]> Git Repo - linux.git/blob - kernel/locking/lockdep.c
KVM: arm64: Add support for userspace to suspend a vCPU
[linux.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <[email protected]>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58
59 #include <asm/sections.h>
60
61 #include "lockdep_internals.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/lock.h>
65
66 #ifdef CONFIG_PROVE_LOCKING
67 int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72
73 #ifdef CONFIG_LOCK_STAT
74 int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79
80 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
82
83 static __always_inline bool lockdep_enabled(void)
84 {
85         if (!debug_locks)
86                 return false;
87
88         if (this_cpu_read(lockdep_recursion))
89                 return false;
90
91         if (current->lockdep_recursion)
92                 return false;
93
94         return true;
95 }
96
97 /*
98  * lockdep_lock: protects the lockdep graph, the hashes and the
99  *               class/list/hash allocators.
100  *
101  * This is one of the rare exceptions where it's justified
102  * to use a raw spinlock - we really dont want the spinlock
103  * code to recurse back into the lockdep code...
104  */
105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
106 static struct task_struct *__owner;
107
108 static inline void lockdep_lock(void)
109 {
110         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
111
112         __this_cpu_inc(lockdep_recursion);
113         arch_spin_lock(&__lock);
114         __owner = current;
115 }
116
117 static inline void lockdep_unlock(void)
118 {
119         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
120
121         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
122                 return;
123
124         __owner = NULL;
125         arch_spin_unlock(&__lock);
126         __this_cpu_dec(lockdep_recursion);
127 }
128
129 static inline bool lockdep_assert_locked(void)
130 {
131         return DEBUG_LOCKS_WARN_ON(__owner != current);
132 }
133
134 static struct task_struct *lockdep_selftest_task_struct;
135
136
137 static int graph_lock(void)
138 {
139         lockdep_lock();
140         /*
141          * Make sure that if another CPU detected a bug while
142          * walking the graph we dont change it (while the other
143          * CPU is busy printing out stuff with the graph lock
144          * dropped already)
145          */
146         if (!debug_locks) {
147                 lockdep_unlock();
148                 return 0;
149         }
150         return 1;
151 }
152
153 static inline void graph_unlock(void)
154 {
155         lockdep_unlock();
156 }
157
158 /*
159  * Turn lock debugging off and return with 0 if it was off already,
160  * and also release the graph lock:
161  */
162 static inline int debug_locks_off_graph_unlock(void)
163 {
164         int ret = debug_locks_off();
165
166         lockdep_unlock();
167
168         return ret;
169 }
170
171 unsigned long nr_list_entries;
172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
174
175 /*
176  * All data structures here are protected by the global debug_lock.
177  *
178  * nr_lock_classes is the number of elements of lock_classes[] that is
179  * in use.
180  */
181 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
182 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
184 unsigned long nr_lock_classes;
185 unsigned long nr_zapped_classes;
186 unsigned long max_lock_class_idx;
187 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
188 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
189
190 static inline struct lock_class *hlock_class(struct held_lock *hlock)
191 {
192         unsigned int class_idx = hlock->class_idx;
193
194         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
195         barrier();
196
197         if (!test_bit(class_idx, lock_classes_in_use)) {
198                 /*
199                  * Someone passed in garbage, we give up.
200                  */
201                 DEBUG_LOCKS_WARN_ON(1);
202                 return NULL;
203         }
204
205         /*
206          * At this point, if the passed hlock->class_idx is still garbage,
207          * we just have to live with it
208          */
209         return lock_classes + class_idx;
210 }
211
212 #ifdef CONFIG_LOCK_STAT
213 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
214
215 static inline u64 lockstat_clock(void)
216 {
217         return local_clock();
218 }
219
220 static int lock_point(unsigned long points[], unsigned long ip)
221 {
222         int i;
223
224         for (i = 0; i < LOCKSTAT_POINTS; i++) {
225                 if (points[i] == 0) {
226                         points[i] = ip;
227                         break;
228                 }
229                 if (points[i] == ip)
230                         break;
231         }
232
233         return i;
234 }
235
236 static void lock_time_inc(struct lock_time *lt, u64 time)
237 {
238         if (time > lt->max)
239                 lt->max = time;
240
241         if (time < lt->min || !lt->nr)
242                 lt->min = time;
243
244         lt->total += time;
245         lt->nr++;
246 }
247
248 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
249 {
250         if (!src->nr)
251                 return;
252
253         if (src->max > dst->max)
254                 dst->max = src->max;
255
256         if (src->min < dst->min || !dst->nr)
257                 dst->min = src->min;
258
259         dst->total += src->total;
260         dst->nr += src->nr;
261 }
262
263 struct lock_class_stats lock_stats(struct lock_class *class)
264 {
265         struct lock_class_stats stats;
266         int cpu, i;
267
268         memset(&stats, 0, sizeof(struct lock_class_stats));
269         for_each_possible_cpu(cpu) {
270                 struct lock_class_stats *pcs =
271                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
272
273                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
274                         stats.contention_point[i] += pcs->contention_point[i];
275
276                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
277                         stats.contending_point[i] += pcs->contending_point[i];
278
279                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
280                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
281
282                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
283                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
284
285                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
286                         stats.bounces[i] += pcs->bounces[i];
287         }
288
289         return stats;
290 }
291
292 void clear_lock_stats(struct lock_class *class)
293 {
294         int cpu;
295
296         for_each_possible_cpu(cpu) {
297                 struct lock_class_stats *cpu_stats =
298                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
299
300                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
301         }
302         memset(class->contention_point, 0, sizeof(class->contention_point));
303         memset(class->contending_point, 0, sizeof(class->contending_point));
304 }
305
306 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
307 {
308         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
309 }
310
311 static void lock_release_holdtime(struct held_lock *hlock)
312 {
313         struct lock_class_stats *stats;
314         u64 holdtime;
315
316         if (!lock_stat)
317                 return;
318
319         holdtime = lockstat_clock() - hlock->holdtime_stamp;
320
321         stats = get_lock_stats(hlock_class(hlock));
322         if (hlock->read)
323                 lock_time_inc(&stats->read_holdtime, holdtime);
324         else
325                 lock_time_inc(&stats->write_holdtime, holdtime);
326 }
327 #else
328 static inline void lock_release_holdtime(struct held_lock *hlock)
329 {
330 }
331 #endif
332
333 /*
334  * We keep a global list of all lock classes. The list is only accessed with
335  * the lockdep spinlock lock held. free_lock_classes is a list with free
336  * elements. These elements are linked together by the lock_entry member in
337  * struct lock_class.
338  */
339 static LIST_HEAD(all_lock_classes);
340 static LIST_HEAD(free_lock_classes);
341
342 /**
343  * struct pending_free - information about data structures about to be freed
344  * @zapped: Head of a list with struct lock_class elements.
345  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
346  *      are about to be freed.
347  */
348 struct pending_free {
349         struct list_head zapped;
350         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
351 };
352
353 /**
354  * struct delayed_free - data structures used for delayed freeing
355  *
356  * A data structure for delayed freeing of data structures that may be
357  * accessed by RCU readers at the time these were freed.
358  *
359  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
360  * @index:     Index of @pf to which freed data structures are added.
361  * @scheduled: Whether or not an RCU callback has been scheduled.
362  * @pf:        Array with information about data structures about to be freed.
363  */
364 static struct delayed_free {
365         struct rcu_head         rcu_head;
366         int                     index;
367         int                     scheduled;
368         struct pending_free     pf[2];
369 } delayed_free;
370
371 /*
372  * The lockdep classes are in a hash-table as well, for fast lookup:
373  */
374 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
375 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
376 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
377 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
378
379 static struct hlist_head classhash_table[CLASSHASH_SIZE];
380
381 /*
382  * We put the lock dependency chains into a hash-table as well, to cache
383  * their existence:
384  */
385 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
386 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
387 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
388 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
389
390 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
391
392 /*
393  * the id of held_lock
394  */
395 static inline u16 hlock_id(struct held_lock *hlock)
396 {
397         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
398
399         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
400 }
401
402 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
403 {
404         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
405 }
406
407 /*
408  * The hash key of the lock dependency chains is a hash itself too:
409  * it's a hash of all locks taken up to that lock, including that lock.
410  * It's a 64-bit hash, because it's important for the keys to be
411  * unique.
412  */
413 static inline u64 iterate_chain_key(u64 key, u32 idx)
414 {
415         u32 k0 = key, k1 = key >> 32;
416
417         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
418
419         return k0 | (u64)k1 << 32;
420 }
421
422 void lockdep_init_task(struct task_struct *task)
423 {
424         task->lockdep_depth = 0; /* no locks held yet */
425         task->curr_chain_key = INITIAL_CHAIN_KEY;
426         task->lockdep_recursion = 0;
427 }
428
429 static __always_inline void lockdep_recursion_inc(void)
430 {
431         __this_cpu_inc(lockdep_recursion);
432 }
433
434 static __always_inline void lockdep_recursion_finish(void)
435 {
436         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
437                 __this_cpu_write(lockdep_recursion, 0);
438 }
439
440 void lockdep_set_selftest_task(struct task_struct *task)
441 {
442         lockdep_selftest_task_struct = task;
443 }
444
445 /*
446  * Debugging switches:
447  */
448
449 #define VERBOSE                 0
450 #define VERY_VERBOSE            0
451
452 #if VERBOSE
453 # define HARDIRQ_VERBOSE        1
454 # define SOFTIRQ_VERBOSE        1
455 #else
456 # define HARDIRQ_VERBOSE        0
457 # define SOFTIRQ_VERBOSE        0
458 #endif
459
460 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
461 /*
462  * Quick filtering for interesting events:
463  */
464 static int class_filter(struct lock_class *class)
465 {
466 #if 0
467         /* Example */
468         if (class->name_version == 1 &&
469                         !strcmp(class->name, "lockname"))
470                 return 1;
471         if (class->name_version == 1 &&
472                         !strcmp(class->name, "&struct->lockfield"))
473                 return 1;
474 #endif
475         /* Filter everything else. 1 would be to allow everything else */
476         return 0;
477 }
478 #endif
479
480 static int verbose(struct lock_class *class)
481 {
482 #if VERBOSE
483         return class_filter(class);
484 #endif
485         return 0;
486 }
487
488 static void print_lockdep_off(const char *bug_msg)
489 {
490         printk(KERN_DEBUG "%s\n", bug_msg);
491         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
492 #ifdef CONFIG_LOCK_STAT
493         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
494 #endif
495 }
496
497 unsigned long nr_stack_trace_entries;
498
499 #ifdef CONFIG_PROVE_LOCKING
500 /**
501  * struct lock_trace - single stack backtrace
502  * @hash_entry: Entry in a stack_trace_hash[] list.
503  * @hash:       jhash() of @entries.
504  * @nr_entries: Number of entries in @entries.
505  * @entries:    Actual stack backtrace.
506  */
507 struct lock_trace {
508         struct hlist_node       hash_entry;
509         u32                     hash;
510         u32                     nr_entries;
511         unsigned long           entries[] __aligned(sizeof(unsigned long));
512 };
513 #define LOCK_TRACE_SIZE_IN_LONGS                                \
514         (sizeof(struct lock_trace) / sizeof(unsigned long))
515 /*
516  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
517  */
518 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
519 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
520
521 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
522 {
523         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
524                 memcmp(t1->entries, t2->entries,
525                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
526 }
527
528 static struct lock_trace *save_trace(void)
529 {
530         struct lock_trace *trace, *t2;
531         struct hlist_head *hash_head;
532         u32 hash;
533         int max_entries;
534
535         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
536         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
537
538         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
539         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
540                 LOCK_TRACE_SIZE_IN_LONGS;
541
542         if (max_entries <= 0) {
543                 if (!debug_locks_off_graph_unlock())
544                         return NULL;
545
546                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
547                 dump_stack();
548
549                 return NULL;
550         }
551         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
552
553         hash = jhash(trace->entries, trace->nr_entries *
554                      sizeof(trace->entries[0]), 0);
555         trace->hash = hash;
556         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
557         hlist_for_each_entry(t2, hash_head, hash_entry) {
558                 if (traces_identical(trace, t2))
559                         return t2;
560         }
561         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
562         hlist_add_head(&trace->hash_entry, hash_head);
563
564         return trace;
565 }
566
567 /* Return the number of stack traces in the stack_trace[] array. */
568 u64 lockdep_stack_trace_count(void)
569 {
570         struct lock_trace *trace;
571         u64 c = 0;
572         int i;
573
574         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
575                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
576                         c++;
577                 }
578         }
579
580         return c;
581 }
582
583 /* Return the number of stack hash chains that have at least one stack trace. */
584 u64 lockdep_stack_hash_count(void)
585 {
586         u64 c = 0;
587         int i;
588
589         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
590                 if (!hlist_empty(&stack_trace_hash[i]))
591                         c++;
592
593         return c;
594 }
595 #endif
596
597 unsigned int nr_hardirq_chains;
598 unsigned int nr_softirq_chains;
599 unsigned int nr_process_chains;
600 unsigned int max_lockdep_depth;
601
602 #ifdef CONFIG_DEBUG_LOCKDEP
603 /*
604  * Various lockdep statistics:
605  */
606 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
607 #endif
608
609 #ifdef CONFIG_PROVE_LOCKING
610 /*
611  * Locking printouts:
612  */
613
614 #define __USAGE(__STATE)                                                \
615         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
616         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
617         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
618         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
619
620 static const char *usage_str[] =
621 {
622 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
623 #include "lockdep_states.h"
624 #undef LOCKDEP_STATE
625         [LOCK_USED] = "INITIAL USE",
626         [LOCK_USED_READ] = "INITIAL READ USE",
627         /* abused as string storage for verify_lock_unused() */
628         [LOCK_USAGE_STATES] = "IN-NMI",
629 };
630 #endif
631
632 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
633 {
634         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
635 }
636
637 static inline unsigned long lock_flag(enum lock_usage_bit bit)
638 {
639         return 1UL << bit;
640 }
641
642 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
643 {
644         /*
645          * The usage character defaults to '.' (i.e., irqs disabled and not in
646          * irq context), which is the safest usage category.
647          */
648         char c = '.';
649
650         /*
651          * The order of the following usage checks matters, which will
652          * result in the outcome character as follows:
653          *
654          * - '+': irq is enabled and not in irq context
655          * - '-': in irq context and irq is disabled
656          * - '?': in irq context and irq is enabled
657          */
658         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
659                 c = '+';
660                 if (class->usage_mask & lock_flag(bit))
661                         c = '?';
662         } else if (class->usage_mask & lock_flag(bit))
663                 c = '-';
664
665         return c;
666 }
667
668 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
669 {
670         int i = 0;
671
672 #define LOCKDEP_STATE(__STATE)                                          \
673         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
674         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
675 #include "lockdep_states.h"
676 #undef LOCKDEP_STATE
677
678         usage[i] = '\0';
679 }
680
681 static void __print_lock_name(struct lock_class *class)
682 {
683         char str[KSYM_NAME_LEN];
684         const char *name;
685
686         name = class->name;
687         if (!name) {
688                 name = __get_key_name(class->key, str);
689                 printk(KERN_CONT "%s", name);
690         } else {
691                 printk(KERN_CONT "%s", name);
692                 if (class->name_version > 1)
693                         printk(KERN_CONT "#%d", class->name_version);
694                 if (class->subclass)
695                         printk(KERN_CONT "/%d", class->subclass);
696         }
697 }
698
699 static void print_lock_name(struct lock_class *class)
700 {
701         char usage[LOCK_USAGE_CHARS];
702
703         get_usage_chars(class, usage);
704
705         printk(KERN_CONT " (");
706         __print_lock_name(class);
707         printk(KERN_CONT "){%s}-{%d:%d}", usage,
708                         class->wait_type_outer ?: class->wait_type_inner,
709                         class->wait_type_inner);
710 }
711
712 static void print_lockdep_cache(struct lockdep_map *lock)
713 {
714         const char *name;
715         char str[KSYM_NAME_LEN];
716
717         name = lock->name;
718         if (!name)
719                 name = __get_key_name(lock->key->subkeys, str);
720
721         printk(KERN_CONT "%s", name);
722 }
723
724 static void print_lock(struct held_lock *hlock)
725 {
726         /*
727          * We can be called locklessly through debug_show_all_locks() so be
728          * extra careful, the hlock might have been released and cleared.
729          *
730          * If this indeed happens, lets pretend it does not hurt to continue
731          * to print the lock unless the hlock class_idx does not point to a
732          * registered class. The rationale here is: since we don't attempt
733          * to distinguish whether we are in this situation, if it just
734          * happened we can't count on class_idx to tell either.
735          */
736         struct lock_class *lock = hlock_class(hlock);
737
738         if (!lock) {
739                 printk(KERN_CONT "<RELEASED>\n");
740                 return;
741         }
742
743         printk(KERN_CONT "%px", hlock->instance);
744         print_lock_name(lock);
745         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
746 }
747
748 static void lockdep_print_held_locks(struct task_struct *p)
749 {
750         int i, depth = READ_ONCE(p->lockdep_depth);
751
752         if (!depth)
753                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
754         else
755                 printk("%d lock%s held by %s/%d:\n", depth,
756                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
757         /*
758          * It's not reliable to print a task's held locks if it's not sleeping
759          * and it's not the current task.
760          */
761         if (p != current && task_is_running(p))
762                 return;
763         for (i = 0; i < depth; i++) {
764                 printk(" #%d: ", i);
765                 print_lock(p->held_locks + i);
766         }
767 }
768
769 static void print_kernel_ident(void)
770 {
771         printk("%s %.*s %s\n", init_utsname()->release,
772                 (int)strcspn(init_utsname()->version, " "),
773                 init_utsname()->version,
774                 print_tainted());
775 }
776
777 static int very_verbose(struct lock_class *class)
778 {
779 #if VERY_VERBOSE
780         return class_filter(class);
781 #endif
782         return 0;
783 }
784
785 /*
786  * Is this the address of a static object:
787  */
788 #ifdef __KERNEL__
789 /*
790  * Check if an address is part of freed initmem. After initmem is freed,
791  * memory can be allocated from it, and such allocations would then have
792  * addresses within the range [_stext, _end].
793  */
794 #ifndef arch_is_kernel_initmem_freed
795 static int arch_is_kernel_initmem_freed(unsigned long addr)
796 {
797         if (system_state < SYSTEM_FREEING_INITMEM)
798                 return 0;
799
800         return init_section_contains((void *)addr, 1);
801 }
802 #endif
803
804 static int static_obj(const void *obj)
805 {
806         unsigned long start = (unsigned long) &_stext,
807                       end   = (unsigned long) &_end,
808                       addr  = (unsigned long) obj;
809
810         if (arch_is_kernel_initmem_freed(addr))
811                 return 0;
812
813         /*
814          * static variable?
815          */
816         if ((addr >= start) && (addr < end))
817                 return 1;
818
819         /*
820          * in-kernel percpu var?
821          */
822         if (is_kernel_percpu_address(addr))
823                 return 1;
824
825         /*
826          * module static or percpu var?
827          */
828         return is_module_address(addr) || is_module_percpu_address(addr);
829 }
830 #endif
831
832 /*
833  * To make lock name printouts unique, we calculate a unique
834  * class->name_version generation counter. The caller must hold the graph
835  * lock.
836  */
837 static int count_matching_names(struct lock_class *new_class)
838 {
839         struct lock_class *class;
840         int count = 0;
841
842         if (!new_class->name)
843                 return 0;
844
845         list_for_each_entry(class, &all_lock_classes, lock_entry) {
846                 if (new_class->key - new_class->subclass == class->key)
847                         return class->name_version;
848                 if (class->name && !strcmp(class->name, new_class->name))
849                         count = max(count, class->name_version);
850         }
851
852         return count + 1;
853 }
854
855 /* used from NMI context -- must be lockless */
856 static noinstr struct lock_class *
857 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
858 {
859         struct lockdep_subclass_key *key;
860         struct hlist_head *hash_head;
861         struct lock_class *class;
862
863         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
864                 instrumentation_begin();
865                 debug_locks_off();
866                 printk(KERN_ERR
867                         "BUG: looking up invalid subclass: %u\n", subclass);
868                 printk(KERN_ERR
869                         "turning off the locking correctness validator.\n");
870                 dump_stack();
871                 instrumentation_end();
872                 return NULL;
873         }
874
875         /*
876          * If it is not initialised then it has never been locked,
877          * so it won't be present in the hash table.
878          */
879         if (unlikely(!lock->key))
880                 return NULL;
881
882         /*
883          * NOTE: the class-key must be unique. For dynamic locks, a static
884          * lock_class_key variable is passed in through the mutex_init()
885          * (or spin_lock_init()) call - which acts as the key. For static
886          * locks we use the lock object itself as the key.
887          */
888         BUILD_BUG_ON(sizeof(struct lock_class_key) >
889                         sizeof(struct lockdep_map));
890
891         key = lock->key->subkeys + subclass;
892
893         hash_head = classhashentry(key);
894
895         /*
896          * We do an RCU walk of the hash, see lockdep_free_key_range().
897          */
898         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
899                 return NULL;
900
901         hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
902                 if (class->key == key) {
903                         /*
904                          * Huh! same key, different name? Did someone trample
905                          * on some memory? We're most confused.
906                          */
907                         WARN_ON_ONCE(class->name != lock->name &&
908                                      lock->key != &__lockdep_no_validate__);
909                         return class;
910                 }
911         }
912
913         return NULL;
914 }
915
916 /*
917  * Static locks do not have their class-keys yet - for them the key is
918  * the lock object itself. If the lock is in the per cpu area, the
919  * canonical address of the lock (per cpu offset removed) is used.
920  */
921 static bool assign_lock_key(struct lockdep_map *lock)
922 {
923         unsigned long can_addr, addr = (unsigned long)lock;
924
925 #ifdef __KERNEL__
926         /*
927          * lockdep_free_key_range() assumes that struct lock_class_key
928          * objects do not overlap. Since we use the address of lock
929          * objects as class key for static objects, check whether the
930          * size of lock_class_key objects does not exceed the size of
931          * the smallest lock object.
932          */
933         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
934 #endif
935
936         if (__is_kernel_percpu_address(addr, &can_addr))
937                 lock->key = (void *)can_addr;
938         else if (__is_module_percpu_address(addr, &can_addr))
939                 lock->key = (void *)can_addr;
940         else if (static_obj(lock))
941                 lock->key = (void *)lock;
942         else {
943                 /* Debug-check: all keys must be persistent! */
944                 debug_locks_off();
945                 pr_err("INFO: trying to register non-static key.\n");
946                 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
947                 pr_err("you didn't initialize this object before use?\n");
948                 pr_err("turning off the locking correctness validator.\n");
949                 dump_stack();
950                 return false;
951         }
952
953         return true;
954 }
955
956 #ifdef CONFIG_DEBUG_LOCKDEP
957
958 /* Check whether element @e occurs in list @h */
959 static bool in_list(struct list_head *e, struct list_head *h)
960 {
961         struct list_head *f;
962
963         list_for_each(f, h) {
964                 if (e == f)
965                         return true;
966         }
967
968         return false;
969 }
970
971 /*
972  * Check whether entry @e occurs in any of the locks_after or locks_before
973  * lists.
974  */
975 static bool in_any_class_list(struct list_head *e)
976 {
977         struct lock_class *class;
978         int i;
979
980         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
981                 class = &lock_classes[i];
982                 if (in_list(e, &class->locks_after) ||
983                     in_list(e, &class->locks_before))
984                         return true;
985         }
986         return false;
987 }
988
989 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
990 {
991         struct lock_list *e;
992
993         list_for_each_entry(e, h, entry) {
994                 if (e->links_to != c) {
995                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
996                                c->name ? : "(?)",
997                                (unsigned long)(e - list_entries),
998                                e->links_to && e->links_to->name ?
