]> Git Repo - linux.git/blob - drivers/gpu/drm/vc4/vc4_kms.c
Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[linux.git] / drivers / gpu / drm / vc4 / vc4_kms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 KMS
8  *
9  * This is the general code for implementing KMS mode setting that
10  * doesn't clearly associate with any of the other objects (plane,
11  * crtc, HDMI encoder).
12  */
13
14 #include <linux/clk.h>
15
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_fourcc.h>
20 #include <drm/drm_gem_framebuffer_helper.h>
21 #include <drm/drm_plane_helper.h>
22 #include <drm/drm_probe_helper.h>
23 #include <drm/drm_vblank.h>
24
25 #include "vc4_drv.h"
26 #include "vc4_regs.h"
27
28 #define HVS_NUM_CHANNELS 3
29
30 struct vc4_ctm_state {
31         struct drm_private_state base;
32         struct drm_color_ctm *ctm;
33         int fifo;
34 };
35
36 static struct vc4_ctm_state *
37 to_vc4_ctm_state(const struct drm_private_state *priv)
38 {
39         return container_of(priv, struct vc4_ctm_state, base);
40 }
41
42 struct vc4_hvs_state {
43         struct drm_private_state base;
44         unsigned long core_clock_rate;
45
46         struct {
47                 unsigned in_use: 1;
48                 unsigned long fifo_load;
49                 struct drm_crtc_commit *pending_commit;
50         } fifo_state[HVS_NUM_CHANNELS];
51 };
52
53 static struct vc4_hvs_state *
54 to_vc4_hvs_state(const struct drm_private_state *priv)
55 {
56         return container_of(priv, struct vc4_hvs_state, base);
57 }
58
59 struct vc4_load_tracker_state {
60         struct drm_private_state base;
61         u64 hvs_load;
62         u64 membus_load;
63 };
64
65 static struct vc4_load_tracker_state *
66 to_vc4_load_tracker_state(const struct drm_private_state *priv)
67 {
68         return container_of(priv, struct vc4_load_tracker_state, base);
69 }
70
71 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
72                                                struct drm_private_obj *manager)
73 {
74         struct drm_device *dev = state->dev;
75         struct vc4_dev *vc4 = to_vc4_dev(dev);
76         struct drm_private_state *priv_state;
77         int ret;
78
79         ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
80         if (ret)
81                 return ERR_PTR(ret);
82
83         priv_state = drm_atomic_get_private_obj_state(state, manager);
84         if (IS_ERR(priv_state))
85                 return ERR_CAST(priv_state);
86
87         return to_vc4_ctm_state(priv_state);
88 }
89
90 static struct drm_private_state *
91 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
92 {
93         struct vc4_ctm_state *state;
94
95         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
96         if (!state)
97                 return NULL;
98
99         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
100
101         return &state->base;
102 }
103
104 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
105                                   struct drm_private_state *state)
106 {
107         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
108
109         kfree(ctm_state);
110 }
111
112 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
113         .atomic_duplicate_state = vc4_ctm_duplicate_state,
114         .atomic_destroy_state = vc4_ctm_destroy_state,
115 };
116
117 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
118 {
119         struct vc4_dev *vc4 = to_vc4_dev(dev);
120
121         drm_atomic_private_obj_fini(&vc4->ctm_manager);
122 }
123
124 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
125 {
126         struct vc4_ctm_state *ctm_state;
127
128         drm_modeset_lock_init(&vc4->ctm_state_lock);
129
130         ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
131         if (!ctm_state)
132                 return -ENOMEM;
133
134         drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
135                                     &vc4_ctm_state_funcs);
136
137         return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
138 }
139
140 /* Converts a DRM S31.32 value to the HW S0.9 format. */
141 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
142 {
143         u16 r;
144
145         /* Sign bit. */
146         r = in & BIT_ULL(63) ? BIT(9) : 0;
147
148         if ((in & GENMASK_ULL(62, 32)) > 0) {
149                 /* We have zero integer bits so we can only saturate here. */
150                 r |= GENMASK(8, 0);
151         } else {
152                 /* Otherwise take the 9 most important fractional bits. */
