1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
22 #include "xfs_trans.h"
23 #include "xfs_buf_item.h"
24 #include "xfs_icreate_item.h"
25 #include "xfs_icache.h"
26 #include "xfs_trace.h"
32 * Lookup a record by ino in the btree given by cur.
36 struct xfs_btree_cur *cur, /* btree cursor */
37 xfs_agino_t ino, /* starting inode of chunk */
38 xfs_lookup_t dir, /* <=, >=, == */
39 int *stat) /* success/failure */
41 cur->bc_rec.i.ir_startino = ino;
42 cur->bc_rec.i.ir_holemask = 0;
43 cur->bc_rec.i.ir_count = 0;
44 cur->bc_rec.i.ir_freecount = 0;
45 cur->bc_rec.i.ir_free = 0;
46 return xfs_btree_lookup(cur, dir, stat);
50 * Update the record referred to by cur to the value given.
51 * This either works (return 0) or gets an EFSCORRUPTED error.
53 STATIC int /* error */
55 struct xfs_btree_cur *cur, /* btree cursor */
56 xfs_inobt_rec_incore_t *irec) /* btree record */
58 union xfs_btree_rec rec;
60 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 if (xfs_has_sparseinodes(cur->bc_mp)) {
62 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
66 /* ir_holemask/ir_count not supported on-disk */
67 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
69 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 return xfs_btree_update(cur, &rec);
73 /* Convert on-disk btree record to incore inobt record. */
75 xfs_inobt_btrec_to_irec(
77 const union xfs_btree_rec *rec,
78 struct xfs_inobt_rec_incore *irec)
80 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 if (xfs_has_sparseinodes(mp)) {
82 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
87 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 * values for full inode chunks.
90 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 irec->ir_count = XFS_INODES_PER_CHUNK;
93 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
95 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
99 * Get the data from the pointed-to record.
103 struct xfs_btree_cur *cur,
104 struct xfs_inobt_rec_incore *irec,
107 struct xfs_mount *mp = cur->bc_mp;
108 xfs_agnumber_t agno = cur->bc_ag.pag->pag_agno;
109 union xfs_btree_rec *rec;
113 error = xfs_btree_get_rec(cur, &rec, stat);
114 if (error || *stat == 0)
117 xfs_inobt_btrec_to_irec(mp, rec, irec);
119 if (!xfs_verify_agino(mp, agno, irec->ir_startino))
121 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
122 irec->ir_count > XFS_INODES_PER_CHUNK)
124 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
127 /* if there are no holes, return the first available offset */
128 if (!xfs_inobt_issparse(irec->ir_holemask))
129 realfree = irec->ir_free;
131 realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
132 if (hweight64(realfree) != irec->ir_freecount)
139 "%s Inode BTree record corruption in AG %d detected!",
140 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
142 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 irec->ir_free, irec->ir_holemask);
145 return -EFSCORRUPTED;
149 * Insert a single inobt record. Cursor must already point to desired location.
152 xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
168 * Insert records describing a newly allocated inode chunk into the inobt.
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
175 struct xfs_perag *pag,
180 struct xfs_btree_cur *cur;
185 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
187 for (thisino = newino;
188 thisino < newino + newlen;
189 thisino += XFS_INODES_PER_CHUNK) {
190 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
192 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
197 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
198 XFS_INODES_PER_CHUNK,
199 XFS_INODES_PER_CHUNK,
200 XFS_INOBT_ALL_FREE, &i);
202 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
208 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
214 * Verify that the number of free inodes in the AGI is correct.
218 xfs_check_agi_freecount(
219 struct xfs_btree_cur *cur)
221 if (cur->bc_nlevels == 1) {
222 xfs_inobt_rec_incore_t rec;
227 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
232 error = xfs_inobt_get_rec(cur, &rec, &i);
237 freecount += rec.ir_freecount;
238 error = xfs_btree_increment(cur, 0, &i);
244 if (!xfs_is_shutdown(cur->bc_mp))
245 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
250 #define xfs_check_agi_freecount(cur) 0
254 * Initialise a new set of inodes. When called without a transaction context
255 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
256 * than logging them (which in a transaction context puts them into the AIL
257 * for writeback rather than the xfsbufd queue).
260 xfs_ialloc_inode_init(
261 struct xfs_mount *mp,
262 struct xfs_trans *tp,
263 struct list_head *buffer_list,
267 xfs_agblock_t length,
270 struct xfs_buf *fbuf;
271 struct xfs_dinode *free;
280 * Loop over the new block(s), filling in the inodes. For small block
281 * sizes, manipulate the inodes in buffers which are multiples of the
284 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
287 * Figure out what version number to use in the inodes we create. If
288 * the superblock version has caught up to the one that supports the new
289 * inode format, then use the new inode version. Otherwise use the old
290 * version so that old kernels will continue to be able to use the file
293 * For v3 inodes, we also need to write the inode number into the inode,
294 * so calculate the first inode number of the chunk here as
295 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
296 * across multiple filesystem blocks (such as a cluster) and so cannot
297 * be used in the cluster buffer loop below.
299 * Further, because we are writing the inode directly into the buffer
300 * and calculating a CRC on the entire inode, we have ot log the entire
301 * inode so that the entire range the CRC covers is present in the log.
302 * That means for v3 inode we log the entire buffer rather than just the
305 if (xfs_has_v3inodes(mp)) {
307 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
310 * log the initialisation that is about to take place as an
311 * logical operation. This means the transaction does not
312 * need to log the physical changes to the inode buffers as log
313 * recovery will know what initialisation is actually needed.
314 * Hence we only need to log the buffers as "ordered" buffers so
315 * they track in the AIL as if they were physically logged.
318 xfs_icreate_log(tp, agno, agbno, icount,
319 mp->m_sb.sb_inodesize, length, gen);
323 for (j = 0; j < nbufs; j++) {
327 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
328 (j * M_IGEO(mp)->blocks_per_cluster));
329 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
330 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
331 XBF_UNMAPPED, &fbuf);
335 /* Initialize the inode buffers and log them appropriately. */
336 fbuf->b_ops = &xfs_inode_buf_ops;
337 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
338 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
339 int ioffset = i << mp->m_sb.sb_inodelog;
341 free = xfs_make_iptr(mp, fbuf, i);
342 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
343 free->di_version = version;
344 free->di_gen = cpu_to_be32(gen);
345 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
348 free->di_ino = cpu_to_be64(ino);
350 uuid_copy(&free->di_uuid,
351 &mp->m_sb.sb_meta_uuid);
352 xfs_dinode_calc_crc(mp, free);
354 /* just log the inode core */
355 xfs_trans_log_buf(tp, fbuf, ioffset,
356 ioffset + XFS_DINODE_SIZE(mp) - 1);
362 * Mark the buffer as an inode allocation buffer so it
363 * sticks in AIL at the point of this allocation
364 * transaction. This ensures the they are on disk before
365 * the tail of the log can be moved past this
366 * transaction (i.e. by preventing relogging from moving
367 * it forward in the log).
369 xfs_trans_inode_alloc_buf(tp, fbuf);
372 * Mark the buffer as ordered so that they are
373 * not physically logged in the transaction but
374 * still tracked in the AIL as part of the
375 * transaction and pin the log appropriately.
377 xfs_trans_ordered_buf(tp, fbuf);
380 fbuf->b_flags |= XBF_DONE;
381 xfs_buf_delwri_queue(fbuf, buffer_list);
389 * Align startino and allocmask for a recently allocated sparse chunk such that
390 * they are fit for insertion (or merge) into the on-disk inode btrees.
394 * When enabled, sparse inode support increases the inode alignment from cluster
395 * size to inode chunk size. This means that the minimum range between two
396 * non-adjacent inode records in the inobt is large enough for a full inode
397 * record. This allows for cluster sized, cluster aligned block allocation
398 * without need to worry about whether the resulting inode record overlaps with
399 * another record in the tree. Without this basic rule, we would have to deal
400 * with the consequences of overlap by potentially undoing recent allocations in
401 * the inode allocation codepath.