999                                e->links_to->name : "(?)",
1000                                e->class && e->class->name ? e->class->name :
1001                                "(?)");
1002                         return false;
1003                 }
1004         }
1005         return true;
1006 }
1007
1008 #ifdef CONFIG_PROVE_LOCKING
1009 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1010 #endif
1011
1012 static bool check_lock_chain_key(struct lock_chain *chain)
1013 {
1014 #ifdef CONFIG_PROVE_LOCKING
1015         u64 chain_key = INITIAL_CHAIN_KEY;
1016         int i;
1017
1018         for (i = chain->base; i < chain->base + chain->depth; i++)
1019                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1020         /*
1021          * The 'unsigned long long' casts avoid that a compiler warning
1022          * is reported when building tools/lib/lockdep.
1023          */
1024         if (chain->chain_key != chain_key) {
1025                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1026                        (unsigned long long)(chain - lock_chains),
1027                        (unsigned long long)chain->chain_key,
1028                        (unsigned long long)chain_key);
1029                 return false;
1030         }
1031 #endif
1032         return true;
1033 }
1034
1035 static bool in_any_zapped_class_list(struct lock_class *class)
1036 {
1037         struct pending_free *pf;
1038         int i;
1039
1040         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1041                 if (in_list(&class->lock_entry, &pf->zapped))
1042                         return true;
1043         }
1044
1045         return false;
1046 }
1047
1048 static bool __check_data_structures(void)
1049 {
1050         struct lock_class *class;
1051         struct lock_chain *chain;
1052         struct hlist_head *head;
1053         struct lock_list *e;
1054         int i;
1055
1056         /* Check whether all classes occur in a lock list. */
1057         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1058                 class = &lock_classes[i];
1059                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1060                     !in_list(&class->lock_entry, &free_lock_classes) &&
1061                     !in_any_zapped_class_list(class)) {
1062                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1063                                class, class->name ? : "(?)");
1064                         return false;
1065                 }
1066         }
1067
1068         /* Check whether all classes have valid lock lists. */
1069         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1070                 class = &lock_classes[i];
1071                 if (!class_lock_list_valid(class, &class->locks_before))
1072                         return false;
1073                 if (!class_lock_list_valid(class, &class->locks_after))
1074                         return false;
1075         }
1076
1077         /* Check the chain_key of all lock chains. */
1078         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1079                 head = chainhash_table + i;
1080                 hlist_for_each_entry_rcu(chain, head, entry) {
1081                         if (!check_lock_chain_key(chain))
1082                                 return false;
1083                 }
1084         }
1085
1086         /*
1087          * Check whether all list entries that are in use occur in a class
1088          * lock list.
1089          */
1090         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1091                 e = list_entries + i;
1092                 if (!in_any_class_list(&e->entry)) {
1093                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1094                                (unsigned int)(e - list_entries),
1095                                e->class->name ? : "(?)",
1096                                e->links_to->name ? : "(?)");
1097                         return false;
1098                 }
1099         }
1100
1101         /*
1102          * Check whether all list entries that are not in use do not occur in
1103          * a class lock list.
1104          */
1105         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1106                 e = list_entries + i;
1107                 if (in_any_class_list(&e->entry)) {
1108                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1109                                (unsigned int)(e - list_entries),
1110                                e->class && e->class->name ? e->class->name :
1111                                "(?)",
1112                                e->links_to && e->links_to->name ?
1113                                e->links_to->name : "(?)");
1114                         return false;
1115                 }
1116         }
1117
1118         return true;
1119 }
1120
1121 int check_consistency = 0;
1122 module_param(check_consistency, int, 0644);
1123
1124 static void check_data_structures(void)
1125 {
1126         static bool once = false;
1127
1128         if (check_consistency && !once) {
1129                 if (!__check_data_structures()) {
1130                         once = true;
1131                         WARN_ON(once);
1132                 }
1133         }
1134 }
1135
1136 #else /* CONFIG_DEBUG_LOCKDEP */
1137
1138 static inline void check_data_structures(void) { }
1139
1140 #endif /* CONFIG_DEBUG_LOCKDEP */
1141
1142 static void init_chain_block_buckets(void);
1143
1144 /*
1145  * Initialize the lock_classes[] array elements, the free_lock_classes list
1146  * and also the delayed_free structure.
1147  */
1148 static void init_data_structures_once(void)
1149 {
1150         static bool __read_mostly ds_initialized, rcu_head_initialized;
1151         int i;
1152
1153         if (likely(rcu_head_initialized))
1154                 return;
1155
1156         if (system_state >= SYSTEM_SCHEDULING) {
1157                 init_rcu_head(&delayed_free.rcu_head);
1158                 rcu_head_initialized = true;
1159         }
1160
1161         if (ds_initialized)
1162                 return;
1163
1164         ds_initialized = true;
1165
1166         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1167         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1168
1169         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1170                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1171                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1172                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1173         }
1174         init_chain_block_buckets();
1175 }
1176
1177 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1178 {
1179         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1180
1181         return lock_keys_hash + hash;
1182 }
1183
1184 /* Register a dynamically allocated key. */
1185 void lockdep_register_key(struct lock_class_key *key)
1186 {
1187         struct hlist_head *hash_head;
1188         struct lock_class_key *k;
1189         unsigned long flags;
1190
1191         if (WARN_ON_ONCE(static_obj(key)))
1192                 return;
1193         hash_head = keyhashentry(key);
1194
1195         raw_local_irq_save(flags);
1196         if (!graph_lock())
1197                 goto restore_irqs;
1198         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1199                 if (WARN_ON_ONCE(k == key))
1200                         goto out_unlock;
1201         }
1202         hlist_add_head_rcu(&key->hash_entry, hash_head);
1203 out_unlock:
1204         graph_unlock();
1205 restore_irqs:
1206         raw_local_irq_restore(flags);
1207 }
1208 EXPORT_SYMBOL_GPL(lockdep_register_key);
1209
1210 /* Check whether a key has been registered as a dynamic key. */
1211 static bool is_dynamic_key(const struct lock_class_key *key)
1212 {
1213         struct hlist_head *hash_head;
1214         struct lock_class_key *k;
1215         bool found = false;
1216
1217         if (WARN_ON_ONCE(static_obj(key)))
1218                 return false;
1219
1220         /*
1221          * If lock debugging is disabled lock_keys_hash[] may contain
1222          * pointers to memory that has already been freed. Avoid triggering
1223          * a use-after-free in that case by returning early.
1224          */
1225         if (!debug_locks)
1226                 return true;
1227
1228         hash_head = keyhashentry(key);
1229
1230         rcu_read_lock();
1231         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1232                 if (k == key) {
1233                         found = true;
1234                         break;
1235                 }
1236         }
1237         rcu_read_unlock();
1238
1239         return found;
1240 }
1241
1242 /*
1243  * Register a lock's class in the hash-table, if the class is not present
1244  * yet. Otherwise we look it up. We cache the result in the lock object
1245  * itself, so actual lookup of the hash should be once per lock object.
1246  */
1247 static struct lock_class *
1248 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1249 {
1250         struct lockdep_subclass_key *key;
1251         struct hlist_head *hash_head;
1252         struct lock_class *class;
1253         int idx;
1254
1255         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1256
1257         class = look_up_lock_class(lock, subclass);
1258         if (likely(class))
1259                 goto out_set_class_cache;
1260
1261         if (!lock->key) {
1262                 if (!assign_lock_key(lock))
1263                         return NULL;
1264         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1265                 return NULL;
1266         }
1267
1268         key = lock->key->subkeys + subclass;
1269         hash_head = classhashentry(key);
1270
1271         if (!graph_lock()) {
1272                 return NULL;
1273         }
1274         /*
1275          * We have to do the hash-walk again, to avoid races
1276          * with another CPU:
1277          */
1278         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1279                 if (class->key == key)
1280                         goto out_unlock_set;
1281         }
1282
1283         init_data_structures_once();
1284
1285         /* Allocate a new lock class and add it to the hash. */
1286         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1287                                          lock_entry);
1288         if (!class) {
1289                 if (!debug_locks_off_graph_unlock()) {
1290                         return NULL;
1291                 }
1292
1293                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1294                 dump_stack();
1295                 return NULL;
1296         }
1297         nr_lock_classes++;
1298         __set_bit(class - lock_classes, lock_classes_in_use);
1299         debug_atomic_inc(nr_unused_locks);
1300         class->key = key;
1301         class->name = lock->name;
1302         class->subclass = subclass;
1303         WARN_ON_ONCE(!list_empty(&class->locks_before));
1304         WARN_ON_ONCE(!list_empty(&class->locks_after));
1305         class->name_version = count_matching_names(class);
1306         class->wait_type_inner = lock->wait_type_inner;
1307         class->wait_type_outer = lock->wait_type_outer;
1308         class->lock_type = lock->lock_type;
1309         /*
1310          * We use RCU's safe list-add method to make
1311          * parallel walking of the hash-list safe:
1312          */
1313         hlist_add_head_rcu(&class->hash_entry, hash_head);
1314         /*
1315          * Remove the class from the free list and add it to the global list
1316          * of classes.
1317          */
1318         list_move_tail(&class->lock_entry, &all_lock_classes);
1319         idx = class - lock_classes;
1320         if (idx > max_lock_class_idx)
1321                 max_lock_class_idx = idx;
1322
1323         if (verbose(class)) {
1324                 graph_unlock();
1325
1326                 printk("\nnew class %px: %s", class->key, class->name);
1327                 if (class->name_version > 1)
1328                         printk(KERN_CONT "#%d", class->name_version);
1329                 printk(KERN_CONT "\n");
1330                 dump_stack();
1331
1332                 if (!graph_lock()) {
1333                         return NULL;
1334                 }
1335         }
1336 out_unlock_set:
1337         graph_unlock();
1338
1339 out_set_class_cache:
1340         if (!subclass || force)
1341                 lock->class_cache[0] = class;
1342         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1343                 lock->class_cache[subclass] = class;
1344
1345         /*
1346          * Hash collision, did we smoke some? We found a class with a matching
1347          * hash but the subclass -- which is hashed in -- didn't match.
1348          */
1349         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1350                 return NULL;
1351
1352         return class;
1353 }
1354
1355 #ifdef CONFIG_PROVE_LOCKING
1356 /*
1357  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1358  * with NULL on failure)
1359  */
1360 static struct lock_list *alloc_list_entry(void)
1361 {
1362         int idx = find_first_zero_bit(list_entries_in_use,
1363                                       ARRAY_SIZE(list_entries));
1364
1365         if (idx >= ARRAY_SIZE(list_entries)) {
1366                 if (!debug_locks_off_graph_unlock())
1367                         return NULL;
1368
1369                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1370                 dump_stack();
1371                 return NULL;
1372         }
1373         nr_list_entries++;
1374         __set_bit(idx, list_entries_in_use);
1375         return list_entries + idx;
1376 }
1377
1378 /*
1379  * Add a new dependency to the head of the list:
1380  */
1381 static int add_lock_to_list(struct lock_class *this,
1382                             struct lock_class *links_to, struct list_head *head,
1383                             unsigned long ip, u16 distance, u8 dep,
1384                             const struct lock_trace *trace)
1385 {
1386         struct lock_list *entry;
1387         /*
1388          * Lock not present yet - get a new dependency struct and
1389          * add it to the list:
1390          */
1391         entry = alloc_list_entry();
1392         if (!entry)
1393                 return 0;
1394
1395         entry->class = this;
1396         entry->links_to = links_to;
1397         entry->dep = dep;
1398         entry->distance = distance;
1399         entry->trace = trace;
1400         /*
1401          * Both allocation and removal are done under the graph lock; but
1402          * iteration is under RCU-sched; see look_up_lock_class() and
1403          * lockdep_free_key_range().
1404          */
1405         list_add_tail_rcu(&entry->entry, head);
1406
1407         return 1;
1408 }
1409
1410 /*
1411  * For good efficiency of modular, we use power of 2
1412  */
1413 #define MAX_CIRCULAR_QUEUE_SIZE         (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1414 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1415
1416 /*
1417  * The circular_queue and helpers are used to implement graph
1418  * breadth-first search (BFS) algorithm, by which we can determine
1419  * whether there is a path from a lock to another. In deadlock checks,
1420  * a path from the next lock to be acquired to a previous held lock
1421  * indicates that adding the <prev> -> <next> lock dependency will
1422  * produce a circle in the graph. Breadth-first search instead of
1423  * depth-first search is used in order to find the shortest (circular)
1424  * path.
1425  */
1426 struct circular_queue {
1427         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1428         unsigned int  front, rear;
1429 };
1430
1431 static struct circular_queue lock_cq;
1432
1433 unsigned int max_bfs_queue_depth;
1434
1435 static unsigned int lockdep_dependency_gen_id;
1436
1437 static inline void __cq_init(struct circular_queue *cq)
1438 {
1439         cq->front = cq->rear = 0;
1440         lockdep_dependency_gen_id++;
1441 }
1442
1443 static inline int __cq_empty(struct circular_queue *cq)
1444 {
1445         return (cq->front == cq->rear);
1446 }
1447
1448 static inline int __cq_full(struct circular_queue *cq)
1449 {
1450         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1451 }
1452
1453 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1454 {
1455         if (__cq_full(cq))
1456                 return -1;
1457
1458         cq->element[cq->rear] = elem;
1459         cq->rear = (cq->rear + 1) & CQ_MASK;
1460         return 0;
1461 }
1462
1463 /*
1464  * Dequeue an element from the circular_queue, return a lock_list if
1465  * the queue is not empty, or NULL if otherwise.
1466  */
1467 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1468 {
1469         struct lock_list * lock;
1470
1471         if (__cq_empty(cq))
1472                 return NULL;
1473
1474         lock = cq->element[cq->front];
1475         cq->front = (cq->front + 1) & CQ_MASK;
1476
1477         return lock;
1478 }
1479
1480 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1481 {
1482         return (cq->rear - cq->front) & CQ_MASK;
1483 }
1484
1485 static inline void mark_lock_accessed(struct lock_list *lock)
1486 {
1487         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1488 }
1489
1490 static inline void visit_lock_entry(struct lock_list *lock,
1491                                     struct lock_list *parent)
1492 {
1493         lock->parent = parent;
1494 }
1495
1496 static inline unsigned long lock_accessed(struct lock_list *lock)
1497 {
1498         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1499 }
1500
1501 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1502 {
1503         return child->parent;
1504 }
1505
1506 static inline int get_lock_depth(struct lock_list *child)
1507 {
1508         int depth = 0;
1509         struct lock_list *parent;
1510
1511         while ((parent = get_lock_parent(child))) {
1512                 child = parent;
1513                 depth++;
1514         }
1515         return depth;
1516 }
1517
1518 /*
1519  * Return the forward or backward dependency list.
1520  *
1521  * @lock:   the lock_list to get its class's dependency list
1522  * @offset: the offset to struct lock_class to determine whether it is
1523  *          locks_after or locks_before
1524  */
1525 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1526 {
1527         void *lock_class = lock->class;
1528
1529         return lock_class + offset;
1530 }
1531 /*
1532  * Return values of a bfs search:
1533  *
1534  * BFS_E* indicates an error
1535  * BFS_R* indicates a result (match or not)
1536  *
1537  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1538  *
1539  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1540  *
1541  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1542  *             *@target_entry.
1543  *
1544  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1545  *               _unchanged_.
1546  */
1547 enum bfs_result {
1548         BFS_EINVALIDNODE = -2,
1549         BFS_EQUEUEFULL = -1,
1550         BFS_RMATCH = 0,
1551         BFS_RNOMATCH = 1,
1552 };
1553
1554 /*
1555  * bfs_result < 0 means error
1556  */
1557 static inline bool bfs_error(enum bfs_result res)
1558 {
1559         return res < 0;
1560 }
1561
1562 /*
1563  * DEP_*_BIT in lock_list::dep
1564  *
1565  * For dependency @prev -> @next:
1566  *
1567  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1568  *       (->read == 2)
1569  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1570  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1571  *   EN: @prev is exclusive locker and @next is non-recursive locker
1572  *
1573  * Note that we define the value of DEP_*_BITs so that:
1574  *   bit0 is prev->read == 0
1575  *   bit1 is next->read != 2
1576  */
1577 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1578 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1579 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1580 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1581
1582 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1583 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1584 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1585 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1586
1587 static inline unsigned int
1588 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1589 {
1590         return (prev->read == 0) + ((next->read != 2) << 1);
1591 }
1592
1593 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1594 {
1595         return 1U << __calc_dep_bit(prev, next);
1596 }
1597
1598 /*
1599  * calculate the dep_bit for backwards edges. We care about whether @prev is
1600  * shared and whether @next is recursive.
1601  */
1602 static inline unsigned int
1603 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1604 {
1605         return (next->read != 2) + ((prev->read == 0) << 1);
1606 }
1607
1608 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1609 {
1610         return 1U << __calc_dep_bitb(prev, next);
1611 }
1612
1613 /*
1614  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1615  * search.
1616  */
1617 static inline void __bfs_init_root(struct lock_list *lock,
1618                                    struct lock_class *class)
1619 {
1620         lock->class = class;
1621         lock->parent = NULL;
1622         lock->only_xr = 0;
1623 }
1624
1625 /*
1626  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1627  * root for a BFS search.
1628  *
1629  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1630  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1631  * and -(S*)->.
1632  */
1633 static inline void bfs_init_root(struct lock_list *lock,
1634                                  struct held_lock *hlock)
1635 {
1636         __bfs_init_root(lock, hlock_class(hlock));
1637         lock->only_xr = (hlock->read == 2);
1638 }
1639
1640 /*
1641  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1642  *
1643  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1644  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1645  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1646  */
1647 static inline void bfs_init_rootb(struct lock_list *lock,
1648                                   struct held_lock *hlock)
1649 {
1650         __bfs_init_root(lock, hlock_class(hlock));
1651         lock->only_xr = (hlock->read != 0);
1652 }
1653
1654 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1655 {
1656         if (!lock || !lock->parent)
1657                 return NULL;
1658
1659         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1660                                      &lock->entry, struct lock_list, entry);
1661 }
1662
1663 /*
1664  * Breadth-First Search to find a strong path in the dependency graph.
1665  *
1666  * @source_entry: the source of the path we are searching for.
1667  * @data: data used for the second parameter of @match function
1668  * @match: match function for the search
1669  * @target_entry: pointer to the target of a matched path
1670  * @offset: the offset to struct lock_class to determine whether it is
1671  *          locks_after or locks_before
1672  *
1673  * We may have multiple edges (considering different kinds of dependencies,
1674  * e.g. ER and SN) between two nodes in the dependency graph. But
1675  * only the strong dependency path in the graph is relevant to deadlocks. A
1676  * strong dependency path is a dependency path that doesn't have two adjacent
1677  * dependencies as -(*R)-> -(S*)->, please see:
1678  *
1679  *         Documentation/locking/lockdep-design.rst
1680  *
1681  * for more explanation of the definition of strong dependency paths
1682  *
1683  * In __bfs(), we only traverse in the strong dependency path:
1684  *
1685  *     In lock_list::only_xr, we record whether the previous dependency only
1686  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1687  *     filter out any -(S*)-> in the current dependency and after that, the
1688  *     ->only_xr is set according to whether we only have -(*R)-> left.
1689  */
1690 static enum bfs_result __bfs(struct lock_list *source_entry,
1691                              void *data,
1692                              bool (*match)(struct lock_list *entry, void *data),
1693                              bool (*skip)(struct lock_list *entry, void *data),
1694                              struct lock_list **target_entry,
1695                              int offset)
1696 {
1697         struct circular_queue *cq = &lock_cq;
1698         struct lock_list *lock = NULL;
1699         struct lock_list *entry;
1700         struct list_head *head;
1701         unsigned int cq_depth;
1702         bool first;
1703
1704         lockdep_assert_locked();
1705
1706         __cq_init(cq);
1707         __cq_enqueue(cq, source_entry);
1708
1709         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1710                 if (!lock->class)
1711                         return BFS_EINVALIDNODE;
1712
1713                 /*
1714                  * Step 1: check whether we already finish on this one.
1715                  *
1716                  * If we have visited all the dependencies from this @lock to
1717                  * others (iow, if we have visited all lock_list entries in
1718                  * @lock->class->locks_{after,before}) we skip, otherwise go
1719                  * and visit all the dependencies in the list and mark this
1720                  * list accessed.
1721                  */
1722                 if (lock_accessed(lock))
1723                         continue;
1724                 else
1725                         mark_lock_accessed(lock);
1726
1727                 /*
1728                  * Step 2: check whether prev dependency and this form a strong
1729                  *         dependency path.
1730                  */
1731                 if (lock->parent) { /* Parent exists, check prev dependency */
1732                         u8 dep = lock->dep;
1733                         bool prev_only_xr = lock->parent->only_xr;
1734
1735                         /*
1736                          * Mask out all -(S*)-> if we only have *R in previous
1737                          * step, because -(*R)-> -(S*)-> don't make up a strong
1738                          * dependency.
1739                          */
1740                         if (prev_only_xr)
1741                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1742
1743                         /* If nothing left, we skip */
1744                         if (!dep)
1745                                 continue;
1746
1747                         /* If there are only -(*R)-> left, set that for the next step */
1748                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1749                 }
1750
1751                 /*
1752                  * Step 3: we haven't visited this and there is a strong
1753                  *         dependency path to this, so check with @match.
1754                  *         If @skip is provide and returns true, we skip this
1755                  *         lock (and any path this lock is in).
1756                  */
1757                 if (skip && skip(lock, data))
1758                         continue;
1759
1760                 if (match(lock, data)) {
1761                         *target_entry = lock;
1762                         return BFS_RMATCH;
1763                 }
1764
1765                 /*
1766                  * Step 4: if not match, expand the path by adding the
1767                  *         forward or backwards dependencies in the search
1768                  *
1769                  */
1770                 first = true;
1771                 head = get_dep_list(lock, offset);
1772                 list_for_each_entry_rcu(entry, head, entry) {
1773                         visit_lock_entry(entry, lock);
1774
1775                         /*
1776                          * Note we only enqueue the first of the list into the
1777                          * queue, because we can always find a sibling
1778                          * dependency from one (see __bfs_next()), as a result
1779                          * the space of queue is saved.