153                 r |= (in >> 23) & GENMASK(8, 0);
154         }
155
156         return r;
157 }
158
159 static void
160 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
161 {
162         struct vc4_hvs *hvs = vc4->hvs;
163         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
164         struct drm_color_ctm *ctm = ctm_state->ctm;
165
166         if (ctm_state->fifo) {
167                 HVS_WRITE(SCALER_OLEDCOEF2,
168                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
169                                         SCALER_OLEDCOEF2_R_TO_R) |
170                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
171                                         SCALER_OLEDCOEF2_R_TO_G) |
172                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
173                                         SCALER_OLEDCOEF2_R_TO_B));
174                 HVS_WRITE(SCALER_OLEDCOEF1,
175                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
176                                         SCALER_OLEDCOEF1_G_TO_R) |
177                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
178                                         SCALER_OLEDCOEF1_G_TO_G) |
179                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
180                                         SCALER_OLEDCOEF1_G_TO_B));
181                 HVS_WRITE(SCALER_OLEDCOEF0,
182                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
183                                         SCALER_OLEDCOEF0_B_TO_R) |
184                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
185                                         SCALER_OLEDCOEF0_B_TO_G) |
186                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
187                                         SCALER_OLEDCOEF0_B_TO_B));
188         }
189
190         HVS_WRITE(SCALER_OLEDOFFS,
191                   VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
192 }
193
194 static struct vc4_hvs_state *
195 vc4_hvs_get_new_global_state(struct drm_atomic_state *state)
196 {
197         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
198         struct drm_private_state *priv_state;
199
200         priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
201         if (IS_ERR(priv_state))
202                 return ERR_CAST(priv_state);
203
204         return to_vc4_hvs_state(priv_state);
205 }
206
207 static struct vc4_hvs_state *
208 vc4_hvs_get_old_global_state(struct drm_atomic_state *state)
209 {
210         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
211         struct drm_private_state *priv_state;
212
213         priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
214         if (IS_ERR(priv_state))
215                 return ERR_CAST(priv_state);
216
217         return to_vc4_hvs_state(priv_state);
218 }
219
220 static struct vc4_hvs_state *
221 vc4_hvs_get_global_state(struct drm_atomic_state *state)
222 {
223         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
224         struct drm_private_state *priv_state;
225
226         priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
227         if (IS_ERR(priv_state))
228                 return ERR_CAST(priv_state);
229
230         return to_vc4_hvs_state(priv_state);
231 }
232
233 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
234                                      struct drm_atomic_state *state)
235 {
236         struct vc4_hvs *hvs = vc4->hvs;
237         struct drm_crtc_state *crtc_state;
238         struct drm_crtc *crtc;
239         unsigned int i;
240
241         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
242                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
243                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
244                 u32 dispctrl;
245                 u32 dsp3_mux;
246
247                 if (!crtc_state->active)
248                         continue;
249
250                 if (vc4_state->assigned_channel != 2)
251                         continue;
252
253                 /*
254                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
255                  * FIFO X'.
256                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
257                  *
258                  * DSP3 is connected to FIFO2 unless the transposer is
259                  * enabled. In this case, FIFO 2 is directly accessed by the
260                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
261                  * route.