403 * Because of this alignment rule (which is enforced on mount), there are two
404 * inobt possibilities for newly allocated sparse chunks. One is that the
405 * aligned inode record for the chunk covers a range of inodes not already
406 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
407 * other is that a record already exists at the aligned startino that considers
408 * the newly allocated range as sparse. In the latter case, record content is
409 * merged in hope that sparse inode chunks fill to full chunks over time.
412 xfs_align_sparse_ino(
413 struct xfs_mount *mp,
414 xfs_agino_t *startino,
421 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
422 mod = agbno % mp->m_sb.sb_inoalignmt;
426 /* calculate the inode offset and align startino */
427 offset = XFS_AGB_TO_AGINO(mp, mod);
431 * Since startino has been aligned down, left shift allocmask such that
432 * it continues to represent the same physical inodes relative to the
435 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
439 * Determine whether the source inode record can merge into the target. Both
440 * records must be sparse, the inode ranges must match and there must be no
441 * allocation overlap between the records.
444 __xfs_inobt_can_merge(
445 struct xfs_inobt_rec_incore *trec, /* tgt record */
446 struct xfs_inobt_rec_incore *srec) /* src record */
451 /* records must cover the same inode range */
452 if (trec->ir_startino != srec->ir_startino)
455 /* both records must be sparse */
456 if (!xfs_inobt_issparse(trec->ir_holemask) ||
457 !xfs_inobt_issparse(srec->ir_holemask))
460 /* both records must track some inodes */
461 if (!trec->ir_count || !srec->ir_count)
464 /* can't exceed capacity of a full record */
465 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
468 /* verify there is no allocation overlap */
469 talloc = xfs_inobt_irec_to_allocmask(trec);
470 salloc = xfs_inobt_irec_to_allocmask(srec);
478 * Merge the source inode record into the target. The caller must call
479 * __xfs_inobt_can_merge() to ensure the merge is valid.
482 __xfs_inobt_rec_merge(
483 struct xfs_inobt_rec_incore *trec, /* target */
484 struct xfs_inobt_rec_incore *srec) /* src */
486 ASSERT(trec->ir_startino == srec->ir_startino);
488 /* combine the counts */
489 trec->ir_count += srec->ir_count;
490 trec->ir_freecount += srec->ir_freecount;
493 * Merge the holemask and free mask. For both fields, 0 bits refer to
494 * allocated inodes. We combine the allocated ranges with bitwise AND.
496 trec->ir_holemask &= srec->ir_holemask;
497 trec->ir_free &= srec->ir_free;
501 * Insert a new sparse inode chunk into the associated inode btree. The inode
502 * record for the sparse chunk is pre-aligned to a startino that should match
503 * any pre-existing sparse inode record in the tree. This allows sparse chunks
506 * This function supports two modes of handling preexisting records depending on
507 * the merge flag. If merge is true, the provided record is merged with the
508 * existing record and updated in place. The merged record is returned in nrec.
509 * If merge is false, an existing record is replaced with the provided record.
510 * If no preexisting record exists, the provided record is always inserted.
512 * It is considered corruption if a merge is requested and not possible. Given
513 * the sparse inode alignment constraints, this should never happen.
516 xfs_inobt_insert_sprec(
517 struct xfs_mount *mp,
518 struct xfs_trans *tp,
519 struct xfs_buf *agbp,
520 struct xfs_perag *pag,
522 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
523 bool merge) /* merge or replace */
525 struct xfs_btree_cur *cur;
528 struct xfs_inobt_rec_incore rec;
530 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
532 /* the new record is pre-aligned so we know where to look */
533 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
536 /* if nothing there, insert a new record and return */
538 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
539 nrec->ir_count, nrec->ir_freecount,
543 if (XFS_IS_CORRUPT(mp, i != 1)) {
544 error = -EFSCORRUPTED;
552 * A record exists at this startino. Merge or replace the record
553 * depending on what we've been asked to do.
556 error = xfs_inobt_get_rec(cur, &rec, &i);
559 if (XFS_IS_CORRUPT(mp, i != 1)) {
560 error = -EFSCORRUPTED;
563 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
564 error = -EFSCORRUPTED;
569 * This should never fail. If we have coexisting records that
570 * cannot merge, something is seriously wrong.
572 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
573 error = -EFSCORRUPTED;
577 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
578 rec.ir_holemask, nrec->ir_startino,
581 /* merge to nrec to output the updated record */
582 __xfs_inobt_rec_merge(nrec, &rec);
584 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
587 error = xfs_inobt_rec_check_count(mp, nrec);
592 error = xfs_inobt_update(cur, nrec);
597 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
600 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
605 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
606 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
607 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
608 * inode count threshold, or the usual negative error code for other errors.
612 struct xfs_trans *tp,
613 struct xfs_buf *agbp,
614 struct xfs_perag *pag)
617 struct xfs_alloc_arg args;
619 xfs_agino_t newino; /* new first inode's number */
620 xfs_agino_t newlen; /* new number of inodes */
621 int isaligned = 0; /* inode allocation at stripe */
623 /* init. to full chunk */
624 struct xfs_inobt_rec_incore rec;
625 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
626 uint16_t allocmask = (uint16_t) -1;
629 memset(&args, 0, sizeof(args));
631 args.mp = tp->t_mountp;
632 args.fsbno = NULLFSBLOCK;
633 args.oinfo = XFS_RMAP_OINFO_INODES;
636 /* randomly do sparse inode allocations */
637 if (xfs_has_sparseinodes(tp->t_mountp) &&
638 igeo->ialloc_min_blks < igeo->ialloc_blks)
639 do_sparse = prandom_u32() & 1;
643 * Locking will ensure that we don't have two callers in here
646 newlen = igeo->ialloc_inos;
647 if (igeo->maxicount &&
648 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
651 args.minlen = args.maxlen = igeo->ialloc_blks;
653 * First try to allocate inodes contiguous with the last-allocated
654 * chunk of inodes. If the filesystem is striped, this will fill
655 * an entire stripe unit with inodes.
658 newino = be32_to_cpu(agi->agi_newino);
659 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
663 if (likely(newino != NULLAGINO &&
664 (args.agbno < be32_to_cpu(agi->agi_length)))) {
665 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
666 args.type = XFS_ALLOCTYPE_THIS_BNO;
670 * We need to take into account alignment here to ensure that
671 * we don't modify the free list if we fail to have an exact
672 * block. If we don't have an exact match, and every oher
673 * attempt allocation attempt fails, we'll end up cancelling
674 * a dirty transaction and shutting down.
676 * For an exact allocation, alignment must be 1,
677 * however we need to take cluster alignment into account when
678 * fixing up the freelist. Use the minalignslop field to
679 * indicate that extra blocks might be required for alignment,
680 * but not to use them in the actual exact allocation.
683 args.minalignslop = igeo->cluster_align - 1;
685 /* Allow space for the inode btree to split. */
686 args.minleft = igeo->inobt_maxlevels;
687 if ((error = xfs_alloc_vextent(&args)))
691 * This request might have dirtied the transaction if the AG can
692 * satisfy the request, but the exact block was not available.
693 * If the allocation did fail, subsequent requests will relax
694 * the exact agbno requirement and increase the alignment
695 * instead. It is critical that the total size of the request
696 * (len + alignment + slop) does not increase from this point
697 * on, so reset minalignslop to ensure it is not included in
698 * subsequent requests.
700 args.minalignslop = 0;
703 if (unlikely(args.fsbno == NULLFSBLOCK)) {
705 * Set the alignment for the allocation.
706 * If stripe alignment is turned on then align at stripe unit
708 * If the cluster size is smaller than a filesystem block
709 * then we're doing I/O for inodes in filesystem block size
710 * pieces, so don't need alignment anyway.
713 if (igeo->ialloc_align) {
714 ASSERT(!xfs_has_noalign(args.mp));
715 args.alignment = args.mp->m_dalign;
718 args.alignment = igeo->cluster_align;
720 * Need to figure out where to allocate the inode blocks.