1780                          */
1781                         if (!first)
1782                                 continue;
1783
1784                         first = false;
1785
1786                         if (__cq_enqueue(cq, entry))
1787                                 return BFS_EQUEUEFULL;
1788
1789                         cq_depth = __cq_get_elem_count(cq);
1790                         if (max_bfs_queue_depth < cq_depth)
1791                                 max_bfs_queue_depth = cq_depth;
1792                 }
1793         }
1794
1795         return BFS_RNOMATCH;
1796 }
1797
1798 static inline enum bfs_result
1799 __bfs_forwards(struct lock_list *src_entry,
1800                void *data,
1801                bool (*match)(struct lock_list *entry, void *data),
1802                bool (*skip)(struct lock_list *entry, void *data),
1803                struct lock_list **target_entry)
1804 {
1805         return __bfs(src_entry, data, match, skip, target_entry,
1806                      offsetof(struct lock_class, locks_after));
1807
1808 }
1809
1810 static inline enum bfs_result
1811 __bfs_backwards(struct lock_list *src_entry,
1812                 void *data,
1813                 bool (*match)(struct lock_list *entry, void *data),
1814                bool (*skip)(struct lock_list *entry, void *data),
1815                 struct lock_list **target_entry)
1816 {
1817         return __bfs(src_entry, data, match, skip, target_entry,
1818                      offsetof(struct lock_class, locks_before));
1819
1820 }
1821
1822 static void print_lock_trace(const struct lock_trace *trace,
1823                              unsigned int spaces)
1824 {
1825         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1826 }
1827
1828 /*
1829  * Print a dependency chain entry (this is only done when a deadlock
1830  * has been detected):
1831  */
1832 static noinline void
1833 print_circular_bug_entry(struct lock_list *target, int depth)
1834 {
1835         if (debug_locks_silent)
1836                 return;
1837         printk("\n-> #%u", depth);
1838         print_lock_name(target->class);
1839         printk(KERN_CONT ":\n");
1840         print_lock_trace(target->trace, 6);
1841 }
1842
1843 static void
1844 print_circular_lock_scenario(struct held_lock *src,
1845                              struct held_lock *tgt,
1846                              struct lock_list *prt)
1847 {
1848         struct lock_class *source = hlock_class(src);
1849         struct lock_class *target = hlock_class(tgt);
1850         struct lock_class *parent = prt->class;
1851
1852         /*
1853          * A direct locking problem where unsafe_class lock is taken
1854          * directly by safe_class lock, then all we need to show
1855          * is the deadlock scenario, as it is obvious that the
1856          * unsafe lock is taken under the safe lock.
1857          *
1858          * But if there is a chain instead, where the safe lock takes
1859          * an intermediate lock (middle_class) where this lock is
1860          * not the same as the safe lock, then the lock chain is
1861          * used to describe the problem. Otherwise we would need
1862          * to show a different CPU case for each link in the chain
1863          * from the safe_class lock to the unsafe_class lock.
1864          */
1865         if (parent != source) {
1866                 printk("Chain exists of:\n  ");
1867                 __print_lock_name(source);
1868                 printk(KERN_CONT " --> ");
1869                 __print_lock_name(parent);
1870                 printk(KERN_CONT " --> ");
1871                 __print_lock_name(target);
1872                 printk(KERN_CONT "\n\n");
1873         }
1874
1875         printk(" Possible unsafe locking scenario:\n\n");
1876         printk("       CPU0                    CPU1\n");
1877         printk("       ----                    ----\n");
1878         printk("  lock(");
1879         __print_lock_name(target);
1880         printk(KERN_CONT ");\n");
1881         printk("                               lock(");
1882         __print_lock_name(parent);
1883         printk(KERN_CONT ");\n");
1884         printk("                               lock(");
1885         __print_lock_name(target);
1886         printk(KERN_CONT ");\n");
1887         printk("  lock(");
1888         __print_lock_name(source);
1889         printk(KERN_CONT ");\n");
1890         printk("\n *** DEADLOCK ***\n\n");
1891 }
1892
1893 /*
1894  * When a circular dependency is detected, print the
1895  * header first:
1896  */
1897 static noinline void
1898 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1899                         struct held_lock *check_src,
1900                         struct held_lock *check_tgt)
1901 {
1902         struct task_struct *curr = current;
1903
1904         if (debug_locks_silent)
1905                 return;
1906
1907         pr_warn("\n");
1908         pr_warn("======================================================\n");
1909         pr_warn("WARNING: possible circular locking dependency detected\n");
1910         print_kernel_ident();
1911         pr_warn("------------------------------------------------------\n");
1912         pr_warn("%s/%d is trying to acquire lock:\n",
1913                 curr->comm, task_pid_nr(curr));
1914         print_lock(check_src);
1915
1916         pr_warn("\nbut task is already holding lock:\n");
1917
1918         print_lock(check_tgt);
1919         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1920         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1921
1922         print_circular_bug_entry(entry, depth);
1923 }
1924
1925 /*
1926  * We are about to add A -> B into the dependency graph, and in __bfs() a
1927  * strong dependency path A -> .. -> B is found: hlock_class equals
1928  * entry->class.
1929  *
1930  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1931  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1932  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1933  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1934  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1935  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1936  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1937  *
1938  * We need to make sure both the start and the end of A -> .. -> B is not
1939  * weaker than A -> B. For the start part, please see the comment in
1940  * check_redundant(). For the end part, we need:
1941  *
1942  * Either
1943  *
1944  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1945  *
1946  * or
1947  *
1948  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1949  *
1950  */
1951 static inline bool hlock_equal(struct lock_list *entry, void *data)
1952 {
1953         struct held_lock *hlock = (struct held_lock *)data;
1954
1955         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1956                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1957                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1958 }
1959
1960 /*
1961  * We are about to add B -> A into the dependency graph, and in __bfs() a
1962  * strong dependency path A -> .. -> B is found: hlock_class equals
1963  * entry->class.
1964  *
1965  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1966  * dependency cycle, that means:
1967  *
1968  * Either
1969  *
1970  *     a) B -> A is -(E*)->
1971  *
1972  * or
1973  *
1974  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1975  *
1976  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1977  */
1978 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1979 {
1980         struct held_lock *hlock = (struct held_lock *)data;
1981
1982         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1983                (hlock->read == 0 || /* B -> A is -(E*)-> */
1984                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1985 }
1986
1987 static noinline void print_circular_bug(struct lock_list *this,
1988                                 struct lock_list *target,
1989                                 struct held_lock *check_src,
1990                                 struct held_lock *check_tgt)
1991 {
1992         struct task_struct *curr = current;
1993         struct lock_list *parent;
1994         struct lock_list *first_parent;
1995         int depth;
1996
1997         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1998                 return;
1999
2000         this->trace = save_trace();
2001         if (!this->trace)
2002                 return;
2003
2004         depth = get_lock_depth(target);
2005
2006         print_circular_bug_header(target, depth, check_src, check_tgt);
2007
2008         parent = get_lock_parent(target);
2009         first_parent = parent;
2010
2011         while (parent) {
2012                 print_circular_bug_entry(parent, --depth);
2013                 parent = get_lock_parent(parent);
2014         }
2015
2016         printk("\nother info that might help us debug this:\n\n");
2017         print_circular_lock_scenario(check_src, check_tgt,
2018                                      first_parent);
2019
2020         lockdep_print_held_locks(curr);
2021
2022         printk("\nstack backtrace:\n");
2023         dump_stack();
2024 }
2025
2026 static noinline void print_bfs_bug(int ret)
2027 {
2028         if (!debug_locks_off_graph_unlock())
2029                 return;
2030
2031         /*
2032          * Breadth-first-search failed, graph got corrupted?
2033          */
2034         WARN(1, "lockdep bfs error:%d\n", ret);
2035 }
2036
2037 static bool noop_count(struct lock_list *entry, void *data)
2038 {
2039         (*(unsigned long *)data)++;
2040         return false;
2041 }
2042
2043 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2044 {
2045         unsigned long  count = 0;
2046         struct lock_list *target_entry;
2047
2048         __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2049
2050         return count;
2051 }
2052 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2053 {
2054         unsigned long ret, flags;
2055         struct lock_list this;
2056
2057         __bfs_init_root(&this, class);
2058
2059         raw_local_irq_save(flags);
2060         lockdep_lock();
2061         ret = __lockdep_count_forward_deps(&this);
2062         lockdep_unlock();
2063         raw_local_irq_restore(flags);
2064
2065         return ret;
2066 }
2067
2068 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2069 {
2070         unsigned long  count = 0;
2071         struct lock_list *target_entry;
2072
2073         __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2074
2075         return count;
2076 }
2077
2078 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2079 {
2080         unsigned long ret, flags;
2081         struct lock_list this;
2082
2083         __bfs_init_root(&this, class);
2084
2085         raw_local_irq_save(flags);
2086         lockdep_lock();
2087         ret = __lockdep_count_backward_deps(&this);
2088         lockdep_unlock();
2089         raw_local_irq_restore(flags);
2090
2091         return ret;
2092 }
2093
2094 /*
2095  * Check that the dependency graph starting at <src> can lead to
2096  * <target> or not.
2097  */
2098 static noinline enum bfs_result
2099 check_path(struct held_lock *target, struct lock_list *src_entry,
2100            bool (*match)(struct lock_list *entry, void *data),
2101            bool (*skip)(struct lock_list *entry, void *data),
2102            struct lock_list **target_entry)
2103 {
2104         enum bfs_result ret;
2105
2106         ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2107
2108         if (unlikely(bfs_error(ret)))
2109                 print_bfs_bug(ret);
2110
2111         return ret;
2112 }
2113
2114 /*
2115  * Prove that the dependency graph starting at <src> can not
2116  * lead to <target>. If it can, there is a circle when adding
2117  * <target> -> <src> dependency.
2118  *
2119  * Print an error and return BFS_RMATCH if it does.
2120  */
2121 static noinline enum bfs_result
2122 check_noncircular(struct held_lock *src, struct held_lock *target,
2123                   struct lock_trace **const trace)
2124 {
2125         enum bfs_result ret;
2126         struct lock_list *target_entry;
2127         struct lock_list src_entry;
2128
2129         bfs_init_root(&src_entry, src);
2130
2131         debug_atomic_inc(nr_cyclic_checks);
2132
2133         ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2134
2135         if (unlikely(ret == BFS_RMATCH)) {
2136                 if (!*trace) {
2137                         /*
2138                          * If save_trace fails here, the printing might
2139                          * trigger a WARN but because of the !nr_entries it
2140                          * should not do bad things.
2141                          */
2142                         *trace = save_trace();
2143                 }
2144
2145                 print_circular_bug(&src_entry, target_entry, src, target);
2146         }
2147
2148         return ret;
2149 }
2150
2151 #ifdef CONFIG_TRACE_IRQFLAGS
2152
2153 /*
2154  * Forwards and backwards subgraph searching, for the purposes of
2155  * proving that two subgraphs can be connected by a new dependency
2156  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2157  *
2158  * A irq safe->unsafe deadlock happens with the following conditions:
2159  *
2160  * 1) We have a strong dependency path A -> ... -> B
2161  *
2162  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2163  *    irq can create a new dependency B -> A (consider the case that a holder
2164  *    of B gets interrupted by an irq whose handler will try to acquire A).
2165  *
2166  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2167  *    strong circle:
2168  *
2169  *      For the usage bits of B:
2170  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2171  *           ENABLED_IRQ usage suffices.
2172  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2173  *           ENABLED_IRQ_*_READ usage suffices.
2174  *
2175  *      For the usage bits of A:
2176  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2177  *           USED_IN_IRQ usage suffices.
2178  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2179  *           USED_IN_IRQ_*_READ usage suffices.
2180  */
2181
2182 /*
2183  * There is a strong dependency path in the dependency graph: A -> B, and now
2184  * we need to decide which usage bit of A should be accumulated to detect
2185  * safe->unsafe bugs.
2186  *
2187  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2188  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2189  *
2190  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2191  * path, any usage of A should be considered. Otherwise, we should only
2192  * consider _READ usage.
2193  */
2194 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2195 {
2196         if (!entry->only_xr)
2197                 *(unsigned long *)mask |= entry->class->usage_mask;
2198         else /* Mask out _READ usage bits */
2199                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2200
2201         return false;
2202 }
2203
2204 /*
2205  * There is a strong dependency path in the dependency graph: A -> B, and now
2206  * we need to decide which usage bit of B conflicts with the usage bits of A,
2207  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2208  *
2209  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2210  * path, any usage of B should be considered. Otherwise, we should only
2211  * consider _READ usage.
2212  */
2213 static inline bool usage_match(struct lock_list *entry, void *mask)
2214 {
2215         if (!entry->only_xr)
2216                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2217         else /* Mask out _READ usage bits */
2218                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2219 }
2220
2221 static inline bool usage_skip(struct lock_list *entry, void *mask)
2222 {
2223         /*
2224          * Skip local_lock() for irq inversion detection.
2225          *
2226          * For !RT, local_lock() is not a real lock, so it won't carry any
2227          * dependency.
2228          *
2229          * For RT, an irq inversion happens when we have lock A and B, and on
2230          * some CPU we can have:
2231          *
2232          *      lock(A);
2233          *      <interrupted>
2234          *        lock(B);
2235          *
2236          * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2237          *
2238          * Now we prove local_lock() cannot exist in that dependency. First we
2239          * have the observation for any lock chain L1 -> ... -> Ln, for any
2240          * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2241          * wait context check will complain. And since B is not a sleep lock,
2242          * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2243          * local_lock() is 3, which is greater than 2, therefore there is no
2244          * way the local_lock() exists in the dependency B -> ... -> A.
2245          *
2246          * As a result, we will skip local_lock(), when we search for irq
2247          * inversion bugs.
2248          */
2249         if (entry->class->lock_type == LD_LOCK_PERCPU) {
2250                 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2251                         return false;
2252
2253                 return true;
2254         }
2255
2256         return false;
2257 }
2258
2259 /*
2260  * Find a node in the forwards-direction dependency sub-graph starting
2261  * at @root->class that matches @bit.
2262  *
2263  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2264  * into *@target_entry.
2265  */
2266 static enum bfs_result
2267 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2268                         struct lock_list **target_entry)
2269 {
2270         enum bfs_result result;
2271
2272         debug_atomic_inc(nr_find_usage_forwards_checks);
2273
2274         result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2275
2276         return result;
2277 }
2278
2279 /*
2280  * Find a node in the backwards-direction dependency sub-graph starting
2281  * at @root->class that matches @bit.
2282  */
2283 static enum bfs_result
2284 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2285                         struct lock_list **target_entry)
2286 {
2287         enum bfs_result result;
2288
2289         debug_atomic_inc(nr_find_usage_backwards_checks);
2290
2291         result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2292
2293         return result;
2294 }
2295
2296 static void print_lock_class_header(struct lock_class *class, int depth)
2297 {
2298         int bit;
2299
2300         printk("%*s->", depth, "");
2301         print_lock_name(class);
2302 #ifdef CONFIG_DEBUG_LOCKDEP
2303         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2304 #endif
2305         printk(KERN_CONT " {\n");
2306
2307         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2308                 if (class->usage_mask & (1 << bit)) {
2309                         int len = depth;
2310
2311                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2312                         len += printk(KERN_CONT " at:\n");
2313                         print_lock_trace(class->usage_traces[bit], len);
2314                 }
2315         }
2316         printk("%*s }\n", depth, "");
2317
2318         printk("%*s ... key      at: [<%px>] %pS\n",
2319                 depth, "", class->key, class->key);
2320 }
2321
2322 /*
2323  * Dependency path printing:
2324  *
2325  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2326  * printing out each lock in the dependency path will help on understanding how
2327  * the deadlock could happen. Here are some details about dependency path
2328  * printing:
2329  *
2330  * 1)   A lock_list can be either forwards or backwards for a lock dependency,
2331  *      for a lock dependency A -> B, there are two lock_lists:
2332  *
2333  *      a)      lock_list in the ->locks_after list of A, whose ->class is B and
2334  *              ->links_to is A. In this case, we can say the lock_list is
2335  *              "A -> B" (forwards case).
2336  *
2337  *      b)      lock_list in the ->locks_before list of B, whose ->class is A
2338  *              and ->links_to is B. In this case, we can say the lock_list is
2339  *              "B <- A" (bacwards case).
2340  *
2341  *      The ->trace of both a) and b) point to the call trace where B was
2342  *      acquired with A held.
2343  *
2344  * 2)   A "helper" lock_list is introduced during BFS, this lock_list doesn't
2345  *      represent a certain lock dependency, it only provides an initial entry
2346  *      for BFS. For example, BFS may introduce a "helper" lock_list whose
2347  *      ->class is A, as a result BFS will search all dependencies starting with
2348  *      A, e.g. A -> B or A -> C.
2349  *
2350  *      The notation of a forwards helper lock_list is like "-> A", which means
2351  *      we should search the forwards dependencies starting with "A", e.g A -> B
2352  *      or A -> C.
2353  *
2354  *      The notation of a bacwards helper lock_list is like "<- B", which means
2355  *      we should search the backwards dependencies ending with "B", e.g.
2356  *      B <- A or B <- C.
2357  */
2358
2359 /*
2360  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2361  *
2362  * We have a lock dependency path as follow:
2363  *
2364  *    @root                                                                 @leaf
2365  *      |                                                                     |
2366  *      V                                                                     V
2367  *                ->parent                                   ->parent
2368  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2369  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2370  *
2371  * , so it's natural that we start from @leaf and print every ->class and
2372  * ->trace until we reach the @root.
2373  */
2374 static void __used
2375 print_shortest_lock_dependencies(struct lock_list *leaf,
2376                                  struct lock_list *root)
2377 {
2378         struct lock_list *entry = leaf;
2379         int depth;
2380
2381         /*compute depth from generated tree by BFS*/
2382         depth = get_lock_depth(leaf);
2383
2384         do {
2385                 print_lock_class_header(entry->class, depth);
2386                 printk("%*s ... acquired at:\n", depth, "");
2387                 print_lock_trace(entry->trace, 2);
2388                 printk("\n");
2389
2390                 if (depth == 0 && (entry != root)) {
2391                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2392                         break;
2393                 }
2394
2395                 entry = get_lock_parent(entry);
2396                 depth--;
2397         } while (entry && (depth >= 0));
2398 }
2399
2400 /*
2401  * printk the shortest lock dependencies from @leaf to @root.
2402  *
2403  * We have a lock dependency path (from a backwards search) as follow:
2404  *
2405  *    @leaf                                                                 @root
2406  *      |                                                                     |
2407  *      V                                                                     V
2408  *                ->parent                                   ->parent
2409  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2410  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2411  *
2412  * , so when we iterate from @leaf to @root, we actually print the lock
2413  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2414  *
2415  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2416  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2417  * trace of L1 in the dependency path, which is alright, because most of the
2418  * time we can figure out where L1 is held from the call trace of L2.
2419  */
2420 static void __used
2421 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2422                                            struct lock_list *root)
2423 {
2424         struct lock_list *entry = leaf;
2425         const struct lock_trace *trace = NULL;
2426         int depth;
2427
2428         /*compute depth from generated tree by BFS*/
2429         depth = get_lock_depth(leaf);
2430
2431         do {
2432                 print_lock_class_header(entry->class, depth);
2433                 if (trace) {
2434                         printk("%*s ... acquired at:\n", depth, "");
2435                         print_lock_trace(trace, 2);
2436                         printk("\n");
2437                 }
2438
2439                 /*
2440                  * Record the pointer to the trace for the next lock_list
2441                  * entry, see the comments for the function.
2442                  */
2443                 trace = entry->trace;
2444
2445                 if (depth == 0 && (entry != root)) {
2446                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2447                         break;
2448                 }
2449
2450                 entry = get_lock_parent(entry);
2451                 depth--;
2452         } while (entry && (depth >= 0));
2453 }
2454
2455 static void
2456 print_irq_lock_scenario(struct lock_list *safe_entry,
2457                         struct lock_list *unsafe_entry,
2458                         struct lock_class *prev_class,
2459                         struct lock_class *next_class)
2460 {
2461         struct lock_class *safe_class = safe_entry->class;
2462         struct lock_class *unsafe_class = unsafe_entry->class;
2463         struct lock_class *middle_class = prev_class;
2464
2465         if (middle_class == safe_class)
2466                 middle_class = next_class;
2467
2468         /*
2469          * A direct locking problem where unsafe_class lock is taken
2470          * directly by safe_class lock, then all we need to show
2471          * is the deadlock scenario, as it is obvious that the
2472          * unsafe lock is taken under the safe lock.
2473          *
2474          * But if there is a chain instead, where the safe lock takes
2475          * an intermediate lock (middle_class) where this lock is
2476          * not the same as the safe lock, then the lock chain is
2477          * used to describe the problem. Otherwise we would need
2478          * to show a different CPU case for each link in the chain
2479          * from the safe_class lock to the unsafe_class lock.
2480          */
2481         if (middle_class != unsafe_class) {
2482                 printk("Chain exists of:\n  ");
2483                 __print_lock_name(safe_class);
2484                 printk(KERN_CONT " --> ");
2485                 __print_lock_name(middle_class);
2486                 printk(KERN_CONT " --> ");
2487                 __print_lock_name(unsafe_class);
2488                 printk(KERN_CONT "\n\n");
2489         }
2490
2491         printk(" Possible interrupt unsafe locking scenario:\n\n");
2492         printk("       CPU0                    CPU1\n");
2493         printk("       ----                    ----\n");
2494         printk("  lock(");
2495         __print_lock_name(unsafe_class);
2496         printk(KERN_CONT ");\n");
2497         printk("                               local_irq_disable();\n");
2498         printk("                               lock(");
2499         __print_lock_name(safe_class);
2500         printk(KERN_CONT ");\n");
2501         printk("                               lock(");
2502         __print_lock_name(middle_class);
2503         printk(KERN_CONT ");\n");
2504         printk("  <Interrupt>\n");
2505         printk("    lock(");
2506         __print_lock_name(safe_class);
2507         printk(KERN_CONT ");\n");
2508         printk("\n *** DEADLOCK ***\n\n");
2509 }
2510
2511 static void
2512 print_bad_irq_dependency(struct task_struct *curr,
2513                          struct lock_list *prev_root,
2514                          struct lock_list *next_root,
2515                          struct lock_list *backwards_entry,
2516                          struct lock_list *forwards_entry,
2517                          struct held_lock *prev,
2518                          struct held_lock *next,
2519                          enum lock_usage_bit bit1,
2520                          enum lock_usage_bit bit2,
2521                          const char *irqclass)
2522 {
2523         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2524                 return;
2525
2526         pr_warn("\n");
2527         pr_warn("=====================================================\n");
2528         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2529                 irqclass, irqclass);
2530         print_kernel_ident();
2531         pr_warn("-----------------------------------------------------\n");
2532         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2533                 curr->comm, task_pid_nr(curr),
2534                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2535                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2536                 lockdep_hardirqs_enabled(),
2537                 curr->softirqs_enabled);
2538         print_lock(next);
2539
2540         pr_warn("\nand this task is already holding:\n");
2541         print_lock(prev);
2542         pr_warn("which would create a new lock dependency:\n");
2543         print_lock_name(hlock_class(prev));
2544         pr_cont(" ->");
2545         print_lock_name(hlock_class(next));
2546         pr_cont("\n");
2547
2548         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2549                 irqclass);
2550         print_lock_name(backwards_entry->class);
2551         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2552
2553         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2554
2555         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2556         print_lock_name(forwards_entry->class);
2557         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2558         pr_warn("...");
2559
2560         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2561
2562         pr_warn("\nother info that might help us debug this:\n\n");
2563         print_irq_lock_scenario(backwards_entry, forwards_entry,
2564                                 hlock_class(prev), hlock_class(next));
2565
2566         lockdep_print_held_locks(curr);
2567
2568         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2569         print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2570
2571         pr_warn("\nthe dependencies between the lock to be acquired");
2572         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2573         next_root->trace = save_trace();
2574         if (!next_root->trace)
2575                 return;
2576         print_shortest_lock_dependencies(forwards_entry, next_root);
2577
2578         pr_warn("\nstack backtrace:\n");
2579         dump_stack();
2580 }
2581
2582 static const char *state_names[] = {
2583 #define LOCKDEP_STATE(__STATE) \
2584         __stringify(__STATE),
2585 #include "lockdep_states.h"
2586 #undef LOCKDEP_STATE
2587 };
2588
2589 static const char *state_rnames[] = {
2590 #define LOCKDEP_STATE(__STATE) \
2591         __stringify(__STATE)"-READ",
2592 #include "lockdep_states.h"
2593 #undef LOCKDEP_STATE
2594 };
2595
2596 static inline const char *state_name(enum lock_usage_bit bit)
2597 {
2598         if (bit & LOCK_USAGE_READ_MASK)
2599                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2600         else
2601                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2602 }
2603
2604 /*
2605  * The bit number is encoded like:
2606  *
2607  *  bit0: 0 exclusive, 1 read lock
2608  *  bit1: 0 used in irq, 1 irq enabled
2609  *  bit2-n: state
2610  */
2611 static int exclusive_bit(int new_bit)
2612 {
2613         int state = new_bit & LOCK_USAGE_STATE_MASK;
2614         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2615
2616         /*
2617          * keep state, bit flip the direction and strip read.