262                  */
263                 if (vc4_crtc->feeds_txp)
264                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
265                 else
266                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
267
268                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
269                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
270                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
271         }
272 }
273
274 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
275                                      struct drm_atomic_state *state)
276 {
277         struct vc4_hvs *hvs = vc4->hvs;
278         struct drm_crtc_state *crtc_state;
279         struct drm_crtc *crtc;
280         unsigned char mux;
281         unsigned int i;
282         u32 reg;
283
284         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
285                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
286                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
287                 unsigned int channel = vc4_state->assigned_channel;
288
289                 if (!vc4_state->update_muxing)
290                         continue;
291
292                 switch (vc4_crtc->data->hvs_output) {
293                 case 2:
294                         drm_WARN_ON(&vc4->base,
295                                     VC4_GET_FIELD(HVS_READ(SCALER_DISPCTRL),
296                                                   SCALER_DISPCTRL_DSP3_MUX) == channel);
297
298                         mux = (channel == 2) ? 0 : 1;
299                         reg = HVS_READ(SCALER_DISPECTRL);
300                         HVS_WRITE(SCALER_DISPECTRL,
301                                   (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
302                                   VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
303                         break;
304
305                 case 3:
306                         if (channel == VC4_HVS_CHANNEL_DISABLED)
307                                 mux = 3;
308                         else
309                                 mux = channel;
310
311                         reg = HVS_READ(SCALER_DISPCTRL);
312                         HVS_WRITE(SCALER_DISPCTRL,
313                                   (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
314                                   VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
315                         break;
316
317                 case 4:
318                         if (channel == VC4_HVS_CHANNEL_DISABLED)
319                                 mux = 3;
320                         else
321                                 mux = channel;
322
323                         reg = HVS_READ(SCALER_DISPEOLN);
324                         HVS_WRITE(SCALER_DISPEOLN,
325                                   (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
326                                   VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
327
328                         break;
329
330                 case 5:
331                         if (channel == VC4_HVS_CHANNEL_DISABLED)
332                                 mux = 3;
333                         else
334                                 mux = channel;
335
336                         reg = HVS_READ(SCALER_DISPDITHER);
337                         HVS_WRITE(SCALER_DISPDITHER,
338                                   (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
339                                   VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
340                         break;
341
342                 default:
343                         break;
344                 }
345         }
346 }
347
348 static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
349 {
350         struct drm_device *dev = state->dev;
351         struct vc4_dev *vc4 = to_vc4_dev(dev);
352         struct vc4_hvs *hvs = vc4->hvs;
353         struct drm_crtc_state *new_crtc_state;
354         struct vc4_hvs_state *new_hvs_state;
355         struct drm_crtc *crtc;
356         struct vc4_hvs_state *old_hvs_state;
357         unsigned int channel;
358         int i;
359
360         old_hvs_state = vc4_hvs_get_old_global_state(state);
361         if (WARN_ON(IS_ERR(old_hvs_state)))
362                 return;
363
364         new_hvs_state = vc4_hvs_get_new_global_state(state);
365         if (WARN_ON(IS_ERR(new_hvs_state)))
366                 return;
367
368         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
369                 struct vc4_crtc_state *vc4_crtc_state;
370
371                 if (!new_crtc_state->commit)
372                         continue;
373
374                 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
375                 vc4_hvs_mask_underrun(hvs, vc4_crtc_state->assigned_channel);
376         }
377
378         for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
379                 struct drm_crtc_commit *commit;
380                 int ret;
381
382                 if (!old_hvs_state->fifo_state[channel].in_use)
383                         continue;
384
385                 commit = old_hvs_state->fifo_state[channel].pending_commit;
386                 if (!commit)
387                         continue;
388
389                 ret = drm_crtc_commit_wait(commit);
390                 if (ret)
391                         drm_err(dev, "Timed out waiting for commit\n");
392
393                 drm_crtc_commit_put(commit);
394                 old_hvs_state->fifo_state[channel].pending_commit = NULL;
395         }
396
397         if (vc4->is_vc5) {
398                 unsigned long state_rate = max(old_hvs_state->core_clock_rate,
399                                                new_hvs_state->core_clock_rate);
400                 unsigned long core_rate = max_t(unsigned long,
401                                                 500000000, state_rate);
402
403                 drm_dbg(dev, "Raising the core clock at %lu Hz\n", core_rate);
404
405                 /*
406                  * Do a temporary request on the core clock during the
407                  * modeset.
408                  */
409                 WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
410         }
411
412         drm_atomic_helper_commit_modeset_disables(dev, state);
413
414         vc4_ctm_commit(vc4, state);
415
416         if (vc4->is_vc5)
417                 vc5_hvs_pv_muxing_commit(vc4, state);
418         else
419                 vc4_hvs_pv_muxing_commit(vc4, state);
420
421         drm_atomic_helper_commit_planes(dev, state,
422                                         DRM_PLANE_COMMIT_ACTIVE_ONLY);
423
424         drm_atomic_helper_commit_modeset_enables(dev, state);
425
426         drm_atomic_helper_fake_vblank(state);
427
428         drm_atomic_helper_commit_hw_done(state);
429
430         drm_atomic_helper_wait_for_flip_done(dev, state);
431
432         drm_atomic_helper_cleanup_planes(dev, state);
433
434         if (vc4->is_vc5) {
435                 drm_dbg(dev, "Running the core clock at %lu Hz\n",
436                         new_hvs_state->core_clock_rate);
437
438                 /*
439                  * Request a clock rate based on the current HVS
440                  * requirements.
