1 // SPDX-License-Identifier: GPL-2.0
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/suspend.h>
22 #include <linux/t10-pi.h>
23 #include <linux/types.h>
24 #include <linux/io-64-nonatomic-lo-hi.h>
25 #include <linux/sed-opal.h>
26 #include <linux/pci-p2pdma.h>
31 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
32 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
34 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37 * These can be higher, but we need to ensure that any command doesn't
38 * require an sg allocation that needs more than a page of data.
40 #define NVME_MAX_KB_SZ 4096
41 #define NVME_MAX_SEGS 127
43 static int use_threaded_interrupts;
44 module_param(use_threaded_interrupts, int, 0);
46 static bool use_cmb_sqes = true;
47 module_param(use_cmb_sqes, bool, 0444);
48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
50 static unsigned int max_host_mem_size_mb = 128;
51 module_param(max_host_mem_size_mb, uint, 0444);
52 MODULE_PARM_DESC(max_host_mem_size_mb,
53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
55 static unsigned int sgl_threshold = SZ_32K;
56 module_param(sgl_threshold, uint, 0644);
57 MODULE_PARM_DESC(sgl_threshold,
58 "Use SGLs when average request segment size is larger or equal to "
59 "this size. Use 0 to disable SGLs.");
61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
62 static const struct kernel_param_ops io_queue_depth_ops = {
63 .set = io_queue_depth_set,
67 static int io_queue_depth = 1024;
68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
71 static unsigned int write_queues;
72 module_param(write_queues, uint, 0644);
73 MODULE_PARM_DESC(write_queues,
74 "Number of queues to use for writes. If not set, reads and writes "
75 "will share a queue set.");
77 static unsigned int poll_queues;
78 module_param(poll_queues, uint, 0644);
79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
88 * Represents an NVM Express device. Each nvme_dev is a PCI function.
91 struct nvme_queue *queues;
92 struct blk_mq_tag_set tagset;
93 struct blk_mq_tag_set admin_tagset;
96 struct dma_pool *prp_page_pool;
97 struct dma_pool *prp_small_pool;
98 unsigned online_queues;
100 unsigned io_queues[HCTX_MAX_TYPES];
101 unsigned int num_vecs;
106 unsigned long bar_mapped_size;
107 struct work_struct remove_work;
108 struct mutex shutdown_lock;
114 struct nvme_ctrl ctrl;
117 mempool_t *iod_mempool;
119 /* shadow doorbell buffer support: */
121 dma_addr_t dbbuf_dbs_dma_addr;
123 dma_addr_t dbbuf_eis_dma_addr;
125 /* host memory buffer support: */
127 u32 nr_host_mem_descs;
128 dma_addr_t host_mem_descs_dma;
129 struct nvme_host_mem_buf_desc *host_mem_descs;
130 void **host_mem_desc_bufs;
133 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
137 ret = kstrtoint(val, 10, &n);
138 if (ret != 0 || n < 2)
141 return param_set_int(val, kp);
144 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
146 return qid * 2 * stride;
149 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
151 return (qid * 2 + 1) * stride;
154 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
156 return container_of(ctrl, struct nvme_dev, ctrl);
160 * An NVM Express queue. Each device has at least two (one for admin
161 * commands and one for I/O commands).
164 struct nvme_dev *dev;
167 /* only used for poll queues: */
168 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
169 volatile struct nvme_completion *cqes;
170 dma_addr_t sq_dma_addr;
171 dma_addr_t cq_dma_addr;
182 #define NVMEQ_ENABLED 0
183 #define NVMEQ_SQ_CMB 1
184 #define NVMEQ_DELETE_ERROR 2
185 #define NVMEQ_POLLED 3
190 struct completion delete_done;
194 * The nvme_iod describes the data in an I/O.
196 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
197 * to the actual struct scatterlist.
200 struct nvme_request req;
201 struct nvme_queue *nvmeq;
204 int npages; /* In the PRP list. 0 means small pool in use */
205 int nents; /* Used in scatterlist */
206 dma_addr_t first_dma;
207 unsigned int dma_len; /* length of single DMA segment mapping */
209 struct scatterlist *sg;
212 static unsigned int max_io_queues(void)
214 return num_possible_cpus() + write_queues + poll_queues;
217 static unsigned int max_queue_count(void)
219 /* IO queues + admin queue */
220 return 1 + max_io_queues();
223 static inline unsigned int nvme_dbbuf_size(u32 stride)
225 return (max_queue_count() * 8 * stride);
228 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
230 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
235 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
236 &dev->dbbuf_dbs_dma_addr,
240 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
241 &dev->dbbuf_eis_dma_addr,
243 if (!dev->dbbuf_eis) {
244 dma_free_coherent(dev->dev, mem_size,
245 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
246 dev->dbbuf_dbs = NULL;
253 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
255 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
257 if (dev->dbbuf_dbs) {
258 dma_free_coherent(dev->dev, mem_size,
259 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
260 dev->dbbuf_dbs = NULL;
262 if (dev->dbbuf_eis) {
263 dma_free_coherent(dev->dev, mem_size,
264 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
265 dev->dbbuf_eis = NULL;
269 static void nvme_dbbuf_init(struct nvme_dev *dev,
270 struct nvme_queue *nvmeq, int qid)
272 if (!dev->dbbuf_dbs || !qid)
275 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
276 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
277 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
278 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
281 static void nvme_dbbuf_set(struct nvme_dev *dev)
283 struct nvme_command c;
288 memset(&c, 0, sizeof(c));
289 c.dbbuf.opcode = nvme_admin_dbbuf;
290 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
291 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
293 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
294 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
295 /* Free memory and continue on */
296 nvme_dbbuf_dma_free(dev);
300 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
302 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
305 /* Update dbbuf and return true if an MMIO is required */
306 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
307 volatile u32 *dbbuf_ei)
313 * Ensure that the queue is written before updating
314 * the doorbell in memory
318 old_value = *dbbuf_db;
322 * Ensure that the doorbell is updated before reading the event
323 * index from memory. The controller needs to provide similar
324 * ordering to ensure the envent index is updated before reading
329 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
337 * Will slightly overestimate the number of pages needed. This is OK
338 * as it only leads to a small amount of wasted memory for the lifetime of
341 static int nvme_npages(unsigned size, struct nvme_dev *dev)
343 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
344 dev->ctrl.page_size);
345 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
349 * Calculates the number of pages needed for the SGL segments. For example a 4k
350 * page can accommodate 256 SGL descriptors.
352 static int nvme_pci_npages_sgl(unsigned int num_seg)
354 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
357 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
358 unsigned int size, unsigned int nseg, bool use_sgl)
363 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
365 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
367 return alloc_size + sizeof(struct scatterlist) * nseg;
370 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
371 unsigned int hctx_idx)
373 struct nvme_dev *dev = data;
374 struct nvme_queue *nvmeq = &dev->queues[0];
376 WARN_ON(hctx_idx != 0);
377 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
379 hctx->driver_data = nvmeq;
383 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
384 unsigned int hctx_idx)
386 struct nvme_dev *dev = data;
387 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
389 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
390 hctx->driver_data = nvmeq;
394 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
395 unsigned int hctx_idx, unsigned int numa_node)
397 struct nvme_dev *dev = set->driver_data;
398 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
399 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
400 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
405 nvme_req(req)->ctrl = &dev->ctrl;
409 static int queue_irq_offset(struct nvme_dev *dev)
411 /* if we have more than 1 vec, admin queue offsets us by 1 */
412 if (dev->num_vecs > 1)
418 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
420 struct nvme_dev *dev = set->driver_data;
423 offset = queue_irq_offset(dev);
424 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
425 struct blk_mq_queue_map *map = &set->map[i];
427 map->nr_queues = dev->io_queues[i];
428 if (!map->nr_queues) {
429 BUG_ON(i == HCTX_TYPE_DEFAULT);
434 * The poll queue(s) doesn't have an IRQ (and hence IRQ
435 * affinity), so use the regular blk-mq cpu mapping
437 map->queue_offset = qoff;
438 if (i != HCTX_TYPE_POLL && offset)
439 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
441 blk_mq_map_queues(map);
442 qoff += map->nr_queues;
443 offset += map->nr_queues;
450 * Write sq tail if we are asked to, or if the next command would wrap.