2618          */
2619         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2620 }
2621
2622 /*
2623  * Observe that when given a bitmask where each bitnr is encoded as above, a
2624  * right shift of the mask transforms the individual bitnrs as -1 and
2625  * conversely, a left shift transforms into +1 for the individual bitnrs.
2626  *
2627  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2628  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2629  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2630  *
2631  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2632  *
2633  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2634  * all bits set) and recompose with bitnr1 flipped.
2635  */
2636 static unsigned long invert_dir_mask(unsigned long mask)
2637 {
2638         unsigned long excl = 0;
2639
2640         /* Invert dir */
2641         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2642         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2643
2644         return excl;
2645 }
2646
2647 /*
2648  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2649  * usage may cause deadlock too, for example:
2650  *
2651  * P1                           P2
2652  * <irq disabled>
2653  * write_lock(l1);              <irq enabled>
2654  *                              read_lock(l2);
2655  * write_lock(l2);
2656  *                              <in irq>
2657  *                              read_lock(l1);
2658  *
2659  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2660  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2661  * deadlock.
2662  *
2663  * In fact, all of the following cases may cause deadlocks:
2664  *
2665  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2666  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2667  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2668  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2669  *
2670  * As a result, to calculate the "exclusive mask", first we invert the
2671  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2672  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2673  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2674  */
2675 static unsigned long exclusive_mask(unsigned long mask)
2676 {
2677         unsigned long excl = invert_dir_mask(mask);
2678
2679         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2680         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2681
2682         return excl;
2683 }
2684
2685 /*
2686  * Retrieve the _possible_ original mask to which @mask is
2687  * exclusive. Ie: this is the opposite of exclusive_mask().
2688  * Note that 2 possible original bits can match an exclusive
2689  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2690  * cleared. So both are returned for each exclusive bit.
2691  */
2692 static unsigned long original_mask(unsigned long mask)
2693 {
2694         unsigned long excl = invert_dir_mask(mask);
2695
2696         /* Include read in existing usages */
2697         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2698         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2699
2700         return excl;
2701 }
2702
2703 /*
2704  * Find the first pair of bit match between an original
2705  * usage mask and an exclusive usage mask.
2706  */
2707 static int find_exclusive_match(unsigned long mask,
2708                                 unsigned long excl_mask,
2709                                 enum lock_usage_bit *bitp,
2710                                 enum lock_usage_bit *excl_bitp)
2711 {
2712         int bit, excl, excl_read;
2713
2714         for_each_set_bit(bit, &mask, LOCK_USED) {
2715                 /*
2716                  * exclusive_bit() strips the read bit, however,
2717                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2718                  * to search excl | LOCK_USAGE_READ_MASK as well.
2719                  */
2720                 excl = exclusive_bit(bit);
2721                 excl_read = excl | LOCK_USAGE_READ_MASK;
2722                 if (excl_mask & lock_flag(excl)) {
2723                         *bitp = bit;
2724                         *excl_bitp = excl;
2725                         return 0;
2726                 } else if (excl_mask & lock_flag(excl_read)) {
2727                         *bitp = bit;
2728                         *excl_bitp = excl_read;
2729                         return 0;
2730                 }
2731         }
2732         return -1;
2733 }
2734
2735 /*
2736  * Prove that the new dependency does not connect a hardirq-safe(-read)
2737  * lock with a hardirq-unsafe lock - to achieve this we search
2738  * the backwards-subgraph starting at <prev>, and the
2739  * forwards-subgraph starting at <next>:
2740  */
2741 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2742                            struct held_lock *next)
2743 {
2744         unsigned long usage_mask = 0, forward_mask, backward_mask;
2745         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2746         struct lock_list *target_entry1;
2747         struct lock_list *target_entry;
2748         struct lock_list this, that;
2749         enum bfs_result ret;
2750
2751         /*
2752          * Step 1: gather all hard/soft IRQs usages backward in an
2753          * accumulated usage mask.
2754          */
2755         bfs_init_rootb(&this, prev);
2756
2757         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2758         if (bfs_error(ret)) {
2759                 print_bfs_bug(ret);
2760                 return 0;
2761         }
2762
2763         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2764         if (!usage_mask)
2765                 return 1;
2766
2767         /*
2768          * Step 2: find exclusive uses forward that match the previous
2769          * backward accumulated mask.
2770          */
2771         forward_mask = exclusive_mask(usage_mask);
2772
2773         bfs_init_root(&that, next);
2774
2775         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2776         if (bfs_error(ret)) {
2777                 print_bfs_bug(ret);
2778                 return 0;
2779         }
2780         if (ret == BFS_RNOMATCH)
2781                 return 1;
2782
2783         /*
2784          * Step 3: we found a bad match! Now retrieve a lock from the backward
2785          * list whose usage mask matches the exclusive usage mask from the
2786          * lock found on the forward list.
2787          *
2788          * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2789          * the follow case:
2790          *
2791          * When trying to add A -> B to the graph, we find that there is a
2792          * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2793          * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2794          * invert bits of M's usage_mask, we will find another lock N that is
2795          * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2796          * cause a inversion deadlock.
2797          */
2798         backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2799
2800         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2801         if (bfs_error(ret)) {
2802                 print_bfs_bug(ret);
2803                 return 0;
2804         }
2805         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2806                 return 1;
2807
2808         /*
2809          * Step 4: narrow down to a pair of incompatible usage bits
2810          * and report it.
2811          */
2812         ret = find_exclusive_match(target_entry->class->usage_mask,
2813                                    target_entry1->class->usage_mask,
2814                                    &backward_bit, &forward_bit);
2815         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2816                 return 1;
2817
2818         print_bad_irq_dependency(curr, &this, &that,
2819                                  target_entry, target_entry1,
2820                                  prev, next,
2821                                  backward_bit, forward_bit,
2822                                  state_name(backward_bit));
2823
2824         return 0;
2825 }
2826
2827 #else
2828
2829 static inline int check_irq_usage(struct task_struct *curr,
2830                                   struct held_lock *prev, struct held_lock *next)
2831 {
2832         return 1;
2833 }
2834
2835 static inline bool usage_skip(struct lock_list *entry, void *mask)
2836 {
2837         return false;
2838 }
2839
2840 #endif /* CONFIG_TRACE_IRQFLAGS */
2841
2842 #ifdef CONFIG_LOCKDEP_SMALL
2843 /*
2844  * Check that the dependency graph starting at <src> can lead to
2845  * <target> or not. If it can, <src> -> <target> dependency is already
2846  * in the graph.
2847  *
2848  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2849  * any error appears in the bfs search.
2850  */
2851 static noinline enum bfs_result
2852 check_redundant(struct held_lock *src, struct held_lock *target)
2853 {
2854         enum bfs_result ret;
2855         struct lock_list *target_entry;
2856         struct lock_list src_entry;
2857
2858         bfs_init_root(&src_entry, src);
2859         /*
2860          * Special setup for check_redundant().
2861          *
2862          * To report redundant, we need to find a strong dependency path that
2863          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2864          * we need to let __bfs() only search for a path starting at a -(E*)->,
2865          * we achieve this by setting the initial node's ->only_xr to true in
2866          * that case. And if <prev> is S, we set initial ->only_xr to false
2867          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2868          */
2869         src_entry.only_xr = src->read == 0;
2870
2871         debug_atomic_inc(nr_redundant_checks);
2872
2873         /*
2874          * Note: we skip local_lock() for redundant check, because as the
2875          * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2876          * the same.
2877          */
2878         ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2879
2880         if (ret == BFS_RMATCH)
2881                 debug_atomic_inc(nr_redundant);
2882
2883         return ret;
2884 }
2885
2886 #else
2887
2888 static inline enum bfs_result
2889 check_redundant(struct held_lock *src, struct held_lock *target)
2890 {
2891         return BFS_RNOMATCH;
2892 }
2893
2894 #endif
2895
2896 static void inc_chains(int irq_context)
2897 {
2898         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2899                 nr_hardirq_chains++;
2900         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2901                 nr_softirq_chains++;
2902         else
2903                 nr_process_chains++;
2904 }
2905
2906 static void dec_chains(int irq_context)
2907 {
2908         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2909                 nr_hardirq_chains--;
2910         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2911                 nr_softirq_chains--;
2912         else
2913                 nr_process_chains--;
2914 }
2915
2916 static void
2917 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2918 {
2919         struct lock_class *next = hlock_class(nxt);
2920         struct lock_class *prev = hlock_class(prv);
2921
2922         printk(" Possible unsafe locking scenario:\n\n");
2923         printk("       CPU0\n");
2924         printk("       ----\n");
2925         printk("  lock(");
2926         __print_lock_name(prev);
2927         printk(KERN_CONT ");\n");
2928         printk("  lock(");
2929         __print_lock_name(next);
2930         printk(KERN_CONT ");\n");
2931         printk("\n *** DEADLOCK ***\n\n");
2932         printk(" May be due to missing lock nesting notation\n\n");
2933 }
2934
2935 static void
2936 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2937                    struct held_lock *next)
2938 {
2939         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2940                 return;
2941
2942         pr_warn("\n");
2943         pr_warn("============================================\n");
2944         pr_warn("WARNING: possible recursive locking detected\n");
2945         print_kernel_ident();
2946         pr_warn("--------------------------------------------\n");
2947         pr_warn("%s/%d is trying to acquire lock:\n",
2948                 curr->comm, task_pid_nr(curr));
2949         print_lock(next);
2950         pr_warn("\nbut task is already holding lock:\n");
2951         print_lock(prev);
2952
2953         pr_warn("\nother info that might help us debug this:\n");
2954         print_deadlock_scenario(next, prev);
2955         lockdep_print_held_locks(curr);
2956
2957         pr_warn("\nstack backtrace:\n");
2958         dump_stack();
2959 }
2960
2961 /*
2962  * Check whether we are holding such a class already.
2963  *
2964  * (Note that this has to be done separately, because the graph cannot
2965  * detect such classes of deadlocks.)
2966  *
2967  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2968  * lock class is held but nest_lock is also held, i.e. we rely on the
2969  * nest_lock to avoid the deadlock.
2970  */
2971 static int
2972 check_deadlock(struct task_struct *curr, struct held_lock *next)
2973 {
2974         struct held_lock *prev;
2975         struct held_lock *nest = NULL;
2976         int i;
2977
2978         for (i = 0; i < curr->lockdep_depth; i++) {
2979                 prev = curr->held_locks + i;
2980
2981                 if (prev->instance == next->nest_lock)
2982                         nest = prev;
2983
2984                 if (hlock_class(prev) != hlock_class(next))
2985                         continue;
2986
2987                 /*
2988                  * Allow read-after-read recursion of the same
2989                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
2990                  */
2991                 if ((next->read == 2) && prev->read)
2992                         continue;
2993
2994                 /*
2995                  * We're holding the nest_lock, which serializes this lock's
2996                  * nesting behaviour.
2997                  */
2998                 if (nest)
2999                         return 2;
3000
3001                 print_deadlock_bug(curr, prev, next);
3002                 return 0;
3003         }
3004         return 1;
3005 }
3006
3007 /*
3008  * There was a chain-cache miss, and we are about to add a new dependency
3009  * to a previous lock. We validate the following rules:
3010  *
3011  *  - would the adding of the <prev> -> <next> dependency create a
3012  *    circular dependency in the graph? [== circular deadlock]
3013  *
3014  *  - does the new prev->next dependency connect any hardirq-safe lock
3015  *    (in the full backwards-subgraph starting at <prev>) with any
3016  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3017  *    <next>)? [== illegal lock inversion with hardirq contexts]
3018  *
3019  *  - does the new prev->next dependency connect any softirq-safe lock
3020  *    (in the full backwards-subgraph starting at <prev>) with any
3021  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3022  *    <next>)? [== illegal lock inversion with softirq contexts]
3023  *
3024  * any of these scenarios could lead to a deadlock.
3025  *
3026  * Then if all the validations pass, we add the forwards and backwards
3027  * dependency.
3028  */
3029 static int
3030 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3031                struct held_lock *next, u16 distance,
3032                struct lock_trace **const trace)
3033 {
3034         struct lock_list *entry;
3035         enum bfs_result ret;
3036
3037         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3038                 /*
3039                  * The warning statements below may trigger a use-after-free
3040                  * of the class name. It is better to trigger a use-after free
3041                  * and to have the class name most of the time instead of not
3042                  * having the class name available.
3043                  */
3044                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3045                           "Detected use-after-free of lock class %px/%s\n",
3046                           hlock_class(prev),
3047                           hlock_class(prev)->name);
3048                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3049                           "Detected use-after-free of lock class %px/%s\n",
3050                           hlock_class(next),
3051                           hlock_class(next)->name);
3052                 return 2;
3053         }
3054
3055         /*
3056          * Prove that the new <prev> -> <next> dependency would not
3057          * create a circular dependency in the graph. (We do this by
3058          * a breadth-first search into the graph starting at <next>,
3059          * and check whether we can reach <prev>.)
3060          *
3061          * The search is limited by the size of the circular queue (i.e.,
3062          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3063          * in the graph whose neighbours are to be checked.
3064          */
3065         ret = check_noncircular(next, prev, trace);
3066         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3067                 return 0;
3068
3069         if (!check_irq_usage(curr, prev, next))
3070                 return 0;
3071
3072         /*
3073          * Is the <prev> -> <next> dependency already present?
3074          *
3075          * (this may occur even though this is a new chain: consider
3076          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3077          *  chains - the second one will be new, but L1 already has
3078          *  L2 added to its dependency list, due to the first chain.)
3079          */
3080         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3081                 if (entry->class == hlock_class(next)) {
3082                         if (distance == 1)
3083                                 entry->distance = 1;
3084                         entry->dep |= calc_dep(prev, next);
3085
3086                         /*
3087                          * Also, update the reverse dependency in @next's
3088                          * ->locks_before list.
3089                          *
3090                          *  Here we reuse @entry as the cursor, which is fine
3091                          *  because we won't go to the next iteration of the
3092                          *  outer loop:
3093                          *
3094                          *  For normal cases, we return in the inner loop.
3095                          *
3096                          *  If we fail to return, we have inconsistency, i.e.
3097                          *  <prev>::locks_after contains <next> while
3098                          *  <next>::locks_before doesn't contain <prev>. In
3099                          *  that case, we return after the inner and indicate
3100                          *  something is wrong.
3101                          */
3102                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3103                                 if (entry->class == hlock_class(prev)) {
3104                                         if (distance == 1)
3105                                                 entry->distance = 1;
3106                                         entry->dep |= calc_depb(prev, next);
3107                                         return 1;
3108                                 }
3109                         }
3110
3111                         /* <prev> is not found in <next>::locks_before */
3112                         return 0;
3113                 }
3114         }
3115
3116         /*
3117          * Is the <prev> -> <next> link redundant?
3118          */
3119         ret = check_redundant(prev, next);
3120         if (bfs_error(ret))
3121                 return 0;
3122         else if (ret == BFS_RMATCH)
3123                 return 2;
3124
3125         if (!*trace) {
3126                 *trace = save_trace();
3127                 if (!*trace)
3128                         return 0;
3129         }
3130
3131         /*
3132          * Ok, all validations passed, add the new lock
3133          * to the previous lock's dependency list:
3134          */
3135         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3136                                &hlock_class(prev)->locks_after,
3137                                next->acquire_ip, distance,
3138                                calc_dep(prev, next),
3139                                *trace);
3140
3141         if (!ret)
3142                 return 0;
3143
3144         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3145                                &hlock_class(next)->locks_before,
3146                                next->acquire_ip, distance,
3147                                calc_depb(prev, next),
3148                                *trace);
3149         if (!ret)
3150                 return 0;
3151
3152         return 2;
3153 }
3154
3155 /*
3156  * Add the dependency to all directly-previous locks that are 'relevant'.
3157  * The ones that are relevant are (in increasing distance from curr):
3158  * all consecutive trylock entries and the final non-trylock entry - or
3159  * the end of this context's lock-chain - whichever comes first.
3160  */
3161 static int
3162 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3163 {
3164         struct lock_trace *trace = NULL;
3165         int depth = curr->lockdep_depth;
3166         struct held_lock *hlock;
3167
3168         /*
3169          * Debugging checks.
3170          *
3171          * Depth must not be zero for a non-head lock:
3172          */
3173         if (!depth)
3174                 goto out_bug;
3175         /*
3176          * At least two relevant locks must exist for this
3177          * to be a head:
3178          */
3179         if (curr->held_locks[depth].irq_context !=
3180                         curr->held_locks[depth-1].irq_context)
3181                 goto out_bug;
3182
3183         for (;;) {
3184                 u16 distance = curr->lockdep_depth - depth + 1;
3185                 hlock = curr->held_locks + depth - 1;
3186
3187                 if (hlock->check) {
3188                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
3189                         if (!ret)
3190                                 return 0;
3191
3192                         /*
3193                          * Stop after the first non-trylock entry,
3194                          * as non-trylock entries have added their
3195                          * own direct dependencies already, so this
3196                          * lock is connected to them indirectly:
3197                          */
3198                         if (!hlock->trylock)
3199                                 break;
3200                 }
3201
3202                 depth--;
3203                 /*
3204                  * End of lock-stack?
3205                  */
3206                 if (!depth)
3207                         break;
3208                 /*
3209                  * Stop the search if we cross into another context:
3210                  */
3211                 if (curr->held_locks[depth].irq_context !=
3212                                 curr->held_locks[depth-1].irq_context)
3213                         break;
3214         }
3215         return 1;
3216 out_bug:
3217         if (!debug_locks_off_graph_unlock())
3218                 return 0;
3219
3220         /*
3221          * Clearly we all shouldn't be here, but since we made it we
3222          * can reliable say we messed up our state. See the above two
3223          * gotos for reasons why we could possibly end up here.
3224          */
3225         WARN_ON(1);
3226
3227         return 0;
3228 }
3229
3230 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3231 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3232 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3233 unsigned long nr_zapped_lock_chains;
3234 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3235 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3236 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3237
3238 /*
3239  * The first 2 chain_hlocks entries in the chain block in the bucket
3240  * list contains the following meta data:
3241  *
3242  *   entry[0]:
3243  *     Bit    15 - always set to 1 (it is not a class index)
3244  *     Bits 0-14 - upper 15 bits of the next block index
3245  *   entry[1]    - lower 16 bits of next block index
3246  *
3247  * A next block index of all 1 bits means it is the end of the list.
3248  *
3249  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3250  * the chain block size:
3251  *
3252  *   entry[2] - upper 16 bits of the chain block size
3253  *   entry[3] - lower 16 bits of the chain block size
3254  */
3255 #define MAX_CHAIN_BUCKETS       16
3256 #define CHAIN_BLK_FLAG          (1U << 15)
3257 #define CHAIN_BLK_LIST_END      0xFFFFU
3258
3259 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3260
3261 static inline int size_to_bucket(int size)
3262 {
3263         if (size > MAX_CHAIN_BUCKETS)
3264                 return 0;
3265
3266         return size - 1;
3267 }
3268
3269 /*
3270  * Iterate all the chain blocks in a bucket.
3271  */
3272 #define for_each_chain_block(bucket, prev, curr)                \
3273         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3274              (curr) >= 0;                                       \
3275              (prev) = (curr), (curr) = chain_block_next(curr))
3276
3277 /*
3278  * next block or -1
3279  */
3280 static inline int chain_block_next(int offset)
3281 {
3282         int next = chain_hlocks[offset];
3283
3284         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3285
3286         if (next == CHAIN_BLK_LIST_END)
3287                 return -1;
3288
3289         next &= ~CHAIN_BLK_FLAG;
3290         next <<= 16;
3291         next |= chain_hlocks[offset + 1];
3292
3293         return next;
3294 }
3295
3296 /*
3297  * bucket-0 only
3298  */
3299 static inline int chain_block_size(int offset)
3300 {
3301         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3302 }
3303
3304 static inline void init_chain_block(int offset, int next, int bucket, int size)
3305 {
3306         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3307         chain_hlocks[offset + 1] = (u16)next;
3308
3309         if (size && !bucket) {
3310                 chain_hlocks[offset + 2] = size >> 16;
3311                 chain_hlocks[offset + 3] = (u16)size;
3312         }
3313 }
3314
3315 static inline void add_chain_block(int offset, int size)
3316 {
3317         int bucket = size_to_bucket(size);
3318         int next = chain_block_buckets[bucket];
3319         int prev, curr;
3320
3321         if (unlikely(size < 2)) {
3322                 /*
3323                  * We can't store single entries on the freelist. Leak them.
3324                  *
3325                  * One possible way out would be to uniquely mark them, other
3326                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3327                  * the block before it is re-added.
3328                  */
3329                 if (size)
3330                         nr_lost_chain_hlocks++;
3331                 return;
3332         }
3333
3334         nr_free_chain_hlocks += size;
3335         if (!bucket) {
3336                 nr_large_chain_blocks++;
3337
3338                 /*
3339                  * Variable sized, sort large to small.
3340                  */
3341                 for_each_chain_block(0, prev, curr) {
3342                         if (size >= chain_block_size(curr))
3343                                 break;
3344                 }
3345                 init_chain_block(offset, curr, 0, size);
3346                 if (prev < 0)
3347                         chain_block_buckets[0] = offset;
3348                 else
3349                         init_chain_block(prev, offset, 0, 0);
3350                 return;
3351         }
3352         /*
3353          * Fixed size, add to head.
3354          */
3355         init_chain_block(offset, next, bucket, size);
3356         chain_block_buckets[bucket] = offset;
3357 }
3358
3359 /*
3360  * Only the first block in the list can be deleted.
3361  *
3362  * For the variable size bucket[0], the first block (the largest one) is
3363  * returned, broken up and put back into the pool. So if a chain block of
3364  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3365  * queued up after the primordial chain block and never be used until the
3366  * hlock entries in the primordial chain block is almost used up. That
3367  * causes fragmentation and reduce allocation efficiency. That can be
3368  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3369  */
3370 static inline void del_chain_block(int bucket, int size, int next)
3371 {
3372         nr_free_chain_hlocks -= size;
3373         chain_block_buckets[bucket] = next;
3374
3375         if (!bucket)
3376                 nr_large_chain_blocks--;
3377 }
3378
3379 static void init_chain_block_buckets(void)
3380 {
3381         int i;
3382
3383         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3384                 chain_block_buckets[i] = -1;
3385
3386         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3387 }
3388
3389 /*
3390  * Return offset of a chain block of the right size or -1 if not found.
3391  *
3392  * Fairly simple worst-fit allocator with the addition of a number of size
3393  * specific free lists.
3394  */
3395 static int alloc_chain_hlocks(int req)
3396 {
3397         int bucket, curr, size;
3398
3399         /*
3400          * We rely on the MSB to act as an escape bit to denote freelist
3401          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3402          */
3403         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3404
3405         init_data_structures_once();
3406
3407         if (nr_free_chain_hlocks < req)
3408                 return -1;
3409
3410         /*
3411          * We require a minimum of 2 (u16) entries to encode a freelist
3412          * 'pointer'.