441                  */
442                 WARN_ON(clk_set_min_rate(hvs->core_clk, new_hvs_state->core_clock_rate));
443
444                 drm_dbg(dev, "Core clock actual rate: %lu Hz\n",
445                         clk_get_rate(hvs->core_clk));
446         }
447 }
448
449 static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
450 {
451         struct drm_crtc_state *crtc_state;
452         struct vc4_hvs_state *hvs_state;
453         struct drm_crtc *crtc;
454         unsigned int i;
455
456         hvs_state = vc4_hvs_get_new_global_state(state);
457         if (WARN_ON(IS_ERR(hvs_state)))
458                 return PTR_ERR(hvs_state);
459
460         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
461                 struct vc4_crtc_state *vc4_crtc_state =
462                         to_vc4_crtc_state(crtc_state);
463                 unsigned int channel =
464                         vc4_crtc_state->assigned_channel;
465
466                 if (channel == VC4_HVS_CHANNEL_DISABLED)
467                         continue;
468
469                 if (!hvs_state->fifo_state[channel].in_use)
470                         continue;
471
472                 hvs_state->fifo_state[channel].pending_commit =
473                         drm_crtc_commit_get(crtc_state->commit);
474         }
475
476         return 0;
477 }
478
479 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
480                                              struct drm_file *file_priv,
481                                              const struct drm_mode_fb_cmd2 *mode_cmd)
482 {
483         struct vc4_dev *vc4 = to_vc4_dev(dev);
484         struct drm_mode_fb_cmd2 mode_cmd_local;
485
486         if (WARN_ON_ONCE(vc4->is_vc5))
487                 return ERR_PTR(-ENODEV);
488
489         /* If the user didn't specify a modifier, use the
490          * vc4_set_tiling_ioctl() state for the BO.
491          */
492         if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
493                 struct drm_gem_object *gem_obj;
494                 struct vc4_bo *bo;
495
496                 gem_obj = drm_gem_object_lookup(file_priv,
497                                                 mode_cmd->handles[0]);
498                 if (!gem_obj) {
499                         DRM_DEBUG("Failed to look up GEM BO %d\n",
500                                   mode_cmd->handles[0]);
501                         return ERR_PTR(-ENOENT);
502                 }
503                 bo = to_vc4_bo(gem_obj);
504
505                 mode_cmd_local = *mode_cmd;
506
507                 if (bo->t_format) {
508                         mode_cmd_local.modifier[0] =
509                                 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
510                 } else {
511                         mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
512                 }
513
514                 drm_gem_object_put(gem_obj);
515
516                 mode_cmd = &mode_cmd_local;
517         }
518
519         return drm_gem_fb_create(dev, file_priv, mode_cmd);
520 }
521
522 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
523  * at a time and the HW only supports S0.9 scalars. To account for the latter,
524  * we don't allow userland to set a CTM that we have no hope of approximating.
525  */
526 static int
527 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
528 {
529         struct vc4_dev *vc4 = to_vc4_dev(dev);
530         struct vc4_ctm_state *ctm_state = NULL;
531         struct drm_crtc *crtc;
532         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
533         struct drm_color_ctm *ctm;
534         int i;
535
536         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
537                 /* CTM is being disabled. */
538                 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
539                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
540                         if (IS_ERR(ctm_state))
541                                 return PTR_ERR(ctm_state);
542                         ctm_state->fifo = 0;
543                 }
544         }
545
546         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
547                 if (new_crtc_state->ctm == old_crtc_state->ctm)
548                         continue;
549
550                 if (!ctm_state) {
551                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
552                         if (IS_ERR(ctm_state))
553                                 return PTR_ERR(ctm_state);
554                 }
555
556                 /* CTM is being enabled or the matrix changed. */
557                 if (new_crtc_state->ctm) {
558                         struct vc4_crtc_state *vc4_crtc_state =
559                                 to_vc4_crtc_state(new_crtc_state);
560
561                         /* fifo is 1-based since 0 disables CTM. */
562                         int fifo = vc4_crtc_state->assigned_channel + 1;
563
564                         /* Check userland isn't trying to turn on CTM for more
565                          * than one CRTC at a time.