721 * Ideally they should be spaced out through the a.g.
722 * For now, just allocate blocks up front.
724 args.agbno = be32_to_cpu(agi->agi_root);
725 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
727 * Allocate a fixed-size extent of inodes.
729 args.type = XFS_ALLOCTYPE_NEAR_BNO;
732 * Allow space for the inode btree to split.
734 args.minleft = igeo->inobt_maxlevels;
735 if ((error = xfs_alloc_vextent(&args)))
740 * If stripe alignment is turned on, then try again with cluster
743 if (isaligned && args.fsbno == NULLFSBLOCK) {
744 args.type = XFS_ALLOCTYPE_NEAR_BNO;
745 args.agbno = be32_to_cpu(agi->agi_root);
746 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
747 args.alignment = igeo->cluster_align;
748 if ((error = xfs_alloc_vextent(&args)))
753 * Finally, try a sparse allocation if the filesystem supports it and
754 * the sparse allocation length is smaller than a full chunk.
756 if (xfs_has_sparseinodes(args.mp) &&
757 igeo->ialloc_min_blks < igeo->ialloc_blks &&
758 args.fsbno == NULLFSBLOCK) {
760 args.type = XFS_ALLOCTYPE_NEAR_BNO;
761 args.agbno = be32_to_cpu(agi->agi_root);
762 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
763 args.alignment = args.mp->m_sb.sb_spino_align;
766 args.minlen = igeo->ialloc_min_blks;
767 args.maxlen = args.minlen;
770 * The inode record will be aligned to full chunk size. We must
771 * prevent sparse allocation from AG boundaries that result in
772 * invalid inode records, such as records that start at agbno 0
773 * or extend beyond the AG.
775 * Set min agbno to the first aligned, non-zero agbno and max to
776 * the last aligned agbno that is at least one full chunk from
779 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
780 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
781 args.mp->m_sb.sb_inoalignmt) -
784 error = xfs_alloc_vextent(&args);
788 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
789 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
790 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
793 if (args.fsbno == NULLFSBLOCK)
796 ASSERT(args.len == args.minlen);
799 * Stamp and write the inode buffers.
801 * Seed the new inode cluster with a random generation number. This
802 * prevents short-term reuse of generation numbers if a chunk is
803 * freed and then immediately reallocated. We use random numbers
804 * rather than a linear progression to prevent the next generation
805 * number from being easily guessable.
807 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
808 args.agbno, args.len, prandom_u32());
813 * Convert the results.
815 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
817 if (xfs_inobt_issparse(~allocmask)) {
819 * We've allocated a sparse chunk. Align the startino and mask.
821 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
823 rec.ir_startino = newino;
824 rec.ir_holemask = ~allocmask;
825 rec.ir_count = newlen;
826 rec.ir_freecount = newlen;
827 rec.ir_free = XFS_INOBT_ALL_FREE;
830 * Insert the sparse record into the inobt and allow for a merge
831 * if necessary. If a merge does occur, rec is updated to the
834 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
835 XFS_BTNUM_INO, &rec, true);
836 if (error == -EFSCORRUPTED) {
838 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
839 XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
841 rec.ir_holemask, rec.ir_count);
842 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
848 * We can't merge the part we've just allocated as for the inobt
849 * due to finobt semantics. The original record may or may not
850 * exist independent of whether physical inodes exist in this
853 * We must update the finobt record based on the inobt record.
854 * rec contains the fully merged and up to date inobt record
855 * from the previous call. Set merge false to replace any
856 * existing record with this one.
858 if (xfs_has_finobt(args.mp)) {
859 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
860 XFS_BTNUM_FINO, &rec, false);
865 /* full chunk - insert new records to both btrees */
866 error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino, newlen,
871 if (xfs_has_finobt(args.mp)) {
872 error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino,
873 newlen, XFS_BTNUM_FINO);
880 * Update AGI counts and newino.
882 be32_add_cpu(&agi->agi_count, newlen);
883 be32_add_cpu(&agi->agi_freecount, newlen);
884 pag->pagi_freecount += newlen;
885 pag->pagi_count += newlen;
886 agi->agi_newino = cpu_to_be32(newino);
889 * Log allocation group header fields
891 xfs_ialloc_log_agi(tp, agbp,
892 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
894 * Modify/log superblock values for inode count and inode free count.
896 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
897 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
902 * Try to retrieve the next record to the left/right from the current one.
906 struct xfs_btree_cur *cur,
907 xfs_inobt_rec_incore_t *rec,
915 error = xfs_btree_decrement(cur, 0, &i);
917 error = xfs_btree_increment(cur, 0, &i);
923 error = xfs_inobt_get_rec(cur, rec, &i);
926 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
927 return -EFSCORRUPTED;
935 struct xfs_btree_cur *cur,
937 xfs_inobt_rec_incore_t *rec,
943 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
948 error = xfs_inobt_get_rec(cur, rec, &i);
951 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
952 return -EFSCORRUPTED;
959 * Return the offset of the first free inode in the record. If the inode chunk
960 * is sparsely allocated, we convert the record holemask to inode granularity
961 * and mask off the unallocated regions from the inode free mask.
964 xfs_inobt_first_free_inode(
965 struct xfs_inobt_rec_incore *rec)
967 xfs_inofree_t realfree;
969 /* if there are no holes, return the first available offset */
970 if (!xfs_inobt_issparse(rec->ir_holemask))
971 return xfs_lowbit64(rec->ir_free);
973 realfree = xfs_inobt_irec_to_allocmask(rec);
974 realfree &= rec->ir_free;
976 return xfs_lowbit64(realfree);
980 * Allocate an inode using the inobt-only algorithm.
983 xfs_dialloc_ag_inobt(
984 struct xfs_trans *tp,
985 struct xfs_buf *agbp,
986 struct xfs_perag *pag,
990 struct xfs_mount *mp = tp->t_mountp;
991 struct xfs_agi *agi = agbp->b_addr;
992 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
993 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
994 struct xfs_btree_cur *cur, *tcur;
995 struct xfs_inobt_rec_incore rec, trec;
1000 int searchdistance = 10;
1002 ASSERT(pag->pagi_init);
1003 ASSERT(pag->pagi_inodeok);
1004 ASSERT(pag->pagi_freecount > 0);
1007 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1009 * If pagino is 0 (this is the root inode allocation) use newino.
1010 * This must work because we've just allocated some.
1013 pagino = be32_to_cpu(agi->agi_newino);
1015 error = xfs_check_agi_freecount(cur);
1020 * If in the same AG as the parent, try to get near the parent.
1022 if (pagno == pag->pag_agno) {
1023 int doneleft; /* done, to the left */
1024 int doneright; /* done, to the right */
1026 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1029 if (XFS_IS_CORRUPT(mp, i != 1)) {
1030 error = -EFSCORRUPTED;
1034 error = xfs_inobt_get_rec(cur, &rec, &j);
1037 if (XFS_IS_CORRUPT(mp, j != 1)) {
1038 error = -EFSCORRUPTED;
1042 if (rec.ir_freecount > 0) {
1044 * Found a free inode in the same chunk
1045 * as the parent, done.
1052 * In the same AG as parent, but parent's chunk is full.
1055 /* duplicate the cursor, search left & right simultaneously */
1056 error = xfs_btree_dup_cursor(cur, &tcur);
1061 * Skip to last blocks looked up if same parent inode.
1063 if (pagino != NULLAGINO &&
1064 pag->pagl_pagino == pagino &&
1065 pag->pagl_leftrec != NULLAGINO &&
1066 pag->pagl_rightrec != NULLAGINO) {
1067 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1072 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1077 /* search left with tcur, back up 1 record */
1078 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1082 /* search right with cur, go forward 1 record. */
1083 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1089 * Loop until we find an inode chunk with a free inode.