452 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
455 u16 next_tail = nvmeq->sq_tail + 1;
457 if (next_tail == nvmeq->q_depth)
459 if (next_tail != nvmeq->last_sq_tail)
463 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
464 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
465 writel(nvmeq->sq_tail, nvmeq->q_db);
466 nvmeq->last_sq_tail = nvmeq->sq_tail;
470 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
471 * @nvmeq: The queue to use
472 * @cmd: The command to send
473 * @write_sq: whether to write to the SQ doorbell
475 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
478 spin_lock(&nvmeq->sq_lock);
479 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
481 if (++nvmeq->sq_tail == nvmeq->q_depth)
483 nvme_write_sq_db(nvmeq, write_sq);
484 spin_unlock(&nvmeq->sq_lock);
487 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
489 struct nvme_queue *nvmeq = hctx->driver_data;
491 spin_lock(&nvmeq->sq_lock);
492 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
493 nvme_write_sq_db(nvmeq, true);
494 spin_unlock(&nvmeq->sq_lock);
497 static void **nvme_pci_iod_list(struct request *req)
499 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
500 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
503 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
505 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
506 int nseg = blk_rq_nr_phys_segments(req);
507 unsigned int avg_seg_size;
512 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
514 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
516 if (!iod->nvmeq->qid)
518 if (!sgl_threshold || avg_seg_size < sgl_threshold)
523 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
525 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
526 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
527 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
531 dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
536 WARN_ON_ONCE(!iod->nents);
538 if (is_pci_p2pdma_page(sg_page(iod->sg)))
539 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
542 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
545 if (iod->npages == 0)
546 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
549 for (i = 0; i < iod->npages; i++) {
550 void *addr = nvme_pci_iod_list(req)[i];
553 struct nvme_sgl_desc *sg_list = addr;
556 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
558 __le64 *prp_list = addr;
560 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
563 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
564 dma_addr = next_dma_addr;
567 mempool_free(iod->sg, dev->iod_mempool);
570 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
573 struct scatterlist *sg;
575 for_each_sg(sgl, sg, nents, i) {
576 dma_addr_t phys = sg_phys(sg);
577 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
578 "dma_address:%pad dma_length:%d\n",
579 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
584 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
585 struct request *req, struct nvme_rw_command *cmnd)
587 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
588 struct dma_pool *pool;
589 int length = blk_rq_payload_bytes(req);
590 struct scatterlist *sg = iod->sg;
591 int dma_len = sg_dma_len(sg);
592 u64 dma_addr = sg_dma_address(sg);
593 u32 page_size = dev->ctrl.page_size;
594 int offset = dma_addr & (page_size - 1);
596 void **list = nvme_pci_iod_list(req);
600 length -= (page_size - offset);
606 dma_len -= (page_size - offset);
608 dma_addr += (page_size - offset);
611 dma_addr = sg_dma_address(sg);
612 dma_len = sg_dma_len(sg);
615 if (length <= page_size) {
616 iod->first_dma = dma_addr;
620 nprps = DIV_ROUND_UP(length, page_size);
621 if (nprps <= (256 / 8)) {
622 pool = dev->prp_small_pool;
625 pool = dev->prp_page_pool;
629 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
631 iod->first_dma = dma_addr;
633 return BLK_STS_RESOURCE;
636 iod->first_dma = prp_dma;
639 if (i == page_size >> 3) {
640 __le64 *old_prp_list = prp_list;
641 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
643 return BLK_STS_RESOURCE;
644 list[iod->npages++] = prp_list;
645 prp_list[0] = old_prp_list[i - 1];
646 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
649 prp_list[i++] = cpu_to_le64(dma_addr);
650 dma_len -= page_size;
651 dma_addr += page_size;
657 if (unlikely(dma_len < 0))
660 dma_addr = sg_dma_address(sg);
661 dma_len = sg_dma_len(sg);
665 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
666 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
671 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
672 "Invalid SGL for payload:%d nents:%d\n",
673 blk_rq_payload_bytes(req), iod->nents);
674 return BLK_STS_IOERR;
677 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
678 struct scatterlist *sg)
680 sge->addr = cpu_to_le64(sg_dma_address(sg));
681 sge->length = cpu_to_le32(sg_dma_len(sg));
682 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
685 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
686 dma_addr_t dma_addr, int entries)
688 sge->addr = cpu_to_le64(dma_addr);
689 if (entries < SGES_PER_PAGE) {
690 sge->length = cpu_to_le32(entries * sizeof(*sge));
691 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
693 sge->length = cpu_to_le32(PAGE_SIZE);
694 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
698 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
699 struct request *req, struct nvme_rw_command *cmd, int entries)
701 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
702 struct dma_pool *pool;
703 struct nvme_sgl_desc *sg_list;
704 struct scatterlist *sg = iod->sg;
708 /* setting the transfer type as SGL */
709 cmd->flags = NVME_CMD_SGL_METABUF;
712 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
716 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
717 pool = dev->prp_small_pool;
720 pool = dev->prp_page_pool;
724 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
727 return BLK_STS_RESOURCE;
730 nvme_pci_iod_list(req)[0] = sg_list;
731 iod->first_dma = sgl_dma;
733 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
736 if (i == SGES_PER_PAGE) {
737 struct nvme_sgl_desc *old_sg_desc = sg_list;
738 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
740 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
742 return BLK_STS_RESOURCE;
745 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
746 sg_list[i++] = *link;
747 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
750 nvme_pci_sgl_set_data(&sg_list[i++], sg);
752 } while (--entries > 0);
757 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
758 struct request *req, struct nvme_rw_command *cmnd,
761 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
762 unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1);
763 unsigned int first_prp_len = dev->ctrl.page_size - offset;
765 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
766 if (dma_mapping_error(dev->dev, iod->first_dma))
767 return BLK_STS_RESOURCE;
768 iod->dma_len = bv->bv_len;
770 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
771 if (bv->bv_len > first_prp_len)
772 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
776 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
777 struct request *req, struct nvme_rw_command *cmnd,
780 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
782 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
783 if (dma_mapping_error(dev->dev, iod->first_dma))
784 return BLK_STS_RESOURCE;
785 iod->dma_len = bv->bv_len;
787 cmnd->flags = NVME_CMD_SGL_METABUF;
788 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
789 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
790 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
794 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
795 struct nvme_command *cmnd)
797 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
798 blk_status_t ret = BLK_STS_RESOURCE;
801 if (blk_rq_nr_phys_segments(req) == 1) {
802 struct bio_vec bv = req_bvec(req);
804 if (!is_pci_p2pdma_page(bv.bv_page)) {
805 if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
806 return nvme_setup_prp_simple(dev, req,
809 if (iod->nvmeq->qid &&
810 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
811 return nvme_setup_sgl_simple(dev, req,
817 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
819 return BLK_STS_RESOURCE;
820 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
821 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
825 if (is_pci_p2pdma_page(sg_page(iod->sg)))
826 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
827 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
829 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
830 rq_dma_dir(req), DMA_ATTR_NO_WARN);
834 iod->use_sgl = nvme_pci_use_sgls(dev, req);
836 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
838 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
840 if (ret != BLK_STS_OK)
841 nvme_unmap_data(dev, req);
845 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
846 struct nvme_command *cmnd)
848 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
850 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
852 if (dma_mapping_error(dev->dev, iod->meta_dma))
853 return BLK_STS_IOERR;
854 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
859 * NOTE: ns is NULL when called on the admin queue.
861 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
862 const struct blk_mq_queue_data *bd)
864 struct nvme_ns *ns = hctx->queue->queuedata;
865 struct nvme_queue *nvmeq = hctx->driver_data;
866 struct nvme_dev *dev = nvmeq->dev;
867 struct request *req = bd->rq;
868 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
869 struct nvme_command cmnd;
877 * We should not need to do this, but we're still using this to
878 * ensure we can drain requests on a dying queue.