566                          */
567                         if (ctm_state->fifo && ctm_state->fifo != fifo) {
568                                 DRM_DEBUG_DRIVER("Too many CTM configured\n");
569                                 return -EINVAL;
570                         }
571
572                         /* Check we can approximate the specified CTM.
573                          * We disallow scalars |c| > 1.0 since the HW has
574                          * no integer bits.
575                          */
576                         ctm = new_crtc_state->ctm->data;
577                         for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
578                                 u64 val = ctm->matrix[i];
579
580                                 val &= ~BIT_ULL(63);
581                                 if (val > BIT_ULL(32))
582                                         return -EINVAL;
583                         }
584
585                         ctm_state->fifo = fifo;
586                         ctm_state->ctm = ctm;
587                 }
588         }
589
590         return 0;
591 }
592
593 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
594 {
595         struct drm_plane_state *old_plane_state, *new_plane_state;
596         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
597         struct vc4_load_tracker_state *load_state;
598         struct drm_private_state *priv_state;
599         struct drm_plane *plane;
600         int i;
601
602         priv_state = drm_atomic_get_private_obj_state(state,
603                                                       &vc4->load_tracker);
604         if (IS_ERR(priv_state))
605                 return PTR_ERR(priv_state);
606
607         load_state = to_vc4_load_tracker_state(priv_state);
608         for_each_oldnew_plane_in_state(state, plane, old_plane_state,
609                                        new_plane_state, i) {
610                 struct vc4_plane_state *vc4_plane_state;
611
612                 if (old_plane_state->fb && old_plane_state->crtc) {
613                         vc4_plane_state = to_vc4_plane_state(old_plane_state);
614                         load_state->membus_load -= vc4_plane_state->membus_load;
615                         load_state->hvs_load -= vc4_plane_state->hvs_load;
616                 }
617
618                 if (new_plane_state->fb && new_plane_state->crtc) {
619                         vc4_plane_state = to_vc4_plane_state(new_plane_state);
620                         load_state->membus_load += vc4_plane_state->membus_load;
621                         load_state->hvs_load += vc4_plane_state->hvs_load;
622                 }
623         }
624
625         /* Don't check the load when the tracker is disabled. */
626         if (!vc4->load_tracker_enabled)
627                 return 0;
628
629         /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
630          * the system work when other blocks are accessing the memory.
631          */
632         if (load_state->membus_load > SZ_1G + SZ_512M)
633                 return -ENOSPC;
634
635         /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
636          * consider the maximum number of cycles is 240M.
637          */
638         if (load_state->hvs_load > 240000000ULL)
639                 return -ENOSPC;
640
641         return 0;
642 }
643
644 static struct drm_private_state *
645 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
646 {
647         struct vc4_load_tracker_state *state;
648
649         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
650         if (!state)
651                 return NULL;
652
653         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
654
655         return &state->base;
656 }
657
658 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
659                                            struct drm_private_state *state)
660 {
661         struct vc4_load_tracker_state *load_state;
662
663         load_state = to_vc4_load_tracker_state(state);
664         kfree(load_state);
665 }
666
667 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
668         .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
669         .atomic_destroy_state = vc4_load_tracker_destroy_state,
670 };
671
672 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
673 {
674         struct vc4_dev *vc4 = to_vc4_dev(dev);
675
676         drm_atomic_private_obj_fini(&vc4->load_tracker);
677 }
678
679 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
680 {
681         struct vc4_load_tracker_state *load_state;
682
683         load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
684         if (!load_state)
685                 return -ENOMEM;
686
687         drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
688                                     &load_state->base,