1091 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1092 int useleft; /* using left inode chunk this time */
1094 /* figure out the closer block if both are valid. */
1095 if (!doneleft && !doneright) {
1097 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1098 rec.ir_startino - pagino;
1100 useleft = !doneleft;
1103 /* free inodes to the left? */
1104 if (useleft && trec.ir_freecount) {
1105 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1108 pag->pagl_leftrec = trec.ir_startino;
1109 pag->pagl_rightrec = rec.ir_startino;
1110 pag->pagl_pagino = pagino;
1115 /* free inodes to the right? */
1116 if (!useleft && rec.ir_freecount) {
1117 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1119 pag->pagl_leftrec = trec.ir_startino;
1120 pag->pagl_rightrec = rec.ir_startino;
1121 pag->pagl_pagino = pagino;
1125 /* get next record to check */
1127 error = xfs_ialloc_next_rec(tcur, &trec,
1130 error = xfs_ialloc_next_rec(cur, &rec,
1137 if (searchdistance <= 0) {
1139 * Not in range - save last search
1140 * location and allocate a new inode
1142 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1143 pag->pagl_leftrec = trec.ir_startino;
1144 pag->pagl_rightrec = rec.ir_startino;
1145 pag->pagl_pagino = pagino;
1149 * We've reached the end of the btree. because
1150 * we are only searching a small chunk of the
1151 * btree each search, there is obviously free
1152 * inodes closer to the parent inode than we
1153 * are now. restart the search again.
1155 pag->pagl_pagino = NULLAGINO;
1156 pag->pagl_leftrec = NULLAGINO;
1157 pag->pagl_rightrec = NULLAGINO;
1158 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1159 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1165 * In a different AG from the parent.
1166 * See if the most recently allocated block has any free.
1168 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1169 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1175 error = xfs_inobt_get_rec(cur, &rec, &j);
1179 if (j == 1 && rec.ir_freecount > 0) {
1181 * The last chunk allocated in the group
1182 * still has a free inode.
1190 * None left in the last group, search the whole AG
1192 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1195 if (XFS_IS_CORRUPT(mp, i != 1)) {
1196 error = -EFSCORRUPTED;
1201 error = xfs_inobt_get_rec(cur, &rec, &i);
1204 if (XFS_IS_CORRUPT(mp, i != 1)) {
1205 error = -EFSCORRUPTED;
1208 if (rec.ir_freecount > 0)
1210 error = xfs_btree_increment(cur, 0, &i);
1213 if (XFS_IS_CORRUPT(mp, i != 1)) {
1214 error = -EFSCORRUPTED;
1220 offset = xfs_inobt_first_free_inode(&rec);
1221 ASSERT(offset >= 0);
1222 ASSERT(offset < XFS_INODES_PER_CHUNK);
1223 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1224 XFS_INODES_PER_CHUNK) == 0);
1225 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1226 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1228 error = xfs_inobt_update(cur, &rec);
1231 be32_add_cpu(&agi->agi_freecount, -1);
1232 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1233 pag->pagi_freecount--;
1235 error = xfs_check_agi_freecount(cur);
1239 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1240 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1244 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1246 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1251 * Use the free inode btree to allocate an inode based on distance from the
1252 * parent. Note that the provided cursor may be deleted and replaced.
1255 xfs_dialloc_ag_finobt_near(
1257 struct xfs_btree_cur **ocur,
1258 struct xfs_inobt_rec_incore *rec)
1260 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1261 struct xfs_btree_cur *rcur; /* right search cursor */
1262 struct xfs_inobt_rec_incore rrec;
1266 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1271 error = xfs_inobt_get_rec(lcur, rec, &i);
1274 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1275 return -EFSCORRUPTED;
1278 * See if we've landed in the parent inode record. The finobt
1279 * only tracks chunks with at least one free inode, so record
1280 * existence is enough.
1282 if (pagino >= rec->ir_startino &&
1283 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1287 error = xfs_btree_dup_cursor(lcur, &rcur);
1291 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1295 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1298 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1299 error = -EFSCORRUPTED;
1304 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1305 error = -EFSCORRUPTED;
1308 if (i == 1 && j == 1) {
1310 * Both the left and right records are valid. Choose the closer
1311 * inode chunk to the target.
1313 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1314 (rrec.ir_startino - pagino)) {
1316 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1319 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1321 } else if (j == 1) {
1322 /* only the right record is valid */
1324 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1326 } else if (i == 1) {
1327 /* only the left record is valid */
1328 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1334 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1339 * Use the free inode btree to find a free inode based on a newino hint. If
1340 * the hint is NULL, find the first free inode in the AG.
1343 xfs_dialloc_ag_finobt_newino(
1344 struct xfs_agi *agi,
1345 struct xfs_btree_cur *cur,
1346 struct xfs_inobt_rec_incore *rec)
1351 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1352 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1357 error = xfs_inobt_get_rec(cur, rec, &i);
1360 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1361 return -EFSCORRUPTED;
1367 * Find the first inode available in the AG.
1369 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1372 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1373 return -EFSCORRUPTED;
1375 error = xfs_inobt_get_rec(cur, rec, &i);
1378 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1379 return -EFSCORRUPTED;
1385 * Update the inobt based on a modification made to the finobt. Also ensure that
1386 * the records from both trees are equivalent post-modification.
1389 xfs_dialloc_ag_update_inobt(
1390 struct xfs_btree_cur *cur, /* inobt cursor */
1391 struct xfs_inobt_rec_incore *frec, /* finobt record */
1392 int offset) /* inode offset */
1394 struct xfs_inobt_rec_incore rec;
1398 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1401 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1402 return -EFSCORRUPTED;
1404 error = xfs_inobt_get_rec(cur, &rec, &i);
1407 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1408 return -EFSCORRUPTED;
1409 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1410 XFS_INODES_PER_CHUNK) == 0);
1412 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1415 if (XFS_IS_CORRUPT(cur->bc_mp,
1416 rec.ir_free != frec->ir_free ||
1417 rec.ir_freecount != frec->ir_freecount))
1418 return -EFSCORRUPTED;
1420 return xfs_inobt_update(cur, &rec);
1424 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1425 * back to the inobt search algorithm.
1427 * The caller selected an AG for us, and made sure that free inodes are
1432 struct xfs_trans *tp,
1433 struct xfs_buf *agbp,
1434 struct xfs_perag *pag,
1438 struct xfs_mount *mp = tp->t_mountp;
1439 struct xfs_agi *agi = agbp->b_addr;
1440 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1441 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1442 struct xfs_btree_cur *cur; /* finobt cursor */
1443 struct xfs_btree_cur *icur; /* inobt cursor */
1444 struct xfs_inobt_rec_incore rec;
1450 if (!xfs_has_finobt(mp))
1451 return xfs_dialloc_ag_inobt(tp, agbp, pag, parent, inop);
1454 * If pagino is 0 (this is the root inode allocation) use newino.
1455 * This must work because we've just allocated some.
1458 pagino = be32_to_cpu(agi->agi_newino);
1460 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
1462 error = xfs_check_agi_freecount(cur);
1467 * The search algorithm depends on whether we're in the same AG as the
1468 * parent. If so, find the closest available inode to the parent. If
1469 * not, consider the agi hint or find the first free inode in the AG.
1471 if (pag->pag_agno == pagno)
1472 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1474 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1478 offset = xfs_inobt_first_free_inode(&rec);
1479 ASSERT(offset >= 0);
1480 ASSERT(offset < XFS_INODES_PER_CHUNK);
1481 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1482 XFS_INODES_PER_CHUNK) == 0);
1483 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1486 * Modify or remove the finobt record.
1488 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1490 if (rec.ir_freecount)
1491 error = xfs_inobt_update(cur, &rec);
1493 error = xfs_btree_delete(cur, &i);
1498 * The finobt has now been updated appropriately. We haven't updated the
1499 * agi and superblock yet, so we can create an inobt cursor and validate
1500 * the original freecount. If all is well, make the equivalent update to
1501 * the inobt using the finobt record and offset information.
1503 icur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1505 error = xfs_check_agi_freecount(icur);
1509 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1514 * Both trees have now been updated. We must update the perag and
1515 * superblock before we can check the freecount for each btree.