880 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
881 return BLK_STS_IOERR;
883 ret = nvme_setup_cmd(ns, req, &cmnd);
887 if (blk_rq_nr_phys_segments(req)) {
888 ret = nvme_map_data(dev, req, &cmnd);
893 if (blk_integrity_rq(req)) {
894 ret = nvme_map_metadata(dev, req, &cmnd);
899 blk_mq_start_request(req);
900 nvme_submit_cmd(nvmeq, &cmnd, bd->last);
903 nvme_unmap_data(dev, req);
905 nvme_cleanup_cmd(req);
909 static void nvme_pci_complete_rq(struct request *req)
911 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
912 struct nvme_dev *dev = iod->nvmeq->dev;
914 if (blk_integrity_rq(req))
915 dma_unmap_page(dev->dev, iod->meta_dma,
916 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
917 if (blk_rq_nr_phys_segments(req))
918 nvme_unmap_data(dev, req);
919 nvme_complete_rq(req);
922 /* We read the CQE phase first to check if the rest of the entry is valid */
923 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
925 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
929 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
931 u16 head = nvmeq->cq_head;
933 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
935 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
938 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
941 return nvmeq->dev->admin_tagset.tags[0];
942 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
945 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
947 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
950 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
951 dev_warn(nvmeq->dev->ctrl.device,
952 "invalid id %d completed on queue %d\n",
953 cqe->command_id, le16_to_cpu(cqe->sq_id));
958 * AEN requests are special as they don't time out and can
959 * survive any kind of queue freeze and often don't respond to
960 * aborts. We don't even bother to allocate a struct request
961 * for them but rather special case them here.
963 if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) {
964 nvme_complete_async_event(&nvmeq->dev->ctrl,
965 cqe->status, &cqe->result);
969 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id);
970 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
971 nvme_end_request(req, cqe->status, cqe->result);
974 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
976 while (start != end) {
977 nvme_handle_cqe(nvmeq, start);
978 if (++start == nvmeq->q_depth)
983 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
985 if (nvmeq->cq_head == nvmeq->q_depth - 1) {
987 nvmeq->cq_phase = !nvmeq->cq_phase;
993 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
994 u16 *end, unsigned int tag)
998 *start = nvmeq->cq_head;
999 while (nvme_cqe_pending(nvmeq)) {
1000 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1002 nvme_update_cq_head(nvmeq);
1004 *end = nvmeq->cq_head;
1007 nvme_ring_cq_doorbell(nvmeq);
1011 static irqreturn_t nvme_irq(int irq, void *data)
1013 struct nvme_queue *nvmeq = data;
1014 irqreturn_t ret = IRQ_NONE;
1018 * The rmb/wmb pair ensures we see all updates from a previous run of
1019 * the irq handler, even if that was on another CPU.
1022 nvme_process_cq(nvmeq, &start, &end, -1);
1026 nvme_complete_cqes(nvmeq, start, end);
1033 static irqreturn_t nvme_irq_check(int irq, void *data)
1035 struct nvme_queue *nvmeq = data;
1036 if (nvme_cqe_pending(nvmeq))
1037 return IRQ_WAKE_THREAD;
1042 * Poll for completions any queue, including those not dedicated to polling.
1043 * Can be called from any context.
1045 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1047 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1052 * For a poll queue we need to protect against the polling thread
1053 * using the CQ lock. For normal interrupt driven threads we have
1054 * to disable the interrupt to avoid racing with it.
1056 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
1057 spin_lock(&nvmeq->cq_poll_lock);
1058 found = nvme_process_cq(nvmeq, &start, &end, tag);
1059 spin_unlock(&nvmeq->cq_poll_lock);
1061 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1062 found = nvme_process_cq(nvmeq, &start, &end, tag);
1063 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1066 nvme_complete_cqes(nvmeq, start, end);
1070 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1072 struct nvme_queue *nvmeq = hctx->driver_data;
1076 if (!nvme_cqe_pending(nvmeq))
1079 spin_lock(&nvmeq->cq_poll_lock);
1080 found = nvme_process_cq(nvmeq, &start, &end, -1);
1081 spin_unlock(&nvmeq->cq_poll_lock);
1083 nvme_complete_cqes(nvmeq, start, end);
1087 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1089 struct nvme_dev *dev = to_nvme_dev(ctrl);
1090 struct nvme_queue *nvmeq = &dev->queues[0];
1091 struct nvme_command c;
1093 memset(&c, 0, sizeof(c));
1094 c.common.opcode = nvme_admin_async_event;
1095 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1096 nvme_submit_cmd(nvmeq, &c, true);
1099 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1101 struct nvme_command c;
1103 memset(&c, 0, sizeof(c));
1104 c.delete_queue.opcode = opcode;
1105 c.delete_queue.qid = cpu_to_le16(id);
1107 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1110 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1111 struct nvme_queue *nvmeq, s16 vector)
1113 struct nvme_command c;
1114 int flags = NVME_QUEUE_PHYS_CONTIG;
1116 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1117 flags |= NVME_CQ_IRQ_ENABLED;
1120 * Note: we (ab)use the fact that the prp fields survive if no data
1121 * is attached to the request.
1123 memset(&c, 0, sizeof(c));
1124 c.create_cq.opcode = nvme_admin_create_cq;
1125 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1126 c.create_cq.cqid = cpu_to_le16(qid);
1127 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1128 c.create_cq.cq_flags = cpu_to_le16(flags);
1129 c.create_cq.irq_vector = cpu_to_le16(vector);
1131 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1134 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1135 struct nvme_queue *nvmeq)
1137 struct nvme_ctrl *ctrl = &dev->ctrl;
1138 struct nvme_command c;
1139 int flags = NVME_QUEUE_PHYS_CONTIG;
1142 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1143 * set. Since URGENT priority is zeroes, it makes all queues
1146 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1147 flags |= NVME_SQ_PRIO_MEDIUM;
1150 * Note: we (ab)use the fact that the prp fields survive if no data
1151 * is attached to the request.
1153 memset(&c, 0, sizeof(c));
1154 c.create_sq.opcode = nvme_admin_create_sq;
1155 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1156 c.create_sq.sqid = cpu_to_le16(qid);
1157 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1158 c.create_sq.sq_flags = cpu_to_le16(flags);
1159 c.create_sq.cqid = cpu_to_le16(qid);
1161 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1164 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1166 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1169 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1171 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1174 static void abort_endio(struct request *req, blk_status_t error)
1176 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1177 struct nvme_queue *nvmeq = iod->nvmeq;
1179 dev_warn(nvmeq->dev->ctrl.device,
1180 "Abort status: 0x%x", nvme_req(req)->status);
1181 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1182 blk_mq_free_request(req);
1185 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1188 /* If true, indicates loss of adapter communication, possibly by a
1189 * NVMe Subsystem reset.
1191 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1193 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1194 switch (dev->ctrl.state) {
1195 case NVME_CTRL_RESETTING:
1196 case NVME_CTRL_CONNECTING:
1202 /* We shouldn't reset unless the controller is on fatal error state
1203 * _or_ if we lost the communication with it.
1205 if (!(csts & NVME_CSTS_CFS) && !nssro)
1211 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1213 /* Read a config register to help see what died. */
1217 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1219 if (result == PCIBIOS_SUCCESSFUL)
1220 dev_warn(dev->ctrl.device,
1221 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1224 dev_warn(dev->ctrl.device,
1225 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1229 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1231 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1232 struct nvme_queue *nvmeq = iod->nvmeq;
1233 struct nvme_dev *dev = nvmeq->dev;
1234 struct request *abort_req;
1235 struct nvme_command cmd;
1236 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1238 /* If PCI error recovery process is happening, we cannot reset or
1239 * the recovery mechanism will surely fail.
1242 if (pci_channel_offline(to_pci_dev(dev->dev)))
1243 return BLK_EH_RESET_TIMER;
1246 * Reset immediately if the controller is failed
1248 if (nvme_should_reset(dev, csts)) {
1249 nvme_warn_reset(dev, csts);
1250 nvme_dev_disable(dev, false);
1251 nvme_reset_ctrl(&dev->ctrl);
1256 * Did we miss an interrupt?
1258 if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1259 dev_warn(dev->ctrl.device,
1260 "I/O %d QID %d timeout, completion polled\n",
1261 req->tag, nvmeq->qid);
1266 * Shutdown immediately if controller times out while starting. The
1267 * reset work will see the pci device disabled when it gets the forced
1268 * cancellation error. All outstanding requests are completed on
1269 * shutdown, so we return BLK_EH_DONE.
