state->initialized) {
3597 read_lock(&state->ss->policy_rwlock);
3599 if (secattr->flags & NETLBL_SECATTR_CACHE)
3600 *sid = *(u32 *)secattr->cache->data;
3601 else if (secattr->flags & NETLBL_SECATTR_SECID)
3602 *sid = secattr->attr.secid;
3603 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3605 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3609 context_init(&ctx_new);
3610 ctx_new.user = ctx->user;
3611 ctx_new.role = ctx->role;
3612 ctx_new.type = ctx->type;
3613 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3614 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3615 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3620 if (!mls_context_isvalid(policydb, &ctx_new))
3623 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3627 security_netlbl_cache_add(secattr, *sid);
3629 ebitmap_destroy(&ctx_new.range.level[0].cat);
3633 read_unlock(&state->ss->policy_rwlock);
3636 ebitmap_destroy(&ctx_new.range.level[0].cat);
3638 read_unlock(&state->ss->policy_rwlock);
3643 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3644 * @sid: the SELinux SID
3645 * @secattr: the NetLabel packet security attributes
3648 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3649 * Returns zero on success, negative values on failure.
3652 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3653 u32 sid, struct netlbl_lsm_secattr *secattr)
3655 struct policydb *policydb = &state->ss->policydb;
3657 struct context *ctx;
3659 if (!state->initialized)
3662 read_lock(&state->ss->policy_rwlock);
3665 ctx = sidtab_search(state->ss->sidtab, sid);
3670 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3672 if (secattr->domain == NULL)
3675 secattr->attr.secid = sid;
3676 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3677 mls_export_netlbl_lvl(policydb, ctx, secattr);
3678 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3680 read_unlock(&state->ss->policy_rwlock);
3683 #endif /* CONFIG_NETLABEL */
3686 * security_read_policy - read the policy.
3687 * @data: binary policy data
3688 * @len: length of data in bytes
3691 int security_read_policy(struct selinux_state *state,
3692 void **data, size_t *len)
3694 struct policydb *policydb = &state->ss->policydb;
3696 struct policy_file fp;
3698 if (!state->initialized)
3701 *len = security_policydb_len(state);
3703 *data = vmalloc_user(*len);
3710 read_lock(&state->ss->policy_rwlock);
3711 rc = policydb_write(policydb, &fp);
3712 read_unlock(&state->ss->policy_rwlock);
3717 *len = (unsigned long)fp.data - (unsigned long)*data;