1517 be32_add_cpu(&agi->agi_freecount, -1);
1518 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1519 pag->pagi_freecount--;
1521 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1523 error = xfs_check_agi_freecount(icur);
1526 error = xfs_check_agi_freecount(cur);
1530 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1531 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1536 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1538 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1544 struct xfs_trans **tpp,
1545 struct xfs_buf *agibp)
1547 struct xfs_trans *tp = *tpp;
1548 struct xfs_dquot_acct *dqinfo;
1552 * Hold to on to the agibp across the commit so no other allocation can
1553 * come in and take the free inodes we just allocated for our caller.
1555 xfs_trans_bhold(tp, agibp);
1558 * We want the quota changes to be associated with the next transaction,
1559 * NOT this one. So, detach the dqinfo from this and attach it to the
1562 dqinfo = tp->t_dqinfo;
1563 tp->t_dqinfo = NULL;
1565 error = xfs_trans_roll(&tp);
1567 /* Re-attach the quota info that we detached from prev trx. */
1568 tp->t_dqinfo = dqinfo;
1571 * Join the buffer even on commit error so that the buffer is released
1572 * when the caller cancels the transaction and doesn't have to handle
1573 * this error case specially.
1575 xfs_trans_bjoin(tp, agibp);
1580 static xfs_agnumber_t
1584 xfs_agnumber_t agno;
1586 spin_lock(&mp->m_agirotor_lock);
1587 agno = mp->m_agirotor;
1588 if (++mp->m_agirotor >= mp->m_maxagi)
1590 spin_unlock(&mp->m_agirotor_lock);
1596 xfs_dialloc_good_ag(
1597 struct xfs_trans *tp,
1598 struct xfs_perag *pag,
1603 struct xfs_mount *mp = tp->t_mountp;
1605 xfs_extlen_t longest = 0;
1609 if (!pag->pagi_inodeok)
1612 if (!pag->pagi_init) {
1613 error = xfs_ialloc_pagi_init(mp, tp, pag->pag_agno);
1618 if (pag->pagi_freecount)
1623 if (!pag->pagf_init) {
1624 error = xfs_alloc_pagf_init(mp, tp, pag->pag_agno, flags);
1630 * Check that there is enough free space for the file plus a chunk of
1631 * inodes if we need to allocate some. If this is the first pass across
1632 * the AGs, take into account the potential space needed for alignment
1633 * of inode chunks when checking the longest contiguous free space in
1634 * the AG - this prevents us from getting ENOSPC because we have free
1635 * space larger than ialloc_blks but alignment constraints prevent us
1638 * If we can't find an AG with space for full alignment slack to be
1639 * taken into account, we must be near ENOSPC in all AGs. Hence we
1640 * don't include alignment for the second pass and so if we fail
1641 * allocation due to alignment issues then it is most likely a real
1644 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1645 * reservations that xfs_alloc_fix_freelist() now does via
1646 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1647 * be more than large enough for the check below to succeed, but
1648 * xfs_alloc_space_available() will fail because of the non-zero
1649 * metadata reservation and hence we won't actually be able to allocate
1650 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1653 ineed = M_IGEO(mp)->ialloc_min_blks;
1654 if (flags && ineed > 1)
1655 ineed += M_IGEO(mp)->cluster_align;
1656 longest = pag->pagf_longest;
1658 longest = pag->pagf_flcount > 0;
1659 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1661 if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1668 struct xfs_trans **tpp,
1669 struct xfs_perag *pag,
1674 struct xfs_buf *agbp;
1679 * Then read in the AGI buffer and recheck with the AGI buffer
1682 error = xfs_ialloc_read_agi(pag->pag_mount, *tpp, pag->pag_agno, &agbp);
1686 if (!pag->pagi_freecount) {
1692 error = xfs_ialloc_ag_alloc(*tpp, agbp, pag);
1697 * We successfully allocated space for an inode cluster in this
1698 * AG. Roll the transaction so that we can allocate one of the
1701 ASSERT(pag->pagi_freecount > 0);
1702 error = xfs_dialloc_roll(tpp, agbp);
1707 /* Allocate an inode in the found AG */
1708 error = xfs_dialloc_ag(*tpp, agbp, pag, parent, &ino);
1714 xfs_trans_brelse(*tpp, agbp);
1719 * Allocate an on-disk inode.
1721 * Mode is used to tell whether the new inode is a directory and hence where to
1722 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1723 * on success, otherwise an error will be set to indicate the failure (e.g.
1728 struct xfs_trans **tpp,
1733 struct xfs_mount *mp = (*tpp)->t_mountp;
1734 xfs_agnumber_t agno;
1736 xfs_agnumber_t start_agno;
1737 struct xfs_perag *pag;
1738 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1739 bool ok_alloc = true;
1744 * Directories, symlinks, and regular files frequently allocate at least
1745 * one block, so factor that potential expansion when we examine whether
1746 * an AG has enough space for file creation.
1749 start_agno = xfs_ialloc_next_ag(mp);
1751 start_agno = XFS_INO_TO_AGNO(mp, parent);
1752 if (start_agno >= mp->m_maxagi)
1757 * If we have already hit the ceiling of inode blocks then clear
1758 * ok_alloc so we scan all available agi structures for a free
1761 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1762 * which will sacrifice the preciseness but improve the performance.
1764 if (igeo->maxicount &&
1765 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1766 > igeo->maxicount) {
1771 * Loop until we find an allocation group that either has free inodes
1772 * or in which we can allocate some inodes. Iterate through the
1773 * allocation groups upward, wrapping at the end.
1776 flags = XFS_ALLOC_FLAG_TRYLOCK;
1778 pag = xfs_perag_get(mp, agno);
1779 if (xfs_dialloc_good_ag(*tpp, pag, mode, flags, ok_alloc)) {
1780 error = xfs_dialloc_try_ag(tpp, pag, parent,
1782 if (error != -EAGAIN)
1786 if (xfs_is_shutdown(mp)) {
1787 error = -EFSCORRUPTED;
1790 if (++agno == mp->m_maxagi)
1792 if (agno == start_agno) {
1809 * Free the blocks of an inode chunk. We must consider that the inode chunk
1810 * might be sparse and only free the regions that are allocated as part of the
1814 xfs_difree_inode_chunk(
1815 struct xfs_trans *tp,
1816 xfs_agnumber_t agno,
1817 struct xfs_inobt_rec_incore *rec)
1819 struct xfs_mount *mp = tp->t_mountp;
1820 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1822 int startidx, endidx;
1824 xfs_agblock_t agbno;
1826 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1828 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1829 /* not sparse, calculate extent info directly */
1830 xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1831 M_IGEO(mp)->ialloc_blks,
1832 &XFS_RMAP_OINFO_INODES);
1836 /* holemask is only 16-bits (fits in an unsigned long) */
1837 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1838 holemask[0] = rec->ir_holemask;
1841 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1842 * holemask and convert the start/end index of each range to an extent.
1843 * We start with the start and end index both pointing at the first 0 in
1846 startidx = endidx = find_first_zero_bit(holemask,
1847 XFS_INOBT_HOLEMASK_BITS);
1848 nextbit = startidx + 1;
1849 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1850 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1853 * If the next zero bit is contiguous, update the end index of
1854 * the current range and continue.
1856 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1857 nextbit == endidx + 1) {
1863 * nextbit is not contiguous with the current end index. Convert
1864 * the current start/end to an extent and add it to the free
1867 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1868 mp->m_sb.sb_inopblock;
1869 contigblk = ((endidx - startidx + 1) *
1870 XFS_INODES_PER_HOLEMASK_BIT) /
1871 mp->m_sb.sb_inopblock;
1873 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1874 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1875 xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1876 contigblk, &XFS_RMAP_OINFO_INODES);
1878 /* reset range to current bit and carry on... */
1879 startidx = endidx = nextbit;
1888 struct xfs_mount *mp,
1889 struct xfs_trans *tp,
1890 struct xfs_buf *agbp,
1891 struct xfs_perag *pag,
1893 struct xfs_icluster *xic,
1894 struct xfs_inobt_rec_incore *orec)
1896 struct xfs_agi *agi = agbp->b_addr;
1897 struct xfs_btree_cur *cur;
1898 struct xfs_inobt_rec_incore rec;
1904 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1905 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1908 * Initialize the cursor.