1271 switch (dev->ctrl.state) {
1272 case NVME_CTRL_CONNECTING:
1273 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1275 case NVME_CTRL_DELETING:
1276 dev_warn_ratelimited(dev->ctrl.device,
1277 "I/O %d QID %d timeout, disable controller\n",
1278 req->tag, nvmeq->qid);
1279 nvme_dev_disable(dev, true);
1280 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1282 case NVME_CTRL_RESETTING:
1283 return BLK_EH_RESET_TIMER;
1289 * Shutdown the controller immediately and schedule a reset if the
1290 * command was already aborted once before and still hasn't been
1291 * returned to the driver, or if this is the admin queue.
1293 if (!nvmeq->qid || iod->aborted) {
1294 dev_warn(dev->ctrl.device,
1295 "I/O %d QID %d timeout, reset controller\n",
1296 req->tag, nvmeq->qid);
1297 nvme_dev_disable(dev, false);
1298 nvme_reset_ctrl(&dev->ctrl);
1300 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1304 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1305 atomic_inc(&dev->ctrl.abort_limit);
1306 return BLK_EH_RESET_TIMER;
1310 memset(&cmd, 0, sizeof(cmd));
1311 cmd.abort.opcode = nvme_admin_abort_cmd;
1312 cmd.abort.cid = req->tag;
1313 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1315 dev_warn(nvmeq->dev->ctrl.device,
1316 "I/O %d QID %d timeout, aborting\n",
1317 req->tag, nvmeq->qid);
1319 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1320 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1321 if (IS_ERR(abort_req)) {
1322 atomic_inc(&dev->ctrl.abort_limit);
1323 return BLK_EH_RESET_TIMER;
1326 abort_req->timeout = ADMIN_TIMEOUT;
1327 abort_req->end_io_data = NULL;
1328 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1331 * The aborted req will be completed on receiving the abort req.
1332 * We enable the timer again. If hit twice, it'll cause a device reset,
1333 * as the device then is in a faulty state.
1335 return BLK_EH_RESET_TIMER;
1338 static void nvme_free_queue(struct nvme_queue *nvmeq)
1340 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1341 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1342 if (!nvmeq->sq_cmds)
1345 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1346 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1347 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1349 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1350 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1354 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1358 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1359 dev->ctrl.queue_count--;
1360 nvme_free_queue(&dev->queues[i]);
1365 * nvme_suspend_queue - put queue into suspended state
1366 * @nvmeq: queue to suspend
1368 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1370 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1373 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1376 nvmeq->dev->online_queues--;
1377 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1378 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1379 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1380 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1384 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1388 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1389 nvme_suspend_queue(&dev->queues[i]);
1392 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1394 struct nvme_queue *nvmeq = &dev->queues[0];
1397 nvme_shutdown_ctrl(&dev->ctrl);
1399 nvme_disable_ctrl(&dev->ctrl);
1401 nvme_poll_irqdisable(nvmeq, -1);
1404 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1407 int q_depth = dev->q_depth;
1408 unsigned q_size_aligned = roundup(q_depth * entry_size,
1409 dev->ctrl.page_size);
1411 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1412 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1413 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1414 q_depth = div_u64(mem_per_q, entry_size);
1417 * Ensure the reduced q_depth is above some threshold where it
1418 * would be better to map queues in system memory with the
1428 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1431 struct pci_dev *pdev = to_pci_dev(dev->dev);
1433 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1434 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1435 if (nvmeq->sq_cmds) {
1436 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1438 if (nvmeq->sq_dma_addr) {
1439 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1443 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1447 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1448 &nvmeq->sq_dma_addr, GFP_KERNEL);
1449 if (!nvmeq->sq_cmds)
1454 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1456 struct nvme_queue *nvmeq = &dev->queues[qid];
1458 if (dev->ctrl.queue_count > qid)
1461 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1462 nvmeq->q_depth = depth;
1463 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1464 &nvmeq->cq_dma_addr, GFP_KERNEL);
1468 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1472 spin_lock_init(&nvmeq->sq_lock);
1473 spin_lock_init(&nvmeq->cq_poll_lock);
1475 nvmeq->cq_phase = 1;
1476 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1478 dev->ctrl.queue_count++;
1483 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1484 nvmeq->cq_dma_addr);
1489 static int queue_request_irq(struct nvme_queue *nvmeq)
1491 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1492 int nr = nvmeq->dev->ctrl.instance;
1494 if (use_threaded_interrupts) {
1495 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1496 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1498 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1499 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1503 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1505 struct nvme_dev *dev = nvmeq->dev;
1508 nvmeq->last_sq_tail = 0;
1510 nvmeq->cq_phase = 1;
1511 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1512 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1513 nvme_dbbuf_init(dev, nvmeq, qid);
1514 dev->online_queues++;
1515 wmb(); /* ensure the first interrupt sees the initialization */
1518 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1520 struct nvme_dev *dev = nvmeq->dev;
1524 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1527 * A queue's vector matches the queue identifier unless the controller
1528 * has only one vector available.
1531 vector = dev->num_vecs == 1 ? 0 : qid;
1533 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1535 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1539 result = adapter_alloc_sq(dev, qid, nvmeq);
1545 nvmeq->cq_vector = vector;
1546 nvme_init_queue(nvmeq, qid);
1549 result = queue_request_irq(nvmeq);
1554 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1558 dev->online_queues--;
1559 adapter_delete_sq(dev, qid);
1561 adapter_delete_cq(dev, qid);
1565 static const struct blk_mq_ops nvme_mq_admin_ops = {
1566 .queue_rq = nvme_queue_rq,
1567 .complete = nvme_pci_complete_rq,
1568 .init_hctx = nvme_admin_init_hctx,
1569 .init_request = nvme_init_request,
1570 .timeout = nvme_timeout,
1573 static const struct blk_mq_ops nvme_mq_ops = {
1574 .queue_rq = nvme_queue_rq,
1575 .complete = nvme_pci_complete_rq,
1576 .commit_rqs = nvme_commit_rqs,
1577 .init_hctx = nvme_init_hctx,
1578 .init_request = nvme_init_request,
1579 .map_queues = nvme_pci_map_queues,
1580 .timeout = nvme_timeout,
1584 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1586 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1588 * If the controller was reset during removal, it's possible
1589 * user requests may be waiting on a stopped queue. Start the
1590 * queue to flush these to completion.
1592 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1593 blk_cleanup_queue(dev->ctrl.admin_q);
1594 blk_mq_free_tag_set(&dev->admin_tagset);
1598 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1600 if (!dev->ctrl.admin_q) {
1601 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1602 dev->admin_tagset.nr_hw_queues = 1;
1604 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1605 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1606 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1607 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1608 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1609 dev->admin_tagset.driver_data = dev;
1611 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1613 dev->ctrl.admin_tagset = &dev->admin_tagset;
1615 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1616 if (IS_ERR(dev->ctrl.admin_q)) {
1617 blk_mq_free_tag_set(&dev->admin_tagset);
1620 if (!blk_get_queue(dev->ctrl.admin_q)) {
1621 nvme_dev_remove_admin(dev);
1622 dev->ctrl.admin_q = NULL;
1626 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1631 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1633 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1636 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1638 struct pci_dev *pdev = to_pci_dev(dev->dev);
1640 if (size <= dev->bar_mapped_size)
1642 if (size > pci_resource_len(pdev, 0))
1646 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1648 dev->bar_mapped_size = 0;
1651 dev->bar_mapped_size = size;
1652 dev->dbs = dev->bar + NVME_REG_DBS;
1657 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1661 struct nvme_queue *nvmeq;
1663 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1667 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1668 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1670 if (dev->subsystem &&
1671 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1672 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1674 result = nvme_disable_ctrl(&dev->ctrl);
1678 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1682 nvmeq = &dev->queues[0];
1683 aqa = nvmeq->q_depth - 1;
1686 writel(aqa, dev->bar + NVME_REG_AQA);
1687 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1688 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1690 result = nvme_enable_ctrl(&dev->ctrl);
1694 nvmeq->cq_vector = 0;
1695 nvme_init_queue(nvmeq, 0);
1696 result = queue_request_irq(nvmeq);
1698 dev->online_queues--;
1702 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1706 static int nvme_create_io_queues(struct nvme_dev *dev)
1708 unsigned i, max, rw_queues;
1711 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1712 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1718 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1719 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1720 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1721 dev->io_queues[HCTX_TYPE_READ];
1726 for (i = dev->online_queues; i <= max; i++) {
1727 bool polled = i > rw_queues;
1729 ret = nvme_create_queue(&dev->queues[i], i, polled);
1735 * Ignore failing Create SQ/CQ commands, we can continue with less
1736 * than the desired amount of queues, and even a controller without
1737 * I/O queues can still be used to issue admin commands. This might
1738 * be useful to upgrade a buggy firmware for example.