3413          */
3414         req = max(req, 2);
3415         bucket = size_to_bucket(req);
3416         curr = chain_block_buckets[bucket];
3417
3418         if (bucket) {
3419                 if (curr >= 0) {
3420                         del_chain_block(bucket, req, chain_block_next(curr));
3421                         return curr;
3422                 }
3423                 /* Try bucket 0 */
3424                 curr = chain_block_buckets[0];
3425         }
3426
3427         /*
3428          * The variable sized freelist is sorted by size; the first entry is
3429          * the largest. Use it if it fits.
3430          */
3431         if (curr >= 0) {
3432                 size = chain_block_size(curr);
3433                 if (likely(size >= req)) {
3434                         del_chain_block(0, size, chain_block_next(curr));
3435                         add_chain_block(curr + req, size - req);
3436                         return curr;
3437                 }
3438         }
3439
3440         /*
3441          * Last resort, split a block in a larger sized bucket.
3442          */
3443         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3444                 bucket = size_to_bucket(size);
3445                 curr = chain_block_buckets[bucket];
3446                 if (curr < 0)
3447                         continue;
3448
3449                 del_chain_block(bucket, size, chain_block_next(curr));
3450                 add_chain_block(curr + req, size - req);
3451                 return curr;
3452         }
3453
3454         return -1;
3455 }
3456
3457 static inline void free_chain_hlocks(int base, int size)
3458 {
3459         add_chain_block(base, max(size, 2));
3460 }
3461
3462 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3463 {
3464         u16 chain_hlock = chain_hlocks[chain->base + i];
3465         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3466
3467         return lock_classes + class_idx;
3468 }
3469
3470 /*
3471  * Returns the index of the first held_lock of the current chain
3472  */
3473 static inline int get_first_held_lock(struct task_struct *curr,
3474                                         struct held_lock *hlock)
3475 {
3476         int i;
3477         struct held_lock *hlock_curr;
3478
3479         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3480                 hlock_curr = curr->held_locks + i;
3481                 if (hlock_curr->irq_context != hlock->irq_context)
3482                         break;
3483
3484         }
3485
3486         return ++i;
3487 }
3488
3489 #ifdef CONFIG_DEBUG_LOCKDEP
3490 /*
3491  * Returns the next chain_key iteration
3492  */
3493 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3494 {
3495         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3496
3497         printk(" hlock_id:%d -> chain_key:%016Lx",
3498                 (unsigned int)hlock_id,
3499                 (unsigned long long)new_chain_key);
3500         return new_chain_key;
3501 }
3502
3503 static void
3504 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3505 {
3506         struct held_lock *hlock;
3507         u64 chain_key = INITIAL_CHAIN_KEY;
3508         int depth = curr->lockdep_depth;
3509         int i = get_first_held_lock(curr, hlock_next);
3510
3511         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3512                 hlock_next->irq_context);
3513         for (; i < depth; i++) {
3514                 hlock = curr->held_locks + i;
3515                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3516
3517                 print_lock(hlock);
3518         }
3519
3520         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3521         print_lock(hlock_next);
3522 }
3523
3524 static void print_chain_keys_chain(struct lock_chain *chain)
3525 {
3526         int i;
3527         u64 chain_key = INITIAL_CHAIN_KEY;
3528         u16 hlock_id;
3529
3530         printk("depth: %u\n", chain->depth);
3531         for (i = 0; i < chain->depth; i++) {
3532                 hlock_id = chain_hlocks[chain->base + i];
3533                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3534
3535                 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3536                 printk("\n");
3537         }
3538 }
3539
3540 static void print_collision(struct task_struct *curr,
3541                         struct held_lock *hlock_next,
3542                         struct lock_chain *chain)
3543 {
3544         pr_warn("\n");
3545         pr_warn("============================\n");
3546         pr_warn("WARNING: chain_key collision\n");
3547         print_kernel_ident();
3548         pr_warn("----------------------------\n");
3549         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3550         pr_warn("Hash chain already cached but the contents don't match!\n");
3551
3552         pr_warn("Held locks:");
3553         print_chain_keys_held_locks(curr, hlock_next);
3554
3555         pr_warn("Locks in cached chain:");
3556         print_chain_keys_chain(chain);
3557
3558         pr_warn("\nstack backtrace:\n");
3559         dump_stack();
3560 }
3561 #endif
3562
3563 /*
3564  * Checks whether the chain and the current held locks are consistent
3565  * in depth and also in content. If they are not it most likely means
3566  * that there was a collision during the calculation of the chain_key.
3567  * Returns: 0 not passed, 1 passed
3568  */
3569 static int check_no_collision(struct task_struct *curr,
3570                         struct held_lock *hlock,
3571                         struct lock_chain *chain)
3572 {
3573 #ifdef CONFIG_DEBUG_LOCKDEP
3574         int i, j, id;
3575
3576         i = get_first_held_lock(curr, hlock);
3577
3578         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3579                 print_collision(curr, hlock, chain);
3580                 return 0;
3581         }
3582
3583         for (j = 0; j < chain->depth - 1; j++, i++) {
3584                 id = hlock_id(&curr->held_locks[i]);
3585
3586                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3587                         print_collision(curr, hlock, chain);
3588                         return 0;
3589                 }
3590         }
3591 #endif
3592         return 1;
3593 }
3594
3595 /*
3596  * Given an index that is >= -1, return the index of the next lock chain.
3597  * Return -2 if there is no next lock chain.
3598  */
3599 long lockdep_next_lockchain(long i)
3600 {
3601         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3602         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3603 }
3604
3605 unsigned long lock_chain_count(void)
3606 {
3607         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3608 }
3609
3610 /* Must be called with the graph lock held. */
3611 static struct lock_chain *alloc_lock_chain(void)
3612 {
3613         int idx = find_first_zero_bit(lock_chains_in_use,
3614                                       ARRAY_SIZE(lock_chains));
3615
3616         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3617                 return NULL;
3618         __set_bit(idx, lock_chains_in_use);
3619         return lock_chains + idx;
3620 }
3621
3622 /*
3623  * Adds a dependency chain into chain hashtable. And must be called with
3624  * graph_lock held.
3625  *
3626  * Return 0 if fail, and graph_lock is released.
3627  * Return 1 if succeed, with graph_lock held.
3628  */
3629 static inline int add_chain_cache(struct task_struct *curr,
3630                                   struct held_lock *hlock,
3631                                   u64 chain_key)
3632 {
3633         struct hlist_head *hash_head = chainhashentry(chain_key);
3634         struct lock_chain *chain;
3635         int i, j;
3636
3637         /*
3638          * The caller must hold the graph lock, ensure we've got IRQs
3639          * disabled to make this an IRQ-safe lock.. for recursion reasons
3640          * lockdep won't complain about its own locking errors.
3641          */
3642         if (lockdep_assert_locked())
3643                 return 0;
3644
3645         chain = alloc_lock_chain();
3646         if (!chain) {
3647                 if (!debug_locks_off_graph_unlock())
3648                         return 0;
3649
3650                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3651                 dump_stack();
3652                 return 0;
3653         }
3654         chain->chain_key = chain_key;
3655         chain->irq_context = hlock->irq_context;
3656         i = get_first_held_lock(curr, hlock);
3657         chain->depth = curr->lockdep_depth + 1 - i;
3658
3659         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3660         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3661         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3662
3663         j = alloc_chain_hlocks(chain->depth);
3664         if (j < 0) {
3665                 if (!debug_locks_off_graph_unlock())
3666                         return 0;
3667
3668                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3669                 dump_stack();
3670                 return 0;
3671         }
3672
3673         chain->base = j;
3674         for (j = 0; j < chain->depth - 1; j++, i++) {
3675                 int lock_id = hlock_id(curr->held_locks + i);
3676
3677                 chain_hlocks[chain->base + j] = lock_id;
3678         }
3679         chain_hlocks[chain->base + j] = hlock_id(hlock);
3680         hlist_add_head_rcu(&chain->entry, hash_head);
3681         debug_atomic_inc(chain_lookup_misses);
3682         inc_chains(chain->irq_context);
3683
3684         return 1;
3685 }
3686
3687 /*
3688  * Look up a dependency chain. Must be called with either the graph lock or
3689  * the RCU read lock held.
3690  */
3691 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3692 {
3693         struct hlist_head *hash_head = chainhashentry(chain_key);
3694         struct lock_chain *chain;
3695
3696         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3697                 if (READ_ONCE(chain->chain_key) == chain_key) {
3698                         debug_atomic_inc(chain_lookup_hits);
3699                         return chain;
3700                 }
3701         }
3702         return NULL;
3703 }
3704
3705 /*
3706  * If the key is not present yet in dependency chain cache then
3707  * add it and return 1 - in this case the new dependency chain is
3708  * validated. If the key is already hashed, return 0.
3709  * (On return with 1 graph_lock is held.)
3710  */
3711 static inline int lookup_chain_cache_add(struct task_struct *curr,
3712                                          struct held_lock *hlock,
3713                                          u64 chain_key)
3714 {
3715         struct lock_class *class = hlock_class(hlock);
3716         struct lock_chain *chain = lookup_chain_cache(chain_key);
3717
3718         if (chain) {
3719 cache_hit:
3720                 if (!check_no_collision(curr, hlock, chain))
3721                         return 0;
3722
3723                 if (very_verbose(class)) {
3724                         printk("\nhash chain already cached, key: "
3725                                         "%016Lx tail class: [%px] %s\n",
3726                                         (unsigned long long)chain_key,
3727                                         class->key, class->name);
3728                 }
3729
3730                 return 0;
3731         }
3732
3733         if (very_verbose(class)) {
3734                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3735                         (unsigned long long)chain_key, class->key, class->name);
3736         }
3737
3738         if (!graph_lock())
3739                 return 0;
3740
3741         /*
3742          * We have to walk the chain again locked - to avoid duplicates:
3743          */
3744         chain = lookup_chain_cache(chain_key);
3745         if (chain) {
3746                 graph_unlock();
3747                 goto cache_hit;
3748         }
3749
3750         if (!add_chain_cache(curr, hlock, chain_key))
3751                 return 0;
3752
3753         return 1;
3754 }
3755
3756 static int validate_chain(struct task_struct *curr,
3757                           struct held_lock *hlock,
3758                           int chain_head, u64 chain_key)
3759 {
3760         /*
3761          * Trylock needs to maintain the stack of held locks, but it
3762          * does not add new dependencies, because trylock can be done
3763          * in any order.
3764          *
3765          * We look up the chain_key and do the O(N^2) check and update of
3766          * the dependencies only if this is a new dependency chain.
3767          * (If lookup_chain_cache_add() return with 1 it acquires
3768          * graph_lock for us)
3769          */
3770         if (!hlock->trylock && hlock->check &&
3771             lookup_chain_cache_add(curr, hlock, chain_key)) {
3772                 /*
3773                  * Check whether last held lock:
3774                  *
3775                  * - is irq-safe, if this lock is irq-unsafe
3776                  * - is softirq-safe, if this lock is hardirq-unsafe
3777                  *
3778                  * And check whether the new lock's dependency graph
3779                  * could lead back to the previous lock:
3780                  *
3781                  * - within the current held-lock stack
3782                  * - across our accumulated lock dependency records
3783                  *
3784                  * any of these scenarios could lead to a deadlock.
3785                  */
3786                 /*
3787                  * The simple case: does the current hold the same lock
3788                  * already?
3789                  */
3790                 int ret = check_deadlock(curr, hlock);
3791
3792                 if (!ret)
3793                         return 0;
3794                 /*
3795                  * Add dependency only if this lock is not the head
3796                  * of the chain, and if the new lock introduces no more
3797                  * lock dependency (because we already hold a lock with the
3798                  * same lock class) nor deadlock (because the nest_lock
3799                  * serializes nesting locks), see the comments for
3800                  * check_deadlock().
3801                  */
3802                 if (!chain_head && ret != 2) {
3803                         if (!check_prevs_add(curr, hlock))
3804                                 return 0;
3805                 }
3806
3807                 graph_unlock();
3808         } else {
3809                 /* after lookup_chain_cache_add(): */
3810                 if (unlikely(!debug_locks))
3811                         return 0;
3812         }
3813
3814         return 1;
3815 }
3816 #else
3817 static inline int validate_chain(struct task_struct *curr,
3818                                  struct held_lock *hlock,
3819                                  int chain_head, u64 chain_key)
3820 {
3821         return 1;
3822 }
3823
3824 static void init_chain_block_buckets(void)      { }
3825 #endif /* CONFIG_PROVE_LOCKING */
3826
3827 /*
3828  * We are building curr_chain_key incrementally, so double-check
3829  * it from scratch, to make sure that it's done correctly:
3830  */
3831 static void check_chain_key(struct task_struct *curr)
3832 {
3833 #ifdef CONFIG_DEBUG_LOCKDEP
3834         struct held_lock *hlock, *prev_hlock = NULL;
3835         unsigned int i;
3836         u64 chain_key = INITIAL_CHAIN_KEY;
3837
3838         for (i = 0; i < curr->lockdep_depth; i++) {
3839                 hlock = curr->held_locks + i;
3840                 if (chain_key != hlock->prev_chain_key) {
3841                         debug_locks_off();
3842                         /*
3843                          * We got mighty confused, our chain keys don't match
3844                          * with what we expect, someone trample on our task state?
3845                          */
3846                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3847                                 curr->lockdep_depth, i,
3848                                 (unsigned long long)chain_key,
3849                                 (unsigned long long)hlock->prev_chain_key);
3850                         return;
3851                 }
3852
3853                 /*
3854                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3855                  * it registered lock class index?
3856                  */
3857                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3858                         return;
3859
3860                 if (prev_hlock && (prev_hlock->irq_context !=
3861                                                         hlock->irq_context))
3862                         chain_key = INITIAL_CHAIN_KEY;
3863                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3864                 prev_hlock = hlock;
3865         }
3866         if (chain_key != curr->curr_chain_key) {
3867                 debug_locks_off();
3868                 /*
3869                  * More smoking hash instead of calculating it, damn see these
3870                  * numbers float.. I bet that a pink elephant stepped on my memory.
3871                  */
3872                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3873                         curr->lockdep_depth, i,
3874                         (unsigned long long)chain_key,
3875                         (unsigned long long)curr->curr_chain_key);
3876         }
3877 #endif
3878 }
3879
3880 #ifdef CONFIG_PROVE_LOCKING
3881 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3882                      enum lock_usage_bit new_bit);
3883
3884 static void print_usage_bug_scenario(struct held_lock *lock)
3885 {
3886         struct lock_class *class = hlock_class(lock);
3887
3888         printk(" Possible unsafe locking scenario:\n\n");
3889         printk("       CPU0\n");
3890         printk("       ----\n");
3891         printk("  lock(");
3892         __print_lock_name(class);
3893         printk(KERN_CONT ");\n");
3894         printk("  <Interrupt>\n");
3895         printk("    lock(");
3896         __print_lock_name(class);
3897         printk(KERN_CONT ");\n");
3898         printk("\n *** DEADLOCK ***\n\n");
3899 }
3900
3901 static void
3902 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3903                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3904 {
3905         if (!debug_locks_off() || debug_locks_silent)
3906                 return;
3907
3908         pr_warn("\n");
3909         pr_warn("================================\n");
3910         pr_warn("WARNING: inconsistent lock state\n");
3911         print_kernel_ident();
3912         pr_warn("--------------------------------\n");
3913
3914         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3915                 usage_str[prev_bit], usage_str[new_bit]);
3916
3917         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3918                 curr->comm, task_pid_nr(curr),
3919                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3920                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3921                 lockdep_hardirqs_enabled(),
3922                 lockdep_softirqs_enabled(curr));
3923         print_lock(this);
3924
3925         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3926         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3927
3928         print_irqtrace_events(curr);
3929         pr_warn("\nother info that might help us debug this:\n");
3930         print_usage_bug_scenario(this);
3931
3932         lockdep_print_held_locks(curr);
3933
3934         pr_warn("\nstack backtrace:\n");
3935         dump_stack();
3936 }
3937
3938 /*
3939  * Print out an error if an invalid bit is set:
3940  */
3941 static inline int
3942 valid_state(struct task_struct *curr, struct held_lock *this,
3943             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3944 {
3945         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3946                 graph_unlock();
3947                 print_usage_bug(curr, this, bad_bit, new_bit);
3948                 return 0;
3949         }
3950         return 1;
3951 }
3952
3953
3954 /*
3955  * print irq inversion bug:
3956  */
3957 static void
3958 print_irq_inversion_bug(struct task_struct *curr,
3959                         struct lock_list *root, struct lock_list *other,
3960                         struct held_lock *this, int forwards,
3961                         const char *irqclass)
3962 {
3963         struct lock_list *entry = other;
3964         struct lock_list *middle = NULL;
3965         int depth;
3966
3967         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3968                 return;
3969
3970         pr_warn("\n");
3971         pr_warn("========================================================\n");
3972         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3973         print_kernel_ident();
3974         pr_warn("--------------------------------------------------------\n");
3975         pr_warn("%s/%d just changed the state of lock:\n",
3976                 curr->comm, task_pid_nr(curr));
3977         print_lock(this);
3978         if (forwards)
3979                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3980         else
3981                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3982         print_lock_name(other->class);
3983         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3984
3985         pr_warn("\nother info that might help us debug this:\n");
3986
3987         /* Find a middle lock (if one exists) */
3988         depth = get_lock_depth(other);
3989         do {
3990                 if (depth == 0 && (entry != root)) {
3991                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3992                         break;
3993                 }
3994                 middle = entry;
3995                 entry = get_lock_parent(entry);
3996                 depth--;
3997         } while (entry && entry != root && (depth >= 0));
3998         if (forwards)
3999                 print_irq_lock_scenario(root, other,
4000                         middle ? middle->class : root->class, other->class);
4001         else
4002                 print_irq_lock_scenario(other, root,
4003                         middle ? middle->class : other->class, root->class);
4004
4005         lockdep_print_held_locks(curr);
4006
4007         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4008         root->trace = save_trace();
4009         if (!root->trace)
4010                 return;
4011         print_shortest_lock_dependencies(other, root);
4012
4013         pr_warn("\nstack backtrace:\n");
4014         dump_stack();
4015 }
4016
4017 /*
4018  * Prove that in the forwards-direction subgraph starting at <this>
4019  * there is no lock matching <mask>:
4020  */
4021 static int
4022 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4023                      enum lock_usage_bit bit)
4024 {
4025         enum bfs_result ret;
4026         struct lock_list root;
4027         struct lock_list *target_entry;
4028         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4029         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4030
4031         bfs_init_root(&root, this);
4032         ret = find_usage_forwards(&root, usage_mask, &target_entry);
4033         if (bfs_error(ret)) {
4034                 print_bfs_bug(ret);
4035                 return 0;
4036         }
4037         if (ret == BFS_RNOMATCH)
4038                 return 1;
4039
4040         /* Check whether write or read usage is the match */
4041         if (target_entry->class->usage_mask & lock_flag(bit)) {
4042                 print_irq_inversion_bug(curr, &root, target_entry,
4043                                         this, 1, state_name(bit));
4044         } else {
4045                 print_irq_inversion_bug(curr, &root, target_entry,
4046                                         this, 1, state_name(read_bit));
4047         }
4048
4049         return 0;
4050 }
4051
4052 /*
4053  * Prove that in the backwards-direction subgraph starting at <this>
4054  * there is no lock matching <mask>:
4055  */
4056 static int
4057 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4058                       enum lock_usage_bit bit)
4059 {
4060         enum bfs_result ret;
4061         struct lock_list root;
4062         struct lock_list *target_entry;
4063         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4064         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4065
4066         bfs_init_rootb(&root, this);
4067         ret = find_usage_backwards(&root, usage_mask, &target_entry);
4068         if (bfs_error(ret)) {
4069                 print_bfs_bug(ret);
4070                 return 0;
4071         }
4072         if (ret == BFS_RNOMATCH)
4073                 return 1;
4074
4075         /* Check whether write or read usage is the match */
4076         if (target_entry->class->usage_mask & lock_flag(bit)) {
4077                 print_irq_inversion_bug(curr, &root, target_entry,
4078                                         this, 0, state_name(bit));
4079         } else {
4080                 print_irq_inversion_bug(curr, &root, target_entry,
4081                                         this, 0, state_name(read_bit));
4082         }
4083
4084         return 0;
4085 }
4086
4087 void print_irqtrace_events(struct task_struct *curr)
4088 {
4089         const struct irqtrace_events *trace = &curr->irqtrace;
4090
4091         printk("irq event stamp: %u\n", trace->irq_events);
4092         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4093                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4094                 (void *)trace->hardirq_enable_ip);
4095         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4096                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4097                 (void *)trace->hardirq_disable_ip);
4098         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4099                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4100                 (void *)trace->softirq_enable_ip);
4101         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4102                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4103                 (void *)trace->softirq_disable_ip);
4104 }
4105
4106 static int HARDIRQ_verbose(struct lock_class *class)
4107 {
4108 #if HARDIRQ_VERBOSE
4109         return class_filter(class);
4110 #endif
4111         return 0;
4112 }
4113
4114 static int SOFTIRQ_verbose(struct lock_class *class)
4115 {
4116 #if SOFTIRQ_VERBOSE
4117         return class_filter(class);
4118 #endif
4119         return 0;
4120 }
4121
4122 static int (*state_verbose_f[])(struct lock_class *class) = {
4123 #define LOCKDEP_STATE(__STATE) \
4124         __STATE##_verbose,
4125 #include "lockdep_states.h"
4126 #undef LOCKDEP_STATE
4127 };
4128
4129 static inline int state_verbose(enum lock_usage_bit bit,
4130                                 struct lock_class *class)
4131 {
4132         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4133 }
4134
4135 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4136                              enum lock_usage_bit bit, const char *name);
4137
4138 static int
4139 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4140                 enum lock_usage_bit new_bit)
4141 {
4142         int excl_bit = exclusive_bit(new_bit);
4143         int read = new_bit & LOCK_USAGE_READ_MASK;
4144         int dir = new_bit & LOCK_USAGE_DIR_MASK;
4145
4146         /*
4147          * Validate that this particular lock does not have conflicting
4148          * usage states.
4149          */
4150         if (!valid_state(curr, this, new_bit, excl_bit))
4151                 return 0;
4152
4153         /*
4154          * Check for read in write conflicts
4155          */
4156         if (!read && !valid_state(curr, this, new_bit,
4157                                   excl_bit + LOCK_USAGE_READ_MASK))
4158                 return 0;
4159
4160
4161         /*
4162          * Validate that the lock dependencies don't have conflicting usage
4163          * states.
4164          */
4165         if (dir) {
4166                 /*
4167                  * mark ENABLED has to look backwards -- to ensure no dependee
4168                  * has USED_IN state, which, again, would allow  recursion deadlocks.
4169                  */
4170                 if (!check_usage_backwards(curr, this, excl_bit))
4171                         return 0;
4172         } else {
4173                 /*
4174                  * mark USED_IN has to look forwards -- to ensure no dependency
4175                  * has ENABLED state, which would allow recursion deadlocks.