689                                     &vc4_load_tracker_state_funcs);
690
691         return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
692 }
693
694 static struct drm_private_state *
695 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
696 {
697         struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
698         struct vc4_hvs_state *state;
699         unsigned int i;
700
701         state = kzalloc(sizeof(*state), GFP_KERNEL);
702         if (!state)
703                 return NULL;
704
705         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
706
707         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
708                 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
709                 state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load;
710         }
711
712         state->core_clock_rate = old_state->core_clock_rate;
713
714         return &state->base;
715 }
716
717 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
718                                            struct drm_private_state *state)
719 {
720         struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
721         unsigned int i;
722
723         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
724                 if (!hvs_state->fifo_state[i].pending_commit)
725                         continue;
726
727                 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
728         }
729
730         kfree(hvs_state);
731 }
732
733 static void vc4_hvs_channels_print_state(struct drm_printer *p,
734                                          const struct drm_private_state *state)
735 {
736         struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
737         unsigned int i;
738
739         drm_printf(p, "HVS State\n");
740         drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate);
741
742         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
743                 drm_printf(p, "\tChannel %d\n", i);
744                 drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use);
745                 drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load);
746         }
747 }
748
749 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
750         .atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
751         .atomic_destroy_state = vc4_hvs_channels_destroy_state,
752         .atomic_print_state = vc4_hvs_channels_print_state,
753 };
754
755 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
756 {
757         struct vc4_dev *vc4 = to_vc4_dev(dev);
758
759         drm_atomic_private_obj_fini(&vc4->hvs_channels);
760 }
761
762 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
763 {
764         struct vc4_hvs_state *state;
765
766         state = kzalloc(sizeof(*state), GFP_KERNEL);
767         if (!state)
768                 return -ENOMEM;
769
770         drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
771                                     &state->base,
772                                     &vc4_hvs_state_funcs);
773
774         return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
775 }
776
777 /*
778  * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
779  * the TXP (and therefore all the CRTCs found on that platform).
780  *
781  * The naive (and our initial) implementation would just iterate over
782  * all the active CRTCs, try to find a suitable FIFO, and then remove it
783  * from the pool of available FIFOs. However, there are a few corner
784  * cases that need to be considered:
785  *
786  * - When running in a dual-display setup (so with two CRTCs involved),
787  *   we can update the state of a single CRTC (for example by changing
788  *   its mode using xrandr under X11) without affecting the other. In
789  *   this case, the other CRTC wouldn't be in the state at all, so we
790  *   need to consider all the running CRTCs in the DRM device to assign
791  *   a FIFO, not just the one in the state.
792  *
793  * - To fix the above, we can't use drm_atomic_get_crtc_state on all
794  *   enabled CRTCs to pull their CRTC state into the global state, since
795  *   a page flip would start considering their vblank to complete. Since
796  *   we don't have a guarantee that they are actually active, that
797  *   vblank might never happen, and shouldn't even be considered if we
798  *   want to do a page flip on a single CRTC. That can be tested by
799  *   doing a modetest -v first on HDMI1 and then on HDMI0.
800  *
801  * - Since we need the pixelvalve to be disabled and enabled back when
802  *   the FIFO is changed, we should keep the FIFO assigned for as long
803  *   as the CRTC is enabled, only considering it free again once that
804  *   CRTC has been disabled. This can be tested by booting X11 on a
805  *   single display, and changing the resolution down and then back up.