1740 return ret >= 0 ? 0 : ret;
1743 static ssize_t nvme_cmb_show(struct device *dev,
1744 struct device_attribute *attr,
1747 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1749 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1750 ndev->cmbloc, ndev->cmbsz);
1752 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1754 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1756 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1758 return 1ULL << (12 + 4 * szu);
1761 static u32 nvme_cmb_size(struct nvme_dev *dev)
1763 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1766 static void nvme_map_cmb(struct nvme_dev *dev)
1769 resource_size_t bar_size;
1770 struct pci_dev *pdev = to_pci_dev(dev->dev);
1776 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1779 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1781 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1782 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1783 bar = NVME_CMB_BIR(dev->cmbloc);
1784 bar_size = pci_resource_len(pdev, bar);
1786 if (offset > bar_size)
1790 * Controllers may support a CMB size larger than their BAR,
1791 * for example, due to being behind a bridge. Reduce the CMB to
1792 * the reported size of the BAR
1794 if (size > bar_size - offset)
1795 size = bar_size - offset;
1797 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1798 dev_warn(dev->ctrl.device,
1799 "failed to register the CMB\n");
1803 dev->cmb_size = size;
1804 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1806 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1807 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1808 pci_p2pmem_publish(pdev, true);
1810 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1811 &dev_attr_cmb.attr, NULL))
1812 dev_warn(dev->ctrl.device,
1813 "failed to add sysfs attribute for CMB\n");
1816 static inline void nvme_release_cmb(struct nvme_dev *dev)
1818 if (dev->cmb_size) {
1819 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1820 &dev_attr_cmb.attr, NULL);
1825 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1827 u64 dma_addr = dev->host_mem_descs_dma;
1828 struct nvme_command c;
1831 memset(&c, 0, sizeof(c));
1832 c.features.opcode = nvme_admin_set_features;
1833 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1834 c.features.dword11 = cpu_to_le32(bits);
1835 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1836 ilog2(dev->ctrl.page_size));
1837 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1838 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1839 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1841 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1843 dev_warn(dev->ctrl.device,
1844 "failed to set host mem (err %d, flags %#x).\n",
1850 static void nvme_free_host_mem(struct nvme_dev *dev)
1854 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1855 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1856 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1858 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1859 le64_to_cpu(desc->addr),
1860 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1863 kfree(dev->host_mem_desc_bufs);
1864 dev->host_mem_desc_bufs = NULL;
1865 dma_free_coherent(dev->dev,
1866 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1867 dev->host_mem_descs, dev->host_mem_descs_dma);
1868 dev->host_mem_descs = NULL;
1869 dev->nr_host_mem_descs = 0;
1872 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1875 struct nvme_host_mem_buf_desc *descs;
1876 u32 max_entries, len;
1877 dma_addr_t descs_dma;
1882 tmp = (preferred + chunk_size - 1);
1883 do_div(tmp, chunk_size);
1886 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1887 max_entries = dev->ctrl.hmmaxd;
1889 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1890 &descs_dma, GFP_KERNEL);
1894 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1896 goto out_free_descs;
1898 for (size = 0; size < preferred && i < max_entries; size += len) {
1899 dma_addr_t dma_addr;
1901 len = min_t(u64, chunk_size, preferred - size);
1902 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1903 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1907 descs[i].addr = cpu_to_le64(dma_addr);
1908 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1915 dev->nr_host_mem_descs = i;
1916 dev->host_mem_size = size;
1917 dev->host_mem_descs = descs;
1918 dev->host_mem_descs_dma = descs_dma;
1919 dev->host_mem_desc_bufs = bufs;
1924 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1926 dma_free_attrs(dev->dev, size, bufs[i],
1927 le64_to_cpu(descs[i].addr),
1928 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1933 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1936 dev->host_mem_descs = NULL;
1940 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1944 /* start big and work our way down */
1945 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1946 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1948 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1949 if (!min || dev->host_mem_size >= min)
1951 nvme_free_host_mem(dev);
1958 static int nvme_setup_host_mem(struct nvme_dev *dev)
1960 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1961 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1962 u64 min = (u64)dev->ctrl.hmmin * 4096;
1963 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1966 preferred = min(preferred, max);
1968 dev_warn(dev->ctrl.device,
1969 "min host memory (%lld MiB) above limit (%d MiB).\n",
1970 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1971 nvme_free_host_mem(dev);
1976 * If we already have a buffer allocated check if we can reuse it.
1978 if (dev->host_mem_descs) {
1979 if (dev->host_mem_size >= min)
1980 enable_bits |= NVME_HOST_MEM_RETURN;
1982 nvme_free_host_mem(dev);
1985 if (!dev->host_mem_descs) {
1986 if (nvme_alloc_host_mem(dev, min, preferred)) {
1987 dev_warn(dev->ctrl.device,
1988 "failed to allocate host memory buffer.\n");
1989 return 0; /* controller must work without HMB */
1992 dev_info(dev->ctrl.device,
1993 "allocated %lld MiB host memory buffer.\n",
1994 dev->host_mem_size >> ilog2(SZ_1M));
1997 ret = nvme_set_host_mem(dev, enable_bits);
1999 nvme_free_host_mem(dev);
2004 * nirqs is the number of interrupts available for write and read
2005 * queues. The core already reserved an interrupt for the admin queue.
2007 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2009 struct nvme_dev *dev = affd->priv;
2010 unsigned int nr_read_queues;
2013 * If there is no interupt available for queues, ensure that
2014 * the default queue is set to 1. The affinity set size is
2015 * also set to one, but the irq core ignores it for this case.
2017 * If only one interrupt is available or 'write_queue' == 0, combine
2018 * write and read queues.
2020 * If 'write_queues' > 0, ensure it leaves room for at least one read
2026 } else if (nrirqs == 1 || !write_queues) {
2028 } else if (write_queues >= nrirqs) {
2031 nr_read_queues = nrirqs - write_queues;
2034 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2035 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2036 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2037 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2038 affd->nr_sets = nr_read_queues ? 2 : 1;
2041 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2043 struct pci_dev *pdev = to_pci_dev(dev->dev);
2044 struct irq_affinity affd = {
2046 .calc_sets = nvme_calc_irq_sets,
2049 unsigned int irq_queues, this_p_queues;
2052 * Poll queues don't need interrupts, but we need at least one IO
2053 * queue left over for non-polled IO.
2055 this_p_queues = poll_queues;
2056 if (this_p_queues >= nr_io_queues) {
2057 this_p_queues = nr_io_queues - 1;
2060 irq_queues = nr_io_queues - this_p_queues + 1;
2062 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2064 /* Initialize for the single interrupt case */
2065 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2066 dev->io_queues[HCTX_TYPE_READ] = 0;
2069 * Some Apple controllers require all queues to use the
2072 if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)
2075 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2076 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2079 static void nvme_disable_io_queues(struct nvme_dev *dev)
2081 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2082 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2085 static int nvme_setup_io_queues(struct nvme_dev *dev)
2087 struct nvme_queue *adminq = &dev->queues[0];
2088 struct pci_dev *pdev = to_pci_dev(dev->dev);
2089 int result, nr_io_queues;
2092 nr_io_queues = max_io_queues();
2095 * If tags are shared with admin queue (Apple bug), then
2096 * make sure we only use one IO queue.