4176                  */
4177                 if (!check_usage_forwards(curr, this, excl_bit))
4178                         return 0;
4179         }
4180
4181         if (state_verbose(new_bit, hlock_class(this)))
4182                 return 2;
4183
4184         return 1;
4185 }
4186
4187 /*
4188  * Mark all held locks with a usage bit:
4189  */
4190 static int
4191 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4192 {
4193         struct held_lock *hlock;
4194         int i;
4195
4196         for (i = 0; i < curr->lockdep_depth; i++) {
4197                 enum lock_usage_bit hlock_bit = base_bit;
4198                 hlock = curr->held_locks + i;
4199
4200                 if (hlock->read)
4201                         hlock_bit += LOCK_USAGE_READ_MASK;
4202
4203                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4204
4205                 if (!hlock->check)
4206                         continue;
4207
4208                 if (!mark_lock(curr, hlock, hlock_bit))
4209                         return 0;
4210         }
4211
4212         return 1;
4213 }
4214
4215 /*
4216  * Hardirqs will be enabled:
4217  */
4218 static void __trace_hardirqs_on_caller(void)
4219 {
4220         struct task_struct *curr = current;
4221
4222         /*
4223          * We are going to turn hardirqs on, so set the
4224          * usage bit for all held locks:
4225          */
4226         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4227                 return;
4228         /*
4229          * If we have softirqs enabled, then set the usage
4230          * bit for all held locks. (disabled hardirqs prevented
4231          * this bit from being set before)
4232          */
4233         if (curr->softirqs_enabled)
4234                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4235 }
4236
4237 /**
4238  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4239  * @ip:         Caller address
4240  *
4241  * Invoked before a possible transition to RCU idle from exit to user or
4242  * guest mode. This ensures that all RCU operations are done before RCU
4243  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4244  * invoked to set the final state.
4245  */
4246 void lockdep_hardirqs_on_prepare(unsigned long ip)
4247 {
4248         if (unlikely(!debug_locks))
4249                 return;
4250
4251         /*
4252          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4253          */
4254         if (unlikely(in_nmi()))
4255                 return;
4256
4257         if (unlikely(this_cpu_read(lockdep_recursion)))
4258                 return;
4259
4260         if (unlikely(lockdep_hardirqs_enabled())) {
4261                 /*
4262                  * Neither irq nor preemption are disabled here
4263                  * so this is racy by nature but losing one hit
4264                  * in a stat is not a big deal.
4265                  */
4266                 __debug_atomic_inc(redundant_hardirqs_on);
4267                 return;
4268         }
4269
4270         /*
4271          * We're enabling irqs and according to our state above irqs weren't
4272          * already enabled, yet we find the hardware thinks they are in fact
4273          * enabled.. someone messed up their IRQ state tracing.
4274          */
4275         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4276                 return;
4277
4278         /*
4279          * See the fine text that goes along with this variable definition.
4280          */
4281         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4282                 return;
4283
4284         /*
4285          * Can't allow enabling interrupts while in an interrupt handler,
4286          * that's general bad form and such. Recursion, limited stack etc..
4287          */
4288         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4289                 return;
4290
4291         current->hardirq_chain_key = current->curr_chain_key;
4292
4293         lockdep_recursion_inc();
4294         __trace_hardirqs_on_caller();
4295         lockdep_recursion_finish();
4296 }
4297 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4298
4299 void noinstr lockdep_hardirqs_on(unsigned long ip)
4300 {
4301         struct irqtrace_events *trace = &current->irqtrace;
4302
4303         if (unlikely(!debug_locks))
4304                 return;
4305
4306         /*
4307          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4308          * tracking state and hardware state are out of sync.
4309          *
4310          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4311          * and not rely on hardware state like normal interrupts.
4312          */
4313         if (unlikely(in_nmi())) {
4314                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4315                         return;
4316
4317                 /*
4318                  * Skip:
4319                  *  - recursion check, because NMI can hit lockdep;
4320                  *  - hardware state check, because above;
4321                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4322                  */
4323                 goto skip_checks;
4324         }
4325
4326         if (unlikely(this_cpu_read(lockdep_recursion)))
4327                 return;
4328
4329         if (lockdep_hardirqs_enabled()) {
4330                 /*
4331                  * Neither irq nor preemption are disabled here
4332                  * so this is racy by nature but losing one hit
4333                  * in a stat is not a big deal.
4334                  */
4335                 __debug_atomic_inc(redundant_hardirqs_on);
4336                 return;
4337         }
4338
4339         /*
4340          * We're enabling irqs and according to our state above irqs weren't
4341          * already enabled, yet we find the hardware thinks they are in fact
4342          * enabled.. someone messed up their IRQ state tracing.
4343          */
4344         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4345                 return;
4346
4347         /*
4348          * Ensure the lock stack remained unchanged between
4349          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4350          */
4351         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4352                             current->curr_chain_key);
4353
4354 skip_checks:
4355         /* we'll do an OFF -> ON transition: */
4356         __this_cpu_write(hardirqs_enabled, 1);
4357         trace->hardirq_enable_ip = ip;
4358         trace->hardirq_enable_event = ++trace->irq_events;
4359         debug_atomic_inc(hardirqs_on_events);
4360 }
4361 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4362
4363 /*
4364  * Hardirqs were disabled:
4365  */
4366 void noinstr lockdep_hardirqs_off(unsigned long ip)
4367 {
4368         if (unlikely(!debug_locks))
4369                 return;
4370
4371         /*
4372          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4373          * they will restore the software state. This ensures the software
4374          * state is consistent inside NMIs as well.
4375          */
4376         if (in_nmi()) {
4377                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4378                         return;
4379         } else if (__this_cpu_read(lockdep_recursion))
4380                 return;
4381
4382         /*
4383          * So we're supposed to get called after you mask local IRQs, but for
4384          * some reason the hardware doesn't quite think you did a proper job.
4385          */
4386         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4387                 return;
4388
4389         if (lockdep_hardirqs_enabled()) {
4390                 struct irqtrace_events *trace = &current->irqtrace;
4391
4392                 /*
4393                  * We have done an ON -> OFF transition:
4394                  */
4395                 __this_cpu_write(hardirqs_enabled, 0);
4396                 trace->hardirq_disable_ip = ip;
4397                 trace->hardirq_disable_event = ++trace->irq_events;
4398                 debug_atomic_inc(hardirqs_off_events);
4399         } else {
4400                 debug_atomic_inc(redundant_hardirqs_off);
4401         }
4402 }
4403 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4404
4405 /*
4406  * Softirqs will be enabled:
4407  */
4408 void lockdep_softirqs_on(unsigned long ip)
4409 {
4410         struct irqtrace_events *trace = &current->irqtrace;
4411
4412         if (unlikely(!lockdep_enabled()))
4413                 return;
4414
4415         /*
4416          * We fancy IRQs being disabled here, see softirq.c, avoids
4417          * funny state and nesting things.
4418          */
4419         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4420                 return;
4421
4422         if (current->softirqs_enabled) {
4423                 debug_atomic_inc(redundant_softirqs_on);
4424                 return;
4425         }
4426
4427         lockdep_recursion_inc();
4428         /*
4429          * We'll do an OFF -> ON transition:
4430          */
4431         current->softirqs_enabled = 1;
4432         trace->softirq_enable_ip = ip;
4433         trace->softirq_enable_event = ++trace->irq_events;
4434         debug_atomic_inc(softirqs_on_events);
4435         /*
4436          * We are going to turn softirqs on, so set the
4437          * usage bit for all held locks, if hardirqs are
4438          * enabled too:
4439          */
4440         if (lockdep_hardirqs_enabled())
4441                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4442         lockdep_recursion_finish();
4443 }
4444
4445 /*
4446  * Softirqs were disabled:
4447  */
4448 void lockdep_softirqs_off(unsigned long ip)
4449 {
4450         if (unlikely(!lockdep_enabled()))
4451                 return;
4452
4453         /*
4454          * We fancy IRQs being disabled here, see softirq.c
4455          */
4456         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4457                 return;
4458
4459         if (current->softirqs_enabled) {
4460                 struct irqtrace_events *trace = &current->irqtrace;
4461
4462                 /*
4463                  * We have done an ON -> OFF transition:
4464                  */
4465                 current->softirqs_enabled = 0;
4466                 trace->softirq_disable_ip = ip;
4467                 trace->softirq_disable_event = ++trace->irq_events;
4468                 debug_atomic_inc(softirqs_off_events);
4469                 /*
4470                  * Whoops, we wanted softirqs off, so why aren't they?
4471                  */
4472                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4473         } else
4474                 debug_atomic_inc(redundant_softirqs_off);
4475 }
4476
4477 static int
4478 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4479 {
4480         if (!check)
4481                 goto lock_used;
4482
4483         /*
4484          * If non-trylock use in a hardirq or softirq context, then
4485          * mark the lock as used in these contexts:
4486          */
4487         if (!hlock->trylock) {
4488                 if (hlock->read) {
4489                         if (lockdep_hardirq_context())
4490                                 if (!mark_lock(curr, hlock,
4491                                                 LOCK_USED_IN_HARDIRQ_READ))
4492                                         return 0;
4493                         if (curr->softirq_context)
4494                                 if (!mark_lock(curr, hlock,
4495                                                 LOCK_USED_IN_SOFTIRQ_READ))
4496                                         return 0;
4497                 } else {
4498                         if (lockdep_hardirq_context())
4499                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4500                                         return 0;
4501                         if (curr->softirq_context)
4502                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4503                                         return 0;
4504                 }
4505         }
4506         if (!hlock->hardirqs_off) {
4507                 if (hlock->read) {
4508                         if (!mark_lock(curr, hlock,
4509                                         LOCK_ENABLED_HARDIRQ_READ))
4510                                 return 0;
4511                         if (curr->softirqs_enabled)
4512                                 if (!mark_lock(curr, hlock,
4513                                                 LOCK_ENABLED_SOFTIRQ_READ))
4514                                         return 0;
4515                 } else {
4516                         if (!mark_lock(curr, hlock,
4517                                         LOCK_ENABLED_HARDIRQ))
4518                                 return 0;
4519                         if (curr->softirqs_enabled)
4520                                 if (!mark_lock(curr, hlock,
4521                                                 LOCK_ENABLED_SOFTIRQ))
4522                                         return 0;
4523                 }
4524         }
4525
4526 lock_used:
4527         /* mark it as used: */
4528         if (!mark_lock(curr, hlock, LOCK_USED))
4529                 return 0;
4530
4531         return 1;
4532 }
4533
4534 static inline unsigned int task_irq_context(struct task_struct *task)
4535 {
4536         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4537                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4538 }
4539
4540 static int separate_irq_context(struct task_struct *curr,
4541                 struct held_lock *hlock)
4542 {
4543         unsigned int depth = curr->lockdep_depth;
4544
4545         /*
4546          * Keep track of points where we cross into an interrupt context:
4547          */
4548         if (depth) {
4549                 struct held_lock *prev_hlock;
4550
4551                 prev_hlock = curr->held_locks + depth-1;
4552                 /*
4553                  * If we cross into another context, reset the
4554                  * hash key (this also prevents the checking and the
4555                  * adding of the dependency to 'prev'):
4556                  */
4557                 if (prev_hlock->irq_context != hlock->irq_context)
4558                         return 1;
4559         }
4560         return 0;
4561 }
4562
4563 /*
4564  * Mark a lock with a usage bit, and validate the state transition:
4565  */
4566 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4567                              enum lock_usage_bit new_bit)
4568 {
4569         unsigned int new_mask, ret = 1;
4570
4571         if (new_bit >= LOCK_USAGE_STATES) {
4572                 DEBUG_LOCKS_WARN_ON(1);
4573                 return 0;
4574         }
4575
4576         if (new_bit == LOCK_USED && this->read)
4577                 new_bit = LOCK_USED_READ;
4578
4579         new_mask = 1 << new_bit;
4580
4581         /*
4582          * If already set then do not dirty the cacheline,
4583          * nor do any checks:
4584          */
4585         if (likely(hlock_class(this)->usage_mask & new_mask))
4586                 return 1;
4587
4588         if (!graph_lock())
4589                 return 0;
4590         /*
4591          * Make sure we didn't race:
4592          */
4593         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4594                 goto unlock;
4595
4596         if (!hlock_class(this)->usage_mask)
4597                 debug_atomic_dec(nr_unused_locks);
4598
4599         hlock_class(this)->usage_mask |= new_mask;
4600
4601         if (new_bit < LOCK_TRACE_STATES) {
4602                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4603                         return 0;
4604         }
4605
4606         if (new_bit < LOCK_USED) {
4607                 ret = mark_lock_irq(curr, this, new_bit);
4608                 if (!ret)
4609                         return 0;
4610         }
4611
4612 unlock:
4613         graph_unlock();
4614
4615         /*
4616          * We must printk outside of the graph_lock:
4617          */
4618         if (ret == 2) {
4619                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4620                 print_lock(this);
4621                 print_irqtrace_events(curr);
4622                 dump_stack();
4623         }
4624
4625         return ret;
4626 }
4627
4628 static inline short task_wait_context(struct task_struct *curr)
4629 {
4630         /*
4631          * Set appropriate wait type for the context; for IRQs we have to take
4632          * into account force_irqthread as that is implied by PREEMPT_RT.
4633          */
4634         if (lockdep_hardirq_context()) {
4635                 /*
4636                  * Check if force_irqthreads will run us threaded.
4637                  */
4638                 if (curr->hardirq_threaded || curr->irq_config)
4639                         return LD_WAIT_CONFIG;
4640
4641                 return LD_WAIT_SPIN;
4642         } else if (curr->softirq_context) {
4643                 /*
4644                  * Softirqs are always threaded.
4645                  */
4646                 return LD_WAIT_CONFIG;
4647         }
4648
4649         return LD_WAIT_MAX;
4650 }
4651
4652 static int
4653 print_lock_invalid_wait_context(struct task_struct *curr,
4654                                 struct held_lock *hlock)
4655 {
4656         short curr_inner;
4657
4658         if (!debug_locks_off())
4659                 return 0;
4660         if (debug_locks_silent)
4661                 return 0;
4662
4663         pr_warn("\n");
4664         pr_warn("=============================\n");
4665         pr_warn("[ BUG: Invalid wait context ]\n");
4666         print_kernel_ident();
4667         pr_warn("-----------------------------\n");
4668
4669         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4670         print_lock(hlock);
4671
4672         pr_warn("other info that might help us debug this:\n");
4673
4674         curr_inner = task_wait_context(curr);
4675         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4676
4677         lockdep_print_held_locks(curr);
4678
4679         pr_warn("stack backtrace:\n");
4680         dump_stack();
4681
4682         return 0;
4683 }
4684
4685 /*
4686  * Verify the wait_type context.
4687  *
4688  * This check validates we take locks in the right wait-type order; that is it
4689  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4690  * acquire spinlocks inside raw_spinlocks and the sort.
4691  *
4692  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4693  * can be taken from (pretty much) any context but also has constraints.
4694  * However when taken in a stricter environment the RCU lock does not loosen
4695  * the constraints.
4696  *
4697  * Therefore we must look for the strictest environment in the lock stack and
4698  * compare that to the lock we're trying to acquire.
4699  */
4700 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4701 {
4702         u8 next_inner = hlock_class(next)->wait_type_inner;
4703         u8 next_outer = hlock_class(next)->wait_type_outer;
4704         u8 curr_inner;
4705         int depth;
4706
4707         if (!next_inner || next->trylock)
4708                 return 0;
4709
4710         if (!next_outer)
4711                 next_outer = next_inner;
4712
4713         /*
4714          * Find start of current irq_context..
4715          */
4716         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4717                 struct held_lock *prev = curr->held_locks + depth;
4718                 if (prev->irq_context != next->irq_context)
4719                         break;
4720         }
4721         depth++;
4722
4723         curr_inner = task_wait_context(curr);
4724
4725         for (; depth < curr->lockdep_depth; depth++) {
4726                 struct held_lock *prev = curr->held_locks + depth;
4727                 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4728
4729                 if (prev_inner) {
4730                         /*
4731                          * We can have a bigger inner than a previous one
4732                          * when outer is smaller than inner, as with RCU.
4733                          *
4734                          * Also due to trylocks.
4735                          */
4736                         curr_inner = min(curr_inner, prev_inner);
4737                 }
4738         }
4739
4740         if (next_outer > curr_inner)
4741                 return print_lock_invalid_wait_context(curr, next);
4742
4743         return 0;
4744 }
4745
4746 #else /* CONFIG_PROVE_LOCKING */
4747
4748 static inline int
4749 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4750 {
4751         return 1;
4752 }
4753
4754 static inline unsigned int task_irq_context(struct task_struct *task)
4755 {
4756         return 0;
4757 }
4758
4759 static inline int separate_irq_context(struct task_struct *curr,
4760                 struct held_lock *hlock)
4761 {
4762         return 0;
4763 }
4764
4765 static inline int check_wait_context(struct task_struct *curr,
4766                                      struct held_lock *next)
4767 {
4768         return 0;
4769 }
4770
4771 #endif /* CONFIG_PROVE_LOCKING */
4772
4773 /*
4774  * Initialize a lock instance's lock-class mapping info:
4775  */
4776 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4777                             struct lock_class_key *key, int subclass,
4778                             u8 inner, u8 outer, u8 lock_type)
4779 {
4780         int i;
4781
4782         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4783                 lock->class_cache[i] = NULL;
4784
4785 #ifdef CONFIG_LOCK_STAT
4786         lock->cpu = raw_smp_processor_id();
4787 #endif
4788
4789         /*
4790          * Can't be having no nameless bastards around this place!
4791          */
4792         if (DEBUG_LOCKS_WARN_ON(!name)) {
4793                 lock->name = "NULL";
4794                 return;
4795         }
4796
4797         lock->name = name;
4798
4799         lock->wait_type_outer = outer;
4800         lock->wait_type_inner = inner;
4801         lock->lock_type = lock_type;
4802
4803         /*
4804          * No key, no joy, we need to hash something.
4805          */
4806         if (DEBUG_LOCKS_WARN_ON(!key))
4807                 return;
4808         /*
4809          * Sanity check, the lock-class key must either have been allocated
4810          * statically or must have been registered as a dynamic key.
4811          */
4812         if (!static_obj(key) && !is_dynamic_key(key)) {
4813                 if (debug_locks)
4814                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4815                 DEBUG_LOCKS_WARN_ON(1);
4816                 return;
4817         }
4818         lock->key = key;
4819
4820         if (unlikely(!debug_locks))
4821                 return;
4822
4823         if (subclass) {
4824                 unsigned long flags;
4825
4826                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4827                         return;
4828
4829                 raw_local_irq_save(flags);
4830                 lockdep_recursion_inc();
4831                 register_lock_class(lock, subclass, 1);
4832                 lockdep_recursion_finish();
4833                 raw_local_irq_restore(flags);
4834         }
4835 }
4836 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4837
4838 struct lock_class_key __lockdep_no_validate__;
4839 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4840
4841 static void
4842 print_lock_nested_lock_not_held(struct task_struct *curr,
4843                                 struct held_lock *hlock,
4844                                 unsigned long ip)
4845 {
4846         if (!debug_locks_off())
4847                 return;
4848         if (debug_locks_silent)
4849                 return;
4850
4851         pr_warn("\n");
4852         pr_warn("==================================\n");
4853         pr_warn("WARNING: Nested lock was not taken\n");
4854         print_kernel_ident();
4855         pr_warn("----------------------------------\n");
4856
4857         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4858         print_lock(hlock);
4859
4860         pr_warn("\nbut this task is not holding:\n");
4861         pr_warn("%s\n", hlock->nest_lock->name);
4862
4863         pr_warn("\nstack backtrace:\n");
4864         dump_stack();
4865
4866         pr_warn("\nother info that might help us debug this:\n");
4867         lockdep_print_held_locks(curr);
4868
4869         pr_warn("\nstack backtrace:\n");
4870         dump_stack();
4871 }
4872
4873 static int __lock_is_held(const struct lockdep_map *lock, int read);
4874
4875 /*
4876  * This gets called for every mutex_lock*()/spin_lock*() operation.
4877  * We maintain the dependency maps and validate the locking attempt:
4878  *
4879  * The callers must make sure that IRQs are disabled before calling it,
4880  * otherwise we could get an interrupt which would want to take locks,
4881  * which would end up in lockdep again.
4882  */
4883 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4884                           int trylock, int read, int check, int hardirqs_off,
4885                           struct lockdep_map *nest_lock, unsigned long ip,
4886                           int references, int pin_count)
4887 {
4888         struct task_struct *curr = current;
4889         struct lock_class *class = NULL;
4890         struct held_lock *hlock;
4891         unsigned int depth;
4892         int chain_head = 0;
4893         int class_idx;
4894         u64 chain_key;
4895
4896         if (unlikely(!debug_locks))
4897                 return 0;
4898
4899         if (!prove_locking || lock->key == &__lockdep_no_validate__)
4900                 check = 0;
4901
4902         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4903                 class = lock->class_cache[subclass];
4904         /*
4905          * Not cached?
4906          */
4907         if (unlikely(!class)) {
4908                 class = register_lock_class(lock, subclass, 0);
4909                 if (!class)
4910                         return 0;
4911         }
4912
4913         debug_class_ops_inc(class);
4914
4915         if (very_verbose(class)) {
4916                 printk("\nacquire class [%px] %s", class->key, class->name);
4917                 if (class->name_version > 1)
4918                         printk(KERN_CONT "#%d", class->name_version);
4919                 printk(KERN_CONT "\n");
4920                 dump_stack();
4921         }
4922
4923         /*
4924          * Add the lock to the list of currently held locks.
4925          * (we dont increase the depth just yet, up until the
4926          * dependency checks are done)
4927          */
4928         depth = curr->lockdep_depth;
4929         /*
4930          * Ran out of static storage for our per-task lock stack again have we?
4931          */
4932         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4933                 return 0;
4934
4935         class_idx = class - lock_classes;
4936
4937         if (depth) { /* we're holding locks */
4938                 hlock = curr->held_locks + depth - 1;
4939                 if (hlock->class_idx == class_idx && nest_lock) {
4940                         if (!references)
4941                                 references++;
4942
4943                         if (!hlock->references)
4944                                 hlock->references++;
4945
4946                         hlock->references += references;
4947
4948                         /* Overflow */
4949                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4950                                 return 0;
4951
4952                         return 2;
4953                 }
4954         }
4955
4956         hlock = curr->held_locks + depth;
4957         /*
4958          * Plain impossible, we just registered it and checked it weren't no
4959          * NULL like.. I bet this mushroom I ate was good!
4960          */
4961         if (DEBUG_LOCKS_WARN_ON(!class))
4962                 return 0;
4963         hlock->class_idx = class_idx;
4964         hlock->acquire_ip = ip;
4965         hlock->instance = lock;
4966         hlock->nest_lock = nest_lock;
4967         hlock->irq_context = task_irq_context(curr);
4968         hlock->trylock = trylock;
4969         hlock->read = read;
4970         hlock->check = check;
4971         hlock->hardirqs_off = !!hardirqs_off;
4972         hlock->references = references;
4973 #ifdef CONFIG_LOCK_STAT
4974         hlock->waittime_stamp = 0;
4975         hlock->holdtime_stamp = lockstat_clock();
4976 #endif
4977         hlock->pin_count = pin_count;
4978
4979         if (check_wait_context(curr, hlock))
4980                 return 0;
4981
4982         /* Initialize the lock usage bit */
4983         if (!mark_usage(curr, hlock, check))
4984                 return 0;
4985
4986         /*
4987          * Calculate the chain hash: it's the combined hash of all the
4988          * lock keys along the dependency chain. We save the hash value
4989          * at every step so that we can get the current hash easily
4990          * after unlock. The chain hash is then used to cache dependency
4991          * results.
4992          *
4993          * The 'key ID' is what is the most compact key value to drive
4994          * the hash, not class->key.
4995          */
4996         /*
4997          * Whoops, we did it again.. class_idx is invalid.