1910 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1912 error = xfs_check_agi_freecount(cur);
1917 * Look for the entry describing this inode.
1919 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1920 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1924 if (XFS_IS_CORRUPT(mp, i != 1)) {
1925 error = -EFSCORRUPTED;
1928 error = xfs_inobt_get_rec(cur, &rec, &i);
1930 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1934 if (XFS_IS_CORRUPT(mp, i != 1)) {
1935 error = -EFSCORRUPTED;
1939 * Get the offset in the inode chunk.
1941 off = agino - rec.ir_startino;
1942 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1943 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1945 * Mark the inode free & increment the count.
1947 rec.ir_free |= XFS_INOBT_MASK(off);
1951 * When an inode chunk is free, it becomes eligible for removal. Don't
1952 * remove the chunk if the block size is large enough for multiple inode
1953 * chunks (that might not be free).
1955 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
1956 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1957 struct xfs_perag *pag = agbp->b_pag;
1959 xic->deleted = true;
1960 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1962 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1965 * Remove the inode cluster from the AGI B+Tree, adjust the
1966 * AGI and Superblock inode counts, and mark the disk space
1967 * to be freed when the transaction is committed.
1969 ilen = rec.ir_freecount;
1970 be32_add_cpu(&agi->agi_count, -ilen);
1971 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1972 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1973 pag->pagi_freecount -= ilen - 1;
1974 pag->pagi_count -= ilen;
1975 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1976 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1978 if ((error = xfs_btree_delete(cur, &i))) {
1979 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1984 xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
1986 xic->deleted = false;
1988 error = xfs_inobt_update(cur, &rec);
1990 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1996 * Change the inode free counts and log the ag/sb changes.
1998 be32_add_cpu(&agi->agi_freecount, 1);
1999 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2000 pag->pagi_freecount++;
2001 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2004 error = xfs_check_agi_freecount(cur);
2009 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2013 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2018 * Free an inode in the free inode btree.
2022 struct xfs_mount *mp,
2023 struct xfs_trans *tp,
2024 struct xfs_buf *agbp,
2025 struct xfs_perag *pag,
2027 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2029 struct xfs_btree_cur *cur;
2030 struct xfs_inobt_rec_incore rec;
2031 int offset = agino - ibtrec->ir_startino;
2035 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
2037 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2042 * If the record does not exist in the finobt, we must have just
2043 * freed an inode in a previously fully allocated chunk. If not,
2044 * something is out of sync.
2046 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2047 error = -EFSCORRUPTED;
2051 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2053 ibtrec->ir_freecount,
2054 ibtrec->ir_free, &i);
2063 * Read and update the existing record. We could just copy the ibtrec
2064 * across here, but that would defeat the purpose of having redundant
2065 * metadata. By making the modifications independently, we can catch
2066 * corruptions that we wouldn't see if we just copied from one record
2069 error = xfs_inobt_get_rec(cur, &rec, &i);
2072 if (XFS_IS_CORRUPT(mp, i != 1)) {
2073 error = -EFSCORRUPTED;
2077 rec.ir_free |= XFS_INOBT_MASK(offset);
2080 if (XFS_IS_CORRUPT(mp,
2081 rec.ir_free != ibtrec->ir_free ||
2082 rec.ir_freecount != ibtrec->ir_freecount)) {
2083 error = -EFSCORRUPTED;
2088 * The content of inobt records should always match between the inobt
2089 * and finobt. The lifecycle of records in the finobt is different from
2090 * the inobt in that the finobt only tracks records with at least one
2091 * free inode. Hence, if all of the inodes are free and we aren't
2092 * keeping inode chunks permanently on disk, remove the record.
2093 * Otherwise, update the record with the new information.
2095 * Note that we currently can't free chunks when the block size is large
2096 * enough for multiple chunks. Leave the finobt record to remain in sync
2099 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2100 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2101 error = xfs_btree_delete(cur, &i);
2106 error = xfs_inobt_update(cur, &rec);
2112 error = xfs_check_agi_freecount(cur);
2116 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2120 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2125 * Free disk inode. Carefully avoids touching the incore inode, all
2126 * manipulations incore are the caller's responsibility.
2127 * The on-disk inode is not changed by this operation, only the
2128 * btree (free inode mask) is changed.
2132 struct xfs_trans *tp,
2133 struct xfs_perag *pag,
2135 struct xfs_icluster *xic)
2138 xfs_agblock_t agbno; /* block number containing inode */
2139 struct xfs_buf *agbp; /* buffer for allocation group header */
2140 xfs_agino_t agino; /* allocation group inode number */
2141 int error; /* error return value */
2142 struct xfs_mount *mp = tp->t_mountp;
2143 struct xfs_inobt_rec_incore rec;/* btree record */
2146 * Break up inode number into its components.
2148 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2149 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2150 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2154 agino = XFS_INO_TO_AGINO(mp, inode);
2155 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2156 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2157 __func__, (unsigned long long)inode,
2158 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2162 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2163 if (agbno >= mp->m_sb.sb_agblocks) {
2164 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2165 __func__, agbno, mp->m_sb.sb_agblocks);
2170 * Get the allocation group header.
2172 error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp);
2174 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2180 * Fix up the inode allocation btree.
2182 error = xfs_difree_inobt(mp, tp, agbp, pag, agino, xic, &rec);
2187 * Fix up the free inode btree.
2189 if (xfs_has_finobt(mp)) {
2190 error = xfs_difree_finobt(mp, tp, agbp, pag, agino, &rec);
2203 struct xfs_mount *mp,
2204 struct xfs_trans *tp,
2205 struct xfs_perag *pag,
2207 xfs_agblock_t agbno,
2208 xfs_agblock_t *chunk_agbno,
2209 xfs_agblock_t *offset_agbno,
2212 struct xfs_inobt_rec_incore rec;
2213 struct xfs_btree_cur *cur;
2214 struct xfs_buf *agbp;
2218 error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp);
2221 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2222 __func__, error, pag->pag_agno);
2227 * Lookup the inode record for the given agino. If the record cannot be
2228 * found, then it's an invalid inode number and we should abort. Once
2229 * we have a record, we need to ensure it contains the inode number
2230 * we are looking up.
2232 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
2233 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2236 error = xfs_inobt_get_rec(cur, &rec, &i);
2237 if (!error && i == 0)
2241 xfs_trans_brelse(tp, agbp);
2242 xfs_btree_del_cursor(cur, error);
2246 /* check that the returned record contains the required inode */
2247 if (rec.ir_startino > agino ||
2248 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2251 /* for untrusted inodes check it is allocated first */
2252 if ((flags & XFS_IGET_UNTRUSTED) &&
2253 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2256 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2257 *offset_agbno = agbno - *chunk_agbno;
2262 * Return the location of the inode in imap, for mapping it into a buffer.
2266 struct xfs_mount *mp, /* file system mount structure */
2267 struct xfs_trans *tp, /* transaction pointer */
2268 xfs_ino_t ino, /* inode to locate */
2269 struct xfs_imap *imap, /* location map structure */
2270 uint flags) /* flags for inode btree lookup */
2272 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2273 xfs_agino_t agino; /* inode number within alloc group */
2274 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2275 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2276 int error; /* error code */
2277 int offset; /* index of inode in its buffer */
2278 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2279 struct xfs_perag *pag;
2281 ASSERT(ino != NULLFSINO);
2284 * Split up the inode number into its parts.
2286 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
2287 agino = XFS_INO_TO_AGINO(mp, ino);
2288 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2289 if (!pag || agbno >= mp->m_sb.sb_agblocks ||
2290 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2294 * Don't output diagnostic information for untrusted inodes
2295 * as they can be invalid without implying corruption.