2098 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2101 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2105 if (nr_io_queues == 0)
2108 clear_bit(NVMEQ_ENABLED, &adminq->flags);
2110 if (dev->cmb_use_sqes) {
2111 result = nvme_cmb_qdepth(dev, nr_io_queues,
2112 sizeof(struct nvme_command));
2114 dev->q_depth = result;
2116 dev->cmb_use_sqes = false;
2120 size = db_bar_size(dev, nr_io_queues);
2121 result = nvme_remap_bar(dev, size);
2124 if (!--nr_io_queues)
2127 adminq->q_db = dev->dbs;
2130 /* Deregister the admin queue's interrupt */
2131 pci_free_irq(pdev, 0, adminq);
2134 * If we enable msix early due to not intx, disable it again before
2135 * setting up the full range we need.
2137 pci_free_irq_vectors(pdev);
2139 result = nvme_setup_irqs(dev, nr_io_queues);
2143 dev->num_vecs = result;
2144 result = max(result - 1, 1);
2145 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2148 * Should investigate if there's a performance win from allocating
2149 * more queues than interrupt vectors; it might allow the submission
2150 * path to scale better, even if the receive path is limited by the
2151 * number of interrupts.
2153 result = queue_request_irq(adminq);
2156 set_bit(NVMEQ_ENABLED, &adminq->flags);
2158 result = nvme_create_io_queues(dev);
2159 if (result || dev->online_queues < 2)
2162 if (dev->online_queues - 1 < dev->max_qid) {
2163 nr_io_queues = dev->online_queues - 1;
2164 nvme_disable_io_queues(dev);
2165 nvme_suspend_io_queues(dev);
2168 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2169 dev->io_queues[HCTX_TYPE_DEFAULT],
2170 dev->io_queues[HCTX_TYPE_READ],
2171 dev->io_queues[HCTX_TYPE_POLL]);
2175 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2177 struct nvme_queue *nvmeq = req->end_io_data;
2179 blk_mq_free_request(req);
2180 complete(&nvmeq->delete_done);
2183 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2185 struct nvme_queue *nvmeq = req->end_io_data;
2188 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2190 nvme_del_queue_end(req, error);
2193 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2195 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2196 struct request *req;
2197 struct nvme_command cmd;
2199 memset(&cmd, 0, sizeof(cmd));
2200 cmd.delete_queue.opcode = opcode;
2201 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2203 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2205 return PTR_ERR(req);
2207 req->timeout = ADMIN_TIMEOUT;
2208 req->end_io_data = nvmeq;
2210 init_completion(&nvmeq->delete_done);
2211 blk_execute_rq_nowait(q, NULL, req, false,
2212 opcode == nvme_admin_delete_cq ?
2213 nvme_del_cq_end : nvme_del_queue_end);
2217 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2219 int nr_queues = dev->online_queues - 1, sent = 0;
2220 unsigned long timeout;
2223 timeout = ADMIN_TIMEOUT;
2224 while (nr_queues > 0) {
2225 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2231 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2233 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2238 /* handle any remaining CQEs */
2239 if (opcode == nvme_admin_delete_cq &&
2240 !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2241 nvme_poll_irqdisable(nvmeq, -1);
2250 static void nvme_dev_add(struct nvme_dev *dev)
2254 if (!dev->ctrl.tagset) {
2255 dev->tagset.ops = &nvme_mq_ops;
2256 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2257 dev->tagset.nr_maps = 2; /* default + read */
2258 if (dev->io_queues[HCTX_TYPE_POLL])
2259 dev->tagset.nr_maps++;
2260 dev->tagset.timeout = NVME_IO_TIMEOUT;
2261 dev->tagset.numa_node = dev_to_node(dev->dev);
2262 dev->tagset.queue_depth =
2263 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2264 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2265 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2266 dev->tagset.driver_data = dev;
2269 * Some Apple controllers requires tags to be unique
2270 * across admin and IO queue, so reserve the first 32
2271 * tags of the IO queue.
2273 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2274 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2276 ret = blk_mq_alloc_tag_set(&dev->tagset);
2278 dev_warn(dev->ctrl.device,
2279 "IO queues tagset allocation failed %d\n", ret);
2282 dev->ctrl.tagset = &dev->tagset;
2284 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2286 /* Free previously allocated queues that are no longer usable */
2287 nvme_free_queues(dev, dev->online_queues);
2290 nvme_dbbuf_set(dev);
2293 static int nvme_pci_enable(struct nvme_dev *dev)
2295 int result = -ENOMEM;
2296 struct pci_dev *pdev = to_pci_dev(dev->dev);
2298 if (pci_enable_device_mem(pdev))
2301 pci_set_master(pdev);
2303 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2306 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2312 * Some devices and/or platforms don't advertise or work with INTx
2313 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2314 * adjust this later.
2316 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2320 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2322 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2324 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2325 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2326 dev->dbs = dev->bar + 4096;
2329 * Some Apple controllers require a non-standard SQE size.
2330 * Interestingly they also seem to ignore the CC:IOSQES register
2331 * so we don't bother updating it here.
2333 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2336 dev->io_sqes = NVME_NVM_IOSQES;
2339 * Temporary fix for the Apple controller found in the MacBook8,1 and
2340 * some MacBook7,1 to avoid controller resets and data loss.
2342 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2344 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2345 "set queue depth=%u to work around controller resets\n",
2347 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2348 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2349 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2351 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2352 "set queue depth=%u\n", dev->q_depth);
2356 * Controllers with the shared tags quirk need the IO queue to be
2357 * big enough so that we get 32 tags for the admin queue
2359 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2360 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2361 dev->q_depth = NVME_AQ_DEPTH + 2;
2362 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2369 pci_enable_pcie_error_reporting(pdev);
2370 pci_save_state(pdev);
2374 pci_disable_device(pdev);
2378 static void nvme_dev_unmap(struct nvme_dev *dev)
2382 pci_release_mem_regions(to_pci_dev(dev->dev));
2385 static void nvme_pci_disable(struct nvme_dev *dev)
2387 struct pci_dev *pdev = to_pci_dev(dev->dev);
2389 pci_free_irq_vectors(pdev);
2391 if (pci_is_enabled(pdev)) {
2392 pci_disable_pcie_error_reporting(pdev);
2393 pci_disable_device(pdev);
2397 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2399 bool dead = true, freeze = false;
2400 struct pci_dev *pdev = to_pci_dev(dev->dev);
2402 mutex_lock(&dev->shutdown_lock);
2403 if (pci_is_enabled(pdev)) {
2404 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2406 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2407 dev->ctrl.state == NVME_CTRL_RESETTING) {
2409 nvme_start_freeze(&dev->ctrl);
2411 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2412 pdev->error_state != pci_channel_io_normal);
2416 * Give the controller a chance to complete all entered requests if
2417 * doing a safe shutdown.
2419 if (!dead && shutdown && freeze)
2420 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2422 nvme_stop_queues(&dev->ctrl);
2424 if (!dead && dev->ctrl.queue_count > 0) {
2425 nvme_disable_io_queues(dev);
2426 nvme_disable_admin_queue(dev, shutdown);
2428 nvme_suspend_io_queues(dev);
2429 nvme_suspend_queue(&dev->queues[0]);
2430 nvme_pci_disable(dev);
2432 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2433 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2434 blk_mq_tagset_wait_completed_request(&dev->tagset);
2435 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2438 * The driver will not be starting up queues again if shutting down so
2439 * must flush all entered requests to their failed completion to avoid
2440 * deadlocking blk-mq hot-cpu notifier.