806  */
807 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
808                                       struct drm_atomic_state *state)
809 {
810         struct vc4_hvs_state *hvs_new_state;
811         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
812         struct drm_crtc *crtc;
813         unsigned int unassigned_channels = 0;
814         unsigned int i;
815
816         hvs_new_state = vc4_hvs_get_global_state(state);
817         if (IS_ERR(hvs_new_state))
818                 return PTR_ERR(hvs_new_state);
819
820         for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
821                 if (!hvs_new_state->fifo_state[i].in_use)
822                         unassigned_channels |= BIT(i);
823
824         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
825                 struct vc4_crtc_state *old_vc4_crtc_state =
826                         to_vc4_crtc_state(old_crtc_state);
827                 struct vc4_crtc_state *new_vc4_crtc_state =
828                         to_vc4_crtc_state(new_crtc_state);
829                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
830                 unsigned int matching_channels;
831                 unsigned int channel;
832
833                 drm_dbg(dev, "%s: Trying to find a channel.\n", crtc->name);
834
835                 /* Nothing to do here, let's skip it */
836                 if (old_crtc_state->enable == new_crtc_state->enable) {
837                         if (new_crtc_state->enable)
838                                 drm_dbg(dev, "%s: Already enabled, reusing channel %d.\n",
839                                         crtc->name, new_vc4_crtc_state->assigned_channel);
840                         else
841                                 drm_dbg(dev, "%s: Disabled, ignoring.\n", crtc->name);
842
843                         continue;
844                 }
845
846                 /* Muxing will need to be modified, mark it as such */
847                 new_vc4_crtc_state->update_muxing = true;
848
849                 /* If we're disabling our CRTC, we put back our channel */
850                 if (!new_crtc_state->enable) {
851                         channel = old_vc4_crtc_state->assigned_channel;
852
853                         drm_dbg(dev, "%s: Disabling, Freeing channel %d\n",
854                                 crtc->name, channel);
855
856                         hvs_new_state->fifo_state[channel].in_use = false;
857                         new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
858                         continue;
859                 }
860
861                 /*
862                  * The problem we have to solve here is that we have
863                  * up to 7 encoders, connected to up to 6 CRTCs.
864                  *
865                  * Those CRTCs, depending on the instance, can be
866                  * routed to 1, 2 or 3 HVS FIFOs, and we need to set
867                  * the change the muxing between FIFOs and outputs in
868                  * the HVS accordingly.
869                  *
870                  * It would be pretty hard to come up with an
871                  * algorithm that would generically solve
872                  * this. However, the current routing trees we support
873                  * allow us to simplify a bit the problem.
874                  *
875                  * Indeed, with the current supported layouts, if we
876                  * try to assign in the ascending crtc index order the
877                  * FIFOs, we can't fall into the situation where an
878                  * earlier CRTC that had multiple routes is assigned
879                  * one that was the only option for a later CRTC.
880                  *
881                  * If the layout changes and doesn't give us that in
882                  * the future, we will need to have something smarter,
883                  * but it works so far.
884                  */
885                 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
886                 if (!matching_channels)
887                         return -EINVAL;
888
889                 channel = ffs(matching_channels) - 1;
890
891                 drm_dbg(dev, "Assigned HVS channel %d to CRTC %s\n", channel, crtc->name);
892                 new_vc4_crtc_state->assigned_channel = channel;
893                 unassigned_channels &= ~BIT(channel);
894                 hvs_new_state->fifo_state[channel].in_use = true;
895         }
896
897         return 0;
898 }
899
900 static int
901 vc4_core_clock_atomic_check(struct drm_atomic_state *state)
902 {
903         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
904         struct drm_private_state *priv_state;
905         struct vc4_hvs_state *hvs_new_state;
906         struct vc4_load_tracker_state *load_state;
907         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
908         struct drm_crtc *crtc;
909         unsigned int num_outputs;
910         unsigned long pixel_rate;
911         unsigned long cob_rate;
912         unsigned int i;
913
914         priv_state = drm_atomic_get_private_obj_state(state,
915                                                       &vc4->load_tracker);
916         if (IS_ERR(priv_state))
917                 return PTR_ERR(priv_state);
918
919         load_state = to_vc4_load_tracker_state(priv_state);