4998          */
4999         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5000                 return 0;
5001
5002         chain_key = curr->curr_chain_key;
5003         if (!depth) {
5004                 /*
5005                  * How can we have a chain hash when we ain't got no keys?!
5006                  */
5007                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5008                         return 0;
5009                 chain_head = 1;
5010         }
5011
5012         hlock->prev_chain_key = chain_key;
5013         if (separate_irq_context(curr, hlock)) {
5014                 chain_key = INITIAL_CHAIN_KEY;
5015                 chain_head = 1;
5016         }
5017         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5018
5019         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5020                 print_lock_nested_lock_not_held(curr, hlock, ip);
5021                 return 0;
5022         }
5023
5024         if (!debug_locks_silent) {
5025                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5026                 WARN_ON_ONCE(!hlock_class(hlock)->key);
5027         }
5028
5029         if (!validate_chain(curr, hlock, chain_head, chain_key))
5030                 return 0;
5031
5032         curr->curr_chain_key = chain_key;
5033         curr->lockdep_depth++;
5034         check_chain_key(curr);
5035 #ifdef CONFIG_DEBUG_LOCKDEP
5036         if (unlikely(!debug_locks))
5037                 return 0;
5038 #endif
5039         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5040                 debug_locks_off();
5041                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5042                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5043                        curr->lockdep_depth, MAX_LOCK_DEPTH);
5044
5045                 lockdep_print_held_locks(current);
5046                 debug_show_all_locks();
5047                 dump_stack();
5048
5049                 return 0;
5050         }
5051
5052         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5053                 max_lockdep_depth = curr->lockdep_depth;
5054
5055         return 1;
5056 }
5057
5058 static void print_unlock_imbalance_bug(struct task_struct *curr,
5059                                        struct lockdep_map *lock,
5060                                        unsigned long ip)
5061 {
5062         if (!debug_locks_off())
5063                 return;
5064         if (debug_locks_silent)
5065                 return;
5066
5067         pr_warn("\n");
5068         pr_warn("=====================================\n");
5069         pr_warn("WARNING: bad unlock balance detected!\n");
5070         print_kernel_ident();
5071         pr_warn("-------------------------------------\n");
5072         pr_warn("%s/%d is trying to release lock (",
5073                 curr->comm, task_pid_nr(curr));
5074         print_lockdep_cache(lock);
5075         pr_cont(") at:\n");
5076         print_ip_sym(KERN_WARNING, ip);
5077         pr_warn("but there are no more locks to release!\n");
5078         pr_warn("\nother info that might help us debug this:\n");
5079         lockdep_print_held_locks(curr);
5080
5081         pr_warn("\nstack backtrace:\n");
5082         dump_stack();
5083 }
5084
5085 static noinstr int match_held_lock(const struct held_lock *hlock,
5086                                    const struct lockdep_map *lock)
5087 {
5088         if (hlock->instance == lock)
5089                 return 1;
5090
5091         if (hlock->references) {
5092                 const struct lock_class *class = lock->class_cache[0];
5093
5094                 if (!class)
5095                         class = look_up_lock_class(lock, 0);
5096
5097                 /*
5098                  * If look_up_lock_class() failed to find a class, we're trying
5099                  * to test if we hold a lock that has never yet been acquired.
5100                  * Clearly if the lock hasn't been acquired _ever_, we're not
5101                  * holding it either, so report failure.
5102                  */
5103                 if (!class)
5104                         return 0;
5105
5106                 /*
5107                  * References, but not a lock we're actually ref-counting?
5108                  * State got messed up, follow the sites that change ->references
5109                  * and try to make sense of it.
5110                  */
5111                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5112                         return 0;
5113
5114                 if (hlock->class_idx == class - lock_classes)
5115                         return 1;
5116         }
5117
5118         return 0;
5119 }
5120
5121 /* @depth must not be zero */
5122 static struct held_lock *find_held_lock(struct task_struct *curr,
5123                                         struct lockdep_map *lock,
5124                                         unsigned int depth, int *idx)
5125 {
5126         struct held_lock *ret, *hlock, *prev_hlock;
5127         int i;
5128
5129         i = depth - 1;
5130         hlock = curr->held_locks + i;
5131         ret = hlock;
5132         if (match_held_lock(hlock, lock))
5133                 goto out;
5134
5135         ret = NULL;
5136         for (i--, prev_hlock = hlock--;
5137              i >= 0;
5138              i--, prev_hlock = hlock--) {
5139                 /*
5140                  * We must not cross into another context:
5141                  */
5142                 if (prev_hlock->irq_context != hlock->irq_context) {
5143                         ret = NULL;
5144                         break;
5145                 }
5146                 if (match_held_lock(hlock, lock)) {
5147                         ret = hlock;
5148                         break;
5149                 }
5150         }
5151
5152 out:
5153         *idx = i;
5154         return ret;
5155 }
5156
5157 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5158                                 int idx, unsigned int *merged)
5159 {
5160         struct held_lock *hlock;
5161         int first_idx = idx;
5162
5163         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5164                 return 0;
5165
5166         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5167                 switch (__lock_acquire(hlock->instance,
5168                                     hlock_class(hlock)->subclass,
5169                                     hlock->trylock,
5170                                     hlock->read, hlock->check,
5171                                     hlock->hardirqs_off,
5172                                     hlock->nest_lock, hlock->acquire_ip,
5173                                     hlock->references, hlock->pin_count)) {
5174                 case 0:
5175                         return 1;
5176                 case 1:
5177                         break;
5178                 case 2:
5179                         *merged += (idx == first_idx);
5180                         break;
5181                 default:
5182                         WARN_ON(1);
5183                         return 0;
5184                 }
5185         }
5186         return 0;
5187 }
5188
5189 static int
5190 __lock_set_class(struct lockdep_map *lock, const char *name,
5191                  struct lock_class_key *key, unsigned int subclass,
5192                  unsigned long ip)
5193 {
5194         struct task_struct *curr = current;
5195         unsigned int depth, merged = 0;
5196         struct held_lock *hlock;
5197         struct lock_class *class;
5198         int i;
5199
5200         if (unlikely(!debug_locks))
5201                 return 0;
5202
5203         depth = curr->lockdep_depth;
5204         /*
5205          * This function is about (re)setting the class of a held lock,
5206          * yet we're not actually holding any locks. Naughty user!
5207          */
5208         if (DEBUG_LOCKS_WARN_ON(!depth))
5209                 return 0;
5210
5211         hlock = find_held_lock(curr, lock, depth, &i);
5212         if (!hlock) {
5213                 print_unlock_imbalance_bug(curr, lock, ip);
5214                 return 0;
5215         }
5216
5217         lockdep_init_map_waits(lock, name, key, 0,
5218                                lock->wait_type_inner,
5219                                lock->wait_type_outer);
5220         class = register_lock_class(lock, subclass, 0);
5221         hlock->class_idx = class - lock_classes;
5222
5223         curr->lockdep_depth = i;
5224         curr->curr_chain_key = hlock->prev_chain_key;
5225
5226         if (reacquire_held_locks(curr, depth, i, &merged))
5227                 return 0;
5228
5229         /*
5230          * I took it apart and put it back together again, except now I have
5231          * these 'spare' parts.. where shall I put them.
5232          */
5233         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5234                 return 0;
5235         return 1;
5236 }
5237
5238 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5239 {
5240         struct task_struct *curr = current;
5241         unsigned int depth, merged = 0;
5242         struct held_lock *hlock;
5243         int i;
5244
5245         if (unlikely(!debug_locks))
5246                 return 0;
5247
5248         depth = curr->lockdep_depth;
5249         /*
5250          * This function is about (re)setting the class of a held lock,
5251          * yet we're not actually holding any locks. Naughty user!
5252          */
5253         if (DEBUG_LOCKS_WARN_ON(!depth))
5254                 return 0;
5255
5256         hlock = find_held_lock(curr, lock, depth, &i);
5257         if (!hlock) {
5258                 print_unlock_imbalance_bug(curr, lock, ip);
5259                 return 0;
5260         }
5261
5262         curr->lockdep_depth = i;
5263         curr->curr_chain_key = hlock->prev_chain_key;
5264
5265         WARN(hlock->read, "downgrading a read lock");
5266         hlock->read = 1;
5267         hlock->acquire_ip = ip;
5268
5269         if (reacquire_held_locks(curr, depth, i, &merged))
5270                 return 0;
5271
5272         /* Merging can't happen with unchanged classes.. */
5273         if (DEBUG_LOCKS_WARN_ON(merged))
5274                 return 0;
5275
5276         /*
5277          * I took it apart and put it back together again, except now I have
5278          * these 'spare' parts.. where shall I put them.
5279          */
5280         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5281                 return 0;
5282
5283         return 1;
5284 }
5285
5286 /*
5287  * Remove the lock from the list of currently held locks - this gets
5288  * called on mutex_unlock()/spin_unlock*() (or on a failed
5289  * mutex_lock_interruptible()).
5290  */
5291 static int
5292 __lock_release(struct lockdep_map *lock, unsigned long ip)
5293 {
5294         struct task_struct *curr = current;
5295         unsigned int depth, merged = 1;
5296         struct held_lock *hlock;
5297         int i;
5298
5299         if (unlikely(!debug_locks))
5300                 return 0;
5301
5302         depth = curr->lockdep_depth;
5303         /*
5304          * So we're all set to release this lock.. wait what lock? We don't
5305          * own any locks, you've been drinking again?
5306          */
5307         if (depth <= 0) {
5308                 print_unlock_imbalance_bug(curr, lock, ip);
5309                 return 0;
5310         }
5311
5312         /*
5313          * Check whether the lock exists in the current stack
5314          * of held locks:
5315          */
5316         hlock = find_held_lock(curr, lock, depth, &i);
5317         if (!hlock) {
5318                 print_unlock_imbalance_bug(curr, lock, ip);
5319                 return 0;
5320         }
5321
5322         if (hlock->instance == lock)
5323                 lock_release_holdtime(hlock);
5324
5325         WARN(hlock->pin_count, "releasing a pinned lock\n");
5326
5327         if (hlock->references) {
5328                 hlock->references--;
5329                 if (hlock->references) {
5330                         /*
5331                          * We had, and after removing one, still have
5332                          * references, the current lock stack is still
5333                          * valid. We're done!
5334                          */
5335                         return 1;
5336                 }
5337         }
5338
5339         /*
5340          * We have the right lock to unlock, 'hlock' points to it.
5341          * Now we remove it from the stack, and add back the other
5342          * entries (if any), recalculating the hash along the way:
5343          */
5344
5345         curr->lockdep_depth = i;
5346         curr->curr_chain_key = hlock->prev_chain_key;
5347
5348         /*
5349          * The most likely case is when the unlock is on the innermost
5350          * lock. In this case, we are done!
5351          */
5352         if (i == depth-1)
5353                 return 1;
5354
5355         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5356                 return 0;
5357
5358         /*
5359          * We had N bottles of beer on the wall, we drank one, but now
5360          * there's not N-1 bottles of beer left on the wall...
5361          * Pouring two of the bottles together is acceptable.
5362          */
5363         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5364
5365         /*
5366          * Since reacquire_held_locks() would have called check_chain_key()
5367          * indirectly via __lock_acquire(), we don't need to do it again
5368          * on return.
5369          */
5370         return 0;
5371 }
5372
5373 static __always_inline
5374 int __lock_is_held(const struct lockdep_map *lock, int read)
5375 {
5376         struct task_struct *curr = current;
5377         int i;
5378
5379         for (i = 0; i < curr->lockdep_depth; i++) {
5380                 struct held_lock *hlock = curr->held_locks + i;
5381
5382                 if (match_held_lock(hlock, lock)) {
5383                         if (read == -1 || !!hlock->read == read)
5384                                 return LOCK_STATE_HELD;
5385
5386                         return LOCK_STATE_NOT_HELD;
5387                 }
5388         }
5389
5390         return LOCK_STATE_NOT_HELD;
5391 }
5392
5393 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5394 {
5395         struct pin_cookie cookie = NIL_COOKIE;
5396         struct task_struct *curr = current;
5397         int i;
5398
5399         if (unlikely(!debug_locks))
5400                 return cookie;
5401
5402         for (i = 0; i < curr->lockdep_depth; i++) {
5403                 struct held_lock *hlock = curr->held_locks + i;
5404
5405                 if (match_held_lock(hlock, lock)) {
5406                         /*
5407                          * Grab 16bits of randomness; this is sufficient to not
5408                          * be guessable and still allows some pin nesting in
5409                          * our u32 pin_count.
5410                          */
5411                         cookie.val = 1 + (prandom_u32() >> 16);
5412                         hlock->pin_count += cookie.val;
5413                         return cookie;
5414                 }
5415         }
5416
5417         WARN(1, "pinning an unheld lock\n");
5418         return cookie;
5419 }
5420
5421 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5422 {
5423         struct task_struct *curr = current;
5424         int i;
5425
5426         if (unlikely(!debug_locks))
5427                 return;
5428
5429         for (i = 0; i < curr->lockdep_depth; i++) {
5430                 struct held_lock *hlock = curr->held_locks + i;
5431
5432                 if (match_held_lock(hlock, lock)) {
5433                         hlock->pin_count += cookie.val;
5434                         return;
5435                 }
5436         }
5437
5438         WARN(1, "pinning an unheld lock\n");
5439 }
5440
5441 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5442 {
5443         struct task_struct *curr = current;
5444         int i;
5445
5446         if (unlikely(!debug_locks))
5447                 return;
5448
5449         for (i = 0; i < curr->lockdep_depth; i++) {
5450                 struct held_lock *hlock = curr->held_locks + i;
5451
5452                 if (match_held_lock(hlock, lock)) {
5453                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5454                                 return;
5455
5456                         hlock->pin_count -= cookie.val;
5457
5458                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5459                                 hlock->pin_count = 0;
5460
5461                         return;
5462                 }
5463         }
5464
5465         WARN(1, "unpinning an unheld lock\n");
5466 }
5467
5468 /*
5469  * Check whether we follow the irq-flags state precisely:
5470  */
5471 static noinstr void check_flags(unsigned long flags)
5472 {
5473 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5474         if (!debug_locks)
5475                 return;
5476
5477         /* Get the warning out..  */
5478         instrumentation_begin();
5479
5480         if (irqs_disabled_flags(flags)) {
5481                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5482                         printk("possible reason: unannotated irqs-off.\n");
5483                 }
5484         } else {
5485                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5486                         printk("possible reason: unannotated irqs-on.\n");
5487                 }
5488         }
5489
5490 #ifndef CONFIG_PREEMPT_RT
5491         /*
5492          * We dont accurately track softirq state in e.g.
5493          * hardirq contexts (such as on 4KSTACKS), so only
5494          * check if not in hardirq contexts:
5495          */
5496         if (!hardirq_count()) {
5497                 if (softirq_count()) {
5498                         /* like the above, but with softirqs */
5499                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5500                 } else {
5501                         /* lick the above, does it taste good? */
5502                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5503                 }
5504         }
5505 #endif
5506
5507         if (!debug_locks)
5508                 print_irqtrace_events(current);
5509
5510         instrumentation_end();
5511 #endif
5512 }
5513
5514 void lock_set_class(struct lockdep_map *lock, const char *name,
5515                     struct lock_class_key *key, unsigned int subclass,
5516                     unsigned long ip)
5517 {
5518         unsigned long flags;
5519
5520         if (unlikely(!lockdep_enabled()))
5521                 return;
5522
5523         raw_local_irq_save(flags);
5524         lockdep_recursion_inc();
5525         check_flags(flags);
5526         if (__lock_set_class(lock, name, key, subclass, ip))
5527                 check_chain_key(current);
5528         lockdep_recursion_finish();
5529         raw_local_irq_restore(flags);
5530 }
5531 EXPORT_SYMBOL_GPL(lock_set_class);
5532
5533 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5534 {
5535         unsigned long flags;
5536
5537         if (unlikely(!lockdep_enabled()))
5538                 return;
5539
5540         raw_local_irq_save(flags);
5541         lockdep_recursion_inc();
5542         check_flags(flags);
5543         if (__lock_downgrade(lock, ip))
5544                 check_chain_key(current);
5545         lockdep_recursion_finish();
5546         raw_local_irq_restore(flags);
5547 }
5548 EXPORT_SYMBOL_GPL(lock_downgrade);
5549
5550 /* NMI context !!! */
5551 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5552 {
5553 #ifdef CONFIG_PROVE_LOCKING
5554         struct lock_class *class = look_up_lock_class(lock, subclass);
5555         unsigned long mask = LOCKF_USED;
5556
5557         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5558         if (!class)
5559                 return;
5560
5561         /*
5562          * READ locks only conflict with USED, such that if we only ever use
5563          * READ locks, there is no deadlock possible -- RCU.
5564          */
5565         if (!hlock->read)
5566                 mask |= LOCKF_USED_READ;
5567
5568         if (!(class->usage_mask & mask))
5569                 return;
5570
5571         hlock->class_idx = class - lock_classes;
5572
5573         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5574 #endif
5575 }
5576
5577 static bool lockdep_nmi(void)
5578 {
5579         if (raw_cpu_read(lockdep_recursion))
5580                 return false;
5581
5582         if (!in_nmi())
5583                 return false;
5584
5585         return true;
5586 }
5587
5588 /*
5589  * read_lock() is recursive if:
5590  * 1. We force lockdep think this way in selftests or
5591  * 2. The implementation is not queued read/write lock or
5592  * 3. The locker is at an in_interrupt() context.
5593  */
5594 bool read_lock_is_recursive(void)
5595 {
5596         return force_read_lock_recursive ||
5597                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5598                in_interrupt();
5599 }
5600 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5601
5602 /*
5603  * We are not always called with irqs disabled - do that here,
5604  * and also avoid lockdep recursion:
5605  */
5606 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5607                           int trylock, int read, int check,
5608                           struct lockdep_map *nest_lock, unsigned long ip)
5609 {
5610         unsigned long flags;
5611
5612         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5613
5614         if (!debug_locks)
5615                 return;
5616
5617         if (unlikely(!lockdep_enabled())) {
5618                 /* XXX allow trylock from NMI ?!? */
5619                 if (lockdep_nmi() && !trylock) {
5620                         struct held_lock hlock;
5621
5622                         hlock.acquire_ip = ip;
5623                         hlock.instance = lock;
5624                         hlock.nest_lock = nest_lock;
5625                         hlock.irq_context = 2; // XXX
5626                         hlock.trylock = trylock;
5627                         hlock.read = read;
5628                         hlock.check = check;
5629                         hlock.hardirqs_off = true;
5630                         hlock.references = 0;
5631
5632                         verify_lock_unused(lock, &hlock, subclass);
5633                 }
5634                 return;
5635         }
5636
5637         raw_local_irq_save(flags);
5638         check_flags(flags);
5639
5640         lockdep_recursion_inc();
5641         __lock_acquire(lock, subclass, trylock, read, check,
5642                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5643         lockdep_recursion_finish();
5644         raw_local_irq_restore(flags);
5645 }
5646 EXPORT_SYMBOL_GPL(lock_acquire);
5647
5648 void lock_release(struct lockdep_map *lock, unsigned long ip)
5649 {
5650         unsigned long flags;
5651
5652         trace_lock_release(lock, ip);
5653
5654         if (unlikely(!lockdep_enabled()))
5655                 return;
5656
5657         raw_local_irq_save(flags);
5658         check_flags(flags);
5659
5660         lockdep_recursion_inc();
5661         if (__lock_release(lock, ip))
5662                 check_chain_key(current);
5663         lockdep_recursion_finish();
5664         raw_local_irq_restore(flags);
5665 }
5666 EXPORT_SYMBOL_GPL(lock_release);
5667
5668 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5669 {
5670         unsigned long flags;
5671         int ret = LOCK_STATE_NOT_HELD;
5672
5673         /*
5674          * Avoid false negative lockdep_assert_held() and
5675          * lockdep_assert_not_held().
5676          */
5677         if (unlikely(!lockdep_enabled()))
5678                 return LOCK_STATE_UNKNOWN;
5679
5680         raw_local_irq_save(flags);
5681         check_flags(flags);
5682
5683         lockdep_recursion_inc();
5684         ret = __lock_is_held(lock, read);
5685         lockdep_recursion_finish();
5686         raw_local_irq_restore(flags);
5687
5688         return ret;
5689 }
5690 EXPORT_SYMBOL_GPL(lock_is_held_type);
5691 NOKPROBE_SYMBOL(lock_is_held_type);
5692
5693 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5694 {
5695         struct pin_cookie cookie = NIL_COOKIE;
5696         unsigned long flags;
5697
5698         if (unlikely(!lockdep_enabled()))
5699                 return cookie;
5700
5701         raw_local_irq_save(flags);
5702         check_flags(flags);
5703
5704         lockdep_recursion_inc();
5705         cookie = __lock_pin_lock(lock);
5706         lockdep_recursion_finish();
5707         raw_local_irq_restore(flags);
5708
5709         return cookie;
5710 }
5711 EXPORT_SYMBOL_GPL(lock_pin_lock);
5712
5713 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5714 {
5715         unsigned long flags;
5716
5717         if (unlikely(!lockdep_enabled()))
5718                 return;
5719
5720         raw_local_irq_save(flags);
5721         check_flags(flags);
5722
5723         lockdep_recursion_inc();
5724         __lock_repin_lock(lock, cookie);
5725         lockdep_recursion_finish();
5726         raw_local_irq_restore(flags);
5727 }
5728 EXPORT_SYMBOL_GPL(lock_repin_lock);
5729
5730 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5731 {
5732         unsigned long flags;
5733
5734         if (unlikely(!lockdep_enabled()))
5735                 return;
5736
5737         raw_local_irq_save(flags);
5738         check_flags(flags);
5739
5740         lockdep_recursion_inc();
5741         __lock_unpin_lock(lock, cookie);
5742         lockdep_recursion_finish();
5743         raw_local_irq_restore(flags);
5744 }
5745 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5746
5747 #ifdef CONFIG_LOCK_STAT
5748 static void print_lock_contention_bug(struct task_struct *curr,
5749                                       struct lockdep_map *lock,
5750                                       unsigned long ip)
5751 {
5752         if (!debug_locks_off())
5753                 return;
5754         if (debug_locks_silent)
5755                 return;
5756
5757         pr_warn("\n");
5758         pr_warn("=================================\n");
5759         pr_warn("WARNING: bad contention detected!\n");
5760         print_kernel_ident();
5761         pr_warn("---------------------------------\n");
5762         pr_warn("%s/%d is trying to contend lock (",
5763                 curr->comm, task_pid_nr(curr));
5764         print_lockdep_cache(lock);
5765         pr_cont(") at:\n");
5766         print_ip_sym(KERN_WARNING, ip);
5767         pr_warn("but there are no locks held!\n");
5768         pr_warn("\nother info that might help us debug this:\n");
5769         lockdep_print_held_locks(curr);
5770
5771         pr_warn("\nstack backtrace:\n");
5772         dump_stack();
5773 }
5774
5775 static void
5776 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5777 {
5778         struct task_struct *curr = current;
5779         struct held_lock *hlock;
5780         struct lock_class_stats *stats;
5781         unsigned int depth;
5782         int i, contention_point, contending_point;
5783
5784         depth = curr->lockdep_depth;
5785         /*
5786          * Whee, we contended on this lock, except it seems we're not
5787          * actually trying to acquire anything much at all..