2297 if (flags & XFS_IGET_UNTRUSTED)
2301 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2302 __func__, XFS_INO_TO_AGNO(mp, ino),
2303 mp->m_sb.sb_agcount);
2305 if (agbno >= mp->m_sb.sb_agblocks) {
2307 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2308 __func__, (unsigned long long)agbno,
2309 (unsigned long)mp->m_sb.sb_agblocks);
2311 if (pag && ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2313 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2315 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2323 * For bulkstat and handle lookups, we have an untrusted inode number
2324 * that we have to verify is valid. We cannot do this just by reading
2325 * the inode buffer as it may have been unlinked and removed leaving
2326 * inodes in stale state on disk. Hence we have to do a btree lookup
2327 * in all cases where an untrusted inode number is passed.
2329 if (flags & XFS_IGET_UNTRUSTED) {
2330 error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
2331 &chunk_agbno, &offset_agbno, flags);
2338 * If the inode cluster size is the same as the blocksize or
2339 * smaller we get to the buffer by simple arithmetics.
2341 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2342 offset = XFS_INO_TO_OFFSET(mp, ino);
2343 ASSERT(offset < mp->m_sb.sb_inopblock);
2345 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2346 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2347 imap->im_boffset = (unsigned short)(offset <<
2348 mp->m_sb.sb_inodelog);
2354 * If the inode chunks are aligned then use simple maths to
2355 * find the location. Otherwise we have to do a btree
2356 * lookup to find the location.
2358 if (M_IGEO(mp)->inoalign_mask) {
2359 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2360 chunk_agbno = agbno - offset_agbno;
2362 error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
2363 &chunk_agbno, &offset_agbno, flags);
2369 ASSERT(agbno >= chunk_agbno);
2370 cluster_agbno = chunk_agbno +
2371 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2372 M_IGEO(mp)->blocks_per_cluster);
2373 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2374 XFS_INO_TO_OFFSET(mp, ino);
2376 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2377 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2378 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2381 * If the inode number maps to a block outside the bounds
2382 * of the file system then return NULL rather than calling
2383 * read_buf and panicing when we get an error from the
2386 if ((imap->im_blkno + imap->im_len) >
2387 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2389 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2390 __func__, (unsigned long long) imap->im_blkno,
2391 (unsigned long long) imap->im_len,
2392 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2404 * Log specified fields for the ag hdr (inode section). The growth of the agi
2405 * structure over time requires that we interpret the buffer as two logical
2406 * regions delineated by the end of the unlinked list. This is due to the size
2407 * of the hash table and its location in the middle of the agi.
2409 * For example, a request to log a field before agi_unlinked and a field after
2410 * agi_unlinked could cause us to log the entire hash table and use an excessive
2411 * amount of log space. To avoid this behavior, log the region up through
2412 * agi_unlinked in one call and the region after agi_unlinked through the end of
2413 * the structure in another.
2417 xfs_trans_t *tp, /* transaction pointer */
2418 struct xfs_buf *bp, /* allocation group header buffer */
2419 int fields) /* bitmask of fields to log */
2421 int first; /* first byte number */
2422 int last; /* last byte number */
2423 static const short offsets[] = { /* field starting offsets */
2424 /* keep in sync with bit definitions */
2425 offsetof(xfs_agi_t, agi_magicnum),
2426 offsetof(xfs_agi_t, agi_versionnum),
2427 offsetof(xfs_agi_t, agi_seqno),
2428 offsetof(xfs_agi_t, agi_length),
2429 offsetof(xfs_agi_t, agi_count),
2430 offsetof(xfs_agi_t, agi_root),
2431 offsetof(xfs_agi_t, agi_level),
2432 offsetof(xfs_agi_t, agi_freecount),
2433 offsetof(xfs_agi_t, agi_newino),
2434 offsetof(xfs_agi_t, agi_dirino),
2435 offsetof(xfs_agi_t, agi_unlinked),
2436 offsetof(xfs_agi_t, agi_free_root),
2437 offsetof(xfs_agi_t, agi_free_level),
2438 offsetof(xfs_agi_t, agi_iblocks),
2442 struct xfs_agi *agi = bp->b_addr;
2444 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2448 * Compute byte offsets for the first and last fields in the first
2449 * region and log the agi buffer. This only logs up through
2452 if (fields & XFS_AGI_ALL_BITS_R1) {
2453 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2455 xfs_trans_log_buf(tp, bp, first, last);
2459 * Mask off the bits in the first region and calculate the first and
2460 * last field offsets for any bits in the second region.
2462 fields &= ~XFS_AGI_ALL_BITS_R1;
2464 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2466 xfs_trans_log_buf(tp, bp, first, last);
2470 static xfs_failaddr_t
2474 struct xfs_mount *mp = bp->b_mount;
2475 struct xfs_agi *agi = bp->b_addr;
2478 if (xfs_has_crc(mp)) {
2479 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2480 return __this_address;
2481 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2482 return __this_address;
2486 * Validate the magic number of the agi block.
2488 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2489 return __this_address;
2490 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2491 return __this_address;
2493 if (be32_to_cpu(agi->agi_level) < 1 ||
2494 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2495 return __this_address;
2497 if (xfs_has_finobt(mp) &&
2498 (be32_to_cpu(agi->agi_free_level) < 1 ||
2499 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2500 return __this_address;
2503 * during growfs operations, the perag is not fully initialised,
2504 * so we can't use it for any useful checking. growfs ensures we can't
2505 * use it by using uncached buffers that don't have the perag attached
2506 * so we can detect and avoid this problem.
2508 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2509 return __this_address;
2511 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2512 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2514 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2515 return __this_address;
2522 xfs_agi_read_verify(
2525 struct xfs_mount *mp = bp->b_mount;
2528 if (xfs_has_crc(mp) &&
2529 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2530 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2532 fa = xfs_agi_verify(bp);
2533 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2534 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2539 xfs_agi_write_verify(
2542 struct xfs_mount *mp = bp->b_mount;
2543 struct xfs_buf_log_item *bip = bp->b_log_item;
2544 struct xfs_agi *agi = bp->b_addr;
2547 fa = xfs_agi_verify(bp);
2549 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2553 if (!xfs_has_crc(mp))
2557 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2558 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2561 const struct xfs_buf_ops xfs_agi_buf_ops = {
2563 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2564 .verify_read = xfs_agi_read_verify,
2565 .verify_write = xfs_agi_write_verify,
2566 .verify_struct = xfs_agi_verify,
2570 * Read in the allocation group header (inode allocation section)
2574 struct xfs_mount *mp, /* file system mount structure */
2575 struct xfs_trans *tp, /* transaction pointer */
2576 xfs_agnumber_t agno, /* allocation group number */
2577 struct xfs_buf **bpp) /* allocation group hdr buf */
2581 trace_xfs_read_agi(mp, agno);
2583 ASSERT(agno != NULLAGNUMBER);
2584 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2585 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2586 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2590 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2592 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2597 xfs_ialloc_read_agi(
2598 struct xfs_mount *mp, /* file system mount structure */
2599 struct xfs_trans *tp, /* transaction pointer */
2600 xfs_agnumber_t agno, /* allocation group number */
2601 struct xfs_buf **bpp) /* allocation group hdr buf */
2603 struct xfs_agi *agi; /* allocation group header */
2604 struct xfs_perag *pag; /* per allocation group data */
2607 trace_xfs_ialloc_read_agi(mp, agno);
2609 error = xfs_read_agi(mp, tp, agno, bpp);
2613 agi = (*bpp)->b_addr;
2614 pag = (*bpp)->b_pag;
2615 if (!pag->pagi_init) {
2616 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2617 pag->pagi_count = be32_to_cpu(agi->agi_count);
2622 * It's possible for these to be out of sync if
2623 * we are in the middle of a forced shutdown.