920
921         hvs_new_state = vc4_hvs_get_global_state(state);
922         if (IS_ERR(hvs_new_state))
923                 return PTR_ERR(hvs_new_state);
924
925         for_each_oldnew_crtc_in_state(state, crtc,
926                                       old_crtc_state,
927                                       new_crtc_state,
928                                       i) {
929                 if (old_crtc_state->active) {
930                         struct vc4_crtc_state *old_vc4_state =
931                                 to_vc4_crtc_state(old_crtc_state);
932                         unsigned int channel = old_vc4_state->assigned_channel;
933
934                         hvs_new_state->fifo_state[channel].fifo_load = 0;
935                 }
936
937                 if (new_crtc_state->active) {
938                         struct vc4_crtc_state *new_vc4_state =
939                                 to_vc4_crtc_state(new_crtc_state);
940                         unsigned int channel = new_vc4_state->assigned_channel;
941
942                         hvs_new_state->fifo_state[channel].fifo_load =
943                                 new_vc4_state->hvs_load;
944                 }
945         }
946
947         cob_rate = 0;
948         num_outputs = 0;
949         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
950                 if (!hvs_new_state->fifo_state[i].in_use)
951                         continue;
952
953                 num_outputs++;
954                 cob_rate = max_t(unsigned long,
955                                  hvs_new_state->fifo_state[i].fifo_load,
956                                  cob_rate);
957         }
958
959         pixel_rate = load_state->hvs_load;
960         if (num_outputs > 1) {
961                 pixel_rate = (pixel_rate * 40) / 100;
962         } else {
963                 pixel_rate = (pixel_rate * 60) / 100;
964         }
965
966         hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate);
967
968         return 0;
969 }
970
971
972 static int
973 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
974 {
975         int ret;
976
977         ret = vc4_pv_muxing_atomic_check(dev, state);
978         if (ret)
979                 return ret;
980
981         ret = vc4_ctm_atomic_check(dev, state);
982         if (ret < 0)
983                 return ret;
984
985         ret = drm_atomic_helper_check(dev, state);
986         if (ret)
987                 return ret;
988
989         ret = vc4_load_tracker_atomic_check(state);
990         if (ret)
991                 return ret;
992
993         return vc4_core_clock_atomic_check(state);
994 }
995
996 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
997         .atomic_commit_setup    = vc4_atomic_commit_setup,
998         .atomic_commit_tail     = vc4_atomic_commit_tail,
999 };
1000
1001 static const struct drm_mode_config_funcs vc4_mode_funcs = {
1002         .atomic_check = vc4_atomic_check,
1003         .atomic_commit = drm_atomic_helper_commit,
1004         .fb_create = vc4_fb_create,
1005 };
1006
1007 static const struct drm_mode_config_funcs vc5_mode_funcs = {
1008         .atomic_check = vc4_atomic_check,
1009         .atomic_commit = drm_atomic_helper_commit,
1010         .fb_create = drm_gem_fb_create,
1011 };
1012
1013 int vc4_kms_load(struct drm_device *dev)
1014 {
1015         struct vc4_dev *vc4 = to_vc4_dev(dev);
1016         int ret;
1017
1018         /*
1019          * The limits enforced by the load tracker aren't relevant for
1020          * the BCM2711, but the load tracker computations are used for
1021          * the core clock rate calculation.
1022          */
1023         if (!vc4->is_vc5) {
1024                 /* Start with the load tracker enabled. Can be
1025                  * disabled through the debugfs load_tracker file.
1026                  */
1027                 vc4->load_tracker_enabled = true;
1028         }
1029
1030         /* Set support for vblank irq fast disable, before drm_vblank_init() */
1031         dev->vblank_disable_immediate = true;
1032
1033         ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
1034         if (ret < 0) {
1035                 dev_err(dev->dev, "failed to initialize vblank\n");
1036                 return ret;
1037         }
1038
1039         if (vc4->is_vc5) {
1040                 dev->mode_config.max_width = 7680;
1041                 dev->mode_config.max_height = 7680;
1042         } else {
1043                 dev->mode_config.max_width = 2048;
1044                 dev->mode_config.max_height = 2048;
1045         }
1046
1047         dev->mode_config.funcs = vc4->is_vc5 ? &vc5_mode_funcs : &vc4_mode_funcs;
1048         dev->mode_config.helper_private = &vc4_mode_config_helpers;
1049         dev->mode_config.preferred_depth = 24;
1050         dev->mode_config.async_page_flip = true;
1051
1052         ret = vc4_ctm_obj_init(vc4);
1053         if (ret)
1054                 return ret;
1055
1056         ret = vc4_load_tracker_obj_init(vc4);
1057         if (ret)
1058                 return ret;
1059
1060         ret = vc4_hvs_channels_obj_init(vc4);
1061         if (ret)
1062                 return ret;
1063
1064         drm_mode_config_reset(dev);
1065
1066         drm_kms_helper_poll_init(dev);
1067
1068         return 0;
1069 }
This page took 0.104526 seconds and 4 git commands to generate.