5788          */
5789         if (DEBUG_LOCKS_WARN_ON(!depth))
5790                 return;
5791
5792         hlock = find_held_lock(curr, lock, depth, &i);
5793         if (!hlock) {
5794                 print_lock_contention_bug(curr, lock, ip);
5795                 return;
5796         }
5797
5798         if (hlock->instance != lock)
5799                 return;
5800
5801         hlock->waittime_stamp = lockstat_clock();
5802
5803         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5804         contending_point = lock_point(hlock_class(hlock)->contending_point,
5805                                       lock->ip);
5806
5807         stats = get_lock_stats(hlock_class(hlock));
5808         if (contention_point < LOCKSTAT_POINTS)
5809                 stats->contention_point[contention_point]++;
5810         if (contending_point < LOCKSTAT_POINTS)
5811                 stats->contending_point[contending_point]++;
5812         if (lock->cpu != smp_processor_id())
5813                 stats->bounces[bounce_contended + !!hlock->read]++;
5814 }
5815
5816 static void
5817 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5818 {
5819         struct task_struct *curr = current;
5820         struct held_lock *hlock;
5821         struct lock_class_stats *stats;
5822         unsigned int depth;
5823         u64 now, waittime = 0;
5824         int i, cpu;
5825
5826         depth = curr->lockdep_depth;
5827         /*
5828          * Yay, we acquired ownership of this lock we didn't try to
5829          * acquire, how the heck did that happen?
5830          */
5831         if (DEBUG_LOCKS_WARN_ON(!depth))
5832                 return;
5833
5834         hlock = find_held_lock(curr, lock, depth, &i);
5835         if (!hlock) {
5836                 print_lock_contention_bug(curr, lock, _RET_IP_);
5837                 return;
5838         }
5839
5840         if (hlock->instance != lock)
5841                 return;
5842
5843         cpu = smp_processor_id();
5844         if (hlock->waittime_stamp) {
5845                 now = lockstat_clock();
5846                 waittime = now - hlock->waittime_stamp;
5847                 hlock->holdtime_stamp = now;
5848         }
5849
5850         stats = get_lock_stats(hlock_class(hlock));
5851         if (waittime) {
5852                 if (hlock->read)
5853                         lock_time_inc(&stats->read_waittime, waittime);
5854                 else
5855                         lock_time_inc(&stats->write_waittime, waittime);
5856         }
5857         if (lock->cpu != cpu)
5858                 stats->bounces[bounce_acquired + !!hlock->read]++;
5859
5860         lock->cpu = cpu;
5861         lock->ip = ip;
5862 }
5863
5864 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5865 {
5866         unsigned long flags;
5867
5868         trace_lock_contended(lock, ip);
5869
5870         if (unlikely(!lock_stat || !lockdep_enabled()))
5871                 return;
5872
5873         raw_local_irq_save(flags);
5874         check_flags(flags);
5875         lockdep_recursion_inc();
5876         __lock_contended(lock, ip);
5877         lockdep_recursion_finish();
5878         raw_local_irq_restore(flags);
5879 }
5880 EXPORT_SYMBOL_GPL(lock_contended);
5881
5882 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5883 {
5884         unsigned long flags;
5885
5886         trace_lock_acquired(lock, ip);
5887
5888         if (unlikely(!lock_stat || !lockdep_enabled()))
5889                 return;
5890
5891         raw_local_irq_save(flags);
5892         check_flags(flags);
5893         lockdep_recursion_inc();
5894         __lock_acquired(lock, ip);
5895         lockdep_recursion_finish();
5896         raw_local_irq_restore(flags);
5897 }
5898 EXPORT_SYMBOL_GPL(lock_acquired);
5899 #endif
5900
5901 /*
5902  * Used by the testsuite, sanitize the validator state
5903  * after a simulated failure:
5904  */
5905
5906 void lockdep_reset(void)
5907 {
5908         unsigned long flags;
5909         int i;
5910
5911         raw_local_irq_save(flags);
5912         lockdep_init_task(current);
5913         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5914         nr_hardirq_chains = 0;
5915         nr_softirq_chains = 0;
5916         nr_process_chains = 0;
5917         debug_locks = 1;
5918         for (i = 0; i < CHAINHASH_SIZE; i++)
5919                 INIT_HLIST_HEAD(chainhash_table + i);
5920         raw_local_irq_restore(flags);
5921 }
5922
5923 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5924 static void remove_class_from_lock_chain(struct pending_free *pf,
5925                                          struct lock_chain *chain,
5926                                          struct lock_class *class)
5927 {
5928 #ifdef CONFIG_PROVE_LOCKING
5929         int i;
5930
5931         for (i = chain->base; i < chain->base + chain->depth; i++) {
5932                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5933                         continue;
5934                 /*
5935                  * Each lock class occurs at most once in a lock chain so once
5936                  * we found a match we can break out of this loop.
5937                  */
5938                 goto free_lock_chain;
5939         }
5940         /* Since the chain has not been modified, return. */
5941         return;
5942
5943 free_lock_chain:
5944         free_chain_hlocks(chain->base, chain->depth);
5945         /* Overwrite the chain key for concurrent RCU readers. */
5946         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5947         dec_chains(chain->irq_context);
5948
5949         /*
5950          * Note: calling hlist_del_rcu() from inside a
5951          * hlist_for_each_entry_rcu() loop is safe.
5952          */
5953         hlist_del_rcu(&chain->entry);
5954         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5955         nr_zapped_lock_chains++;
5956 #endif
5957 }
5958
5959 /* Must be called with the graph lock held. */
5960 static void remove_class_from_lock_chains(struct pending_free *pf,
5961                                           struct lock_class *class)
5962 {
5963         struct lock_chain *chain;
5964         struct hlist_head *head;
5965         int i;
5966
5967         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5968                 head = chainhash_table + i;
5969                 hlist_for_each_entry_rcu(chain, head, entry) {
5970                         remove_class_from_lock_chain(pf, chain, class);
5971                 }
5972         }
5973 }
5974
5975 /*
5976  * Remove all references to a lock class. The caller must hold the graph lock.
5977  */
5978 static void zap_class(struct pending_free *pf, struct lock_class *class)
5979 {
5980         struct lock_list *entry;
5981         int i;
5982
5983         WARN_ON_ONCE(!class->key);
5984
5985         /*
5986          * Remove all dependencies this lock is
5987          * involved in:
5988          */
5989         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5990                 entry = list_entries + i;
5991                 if (entry->class != class && entry->links_to != class)
5992                         continue;
5993                 __clear_bit(i, list_entries_in_use);
5994                 nr_list_entries--;
5995                 list_del_rcu(&entry->entry);
5996         }
5997         if (list_empty(&class->locks_after) &&
5998             list_empty(&class->locks_before)) {
5999                 list_move_tail(&class->lock_entry, &pf->zapped);
6000                 hlist_del_rcu(&class->hash_entry);
6001                 WRITE_ONCE(class->key, NULL);
6002                 WRITE_ONCE(class->name, NULL);
6003                 nr_lock_classes--;
6004                 __clear_bit(class - lock_classes, lock_classes_in_use);
6005                 if (class - lock_classes == max_lock_class_idx)
6006                         max_lock_class_idx--;
6007         } else {
6008                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6009                           class->name);
6010         }
6011
6012         remove_class_from_lock_chains(pf, class);
6013         nr_zapped_classes++;
6014 }
6015
6016 static void reinit_class(struct lock_class *class)
6017 {
6018         WARN_ON_ONCE(!class->lock_entry.next);
6019         WARN_ON_ONCE(!list_empty(&class->locks_after));
6020         WARN_ON_ONCE(!list_empty(&class->locks_before));
6021         memset_startat(class, 0, key);
6022         WARN_ON_ONCE(!class->lock_entry.next);
6023         WARN_ON_ONCE(!list_empty(&class->locks_after));
6024         WARN_ON_ONCE(!list_empty(&class->locks_before));
6025 }
6026
6027 static inline int within(const void *addr, void *start, unsigned long size)
6028 {
6029         return addr >= start && addr < start + size;
6030 }
6031
6032 static bool inside_selftest(void)
6033 {
6034         return current == lockdep_selftest_task_struct;
6035 }
6036
6037 /* The caller must hold the graph lock. */
6038 static struct pending_free *get_pending_free(void)
6039 {
6040         return delayed_free.pf + delayed_free.index;
6041 }
6042
6043 static void free_zapped_rcu(struct rcu_head *cb);
6044
6045 /*
6046  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6047  * the graph lock held.
6048  */
6049 static void call_rcu_zapped(struct pending_free *pf)
6050 {
6051         WARN_ON_ONCE(inside_selftest());
6052
6053         if (list_empty(&pf->zapped))
6054                 return;
6055
6056         if (delayed_free.scheduled)
6057                 return;
6058
6059         delayed_free.scheduled = true;
6060
6061         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6062         delayed_free.index ^= 1;
6063
6064         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6065 }
6066
6067 /* The caller must hold the graph lock. May be called from RCU context. */
6068 static void __free_zapped_classes(struct pending_free *pf)
6069 {
6070         struct lock_class *class;
6071
6072         check_data_structures();
6073
6074         list_for_each_entry(class, &pf->zapped, lock_entry)
6075                 reinit_class(class);
6076
6077         list_splice_init(&pf->zapped, &free_lock_classes);
6078
6079 #ifdef CONFIG_PROVE_LOCKING
6080         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6081                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6082         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6083 #endif
6084 }
6085
6086 static void free_zapped_rcu(struct rcu_head *ch)
6087 {
6088         struct pending_free *pf;
6089         unsigned long flags;
6090
6091         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6092                 return;
6093
6094         raw_local_irq_save(flags);
6095         lockdep_lock();
6096
6097         /* closed head */
6098         pf = delayed_free.pf + (delayed_free.index ^ 1);
6099         __free_zapped_classes(pf);
6100         delayed_free.scheduled = false;
6101
6102         /*
6103          * If there's anything on the open list, close and start a new callback.
6104          */
6105         call_rcu_zapped(delayed_free.pf + delayed_free.index);
6106
6107         lockdep_unlock();
6108         raw_local_irq_restore(flags);
6109 }
6110
6111 /*
6112  * Remove all lock classes from the class hash table and from the
6113  * all_lock_classes list whose key or name is in the address range [start,
6114  * start + size). Move these lock classes to the zapped_classes list. Must
6115  * be called with the graph lock held.
6116  */
6117 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6118                                      unsigned long size)
6119 {
6120         struct lock_class *class;
6121         struct hlist_head *head;
6122         int i;
6123
6124         /* Unhash all classes that were created by a module. */
6125         for (i = 0; i < CLASSHASH_SIZE; i++) {
6126                 head = classhash_table + i;
6127                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6128                         if (!within(class->key, start, size) &&
6129                             !within(class->name, start, size))
6130                                 continue;
6131                         zap_class(pf, class);
6132                 }
6133         }
6134 }
6135
6136 /*
6137  * Used in module.c to remove lock classes from memory that is going to be
6138  * freed; and possibly re-used by other modules.
6139  *
6140  * We will have had one synchronize_rcu() before getting here, so we're
6141  * guaranteed nobody will look up these exact classes -- they're properly dead
6142  * but still allocated.
6143  */
6144 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6145 {
6146         struct pending_free *pf;
6147         unsigned long flags;
6148
6149         init_data_structures_once();
6150
6151         raw_local_irq_save(flags);
6152         lockdep_lock();
6153         pf = get_pending_free();
6154         __lockdep_free_key_range(pf, start, size);
6155         call_rcu_zapped(pf);
6156         lockdep_unlock();
6157         raw_local_irq_restore(flags);
6158
6159         /*
6160          * Wait for any possible iterators from look_up_lock_class() to pass
6161          * before continuing to free the memory they refer to.
6162          */
6163         synchronize_rcu();
6164 }
6165
6166 /*
6167  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6168  * Ignores debug_locks. Must only be used by the lockdep selftests.
6169  */
6170 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6171 {
6172         struct pending_free *pf = delayed_free.pf;
6173         unsigned long flags;
6174
6175         init_data_structures_once();
6176
6177         raw_local_irq_save(flags);
6178         lockdep_lock();
6179         __lockdep_free_key_range(pf, start, size);
6180         __free_zapped_classes(pf);
6181         lockdep_unlock();
6182         raw_local_irq_restore(flags);
6183 }
6184
6185 void lockdep_free_key_range(void *start, unsigned long size)
6186 {
6187         init_data_structures_once();
6188
6189         if (inside_selftest())
6190                 lockdep_free_key_range_imm(start, size);
6191         else
6192                 lockdep_free_key_range_reg(start, size);
6193 }
6194
6195 /*
6196  * Check whether any element of the @lock->class_cache[] array refers to a
6197  * registered lock class. The caller must hold either the graph lock or the
6198  * RCU read lock.
6199  */
6200 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6201 {
6202         struct lock_class *class;
6203         struct hlist_head *head;
6204         int i, j;
6205
6206         for (i = 0; i < CLASSHASH_SIZE; i++) {
6207                 head = classhash_table + i;
6208                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6209                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6210                                 if (lock->class_cache[j] == class)
6211                                         return true;
6212                 }
6213         }
6214         return false;
6215 }
6216
6217 /* The caller must hold the graph lock. Does not sleep. */
6218 static void __lockdep_reset_lock(struct pending_free *pf,
6219                                  struct lockdep_map *lock)
6220 {
6221         struct lock_class *class;
6222         int j;
6223
6224         /*
6225          * Remove all classes this lock might have:
6226          */
6227         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6228                 /*
6229                  * If the class exists we look it up and zap it:
6230                  */
6231                 class = look_up_lock_class(lock, j);
6232                 if (class)
6233                         zap_class(pf, class);
6234         }
6235         /*
6236          * Debug check: in the end all mapped classes should
6237          * be gone.
6238          */
6239         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6240                 debug_locks_off();
6241 }
6242
6243 /*
6244  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6245  * released data structures from RCU context.
6246  */
6247 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6248 {
6249         struct pending_free *pf;
6250         unsigned long flags;
6251         int locked;
6252
6253         raw_local_irq_save(flags);
6254         locked = graph_lock();
6255         if (!locked)
6256                 goto out_irq;
6257
6258         pf = get_pending_free();
6259         __lockdep_reset_lock(pf, lock);
6260         call_rcu_zapped(pf);
6261
6262         graph_unlock();
6263 out_irq:
6264         raw_local_irq_restore(flags);
6265 }
6266
6267 /*
6268  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6269  * lockdep selftests.
6270  */
6271 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6272 {
6273         struct pending_free *pf = delayed_free.pf;
6274         unsigned long flags;
6275
6276         raw_local_irq_save(flags);
6277         lockdep_lock();
6278         __lockdep_reset_lock(pf, lock);
6279         __free_zapped_classes(pf);
6280         lockdep_unlock();
6281         raw_local_irq_restore(flags);
6282 }
6283
6284 void lockdep_reset_lock(struct lockdep_map *lock)
6285 {
6286         init_data_structures_once();
6287
6288         if (inside_selftest())
6289                 lockdep_reset_lock_imm(lock);
6290         else
6291                 lockdep_reset_lock_reg(lock);
6292 }
6293
6294 /*
6295  * Unregister a dynamically allocated key.
6296  *
6297  * Unlike lockdep_register_key(), a search is always done to find a matching
6298  * key irrespective of debug_locks to avoid potential invalid access to freed
6299  * memory in lock_class entry.
6300  */
6301 void lockdep_unregister_key(struct lock_class_key *key)
6302 {
6303         struct hlist_head *hash_head = keyhashentry(key);
6304         struct lock_class_key *k;
6305         struct pending_free *pf;
6306         unsigned long flags;
6307         bool found = false;
6308
6309         might_sleep();
6310
6311         if (WARN_ON_ONCE(static_obj(key)))
6312                 return;
6313
6314         raw_local_irq_save(flags);
6315         lockdep_lock();
6316
6317         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6318                 if (k == key) {
6319                         hlist_del_rcu(&k->hash_entry);
6320                         found = true;
6321                         break;
6322                 }
6323         }
6324         WARN_ON_ONCE(!found && debug_locks);
6325         if (found) {
6326                 pf = get_pending_free();
6327                 __lockdep_free_key_range(pf, key, 1);
6328                 call_rcu_zapped(pf);
6329         }
6330         lockdep_unlock();
6331         raw_local_irq_restore(flags);
6332
6333         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6334         synchronize_rcu();
6335 }
6336 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6337
6338 void __init lockdep_init(void)
6339 {
6340         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6341
6342         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6343         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6344         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6345         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6346         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6347         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6348         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6349
6350         printk(" memory used by lock dependency info: %zu kB\n",
6351                (sizeof(lock_classes) +
6352                 sizeof(lock_classes_in_use) +
6353                 sizeof(classhash_table) +
6354                 sizeof(list_entries) +
6355                 sizeof(list_entries_in_use) +
6356                 sizeof(chainhash_table) +
6357                 sizeof(delayed_free)
6358 #ifdef CONFIG_PROVE_LOCKING
6359                 + sizeof(lock_cq)
6360                 + sizeof(lock_chains)
6361                 + sizeof(lock_chains_in_use)
6362                 + sizeof(chain_hlocks)
6363 #endif
6364                 ) / 1024
6365                 );
6366
6367 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6368         printk(" memory used for stack traces: %zu kB\n",
6369                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6370                );
6371 #endif
6372
6373         printk(" per task-struct memory footprint: %zu bytes\n",
6374                sizeof(((struct task_struct *)NULL)->held_locks));
6375 }
6376
6377 static void
6378 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6379                      const void *mem_to, struct held_lock *hlock)
6380 {
6381         if (!debug_locks_off())
6382                 return;
6383         if (debug_locks_silent)
6384                 return;
6385
6386         pr_warn("\n");
6387         pr_warn("=========================\n");
6388         pr_warn("WARNING: held lock freed!\n");
6389         print_kernel_ident();
6390         pr_warn("-------------------------\n");
6391         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6392                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6393         print_lock(hlock);
6394         lockdep_print_held_locks(curr);
6395
6396         pr_warn("\nstack backtrace:\n");
6397         dump_stack();
6398 }
6399
6400 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6401                                 const void* lock_from, unsigned long lock_len)
6402 {
6403         return lock_from + lock_len <= mem_from ||
6404                 mem_from + mem_len <= lock_from;
6405 }
6406
6407 /*
6408  * Called when kernel memory is freed (or unmapped), or if a lock
6409  * is destroyed or reinitialized - this code checks whether there is
6410  * any held lock in the memory range of <from> to <to>:
6411  */
6412 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6413 {
6414         struct task_struct *curr = current;
6415         struct held_lock *hlock;
6416         unsigned long flags;
6417         int i;
6418
6419         if (unlikely(!debug_locks))
6420                 return;
6421
6422         raw_local_irq_save(flags);
6423         for (i = 0; i < curr->lockdep_depth; i++) {
6424                 hlock = curr->held_locks + i;
6425
6426                 if (not_in_range(mem_from, mem_len, hlock->instance,
6427                                         sizeof(*hlock->instance)))
6428                         continue;
6429
6430                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6431                 break;
6432         }
6433         raw_local_irq_restore(flags);
6434 }
6435 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6436
6437 static void print_held_locks_bug(void)
6438 {
6439         if (!debug_locks_off())
6440                 return;
6441         if (debug_locks_silent)
6442                 return;
6443
6444         pr_warn("\n");
6445         pr_warn("====================================\n");
6446         pr_warn("WARNING: %s/%d still has locks held!\n",
6447                current->comm, task_pid_nr(current));
6448         print_kernel_ident();
6449         pr_warn("------------------------------------\n");
6450         lockdep_print_held_locks(current);
6451         pr_warn("\nstack backtrace:\n");
6452         dump_stack();
6453 }
6454
6455 void debug_check_no_locks_held(void)
6456 {
6457         if (unlikely(current->lockdep_depth > 0))
6458                 print_held_locks_bug();
6459 }
6460 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6461
6462 #ifdef __KERNEL__
6463 void debug_show_all_locks(void)
6464 {
6465         struct task_struct *g, *p;
6466
6467         if (unlikely(!debug_locks)) {
6468                 pr_warn("INFO: lockdep is turned off.\n");
6469                 return;
6470         }
6471         pr_warn("\nShowing all locks held in the system:\n");
6472
6473         rcu_read_lock();
6474         for_each_process_thread(g, p) {
6475                 if (!p->lockdep_depth)
6476                         continue;
6477                 lockdep_print_held_locks(p);
6478                 touch_nmi_watchdog();
6479                 touch_all_softlockup_watchdogs();
6480         }
6481         rcu_read_unlock();
6482
6483         pr_warn("\n");
6484         pr_warn("=============================================\n\n");
6485 }
6486 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6487 #endif
6488
6489 /*
6490  * Careful: only use this function if you are sure that
6491  * the task cannot run in parallel!
6492  */
6493 void debug_show_held_locks(struct task_struct *task)
6494 {
6495         if (unlikely(!debug_locks)) {
6496                 printk("INFO: lockdep is turned off.\n");
6497                 return;
6498         }
6499         lockdep_print_held_locks(task);
6500 }
6501 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6502
6503 asmlinkage __visible void lockdep_sys_exit(void)
6504 {
6505         struct task_struct *curr = current;
6506
6507         if (unlikely(curr->lockdep_depth)) {
6508                 if (!debug_locks_off())
6509                         return;
6510                 pr_warn("\n");
6511                 pr_warn("================================================\n");
6512                 pr_warn("WARNING: lock held when returning to user space!\n");
6513                 print_kernel_ident();
6514                 pr_warn("------------------------------------------------\n");
6515                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6516                                 curr->comm, curr->pid);
6517                 lockdep_print_held_locks(curr);
6518         }
6519
6520         /*
6521          * The lock history for each syscall should be independent. So wipe the
6522          * slate clean on return to userspace.
6523          */
6524         lockdep_invariant_state(false);
6525 }
6526
6527 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6528 {
6529         struct task_struct *curr = current;
6530         int dl = READ_ONCE(debug_locks);
6531
6532         /* Note: the following can be executed concurrently, so be careful. */
6533         pr_warn("\n");
6534         pr_warn("=============================\n");
6535         pr_warn("WARNING: suspicious RCU usage\n");
6536         print_kernel_ident();
6537         pr_warn("-----------------------------\n");
6538         pr_warn("%s:%d %s!\n", file, line, s);
6539         pr_warn("\nother info that might help us debug this:\n\n");
6540         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6541                !rcu_lockdep_current_cpu_online()
6542                         ? "RCU used illegally from offline CPU!\n"
6543                         : "",
6544                rcu_scheduler_active, dl,
6545                dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6546
6547         /*
6548          * If a CPU is in the RCU-free window in idle (ie: in the section
6549          * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6550          * considers that CPU to be in an "extended quiescent state",
6551          * which means that RCU will be completely ignoring that CPU.
6552          * Therefore, rcu_read_lock() and friends have absolutely no
6553          * effect on a CPU running in that state. In other words, even if
6554          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6555          * delete data structures out from under it.  RCU really has no
6556          * choice here: we need to keep an RCU-free window in idle where
6557          * the CPU may possibly enter into low power mode. This way we can
6558          * notice an extended quiescent state to other CPUs that started a grace
6559          * period. Otherwise we would delay any grace period as long as we run
6560          * in the idle task.
6561          *
6562          * So complain bitterly if someone does call rcu_read_lock(),
6563          * rcu_read_lock_bh() and so on from extended quiescent states.
6564          */
6565         if (!rcu_is_watching())
6566                 pr_warn("RCU used illegally from extended quiescent state!\n");
6567
6568         lockdep_print_held_locks(curr);
6569         pr_warn("\nstack backtrace:\n");
6570         dump_stack();
6571 }
6572 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
This page took 0.400858 seconds and 4 git commands to generate.