2443 nvme_start_queues(&dev->ctrl);
2444 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2445 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2447 mutex_unlock(&dev->shutdown_lock);
2450 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2452 if (!nvme_wait_reset(&dev->ctrl))
2454 nvme_dev_disable(dev, shutdown);
2458 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2460 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2461 PAGE_SIZE, PAGE_SIZE, 0);
2462 if (!dev->prp_page_pool)
2465 /* Optimisation for I/Os between 4k and 128k */
2466 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2468 if (!dev->prp_small_pool) {
2469 dma_pool_destroy(dev->prp_page_pool);
2475 static void nvme_release_prp_pools(struct nvme_dev *dev)
2477 dma_pool_destroy(dev->prp_page_pool);
2478 dma_pool_destroy(dev->prp_small_pool);
2481 static void nvme_free_tagset(struct nvme_dev *dev)
2483 if (dev->tagset.tags)
2484 blk_mq_free_tag_set(&dev->tagset);
2485 dev->ctrl.tagset = NULL;
2488 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2490 struct nvme_dev *dev = to_nvme_dev(ctrl);
2492 nvme_dbbuf_dma_free(dev);
2493 put_device(dev->dev);
2494 nvme_free_tagset(dev);
2495 if (dev->ctrl.admin_q)
2496 blk_put_queue(dev->ctrl.admin_q);
2498 free_opal_dev(dev->ctrl.opal_dev);
2499 mempool_destroy(dev->iod_mempool);
2503 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2506 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2507 * may be holding this pci_dev's device lock.
2509 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2510 nvme_get_ctrl(&dev->ctrl);
2511 nvme_dev_disable(dev, false);
2512 nvme_kill_queues(&dev->ctrl);
2513 if (!queue_work(nvme_wq, &dev->remove_work))
2514 nvme_put_ctrl(&dev->ctrl);
2517 static void nvme_reset_work(struct work_struct *work)
2519 struct nvme_dev *dev =
2520 container_of(work, struct nvme_dev, ctrl.reset_work);
2521 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2524 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2530 * If we're called to reset a live controller first shut it down before
2533 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2534 nvme_dev_disable(dev, false);
2535 nvme_sync_queues(&dev->ctrl);
2537 mutex_lock(&dev->shutdown_lock);
2538 result = nvme_pci_enable(dev);
2542 result = nvme_pci_configure_admin_queue(dev);
2546 result = nvme_alloc_admin_tags(dev);
2551 * Limit the max command size to prevent iod->sg allocations going
2552 * over a single page.
2554 dev->ctrl.max_hw_sectors = min_t(u32,
2555 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2556 dev->ctrl.max_segments = NVME_MAX_SEGS;
2559 * Don't limit the IOMMU merged segment size.
2561 dma_set_max_seg_size(dev->dev, 0xffffffff);
2563 mutex_unlock(&dev->shutdown_lock);
2566 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2567 * initializing procedure here.
2569 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2570 dev_warn(dev->ctrl.device,
2571 "failed to mark controller CONNECTING\n");
2576 result = nvme_init_identify(&dev->ctrl);
2580 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2581 if (!dev->ctrl.opal_dev)
2582 dev->ctrl.opal_dev =
2583 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2584 else if (was_suspend)
2585 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2587 free_opal_dev(dev->ctrl.opal_dev);
2588 dev->ctrl.opal_dev = NULL;
2591 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2592 result = nvme_dbbuf_dma_alloc(dev);
2595 "unable to allocate dma for dbbuf\n");
2598 if (dev->ctrl.hmpre) {
2599 result = nvme_setup_host_mem(dev);
2604 result = nvme_setup_io_queues(dev);
2609 * Keep the controller around but remove all namespaces if we don't have
2610 * any working I/O queue.
2612 if (dev->online_queues < 2) {
2613 dev_warn(dev->ctrl.device, "IO queues not created\n");
2614 nvme_kill_queues(&dev->ctrl);
2615 nvme_remove_namespaces(&dev->ctrl);
2616 nvme_free_tagset(dev);
2618 nvme_start_queues(&dev->ctrl);
2619 nvme_wait_freeze(&dev->ctrl);
2621 nvme_unfreeze(&dev->ctrl);
2625 * If only admin queue live, keep it to do further investigation or
2628 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2629 dev_warn(dev->ctrl.device,
2630 "failed to mark controller live state\n");
2635 nvme_start_ctrl(&dev->ctrl);
2639 mutex_unlock(&dev->shutdown_lock);
2642 dev_warn(dev->ctrl.device,
2643 "Removing after probe failure status: %d\n", result);
2644 nvme_remove_dead_ctrl(dev);
2647 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2649 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2650 struct pci_dev *pdev = to_pci_dev(dev->dev);
2652 if (pci_get_drvdata(pdev))
2653 device_release_driver(&pdev->dev);
2654 nvme_put_ctrl(&dev->ctrl);
2657 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2659 *val = readl(to_nvme_dev(ctrl)->bar + off);
2663 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2665 writel(val, to_nvme_dev(ctrl)->bar + off);
2669 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2671 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2675 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2677 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2679 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2682 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2684 .module = THIS_MODULE,
2685 .flags = NVME_F_METADATA_SUPPORTED |
2687 .reg_read32 = nvme_pci_reg_read32,
2688 .reg_write32 = nvme_pci_reg_write32,
2689 .reg_read64 = nvme_pci_reg_read64,
2690 .free_ctrl = nvme_pci_free_ctrl,
2691 .submit_async_event = nvme_pci_submit_async_event,
2692 .get_address = nvme_pci_get_address,
2695 static int nvme_dev_map(struct nvme_dev *dev)
2697 struct pci_dev *pdev = to_pci_dev(dev->dev);
2699 if (pci_request_mem_regions(pdev, "nvme"))
2702 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2707 pci_release_mem_regions(pdev);
2711 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2713 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2715 * Several Samsung devices seem to drop off the PCIe bus
2716 * randomly when APST is on and uses the deepest sleep state.
2717 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2718 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2719 * 950 PRO 256GB", but it seems to be restricted to two Dell
2722 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2723 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2724 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2725 return NVME_QUIRK_NO_DEEPEST_PS;
2726 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2728 * Samsung SSD 960 EVO drops off the PCIe bus after system
2729 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2730 * within few minutes after bootup on a Coffee Lake board -
2733 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2734 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2735 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2736 return NVME_QUIRK_NO_APST;
2742 static void nvme_async_probe(void *data, async_cookie_t cookie)
2744 struct nvme_dev *dev = data;
2746 flush_work(&dev->ctrl.reset_work);
2747 flush_work(&dev->ctrl.scan_work);
2748 nvme_put_ctrl(&dev->ctrl);
2751 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2753 int node, result = -ENOMEM;
2754 struct nvme_dev *dev;
2755 unsigned long quirks = id->driver_data;
2758 node = dev_to_node(&pdev->dev);
2759 if (node == NUMA_NO_NODE)
2760 set_dev_node(&pdev->dev, first_memory_node);
2762 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2766 dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2771 dev->dev = get_device(&pdev->dev);
2772 pci_set_drvdata(pdev, dev);
2774 result = nvme_dev_map(dev);
2778 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2779 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2780 mutex_init(&dev->shutdown_lock);
2782 result = nvme_setup_prp_pools(dev);
2786 quirks |= check_vendor_combination_bug(pdev);
2789 * Double check that our mempool alloc size will cover the biggest
2790 * command we support.