2625 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2626 xfs_is_shutdown(mp));
2631 * Read in the agi to initialise the per-ag data in the mount structure
2634 xfs_ialloc_pagi_init(
2635 xfs_mount_t *mp, /* file system mount structure */
2636 xfs_trans_t *tp, /* transaction pointer */
2637 xfs_agnumber_t agno) /* allocation group number */
2639 struct xfs_buf *bp = NULL;
2642 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2646 xfs_trans_brelse(tp, bp);
2650 /* Is there an inode record covering a given range of inode numbers? */
2652 xfs_ialloc_has_inode_record(
2653 struct xfs_btree_cur *cur,
2658 struct xfs_inobt_rec_incore irec;
2666 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2667 while (error == 0 && has_record) {
2668 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2669 if (error || irec.ir_startino > high)
2672 agino = irec.ir_startino;
2673 holemask = irec.ir_holemask;
2674 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2675 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2678 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2685 error = xfs_btree_increment(cur, 0, &has_record);
2690 /* Is there an inode record covering a given extent? */
2692 xfs_ialloc_has_inodes_at_extent(
2693 struct xfs_btree_cur *cur,
2701 low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2702 high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2704 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2707 struct xfs_ialloc_count_inodes {
2709 xfs_agino_t freecount;
2712 /* Record inode counts across all inobt records. */
2714 xfs_ialloc_count_inodes_rec(
2715 struct xfs_btree_cur *cur,
2716 const union xfs_btree_rec *rec,
2719 struct xfs_inobt_rec_incore irec;
2720 struct xfs_ialloc_count_inodes *ci = priv;
2722 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2723 ci->count += irec.ir_count;
2724 ci->freecount += irec.ir_freecount;
2729 /* Count allocated and free inodes under an inobt. */
2731 xfs_ialloc_count_inodes(
2732 struct xfs_btree_cur *cur,
2734 xfs_agino_t *freecount)
2736 struct xfs_ialloc_count_inodes ci = {0};
2739 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2740 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2745 *freecount = ci.freecount;
2750 * Initialize inode-related geometry information.
2752 * Compute the inode btree min and max levels and set maxicount.
2754 * Set the inode cluster size. This may still be overridden by the file
2755 * system block size if it is larger than the chosen cluster size.
2757 * For v5 filesystems, scale the cluster size with the inode size to keep a
2758 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2759 * inode alignment value appropriately for larger cluster sizes.
2761 * Then compute the inode cluster alignment information.
2764 xfs_ialloc_setup_geometry(
2765 struct xfs_mount *mp)
2767 struct xfs_sb *sbp = &mp->m_sb;
2768 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2772 igeo->new_diflags2 = 0;
2773 if (xfs_has_bigtime(mp))
2774 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2776 /* Compute inode btree geometry. */
2777 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2778 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2779 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2780 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2781 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2783 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2785 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2787 if (sbp->sb_spino_align)
2788 igeo->ialloc_min_blks = sbp->sb_spino_align;
2790 igeo->ialloc_min_blks = igeo->ialloc_blks;
2792 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2793 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2794 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2796 ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2799 * Set the maximum inode count for this filesystem, being careful not
2800 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2801 * users should never get here due to failing sb verification, but
2802 * certain users (xfs_db) need to be usable even with corrupt metadata.
2804 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2806 * Make sure the maximum inode count is a multiple
2807 * of the units we allocate inodes in.
2809 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2810 do_div(icount, 100);
2811 do_div(icount, igeo->ialloc_blks);
2812 igeo->maxicount = XFS_FSB_TO_INO(mp,
2813 icount * igeo->ialloc_blks);
2815 igeo->maxicount = 0;
2819 * Compute the desired size of an inode cluster buffer size, which
2820 * starts at 8K and (on v5 filesystems) scales up with larger inode
2823 * Preserve the desired inode cluster size because the sparse inodes
2824 * feature uses that desired size (not the actual size) to compute the
2825 * sparse inode alignment. The mount code validates this value, so we
2826 * cannot change the behavior.
2828 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2829 if (xfs_has_v3inodes(mp)) {
2830 int new_size = igeo->inode_cluster_size_raw;
2832 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2833 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2834 igeo->inode_cluster_size_raw = new_size;
2837 /* Calculate inode cluster ratios. */
2838 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2839 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2840 igeo->inode_cluster_size_raw);
2842 igeo->blocks_per_cluster = 1;
2843 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2844 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2846 /* Calculate inode cluster alignment. */
2847 if (xfs_has_align(mp) &&
2848 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2849 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2851 igeo->cluster_align = 1;
2852 igeo->inoalign_mask = igeo->cluster_align - 1;
2853 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2856 * If we are using stripe alignment, check whether
2857 * the stripe unit is a multiple of the inode alignment
2859 if (mp->m_dalign && igeo->inoalign_mask &&
2860 !(mp->m_dalign & igeo->inoalign_mask))
2861 igeo->ialloc_align = mp->m_dalign;
2863 igeo->ialloc_align = 0;
2866 /* Compute the location of the root directory inode that is laid out by mkfs. */
2868 xfs_ialloc_calc_rootino(
2869 struct xfs_mount *mp,
2872 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2873 xfs_agblock_t first_bno;
2876 * Pre-calculate the geometry of AG 0. We know what it looks like
2877 * because libxfs knows how to create allocation groups now.
2879 * first_bno is the first block in which mkfs could possibly have
2880 * allocated the root directory inode, once we factor in the metadata
2881 * that mkfs formats before it. Namely, the four AG headers...
2883 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2885 /* ...the two free space btree roots... */
2888 /* ...the inode btree root... */
2891 /* ...the initial AGFL... */
2892 first_bno += xfs_alloc_min_freelist(mp, NULL);
2894 /* ...the free inode btree root... */
2895 if (xfs_has_finobt(mp))
2898 /* ...the reverse mapping btree root... */
2899 if (xfs_has_rmapbt(mp))
2902 /* ...the reference count btree... */
2903 if (xfs_has_reflink(mp))
2907 * ...and the log, if it is allocated in the first allocation group.
2909 * This can happen with filesystems that only have a single
2910 * allocation group, or very odd geometries created by old mkfs
2911 * versions on very small filesystems.
2913 if (mp->m_sb.sb_logstart &&
2914 XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0)
2915 first_bno += mp->m_sb.sb_logblocks;
2918 * Now round first_bno up to whatever allocation alignment is given
2919 * by the filesystem or was passed in.
2921 if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
2922 first_bno = roundup(first_bno, sunit);
2923 else if (xfs_has_align(mp) &&
2924 mp->m_sb.sb_inoalignmt > 1)
2925 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2927 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2931 * Ensure there are not sparse inode clusters that cross the new EOAG.
2933 * This is a no-op for non-spinode filesystems since clusters are always fully
2934 * allocated and checking the bnobt suffices. However, a spinode filesystem
2935 * could have a record where the upper inodes are free blocks. If those blocks
2936 * were removed from the filesystem, the inode record would extend beyond EOAG,
2937 * which will be flagged as corruption.
2940 xfs_ialloc_check_shrink(
2941 struct xfs_trans *tp,
2942 xfs_agnumber_t agno,
2943 struct xfs_buf *agibp,
2944 xfs_agblock_t new_length)
2946 struct xfs_inobt_rec_incore rec;
2947 struct xfs_btree_cur *cur;
2948 struct xfs_mount *mp = tp->t_mountp;
2949 struct xfs_perag *pag;
2950 xfs_agino_t agino = XFS_AGB_TO_AGINO(mp, new_length);
2954 if (!xfs_has_sparseinodes(mp))
2957 pag = xfs_perag_get(mp, agno);
2958 cur = xfs_inobt_init_cursor(mp, tp, agibp, pag, XFS_BTNUM_INO);
2960 /* Look up the inobt record that would correspond to the new EOFS. */
2961 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
2965 error = xfs_inobt_get_rec(cur, &rec, &has);
2970 error = -EFSCORRUPTED;
2974 /* If the record covers inodes that would be beyond EOFS, bail out. */
2975 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
2980 xfs_btree_del_cursor(cur, error);