2792 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2793 NVME_MAX_SEGS, true);
2794 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2796 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2798 (void *) alloc_size,
2800 if (!dev->iod_mempool) {
2805 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2808 goto release_mempool;
2810 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2812 nvme_reset_ctrl(&dev->ctrl);
2813 nvme_get_ctrl(&dev->ctrl);
2814 async_schedule(nvme_async_probe, dev);
2819 mempool_destroy(dev->iod_mempool);
2821 nvme_release_prp_pools(dev);
2823 nvme_dev_unmap(dev);
2825 put_device(dev->dev);
2832 static void nvme_reset_prepare(struct pci_dev *pdev)
2834 struct nvme_dev *dev = pci_get_drvdata(pdev);
2837 * We don't need to check the return value from waiting for the reset
2838 * state as pci_dev device lock is held, making it impossible to race
2841 nvme_disable_prepare_reset(dev, false);
2842 nvme_sync_queues(&dev->ctrl);
2845 static void nvme_reset_done(struct pci_dev *pdev)
2847 struct nvme_dev *dev = pci_get_drvdata(pdev);
2849 if (!nvme_try_sched_reset(&dev->ctrl))
2850 flush_work(&dev->ctrl.reset_work);
2853 static void nvme_shutdown(struct pci_dev *pdev)
2855 struct nvme_dev *dev = pci_get_drvdata(pdev);
2856 nvme_disable_prepare_reset(dev, true);
2860 * The driver's remove may be called on a device in a partially initialized
2861 * state. This function must not have any dependencies on the device state in
2864 static void nvme_remove(struct pci_dev *pdev)
2866 struct nvme_dev *dev = pci_get_drvdata(pdev);
2868 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2869 pci_set_drvdata(pdev, NULL);
2871 if (!pci_device_is_present(pdev)) {
2872 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2873 nvme_dev_disable(dev, true);
2874 nvme_dev_remove_admin(dev);
2877 flush_work(&dev->ctrl.reset_work);
2878 nvme_stop_ctrl(&dev->ctrl);
2879 nvme_remove_namespaces(&dev->ctrl);
2880 nvme_dev_disable(dev, true);
2881 nvme_release_cmb(dev);
2882 nvme_free_host_mem(dev);
2883 nvme_dev_remove_admin(dev);
2884 nvme_free_queues(dev, 0);
2885 nvme_uninit_ctrl(&dev->ctrl);
2886 nvme_release_prp_pools(dev);
2887 nvme_dev_unmap(dev);
2888 nvme_put_ctrl(&dev->ctrl);
2891 #ifdef CONFIG_PM_SLEEP
2892 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2894 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2897 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2899 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2902 static int nvme_resume(struct device *dev)
2904 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2905 struct nvme_ctrl *ctrl = &ndev->ctrl;
2907 if (ndev->last_ps == U32_MAX ||
2908 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2909 return nvme_try_sched_reset(&ndev->ctrl);
2913 static int nvme_suspend(struct device *dev)
2915 struct pci_dev *pdev = to_pci_dev(dev);
2916 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2917 struct nvme_ctrl *ctrl = &ndev->ctrl;
2920 ndev->last_ps = U32_MAX;
2923 * The platform does not remove power for a kernel managed suspend so
2924 * use host managed nvme power settings for lowest idle power if
2925 * possible. This should have quicker resume latency than a full device
2926 * shutdown. But if the firmware is involved after the suspend or the
2927 * device does not support any non-default power states, shut down the
2930 * If ASPM is not enabled for the device, shut down the device and allow
2931 * the PCI bus layer to put it into D3 in order to take the PCIe link
2932 * down, so as to allow the platform to achieve its minimum low-power
2933 * state (which may not be possible if the link is up).
2935 if (pm_suspend_via_firmware() || !ctrl->npss ||
2936 !pcie_aspm_enabled(pdev) ||
2937 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
2938 return nvme_disable_prepare_reset(ndev, true);
2940 nvme_start_freeze(ctrl);
2941 nvme_wait_freeze(ctrl);
2942 nvme_sync_queues(ctrl);
2944 if (ctrl->state != NVME_CTRL_LIVE)
2947 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2952 * A saved state prevents pci pm from generically controlling the
2953 * device's power. If we're using protocol specific settings, we don't
2954 * want pci interfering.
2956 pci_save_state(pdev);
2958 ret = nvme_set_power_state(ctrl, ctrl->npss);
2963 /* discard the saved state */
2964 pci_load_saved_state(pdev, NULL);
2967 * Clearing npss forces a controller reset on resume. The
2968 * correct value will be rediscovered then.
2970 ret = nvme_disable_prepare_reset(ndev, true);
2974 nvme_unfreeze(ctrl);
2978 static int nvme_simple_suspend(struct device *dev)
2980 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2981 return nvme_disable_prepare_reset(ndev, true);
2984 static int nvme_simple_resume(struct device *dev)
2986 struct pci_dev *pdev = to_pci_dev(dev);
2987 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2989 return nvme_try_sched_reset(&ndev->ctrl);
2992 static const struct dev_pm_ops nvme_dev_pm_ops = {
2993 .suspend = nvme_suspend,
2994 .resume = nvme_resume,
2995 .freeze = nvme_simple_suspend,
2996 .thaw = nvme_simple_resume,
2997 .poweroff = nvme_simple_suspend,
2998 .restore = nvme_simple_resume,
3000 #endif /* CONFIG_PM_SLEEP */
3002 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3003 pci_channel_state_t state)
3005 struct nvme_dev *dev = pci_get_drvdata(pdev);
3008 * A frozen channel requires a reset. When detected, this method will
3009 * shutdown the controller to quiesce. The controller will be restarted
3010 * after the slot reset through driver's slot_reset callback.
3013 case pci_channel_io_normal:
3014 return PCI_ERS_RESULT_CAN_RECOVER;
3015 case pci_channel_io_frozen:
3016 dev_warn(dev->ctrl.device,
3017 "frozen state error detected, reset controller\n");
3018 nvme_dev_disable(dev, false);
3019 return PCI_ERS_RESULT_NEED_RESET;
3020 case pci_channel_io_perm_failure:
3021 dev_warn(dev->ctrl.device,
3022 "failure state error detected, request disconnect\n");
3023 return PCI_ERS_RESULT_DISCONNECT;
3025 return PCI_ERS_RESULT_NEED_RESET;
3028 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3030 struct nvme_dev *dev = pci_get_drvdata(pdev);
3032 dev_info(dev->ctrl.device, "restart after slot reset\n");
3033 pci_restore_state(pdev);
3034 nvme_reset_ctrl(&dev->ctrl);
3035 return PCI_ERS_RESULT_RECOVERED;
3038 static void nvme_error_resume(struct pci_dev *pdev)
3040 struct nvme_dev *dev = pci_get_drvdata(pdev);
3042 flush_work(&dev->ctrl.reset_work);
3045 static const struct pci_error_handlers nvme_err_handler = {
3046 .error_detected = nvme_error_detected,
3047 .slot_reset = nvme_slot_reset,
3048 .resume = nvme_error_resume,
3049 .reset_prepare = nvme_reset_prepare,
3050 .reset_done = nvme_reset_done,
3053 static const struct pci_device_id nvme_id_table[] = {
3054 { PCI_VDEVICE(INTEL, 0x0953),
3055 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3056 NVME_QUIRK_DEALLOCATE_ZEROES, },
3057 { PCI_VDEVICE(INTEL, 0x0a53),
3058 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3059 NVME_QUIRK_DEALLOCATE_ZEROES, },
3060 { PCI_VDEVICE(INTEL, 0x0a54),
3061 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3062 NVME_QUIRK_DEALLOCATE_ZEROES, },
3063 { PCI_VDEVICE(INTEL, 0x0a55),
3064 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3065 NVME_QUIRK_DEALLOCATE_ZEROES, },
3066 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3067 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3068 NVME_QUIRK_MEDIUM_PRIO_SQ |
3069 NVME_QUIRK_NO_TEMP_THRESH_CHANGE },
3070 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3071 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3072 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3073 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3074 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3075 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3076 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3077 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3078 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3079 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3080 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3081 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3082 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3083 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3084 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3085 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3086 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3087 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3088 .driver_data = NVME_QUIRK_LIGHTNVM, },
3089 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3090 .driver_data = NVME_QUIRK_LIGHTNVM, },
3091 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3092 .driver_data = NVME_QUIRK_LIGHTNVM, },
3093 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3094 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3095 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3096 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3097 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3098 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3099 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
3100 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3101 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3102 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3103 NVME_QUIRK_128_BYTES_SQES |
3104 NVME_QUIRK_SHARED_TAGS },
3107 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3109 static struct pci_driver nvme_driver = {
3111 .id_table = nvme_id_table,
3112 .probe = nvme_probe,
3113 .remove = nvme_remove,
3114 .shutdown = nvme_shutdown,
3115 #ifdef CONFIG_PM_SLEEP
3117 .pm = &nvme_dev_pm_ops,
3120 .sriov_configure = pci_sriov_configure_simple,
3121 .err_handler = &nvme_err_handler,
3124 static int __init nvme_init(void)
3126 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3127 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3128 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3129 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3131 write_queues = min(write_queues, num_possible_cpus());
3132 poll_queues = min(poll_queues, num_possible_cpus());
3133 return pci_register_driver(&nvme_driver);
3136 static void __exit nvme_exit(void)
3138 pci_unregister_driver(&nvme_driver);
3139 flush_workqueue(nvme_wq);
3143 MODULE_LICENSE("GPL");
3144 MODULE_VERSION("1.0");
3145 module_init(nvme_init);
3146 module_exit(nvme_exit);